CRYSTAL STRUCTURE OF PHENANTHRENE

B. S. $B \wedge S \wedge K$

(Recelved for publication, June ani, r95e)
ABSTRACT - The crrstal structure of phenanthrene has been determined by the help of Foutier synthesis method Integrated intelusities of a laige number of axiuland prism planes were determined from oscillation, solation and moving film photugraphe and absolute values of structure factons were determined by comparison with alumimum. On the basis of thesc F-values and existing hemucal phesical and magnetic data, a structure is found out by trial-and-eiror method. Election dembty projection map on the (ono) face shows the preture of the molecule ruite clearls. The length of one of the molecules makes an angle of 75° with the $a-1 \times \mathrm{x}$, and 6° with the foro plane and the plane of the molecule is melined at 60° to the (oro) plane The orrentution of the sccond molerule is governed by the twofold screw axis A the dimemional Fourien summation to give out the detailed structure analysis is in pongress

The crystalline structure of phenanthrene was studied by the X-ray uiffraction method previously by Mark and Hengstenberg (res29), who fonnd the following dimensions for the unt cell

$$
\begin{array}{ll}
a=8.60 \AA & b=6.1 \mathrm{I} \AA \\
c=19.24^{\AA} & \beta=81^{\circ} 45^{\prime}
\end{array}
$$

with 4 moiecules in the unit cell Fiom a study of systematic absent planes they assigned the space-group $C_{2}^{2}-P_{2} / c$ in the monoclinic system to this crystal. We have taken up a complete structure determination of this crystal on acconnt of its inportance in the domain of organic chemistry. From over-exposed rotation photographs and goniometic measurements. it was found out that the actual c^{3} axtal ingth of the unit cell was reaily half the value found out by Mark and Hengstenberg with the following values for axial lengths and angles

$$
\begin{array}{ll}
a=8.57 \AA & b=611 \AA \\
c=9.47 \AA & \beta=82^{\circ} 30^{\prime}
\end{array}
$$

No. of molecules in the unit cell=2.
From an examination of intensities of the 'oko) planes and from steric and symmetry considerations, the crystal was classified as belonging to the space group $C_{2}^{2}-P_{2_{1}}$ in the monoclinic crystal class (Basak, 19.18).
()scillation and moving film pictures about the three crystallogiaphic axes were next recorded. The estimated intensities of the different plants

5-1738P-7
by comparison with a logarithmic sector wedge werc converted to absolute intensities and thence to absolute values of structure factors by matching some of the reflections with standard altuminium powder lines.

In carrying out a two dmensonal Fourier summation, the phases of the structure factur tem weat determined by the conventional method of tral-and error. The already existing chemical, magnetic and other data Were utilsed for natrowing ont the field over which tials were to be given From the magnetic medsurements of Krishnan a d Banerjec (m 936), the mole cular ornentation in the phenanthrene clystal, assuming a planar configuration of the molecule, comes out to be as follows: Thic length of the moleculc lics in the (oro) plane at $7^{8} 5^{n}$ with the a-axis. On the hasis of thent corrected values for magnetic data, we have made fresh calculatrons and the inclunation of the molecular plane to the (oIo) crystallographic plane comes

lig. 1

Fig. 2
out to be nearly 60° By far the strongest reflection happens to be from the (201) crystallogiaphe pianc; the measured aboolute value of structure factor being about 61% of that had all the atoms been on the (201) plawe. The i21I) plane too is strong cnough, suggesting that the inclination of the molecular plane to the (o10) plane is near about 60°. Moreover the erystal has got a very prominent cleavage along the (201) plane. 'laking all these

312		B. S. Basak			
'T'abiel I(contd.)					
Index of the spct	$\underset{\text { Calculated }}{\stackrel{H}{4}}$	F Observed	Index cf the iput	$\underset{\text { Calculated }}{F}$	$\stackrel{F}{\text { Obsei ved }}$
307	$+1$	abs	306	+2	abs.
$3{ }^{3}$	+4	abs	509	+1	abs
308	-6	abs	601	-1	abs.
39	+1	abs	602	$+3$	3
401	+ 1	4	${ }^{60} 3$	-3	3
402	-5	5	614	+1	abs
-103	+	6	605	-3	-3
10.4	${ }^{1}$	6	601	-1	abs.
405	${ }^{\prime}$	abs	6×2	-1	nbs
406	12	abs	603	+4	1
407	0	\checkmark	$60{ }_{4}$	$+3$	3
408	+5	3	fobs	+	abs
401	$\rightarrow 6$	5	701	+11	9
402	-5	4	702	0^{-2}	abs
403	$+1 \mathrm{~J}$	7	703	-3	abs
404	+1	abs	701	-1	abs
105	-5	9В	705	+7	7
, 106	+2	abs	206	-4	3
417	$+6$	4	701	-2	abos
408	-4	2	702	-2	alus
501	0	1	703	-4	3
5 C 2	-3	als.	704	$+5$	7
503	+2	abs	705	-1	abs
50.1	+12	12	706 -	${ }^{4}$	abs.
50.5	-11	9			
509	$+10$	13			
511	-3	,			
502	-3	1			
503	-2	als.			
504	+3	abs.			
50.5	-3				

'Tamie I (Part II)

Since in these projections, there ane no centres of symmetry, only the uumerical values of F ate grven

lindex of the plave	$\begin{gathered} F \\ \text { Calculated } \end{gathered}$	$\stackrel{\underset{\text { Observed }}{\text { O }}}{ }$	Index of the plane	$\begin{gathered} \text { F } \\ \text { Calcula:ed } \end{gathered}$	$\begin{gathered} F \\ \text { Cakculated } \end{gathered}$
020	16	J8	110	11	f)
040	3	3	210	311	38
nou	5	9	310	1	6
011	7	4	110	10	≥ 0
012	3	abs.	510	12	11
013	6	abs.	6110	5	6
014	11	14	710	2	abs
015	10	15	12 n	5	1
oif.	$\stackrel{\sim}{4}$	ab,	220	8	5
017	s	7	3211	12	11
021	11	25	420	5	4
022	11	21	520	8	7
023	13	19)	620	2	abs.
024	4	\bigcirc	130		4
025	3	abs	$\underline{23}$	7	7
$0 \cdot 6$	2	ab	$3{ }^{0}$,	abs.
027	11	1.4	150	5	9
031	10	5			
032	6	abs			
033	9	9			
031	1	abs.			

'I'sbile II
Co-ordmates of the atoms

$y . b$	
03100	01100
01249	01538
04700	0.2105
01608	0.2980
0.4460	03547
02618	03985
06.079	0.4552
0.2377	05427
05838	0.5994
00526	05865
03987	06432
00285	07307
$0.3-46$	0.7874
0.1895	0.8312

points into cousideration, the molecule is assumed to be oriented with its length in the (oro) plane at $78 \frac{1}{2}^{\circ}$ to the a-axis and its molecular plane at 60° to the b-plane. Trials were given by varying the orientations and matching the calculated values of structure factors with the observed ones. The lengths of the aiomatic $c-c$ bond were assumed to be $1.41 \AA$ in conformity
with the determinations of similar compounds by Banerjec (ig30), Robertson (1933) and others.

After a large number of trials, agreement between observed and calculated F-values was reached at the following orientation. The length of the molecule which itself is planar makes an angle of 6° with the b-plane and 75° with the a-axis while molecular plane is inclined at 60^{n} to the (wro) plane The orientation of the second molecule in the crystal is governed by the two-fold screw axis of symmetry

A two-dmensional Fourner summation was next carricd ont around b-axis using the method of summation described by Lipson and Beevers (1934). From the resuitant clectron density map the appearance of the molecule can be seen with reasonable clearnens.

The x-and z-co-ondmates only are obtanced from this projection, while the y-co-ordmatss were detemined by trial from the F-values of the (okl) and (hko) planes. The agreenent between obseived and calculated values of structure factors can be seen from 'rable I.

Piojections along the other two axes are in pogress and a tefinement of the parameters by a the dmensional Foutier summation wall be carried out.

ICKNOWLE1)GMEN'J
It is a great pleasure to acknowledge my indebtedness to Prot K. Banerfee for suggesting the poblem and for his kind help during the progress of the work.

> REFERENC゚HS

Baveıjee, K., s93u Ind Jow $J^{\prime} h y s ., 4,557$
Basak, B. A, 1948, .1cta Cryslallogr, 1, 224.
Deevers, C` A Lipsuin, H . 1931, Phil Mag. 17, \mathbf{S}_{55}
Krishnan, K S, Bancrjce, S, 1936, Phil Jans Roy Sot, 23.5343.
Mark, H and 1lengstenberg, J , 19?9, Z Kristallogr 70, 287
Robertion, J. M. נ933, Roy Suc Proc. 141. 594

