EMISSION SPECTRA OF THE MANGANESE HALIDES

By P. TIRUVENGANNA RAO

(Received for publication, April 11, 1919)

Plates XXVA and B

ABSTRACT. Bacher's analysis of the MnCl bands in the region $\lambda 3900 - \lambda 3500$, as arising from the electronic transition 70 - 72, is extended to the higher sequences $\Delta v = \pm v$, $\pm v_1 \pm v_2 \pm 3v_3 = \Lambda$ similar analysis is vorked out for the $\Delta v = \pm v_1$ sequence of MnBr bands.

INTRODUCTION

In a short note, the author (Rao, 1948) reported characteristic bands in the region λ_{3900} - λ_{3500} attributed to the diatomic molecule MnCl in a heavy current discharge. An analysis of these bands was communicated in a previous paper (1948 and 1949). Considering the previously published work of Rochester and Olsson (1939) on the band spectrum of Muli, the bands due to the MnCl molecule were attributed to the transition $\Pi - \Sigma$ and the vibrational constants $\omega'_{z} = .113.3$ and $\omega''_{e} = .385.6$ were estimated. It was, however, pointed out that there was the main difficulty in the above interpretation, namely, the very abnormal intensity peculiarity, chiefly, in the band heads forming the $\Delta v = 0$ sequence. Muller's (1943) suggestion of an electronic transition $^{7}\Pi - ^{7}\Pi$ was also considered; but in view of the greater probability of a 2-state as the ground state of the molecule, it was suggested that the observed complexity of the bands may be due to a high mulitiplicity If term for the upper state only, the probable transition thus being ${}^{7}\Pi - {}^{7}\Sigma$. While a more detailed study of the bands, on this basis, of complex molecular terms was in progress, an interesting and comprehensive paper was published by Bacher (1948). This system of manganese chloride, designated by him, as system β , was obtained only in absorption. Besides this, the corresponding system in MuBr and MuI were also obtained in absorption. Emission bands were recorded only for manganese fluoride. In all these molecules the β system was attributed to the transition ${}^{7}\Pi - {}^{7}\Sigma$ similar to the one suggested by Pearse and Gaydon (1935) and established by Nevin (1948) in MnH. Bacher published an analysis completely for all the groups $\Delta v = 0, \pm 1, \pm 2$, for the MnF molecule. In MnCl and MnBr, he gave the classification only for the $\Delta v = 0$ sequence. Perhaps in the latter two molecules, since the absorption spectra alone were recorded, the groups with $\Delta v \neq 0$ might have been poorly developed. The emission spectra of these two molecules were obtained by the author in the present investigation with sufficient intensity as to justify an extension of the scheme to the higher sequences as well. This extended analysis is presented in the following sections.

The experimental arrangement was described in detail previously. It will be seen that a discharge tube of quite a simple design without either external heating of the substance or water cooling of the discharge tube and circulation of the helium gas, as used by Bacher, is found sufficient for the excitation of all the halide bands – The heavy current discharge itself produces enough local heating to vaporise the substance. In the case of MnF, the spectrum is obtained free from any trace of SiF bands. At a flash voltage of 1500 volts from a D. C. generator and with currents of 0.6, 0.5, and 0.3 amperes for MnF, MnCl and MnBr repectively, exposures of just 3 minutes' duration gave good spectra with a Hilger quartz Littrow spectrograph on Ilford S. R. plates. All the bands recorded by Bacher for the three molecules MnF, MnCl and MnBr have been obtained. But for the iodide, this experimental set-up was not suitable.

RESULTS

MnCl. Tables I to Vi contain the observational data obtained with manganese chloride in the present work. They relate to the sequences $\Delta v = \pm \tau, \pm 2, \pm 3$. The data on the $\Delta v = 0$ sequence is omitted as it was already completely reported by Bacher. The last two columns in these tables give the vibrational and the rotational assignments of the different heads. The classification is closely analogous to that determined for the $\Delta v = 0$ sequence by Bacher. The structure corresponds to the transition $\Pi = {}^{3}\Sigma$. For a full discussion of the multiplet analysis, reference may be made to Bacher's

λ	1'	1	v', v"		۵J	
		- - - - - - - - - - - - - - - - - - -		T	()	+1
3663.17	27291.0		1,0	P_7		
62.36	1 7207	2		I	-	
61.55	27303.1	2	1,0	۹P ₇₆	Q1	
60.61	2731⇒.1	3		1		
59.44	27318.8	•2	т,о	°P67		
58.32	27327.2	3	2,1	۹P ₇₆	Q1	
57.45	27333.7	1	1,0	P ₆	$^{\mathrm{r}}\mathcal{Q}_{67}$	
						1

TABLE I

MnCl bands $\Delta v = \pm 1$ sequence.

TABLE I (contd.)

.

MuCl bands $\Delta v = \pm i$ sequence.

λ	ν	7	າ", າ"			
				- 1	13	+ 1
50. [2	273 [1]		1,0	QP6a	O_6	9.K67
55.49	27348 6	5				
51-59	₽73 55.1	5	2,1	P_{6}	<u>•О</u> 67	
53 55	27362 0	2	1,0	$^{ m o}\!P_{56}$	$^{o}Q_{57}$	
52-43	27371-3	3	2,1	$^{\circ}P_{65}$	Q_6	${}^{0}R_{67}$
51 .41	7378.9	5	1,0	P_5	$^{12}O_{56}$	${}^{\mu}R_{57}$
50 54	27385.4	1	1,0	07'54	O_5	$^{\alpha}\mathcal{R}_{56}$
-19-5-	.7393.1	3				
.48.38	-7401.7	5	2,1	P_5	$"Q_{56}$	"R 57
17 ∙53	27408 0	5	1,0	٥P ₄₅	<u>ە</u> Ω16	°R 17
46.53	27415.6	3	2,1	۹Р51	$O_{\rm h}$	${}^{\mathrm{Q}}\mathcal{R}_{56}$
-15-33	27.12 1.6	6	t _i o	P ₄	۳ <u>0</u> 15	PR 16
41-53	17.130.6	2	1,0	۹۲ 13	Q_1	${}^{9}R_{45}$
-13-99	-27434-7	5	1,0	^P ₃₅	<u>≜Q</u> 36	™R ₃₇
42.28	-7417-5	6	.²,⊺	P ₄	PQ_{45}	₽ <i>R</i> ;6
41.07	27456 7	ň	0,1	٥P34	٥Ō₽	≌R 36
39.8.	37406.1	-1				
39.15	27471.1	4	1,0	P ₃	$^{1}Q_{34}$	${}^{p}R_{35}$
38.00	27479.1	b	2,1	٥P ₃₁	$^{\circ}Q_{35}$	${}^{0}R_{36}$
3 7 .21	27485.8	3	1,0	№P ₂₁	×Ω.,5	NR 26
36.23	27493.2	4	2,1	P ₃	<i>"</i> Ω ₂₁	rR_{1}
35.07	27502.0	6	1,0	°P23	°Q24	$^{0}R_{25}$
34.17	27508.8	3				
33.15	27510.5	4	1,0	P_2	<u>Р</u> Q ₂₃	${}^{P}R_{24}$
32.06	27524.8	5	2,1	$^{\circ}P_{23}$	$\circ Q_{21}$	$^{o}R_{25}$
29.82	27541.8	ń		۶ ۱ ۱		
28.87	27549.0	4	1.0	0P ₁₂	$^{o}Q_{13}$	°R14
28.05	27555+2	3				
27.21	27561.6	3	٦,٥	P_1	Р <u>О</u> 12	$^{1}R_{13}$

P. T. Rao

TABLE II

				-		
λ	ν	1	<i></i>		ΔJ	
				-1	U	
						-¦
3600.67	27718.5	1	3.0	oPer		
05.51	27727.5	3	3,1	QP_{26}	07	i
o 3 .81	27740.5	2	2,0	P_6	1. Dez	
02.78	27753 1	3	3,1	P_{6}	POU?	1
00.31	27767.5	4	2,0	٥/۶ ₅₆	٥ <u>ڳ</u> 57	i
3598.17	27784 0	2	2,0	P_{5}	₽ <i>О</i> .œ	1
96.37	27707.0	.?	3,1	P_{t}	POLL	
02.00	27824.8	1		.,	- 70	1
01.87	27839.7	2	3,0 5	P_{4}	PO_{45}	1
89.46	27851.4	2	3,1	P_4^2	10 L	1
87.76	27861.0	1	2,0	$\circ P_{21}$	\overline{O}_{gr}^{10}	1
85.32	27883.6	2	3,1	$\circ p$	\overline{O}_{ar}	1
83.40	27897.8	2	3.1	P_{i}	PO14	
81.70	1 27011 1	-?	2,0	$\circ P_{23}$	\overline{O}_{24}	
8o.84	27018.5	3	2,0	P_{2}^{ω}	$\mathbb{P}\tilde{O}_{\mu\nu}^{24}$	
70.50	27028 5			ூற்	u (5 ⁻²³	;

3,1

2,0

J.

1

27928.5

279.19.5

27958.1

 $\begin{array}{c} P_{4} \\ P_{4} \\ eP_{31} \\ oP_{54} \\ P_{3} \\ oP_{23} \\ P_{2} \\ oP_{23} \\ oP_{23} \end{array}$

 $\circ P_{12}$

 $^{1}Q_{45}$ $^{1}Q_{15}$ $^{1}Q_{25}$ $^{1}Q_{25}$ $^{1}Q_{35}$ $^{1}Q_{35}$ $^{1}Q_{34}$ $^{1}Q_{23}$ $^{1}Q_{23}$ $^{1}Q_{23}$

٥<u>0</u>13

+1

₽R₅₇ ₽R₅₇

¹*R* 16 ¹*R* 36 ¹*R* 36 ¹*R* 36 ¹*R* 35 ¹*R* 25 ¹*R* 24 ⁰*R* 25

∘R₁₁

MuCl bands $\Delta v = \pm 2$ sequence.

TABLE III

MnCl bands $\Delta v = \pm 3$ sequence.

λ	ν 1	1	·v', v"	<u>م</u> ا			
			, {	- 1	0	+ 1	
3545-99	28192.9	1	3,0	P_5	Р <i>Q</i> 56	"R57	
44-37	28205.7	I	.],1	P_5	₽ Ω₅₆	PR 57	
42.80	28218.2	1	3,0	٥P ₄₅	0Q ₄₆	•R _{1i}	
40.69	28235.0	I	3,0	P_4	₽ <u>Q</u> 45	₽R ₄₆	
38.59	28251.8	1	1,1	P ₄	^ь Q45	₽K46	
37.05	28204.1	τ	3,0	٥P ₃₁	$^{ m o}\mathcal{Q}_{35}$	•R ₃₆	
35.11	28279.0	I	4,1	$^{\mathrm{o}}P_{A}$	° <u>Q</u> a5	•R ₃₆	
32.08	28200.7	1	1,1	P_3	₽ <u>О</u> 24	${}^{P}R_{35}$	
- 30 Jo	28310.0	O	3,0	P_2	$^{P}\mathcal{O}_{23}$	"R 24	
28 .9	28320.4	1 .	.],1	٥P ₂₁	٥ _{Q24}	°R25	
27.63	28339.6	2					
25-83	28354.0	I.	3.0	$^{o}P_{12}$	0Q ₁₃	•R ₁₄	

79.56 76.86

75.73

MnCl bands. Fig. a--(1,0) sequence, Fig. b--Overall picture.

MnBr bands , structure of the (1,0) sequence

`````````````````````````````````				,	∆]	
^	<i>r</i>		<i>v. v</i>	-1	0	+ ı
3772.83	20.497.8	2	0 <b>, I</b>	$P_1$		
70.84	26511.8	3	0,1	۷P76	$Q_7$	
69 71	26519 7	3			-	1
66.38	26543.2	4	0,1	$P_6$	$^{\mathrm{Q}P_{67}}$	
64.64	26555 6	3	01	$P_{65}$	$Q_6$	9R67
63.72	26 <b>56</b> 1.9					
62.11	20573.3	4	0 <b>,1</b>	°P 56	$^{o}Q_{57}$	
60.70	20582.9	2	1,2	0P ₆₅	$Q_6$	9R67
59 <b>·9</b> 5	26588.0	-1	0,1	$P_{5}$	[₽] Ω <b>56</b>	PR.67
58.17	26601.2	6	0,1	°P54	$Q_5$	9R56
50 <b>.7</b> 9	26610.9					
<b>55</b> -85	26617.6	7	0,1	0P45	°Q46	6R47
53.69	26632.9	7	0,1	$P_4$	"Q45	¹ R ₄₆
52-33	6642.6	2	0,1	QP ₄₃	$Q_1$	QR 15
51.67	26647.3	7	0,1	$^{*}P_{35}$	^N 936	NR.37
50-34	26656 7	3	1,2	$P_1$	PO45	"R46
49 14	26665.2	6	0,1	0P31	$^{\circ O}_{35}$	•R ₃₆
47.31	26678.3	7	0,1	$\Gamma_3$	$\Xi \Omega_{34}$	$^{P}K_{35}$
.46.23	26686.0	3	0,1	$P_{32}$	$Q_1$	$R_{31}$
44.91	26695.4	6	0 <b>, 1</b>	NP21	$^{\circ}Q_{25}$	NR 26
43.43	26706.0	3	1,2	$P_3$	, [™] Ω34	P R 35
42.35	26713.0		0,1	oP 23	°Q24	_•R ₂₅
40.66	26725.7	4	0,1	$P_2$	чO ₂₃	PR24
39 46	26734.3	4	0,1	ν <i>Γ</i> ₂₁	$Q_2$	9R ₂₃
38.25	26742.9	4	1,2	op ₂₃	°Q24	•R25
35.56	26762.5	3	0 <b>, I</b>	. 0//12	0 <u>0</u> 13	°R ₁₁
33.89	26774.1	2	0,1	$P_1$	"Q12	PR13
32.79	26782.0	1	0,1	1	$Q_1$	$P = R_{12}$

TABLE IV MnCl bands:  $\Delta v = -1$  sequence.

TABLE	V
-------	---

MnCl bands  $\Delta v = -2$  sequence.

					<b>∆</b> j	
λ	ν		<i>v</i> ', <i>v</i> ''	-1	0	+1
3520.75	26165 5	2	υ,2	P ₆	₽ <i>Q</i> 67	
18.79	26178.9	2	0,2	۹P ₆₅	$Q_6$	
16 57	26194.1	2	1,3	P6	г <i>Q</i> 67	۹R ₆₇
14.64	26207.1	2	0,2	$P_b$	^в Q56	
11.77	26227 1	2		_		PR 57
08.52	26249.5	2	0,2	$P_4$	PQ45	
05.28	26271.9	3	ം,മ	$^{N}P_{35}$	×Q36	PR46
03.19	26286.3	3	1,3	$P_{A}$	^P <u>C</u> 45	NR 37
00.82	26302.7		0.2	$P_3$	124	PIC46
3798.81	26316 6	3	۰,2	⁸ P ₂₄	[™] Q25	"K3
96.59	26332.0	3	1,3	$P_3$	¹ Q31	× <u>∕</u> γ
94.26	26348.2	3	0,2	$P_2$	· () ₂₃	1 10
91.97	26364.1	2	1,3	0P21	n 21	rK ₂
90 47	2637.1.5	3	1,3		1011 1011	
87.61	26394.4	2	0,2	$P_1$	' £12	
85.29	<b>26</b> 410.6	I				1 rr.

P. T. Rao

		7			۵J	
Λ.	v		0,0	1	0	+1
863 bg	25874-7	1	0,3	$P_4$	1·Q45	PR4
61.99	2588*.1	1				
00.25	25897.7	I	0.3	$^{NP}35$	™Q36	$\mathbb{N}R_3$
57.00	25919 0	2	0,3	$P_3$	⊢ ¹ <i>Q</i> ₃₄	PR3
55.10	25932.3	2				1
53.50	25943-1	I	0,3	$^{\kappa}P_{21}$	` <i>Q</i> <b>%</b>	$^{\aleph}R_{2}$
51.93	25953-7	2	J.1	$P_3$	1°Q34	PR3
50.28	25964.8	2	0,3	$P_2$	${}^{P}Q_{23}$	*R2
47.32	25984.8	2	1,4	$\circ P_{g_3}$	0 Ø 24	•R _{or}
45.50	25990.7	1	1,4	P., "	FOun	

TABLE VI Mu(1 bande A

excellent paper. Table VII briefly gives the different forms of branches expected in this system consisting of violet-degraded bands with  $B^1 > B^{11}$ , in comformity with the selection rules applicable to transitions between rotational energy levels ( $\Delta J = 0$  or  $\pm 1$  excluding  $0 \rightarrow 0$  and  $\Delta K = 0, \pm 1, \pm 2, \text{ etc.}$ )

## TABLE VII

$\Delta K$	Ō	- 1	- 2	-3
''l'orm''	$\varrho$	P	0	N

As an illustration, a schematic diagram of the transitions is shown for the (1,0) sequence of MnCl in Plate XXVA Fig.(a). from which the classification of each band can be clearly understood.

Tables VIII and IX present the interval data between the component 11 terms for the (0,1) and (1,0) bands respectively. The intervals Q-P, P-Q, O-N show the expected increase. The ⁷II intervals show a very slight increase

ΤA	BLE	V	1	I
		-		_

	⁷ n. ₂	'п ₋₁	⁷ п ₀	Ϋ́Π	[ _]	⁷ П ₂	⁷ П;	⁷ n,
Q	43.8	4	5.6	41.4	13.4		48.3	47.7
	14.0	12.4	12.0		97	7.7	- 8	.6 79
Р	45-1	4	15-4	44-3	15.	4	171	48.4
			15.3		13.3	(3.1	1.	2.1 11.0
0			•	44.3	47	.5	.1S.4	48.9
					17.9	18.2		
Ν							48.1	

MnCl	Differences	bet ween	wavenumbers	of	(0.1)	bands.

M110	C1	TABLE IX Differences between wavenumbers of (1,0) bands												
	' <b>П</b> _2	⁷ Π ₋₁		⁷ П(		⁷ п ₁		⁷ П2		⁷ п ₃		⁷ П4		
Q	38	83	4.0			-								
	12.1	7.7		6.5		6.0								
P	4:	2-7	45.2		15-7		46.5		45-1		.45. <b>1</b>			
		1.4.9		16.0		10,6		1].]		14.5		12.6		
0			41.1		15.1		48.7		45.3		47.0			
								22.0		16 2				
N							51,1							

*MnBr.* The experimental data on the MnBr bands belonging to the  $\Delta v = + r$  sequence and the classification of the individual heads are given in Table X. The transitions are reproduced in Plate XXVB.

Table X1 gives the differences in MnBr similar to those shown in Tables VIII and IX for MnCl. The tables are self-explanatory.

TABLE	X
I DIN	* 7

MnBr bands  $\Delta v = \pm \tau$  sequence

· <u> </u>	,			Δ]					
λ	v	1	v', v"	-1	0	- +ı			
$\begin{array}{c} 3779\cdot 50\\ 77.76\\ 76.41\\ 74\cdot 03\\ 72\cdot 55\\ 71\cdot 50\\ 70\cdot 15\\ 69.27\\ 67.89\\ 65.98\\ 63.96\\ 63.96\\ 62.13\\ 59\cdot 75\\ 57\cdot 56\\ 55\cdot 42\\ 53\cdot 65\\ 53\cdot 55\\ 53\cdot 55\\ 53\cdot 55\\ 53\cdot 55\\ 53\cdot 42\\ 53\cdot 65\\ 53\cdot 55\\ 53\cdot 42\\ 53\cdot 65\\ 53\cdot 42\\ 53\cdot 65\\ 53\cdot 65\\ 53\cdot 42\\ 53\cdot 65\\ 53\cdot 6$	$\begin{array}{c} 26.151 \\ 0 \\ 26.151 \\ 0 \\ 172.5 \\ 26.172.5 \\ 26.172.5 \\ 26.172.5 \\ 26.506.5 \\ 26.516.6 \\ 26.522.8 \\ -6.532.5 \\ 26.540.0 \\ 26.540.0 \\ 26.540.0 \\ 26.540.0 \\ 26.572.3 \\ 26.590.0 \\ 10605.5 \\ 26.633.2 \\ 26.633.2 \\ 26.643.3 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.653.2 \\ 26.6$	4 4 2 3 10 9 9 8 6 5 7 6 7 6 7 6 7 6 7 5 5 6 4 5 7 5 5 6 4 7 7 5 5 6 4 7 7 5 5 6 4 7 7 5 7 5 6 4 7 7 5 7 5 7 10	$\begin{array}{c} 1,0\\ 2,1\\ 2,1\\ 1,0\\ 1,0\\ 1,0\\ 2,1\\ 2,1\\ 2,1\\ 1,0\\ 1,0\\ 1,0\\ 1,0\\ 1,0\\ 1,0\\ 1,0\\ 1$	$\begin{array}{c} {}^{q}P_{76} \\ P_{1} \\ {}^{q}P_{76} \\ {}^{o}P_{67} \\ {}^{o}P_{66} \\ {}^{q}P_{65} \\ {}^{p}P_{6} \\ {}^{q}P_{65} \\ {}^{p}P_{56} \\ {}^{o}P_{56} \\ {}^{p}P_{56} \\ {}^{o}P_{45} \\ {}^{p}P_{4} \\ {}^{P}P_{4} \\ {}^{P}P_{4} \\ {}^{P}P_{3} \\ {}^{s}P_{23} \\ {}^{s}P_{23$	$\begin{array}{c} \underline{Q}_{1} \\ \underline{Q}_{7} \\ \underline{Q}_{6} \\ \underline{P}_{267} \\ \underline{Q}_{6} \\ \underline{P}_{267} \\ \underline{Q}_{6} \\ \underline{P}_{256} \\ \underline{P}_{256} \\ \underline{P}_{256} \\ \underline{P}_{256} \\ \underline{P}_{256} \\ \underline{P}_{245} \\ \underline{P}_{25} \\ \underline{P}_{25} \\ \underline{P}_{25} \\ \underline{P}_{25} \\ \underline{P}_{25} \\ $	9R67 9R67 1R57 1R57 1R57 1R16 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35 1R35			

### TABLE XI

Differences between wavenumbers of (1,0) bands.

	⁷ n_y		⁷ Π_1		7Π ₀		⁷ Π,		⁷ Π ₂		⁷ Π,	⁷ Π4
	55.5	67										
		0.7	59-1		60, [		60.0		60,1		68.2	
i		10.1	. 6.6	1 ]	<i>"</i> 0 5	15.1	60.0	151	62.8	12.0	6- 1	11.8
			,	13.5	39.3	15.2	()(),()	12.3	03.0	12.3	23.4	
1				<i></i>	67.5	5.0	63.1	•	63.8			

## ACKNOWLEDGMENT

The author desires to express his grateful thanks to Prof. K. R. Rao under whose guidance the work has been done.

ANDHRA UNIVERSITY WALTMR,

#### REFERENCES

Bacher, 1948, Helv. Phy. Acta., 21, 379
Muller, 1913, ., ., 16, 1.
Nevin, 1945, Proc. Irish. Acad., 50, 123.
Pearse and Gaydon, 1938, Proc. Phys. Soc., 50, 201.
Rao, Tiruvenganua, 1948, Curr. Sci., 17, 209
, 1949, Ind. Jour. Phy., 23, 301
Rochester and Olsson, 1939, Zeil. f. Physik., 114 495

.

MnBr