
Foundations of an Autonomic Manager for 

Maintaining Quality of Service in Enterprise Data 

Warehouses 
 

Allan O. Omondi*, Ismail L. Ateya** 

Faculty of Information Technology 

Strathmore University 

Nairobi, Kenya 

allan[at]odhiambo.me.ke* iateya[at]strathmore.edu** 

Gregory N. Wanyembi 

School of Information Sciences & Knowledge Management 

University of Kabianga 

Kericho, Kenya 

gwanyembi[at]gmail.com

 

 
Abstract— Data stored in an Enterprise Data Warehouse 

(EDW) is an essential asset to enterprises. Through efficient 

access to data (where efficiency is quantitatively measured in 

terms of speed), SMEs can enhance their growth, productivity, 

and global competitiveness. This can in turn lead to a positive 

impact on a country's Gross Domestic Product. The purpose of 

this paper is to present the building blocks required to maximize 

the speed of data access from EDWs in a self-adaptive manner. 

Reinforcement Learning (RL) in a fully observable, stochastic 

environment is proposed. The subsequent solution to a Markov 

Decision Process is highlighted as the core part of the RL. 

Keywords— Autonomic computing; enterprise data warehouse; 

Markov Decision Process; Markov Reward Process; Reinforcement 

learning 

 

I. INTRODUCTION 

As computing systems get more optimized, the complexity 

involved in managing them increases rapidly and this can 

result in a barrier to further growth. Autonomic computing 

enables such systems to adapt to unpredictable changes while 

hiding intrinsic complexity. A study by [1] indicated that 

today’s high availability requirements put greater demands on 

computing systems to be self-adaptive in order to maintain a 

desirable Quality of Service (QoS) in the presence of system 

faults, variable environmental conditions, and dynamic user 

expectations. The study further noted that even though system 

administrators are better at understanding the overall problem 

context than computers, they are prone to long reaction times, 

fatigue, errors, and varying and potentially inconsistent 

expertise. 

One of the key visions of the Government of Kenya is to 

transition the country into a knowledge economy by the year 

2030. This means an economy in which growth is dependent 

on the quantity, quality, and accessibility of information 

available to be used for innovation rather than dependency on 

traditional means of production such as land. The Kenyan 

national Information Communications and Technology (ICT) 

masterplan acknowledges that enhancing the growth, 

productivity, and global competitiveness of Small and 

Medium Enterprises (SMEs) has the potential of increasing 

the Gross Domestic Product (GDP) of a country [4]. Access to 

data by SMEs is a crucial catalyst in creating a knowledge 

economy. 

The few personnel that SMEs can afford usually play 

multiple roles in the enterprise. This leads to a proclivity to 

rely on system administrators to perform all Information 

Technology (IT) duties in the enterprise. The over-reliance on 

system administrators results in a lower QoS as they strive to 

cope with the demand for their expertise. One of the areas in 

IT that is directly affected by the low QoS from the system 

administrators is administration of the Enterprise Data 

Warehouse (EDW). The effect of this poor administration is 

experienced through low data access speeds that could have 

otherwise been avoided through proper system administrative 

tasks. 

A. Our Contribution 

Our main contribution is a mathematical model of an EDW 

that represents the decisions that the EDW can make 

autonomously at runtime in order to maintain a desirable, pre-

defined QoS. The aim of making this contribution is to 

develop the foundation that can be used to build a self-healing 

and self-adaptive system that is not fully dependent on the 

intervention of system administrators. 

Exception handling code embedded within a system can be 

used to maintain the desirable QoS. This would work by 

coding the system to throw exceptions if the QoS falls below a 

certain threshold and then handling the thrown exceptions 

using exception handlers. However, it is important to note that 

the occurrence of runtime phenomena is stochastic in nature 

and asynchronous with respect to the flow of the application 

logic. A study by [2] indicated that for this reason, it is 

preferable to gather the complex adaptation logic into a 

component separated from the application logic. Another 

approach in contrast to embedded exception-handling code 

and championed by the IBM autonomic computing team, is to 



implement the autonomic computing and self-healing system 

distinct from and external to the managed system. This is as 

modelled by the IBM Monitor-Analyse-Plan-Execute (MAPE) 

loop [2]. 

Our contribution combines the best features of the IBM 

MAPE loop with the best features of the DMAIC data-driven 

strategy defined in [3] to derive the paradigm depicted in Fig. 

1. 

 
Fig. 1: Adapted combination of the DMAIC data-driven 

strategy and the IBM MAPE loop 

The remainder of the paper is organized as follows. Section 

II presents our approach. This approach is further divided into 

a number of sub-sections. The first sub-section is presents a 

derivation of the optimization model. This is followed by a 

connection to Reinforcement Learning (RL) as a way to solve 

the optimization problem. The last two sub-sections further 

describe the Markov Reward Process and Markov Decision 

Process used by the RL. Section III concludes the paper. 

II. OUR APPROACH 

A. The Optimization Model 

Let  be the set of all possible attributes 

in a relation consisting of  attributes. Since not all of the 

attributes are optimal in terms of their ability to promote faster 

access to data, then some can be considered in a partition and 

others can be left out. A partition can then be defined as, a 

subset from all possible attributes  such 

that , whereby each attribute in the 

subset  can be referenced by a query during execution. 

The query under discussion can in turn be grouped together 

with other queries such that they collectively form a workload 

of  queries . In this case, each 

query , has a different execution cost. This execution cost is 

directly dependent on whether the query references an 

attribute that is in the partition defined by . The dependency 

is such that if a number of attributes are commonly referenced 

by workloads, then groping them together in one partition on 

the storage medium increases the speed of data access. 

 Given that attributes can be grouped together into a 

partition , we can have  sets of  each with unique 

combinations of attributes as members of the set. These  

partitions can be grouped into a configuration  expressed 

as .  thus becomes the set of all possible 

partitions. 

 The objective is therefore to find that one partition 

that will maximize the speed of data access from the EDW. 

This is defined as the most optimum partition. We adopt the 

quantitative definition of an optimum partition as one which 

accrues the most benefit. Benefit can in turn be defined 

quantitatively as the difference in speed between executing a 

query without using the chosen partition and executing a query 

using the chosen partition. Mathematically represented as 

shown in (1). 

 

 (1) 

 

Where; 

 = the cost of running query  without using any 

partition 

 = the cost of running query  while using the 

chosen partition 

 

Even though one of the main advantages of partitioning is 

that it can improve the performance of queries, it can also 

have certain disadvantages. The disadvantage in this case is 

based on a negative benefit accrued from the need for the 

partitions to be maintained and the extra storage space 

required. Fortunately, the main queries executed on an EDW 

involve selection of data. This is as opposed to insertion and 

updating of data which is common in databases that support 

heavily used Online Transaction Processing (OLTP) systems. 

Therefore, as [5] argue, the number of changes in an EDW are 

not as many as the changes in a database that supports OLTP 

systems. As a result, the updates to the partitions are not as 

frequent. They also argue that the cost of storage has been 

falling rapidly and is now more affordable. 

We however argue that the impact of using a partition,  

cannot be fully realized unless the cost (negative benefit) of 

having that partition is also considered. This implies that the 

actual cost should be the benefit of using the chosen partition 

minus the cost of maintaining the chosen partition. This can be 

represented as shown in (2). 

 

 

(2) 

 

This represents the benefit of using partition  to support 

the execution of query . The same query is run using 



different partitions, that is partition , then , 

then , all the way until the last partition, which is 

partition . 

Once all partitions in the configuration have been applied in 

a particular query,  then the next query ( ) in the 

workload is selected and the cycle of applying the same 

various partitions on the new query repeats itself. Query  

goes through the same, then query , then , all the 

way until the last query in the workload, which is query . 

Rebuilding the partition in the event of additional data being 

added to the EDW and new workloads being used, in itself 

constitutes a query. This query is query . The cost  is 

associated with each partition . This is such that  can be 1 

(the first partition in the configuration), which is followed by 

partition , then , then , all the way until the 

last partition, which is partition . 

However, there can arise a scenario whereby a partition 

does not need to be rebuilt. This will imply that there is no 

associated cost for that particular partition . At the same 

time, there can arise a scenario whereby query does not 

apply partition . There is therefore no notable benefit in 

such a case. This can thus be modelled as the optimization 

model shown in (3).  

 

 

(3) 

 

Such that: 

 { 1, query uses partition  

0, otherwise 

 { 1, partition  needs to be rebuilt 

0, otherwise 

 

B. Autonomic Computing through Reinforcement Learning 

Through the use of control theory, a controller, C, is used to 

control a system, P, in such a way that its actual output, y(t), 

follows a desired control signal in the form of a reference, r(t). 

The controller can then be programmed to obtain the error 

signal, e, defined by the difference between the reference and 

the actual output; r(t)-y(t). In order to tend towards obtaining 

the reference, the error signal, e, is translated into feedback by 

the controller in the form of input, u. It is this error signal that 

enables the controller to know whether it is on the right track 

or if it is off target. If it is off target, then it can use u to 

configure the system, P, accordingly so as to get back on 

track. Fig. 2 portrays this graphically. 

 
Fig. 2: Single-input-single-output (SISO) control system 

Applying the same concept in the context of this research 

results in a block diagram as shown in Fig. 3. The following 

section details how we apply reinforcement learning to model 

the control theory. 

Reinforcement Learning sits in the middle of the 

intersection between many fields of science as the study of the 

most optimal way to make the best decisions. These fields 

include machine learning in computer science, operations 

research in mathematics, optimal control in engineering, 

bounded rationality in economics, classical and operant 

conditioning in psychology, and reward system in 

neuroscience. 

 

 
Fig. 3: Proactive decision making framework for maintenance 

(Adapted from [6], p. 1241) 

 

This paper focuses on the computer science field whereby RL, 

supervised learning, and unsupervised learning form the three 

paradigms of machine learning. 

Similar to a control system, RL uses feedback to define how 

well an agent is performing towards achieving its goal of 

maximizing rewards as it traverses through a process in time. 

Fig. 1 can therefore be modified as shown in Fig. 4 thus 

resulting in a continuous loop that strives for constant 

improvement. We propose that any autonomous, self-healing 

system can be built by implementing a continuous loop in this 

manner. 

 



C. The Markov Reward Process 

Given that an observation,  can be made from the EDW 

at time t, an action performed based on the observation made, 

and a reward received based on the action performed, then we 

can have a history,  such that . 

A dynamical system has a direct relationship between the 

amount of computation performed and the quality of the 

output given. This is such that the more computations that are 

performed, the fewer the number of resources available to 

compute and produce the output at the required pace. It would 

therefore be contradictory to have an autonomic manager that 

seeks to increase the speed of data access but is in itself 

computationally demanding to the extent that it leads to a 

reduction in the speed of data access. 

One of the ways a non-compute intensive autonomic 

manager can be realized is by not storing and processing the 

history since time t=1. A summary of the history can be 

obtained in the form such that  is the state at 

time t. This implies that all previous states can be discarded 

and only the representation of the current state considered 

when the agent is deciding what action to perform next. We 

can therefore deduce that a Markov state defines the future as 

independent of the past given the present:  

 

 
Fig. 4: RL concepts applied to the autonomic manager 

As the autonomic manager performs actions to traverse 

through each state, it receives the reward defined by (3) 

without applying the maximization. An important function 

that it should be able to perform is to look forward into the 

future in order to determine the expected reward if it performs 

a certain group of actions. This can be modelled as a value 

function in the form: 

 

 

 

 

(4) 

 

This implies that the value of a state, s, is the immediate 

reward that is received from being in that state ( ) plus the 

value of all other states in future ( ).  is considered as 

the discount factor in order to ensure that the reward at time t 

is much higher than the reward at time t+1, thus giving a 

higher priority to immediate rewards than to future rewards. 

One reason for giving less priority to future rewards is because 

there is uncertainty in the future. It also makes it 

mathematically valid by avoiding a summation to infinity. 

Given that at each state, the autonomic manager can have 

multiple options of subsequent states that it can traverse to, 

then we can assign probabilities to each subsequent state in the 

form depicted in Fig. 5. We can therefore adjust the autonomic 

manager’s value function to be the immediate value derived 

from being in a state, say s, plus the discounted value of the 

subsequent state, say s``, multiplied by the probability of 

going to that subsequent state, that is . This gives us the 

equation shown in (5). 

 

 
 

(5) 

 

 
Fig. 5: Probabilities of transition from state, s, to subsequent 

states, s`, s``, or s``` 

Inductively applying this in a real context can be done 

through the use of matrices. The real context in this case 

would involve hundreds of possible states that the EDW can 

be in and that the autonomic manager can traverse to. This 

gives us the Markov Reward Process as: 

 

 
 

(6) 

D. Markov Decision Process 

The previous cases defined the reward that the autonomic 

manager derives from being in various states. At this juncture, 

we assign agency to the autonomic manager. By assigning 

s 

s`` s` 

s``` 

  

 



agency, the Markov Reward Process becomes a Markov 

Decision Process. It is this agency that allows the autonomic 

manager to make decisions on which actions to perform in 

order to move to a specific state that has an expected value. 

The possible actions that our autonomic manager can perform 

revolve around deciding which columns should be in the 

table’s partition. Once it performs this action, it makes an 

observation of the environment and subsequently receives the 

reward of performing the specific action. If the reward is 

positive then it knows that it is on the right track. Note that the 

reward in this case is as defined in (3) without the 

maximization. This is translated to mean the speed of data 

access from the EDW owned by the SME. 

The aim is therefore to find the action that will enable the 

autonomic manager to get the most reward at any given state 

in the process. It can be modelled as shown in (7). 

 

 
 

(7) 

Such that  is the action-value function that defines the 

value that the agent will get if it performs action a (defined by 

a policy ) given that it was in state s while performing the 

action. 

The final solution is therefore to find the policy that has a 

set of actions, which if performed in specific states, will yield 

the maximum benefit possible. This is the solution to the 

Markov Decision Process and is subsequently modelled as 

shown in (8). 

 

 
 

(8) 

Where  is the most optimum action-value pair, that is, 

the solution to the optimization problem. 

  

III. CONCLUSION 

As opposed to presenting a fully developed autonomous 

agent, this paper provides the foundations that act as building 

blocks for one interested in developing an actual autonomous 

agent. The context is that of an autonomous agent that 

continuously strives to manage an acceptable QoS for the 

speed of data access from an EDW. 

For future work, we are currently capitalizing on these 

foundations in order to develop the actual autonomous agent. 

We do not aim to replace system administrators, but rather 

compliment them; especially those who are overburdened with 

multiple duties in Kenyan SMEs. 

 

REFERENCES 

[1] Cheng, S. W., & Garlan, D. (2012). Stitch: A language for architecture-
based self-adaptation. Journal of Systems and Software, 85(12), 2860-
2875. 

[2] Su, G., Chen, T., Feng, Y., Rosenblum, D. S., & Thiagarajan, P. S. 
(2016). An iterative decision-making scheme for markov decision 

processes and its application to self-adaptive systems. In International 
Conference on Fundamental Approaches to Software Engineering (pp. 
269-286). Springer Berlin Heidelberg. 

[3] Solanki, M. & Desai, D. (2015). Comparative study of TQM and six 
sigma. International Journal of Industrial Engineering & Technology, 
5(4). 

[4] Government of Kenya. Ministry of Information Communications and 
Technology. (2014). The Kenya national ICT masterplan: Towards a 
digital Kenya. Nairobi: Ministry of Information Communications and 
Technology 

[5] Kim, J. W., Cho, S. H., & Kim, I. M. (2016). Workload-Based column 
partitioning to efficiently process data warehouse query. International 
Journal of Applied Engineering Research, 11(2), 917-921. 

[6] Bousdekis, A., Magoutas, B., Apostolou, D., & Mentzas, G. (2015). A 
proactive decision making framework for condition-based maintenance. 
Industrial Management & Data Systems, 115(7), 1225–1250. 
doi:10.1108/imds-03-2015-0071 

 


	I. Introduction
	A. Our Contribution

	II. Our Approach
	A. The Optimization Model
	B. Autonomic Computing through Reinforcement Learning
	C. The Markov Reward Process
	D. Markov Decision Process

	III. Conclusion
	References

