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Presurgical thalamic “hubness” predicts
surgical outcome in temporal lobe epilepsy

ABSTRACT

Objective: To characterize the presurgical brain functional architecture presented in patients with
temporal lobe epilepsy (TLE) using graph theoretical measures of resting-state fMRI data and to
test its association with surgical outcome.

Methods: Fifty-six unilateral patients with TLE, who subsequently underwent anterior temporal
lobectomy and were classified as obtaining a seizure-free (Engel class I, n 5 35) vs not
seizure-free (Engel classes II–IV, n 5 21) outcome at 1 year after surgery, and 28 matched
healthy controls were enrolled. On the basis of their presurgical resting-state functional connec-
tivity, network properties, including nodal hubness (importance of a node to the network; degree,
betweenness, and eigenvector centralities) and integration (global efficiency), were estimated and
compared across our experimental groups. Cross-validations with support vector machine (SVM)
were used to examine whether selective nodal hubness exceeded standard clinical character-
istics in outcome prediction.

Results: Compared to the seizure-free patients and healthy controls, the not seizure-free patients
displayed a specific increase in nodal hubness (degree and eigenvector centralities) involving both
the ipsilateral and contralateral thalami, contributed by an increase in the number of connections
to regions distributed mostly in the contralateral hemisphere. Simulating removal of thalamus
reduced network integration more dramatically in not seizure-free patients. Lastly, SVM models
built on these thalamic hubness measures produced 76% prediction accuracy, while models built
with standard clinical variables yielded only 58% accuracy (both were cross-validated).

Conclusions: A thalamic network associated with seizure recurrence may already be established
presurgically. Thalamic hubness can serve as a potential biomarker of surgical outcome, outper-
forming the clinical characteristics commonly used in epilepsy surgery centers. Neurology®

2017;88:1–9

GLOSSARY
ATL 5 anterior temporal lobectomy; BC 5 betweenness centrality; DC 5 degree centrality; DSM-IV 5 Diagnostic and
Statistical Manual of Mental Disorders, 4th edition; EC 5 eigenvector centrality; Eglobal 5 global efficiency; FDR 5 false
discovery rate;HC5 healthy control;MST5minimum spanning tree;NSF5 not seizure-free; rsFC5 resting-state functional
connectivity; rsfMRI 5 resting-state fMRI; SANTE 5 Stimulation of the Anterior Nucleus of Thalamus for Epilepsy; SF 5
seizure-free; SVM 5 support vector machine; TLE 5 temporal lobe epilepsy.

Anterior temporal lobectomy (ATL) is the most common resective surgery for drug-resistant
temporal lobe epilepsy (TLE). However, the postoperative seizure freedom (with or without iso-
lated auras) rate is only between 48% and 76%1–5 at 1 year, dropping to,50% after 10 years.6

A hypothesis underlying surgical failure is that an occult epileptogenic network, potentially
composed of extratemporal regions, is already established preoperatively and spared during
surgery, later providing support for seizure recurrence.7

Nodes of such a network may include the contralateral hippocampus,8 frontal lobe,9,10

parietal lobe,10 anterior cingulate,10 insula,10 and thalamus,8,11 where regional structural abnor-
malities and aberrant ictal-temporal structural connections (frontal lobe, insula, and thala-
mus)12,13 were associated with unfavorable outcome in TLE. To optimize surgical outcomes,
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the disruption of this network appears critical,
posing a challenge to understand its organiza-
tion and, in particular, to articulate its core
node(s) before surgery. These nodes can serve
as potential targets for alternative treatments
(e.g., brain electric stimulation), eventually
benefiting patients who might fail ATL.

Resting-state functional connectivity (rsFC),
a measure of intrinsic functional organization,14

offers an alternative perspective of preoperative
reorganization associated with seizure recur-
rence. Accordingly, we use graph theory to
investigate the presurgical rsFC in patients with
unilateral TLE who subsequently underwent
ATL. We hypothesize that nodal hubness,
a measure quantifying the importance of a node
to network organization,15 will identify core
nodes of the aforementioned network(s). We
then test, through support vector machine
(SVM) learning, the value of this presurgical
nodal information for the goal of predicting
seizure outcome.

METHODS Participants. Fifty-six patients with refractory

unilateral TLE were recruited from the Thomas Jefferson Com-

prehensive Epilepsy Center. Candidacy for surgery was deter-

mined by a multimodal evaluation including neurologic history

and examination, scalp video-EEG, MRI, PET, and neuro-

psychological testing.1 Patients were excluded for any of the fol-

lowing reasons: previous brain surgery, medical illness with the

CNS other than epilepsy, extratemporal or multifocal epilepsy,

contraindications to MRI, or diagnosis/hospitalization for any

Axis I disorder listed in the DSM-IV. Depressive disorders were

allowed, given the high comorbidity with epilepsy.16 All patients

underwent a standard en bloc ATL to remove their epileptogenic

temporal lobe. None of the patients had intraoperative or peri-

operative complications, and the preoperative antiepileptic regi-

men was continued for all patients in the postoperative period,

with reduction of dosage in a few cases because of their seizure

freedom.

Seizure outcome was assessed 1 year after surgery. Thirty-five

patients meeting criteria for Engel class I17 (seizure free with or

without auras) were classified as seizure-free (SF). Twenty-one

patients who met criteria for Engel class II, III, or IV17 (one or

more recurrent complex partial or secondarily generalized seiz-

ures) were classified as not SF (NSF). The demographic and

clinical characteristics of the final experimental groups are pre-

sented in table 1, along with demographic information for 28

matched healthy controls (HCs). All HCs were free of psychiatric

or neurologic disorders on the basis of a health screening measure.

Standard protocol approvals, registrations, and patient
consents. This study was approved by the Institutional Review

Board for Research With Human Subjects at Thomas Jefferson

University. All participants provided a written informed consent.

MRI acquisition, data preprocessing, network construction,
and graph theoretical parameter estimation. T1-weighted
structural imaging and 5-minute resting-state fMRI (rsfMRI)

data were obtained from all the participants. The methodo-

logical details regarding MRI acquisition, data preprocessing,

network construction, and graph theoretical parameters esti-

mation are described in the e-Methods at Neurology.org.

Briefly, regional parcellation was applied on the preprocessed

rsfMRI data with the Automated Anatomical Labeling template

(45 nodes per hemisphere).18 The maximal overlap discrete

wavelet transform19 was performed to extract information in the

frequency interval of z0.05 to 0.1 Hz (scale 2).20 The pairwise

interregional wavelet correlation coefficients, later defined as

edges, were estimated to generate a wavelet correlation matrix

for each participant. Next, we used a minimum spanning tree

(MST) method21 to build individual binary undirected graphs.

On the basis of the correlation matrices (absolute value), we first

defined the MST that connected all 90 regional nodes with 89

edges, completed for every participant. Additional edges were

then added to the MST in the descending order of the wavelet

correlation,20 yielding a series of networks with connection

density ranging from 5% to 50% in increments of 1%.21 For

every node at every density, 3 hubness measures were estimated:

degree centrality (DC; richness of connections), betweenness

centrality (BC; importance for mediating signals between other

nodes), and eigenvector centrality (EC; influence of a node in

a network).22 Global efficiency (Eglobal), as a measure of network

integration,22 was also estimated to test the deleterious influence

of certain nodes on full-brain functional organization. As vali-

dation, we also report findings produced by a different parcel-

lation scheme (Harvard-Oxford Atlas,23 112 nodes) or weighted

graphs as supplementary results.

Statistical analysis. Group-level comparisons of demographic

and clinical characteristics were carried out with independent-

sample t tests, one-way analysis of variance, or x2 tests, as

appropriate, with IBM SPSS version 22.

To assess group differences in hubness measures and Eglobal,

the Welch permutation t test was used. Welch t statistics was
chosen to account for the unequal sample size and variance, with

the permutation used to estimate the probability of significant

group differences without assuming a normal distribution. For

every comparison of every measure at each density, 10,000 per-

mutations were performed by randomly relabeling the 2 groups,

yielding a permuted t statistic distribution from which the

p values associated with observed t statistics could be estimated.

Comparisons between patients (SF and NSF) and HCs were

carried out in the same manner. Multiple comparisons were

corrected with the false discovery rate (FDR) in all reported

results unless otherwise noted.

For nodes with hubness measures that yielded a significant

difference in seizure outcome, we carried out 3 additional inde-

pendent analyses to determine the network features contributing

to this difference:

1. We examined the effect of removing such node(s) and associ-

ated edges to the integration of the full network. To do this,

we tested for change (before vs after removal) in Eglobal across

groups. Accordingly, a higher reduction in Eglobal indicates

greater importance.

2. For nodes outside the ictal-temporal lobe associated with out-

come, we reanalyzed and compared their hubness values after

removing all nodes/edges involving the ictal-temporal lobe (8

nodes: hippocampus, parahippocampus, amygdala, middle

and superior temporal pole, and inferior, middle, and superior

temporal lobed). This manipulation allowed us to determine

whether any hubness difference observed between the out-

come groups was dependent on the ictal-temporal lobe.
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3. For each node demonstrating a group difference in outcome,

we analyzed connectivity with the other 89 nodes of the

whole-brain matrix. Binary matrices across different densities

were used, coding edges as either 1 (present) or 0 (absent). The

x2 tests on each edge, examined at several densities (FDR

correction for multiple comparisons), determined whether

the outcome groups differed in terms of edge presence,

thereby highlighting the specific edges contributing to any

elevation in hubness.

Lastly, we tested whether these hubness measures could suc-

cessfully predict seizure outcome using a linear SVM classifier.13

We tested 3 models separately, each containing the following

variables: (1) selected hubness measures only, (2) demographic

and clinical variables only (12 total: age, sex, handedness, verbal

IQ, performance IQ, full-scale IQ, laterality of TLE, age at epi-

lepsy onset, duration of epilepsy illness, seizure focality, interictal

spike type, and type of temporal pathology evidenced by presur-

gical MRI scans), and (3) the variable sets of 1 and 2 combined.

The prediction accuracy was estimated with 3 cross-validation

methods, leave-one-out, 7-fold (10,000 permutations), and split

sample (10,000 permutations), to ensure the independence

between training and testing samples. For each selected hubness

measure, we averaged the values over all the densities to avoid an

arbitrary reliance on a single connection density.24 To avoid the

unequal sample size bias, we also repeated the above prediction

analyses using a sample pool composed of all 21 NSF and 21

randomly selected SF patients with the same cross-validations.

RESULTS Demographic and clinical characteristics.

There was no significant difference between the
experimental groups in age, sex, or handedness
(p . 0.05, table 1). In addition, the SF and NSF
groups displayed no significant difference in any clinical
characteristics listed in table 1 (p . 0.05).

Network properties comparison. The SF and NSF
groups showed no differences in BC for any node at
any density (p . 0.05). Compared to the SF group,
however, the NSF group produced significantly high-
er DC and EC values, specifically involving the ipsi-
lateral and contralateral thalami, across several

Table 1 Sample demographic and clinical characteristics

Sample group SF TLE (n 5 35) NSF TLE (n 5 21) HCs (n 5 28) F/t/x2 value p Value

Epileptogenic temporal lobe (L/R), n 18/17 8/13 NA 0.94 0.33

Age, mean 6 SD, y 41.25 6 12.60 38.58 6 13.25 38.84 6 12.62 0.40 0.67

Sex (M/F), n 21/14 9/12 14/14 1.64 0.44

Handedness (R/L), n 30/5 14/7 23/5 3.10 0.21

Verbal IQa 96.18 6 14.22 93.29 6 15.36 NA 0.71 0.48

Performance IQa 94.88 6 10.41 96.19 6 17.58 NA 20.31 0.76

Full-scale IQa 95.29 6 10.31 93.86 6 17.10 NA 0.35 0.73

Age at epilepsy onset, mean 6 SD, y 23.73 6 12.60 21.55 6 10.87 NA 0.66 0.51

Duration of epilepsy, mean 6 SD, y 17.52 6 14.53 17.03 6 11.21 NA 0.14 0.89

Seizure focality (with/without GS or 2nd GS), n 15/20 10/11 NA 0.12 0.73

Interictal spike (ipsilateral/bilateral), n 29/6 15/6 NA 1.02 0.31

Preoperative intracranial EEG recording (Y/N), n 8/27 9/12 NA 2.48 0.12

Temporal pathology (NB/HS/T/E/D), n 14/15/4/1/1 13/5/2/1/0 NA 2.71 0.26

Seizure type, n NA

SPS 1

CPS 12 8

CPS/SPS 2 2

SPS 1 2nd GS 1

CPS 1 2nd GS 9 3

CPS/SPS 1 2nd GS 3 1

CPS 1 GS 4 4

CPS/SPS 1 GS 3 2

GS 1

Abbreviations: CPS 5 complex partial seizure; D 5 dysplasia; E 5 encephalocele; GS 5 generalized tonic-clonic seizure; HC 5 healthy control; HS 5

hippocampal sclerosis; NB 5 normal brain; NSF 5 not seizure-free; 2nd GS 5 secondary generalized tonic-clonic seizure; SF 5 seizure-free; SPS 5 simple
partial seizure; T 5 tumor; TLE 5 temporal lobe epilepsy.
Temporal pathology was diagnosed by neuroradiologists from presurgical MRI scans. x2 test performed with NB, HS, and others (T, E, and D together).
For continuous variables, independent-sample t tests or one-way analysis of variance was carried out, as appropriate. For categorical variables, x2 tests
were carried out.
aOne SF patient did not have valid IQ scores.
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densities (p , 0.05, figure 1). In detail, the SF pa-
tients had DC and EC values essentially equivalent to
those of the HCs, while the NSF patients showed
significantly higher DC and EC values than the
HCs. No significant difference was found in other
regions after FDR correction (subtle differences at
uncorrected p , 0.05 are reported in figure e-1).

These data indicate abnormally elevated hubness
in the thalamus, reflective of greater connectivity
(i.e., communication) importance in the NSF patients.
To better elucidate these findings, we explored our
data further through the following 3 steps.

First, we tested the importance of the thalamus to
whole-brain network integration. While the Eglobal of
the SF and NSF patients did not differ, both patient
groups showed higher values than HCs across several
densities (p , 0.05, asterisks in figure 2A), similar to
previous findings.25 After removing bilateral thalamic
nodes/edges, we found a significant decline of Eglobal
in all 3 groups (p , 0.05, plus signs in figure 2A),
most dramatically in the NSF group (p, 0.05, figure
2B), indicating that these thalamic nodes played
a greater role in whole-brain network integration in
the NSF patients.

Second, we tested whether this hubness increase
could be attributed to connections with the ictal-
temporal lobe. After all the ictal-temporal nodes/
edges were removed, the NSF group still displayed
elevated DC and EC values in both thalami (p ,

0.05, figure e-2), indicating that the connections
responsible for the increased hubness were mainly
extratemporal in nature.

Third, we investigated the connectivity between
each thalamus and the remaining 89 nodes. Com-
pared to SF patients, the NSF patients displayed ex-
trathalamic connections in several regions across
several densities. For instance, the ipsilateral thalamus
was more frequently connected to 2 ipsilateral (ante-
rior cingulum and superior temporal gyrus), and 6
contralateral (anterior cingulum, rolandic operculum,
caudate, fusiform gyrus, and middle and superior
temporal gyrus) regions (p , 0.05, figure 3A). The
contralateral thalamus was more frequently con-
nected to one ipsilateral (superior parietal gyrus)
and 5 contralateral (caudate, supramarginal gyrus,
middle occipital gyrus, cuneus, and rectus gyrus) re-
gions (p , 0.05, figure 3B). Clearly, in the NSF
group, both thalami display more connections with

Figure 1 Comparisons of degree and eigenvector centrality at both ipsilateral (A) and contralateral (B)
thalamus nodes

Red asterisks indicate significant differences (Welch permutation t tests, p , 0.05, FDR corrected) between the NSF
patient and control groups; magenta asterisks indicate significant differences (Welch permutation t tests, p , 0.05, FDR
corrected) between the NSF and SF patient groups. Shaded bands reflect SD. FDR 5 false discovery rate; NSF 5 not
seizure-free; SF 5 seizure-free.
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the contralateral than the ipsilateral hemisphere. In
contrast, no node in the SF group showed a height-
ened proportion of thalamic connections (p . 0.05).

On the basis of above results, we built SVMmodels
with these 4 thalamic hubness measures. These models
successfully predicted surgical outcome (75.55%), out-
performing models built solely with demographic and
clinical characteristics (58.12%). Moreover, adding
later variables to the thalamic hubness models did
not enhance predictive accuracy (71.40%). In addi-
tion, predictive models tested with equal-size samples
yielded comparable results, demonstrating that the
advantage of the thalamic hubness models was not
due to a bias in sample ratios (table 2).

DISCUSSION In this study, we showed that specific
hubness measures of brain organization can identify

abnormal hubs, potentially reflecting cores of an epi-
leptogenic network, with such presurgical measures
associated with postoperative seizure recurrence and
therefore reliably predictive of surgical outcomes.
More specifically, compared to both SF patients
and HCs, the NSF group displayed increased DC
and EC in both ipsilateral and contralateral thalami.
Simulating removal of thalamic nodes/edges reduced
the Eglobal in all groups, most dramatically in the NSF
group, revealing that in the context of poor seizure
control, these thalamic hubs are of great importance,
influencing the nature of whole-brain integration.
Moreover, after removal of all the ictal-temporal nodes/
edges, mimicking the effects of surgery, the same ele-
vation in thalamic hubness values was obtained.
Notably, the NSF patients displayed an increased
number of thalamic connections, linking the bilateral
thalami to several regions, mostly distributed in the
contralateral hemisphere. Accordingly, these data sug-
gest that a widespread epileptogenic network involving
extratemporal regions, with the thalamus as hub, was
clearly established in these patients before surgery,
a network that could readily support seizure recurrence.

TLE is associated with a redistribution of hub-
ness.26,27 Previous studies have suggested that the
global network properties (e.g., integration) are more
disrupted27 and more vulnerable28 to the deletion of
major hubs in patients with unfavorable outcomes.
Our data demonstrate that one such crucial hub
could be the bilateral thalami. Patients with TLE
who show higher levels of functional synchronization
between the thalamus and other extratemporal re-
gions presurgically may be developing a form of
occult epileptogenic signaling, setting the stage for
postoperative seizure recurrence.

The thalamus is well recognized for its crucial role
in the generation and spread of seizures.29 Spared in
ATL, it could support recurrent seizures postopera-
tively.8,11 For instance, patients with persistent seiz-
ures have greater white matter abnormalities in
thalamo-temporal tracts,11,12 more disrupted right
thalamo-hippocampus rsFC,30 and higher thalamo-
temporal coupling,31 all indicating that interaction
between the thalamus and ictal-temporal lobe can,
after surgery, increase seizure burden and predispose
toward seizure propagation. Our findings suggest that
the importance of the thalamus to seizure recurrence
emerges not just because of its prior connections to
the ictal-temporal lobe, the region removed by ATL,
but also because of its connections to extratemporal
regions, which are spared by ATL and likely form the
key parts of postsurgical epileptogenic networks.
Thus, our data are consistent with prior evidence
showing that the thalamus is crucial to seizure recur-
rence after surgery but clarify its role as a hub of
potential epileptogenic networks involving primarily

Figure 2 Comparisons of global efficiency

(A) Global efficiency before (solid line) and after (dash line) simulation of thalamus removal. As-
terisks indicate significant differences (Welch permutation t tests, p, 0.05, FDR corrected) of
initial global efficiency, with blue indicating SF patient vs control group and red indicating NSF
patient vs control group. Plus signs indicate significant decline (Welch permutation t tests, p,

0.05, FDR corrected) in global efficiency, with blue, red, and black showing decline in SF and
NSF patient groups and control group, respectively. (B) Comparisons of change in global effi-
ciency. Asterisks indicate significant differences (Welch permutation t tests, p , 0.05, FDR
corrected), with blue showing SF patient vs control group, red showing NSF patient vs control
group, and magenta showing SF vs NSF patient group. Random and lattice networks before
(solid line) and after (dash line) simulation of thalamus removal are also presented as references.
Shaded bands reflect SD. FDR5 false discovery rate; NSF5 not seizure-free; SF5 seizure-free.
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the contralateral hemisphere, although also including
ipsilateral regions spared by ATL (posterior superior
temporal gyrus). Unlike pathologies such as epilepto-
genic temporal residue, which can be treated with
a second resection, this contralateral thalamic net-
work is not subject to such treatment. Rather than
suggesting further resections, our findings help set the
stage for alternative interventions such as brain elec-
tric stimulation. For example, the implication of tar-
geting the bilateral thalami is exactly in accord with
general strategies behind some current investigative
trials (i.e., Stimulation of the Anterior Nucleus of
Thalamus for Epilepsy [SANTE]32).

A practical challenge is to identify the full epilep-
togenic network(s) that are capable of supporting

seizures after surgery. Part of the difficulty is that
these at-risk regions can vary across individuals.
Our data show how topologic brain organization
information may constitute an important starting
point. For instance, we observed some thalamo-
cortical connections to be more prevalent than others
(depicted in figure 3) in our sample; however, tha-
lamic hubness was neither dependent on nor specific
to any connection. This means that the thalamus
could connect to completely different regions in other
NSF patients yet still maintain elevated hubness
levels.

To demonstrate reproducibility, we repeated our
analysis using the Harvard-Oxford Atlas and pro-
duced nearly identical results (figure e-3), providing

Figure 3 Thalamic edges showing different percentile of existence between SF and NSF patients

Nodes and edges located in the ipsilateral hemisphere are shown in red; nodes and edges located in the contralateral
hemisphere are shown in cyan. Blue area reflects the percentile of existence of each edge across a series of network
densities (5%–50%) in the SF patient group; Red area reflects the percentile of existence of each edge across a series
of network densities (5%–50%) in the NSF patient group. Magenta asterisk indicates significant differences (x2 tests,
p , 0.05, FDR corrected) between the SF and NSF patient groups. (A) Ipsilateral thalamic edges. (B) Contralateral
thalamic edges. ACG 5 anterior cingulum; CAU 5 caudate; CUN 5 cuneus; FDR 5 false discovery rate; FFG 5 fusiform
gyrus; MOG 5middle occipital gyrus; MTG 5middle temporal gyrus; NSF 5 not seizure-free; REC 5 rectus gyrus; ROL 5

rolandic operculum; SF 5 seizure-free; SMG 5 supramarginal gyrus; SPG 5 superior parietal gyrus; STG 5 superior
temporal gyrus.
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strong evidence of robustness and reliability. Another
methodological consideration was our choice of
binary instead of weighted graphs as a way of being
more selective about the source of nodal hubness
(i.e., in weighted graphs, higher hubness can come
from extra edges, a stronger correlation between edges,
or both; in binary graphs, high hubness emerges solely
from extra edges). Nevertheless, to further verify
robustness, we retested our data with weighted graphs
and obtained similar results. Namely, the NSF patients
exhibited both higher nodal strength (weighted version
of DC) and higher EC involving the bilateral thalami
(figure e-4).

Currently, the best neuroimaging predictors of
seizure outcome involve primarily ipsilateral-
temporal features extracted with structural ap-
proaches (e.g., morphology of mesial temporal
structures,33 ipsilateral-temporal white matter con-
nections12), yielding prediction strengths on the
order of 80%12 to 90%.33 Our study demonstrates
that extratemporal features such as thalamic hubness
measures extracted from rsFC can also serve as suc-
cessful predictors. As an alternative perspective,
rsFC reflects structural connectivity34 and can be
inferred from structural connectivity.35 Further-
more, it provides sensitivity to long-range

interregional communication supported only by
indirect physiologic links.36 The validity of rsFC
comes from its association with human behavior14

and ability to uniquely characterize neurologic and
psychiatric disease.37,38 As a demonstration, we
found that SVM models trained with ,30 cases
(in case of split sample) using rsFC features (tha-
lamic hubness) can readily predict seizure outcome
in a set of independent patients at 74% accuracy,
exceeding the predictive value of models with solely
clinical characteristics.

In NSF patients, the thalamic nodes showed en-
riched connections (higher DC), and the targets of
these connections were themselves highly connected
(other hubs, higher EC). However, these additional
connections are not geodesic in nature (not the short-
est pathway between 2 other nodes, i.e., no reliable
effects of BC) and hence do not bring additional effi-
ciency to information flow, which may reflect a mal-
adaptive, pathologic process driving seizure
recurrence.

Our project has several limitations. The represen-
tativeness of our sample could be biased because of its
limited size. In addition, seizure outcome varies over
time; hence, the predictive value of presurgical tha-
lamic hubness against longer-term outcome remains

Table 2 Surgical outcome prediction summary

Full original sample, % Equal-sized sample, %a

ACC SEN SPC PPV NPV ACC SEN SPC PPV NPV

Thalamic hubness measures

Leave-one-out 76.79 85.71 61.90 78.95 72.22 70.98 76.05 65.92 68.97 73.68

7-Folda 75.85 85.79 59.26 77.84 71.71 71.57 76.93 66.21 69.45 74.46

Split samplea 74.00 84.77 56.03 76.31 69.53 70.95 73.26 67.14 69.09 71.89

Mean 75.55 85.42 59.06 77.70 71.15 71.17 75.41 66.42 69.17 73.34

Demographic and clinical characteristics

Leave-one-out 60.71 74.29 38.10 66.67 47.06 48.31 46.30 50.33 48.27 48.32

7-Folda 59.24 73.93 34.75 65.40 44.51 49.55 48.47 50.63 49.54 49.54

Split samplea 54.40 67.56 32.46 62.47 37.49 48.62 46.19 51.16 48.34 48.72

Mean 58.12 71.93 35.10 64.85 43.02 48.83 46.99 50.71 48.72 48.86

Thalamic hubness measures 1 demographic
and clinical characteristics

Leave-one-out 75.00 82.86 61.90 78.38 68.42 62.13 63.44 60.82 61.73 62.71

7-Folda 71.48 79.97 57.34 75.79 63.45 63.15 64.36 61.94 62.83 63.74

Split samplea 67.73 75.67 54.51 73.64 58.02 61.49 58.32 63.52 61.60 60.88

Mean 71.40 79.50 57.92 75.94 63.30 62.26 62.04 62.09 62.05 62.44

Null model 62.50 100 0 62.50 NA 50.00 100 0 50.00 NA

Abbreviations: ACC 5 accuracy; NPV 5 negative predictive value; PPV 5 positive predictive value; SEN 5 sensitivity; SPC 5 specificity.
Full original sample: training and testing samples for cross-validation were generated by splitting the full sample pool (56), maintaining the original seizure-
free/not seizure-free outcome ratio of 5:3. Equal-sized sample: training and testing samples for cross-validation were generated by splitting a selective
sample pool (42) constituted by the 21 not seizure-free patients and 21 randomly selected seizure-free patients, establishing a seizure-free/not seizure-
free outcome ratio of 1:1.
a Run with 10,000 permutations.
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to be explored. For instance, the brain could poten-
tially reorganize over time in ways that may or may
not support seizure freedom. In terms of methods,
the coherence of regional signal change could be
influenced by noise such as head motion. To address
this, we used a higher-order head motion nuisance
regression model39 and a maximal overlap discrete
wavelet transform procedure to remove the signal
components associated with head motion and physi-
ologic noise outside our band of interest. We also
acknowledge that rsfMRI covers only a limited range
of signal frequency, while different network dynamics
at other frequencies, especially high frequencies,40

need to be explored. Lastly, because we did not collect
simultaneous EEG during our scan, we cannot com-
pletely rule out the existence of interictal activity at
the time of data collection, although any such inter-
ictal activity would not have been consistent across
patients, thereby canceling out any systematic corre-
lation with our findings.

The thalamic hubness our data highlight provides
clues for developing strategies beyond just ATL, with
an eye toward additional or alternative targeted interven-
tions. Our data also have relevance for the prediction of
surgical outcomes, outperforming the clinical character-
istics commonly used in epilepsy surgical centers.
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