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Abstract 

The safety-critical real-time embedded domain increasingly demands the use of parallel architectures to fulfill 
performance requirements. Such architectures require the use of parallel programming models to exploit the 
underlying parallelism. This paper evaluates the applicability of using OpenMP, a widespread parallel 
programming model, with Ada, a language widely used in the safety-critical domain. 

Concretely, this paper shows that applying the OpenMP tasking model to exploit fine-grained parallelism within 
Ada tasks does not impact on programs safeness and correctness, which is vital in the environments where Ada is 
mostly used. Moreover, we compare the OpenMP tasking model with the proposal of Ada extensions to define 
parallel blocks, parallel loops and reductions. Overall, we conclude that the OpenMP tasking model can be safely 
used in such environments, being a promising approach to exploit fine-grain parallelism in Ada tasks, and we 
identify the issues which still need to be further researched. 
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Abstract. The safety-critical real-time embedded domain increasingly
demands the use of parallel architectures to fulfill performance require-
ments. Such architectures require the use of parallel programming models
to exploit the underlying parallelism. This paper evaluates the applica-
bility of using OpenMP, a widespread parallel programming model, with
Ada, a language widely used in the safety-critical domain.
Concretely, this paper shows that applying the OpenMP tasking model
to exploit fine-grained parallelism within Ada tasks does not impact on
programs safeness and correctness, which is vital in the environments
where Ada is mostly used. Moreover, we compare the OpenMP tasking
model with the proposal of Ada extensions to define parallel blocks,
parallel loops and reductions. Overall, we conclude that the OpenMP
tasking model can be safely used in such environments, being a promising
approach to exploit fine-grain parallelism in Ada tasks, and we identify
the issues which still need to be further researched.

1 Introduction

There is a clear trend towards the use of parallel computation to fulfill the perfor-
mance requirements of real-time embedded systems in general, and safety-critical
embedded systems in particular (e.g. autonomous driving). In that regard, the
use of advanced parallel architectures, like many-core heterogeneous processors,
is increasingly seen as the solution. These architectures rely on parallel program-
ming models to exploit their massively parallel capabilities. Thus, there is a need
to integrate these models in the development of safety-critical systems [21].

Safety-critical systems are commonly developed with programming languages
where concepts as safety and reliability are crucial. In that respect, Ada is widely
used in safety-critical and high-security domains such as avionics and railroad
systems. The whole language is designed to keep safeness: it enforces strong
typing, checks ranges in loops and so eliminating buffer overflows, provides actual
contracts in the form of pre- and post-conditions, prevents access to deallocated
memory, etc. A long list of language decisions allows compilers to implement
correctness techniques to certify algorithms regarding their specification.

Ada supports a concurrency model (by means of Ada tasks and protected
objects) that is mainly suitable for coarse-grained parallelism. Hence, there has



been a significant effort to add support for fine-grained parallelism to Ada, to
benefit from parallel architectures. The existent proposal [26] enriches the Ada
core with extensions that support parallel blocks and parallel loops (including
reductions). This technique is based on the notion of tasklets [23]: concurrent
logical units within an Ada task. Since adding parallelism also means adding a
source of errors (due to concurrent accesses to global data and synchronizations)
the proposal addresses safety using new annotations. With that, the compiler is
able to detect data race conditions3 and blocking operations4.

This paper evaluates the use of the OpenMP [1] tasking model to express
fine-grained parallelism in Ada. OpenMP was born in the 90’s out of the need
for standardizing the different vendor specific directives related to parallelism.
The language has successfully emerged as the de facto standard for shared-
memory systems. This is the result of being successfully used for decades in
the high-performance computing (HPC) domain. Furthermore, OpenMP has re-
cently gained much attention in the embedded field owing to the augmentations
of the latest specifications, which address the key issues in heterogeneous embed-
ded systems: a) the coupling of a main host processor to one or more many-core
accelerators, where highly-parallel code kernels can be offloaded for improved
performance/watt; and b) the capability of expressing fine-grained, both struc-
tured and unstructured, and highly-dynamic task parallelism.

This paper shows how OpenMP can be integrated with Ada, and how cor-
rectness and thus safety are preserved when using the OpenMP tasking model [9]
by virtue of compiler analyses. These analyses allow both compile-time detection
of errors that may cause runtimes to break or hang, and automatic amendment
of errors introduced due to a wrong usage of the user-driven parallelism. The
OpenMP tasking model implements an execution pattern similar to the tasklet

model, for an OpenMP task5 resembles a tasklet. Interestingly, both models map
to state-of-the-art scheduling methods, enabling to provide timing guarantees to
OpenMP applications [24]. Such points make OpenMP particularly relevant for
embedded heterogeneous systems, which typically run applications that can be
very well modeled as periodic task graphs.

There are however a few caveats. First, the interplay between OpenMP and
Ada runtimes, each with its own model. Second, although the tasking model of
OpenMP has been demonstrated to be analyzable for real-time systems using
the limited preemptive scheduling model [30], it is still ongoing effort to make it
a standard offering. Finally, it remains as a future work to evaluate the complete
OpenMP language, including its thread-based model (see Section 4.1).

3 A race condition occurs when two or more accesses to the same variable are concur-
rent and at least one is a write.

4 Blocking operations are defined in Ada to be one of the following: entry calls; select,
accept, delay and abort statements; task creation or activation; external calls on a
protected subprogram with the same target object as that of the protected action;
and calls to a subprogram containing blocking operations.

5 An OpenMP task is a specific instance of executable code and its data environ-
ment, generated when a thread encounters a given construct (i.e. task, taskloop,
parallel, target, or teams)



2 Motivation: why OpenMP?

Programming multi-cores is difficult due to the multiple constraints it involves.
Hence, the success of a multi-core platform relies on its productivity, which com-
bines performance, programmability and portability. With such a goal, multitude
of programming models coexist. The different approaches are grouped as follows:

Hardware-centric models aim to replace the native platform programming with
higher-level, user-friendly solutions, e.g. Intel R© TBB [27] and NVIDIA R©

CUDA [5]. These models focus on tuning an application to match a chosen
platform, which makes their use a neither scalable nor portable solution.

Application-centric models deal with the application parallelization from design
to implementation, e.g. OpenCL [34] and OmpSs [13]. Although portable,
these models may require a full rewriting process to accomplish productivity.

Parallelism-centric models allow users to express typical parallelism constructs
in a simple and effective way, and at various levels of abstraction, e.g. POSIX
threads (Pthreads) [11], MPI [33] and OpenMP [12]. This approach allows
flexibility and expressiveness, while decoupling design from implementation.

Given the vast amount of options available, there is a noticeable need to unify
programming models for many-cores [36]. In that sense, OpenMP has proved
many advantages over its competitors. On the one hand, different evaluations
demonstrate that OpenMP delivers tantamount performance and efficiency com-
pared to highly tunable models such as TBB [16], CUDA [19], OpenCL [31], and
MPI [17]. On the other hand, OpenMP has different advantages over low level
libraries such as Pthreads: a) it offers robustness without sacrificing performance
[18], and b) OpenMP does not lock the software to a specific number of threads.
Another advantage is that the code can be compiled as a single-threaded appli-
cation just disabling support for OpenMP, thus easing debugging.

The use of OpenMP presents three main advantages. First, an expert com-
munity has constantly reviewed and augmented the language for the past 20
years. Thus, less effort is needed to introduce fine-grained parallelism in Ada.
Second, OpenMP is widely implemented by several chip and compiler vendors
(e.g. GNU [2], Intel R© [4], and IBM [3]), meaning that less effort is needed to
manage parallelism as the OpenMP runtime will manage it. Third, OpenMP
provides greater expressiveness due to years of experience in its development.
The language offers several directives for parallelization and synchronization,
along with a large number of clauses that allow to contextualize concurrency,
providing a finer control of the parallelism. Overall, OpenMP is a good candidate
to introduce fine-grained parallelism to Ada by virtue of its benefits.

Despite its benefits, there is still work to do to fulfill the safety-critical domain
requirements. Firstly, OpenMP is not reliable because it does not define any
recovery mechanism. In that regard, different approaches have been proposed
and some of them have been already adopted, which we discuss in Section 5.3.
Secondly, both programmers and compilers must satisfy some requirements to
make possible whole program analysis (such as programmers adding information
in headers libraries, and compilers implementing techniques like IPO [7]).



3 Ada language extensions for fine-grain parallelism

Ada includes tasking features as part of the standard by means of tasks, which
are entities that denote concurrent actions, and inter-task communication mech-
anisms such as protected objects or rendezvous. However, this model is mainly
suitable for coarse-grained parallelism due to its higher overhead [32].

Efforts exist to extend Ada with a fine-grained parallel model based on the
notion of tasklets [23], where parallelism is not fully controlled by the program-
mer: the programmer specifies the parallel nature of the algorithm, and the
compiler and the runtime have the freedom to organize parallel computations.

Based on this model, specific language extensions have been proposed [35]
to cover two cases where parallelization is suitable: parallel blocks and parallel
loops, including reductions. The following subsections present the syntax and
semantics proposed (which are being considered for future versions of the Ada
language [8]), as well as how safety is kept in this model.

3.1 Parallel blocks

A parallel block (Listing 1.1) denotes two or more parts of an algorithm that can
be executed in parallel. A transfer of control6 or exception7 within one parallel
sequence aborts the execution of parallel sequences that have not started, and
potentially initiates the abortion of those sequences not yet completed8. Once
all parallel sequences complete, then the transfer of control or exception occurs.

Listing 1.1. Parallel block syntax
with proposed Ada extensions

1 parallel

2 sequence_of_statements

3 and

4 sequence_of_statements

5 {and

6 sequence_of_statements}

7 end parallel;

Listing 1.2. Parallel loop syntax with
proposed Ada extensions

1 for i in parallel lb..ub loop

2 sequence_of_statements

3 end loop;

3.2 Parallel loop

In a parallel loop (Listing 1.2), iterations may execute in parallel. Each iteration
can be treated as a separate unit of work. However, this may introduce too
much overhead from: a) the creation of the work item, b) the communication
of results, and c) the synchronization of shared data (protected objects). To
palliate this, both the compiler and the runtime are given the freedom to chunk
iterations. Although not mandatory, programmers may gain control by defining

6 A transfer of control causes the execution of a program to continue from a different
address instead of the next instruction (e.g. a return instruction).

7 Exceptions are anomalous conditions requiring special processing. Ada has prede-
fined exceptions (language-defined run-time errors) and user-defined exceptions.

8 The rules for abortion of parallel computations are still under discussion [25].



sized chunks. The proposal reveals the necessity of providing support for per-
thread copies of relevant data to deal with data dependencies and shared data.

The authors also introduce the concept of a parallel array; that is data being
updated within a parallel loop. The syntax is shown in Listing 1.3, where the use
of <> indicates an array of unspecified bounds. In that case, the compiler may
choose the size based on the number of chunks chosen for the parallelized loops
where the array is used. Alternatively, the programmer may provide a bound,
thus forcing a specific partitioning. The rule regarding transfer of control and
exceptions presented for parallel blocks also applies here. For this purpose, each
chunk is treated as equivalent to separate sequences of a parallel block.

Listing 1.3. Not chuncked parallel array with proposed Ada extensions

1 Arr : array (parallel <>) of a_type

2 := (others => initial_value);

3.3 Parallel reduction

The authors of the proposed Ada extensions define a reduction as a common
operation for values in a parallel array that consists in combining the different
values of the array at the end of the processing with the appropriate reduction
operation. Syntax for parallel reductions is still under discussion [25] and the
current proposal is to define this reduction in the type as in Listing 1.4.

Listing 1.4. Parallel reduction with proposed Ada extensions

1 ...

2 type Partial_Array_Type is new array (parallel <>) of Float;

3 with Reducer => "+", Identity => 0.0;

4 Partial_Sum : Partial_Array_Type := (others => 0.0);

5 Sum : Float := 0.0;

6 begin

7 for I in parallel Arr’Range loop

8 Partial_Sum(<>) := Partial_Sum(<>) + Arr(I);

9 end loop;

10 Sum := Partial_Sum(<>)’Reduced; -- reduce value either here or

11 -- during the parallel loop

12 ...

3.4 Safety

Despite the clear benefits of parallel computation in terms of performance, paral-
lel programming is complex and error prone, and that may compromise correct-
ness and so safety. Hence, it is paramount to incorporate compiler and run-time
techniques that detect errors in parallel programming.

There are two main sources of errors when dealing with parallel code: a) the
concurrent access to shared resources in a situation of race condition, and b) an
error in the synchronization between parallel operations leading to a deadlock.
To guarantee safety, Ada parallel code must use atomic variables and protected



objects to access shared data. Moreover, the compiler shall be able to complain
if different parallel regions might have conflicting side-effects.

In that respect, due to the hardship of accessing the complete source code to
perform a full analysis, the proposed Ada extensions suggests a two-fold solution
[35]: a) eliminate race conditions by adding an extended version of the SPARK
Global aspect to the language (this will help the compiler to identify those
memory locations that are read and written without requiring access to the com-
plete code); and b) address deadlocks by the defined execution model, together
with a new aspect called Potentially Blocking that indicates whether a
subprogram contains statements that are potentially blocking.

4 OpenMP for fine-grained parallelism in Ada

In this paper, we propose a complementary approach for exploiting fine-grain
parallelism in Ada: OpenMP. Our approach is motivated by the threefold advan-
tage of a) being a well-known parallel programming model supported by many
chip and compiler vendors, b) offering a simple yet exhaustive interface, and c)
providing greater expressiveness as a result of years of experienced development.

4.1 OpenMP execution model

OpenMP provides two different models of parallelism:

Thread-parallelism, which defines a conceptual abstraction of user-level threads
that work as proxies for physical processors. This model enforces a rather
structured parallelism. Representative constructs are for and sections.

Task-parallelism, tasking model hereafter, which is oblivious of the physical lay-
out. Programmers focus on exposing parallelism rather than mapping par-
allelism onto threads. Representative constructs are task and taskloop.

An OpenMP program begins as a single thread of execution, called the initial
thread. Parallelism is achieved through the parallel construct. When such
a construct is found, a team of threads is spawned. These are joined at the
implicit barrier encountered at the end of the parallel region. Within that region,
the threads of the team execute work. This is the so-called fork-join model.
Then, within the parallel region, parallelism is achieved by means of different
constructs: for, sections and task, among others.

Mutual exclusion is accomplished via the critical and atomic constructs,
and synchronization by means of the barrier construct. Additionally, the
tasking model offers the taskwait construct to impose a less restrictive syn-
chronization (while a barrier synchronizes all threads in the current team, a
taskwait only synchronizes descendant tasks of the binding task).

Fig. 2 shows the execution model of a parallel block with a loop implemented
using the parallel for directive, where all spawned threads work in parallel
from the beginning of the parallel region as long as there is work to do. Fig.
1 shows the model of a parallel block with tasks. In this case, the single



construct restricts the execution of the parallel region to only one thread until a
task construct is found. Then, another thread (or the same, depending on the
scheduling policy), concurrently executes the code of the task.

Fig. 1. Fork-join model with unstruc-
tured parallelism

Fig. 2. Fork-join model with struc-
tured parallelism

The tasking model adapts better to the parallelism model proposed for Ada,
which is oblivious of the threads as well. Thus, even if a thread-parallel version
is possible, we focus on the tasking model, remaining the other as future work.

4.2 Data scoping

One of the most interesting characteristics of OpenMP is that it allows a rich
definition of the scoping of variables involved in the parallel computation by
means of data-sharing clauses. This scoping can be one of the following:

– private: a new fresh variable is created within the scope.
– firstprivate: a new variable is created in the scope and initialized with the

value of the original variable.
– lastprivate: a new variable is created within the scope and the original vari-

able is updated at the end of the execution of the region (only for tasks).
– shared : the original variable is used in the scope, thus opening the possibility

of data race conditions.

The use of data-sharing clauses is particularly powerful to avoid unneces-
sary synchronizations as well as race conditions. All variables appearing within
a construct have a default data-sharing defined by the OpenMP specifications
(Section 2.15.1 [1]). Data-scoping rules are not based on the use of the vari-
ables, but on their storage. Thus, users are required to explicitly scope many
variables, changing the default data-sharing values, in order to fulfill correctness
(i.e., avoiding data races) and enhance performance (i.e., privatizing variables).

Listing 1.5 shows a simple C code with two tasks concurrently performing
two multiplications. These tasks are synchronized in the taskwait directive
previous to adding the two computed values. The code shows the default data-
sharing of the variables derived following the data-scoping rules: a, b and res



are defined as shared because they have dynamic storage duration, whereas x
and y are defined as firstprivate. This code however is not correct because the
updated values of x and y are not visible outside the tasks. Hence, programmers
must manually introduce the data-sharing clauses as shown in Listing 1.6.

Listing 1.5. OpenMP specification
defined data-sharing clauses

1 int a, b, res;

2 int foo() {

3 #pragma omp parallel

4 // shared(a, b, res)

5 #pragma omp single nowait

6 {

7 int x, y;

8 #pragma omp task

9 // firstprivate(x) shared(a)

10 x = a*a;

11 #pragma omp task

12 // firstprivate(y) shared(b)

13 y = b*b;

14 #pragma omp taskwait

15 res = x + y;

16 }

17 }

Listing 1.6. OpenMP manually defined
data-sharing clauses

1 int a, b, res;

2 int foo() {

3 #pragma omp parallel shared(res) \

4 firstprivate(a, b)

5 #pragma omp single nowait

6 {

7 int x, y;

8 #pragma omp task shared(x) \

9 firstprivate(a)

10 x = a*a;

11 #pragma omp task shared(y) \

12 firstprivate(b)

13 y = b*b;

14 #pragma omp taskwait

15 res = x + y;

16 }

17 }

Manually defining data-sharing clauses is a cumbersome and error-prone pro-
cess because programmers have to be aware of the memory model and analyze
the usage of the variables. Fortunately, compiler analysis techniques have al-
ready proved that it is possible to automatically define data-sharing clauses [28]
and statically catch incoherences in the user-defined attributes that may lead
to non-deterministic results, runtime failures and loss of performance [29]. We
further explain these in Section 5.

The possibility of defining data-sharing attributes makes an important dif-
ference with the proposed Ada extensions, where this task is allotted to the
compiler. In that regard, OpenMP adds flexibility to the model without losing
simplicity, as the attributes can still be discovered at compile time.

4.3 Supporting OpenMP in Ada

The current OpenMP specification is defined for C, C++ and Fortran. In the
examples showed in Section 4.2 we use the syntax defined for C/C++. However,
Ada does not group a sequence of statements by bracketing the group (as in
C), but uses a more structured approach with a closing statement to match the
beginning of the group. Since Ada already defines pragmas of the form pragma

Name (Parameter List);, we propose introducing a new kind of pragma, the
pragma OMP, together with the directive name (e.g. task, barrier, etc.).

Listing 1.7 shows an example of the proposed syntax when the OpenMP
construct applies to one statement, and Listing 1.8 shows an example where the
construct applies to more than one statement.

OpenMP defines the argument of a data-sharing clause as a list of items. This
does not match directly with the syntax allowed in Ada for pragmas, which is



Listing 1.7. OpenMP proposed syntax
pragmas applying to one statement

1 pragma OMP (taskloop, num_tasks=>N);

2 for i in range 0..I loop

3 ... -- statements here

4 end loop;

Listing 1.8. OpenMP proposed syntax for
pragmas applying to several statements

1 pragma OMP (task, shared=>var);

2 begin

3 ... -- statements here

4 end;

shown in Listing 1.9. In order to simplify the syntax needed to define data-sharing
clauses, we propose to extend the definition of pragma argument identifier

with a list of expressions. We will use this proposed syntax for the rest of the
document.

Listing 1.9. Ada syntax for pragmas
pragma : :=

pragma i d e n t i f i e r [ ( pragma argument assoc iat ion { , pragma argument assoc iat ion } ) ] ;
pragma argument assoc iat ion : :=

[ pragma argument ident i f i e r =>] name
| [ p ragma argument ident i f i e r =>] expre s s i on

4.4 Parallel blocks

As previously introduced, a parallel block denotes two or more concurrent sec-
tions. In OpenMP a parallel block can be written so that each parallel region
is wrapped in a task, and all tasks are wrapped in a parallel region. We use
the parallel computation of the Fibonacci sequence to illustrate this scenario.
Listing 1.10 shows the implementation using Ada extensions, and Listing 1.11
shows the OpenMP implementation.

Listing 1.10. Parallel Fibonacci se-
quence with Ada extensions

1 if N < 2 then

2 return N;

3 parallel

4 X:= Fibonacci(N - 2);

5 and

6 Y:= Fibonacci(N - 2);

7 end parallel;

8 return X + Y;

Listing 1.11. Parallel Fibonacci sequence
with OpenMP tasks

1 if N < 2 then

2 return N;

3 pragma OMP (parallel, shared=>X,Y,

4 firstprivate=>N);

5 pragma OMP (single, nowait);

6 begin

7 pragma OMP (task, shared=>X,

8 firstprivate=>N);

9 X:= Fibonacci(N - 2);

10 pragma OMP (task, shared=>Y,

11 firstprivate=>N)

12 Y:= Fibonacci(N - 2);

13 end

14 return X + Y;

In the Ada version, the compiler can detect that no unsafe access is made to
N, X or Y in the parallel block, thus concluding no synchronization is required
(except the one at the end of the parallel block). Furthermore, it can privatize
X and Y, copying out their value after the parallel computation completes. This
however, may harm performance due to the extra copies (it remains as a compiler
decision). The logic behind the choice to make data-sharing transparent to the
user is based on simplicity and readability, whilst safe.



In the OpenMP version, although programmers are not forced to define the
data-scoping manually (since the compiler can detect the proper data-sharing
attributes as it does in the Ada version), they can specify the intended model for
data access. Hence, accesses to X and Y are marked as shared because there is no
concurrency in the usage of these variables and they are both updated within the
corresponding tasks and visible after the tasks. Additionally, the access to N is
marked as firstprivate because the value is just read within the task. Since there
is an implicit barrier at the end of the parallel construct, the return statement
will always access the correct values of X and Y. This model is not as naive as the
proposed Ada extensions, being a trade-off between simplicity and flexibility.

4.5 Parallel loop

As previously explained, a parallel loop defines a loop where iterations may be
executed in parallel. The OpenMP tasking model offers the taskloop construct,
which specifies that the iterations of the associated loops will be distributed
across the tasks created by the construct, and executed concurrently. Users can
control the number of tasks and their size with the following clauses:

– num tasks defines the number of tasks created.
– grain size defines the number of loop iterations assigned to each task.

We illustrate this scenario with the well-known matrix multiplication bench-
mark. Consider two matrices M1 and M2, and the matrix RES, where their mul-
tiplication is stored. Listing 1.12 shows the code implemented with the syntax
proposed for the Ada extensions, and Listing 1.13 shows the implementation
using the OpenMP taskloop construct.

Listing 1.12. Parallel matrix multipli-
cation with Ada extensions

1 for i in parallel 0..MAX_I loop

2 for j in range 0..MAX_J loop

3 for k in range 0..MAX_K loop

4 RES(i,j):= RES(i,j)

5 + M1(i,k) * M2(k,j);

6 end loop;

7 end loop;

8 end loop;

Listing 1.13. Parallel matrix multiplica-
tion with OpenMP taskloop

1 pragma OMP (parallel);

2 pragma OMP (taskloop,

3 private=>i, j, k,

4 firstprivate=>MAX_I, MAX_J, MAX_K,

5 shared=>RES, M1, M2,

6 grainsize=>size);

7 begin

8 for i in range 0..MAX_I loop

9 for j in range 0..MAX_J loop

10 for k in range 0..MAX_K loop

11 RES(i,j):= RES(i,j)

12 + M1(i,k) * M2(k,j);

13 end loop;

14 end loop;

15 end loop;

16 end

Again, OpenMP allows more expressiveness by virtue of the data-sharing
clauses. In the Ada version the compiler may not be able to determine that par-
allel access to RES are not data races. Moreover, the OpenMP version also allows
controlling the granularity of the parallelization whereas the Ada extensions are
limited to defining the number of elements of a parallel array.



4.6 Parallel reduction

For the Ada extensions, a reduction is an operation defined over the elements of
a parallel array. OpenMP relaxes this constraint and defines a reduction as a par-
allel operation which result is stored in a variable. Different implicitly declared
reduction identifiers are defined in OpenMP (e.g. +, -, *, etc.). Additionally,
the specification allows user defined reductions with the syntax specified in List-
ing 1.14. There, reduction identifier is either a base language identifier
or an implicitly declared identifier, typename list is a list of type names,
combiner is the reduction expression, and initializer clause indicates
the value to be used to initialize the private copies of the reduction.

Listing 1.14. OpenMP syntax for user-declared reductions

1 #pragma omp declare reduction \

2 (reduction_identifier : typename_list : combiner) \

3 [initializer_clause]

The reduction itself is implemented in OpenMP by means of a clause that
can be added to multiple constructs like parallel and for among others. The
possibilities with OpenMP reductions underscore their versatility in the face of
the proposed Ada extensions. Until OpenMP 4.5, the reduction is limited to
the thread-parallelism model. Nonetheless, the planned OpenMP 5.0 [6] defines
reductions for taskloops as well. Listing 1.15 shows the syntax adapted to our
proposal for Ada. Clauses num tasks and grain size can still be used.

Listing 1.15. OpenMP parallel taskloops reduction example

1 pragma OMP parallel (taskloop reduction=>+,TOTAL);

2 begin

3 for i in range 0..MAX_I loop

4 TOTAL := Arr(i);

5 end loop;

6 end

OpenMP specifies that the number of times the combiner is executed, and the
order of these executions is unspecified. This means that different executions may
deliver different results. To avoid this unspecified behavior some restrictions can
be added to the use of OpenMP reductions in safety-critical embedded domains,
such as: limiting the operations to those that are associative and commutative,
and forbidding the use of floating point types.

4.7 Mutual exclusion

In OpenMP, mutual exclusion is achieved by means of two constructs: critical
and atomic. While the critical construct restricts the execution of its as-
sociated structured block to a single thread at a time, the atomic construct
ensures that a specific storage location is accessed atomically.

The atomic construct is very restrictive in the sense that it accepts a limited
number of associated statements of the form defined in the specifications (Section



2.13.6 [1]). Consequently, atomics do not represent a threat concerning safety
because no deadlock may be caused by their use. Differently, the critical

construct accepts any kind of statement and, as a consequence, deadlocks may
appear. Although OpenMP forbids nesting critical constructs with the same
name, this is not sufficient to avoid deadlocks. A critical construct containing
a task scheduling point9 may cause a deadlock if the thread executing the critical
region jumps to a region containing a critical construct with the same name.
Section 5 discusses solutions and the work that needs to be done to integrate
OpenMP and Ada mutual exclusion mechanisms.

5 Safety in OpenMP

Compilers are key tools to anticipate bugs that may appear at run-time, be-
coming fundamental when developing safety-critical systems. Although most
OpenMP compilers do not diagnose common mistakes that cause execution er-
rors, previous works are encouraging. The following subsections tackle the situa-
tions that jeopardize safety when using OpenMP, showing the existent solutions
and also explaining additional proposals. The argumentation is orthogonal to the
underlying language. The techniques used have been implemented in compilers
for C/C++, hence it is possible provide them in Ada compilers as well.

5.1 Correctness: data races and synchronization

Detecting exact data races at compile time is an open challenge, and static tools
still struggle to obtain no false negatives and minimal false positives. Current
mechanisms have been proved to work properly on specific subsets of OpenMP
such as having a fixed number of threads [22] or avoiding the use of non-affine
constructs 10 [10]. A more general approach can be used to determine the regions
of code that are definitely non-concurrent [20]. Although it is not an accurate so-
lution, it will never deliver false negatives. The previously mentioned techniques
can be combined to deliver conservative and fairly accurate results.

It is unattainable that compilers are able to interpret the semantics of an
algorithm, thus correctness techniques are limited. However, it is feasible for
compilers to observe situations that are incoherent or may lead to runtime errors.
In that regard, static analysis techniques have proved to be able to catch tasks
and variables that are not properly synchronized, causing both non-deterministic
results (due to data races) and runtime failures (due to wrong synchronization
-e.g. a task using as shared an automatic storage variable after its lifetime has

9 A task scheduling point (TSP) is a point during the execution of the a task region
at which it can be suspended to be resumed later, and where the executing thread
may switch to a different task region. OpenMP defines the list of TSP to be: the
point immediately following the generation of an explicit task, after the point of
completion of a task region, and in a taskwait region among others.

10 Non-affine constructs are non-affine subscript expressions, indirect array subscripts,
use of structs, non-affine loop bounds, and non-affine if conditions, among others.



ended-) [29]. Such techniques adopt a conservative approach, in the sense that
performance is secondary when correctness is on the line (e.g. privatize a variable
in order to avoid a race-condition). The compiler can provide a report, so users
may act in accordance with the decisions taken.

Additionally, it has been demonstrated that the compiler can determine the
data-sharing attributes of a task provided that all code concurrent with the task
is accessible at compile time [28]. When a variable cannot be automatically de-
termined, the user is warned to manually scope it. Since limitations concern full
access to the code, whole program analysis techniques can resolve the problem.
Furthermore, the Potentially Blocking aspect proposed by the authors of
the Ada extensions could be used to enable the detection of such problems at
compile time, avoiding the necessity of program analysis in some cases.

Listing 1.16. Example of data sharing

1 function Pi (n_steps: in Integer) return Float is

2 x : Float;

3 sum, res: Float := 0.0;

4 step : Float := 1.0/Float(n_steps);

5 begin

6 pragma OMP(task); -- private=>x, firstprivate=>step, shared=>sum

7 begin -- OpenMP Task 1

8 x := 0;

9 for I in 1 .. n_steps/2-1 loop

10 x := (Float(I)+0.5)*step;

11 pragma OMP(atomic);

12 sum := sum + 4.0/(1.0+x*x);

13 end loop;

14 end;

15 pragma OMP(task); -- private=>x, firstprivate=>step, shared=>sum

16 begin -- OpenMP Task 2

17 x := 0;

18 for I in n_steps/2 .. n_steps loop

19 x := (Float(I)+0.5)*step;

20 pragma OMP(atomic);

21 sum := sum + 4.0/(1.0+x*x);

22 end loop;

23 end;

24 pragma OMP(taskwait);

25 pragma OMP(task); -- firstprivate=>step,sum, shared=>res

26 begin -- OpenMP Task 3

27 res := step * sum;

28 end;

29 pragma OMP(taskwait);

30 return res;

31 end Pi;

Listing 1.16 shows a potential OpenMP Ada code computing the number pi
as an example of the application of the correctness techniques implemented in
an OpenMP-compliant compiler (Mercurium [15]). The constructs added by the
user to express parallelism are emphasized, while the parts discovered by the
compiler in order for the code to be correct are underlined. Both synchroniza-
tion (with the taskwait construct) and mutual exclusion (with the atomic
construct) can be decided by the compiler. Also the data-sharing clauses needed
to avoid race-condition (on variable x) and for the code to make sense (variable



sum) are automatically determined. Given the code with none of the underlined
clauses and constructs, the compiler detects:

– For tasks 1 and 2: variable x is in a race condition due to concurrency between
tasks 1 and 2. Additionally, the value of this variable is defined and used (in
that order) within the tasks only, thus the variable can be privatized.

– In all tasks, variable step is a read-only scalar. Thus, it can be firstprivate.
– Variable sum is updated and read among the tasks, so it has to be shared.

However, it is in a race condition, so accesses must be synchronized. On the
one hand, tasks 1 and 2 read-write the variable, thus the compiler adds an
atomic construct. On the other hand, task 3 only reads the variable, so the
compiler adds a taskwait before the task.

– For task 3, variable res must be used before exiting the function. Otherwise,
if the task is deferred until the function returns, the variable will no longer
exist. Thus, a taskwait must be inserted after the task.

5.2 Deadlocks

OpenMP offers two ways to synchronize threads: via directives, such as critical
and barrier, and via runtime routines, such as omp set lock. In both cases,
a deadlock may occur only if a thread that holds a lock tries to obtain the same
lock. This is a consequence of being a model focused in languages which do not
provide higher-level concurrency mechanisms. Ada code will use protected ob-
jects, so work still needs to be performed to integrate both Ada and OpenMP
runtime systems.

5.3 Error handling

In the critical domain it is important to understand and specify behaviour upon
failures. The technique to enable such property is error handling. There are three
main mechanisms for handling errors: exceptions, error codes and call-backs.
Each method has advantages and disadvantages. The first fits perfectly in the
structure of exception-aware languages such as Ada. The second is suitable for
exception-unaware languages such as C. Finally, the third has the advantage of
isolating the code that is to be executed when an exception occurs. Although
only some minor mechanisms have been included in the specifications (i.e. can-
cellation constructs), there are different proposals to improve OpenMP reliability
by adopting error handling mechanisms in OpenMP [14] [37]. The integration of
these with Ada exceptions is also in need for future work.

6 Conclusions and future work

There is an oportunity for extending Ada with fine-grained parallelism. Exten-
sions to the language with such purpose have already been presented and are
still under discussion. Nevertheless, the increasing variety of platforms and their



specific programming models force programmers to master multiple complex
languages. Comparisons among multiple parallel programming models show the
need to provide a common programming model for many-cores. In that regard,
OpenMP is the perfect candidate, for it has succesfully emerged as the de facto
standard for shared-memory parallel programming, and starts to be used for
distributed memory systems. In this paper, we show how the OpenMP tasking
model can successfully be applied to Ada to define fine-grained parallelism in
the form of parallel blocks, parallel loops and parallel reductions. The use of
OpenMP is not a threat regarding safeness, for we have shown that both com-
pilers and runtimes can be used to check correctness and recover from failures.

There is nevertheless work to be done to understand the actual impact of
mixing OpenMP and Ada tasks, because both will be mapped to the underlying
threads of the operating system. Another area for future work is a potential
combination of the OpenMP tasking model and the proposed syntax for Ada
parallel extensions. The underlying parallel models are sufficiently close to enable
this to be considered further.
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