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Abstract—In most of the current commercial Clouds, re-
sources are billed based on a time interval equal to one hour,
as is the case of virtual machine (VM) instances on Amazon
EC2. Such time interval is usually long, and yet the user has
to pay for the whole last hour, even if he/she has only used a
fraction of it, contradicting the pay-as-you-go model of Clouds.

In this paper, we analyse the advantages of adopting alter-
native scheduling policies that exploit idle last time intervals,
in terms of service cost to Cloud users and operating costs
to Cloud providers. Using a real-life astronomy workflow
application, constrained by user-defined Deadline and Budget
quality of service (QoS) parameters, a set of online state-of-
the-art-based scheduling algorithms try different execution and
resource provisioning plans. Our results show that exploitation
of partially idle last time intervals can reduce the cost of service
to the end user, and augments providers competitiveness up to
21.6% through energy efficiency improvement and consequent
lowering of operational costs.

Keywords-Cloud computing; workflow scheduling; service
and operating cost analysis.

I. INTRODUCTION

Workflows are commonly used for modeling a wide range

of applications in distributed systems [1]. Such applications

frequently encompass various domains including science,

engineering, consumer, and business. Typically, a workflow

is described by a graph that consist of a set of nodes (or

vertices) and a set of edges, where nodes represent compu-

tational tasks or data transfers, and edges represent control

and data dependencies [2]. In particular, many of workflow

applications fall in the category of Directed Acyclic Graph

(DAG) [3], where the edges represent the temporal relations

between the tasks.

One of the most challenging problems in distributed

systems is workflow scheduling, which refers to the prob-

lem of spatial and temporal mapping of workflow tasks

onto resources in order to satisfy some or multiple perfor-

mance criterion. Since task scheduling is a well-known NP-

complete problem [4], several heuristic algorithms have been

proposed for the scheduling of workflows onto distributed

systems like Grids and Clouds [5], [6], [7]. These scheduling

algorithms follow some cost model, in order to optimize

specific objectives, such as execution time, economic cost,

and data quality.

Two of the most relevant user concerns regards to cost and

time. In this context, a frequent approach in the process of

executing users’ workflows relates to the strategies for cost-

and deadline-constrained schedules. Such approach has been

rapidly growing and it is supported by generally adopted

utility computing model in distributed systems, in which

users consume services and resources when they need them

and are charged based on the number of billing time intervals

that they have used, even if they have not completely used

the last time interval [8].

In this paper, we explore the opportunity to reuse such

unused time from the last time intervals, by assigning them

to other users so they can execute their workflow tasks.

The objective is to reduce the cost to execute workflows,

while assuring that the deadline-constraint is observed. Such

an approach can translate in the reduction of the cost of

executing workflow tasks from the user’s perspective, and

the ability to improve resource utilization and decrease

of operational costs from the provider’s viewpoint. Thus,

by putting a higher priority on cost efficiency than cost

effectiveness might become more beneficial to both the user

and the provider.

The rest of the paper is organised as follows. Section II

discusses related work. Section III introduces the system

model, the application model and the scheduling objec-

tives. Section IV presents the tested scenario by defining

the simulator, experimental workflows, the algorithms, and

performance metrics. Section V presents the discusses the

obtained results. Conclusions are presented in Section VI.

II. RELATED WORK

There has been relevant research on scheduling multiple

workflows in distributed systems. These scheduling strate-

gies try to find the best workflow to resources mapping, in

order to satisfy users’ budget and deadline specifications.

Alkhanak et al. [5] provided an extensive study about pro-

posed cost-aware workflow scheduling strategies. Based on

extensive literature review, the authors identified cost-aware

workflow scheduling challenges related to robustness, flex-

ibility, and approach design of scheduling approaches. All

the analysed strategies contribute with interesting scheduling

approaches, exploring different characteristics and aiming at
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optimizing specific objectives. However, they do not aim

at exploring unused time intervals, nor were tested in such

scenario.

Arabnejad and Barbosa [6] have proposed an online

multi-workflow deadline- and budget-constrained scheduling

algorithm (MW-DBS), for scheduling concurrent workflow

applications. In this sense, the proposed scheduling algo-

rithm considers both the time and cost as constraints and do

not perform optimization. Authors argue that their multiple

workflow scheduling approach is the first multiple online

workflow scheduling algorithm that simultaneously consid-

ers user’s budget and deadline constraints for concurrent

workflow scheduling in heterogeneous computing systems.

The algorithm works in two steps: first, a ready task from

each workflow is selected and a priority based on individual

deadline is assigned; then, a suitable resource to execute

the current task that satisfies the QoS parameters of the

workflow where the task belongs, is determined at a second

step. Based on simulation with well-known workflow struc-

tures, authors showed that MW-DBS is able to maximize the

number of workflows that can execute bounded by the user

specified deadline and budget. Despite the promising results,

authors assumed that the cost imputed to the workflow

execution is only the effective used time.

Aiming at decreasing the cost of executing high-

performance computing (HPC) applications in cloud en-

vironments, Niu and Tang [7] proposed a Semi-Elastic

Cluster (SEC) computing model to reserve and dynamically

resize a virtual cloud-based cluster. The idea is to aggregate

the workloads from concurrent users and enjoy from deep

discount to heavy users through reserved instances, a policy

that has been done by some cloud resource providers such

as Amazon. Unfortunately, previous studies have shown that

Amazon EC2 instances incur a measurable boot time on the

on-demand option (by several minutes in the worst-case) [9].

Other projects such as Amazon EC2 spot instances (i.e.,

virtual execution environments) [10] explore cost-saving

approaches, by selling the idle time in EC2 data centers.

Despite the low price offered, the instances are not reliable

since tasks are terminated immediately if the current spot

price exceeds the initially offered price. In this case, relia-

bility approaches are needed [9] so work done so far is not

lost. Nowadays, some providers support short time intervals,

such as CloudSigma offering time interval of five minutes

[11], but the advantages of such granularity is unclear and

the provider seems to have abandoned such pricing model

at the time of this publication.

Unlike related works, in this paper we analyse the ad-

vantages to state-of-the-art workflow scheduling algorithms

in exploiting the unused last time intervals, maintaining

the usual pricing model, so the cost of executing tasks

can eventually be decreased, captivating users and making

providers more competitive. The strategy is to enable users

to reuse others users’ idle last time intervals fractions.

III. SYSTEM OVERVIEW

A. Resource Model

We assume a resource model typical in distributed systems

such as Clouds, where VM instances may be provisioned

on-demand and are charged per time unit [8]. Typically, the

price is defined in such a way that the VM instances with the

most powerful processors have the highest cost and the VMs

with less powerful processors have the lowest cost. Current

commercial Clouds follow the pay-as-you-go pricing model,

charging users based on the number of the time intervals

that they have consumed. It is a common practice in Cloud

environments to charge per hour, such as in Amazon EC2,

which usually turns out to be a long period [12]. A VM

instance is terminated at the end of its charging period,

which means that an idle VM remains available during the

whole billing cycle. As a consequence, even if only a small

fraction of the last time interval is utilized, the user is fully

charged. In this regarding, if a task takes s time units to

process in a resource that costs $d per time unit, then the

cost of executing the task in that resource is s× $d.

Usually, providers deploy a limited number of heteroge-

neous VM types, each of which with a specific amount of

CPU and memory (i.e., resource characteristics are constant

during their lifetime). A workflow task executes in a single

VM instance. We also assume that a submitted task has

exclusive access to a VM instance while it is executing and

that there is no preemption. The physical infrastructure is

composed of a set of heterogeneous physical machines (PM),

and each one has a price per time unit. A VM instance is

deployed onto a single PM. A VM can become idle in the

last time intervals if the period necessary to execute the task,

or its deadline, is smaller the billing period. If there are free

resources, there is no delay between the time that a new

VM instance is requested and when it becomes available to

execute the tasks.

B. Application Model

This paper focuses on scientific workflows that can be

modeled as DAGs, a directed graph with no cycles where

the nodes in the graph represent the computational tasks

and the edges represent the temporal relations between the

tasks. A DAG can be modeled by a tuple G =< T,E >,

where T is the set of n tasks of the workflow, such that

T = {t1, t2, ..., tn}. The set of edges E represent the data

dependencies among tasks, where each dependency indicates

that a child task cannot be executed before all its parent

tasks finish successfully and transfer the required child input

data. It is assumed that all workflow data is stored in

a shared cloud storage system, such as Amazon S3, and

that intermediate data transfer times are included in task

runtimes. It is also assumed that data transfer times between

the shared storage and the VMs are equal for different VMs

instances so that task placement decisions do not impact the
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runtime of the tasks. The runtime estimates and the CPU

computational needs for the workflow tasks are known. Due

to heterogeneity of PMs, each task may have a different

execution time on each processor. Only workflows for which

all tasks are finished by the deadline are considered to be

complete.

C. Scheduling Model

The scheduling system model depends on the resource

model, application model, and performance criterion for

scheduling. As represented in Figure 1, this paper considers

the typical scenario where users submit sets of workflow

applications at different instants of time, each of which has

specific individual time and cost constraints. The objective

is to find a schedule map for each workflow application

that meets its user-defined QoS constraints (i.e., the com-

pletion time of the workflow shall not exceed the deadline

constraint, and the total cost must not be higher than the

available budget). The time the application takes to com-

plete, i.e. execution time or makespan, includes the waiting

time, the execution time, and data transfer time of a given

workflow. So that the scheduler can find feasible solutions,

the deadline and budget must be properly negotiated between

the user and the provider in a range of feasibility values.

The scheduler may consider the reutilization of idle partial

time intervals (i.e., idle VM instances), in order to decrease

the workflow execution cost.

IV. EVALUATION SCENARIO

A. Experimental Workflows

The Pegasus project made available a set of realistic work-

flows from diverse scientific applications. These workflows

are available in Directed Acyclic Graph in XML (DAX)

format, under different sizes (i.e., number of tasks). A DAX

file characterizes in detail the structure, data and compu-

tational requirements for a specific workflow. In particular,

we chose the Montage workflow from the Pegasus project,

a general engine for computing mosaics of input images in

Figure 1: Distributed system architecture.

the Flexible Image Transport System (FITS) format. Being a

realistic workflow, the Montage application have been used

in current research [12], [13].

B. Algorithms

The MW-DBS algorithm works in three steps: (i) fill a

pool of ready-to-execute tasks; (ii) task selection; and (iii)

processor selection. In the first step, a priority is assigned

to each task, based on its critical path. From each workflow

application, a single ready task with the highest priority is

selected and added into the pool. To determine which task

should be selected for scheduling among all ready-to-execute

tasks, the second step assigns a priority to each task, which

is inverse to its deadline and proportional to the ratio of the

number of scheduled tasks to the total number of tasks in the

workflow application. The task with the highest priority is

selected for scheduling. The third step selects a processor to

run the task, based on the the combination of the two QoS

factors, time and cost, in order to obtain the best balance

between time and cost minimum values.

Unlike MW-DBS, which assumes that the cost imputed

to the workflow execution is only the effective used time,

four other variants were developed. These four scheduling

alternatives follow a more realistic approach, in the way they

are aware that a charged time interval may not be completely

used if the workflow task finishes executing before the end

of the billing period. The scheduling variants are explained

below.

1) Reuse User idle time Slots MW-DBS (RUS-MW-DBS):

It schedules tasks to user owned idle VM instances, in

order to exploit user owned idle last time interval fractions

that have been charged. In case there are no user owned

idle VM instances available at the scheduling time, a new

VM instance is created to run the task, which remains

available during the Cloud billing cycle. Additionally, the

scheduling algorithm eventually prolongs the life of the

VM instance that will execute the task, by guaranteeing

multiple time intervals on the same PM resources, in order

to accommodate the entire task execution.

2) Reuse Others idle time Slots MW-DBS (ROS-MW-

DBS): It extends the scheduling policy in RUS-MW-DBS,

in the sense it can schedule a task to an idle last time

interval owned by any user. If a first user task is scheduled

to a second user owned VM instance, then the first user is

charged according to the period of time necessary to execute

the task.

3) Unlimited idle time Slots for Free MW-DBS (USF-MW-

DBS): This scheduling algorithm alternative equals to ROS-

MW-DBS, except that idle VM instances are available at no

charge, no matter the user they belong to.

4) Dynamic MW-DBS (DYN-MW-DBS): It applies exact

charging, by creating VM instances as needed, and termi-

nating them at the end of task execution. In this regarding,
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it is assumed that billing periods equal the tasks finishing

times.

C. Simulator

To evaluate the advantages for cost-efficiency schedules in

exploiting unused last time intervals, we used the discrete-

event cloud simulator introduced in [14], which imple-

ments the distributed architecture of Figure 1. Discrete-

event simulation allows us to ensure the repeatability and

reproducibility of large-scale experiments, for a wide range

of application configurations in a reasonable amount of time.

The simulator consists of two main entities: the cloud

manager and the Scheduler. The Cloud manager starts and

terminates clusters of VMs to serve users’ requests. It is

also its duty to manage the execution of individual tasks.

The Scheduler is responsible for the scheduling of tasks and

the provisioning of VMs based on the applied algorithm. The

simulator reads workflow description files in DAX format,

from the Pegasus project [15]. The VMs in the simulator

have a single core and execute tasks sequentially.

D. Experimental Parameters

Aiming at observing the characteristics of the proposed

methodology for the different scheduling algorithms, we

define a value for deadline and budget constraint parame-

ters for each individual workflow application. The deadline

parameter is defined by Eq. 1.

Deadline = mintime + αD × (maxtime −mintime) (1)

where mintime and maxtime correspond to the lowest and

highest execution time, respectively. They are determined

based on the lowest and highest possible makespans for

an infinite number of CPUs, in which is considered the

processing time for the critical path. In this paper, we assume

that the average communication time between tasks and their

critical parents is practically zero.

The budget parameter is defined by Eq. 2.

Budget = mincost + αB × (maxcost −mincost) (2)

where mincost and maxcost represent the absolute highest

and lowest possible costs for executing the application, re-

spectively. These two parameters are calculated by summing

the maximum and the minimum execution costs for each

task, respectively.

To proceed with the simulations, a set of 20 users was

created, each of which had a list of a randomly number

(between 1 and 10) of workflow applications to execute,

totaling 104 workflows. Each workflow structure consisted

of Montage application with 25 tasks, but the tasks execution

times were multiplied by 10 because they are quite small.

The deadline and budget constraints to each workflow were

determined randomly by varying αD ∈ {1, 1.5, 2}, and

Table I: Characterization of the Cloud infrastructure (gran-

ularity of time intervals is 1 hour).

PM Class Quantity GFlops Cost ($) Full Power (Watt)

A 13 4.040 0.055 264

B 13 8.080 0.110 273

C 12 12.12 0.165 289

D 12 16.16 0.220 302

αB ∈ {0.15, 0.5, 1}. The idea is to cover a broad parameter

space, from tight constraints, where only a small number

of workflows can be completed, to more liberal constraints

where almost all of the workflows can be completed. The list

of workflows was submitted to the simulator. Users arrive

to the system at random time instants, ranging between

40% and 120% of the minimum execution time of the

Montage application. Once users arrive to the system, they

start submitting workflows at random time instants that range

from 10%, 30% and 50% of completed tasks (i.e., a new

workflow is inserted by its user when the corresponding

percentage of tasks from its last workflow currently in the

system is completed or the last one was failed).

The underlying physical infrastructure to process the tasks

is described in Table I. Basically, it is composed of 50 PMs,

grouped in 4 classes in which PMs are homogeneous (PMs

are heterogeneous across different classes). The processing

power in terms of GFlops is presented in column ”GFlops”.

Billing is by the hour with partly used hours incurring a full

hour charge. The price for VM instance per billing period is

defined in column ”Cost”1. Relating columns ”GFlops” and

”Cost” together, we observe that VM instances running on

the most powerful PMs are costly, whilst the VM instances

scheduled on less powerful PMs are cheaper. The power

consumed by a PM, working at full CPU capacity, is defined

in column ”Full power”, and is based on real data provided

by the results of the SPECpower benchmark2. We assume

that the power consumed by a PM evolves linearly with

CPU utilization, decreasing to 70% of its maximum power

in idle state [14]. The energy cost (per kWh) was defined

to $0.189, which consists in a typical electricity price. A

set of simulations is conducted by varying the time interval

granularity in {1, 5, 10, 30, 60} minutes.

E. Performance Metrics

In order to analyse the proposed methodology, it is nec-

essary to introduce the metrics that can be used to score the

performance of the different algorithms. In this regarding,

we defined three metrics, as described bellow.

1) Number of Workflows Successfully Executed (EW ): A

workflow is considered successfully executed if all its tasks

are finished within the budget and before the deadline.

1Google Compute Engine. https://cloud.google.com/compute/pricing
2The SPECpower benchmark. http://www.spec.org/power ssj2008/
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2) Total Cost to Users (EC ): Expressed in $, is the sum

of all billing periods for all users. Costs related to reused

partial last time intervals agree with the scheduling algorithm

policies (for example, USF-MW-DBS implies zero monetary

costs on idle VM instances reutilization).

3) Energy Consumption (EE): Represented in KWh, it

expresses the cost to resource providers to execute the

workflows, and contributes to operational costs. The energy

consumption is determined by multiplying the power con-

sumption of the computing infrastructure, in kilowatt, by the

number of hours considered.

V. RESULTS AND DISCUSSION

Figure 2 shows the results for the number of workflows

successfully executed, while varying the billing period in

{1, 5, 10, 30, 60}. As we can observe, all the scheduling

algorithms perform similarly for small billing periods, by

finishing all the submitted workflow applications. However,

as the billing period increases beyond 10 minutes, RUS-

MW-DBS is unable to successfully execute all the submitted

workflows. In fact, we noticed that RUS-MW-DBS is the

algorithm that degrades more as: (i) the billing period

increases; and (ii) the rate of arriving workflows increases.

Both factors contribute to exhaust the available resources.

Contrary to the idea that Cloud providers offer virtually

unlimited amount of resources, the number of PMs is lim-

ited. Since RUS-MW-DBS is unable to use other users’ idle

VMs, long billing periods exacerbate scarcity of resources,

because other users’ VM instances will remain idle for

longer. In turn, ROS-MW-DBS strategy, which implies to

pay the corresponding fraction of time intervals used if they

are owned by a different user, is able to accomplish with all

users’ requests, even for longer billing periods.

Figure 3 presents the cost to end users to use the infras-

tructure to execute their workflows applications. Excepting

DYN-MW-DBS algorithm, the graph shows that users pay

Figure 2: Number of workflow applications and workflow

tasks successfully executed.

Figure 3: Total cost to users.

more as the billing period increases. In fact, a user will

be charged for the entire billing cycle even if it is not

fully utilized, and bigger billing cycles correspond to bigger

prices. What is more, as the billing period increases beyond

10 minutes, ROS-MW-DBS gets less costly in average to end

users than RUS-MW-DBS. Considering the total cost for a

billing cyle of 60 minutes, RUS-MW-DBS is less costly than

ROS-MW-DBS to end users, because the former is unable

to lease time intervals due to scarcity of resources, with

corresponding impact in the rate of successfully completed

workflows (see Figure 2). In the case of DYN-MW-DBS,

the cost remains practically constant despite the billing cycle

variation, because DYN-MW-DBS is charged according to

the tasks’ finish time. This strategy implies significant less

profit to provider. In turn, USF-MW-DBS presents the best

results comparing to ROS-MW-DBS and RUS-MW-DBS,

since it schedules tasks to idle VM instances at zero cost.

Figure 4 shows the energy consumption (KWh) and

the electricity bill ($) when executing the users’ workflow

applications. These two factors heavily contribute to increase

the operational costs to the provider and carbon footprints

to the environment. The graph shows that the best results

are obtained for DYN-MW-DBS. Both USF-MW-DBS and

ROS-MW-DBS obtain similar results, reaching a maximum

discrepancy of 1.24% in energy consumption for the par-

ticular case of a billing cycle of 30 minutes. Comparing

to RUS-MW-DBS, ROS-MW-DBS consumes 21.60%, and

13.87% less energy, for billing cycles of 30 and 60 minutes,

respectively. ROS-MW-DBS cannot compete with DYN-

MW-DBS, nor with USF-MW-DBS. However, while the

former implies creating and terminating VMs on-the-fly,

and the overhead can be a concern due to boot time and

consequent delay in the execution of tasks, the last decreases

the providers profit and stimulates inequity among users. As

a result, ROS-MW-DBS benefits both users and providers,

in the sense it is able to accomplish with users requests with

reasonably cost, at lower expenses for Cloud providers.
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Figure 4: Energy consumption and corresponding electricity

bill.

VI. CONCLUSIONS

In this paper we proposed to reuse the idle fractions of last

time intervals in current Cloud providers. This is a existing

problem in nowadays providers due to the common hourly

charging granularity. Such billing period turns out to be long

for many applications, causing leased resources to go idle.

We have conducted a set of experiments using the Mon-

tage workflow, a realistic scientific application, and a set of

scheduling algorithms that apply different policies regarding

the use of idle VM instances. The experiments showed that

providers can become 21.60% more competitive in terms of

operational costs, if they assume a policy of reusing already

charged fractions of last time intervals. Such fractions can be

accessed by a user that is different from its owner, which in

turn pays according to the fraction of time effectively used.

This paper consists in a preliminary work on discovering

the advantages from reusing fractions of charged last time

intervals. As future work, we intend to continue seeking

for viable policy and pricing model alternatives, properly

supported by efficient scheduling algorithms, that are able

to decrease the final resource leasing price to end users, and

of improving the competitiveness of providers.
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