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Resumo 

Os grandes avanços tecnológicos têm permitido o desenvolvimento de novos equipamentos 

móveis com elevadas capacidades e que permitem uma utilização não intrusiva e ubíqua com 

os utilizadores. Os dispositivos wearable, têm sido apresentados por diversos fabricantes e 

tornam-se cada vez mais omnipresentes. 

A utilização de sensores permite a monitorização de dados externos e o desenvolvimento de 

aplicações inteligentes que têm como objetivo facilitar a vida dos utilizadores ou fornecer 

apoio adicional em áreas tão diversas como a saúde, desporto, ambientes de vida assistida, 

etc. 

No âmbito desta dissertação, desenvolveu-se uma aplicação a ser utilizada num dispositivo 

wearable e que pode ser vista como um personal trainer que valida um conjunto de exercícios 

propostos numa sessão de desporto. 

A solução desenvolvida, usa os sensores inerciais de um smartwatch Android Wear, para 

com base num conjunto de algoritmos de reconhecimento de padrões, detetar a taxa de 

sucesso na execução de um treino planeado. O facto de todo o processamento ser realizado 

no próprio dispositivo, é um fator diferenciador para outras soluções existentes. 

Palavras-Chave 

Android, Smartwatch, Wearable, Reconhecimento de Padrões, Sensores, Exercício Físico.  
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Abstract 

Technological advances have allowed the development of new mobile devices with high 

capacity and allow non-intrusive and ubiquitous use. Wearable devices have been introduced 

in the market by several manufacturers and are becoming increasingly ubiquitous. 

Sensors allows monitoring external data and developing intelligent applications that aim to 

make life easier for users and may provide additional support in areas as diverse as health, 

sports, ambient assisted living, etc. 

As part of this work, an application to be used in a wearable device and that can be seen as 

a personal trainer which validates a set of exercises proposed in a sport session, was 

developed. 

The developed solution uses inertial sensors of an Android Wear smartwatch, and based on 

a set of pattern recognition algorithms, detects the rate of success in the execution of a 

planned workout. The fact that all processing can be performed on the device itself, is a 

differentiator factor to other existing solutions. 

Keywords 

Android, Smartwatch, Wearable, Pattern Recognition, Sensors, Physical Exercise. 
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1. INTRODUCTION 

The work presented in this document was developed as the Thesis for the Master Course in 

Electrical and Computer Engineering. It was developed as an internship in Fraunhofer 

Portugal and the main objective was to create an application for an Android wearable device 

able to recognized some pre-defined gestures. 

The proposal was driven by the fact that, in the last few years, smartphones and the entire 

mobile platforms have suffered major performance improvements, and technology 

diversification made them reachable to everyone. The development of applications that make 

use of the abilities of these devices has been growing and used in the very different tasks, 

boosted by the integration of sensors that enable making the solutions smarter and more 

reactive. 

The applications of this sensorial ability, integrated in recent wearable devices, made gesture 

recognition possible in an almost natural way maintaining for example a smartwatch tight to 

his wrist. The sensors used in this work belong to the inertial group and are used to obtain 

acceleration, rotation and magnetic field values. 
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1.1.  MOTIVATION 

This project was setup from the objective of doing a deeper investigation in an innovative 

field like the wearable technology is, and in that way, getting knowledge in the field that, 

surely, will be one of the most explored in the future.  

Due to the recent nature of this technology, the use of wearable devices is still emerging in 

the market, with the creation of the smartwatches, smart glasses and smart bands. The 

integration of this technology within the surrounding world is being also supported by the 

concept of the Internet of Things that is expected to contribute to a ubiquitous integration 

and interaction of people and things. 

1.2. OBJECTIVES 

The main goal of this dissertation is the research and development of a solution capable of 

understanding and recognizing sensor data provided from a smartwatch and, using that same 

data, to classify gestures using algorithms with pattern recognition abilities. The final 

solution of such an application could be a device used for observing the quality of some 

sequence of executed exercises. Different application areas can be identified, including 

sports and healthcare. 

Due to the inherent complexity of this objective, smaller sequential tasks were defined: 

 Analyze the state of the art in Pattern Recognition Algorithms; 

 Analyze the state of the art in the supporting technology:  Inertial Sensors and Sensor 

Fusion approaches, Android OS in wearable platforms;  

 Development of a gesture recognizer system under an Android platform; 

 Development of real-time functionalities and other optimizations; 

1.3. REPORT ORGANIZATION 

Chapter 1 presents an introduction to the theme of this dissertation, including a 

contextualization, as well as its main objectives and goals. The next chapter provides and 
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overview on similar products and related technology, listing existing devices in the market, 

as well as presenting aspects related to sensors usually available in mobile devices. 

Chapter 3 presents the Android Wear operating system used in this thesis project. Given that 

it is mainly based on Android, an overall description is first introduced and specific features 

are then identified. 

On Chapter 4, some approaches used for pattern recognition are discussed. Given the 

complexity of this area, we selected two well-known and accepted solutions that were 

analyzed in more detail during the internship. 

 Chapter 5 describes all the decisions and steps in the project implementation. Validation 

approach and results are presented in Chapter 6. 

The final chapter presents the main conclusions and put in perspective future developments 

for a more stable and intuitive solution. 
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2. SIMILAR PRODUCTS AND 

RELATED TECHNOLOGIES 

Technologic development in the area of mobile and wearable devices contributed to the 

growing interest of the scientific community in the development of gesture recognition 

solutions. 

Applications that can make use of solutions of this type are numerous and can contribute to 

one of the most important areas of society - healthcare - since applications that make use of 

gesture recognition can be used to control physical exercising, physical therapy, activity 

detection, among others.  

All the theoretical aspects investigated throughout this thesis, that were considered relevant 

to the proper implementation of the project, will be referred in this chapter.  

In a first stage, related products and ongoing researches are discussed. This is followed by a 

review of the inertial sensors used for implementing the thesis goals.  
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2.1. RELATED WORK 

In order to become fully aware of the existing solutions in the market that could be 

competitors to the one to develop, a survey of the main products that claim, with different 

approaches, to respond to the initial problem was done. This investigation allowed not only 

identifying the degree of maturity of the solutions, but also understanding what are the best 

approaches that could be followed in the project development and which improvements to 

existing solutions could be proposed.  

The organization of this subchapter contemplates therefore a description of the products that 

exist on the same platform used for this project (Android Wear), as well as other solutions 

that have been created on different platforms, but aspire similar results. Finally, some 

proposals developed in a research context but not yet in the market, are presented. 

2.1.1. RELATED PRODUCTS USING ANDROID WEAR 

Until the writing of this document, only two software solutions, capable of producing similar 

results to the project objective, on Android Wear platform, were known. These solutions will 

be thoroughly described below.  

TrackMyFitness company came up with the application "Exercise Tracker: Wear Fitness", a 

solution that include most of the features that are part of the final objective of this 

dissertation. Created for smartwatches, tries to follow the premise already mentioned by 

Google to develop standalone applications for this type of wearable devices, while providing 

an application for smartphone that serves primarily for the data records from the training 

conducted with the smartwatch [1]. Of its key features, the ones that stand out are:  

 Exercise auto-detection;  

 Counting repetitions;  

 Logging Practice.  

It features an intuitive interface with no need for user interaction to start your workout, as 

can be seen in  Figure 1.  
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Figure 1: Application “Exercise Tracker” [1] 

Information displayed on the smartwatch indicates the number of repetitions of the exercise 

in real-time and the user heart rate [1]. 

Another solution is the application "DoFit", created by the company with the same name, 

which was launched in beta and has some extra features. Also created to run on 

smartwatches, it uses an application for smartphone that collects data from conducted 

training exercises and saves performed exercises [2]. 

The main features of this solution are: 

 Exercise detection in real-time; 

 Count of repetitions; 

 Exercise guided through animations; 

 Activity Recognition (run, walk, stop). 

An illustrative interface used by the solution is presented in Figure 2: 

. 
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Figure 2: Application “DoFit” [2] 

From Figure 2  it is easy to see how the interface of this solution behaves, presenting the 

user with a variety of information related to the performed exercise, including the name 

given to the exercise and an animation that shows in detail how this should be done [2]. 

Even though this is a very complete solution, it has an important drawback related to the fact 

that it needs the smartphone to store exercises and information about the exercise quality. 

This makes this solution not fully independent from the use of the smartphone, meaning that 

the comfort in its utilization can be compromised, although its functioning is as intended for 

such a problem.  
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2.1.2. WEARABLE DEVICES IN THE MARKET  

The products that will be described have not been developed to run on the desired platform, 

but have similar objectives to the desired solutions. For this reason, it was considered 

relevant to analyze its features.  

The Moov is a small device created by the company with the same name and which, as stated, 

has the features of a Personal Trainer and a Sports Tracker [3]. Regarded as a unique solution 

in the fitness area, this device not only detects activity, but presents also some interesting 

features such as:  

 3D Motion Capture; 

 Resistence to Dust and Water; 

 Count of Repetitions. 

Combined with this device, the company has also created an application for smartphone that 

keeps track of data from the wearable and, from there, executes commands and makes 

decisions about the activity that the user is performing at the time [3]. 

Equipped with several sensors, this device has been used in sports such as swimming, 

running, boxing, cycling, among others. Figure 3 represents a purely illustrative image of 

this device.  

 

 

 

 

 

 

 

 

Figure 3: Wearable “Moov” [4] 
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Associated with this device, a smartphone application was created that keeps track of all the 

results, being the wearable used to treat sensory data while the application to transmit such 

data to the user [3]. 

Jawbone is another company offering multiple wearable devices for tracking activities. Its 

top-of-range model - Jawbone UP3 - is the one with a higher number of features available 

[5], including:  

 Calculation of calories burned; 

 Detection and Tracking of sleep; 

 Heart Rate Monitoring. 

The approach used by this company, that consist of the creation of an application for 

smartphone that provides information and data obtained in wearable so that the user may 

keep track of his activity, is similar to the creator of Moov. This wearable consists of a 3-

axis accelerometer, heart rate sensor and Bluetooth 4.0 Low Energy (BLE)[5].  

The following figure illustrates the model "UP3" created by Jawbone company:  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Wearable “Jawbone UP3” [5] 
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Using a similar approach to that used by the Moov, this solution makes use of Bluetooth for 

the transmission of data between the wearable and a mobile application, with no option to 

provide the data directly on the device.  

Microsoft also entered the field of wearables with the "Microsoft Band" device, a solution 

that has an extensive list of features, some of which are:  

 Detection and Tracking of sleep; 

 Activity Recognition; 

 Burned Calories Counter; 

 Measuring Heart Rate; 

 Guided Training; 

 Tracking weights. 

With these and other features, and comparing to other solutions, the Microsoft Band turns 

out to be one of the most complete in this area, and is compatible with most of the existing 

platforms (Android, IOS, Windows Phone), integrating also social networks and other 

intelligent notifications [6]. 

Consisting of a led display and various sensors (accelerometer, gyroscope, GPS, barometer, 

heart rate, thermometer, etc.) this solution provides a large number of parameters from the 

performed activity [6]. 

2.1.3. ONGOING RESEARCHES 

The topic of this dissertation, specifically the detection of gestures and pattern recognition, 

is also an active area of research within the academic world. We will focus on two scientific 

papers that illustrate some of this work.  

A work by M.Kalyan Chakravarthi, Rohit Kumar Tiwari and Shaunak Handa from VIT 

University in India [7] uses neural networks for gesture recognition using an accelerometer. 

With the title "Accelerometer Based Static Gesture Recognition and Mobile Monitoring 
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System Using Neural Networks" this research aimed to create a low-cost wearable device 

that could make the locomotion control in a robot using static gestures.  

Under the proposed method, the accelerometer output is used to train a neural network using 

an algorithm called "Learning Vector Quantization" [8]. This neural network is used to 

identify three possible movements of a robot:  moving forward, stopped and movement to 

the left. After a training phase, some random data is received from the accelerometer and the 

recognized gesture is transmitted via Bluetooth to the robot motors, which performs the 

intended movement through the system. A block diagram depicting the system is illustrated 

in Figure 5.   

 

Figure 5: System Block Diagram [7] 

A classification algorithm such as "Learning Vector Quantization" combined with the 

features of a neural network is capable of performing a non-linear rating effectively, being 

that the Learning Vector Quantization algorithm is based on the Euclidean distance 

calculation methods and classifiers as "nearest-neighbor".  

To validate the proposed approach, 40 samples for each gesture were collected and testing 

enabled concluding, as expected, that the precision was directly related to the size of trained 

data, i.e., the longer the training dataset, the greater the success rate of their classification. 

Experiments for the given dataset resulted in a gesture recognition rate of 93% [7]. 

Another work is presented by Guillaume Plouffe and Ana Maria Cretu. With the title "Static 

and Dynamic Hand Gesture Recognition in Depth Data Using Dynamic Time Warping" 

[10], this research uses computer vision methods to get pictures from gestures made with the 

hand, through a Kinect camera, which are interpreted thanks to a pattern recognition 

algorithm called "Dynamic Time Warping".  
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According to the presented solution, image data are collected from the Kinect camera and 

obtained information about the depth of all pixels in the image. With the pixels depth, and 

through an algorithm that seeks and identifies all the points that are below a specific depth 

range, is obtained the hand contour of the person, as shown in Figure 6.  

 

Figure 6: Method for Data Depth Recognition [10] 

Figure 6 illustrates the approach used to detect objects, in this case the hands. Only if the 

hands are inside the image inspection interval, the system takes into account the resulting 

image for the subsequent calculations [10].  

Following this, and after getting the hand contour image, the identification of the palm center 

and of the points of the fingers is done. For this is used the k-curvature algorithm [9], which 

is essentially based on the changes of angle slope of the tangent lines to the hand contour. 

These values are then stored as reference values that are used by the Dynamic Time Warping 

algorithm for gesture recognition.  

Figure 7 illustrates a more detailed description of each phase of this process. 
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Figure 7: Operation of the System created Algorithm [10] 

In Figure 7 is observed that the algorithm used for gesture recognition has two functions:  

 Registration of the observed gesture information, if it is chosen to use as reference;  

 Recognizing the observed gesture, comparing with the existing reference gestures. 

Conducted experiments in order to distinguish from 16 gestures showed better and more 

consistent results when compared with other solutions.  A precision between 90% and 100% 

was obtained [10]. 

2.2. INERTIAL SENSORS 

Inertial sensor is the term used to define every device that can measure parameters such as 

acceleration and angular velocity along different axes, being used in applications that involve 

analyzing movements [12] [13]. Called "Inertial Measurement Unit" this electronic device 

generally consists of accelerometers, gyroscopes and magnetometers that through the data 

collected is able to study the movement in the plan and space [11]. 

In this dissertation, the use of sensors focused only in applications that involve obtaining 

movement and rotation data, because the goal is to detect gestures from a smartwatch. Given 

this, research focused on inertial sensors, leaving all the remaining sensors for another work. 
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The next sections provide some theoretical foundation for the three main inertial sensors: 

Accelerometer, Gyroscope and Magnetometer.  

2.2.1. ACCELEROMETER 

The Accelerometer is a device capable of measuring accelerations along several reference 

axis and its output is represented in the International System of Units, or SI, by m/s2 or g-

force. This sensor is part of one microelectromechanical systems circuit (MEMS) that 

measures acceleration forces caused by gravity movement [18]. The advantage of the 

integration of such circuits in most of today's smart devices relates to the fact that the cost 

and size associated to its construction has been drastically reduced without compromising 

the quality of the equipment [13][14]. 

Most existing accelerometers contain three axes (X, Y, Z) which are used to perform 

measurements of accelerations and determine the correct orientation of the device. This 

information can be used to obtain the speed and the device's position. The resulting data 

from a sensor of this type can be used to sort directions and movements, and taking into 

account the objective of this work, this is a very important device for obtaining data relating 

to gestures made with the equipment [47][45]. Moreover, as it is a sensor already integrated 

in a vast majority of devices in the market, such as smartphones and wearables, it is an 

excellent candidate to help implementing the desired functions. 

Research on this type of sensors started in the mid-50s, with the creation of a device capable 

of measuring velocities and accelerations. The measurement of human movements linked to 

acceleration forces has been studied in more detail in 1970 due to technological advances at 

the time. With the evolution and improvement of nanotechnology and the rise of micro-

electromechanical systems (systems that integrate mechanical, sensory and electronic 

elements in a very small chip), or simply MEMS, several Accelerometer features received a 

positive impact, such as their performance and the related energy consumption linked to its 

use [48]. 

In a simple way it may be noted that one of the basic operation principles of an accelerometer 

is based on the use of a test weight or seismic mass, clinging to a mechanical suspension 

system which is relative to a specific reference. The felt inertial force due to acceleration or 

gravity itself causes the test mass deviate according to Newton's second law, and this 
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deviation is subsequently measured electrically, resulting in an acceleration value in relation 

to a reference, a process illustrated in Figure 8 [45][46]. 

 

From a more technical point of view, accelerometers internally contain small fixed 

capacitive plates and other small springs attached to it that moves inwardly as acceleration 

forces acting on the sensor. The movement of these plates in relation to themselves generates 

a difference capacity, which by calculation is used to determine the acceleration experienced 

in the device as shown in Figure 9.  

 

  

 

 

 

 

 

 

 

 

Other type of accelerometers based on different principles exist. Piezoelectric 

accelerometers, which depend on small crystals to record electrical changes, as soon as they 

are placed under acceleration effects, are an example.  

Figure 9: Accelerometer operation mode [20]  

Figure 8: Representation of the Basic Principles of an accelerometer [19] 
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2.2.2. GYROSCOPE 

Unlike the accelerometer that obtains measurements relative to an external reference, the 

gyroscope performs measurements of its own rotation based on physical principles such as 

the angular movement. This sensor is also integrated in MEMS systems and therefore is 

widely used in intelligent devices [40][41]. 

A gyroscope in reality consists of a disc mounted on a frame such that it can be free to rotate 

rapidly under a shaft that itself can change its direction. If there is any external force applied 

to change the direction of rotation, a reaction force is established and applied to the disc in 

the opposite direction, being this the process responsible for calculating the device's 

orientation. From this calculation result, usually three values [43][42]: 

 The device rotation with respect to the Z axis; 

 The device rotation with respect to the Y axis; 

 The device rotation with respect to the X axis. 

From the above values, various information can be obtained. The most common is the 

conversion of these values in angles, called Euler angles, which enable a more accurate and 

reliable orientation of the device in question.  

In a simplistic way, it can be said that a mechanical gyro is constituted by a rotating disk 

mounted in a frame, that are inside two metal rings perpendicular to each other, as shown in 

Figure 10 [41]. 
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From the above figure, it is possible to see which are the degrees of freedom of the disk’s 

rotation, since it will rotate indefinitely and independently of the alignment of metallic rings 

to which it is hooked.  

Although it has a relatively simple mode of operation, the implementation of gyroscopic 

electronic devices is very complex and involves methods of great precision. Mobile devices 

using this type of sensors usually have a higher power consumption and this might be an 

important limitation upon its use in applications [43]. 

Figure 11 presents an operation diagram of a MEMS gyroscope, identical to those used in 

most mobile devices.  

 

 

Figure 11: MEMS Gyroscope Operation [22] 

 

Figure 10: Constitution of a Mechanical Gyroscope [21] 
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The figure above describes the configuration used by most MEMS gyros, called tuning fork 

configuration. This type of configuration consists of two masses that are moving and 

constantly oscillate in opposite directions. If an angular velocity is applied to the system, the 

Coriolis force on each mass also acts in opposite directions, resulting in a capacity 

difference. The value that represents this capacity difference is then converted to voltage 

values, and the same value converted into units relating to the amount of rotation felt on the 

system in a given axis.  

The orientation provided from this type of movement is not affected by the inclination of the 

machine where the disk is mounted, making this sensor a solution to be used in various 

applications to provide stabilization capabilities or even to maintain reference directions in 

navigation systems and autopilot solutions. Currently, most video games that run on 

smartphone present Gyroscope features to its control, and with the advent of wearable 

devices with virtual reality, the use of this type of sensor is more important than ever, since 

he is responsible for detecting orientation of the player's view, a feature where accelerometer 

features are not enough [47][45]. 

Within this dissertation, the use of a sensor such as a gyroscope becomes important due to 

the fact that a human gesture shall be described not only as a change in position, but also as 

a set of orientations that change over time and that are required for correct and accurate 

results.  

2.2.3. MAGNETOMETER 

Besides the collected movement data, through the accelerometer, and the rotation via 

gyroscope, another important sensor for monitoring inertial data and human movements, as 

is required in this dissertation, is the magnetometer.  

A magnetometer is actually a compass that is attracted to the Earth's electromagnetic field. 

In electronic devices, magnets or magnetized needles are however not used, due to the 

possible damage of the equipment [45][47]. 

The great majority of magnetometers is based on phenomena such as the Hall effect, working 

with magneto-inductive materials, capable of measuring differences in terrestrial 

electromagnetic fields. This process may however be disturbed if the sensor is in a short 

distance from other electronic devices or even another type of ferromagnetic material.  
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For his functioning, a MEMS magnetometer reacts electrically when a magnetic field 

perpendicular to the semiconductor material that constitutes the sensor is applied. When a 

perpendicular electromagnetic field is applied to the semiconductor material of the sensor, 

there will be a distortion in the current flow that runs through the component. This current 

distortion will generate that the density of the electrons present be uneven, and this value 

will be reflected in a difference in potential to the semiconductor terminals, being this 

potential difference known by Hall effect voltage, an illustrated phenomenon in the 

following Figure 12 [45]. 

 

 

 

 

 

Figure 12: MEMS Magnetometer Operation 

Through the above Figure 12 it is possible to observe that if an electromagnetic field is 

applied parallel to the conductor, there will not be current distortion, whereas if the magnetic 

field is perpendicular, the effect will no longer be the same. If the resulting current of the 

force exerted by the electromagnetic field is constant, the Hall voltage is directly 

proportional to the strength of that field. This Hall voltage results in the values of a 

magnetometer of this type, functioning as an electronic compass.  

The use of sensors for detecting electromagnetic fields is rapidly growing, with typical 

applications of detection of metals and electronic compasses. Other uses of this type of 

device include one of the most innovative areas in the moment: the indoor positioning [44]. 

Researchers at the University of Oulu, in Finland, have shown that it is possible to obtain 

the correct position of objects within buildings through geomagnetic technology obtained 

from the Earth's electromagnetic field. Named IndoorAtlas, this solution obtains sensor data 

from a smartphone or tablet, and through changes in the electromagnetic field can create a 

kind of map of the surrounding area, and everything without the need for extra equipment 

for this purpose [23]. 
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2.2.4. AREAS OF APPLICATION OF SENSORS 

As previously mentioned, the use of inertial sensors is increasingly being adopted for the 

creation of intelligent applications capable of monitoring people and surroundings with less 

user interaction. Besides the case of indoor positioning, there are other important areas of 

applications that make use of inertial sensors, such as:  

 Activity Recognition; 

 Fall Detection; 

 Gesture Detection; 

2.2.5. SENSOR FUSION 

The Sensor Fusion is a combinatorial process of sensory data from different devices whose 

main purpose is that the resulting data has a more complete and accurate information, a factor 

that is not possible when these sensors are used individually [49]. 

This process permits to overcome certain limitations of some sensors through correlations 

between each other. By fusing data from two different sensors, the error that sensor 1 

displays can be fixed with some information from sensor 2 [49]. 

For the purpose of this thesis, the use of sensor fusion is relevant to the extent that it is 

necessary to obtain the rotation that the smartwatch makes.  

A possible example of a sensor fusion process is the case of obtaining the orientation of the 

device through the inertial sensors. Using the accelerometer, magnetometer and gyroscope 

it is possible to get the relative angles of the device’s orientation, although the accelerometer 

and the magnetometer suffer from noise in their readings [24]. 

Through sensor fusion it is possible to obtain a result derived from all the data collected from 

these three sensors and to achieve an output signal with little noise and without drift in 

readings. In a simple way, individual data can be summarized as:  

 Accelerometer data correspond to the data related to gravity, felt in relation to the 

Earth’s center;  
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 The Magnetometer data function as a kind of compass;  

 The Gyroscope data result in angular rotation speeds for the three axes. 

In an ideal scenario, the data from the accelerometer and magnetometer are sufficient to 

calculate the device's orientation. However, due to the noise problem experienced in these 

two sensors, the results turn out not to be as accurate as it would be expected. Gyroscope 

data, with a fast response time than the magnetometer, can be the solution to mitigate the 

global problem. One possible implementation of a sensor fusion process for obtaining the 

device rotation values, is illustrated in Figure 13. This method is described in the research of 

Paul Lawitzki [24]. 

 

Figure 13: Sensor Fusion Diagram [24] 

From the analysis of the figure, it is possible to observe the existence of filters, which 

together with the fusion of values, help alleviating some errors in the obtained readings. A 

low-pass filter can be applied to the Accelerometer and Magnetometer, used to support 

sensory information over long periods of time, while to the gyroscope data, a high-pass filter 

is applied to perform calculations on small time intervals. 

Figure 14 illustrates the advantages of using this process for data fusion. The filtering process 

on the accelerometer and magnetometer decreases the noise problem and the filtering on the 

gyroscope values helps solving the drift problem. The final combination of these two outputs 

results in a value without these initial problems. 
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Figure 14: Graphical Results from a Typical Sensor Fusion Process [24] 

The main drawback of this process is that it entails high processing to provide the results. 

This is even more relevant in the scenario of this thesis as the hardware platform in use, a 

smartwatch, has lower resources than a smartphone. 

In order to deal with this high demand of sensor fusion processes, Android developed the 

so-called "Software Sensor". Software Sensors are high-level implementations that make use 

of the values read by one or more sensors simultaneously to provide significant results and 

which would not be possible to obtain in a direct way from these same sensors [50]. Thus, 

the sensor fusion processes described above become transparent to developers, and in this 

area, the Android platform has several sensors that implement this type of processes, which 

we can highlight:  

 Rotation Vector 

 Gravity Sensor 

 Linear Acceleration Sensor 

The Rotation Vector is the more relevant in the context of this thesis. According to the 

documentation provided by Android, the Rotation Vector Sensor represents a device 

orientation as a combination of an angle θ, in which it has exercised some sort of rotation, 

and an axis (x, y or z), where this rotation has been made [50]. 

The results from this implementation are expressed as follows:  
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 x*sin(θ/2) 

 y*sin(θ/2) 

 z*sin(θ/2) 

Where sin(θ/2) represents the magnitude of rotation experienced by the device, and x,y and 

z the direction of the sensor for each axis of rotation, being these three axes defined in the 

same way as for the accelerometer. The reference coordinates system is defined as a direct 

orthonormal basis, as it can be seen in Figure 15.  

 

Figure 15: Rotation Vector Sensor Coordinate System [25] 

The coordinate system shown in Figure 15 is described by the following characteristics [25]: 

 X is defined as the vector product Y x Z. It is tangential to the ground at the device's 

current location and points approximately East. 

 Y is tangential to the ground at the device's current location and points toward the 

geomagnetic North Pole. 

 Z points toward the sky and is perpendicular to the ground plane. 

That said, and in a way to consolidate all the theoretical reasoning for this sub-chapter, the 

obtained results after the sensor fusion process, for this thesis, are the Euler Angles that 

represent the rotation of the device on axis x, y and z, as shown in Figure 16.  
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Figure 16: Euler Angles obtained from Sensor Fusion [65] 

The obtained data of such a process is illustrated in Figure 16 and can be defined as:  

 Yaw: Rotation on the vertical axis, Z; 

 Pitch: Rotation under the lateral axis, Y; 

 Roll: Rotation under the longitudinal axis, Z; 

These values, along with other data, are the reference and the "core" responsible for 

collecting sensory information concerning the exercise performed by the user, and are 

therefore one of the most important factors in the solution set.  

2.2.6. SENSOR SAMPLING RATE 

In any product or solution in that its operation is dependent on the use of sensors, one of the 

important factors to take into account is the sampling frequency or sampling rate of the data 

intended to be read.  

A high data sampling rate makes it possible to obtain a greater number of values for a period 

of time, which in some cases makes the interaction of the solution more precise, although 

choosing this factor must be taken in the account the operation and usability of the 

application.  

Regarding the Android platform, the data sampling rate can be set by the application 

developer but have, however, to correspond to one of the four pre-defined sampling rates 

[50], which are:  
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 SENSOR_DELAY_NORMAL 

Sampling Rate suitable for screen orientation changes. 

Depending on each device, typically is around 200 microseconds.  

 SENSOR_DELAY_UI 

Sampling Rate suitable for user interfaces.  

Depending on each device, typically 60 microseconds.  

 SENSOR_DELAY_GAME 

Adequate sampling rate for video games.  

Depending on each device, typically 20 microseconds.  

 SENSOR_DELAY_FASTEST 

Faster sampling rate that the device can perform  

In the ideal case, the delay between each sample should be near zero, or the fastest 

possible.  

Through the use of these sampling rates, the Android platform has an idea of the minimum 

delay which has to wait between each sensor reading, although it can be concluded that it 

will not be a perfect accuracy between the sensor read time.  

In addition to these sample rates, was introduced from the Android version 3.0 (API 11) a 

specification that allows developers refer to this delay reading between samples as an 

absolute value, in microseconds. Although in reality the system associates this absolute value 

to some pre-defined rates by it fees, and this value is only a suggestion for Android to process 

to the desired cadence [50].  

Using an appropriate sampling rate established for the application, associated with the proper 

use of the sensor, makes it possible to decrease the primary problem of using these 

components in mobile devices: quick battery drain. Being this a continuous and repetitive 

process of the smartphone, to perform constant hardware readings, the autonomy of the 
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overall device is affected and, therefore, a poor management of the system resources makes 

the operation of the created solution itself at risk.  

In the next chapter are gathered all the important information that involve the platform used 

in the thesis: Android Wear. Starting by an introduction to the technology and architecture, 

it is explained some important features and it ends with a brief explanation of the Integrated 

Development Environment (IDE), created for the Android development. 
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3. ANDROID WEAR 

OPERATIVE SYSTEM 

Android Wear is a version of the Android Operating system designed for wearable devices, 

with the objective of making many features from a smartphone to be made available in 

smaller devices, like smartwatches. 

The choice of this operating system for the development of the work proposed for this thesis 

was driven by the fact that it is an open-source solution, what contrasts with alternatives like 

watchOS [61], of Apple, which although equally powerful, does not provide the freedom of 

customization that the Google system does. Besides these two alternatives, there are other 

operating systems used in wearables [58][59][60] that can be highlighted: 

 Tizen OS 

 Pebble OS 

 Firefox OS for wearables 
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Another important reason for having chosen the Android Wear is the fact that it has been 

adopted by many smartwatches brands and manufactures, as the operative system that runs 

on their devices. 

In this chapter we provide a brief background on this operating system, with a description of 

its architecture and operation model, its main features, and some integrated development 

environments for the development of applications for this platform. 

3.1. OVERVIEW 

As previously mentioned, the Android Wear is an operating system created by Google, that 

runs on wearables, being mostly used in smartwatches. Using Bluetooth technology, this 

system uses a pairing mechanism with the smartphone, thereby receiving notifications and 

integrating different phone features on the smartwatch. An interesting curiosity is related to 

the fact that the smartphone operating system does not necessarily needs to be Android, 

because Android Wear provides compatibility with systems like Apple's iOS [29]. 

Announced on March 18, 2014, this operating system appeared as an answer to the existing 

technological needs for a more comfortable solution, but at the same time powerful, that 

could be used in smaller devices, such as watches. After the announcement of this system, 

several companies such as Motorola, Samsung and LG were presented as partners, and, just 

two months later, the first two smartwatches of the market were presented, with LG getting 

ahead of the competition, being the first company to market its device, dubbed "LG G 

Watch". Other products from different brands, of which we can highlight the Motorola Moto 

360, were also presented. This device has an innovatively screen layout, adopting a circular 

screen, more like the conventional watches. Alongside these products, in December of the 

same year, the operating system itself suffers updates in a way to be consistent with the 

Google's policies regarding the Android 5.0 software for smartphones, and with this update 

a new range of devices from several technology companies were made available [54][29]. 
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Figure 17: Android Wear Operative System (Moto 360 smartwatch) [29] 

In order to provide a more practical and fast information to the user, this operating system 

had, until recently, an approach to create some kind of “appendix” of the smartphone, 

although the last conference from Google in May 18, 2016, has revealed that the way forward 

for this platform would be to use its full features with standalone applications, that is, that 

all the major smartphone features are included in the smartwatch itself, making the 

possibilities for the use of smartwatches superior than they were until now [54]. 

The list of smartwatches that use this operating system is already considerable, and some 

brands have chosen to develop the same device, but with different models for various 

activities [29]. Of all existing smartwatches, the following can be highlighted: 

 LG G Watch e LG Watch Urbane 

 Motorola Moto 360 

 Asus ZenWatch e Asus ZenWatch 2 

 Samsung Gear Live 

 Sony SmartWatch 3 

 Huawei Watch 
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 Fossil Q (Founder, Marshal e Wander) 

It is possible to highlight from this list an interesting detail which is the fact that not only the 

leading technology companies are entering in the wearables market, but also the more 

traditional watch companies have presented their smart devices, as is the case of Fossil and 

Tag Heuer, showing that this may be a good path to follow from this technology. 

Although the number of versions of this OS is not as significant as the ones provided for the 

standard Android OS, there are already some diversity as presented in Table 1. 

Table 1: Android Wear Versions [30][31][32] 

Android Wear Version Relative Smartphone 

Version 

Functionalities 

Android Wear 1.0 Android 4.3 Jelly Bean Bluetooth connection, 

Notifications, Voice 

commands 

Android Wear 1.3 Android 5.0 Lollipop Wi-Fi connection on the 

watch itself, interactive 

watch faces and battery and 

performance improvements  

Android Wear 1.4 Android 6.0.1 Marsmallow Navigation by gestures, 

voice messages and speaker 

support 

Android Wear 2.0 To be Announced Standalone Applications, 

virtual keyboard and 

handwriting recognition 

 

From the examination of the Table 1 is possible to perceive a pattern in the upgrade versions 

of Android Wear, being that the announcement of a new update to the operative system of 

wearables is, almost always, followed by a major update made to the operative system for 

the smartphones. 
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The Android Wear software updates follow the same approach of the traditional Android, 

being that this process is received and performed, in most devices, with an over-the-air 

(OTA) process, giving a greater convenience to users, who are automatically notified by the 

device as soon as a new update is available. While this is a good approach, the fact that there 

is a wide range of Android Wear devices, in terms of hardware, makes so that software 

updates are not received all at the same time for all smartwatches, depending on this process 

not only Google, but also the manufacturers of the devices [17]. 

3.2. ANDROID AND ANDROID WEAR ARCHITECTURE 

Android operative system is based on Linux and can be divided into six main layers, as 

shown in Figure 18.  

At the bottom layer, there is the Linux kernel. As it was mentioned earlier, the Android 

platform was based in Linux, in part due to the open-source nature of this system, and to the 

constant security updates it receives. This layer provides the basic functionality of the 

system, such as the management of devices, procedures and memory [47][55]. 

The second layer of the Android architecture (Hardware Abstraction Layer) concerns the 

communication interface between Applications and existing Hardware resources, making 

the upper layers abstracted from all implementing low-level drivers and hardware [47][55]. 

According to several authors, this layer turns out to be a continuation of the Linux kernel. 

Therefore, there are many references that describe the overall architecture as consisting of 

only five layers. 

There are two layers belonging to the same level where all the native libraries and the 

Android Runtime (ART) are found. The libraries contain a set of instructions that allows the 

device to handle different types of data, among which the following stand out: 

 Media Framework: support for multimedia data playback and recording; 

 Webkit: Browser Engine; 

 SGL e Open GL: 2D and 3D graphics, respectively; 

 SQLite: implementation of embedded SQL databases; 
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The Android Runtime provides a series of core libraries for java programming, that allow an   

easy use to all the device features. It is also in this layer that the Dalvik Virtual Machine is 

found. This virtual machine has been created specifically for Android to run Applications: 

each process instantiated by an Android Application has an instance from the Dalvik Virtual 

Machine, providing devices the ability to run multiple processes simultaneously, efficiently 

and optimally for a minimum consumption of memory. The virtual machine executes Dalvik 

Executable files (DEX) and has the capability to run Java classes that have been converted 

in this format, because Android does not have the capability to run Java classes [47][55]. 

The next layer (Application Framework) is what allows the creation of applications and is 

made up from several programs that control a wide variety of functions of the device, such 

as phone calls, location info, notifications, and data sharing. In Figure 18 the most important 

functions of this layer are presented. 

Finally, in the highest-level layer is the layer of Applications, where most Android users 

interact with their devices, for the basic system functions, such as making calls, viewing 

contacts, browsing the Internet, etc. Through the services provided by this layer, developers 

can take advantage of its features for creating their applications in a simple and practical 

way. 
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Figure 18: Android Operative System Layers Diagram [33] 

Android Wear is identical to the traditionally Android. However, the operation of installing 

applications in these devices presents the approach illustrated in the Figure 19. 

 

 

 

 

 

 

 

 

One of the advantages inherent to the use of Android Wear is the development for this 

platform being virtually identical to the development for a smartphone, requiring only the 

developer some care in the UI and some adaptations to the libraries. As shown in Figure 19, 

Figure 19:  Android Wear Operation Diagram [56] 
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the operation of a smartwatch, powered by Android Wear, is still largely dependent on the 

smartphone, and all communication between the two devices is done via Bluetooth. Some 

features and Android Wear APIs make use of the smartphone, as is the case of notifications, 

data from the Internet and even installing applications to the smartwatch. In this last feature 

the approach used by Google has the availability of applications directed to wearables in the 

same store of the smartphone applications, which requires that all applications from Android 

Wear have a module for the phone and one for the smartwatch, with no further the possibility 

of installing applications for wearables directly in the devices, or a native application store 

for this platform [56]. 

3.3. SPECIFIC FEATURES 

Being this an operating system directed to specific type of devices, Android Wear has several 

features specifically designed for a simple and comfortable use. Being able to create a 

“bridge" of information between the smartwatch and the smartphone, it enables the user to 

get information without having to constantly pick up the phone. The ability of receiving 

notifications on the watch, are one of the most important features that can be identified  [29].  

Figure 20 presents one of the several layouts used for notifications on Android Wear, the so-

called "notification card". This feature makes the smartphone use lower, as the user can 

receive and respond to notifications directly from the smartwatch. The user interface has also 

been carefully designed for this operative system, being the use of buttons replaced by swipe 

gestures, partly due to the small size of the device screen. 

 

Figure 20: Android Wear notification card [34] 
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In order to facilitate access to the applications and settings of the smartwatch, the Android 

Wear has also available other types of interaction with the device, of which the following 

stand out: 

 Voice recognition: the voice command "Ok Google," enables to automatically start 

the digital assistant Google Now that, with the latest software update 1.4, allows the 

user to perform searches with the Google search engine, send messages and even, 

depending on the smartwatch models, make audio and video calls, all with simple 

voice commands; 

 Navigation gestures: also introduced in version 1.4 of the operative system, small 

gestures made with the wrist can now be used to navigate in the smartwatch 

interfaces. 

Alongside these features, this operating system also has other features that distinguish it from 

other systems such as: 

 Fitness Parameters Control (Pedometer, heart rate control); 

 Remote control and location of the smartphone; 

 Remote control of smartphone applications. 

3.4. INTEGRATED DEVELOPMENT ENVIRONMENT 

The development of applications for Android Wear ends up being very similar to the 

development of Android, because it uses the same programming language, Java, and the 

same Integrated Development Environment, Android Studio [57]. 

Announced as the official IDE for developing Android Applications, Android Studio is 

based on IntelliJ IDEA software and presented himself as the successor to the Eclipse IDE. 

Consisting of several tools aimed to facilitate and accelerate the development, this software 

has an intelligent code editor, a debugger, several libraries prepared for use, integration with 

version control system and the possibility of developing the same software for various 

Android platforms, as the case of Android Wear and Android TV [57]. 
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Figure 21: IDE Android Studio [35] 

Based on Gradle build, through the Android Studio software it is possible to develop, 

compile, debug and deploy applications for any Android device, without the need to use 

other software. 

Other of the interesting feature that this software offers is the fact that it includes an emulator 

of devices, which allows the testing of applications not only in real devices, but also make a 

pre-test on a virtual device. The connection between Android Studio and devices (real or 

virtual) is carried out by another Android Studio SDK tool, the Android Debug Bridge 

(ADB). 
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4. PATTERN RECOGNITION 

ALGORITHMS 

The development of this thesis included a detailed study concerning algorithms for pattern 

recognition responsible for implementing the functionalities of analyzing and classifying the 

data. This is an important feature to be implemented to support physical exercise recognition.  

This dissertation focused on two algorithms widely used in the pattern recognition area that 

are using two different approaches.  

4.1. DYNAMIC TIME WARPING 

The Dynamic Time Warping (DTW) algorithm uses its calculation capabilities for similarity 

classification between two time series sequences that can vary in speed [51]. This is an 

interesting feature in pattern recognition, because two data series are not always identical in 

size but similar in their pattern, minimum and maximum, as in the case of a performed 

gesture. Through DTW is possible to detect, whether the gesture has been executed in a 

slower or faster way than the reference with which is being compared.  
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In general, the DTW calculates the matching distance between two time series with certain 

restrictions, being this value generally corresponding to the Euclidean distance between two 

points in the Euclidean space [52]. 

Let A [1 ... M] and B [1 ... N] be two time series to be compared with DTW, the higher the 

similarity between the two, the smaller the resulting distance of the algorithm. The following 

Figure 22 illustrates the iterations made by the algorithm for calculating this distance between 

two time series.  

 

Figure 22: DTW operation for the match path calculation [26] 

Through dynamic programming, the DTW iterates at every point of each time series, starting 

with the point (1, 1) until the end of the point (M, N). Figure 22 provides a graphical 

representation of the approach used by this algorithm over all the points of the two time 

series A and B. The optimal path between the starting point and any intermediate point (i, j) 

is obtained taken into account the distance between (1,1), (i, j) and previous neighbors of (i, 

j): (i-1, j) (i, j-1) and (i-1, j- 1) [46][45]. 

The final distance between (1,1) and (i, j) is then the actual distance between the referred 

points, plus the smallest distance between (1,1) and their neighbors (i, j). This algorithm then 

makes a calculation for all the combinations of points from the two time series, and returns 
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as output the maximum distance (matching cost) between the two time sequences, this being 

the minimum sum of all distances between each pair of corresponding points  [46][51]. 

Figure 23 shows the correlation between points of two time series using the Euclidean 

distance and DTW. It is possible to see some differences when comparing the two figures, 

as in the case of using the calculation of the Euclidean distance, the correspondence points 

between the two time series is made only if the index of the points are the same, which does 

not happen with DTW, since the correspondence relationship of these calculations is done 

by looking for similarities between amplitude and scale the two series [45]. 

This factor causes that the two datasets do not have to be identical for a match to exist 

between each other, but the two may differ with respect to time and amplitude, only having 

to have the same pattern as a whole. In Figure 23 it is possible to see that the DTW Matching 

feature can associate the local maximum or minimum of each time series, and the Euclidean 

Matching can only associate the two time series from the index points of the datasets.  

 

Figure 23:Comparison between Euclidean Matching and Dynamic Time Warping Matching 

Algorithms [27] 

A possible pseudo-code of the Dynamic Time Warping algorithm is shown below: 

DTW(v1: array [1..n], v2: array [1..m]) { 

// v1 and v2 are the time series with n and m time points 

 

//S is a two dimensional data matrix that stores the similarity 

measures, such that S[0,…,n, 0,…,m], and i, j, are loop indexes. 
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S := array [0..n, 0..m] 

 

S[0, 0] := 0 

 

FOR i := 1 to n DO LOOP 

 DTW[i, 0] := ∞ 
END 

 

FOR i := 1 to m DO LOOP 

 DTW[0, i] := ∞ 
END 

 

//Using pairwise method, incrementally fill in the similarity 

matrix with the differences of the two time series 

FOR i := 1 to n DO LOOP 

FOR j := 1 to m DO LOOP 

// function to measure the distance between the two 

points 

cost := d(v1[i], v2[j]) 

S[i, j] := cost + minimum(S[i-1, j],    // increment 

      S[i, j-1],      // decrement 

                          S[i-1, j-1])    // match 

END 

END 

 

Return S[n, m] 

} 

This algorithm has been used in various fields, such as speech and gestures recognition and 

multimedia data analysis. It can be easily used with any other data that can be converted into 

linear sequences.  

In the context of this thesis, the features that an algorithm like DTW offers are ideal for a 

process of physical exercise recognition, because of the differences that can occur between 

two time series resulting from performed exercises. The fact that two gestures are never 

completely identical, even if performed by the same person, causes differences in speed and 

amplitude in the time series, an obstacle that is overcome by this algorithm.  

4.2. HIDDEN MARKOV MODELS 

The Hidden Markov Models are a statistical tool with several methods for calculation and 

modeling of time series data and can be well included in the fields of machine learning and 

data mining [28]. 

Developed in 1960 by Baum, the theory of this tool assumes the principle based on the 

mathematical theory developed by Andrei Markov in the early twentieth century, called 

Markov Process, which is described in Figure 24 [28][46]. 
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Figure 24: Markov Process Example [28] 

The previous figure represents a state machine/diagram for a market share index, which 

describes a similar behavior to a Markov process. The model has three states (Bull, Bear and 

Even) and three points (up, down and unchanged), thus presenting a finite number of states 

with probabilistic transitions between each of them, such that, given any sequence of 

observations, it is possible to check which are the sequence of states that produced these 

observations. For example, a sequence of observations: down-up-unchanged can be easily 

verified that has been produced by the states: Bear-Bull-Even, being the probability of this 

sequence the product of the transitions, in this case 0.5 x 0.2 x 0.5. 

As previously stated, this theory has served as the basis for a more complex implementation, 

the so called Hidden Markov Model, which may be represented by the Figure 25, as an 

extended model of the illustrated in Figure 24. 

 

Figure 25: Hidden Markov Model Example [28] 
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The new model, shown in Figure 25, allows that all observations can be issued by each of 

the states with a finite probability, making the model much more complex and with the 

ability to better represent the human intuition, because in case of the stock market, this model 

states that the Bull market may have good or bad results, like the real world, although the 

largest probability concerns the increase of this market [28][46]. 

The main difference in the comparison between this model and a traditional Markov process, 

is that in a sequence of observations obtained through a Hidden Markov Model, it is not 

possible to define a sequence of states that gave rise to the observations, because the existing 

states have all the model observations, so the state remains "hidden”, although it is possible 

to calculate the most likely sequence of state that has produced the referred observations. 

Mathematically, a Hidden Markov Model can be defined by the following equation 1 [28]: 
 

 𝜆 = (𝐴, 𝐵, 𝜋) (1) 

 𝐴 is the transitions array, which keeps the probability of the state j, followed by the 

state i; 

 𝐵 is the observations array, which keeps the probability of observing k be produced 

by the state j, regardless of the time; 

 𝜋 is the initial array of the probabilities; 

These parameters can be defined as the following equations 2,3 and 4: 

 𝐴 = [𝑎𝑖𝑗], 𝑎𝑖𝑗 = 𝑃(𝑞𝑡 = 𝑠𝑗|𝑞𝑡−1 = 𝑠𝑖) (2) 

 
𝐵 = [𝑏𝑖(𝑘)], 𝑏𝑖(𝑘) = 𝑃(𝑥𝑡 = 𝑣𝑘|𝑞𝑡 = 𝑠𝑖) (3) 

 
𝜋 = [𝜋𝑖], 𝜋𝑖 = 𝑃(𝑞1 = 𝑠𝑖) (4) 

Where 𝑆 is the states alphabet, 𝑉 the observations alphabet, 𝑄 a fixed sequence of states, and 

𝑂 the corresponding observations, such that: 

 𝑆 = (𝑠1,𝑠2, … 𝑠𝑁) (5) 

 
𝑉 = (𝑣1,𝑣2, … 𝑣𝑀) (6) 
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𝑄 = 𝑞1,𝑞2, … 𝑞𝑇 (7) 

 
𝑂 = 𝑜1,𝑜2, … 𝑜𝑇 (8) 

So starting from a HMM, there are three main problems [53] of interest that need to be 

solved, in order to obtain results: 

 The Evaluation Problem 

Given an observation sequence 𝑂, and an HMM λ, which is the probability of the 

observations that have been generated by the model, ie, P (𝑂 | λ). With the resolution of 

this problem is possible to evaluate how well the model predicts a certain sequence of 

observations, it can thus draw conclusions about the most appropriate model for a given 

set values [53]. 

 The Decoding Problem 

In this problem, given a sequence of observations 𝑂, and an HMM 𝜆, the objective is to 

find the most probable sequence of states which produces 𝑂 [53]. 

 The Learning Problem 

Given an HMM model 𝜆 and a sequence of observations 𝑂, how should the model 

parameters (𝐴, 𝐵, 𝜋) be adjusted in order to maximize 𝑃(𝑂|𝜆). The resolution of the 

problem results in optimizations of the model in order that the observations, or training 

set, are fully adjusted for the intended application [53]. 

 

 





 47 

5. DEVELOPED SOLUTION 

With the main objective of being able of detecting and recognizing physical exercises, a 

solution to a wearable device was developed. Figure 26  presents a simplified workflow that 

includes the process of sensory data acquisition on the wearable device, the phase of 

information processing and the output results. In the next sections we provide a detailed 

description of each of the modules. 
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Figure 26: Digital Personal Trainer General Operation Diagram 

5.1. USER MOVEMENT 

The use of the application in a stable phase requires that reference data is acquired at the 

beginning. The user is then requested to perform a training exercise that characterizes the 

intended physical exercise. The following figure represents a possible exercise done by a 

user with this application. 

 

Figure 27: Sample Exercise performed by the User with the Created Application [36] 
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Figure 27 shows that the exercises collected by this application can be made with or without 

instruments and tools used in gyms, as dumbbells and weight machines, making this solution 

more robust and practical for his target audience. 

The user should perform the exercise that he wants to test, and the process of collecting data 

from the sensors to the creation of the reference exercise is done automatically by the 

application, making this operation fully transparent for the user. 

5.2. SENSORIAL DATA 

Initial data collected from the sensors is the key part of the operation. It is through this data 

that it will be possible to infer conclusions about the subsequent processes of this solution. 

The user will then have to start the application in training mode and perform the exercise 

that he wants to test, so that the algorithm can store reference data for the calculations that 

will occur later. 

During this training process, the application collects and stores the data obtained from the 

Accelerometer and Rotation Vector software sensor. Physical exercise acceleration data in 

the three main axes (x, y, z) is received from the Accelerometer while the Rotation Vector 

provides data relating to the rotation in yaw, pitch and roll. 

Given that the data from the accelerometer suffers from noise, this limitation is overcome 

by the use of filters to smooth the received data, resulting in a generally more uniform 

waveform. In our implementation, we used an exponential smoothing filter [63] to 

successfully reduce the noise from the sensor and thus achieve a more uniform dataset. 

This exponential smoothing method, often used for time series smoothing, associates 

exponentially smaller weights to older samples, or in other words, a relatively greater weight 

is given to recent samples in relation to previous ones [63][64]. The expression that describes 

this filter is given by: 

 𝑠𝑡 =  α ∙ 𝑥𝑡 + (1 − α) ∙ 𝑠𝑡−1, 0 ≤ α ≤ 1 (9) 

Where 𝑥𝑡 represents the obtained values from the accelerometer, 𝑠𝑡 the data from the filter 

output, and α the smoothing factor, being that an α value of 1 causes that the filter output 

does not suffer from any kind of smoothing (input equal to output) and an α value of 0 makes 
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the maximum smoothing effect for the output, making it less responsive to recent changes 

[63][64]. 

Certain precautions were also taken into account in the reading process of the rotation values, 

in order to improve the subsequent exercise recognition processes. 

As previously mentioned, the data from this sensor indicates the rotation of the device in the 

vertical (yaw), the lateral (pitch) and the longitudinal (roll) axis -  the so-called Euler angles, 

received as angles of -180 ° to 180 °. As for the accelerometer, these rotational values have 

a limitation that, if not previously addressed in the receiving data process, may result in 

malfunctions of certain movements and exercises carried out with the smartwatch. 

 The referred limitation concerns the gimbal lock problem, which is a phenomenon that 

occurs when the orientation of the device is aligned by the three rotation axes (pitch angle 

of approximately 90 degrees), resulting in a loss of freedom for the system dimensions, 

which becomes able to move only in two dimensions, as can be seen in Figure 28. 

 

Figure 28: Gimbal Lock Representation [37] 

As can be seen in the previous figure, a three-axis structure is used to illustrate the described 

problem, being that the mechanism named “Rotational Movement” describes the behavior 

of the system in normal operation, resulting in a rotation value for the grey gimbal, the green 

gimbal, and a last value for the blue gimbal. When the three gimbals are aligned, as shown 

in the mechanism named “Static Position”, this is in a gimbal lock state, which means that 

any change in orientation will result in rotation in only two gimbals. 
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One of the solutions used to overcome the problem of gimbal lock is the conversion of the 

obtained rotation angles in quaternions. The quaternion is a generalization of complex 

numbers, created by William Hamilton in 1843, and frequently applied in computer vision 

processes and three-dimensional space calculations [62].  

The Quaternion representation extends the concept of rotational space from three to four-

dimensions (s, x, y and z) and can be seen as the original device's orientation or the rotation 

applied to the object. 

Therefore, and from the following two equations [62]: 

 𝑖2 = −1, 𝑗2 = −1, 𝑘2 = −1 (10) 

 𝑖𝑗 = 𝑘, 𝑗𝑘 = 𝑖, 𝑘𝑖 = 𝑗, 𝑗𝑖 = −𝑘, 𝑘𝑗 = −𝑖, 𝑖𝑘 = −𝑗 (11) 

A quaternion can be calculated by the following equation [62]: 

 𝑄𝑢𝑎𝑡𝑒𝑟𝑛𝑖𝑜𝑛 = 𝑠 + 𝑥𝑖 + 𝑦𝑗 + 𝑧𝑘,        being 𝑠, 𝑥, 𝑦, 𝑧 scalar numbers (12) 

 

For the rotation of a device, this value can be represented by a unit quaternion, ie: 

 𝑈𝑛𝑖𝑡 𝑄𝑢𝑎𝑡𝑒𝑟𝑛𝑖𝑜𝑛 = 𝑠 + 𝑥𝑖 + 𝑦𝑗 + 𝑧𝑘,     𝑏𝑒𝑖𝑛𝑔 𝑠2 + 𝑥2 + 𝑦2 + 𝑧2 = 1 (13) 

 

Being this value obtained by converting the rotation angles (Yaw, Pitch and Roll), 

represented in Figure 29, by the following expression: 

 𝑈𝑛𝑖𝑡 𝑄𝑢𝑎𝑡𝑒𝑟𝑛𝑖𝑜𝑛 = cos(𝜃/2) + sin(𝜃/2) 𝑢𝑥 + sin(𝜃/2) 𝑢𝑦 + sin(𝜃/2) 𝑢𝑧𝑘 (14) 

Where [𝑢𝑥, 𝑢𝑦, 𝑢𝑧] is the unit vector which represents the rotation axis (X, Y, Z) and 𝜃 the 

angle of rotation ( Figure 29). 
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Figure 29: Representation of Unit Vector and Rotation Angles [38] 

The rotations vector (x, y, z) with unit quaternions can be represented through the following 

orthogonal matrix [62]: 

Being  𝑄 = 𝑠 + 𝑥𝑖 + 𝑦𝑗 + 𝑧𝑘,   the Unit Quaternion 

𝑅 = [

𝑠2 + 𝑥2 − 𝑦2 − 𝑧2 2𝑥𝑦 − 2𝑠𝑧 2𝑥𝑧 + 2𝑠𝑦

2𝑥𝑦 + 2𝑠𝑧 𝑠2 − 𝑥2 + 𝑦2 − 𝑧2 2𝑦𝑧 − 2𝑠𝑥

2𝑥𝑧 − 2𝑠𝑦 2𝑦𝑧 + 2𝑠𝑥 𝑠2 − 𝑥2 − 𝑦2 + 𝑧2

] 

The values of the rotation vector can be obtained by multiplying the matrix R by the unit 

vector [𝑢𝑥, 𝑢𝑦, 𝑢𝑧], resulting in an easier representation without the introduction of 

imaginary numbers. 

Therefore, the quaternions are like a mathematical way to represent rotations in fourth 

dimensional space, which have the main advantage, regarding this thesis, as a solution for 

the gimbal lock problem, giving the device complete freedom in orientation changes 

To solve the problem of Gimbal Lock, Android provides a high-level method to 

automatically convert the sensor rotation values to quaternion units, as shown in the 

following command. 

 

 SensorManager.getQuaternionFromVector(qua, values); 
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The function getQuaternionFromVector causes the device’s SensorManager to convert all 

values from the software sensor for a range of normalized quaternion, using the previous 

explained matrix calculations.  

 The overall processes of collecting sensor data in a platform such as Android Wear, is 

identical to the one used in a traditional Android platform, and implements the following 

phases: 

1. Initialize the Android Sensor Manager 

 

mSensorManager = (SensorManager) 

this.getSystemService(SENSOR_SERVICE); 

 

2. Choose the sensor to be obtained data 

 

mAccelerometer = 

mSensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER); 

 

3. Initialize the responsible class created for the sensor listening process  

sensorListener = new MySensorListener(blockingQueue); 

 

4. Register the sensor with its sampling rate and start listening data 

 

mSensorManager.registerListener(sensorListener, mAccelerometer, 

SensorManager.SENSOR_DELAY_FASTEST); 

 

Data can be collected at the declared class used for initialization and registration directives 

or in an external class, making the development process much more distributed and 

organized, by initializing the MySensorListener class: 

 

public class MySensorListener implements SensorEventListener {} 

 

In this case, through the use of the command implements and invoking the 

SensorEventListener interface, the system will provide all the methods to the class 

MySensorListener so that it is able to get the values from the sensors events. One of the 

available methods for receiving new values from the sensors is: 

 

 void onSensorChanged (SensorEvent event) 
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How is possible to understand by the name of the method, this occurs every time a new event 

is detected on the sensor, being that this event can be detected in the same sensor as long as 

the new reading takes place in a new timestamp. 

Using this method data can be collected at a previously chosen sampling rate. When this task 

is performed for multiple sensors, it is only necessary to wait until the SensorEvent occurs 

and by a call of a simple command, such as sensor.getType, ask to which sensor system is 

treated the occurred event. 

 

 event.sensor.getType() 

 

This command returns the name of the type of sensor where the event occurred, in which 

case could be one of two types: 

 Sensor.TYPE_ACCELEROMETER  

 Sensor.TYPE_ROTATION_VECTOR 

There are other methods that can be associated with the sensor event in a way to get more 

information about these devices: 

  Sensor.getName() 

Returns a string containing the sensor name.  

Ex: BMA150 3-axis Accelerometer. 

 Sensor.getPower() 

Returns the consumed current, in mA. 

Ex: 0.45 mA. 

 Sensor.getVendor() 

Returns the sensor vendor name. 

Ex: Motorola. 
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The reading and collecting data processes also required other care for the acquisition of data, 

because the multi-threading approach benefits the device segmentation commands in 

parallel, but introduces limitations on data competition, a problem that will be referred in the 

following sub-chapter. 

5.3. TRAINING ALGORITHM 

The training algorithm is one of the most important processes of the solution, as it is with 

the results of this process that it is possible to obtain the reference data of the physical 

exercise that describes what can be considered a perfect execution of a physical exercise. To 

guarantee the ideal conditions, this training process can be done with the user accompanied 

by the personal trainer or a physical therapist. 

Using the same approach as the general diagram of the created solution, is shown in Figure 

30, now in a more technically way, a possible operational diagram of the training algorithm, 

and then will be explained all the constituent processes and blocks, connected to the Android 

platform. 

 

Figure 30: Representative Flowchart of the Training Algorithm Operation 
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The first task is obtaining the sensor data: 

 

public class MySensorListener implements SensorEventListener {} 

 

The class "MySensorListener" is responsible for collecting the data from the sensors and 

send it, through an own structure of the Android platform, called BlockingQueue. 

The BlockingQueue is a structure used in data communication processes that, as the name 

implies, implements a kind of Queue with blocking capabilities in reading and writing 

processes. This structure supports operations that wait for responses of the queue itself 

indicating whether or not the space to insert/remove an element of it. 

The implemented methods by this structure has four main modes of operation such as: 

 Launch a code exception 

Ex: add(), remove() e element()) 

 Return a special value, usually zero or false 

Ex: offer(e), poll() e peek() 

 Block the operational thread, indefinitely, until the operation is successful 

Ex:put() e take() 

 Wait a limit time to end the operation before giving up 

Ex: offer(e, time, unit) e poll(time, unit) 

By the methods mentioned above, it is possible to see that a BlockinQueue allows operations 

that insert, remove or examine data. For all these and other features, using this structure is 

safe for applications that involve multi-threading processes, and was specifically created for 

this purpose. 

The use of such a structure is important in an application of this type due to the concurrent 

processes that run in parallel, because will have to be some method to execute some kind of 

blocking mechanisms between the data processing, so as not to occur competition errors 

which can influence the functioning of the system itself. 
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In a practical way, a BlockingQueue can be declared as follows: 

 

protected final LinkedBlockingQueue<ValuesSensorObject> blockingQueue; 

 

In this case, the blockingQueue variable is a variant of this structure, which in addition to 

all the features explained above, implements linking processes between all the data that make 

up the queue, providing greater freedom of access and modification of these same data. 

 The ValuesSensorObject class is responsible for organizing the blocking queue, which is 

constructed by: 

 Values - Array of values where the readings in the queue will be saved; 

 SensorType - Integer that represents the type of sensor: “1” identifies the Rotation 

Vector and “2” identifies the Accelerometer; 

After the initial reading and processing of the data, it is necessary to send these values to the 

blocking queue, by simply filling an object of the ValuesSensorObject class with the 

values and the type of sensor, and through the offer() method, add the resulting object to 

the queue, as shown in the following commands: 

 

ValuesSensorObject object = new ValuesSensorObject(Values, SensorType); 

 blockingQueue.offer(object); 

 

The reception of these data is done in the class responsible for the Training Exercise, in 

specific structures of the Android Platform, called LinkedLists. These structures allow the 

user to initialize a list of values to store data without a predefined size and with the possibility 

to access different indexes positions of the list, making the allocation of memory transparent 

for the programmer/developer. 

 The training class is organized into three main threads: 

1. Android Main Thread – Responsible for managing all the application’s User 

Interface processes; 

2. Sensors Thread – Responsible for saving all data from the blocking queues in clear 

structures for the class to operate and send to the Test class; 
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3. DTW Thread – Responsible for processing all the Dynamic Time Warping 

calculations and get all the conclusions related to trained exercise; 

Continuing with the explanation from the flowchart of Figure 30, the data are currently 

prepared to be computed by the Dynamic Time Warping algorithm, and as shown in Figure 

31, the comparison of values will be held between the data that the class is receiving at the 

moment and the data that were obtained at the initial instant that the user started the exercise. 

 

Figure 31: Time Series comparison using DTW 

The implementation assumes that physical exercises begin and end in the same position, 

which is not a universal truth for all exercises, and may be a limitation of the current version. 

The DTW module runs uninterrupted and performs continuous calculations seeking the 

similarity between the relative data from the sensors received at that time and a set of data 

lists, which are the recorded values identifying the exercise. 

The process of relativizing the data from the sensors is obtained by subtracting all the values 

which are set by the first value, as shown in the following commands: 

 

 accelx = new Float[LLaccelxtrain.size()]; 

for (int i = 0; i < LLaccelxtrain.size(); i++) { 

accelx[i]=LLaccelxtrain.get(i)-LLaccelxtrain.getFirst(); 

 

} 

 

 Two distinct processes can be identified in the relativization of values: 

 accelx - Initialization of a variable with the type and size of the data relative to the 

linked list of values received in real-time (LLaccelxtrain); 
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 for() - Cycle that goes through all the values of the linked list and associates each 

one to an index of the accelx variable; 

Through this process it is possible to transform the absolute values from the sensors into 

something relative and reference, which can be reused by the user to test the same exercise 

in other situations and in different directions, so there is no need to perform a training 

exercise every time that it needs to be tested, making it a more robust and automated solution. 

 The data from the Rotation Vector Software Sensor and Accelerometer are relativized in 

real-time, resulting in six time series (three sets representing the device's orientation in yaw, 

pitch and roll, and the remaining three sets to represent the acceleration values x, y and z) 

that will be compared with other six series representing the initial state of exercise. 

After the DTW calculations determine that the exercise returned, approximately, to his 

starting position, it is activated a command that indicates to the Sensors Thread that can send 

the resulting data to the Test class.  

When the DTW modules detects that the exercise returned, approximately, to its starting 

position, the Sensors Thread is informed and data is stored in a special Android class -  

SharedPreferences - that allows storing and retrieving persistent data over several 

application sessions and even if the device it turned off. The main advantage in using this 

class for the data storage is the ease of use, as shown by the following commands: 

 Initialize a variable SharedPreferences interface and subclass Editor: 

SharedPreferences sharedPrefs = 

PreferenceManager.getDefaultSharedPreferences(getBaseContext()); 

 

SharedPreferences.Editor editor = sharedPrefs.edit(); 

 

 Store the desired data as a key-value pair: 

 

editor.putBoolean("key_name1", true);     // Saving boolean  

editor.putInt("key_name2", "int value");  // Saving integer 

editor.putFloat("key_name3", "float value");  // Saving float 

editor.putLong("key_name4", "long value");    // Saving long 

editor.putString("key_name5", "string value");// Saving string 

 

 Save the performed changes to SharedPreferences 

 editor.commit(); 
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In a similarly way, retrieving the data previously stored can be done as: 

  Initialize the Interface variable 

SharedPreferences sharedPrefs = 

PreferenceManager.getDefaultSharedPreferences(getBaseContext()); 

 Read the saved data 

boolean user= pref.getBoolean("key_name1", true); //getting boolean 

int pageNumber=pref.getInt("key_name2", 0);      // getting Integer 

float amount=pref.getFloat("key_name3", null);   // getting Float 

long distance=pref.getLong("key_name4", null);    // getting Long 

String email=pref.getString("key_name5", null);   // getting String 

In addition to all these features, SharedPreferences allows data to be represented using 

JSON (Javascript Object Notation), which helps creating an abstraction for the type of data 

to be sent for storage. Using libraries as Gson, which allow the conversion of Java objects 

to JSON and vice versa, data to be interpreted by SharedPreferences can be easily 

interpreted by the system as strings: 

 

String azimuthjson = gson.toJson(azimuth); 

editor.putString("azimuth2", azimuthjson); 

 

By having this abstraction, the type of data to be stored by SharedPreferences are all stored 

as strings, being only need to convert these data at the time that it wants to read it, as shown 

in the following command: 

 

String jsonazimuth = sharedPrefs.getString("azimuth2", null); 

Float[] trainazimuth = gson.fromJson(jsonazimuth, Float[].class); 

 

As it is possible to see, the methods implemented by Gson library, provide all the features 

for the conversion of String to the primitive data type, in this case an Array of Floats. The 

use of an interface as SharedPreferences becomes more intuitive for the developer and allows 

to store and retrieve persistent data in a simple way. 

After all these processes the Training algorithm terminates its functions, and as indicated by 

the last block from the flowchart of Figure 30, the relativized data sets are stored for later 

use by the Test algorithm. In this last phase, all secondary Threads that may still be 

processing data are interrupted, and all sensors listener processes are finished, so as not to 

remain any residual processes to be computed when starting the Test algorithm and 

especially, for a good management of the smartwatch resources. 
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5.4. TESTING ALGORITHM 

The Test algorithm is the process where the results from the solution itself are calculated, ie 

it is at this stage that the pattern recognition algorithm uses all its capabilities to find 

similarities between the reference data obtained in the Training process and the data that the 

user is performing in real-time. 

In this chapter are reported all aspects and approaches used in the development that led to 

the creation of a process of recognition and evaluation of physical exercise, in a more 

technical and targeted way, directed to the Android Wear platform. 

Figure 32 presents the flow chart for the operation of the test algorithm that will be used to 

identify an exercise through a real time pattern recognition algorithm. 

  

Figure 32: Representative Flowchart of the Testing Algorithm Operation 

By analyzing the diagram above, it is possible to find some ways similar to the Training 

algorithm, as the case of reading and processing of sensory data, although the overall 

operation of the algorithm presents different features. 

Assuming this algorithm collects the orientation and acceleration data from the smartwatch 

in the same way as done in the training process, and so the size of the collected data exceeds 
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a minimum threshold, the algorithm saves the data and performs the relativizing calculations, 

as shown in the previous sub-chapter. 

After this process, the algorithm it is with the conditions required to perform the DTW 

calculations between the reference values and the values from the tested exercise, due to 

certain factors, such as: 

 Both time series (training and test) have a non-null size and that does not exceed the 

acceptable limit for the DTW computing process; 

 Both time series (training and test) passed from a relativization process and are at 

the same scale, in order to be compared in a consistent manner; 

The similarity calculation is made between the six training time series and the six test time 

series, by calling the class responsible for implementing the DTW: 

 

DTW dtw = new DTW(trainseries, testseries); 

 

Next, represented by the "Exercise Detected" block, the algorithm enters in a recognition 

process, trying to find the minimum distance between the two exercises, which will involve 

the output of the DTW, for each of the comparisons effected is below a certain threshold. 

After this step the algorithm validates if the exercise that the user is doing has a pattern 

similar to the trained exercise, but still does not explain the user of this information in the 

smartwatch screen, waiting that the distance between the two exercises are the minimum 

possible to reveal the detection and percentage of similarity that exists between the exercise 

performed at the time and the previously trained exercise. 

The process of comparing the two exercises, until a minimum distance is shown, indicates 

that the algorithm not only detects the exercise, but after this result, remains a computing 

similarity calculations until finding a minimum distance between the two. In practical terms, 

this process indicates that an exercise can start being detected soon after it was made only 

part of it, but if the exercise continues to be performed properly until the end, the distance 

will gradually decrease and the algorithm will remain listening until this value increase 

again, that is, the end of the exercise or a different exercise from the previously trained. 
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If the DTW calculation results in a greater value than the threshold and no exercise are 

detected, it activates a sliding window that runs the reading data and updates the time series 

that should be compared until the output of this process is less than the previous threshold, 

or if the test data size exceeds a certain limit. 

The use of a mechanism such as a sliding window is important, as there are many factors 

that may differentiate the training exercise from the test exercise, even when the two 

exercises are the same: 

 Exercise Rhythm - The training exercise can be performed in a faster or slower way 

than the test exercise. 

 Exercise Amplitude – The user can perform only a part of the exercise previously 

trained. 

The fact that the DTW algorithm is not affected by the speed or range of time series, makes 

the comparison of the exercises independent of these factors and can overcome this problem. 

Through the use of a sliding window, it is thus possible to scroll and update the values of the 

test series, in case the two exercises are offset in time or in amplitude, in a way to ensure 

that reference pattern that is sought is found, and the processing carried out by the DTW 

does not exceed a reasonable limit of the smartwatch capabilities, which could jeopardize 

the functioning of the solution. 

After this process, and detected the exercise, the algorithm proceeds to update the values of 

the repetitions and the percentage of similarity between the trained and tested exercise.  To 

ensure that the data from the next exercise will be read in the right way, and that the DTW 

will not have too much data to process, data queues are cleaned: 

 

 LLaccelxtest.clear(); 

 

After all the testing process, and following the diagram of Figure 26, it is now discussed in 

the following subsection, the operation of the last block, which corresponds to the 

application itself, this time in an aspect more related to the usability parameters, and its user 

interface. 
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5.5. DIGITAL PERSONAL TRAINER APP 

As a final result of all processes and algorithms described above, is the created application, 

which in a simple way for the user, describe some relating data to the exercise that the user 

his performing at this time. 

Figure 33 represents the time flow of steps for operating the created application, describing 

each screen is the user throughout the use of the same.  

 

In the initial screen (Screen nr 2), the user has two possible ways to use the application:  

1. Choose to train a new exercise, represented by screen 4  

2. Testing a previously trained exercise, represented by screen 3 

 If the user chooses the training of a new exercise, he will find the 4th screen, shown in Figure 

33. The created User Interface for the training process has gone through several updates and 

processes, to arrive at an approach that is considered to be the simple and automatic. Thus, 

after the user is in 4th screen he is asked to click on the "Train" button, which will trigger all 

the software processes for the collection of the reference data, and show the user the 

following screens. 

 

Figure 33: Set of possible screens of the created application 
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Figure 34: Set of screens which form the training process of an Exercise 

Through the diagram of Figure 34, it is possible to understand how it is treated the training 

process in terms of UI, being that, after the user indicates that he wants to perform a training 

exercise, through the activation of the "Train" button, the device starts a countdown of 3 

seconds, allowing the user to take the starting position of the exercise he wants to train, and 

after this 3 seconds, the screen indicates that exercise can begin to be carried out with the 

"Start" message. After the exercise has been done the right way, the screen launches a new 

warning with the message "Train Saved", indicating to the user that the entire training 

process went as it was supposed to, and can now move on to the testing process. 

The detection of the end of the training exercise, and later passage to the testing procedure 

is carried out automatically by the application, without having to be any kind of user 

interaction to indicate this fact, thus making this process more automatic and user- friendly.  

The 5th and 6th screens of Figure 33 are used during the test phase and enable providing real 

time information to the user, and saving data or even the trained exercise itself. This includes 

the number of repetitions done, the similarity with the previously defined exercise (the 

trained exercise), and even a log of all sensory data obtained during the tests.  

The first button, called "Save Exercise," is at the top of the screen and specifically serves to 

save the training exercise in the application, so that the user can test itself at a different time 

the same exercise without having to train. In technical terms, this process makes use, once 

again, from the offered features by SharedPreferences to keep the sensory data, and link 

them to a list. 

The second button is used to store all data obtained either in the training process, as in the 

testing process on files. By clicking the "Save Data" button, the user indicates the application 

that he wants to store the collected sensor data in the training process, the sensor data 

collected in the testing process so far, and the results of repetitions and obtained percentages 

using for this the process of writing files to the internal memory of the smartwatch. This 

process allows the user, but mainly to the developer, perform a more critical analysis of the 
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results and compare each detected repetition by the algorithm with the sensor data, and thus 

ascertain and weaving conclusions on the operation of the application. Technically, the 

process of reading and writing files to SmartWatch may be effected in different ways, and 

in this application was used a library established by the Android, which already implements 

most of the methods for this process. A list of possible commands to elucidate the mechanical 

reading/writing files, this platform presented in the following section: 

 

File myFile2 = new 

File("/sdcard/Train/"+currentTimeStamp+"/"+"Accelerometer_train.txt

"); 

if (!myFile2.exists()){ myFile2.mkdirs();} 

myFile2.createNewFile(); 

FileOutputStream fOut2 = new FileOutputStream(myFile2); 

OutputStreamWriter myOutWriter2 =new OutputStreamWriter(fOut2); 

myOutWriter2.append("Time,Azimuth,Pitch,Roll"+"\r\n"+sbaccelraw); 

myOutWriter2.close(); 

fOut2.close(); 

 

This process requires the app to have I/O privileges defined in the Application Manifest file:  

 

<uses-permission 

android:name="android.permission.WRITE_EXTERNAL_STORAGE"/> 

<uses-permission 

android:name="android.permission.READ_EXTERNAL_STORAGE"/> 

 

Regarding the received information in real-time from the testing process, in technical terms, 

notifications of repetitions of the exercise, performed by the user, as well as their percentage 

quantification are carried out on a secondary Thread, and therefore need to call special 

methods for "transfer" this information to the Main Thread, the only Thread with privileges 

processes to the User Interface. A possible command that describes this process is as follows: 

 

MainActivity.this.runOnUiThread(new Runnable() { 

    @Override 

    public void run() { 

mRepetitionText.setText("" + counter + " Reps"); 

textviewdistance.setText("" + String.format("%.2f", 

textviewpercentage) + "%"); 

 

    } 

}); 

 

By calling the "runOnUiThread" method, the system launches a warning that all the code 

that is present in this cycle will be processed by the  Main Thread, and thus ensure that all 
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operations involving components calls that are directly linked with the device User Interface 

(TextViews, buttons, lists, etc .) are held in the corresponding thread.  

As can be seen in the above command, in the cycle are two commands that perform the 

operations related to the UI components, in this case, writing TextViews notifications that 

are displayed on the screen smartwatch.  

A list of stored exercises that can be tested at any time without the need for prior training is 

also available from screen nr 5. Through this implementation, it is possible to make the 

application even more automatic and transparent to the user, requiring only that he trains 

once the desired exercise, keep all reference data of the same, with the processes explained 

above, and the application itself adds the exercise to a list that, for user convenience, only 

have to choose which exercise he wants to test and start running it. 

After all this theoretical and practical description of the created solution, it remains to 

emphasize that all described processes and operations make use only of the smartwatch 

capabilities, and there is no communication with a smartphone, as this was a differentiating 

factor of this dissertation, and one of the main goals. 

 





 69 

6. TESTS AND RESULTS 

This chapter reports all the tests made to the solution as well as the obtained results. The 

device used to carry out the entire development and testing processes, as well as a 

comparison with other devices of the same platform, are presented. The main advantages 

and disadvantages of the choices made for the implementation of the project are discussed. 

The testing protocol, defined taken into account the objectives of this dissertation, is also 

presented.  

6.1. TESTING 

Tests were conducted with several people in order to validate the solution proposed in this 

dissertation. 

Regarding the hardware used in this project, the options available for the development were 

composed by three smartwatches: 

 Motorola Moto 360 (1st Generation) 

 Lg G Watch W100 
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 Sony SmartWatch 3 SWR50 

An investigation was then drawn up, for the available hardware, taking into account the 

specifications of each one, under various factors that are considered important to the 

operation of such an application, and after gathered all the information relating to each of 

the devices, Table 2 displays a comparison of different specifications from the three 

available smartwatches. 

Table 2: Comparison between the Available SmartWatches 

 Motorola Moto 360 Lg G Watch Sony SmartWatch 3 

CPU 1.0 GHz Quad-core 1.2 GHz 

Cortex-A7 

Quad-core 1.2 GHz 

Cortex-A7 

Memory Internal: 4GB 

RAM: 512 MB 

Internal: 4GB 

RAM: 512 MB 

Internal: 4GB 

RAM: 512 MB 

Sensors Accelerometer, 

Gyroscope, 

Magnetometer 

Accelerometer, 

Gyroscope, 

Magnetometer 

Accelerometer, 

Gyroscope, 

Magnetometer 

Battery Li-Ion 320 mAh Li-Ion 400 mAh Li-Po 420 mAh 

 

In order to create the less favorable environment, the Motorola device, which has the lowest 

processing power, was chosen.  As one of the main objectives was to develop a solution that 

could process all the data independently, having it validated this way would assure that it 

would easily work in other wearable platforms. In fact, later tests with the LG equipment 

showed that the only adaptation needed was down-sampling data acquisition not to force the 

DTW to compute calculations on too long time series. 
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Figure 35:SmartWatch Motorola Moto 360 (1st Generation) [66] 

After this theoretical survey about the existing devices, and all the development made in the 

Moto 360 smartwatch, it was elaborated a testing protocol to which the volunteers, who 

wished to test the application, would have to fulfill, in order to validate the list of objectives 

proposed in this dissertation. 

This protocol consists of the execution of two distinct physical exercises: 

 Biceps Curl 

 

Figure 36: Biceps Curl Exercise Representation [36] 
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 Chest Fly 

 

Figure 37: Chest Fly Exercise Representation [39] 

Volunteers were asked to perform the same set of tasks: 

1.  Training Exercise; 

2. Perform 5 correct repetitions of the exercise; 

3.  Perform 5 repetitions of the exercise, alternating between a correct repetition, and 

the execution of only a portion of the exercise; 

4. Stand still for 5 seconds. 

This testing protocol enables validating the following procedures: 

 Corrected Execution of the Training Process; 

 Detection of the exercise repetitions; 

 Analysis of the performance of the training 

 Presence or absence of false positives in the performed repetitions; 

Thus, they were prepared a series of tests performed by 9 subjects of both sexes, with 

different ages and with different physical conditions. The obtained results are then presented 

in the following subsection. 
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6.2. RESULTS 

In this subchapter are obtained the main conclusions regarding the results of the tests carried 

out with the created application, and therefore this is an important part of this thesis, in that 

is in this section that the validation process of the proposed objectives is executed. 

In the following tables are presented statistical data relating to the performed repetitions in 

each of the exercises, including the average and standard deviation of the percentages 

obtained in each of the repetitions. 

Table 3: Results from Performing of Exercise 1 

 5 Correct Repetitions  5 Alternating Repetitions 

Repetitions Average (%) Std. Deviation Repetitions Average (%) Std.Deviation 

1 90.2 2.66 1 91.3 3.90 

2 90.8 3.04 2 66.0 8.30 

3 91.8 2.71 3 92.5 2.17 

4 91.4 3.60 4 72.2 8.24 

5 90.5 3.30 5 91.2 2.50 

Table 4: Results from Performing of Exercise 2 

 5 Correct Repetitions  5 Alternating Repetitions 

Repetitions Average (%) Std.Deviation Repetitions Average (%) Std.Deviation 

1 93.78 1.48 1 90.78 2.04 

2 92.89 3.21 2 75.89 7.06 

3 91.78 2.68 3 93.14 2.73 

4 92.25 1.98 4 75.86 8.78 

5 92.00 2.58 5 90.29 3.40 
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As it can be seen, when users performed a series of 5 correct repetitions, relating to the 

trained exercise, the percentage corresponding to the similarity between the two exercises, 

presented values between 90% and 92%, indicating that the algorithm has recognized the 

performed repetitions as very similar to the trained exercise. Regarding the standard 

deviation, the values are relatively low indicating that, overall, all repetitions were carried 

out in the same range of values. 

For the second series, volunteers had to perform five repetitions that included a correct 

repetition followed by an incomplete execution of the exercise. The first, third and last 

repetitions are related to the execution of a complete repetition, as evidenced by the high 

percentage of recognition (~ 90%), while the second and fourth repetitions indicate the 

execution of only half, or part, of the trained exercise, which is also recognized by the 

application with a lower percentage (~ 60% -70%), demonstrating the good recognition rate 

of this solution. 

Regarding the standard deviation, it is possible to see a high value in relation to the two 

repetitions representing the execution of only part of the exercise, an aspect easily explained 

by the fact that the execution of this exercise is relative to each person, that is, as there is no 

certain limit to indicate what is the execution of only part of the exercise, each volunteer that 

performed this type of repetition, did the exercise in its own way, allowing that the range of 

data was higher, between 55% and 75 %. 

Although the main results can be said to be reasonable, there was a need to be performed a 

second test, with 9 volunteers, where at the end of each session were saved all the obtained 

data, in a way that can perform a deeper evaluation of the application operation, being that, 

the used testing protocol also suffered a minor change, so that it can highlight certain aspects 

of the application, in a more uniform way, so the standards for the tests pass to be: 

1. Training Exercise; 

2. Performing 5 corrected repetitions of the exercise; 

3. Performing 10 repetitions of the exercise, alternating between a correct repetition, 

and the execution of only a portion of the exercise; 

4. Stand still for 5 seconds; 
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With this change to the protocol, it is possible to compare and demonstrate, in a more 

complete way, the quantitative differences between each repetition of the performed 

exercise. 

In Table 5 and Table 6, using the same approach as the first test, presents the obtained results 

in each of the repetitions performed with the two exercises. 

Table 5: Results from Performing of Exercise 1 

 5 Correct Repetitions  10 Alternating Repetitions 

Repetitions Average (%) Std.Deviation Repetitions Average (%) Std. Deviation 

1 95.90 4.87 1 97.02 1.95 

2 96.59 1.48 2 63.13 9.44 

3 96.13 1.35 3 96.72 1.56 

4 94.35 1.63 4 73.54 7.42 

5 94.12 2.00 5 96.26 2.18 

 6 71.86 7.78 

7 93.87 3.57 

8 61.49 14.44 

9 92.80 5.56 

10 63.81 14.39 

 

Table 6: Results from Performing of Exercise 2 

 5 Correct Repetitions  10 Alternating Repetitions 

Repetitions Average (%) Std. Deviation Repetitions Average (%) Std. Deviation 
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1 97.41 2.69 1 98.44 0.41 

2 97.74 1.02 2 68.99 10.97 

3 96.95 2.10 3 97.52 1.13 

4 95.72 3.25 4 67.80 9.47 

5 91.53 6.35 5 96.40 1.84 

 6 68.78 11.11 

7 94.65 3.82 

8 71.49 10.82 

9 92.61 6.05 

10 63.55 8.89 

 

The change in the testing protocol, from 5 alternating repetitions to 10 alternating repetitions, 

was mainly due to make the whole process more consistent with each other, and get to infer 

conclusions regarding the repetitions running only part of the exercise, seen that in the first 

test only was possible to check this for two repetitions. 

Changes in the algorithm of the application have brought advantages and corrections to the 

experienced limitations in the first test, as the improvement in sensitivity training process 

meant that the volunteers did not have to run several times the training exercise, until it is 

considered the correct, as well as the improved recognition of repetitions, within the process 

tests, led to the appearance of false positives was practically null. These corrections can be 

viewed, in a certain way, with the logging of sensory data, obtained in each session of tests, 

a factor which proved to be important to enhance the development of the solution itself. 

With the introduction of the logging functionality of all obtained data, it is also possible to 

draw a number of conclusions regarding the trained exercise, and the very own repetition 

recognition process. It is presented, in the following figures, in a more graphic form, the 
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obtained data in the training and testing process of the performed exercise by one of the 

volunteers.  

 

Figure 38: Sensory data from the Exercise Training Process 

 

Figure 39: Sensory data from the 5 repetitions of the Exercise Testing Process 
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Figure 40: Sensory data from the Testing Process of 10 alternating repetitions of the exercise 

Figure 38, Figure 39 and Figure 40 represent readings, only from the Accelerometer, for 

training exercises, 5 repetitions test and 10 alternate repetitions test, respectively. After 

further analysis, it is possible to show the pattern that results from each repetition of the 

exercise, a pattern that has to be, in a way, similar to the waveform of Figure 38, since this 

is the result of the training exercise, so the reference pattern for the application of the 

algorithms use in comparisons of test exercises. 

In Figure 39 is possible observe 5 repetitions of the exercise trained in Figure 38, represented 

by each of the “slopes" present in the sample, being observed that the amplitude of the 

"slopes" is practically the same for all repetitions, as well as the scale of the movement, over 

time, albeit with minor differences, is also virtually identical in all repetitions of the exercise. 

In relation to Figure 40, regarding the 10 alternate repetitions, are observed differences along 

the represented waveform, for some repetitions amplitude, being this amplitude that 

evidence the quality of the performed exercise. In this particular case, the 2nd, 4th, 6th, 8th and 

10th repetitions exhibit a maximum amplitude of 6-7g while the remaining repetitions are 

around 8.5-9 g, and this factor, combined with the readings of values device rotation, and 

performing the DTW calculations, result in different percentage values of the exercise, for 

when the repetitions amplitudes are different of the reference range. 
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By analyzing the graphs of Figure 39 and Figure 40, it is possible to complete the proper 

functioning of the created application, as regards the pattern recognition process, or in this 

case of study, the recognition of repetitions of physical exercises.  

In order to finalize this document, is presented in the following chapter, all the conclusions 

reached in the realization of this project, and put in perspective a possible future work that 

may add value to the created application.  
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7. CONCLUSIONS 

The main objective of this thesis was to develop a solution for a wearable device that could 

be used to verify the accuracy of physical exercises. The prototype implements all the 

functionalities defined at the beginning of this project and results show a good accuracy on 

detecting and quantifying previously trained physical exercises. 

Testing was performed using a device with low processing capabilities in order to ensure 

that the solution would have a broad market and could be deployed in a large number of 

hardware devices. To guarantee this, the developed algorithm uses parallel processing and 

threading. All the tests showed that the approach used was valid and the software could be 

used in Motorola 360 smart watch, one of the less sophisticated devices in the market 

currently. 

To our knowledge, the proposed solution is innovative when compared to the existing 

products that aim a similar application, given that it is a standalone solution – there is no 

need to use a smartphone for processing the data as it happens in the other products. 

Due to the fast technological evolution, it is quite likely that new devices with additional 

processing power will be made available by manufacturers, making it possible to easily 

introduce new functionalities in the current software version making it more versatile and 
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complete. We foresee application of our work in areas as sports, health, ambient assisted 

living, etc. 

Some improvements, that would enable creating a final product in terms of usability and 

functionalities, are: 

 Detect a physical exercise that does not start and end in the same position. 

 Develop a better User-Interface and User-Experience of the Android Wear App. 

 Test the solution in individuals with reduced mobility (Physiotherapy) 

 Incorporate activity monitoring and fall detection algorithms in the Android Wear 

App, in order to create a complete and better experience. 
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