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Abstract — This paper studies periodic gaits of quadruped 
and hexapod locomotion systems. The purpose is to determine 
the best set of gait and locomotion variables for different 
robot velocities based on the system dynamics during 
walking. In this perspective, several performance measures 
are formulated and a set of experiments that reveal the 
influence of the gait and locomotion variables upon those 
proposed indices are performed. 
 

I. INTRODUCTION 
 

Walking machines allow locomotion in terrain 
inaccessible to other type of vehicles, since they do not 
need a continuous support surface. On the other hand, the 
requirements for leg coordination and control impose 
difficulties beyond those encountered in wheeled robots 
[1]. Gait analysis and selection is a research area requiring 
an appreciable modeling effort for the improvement of 
mobility with legs in unstructured environments [2 – 6]. 
Previous studies mainly focused in the structure and 
selection of locomotion modes. Nevertheless, there are 
different optimization criteria such as energy efficiency 
[3], stability [4], velocity [5], mobility [6], comfort and 
environmental impact. In this line of thought, a simulation 
model for multi-leg locomotion systems was developed, 
for several periodic gaits [1, 7]. This study intends to 
generalize previous work [8 – 9] through the formulation 
of several indices measuring the system dynamics and the 
hip trajectory errors during forward straight line walking at 
different velocities. 

Bearing these facts in mind, the paper is organized as 
follows. Section two introduces the robot kinematic model 
and the motion planning scheme. Sections three and four 
present the robot dynamic model and control architecture 
and the optimizing indices, respectively. Section five 
develops a set of experiments that reveal the influence of 
the locomotion parameters and robot gaits on the 
performance measures, as a function of robot body 
velocity. Finally, section six outlines the main conclusions. 
 

II. KINEMATICS AND TRAJECTORY PLANNING 
 

We consider a walking system (Fig. 1) with n legs 
(n = {4, 6} ≡ {quadruped, hexapod}), equally distributed 
along both sides of the robot body, having each two 
rotational joints (i.e., j = {1, 2} ≡ {hip, knee}). 

Motion is described by means of a world coordinate 
system. The kinematic model comprises: the cycle time T, 
the duty factor β, the transference time tT = (1−β)T, the 
support time tS = βT, the step length LS, the stroke pitch SP, 
the body height HB, the maximum foot clearance FC, the ith 
leg lengths Li1 and Li2 and the foot trajectory offset Oi 
(i = 1, …, n). Moreover, we consider a periodic trajectory 
for each foot, with body velocity VF = LS / T. 

 
 

Fig. 1. Kinematic and dynamic multi-legged robot model 
 
Gaits describe sequences of leg movements, alternating 

between transfer and support phases. Given a particular 
gait and duty factor β, it is possible to calculate, for leg i, 
the corresponding phase φi, the time instant where each leg 
leaves and returns to contact with the ground and the 
cartesian trajectories of the tip of the feet (that must be 
completed during tT) [1]. Based on this data, the trajectory 
generator is responsible for producing a motion that 
synchronises and coordinates the legs. 

The robot body, and by consequence the legs hips, is 
assumed to have a desired horizontal movement with a 
constant forward speed VF. Therefore, for leg i the 
cartesian coordinates of the hip of the legs are given by 
pHd(t) = [xiHd(t), yiHd(t)]

T: 

( ) [ ]TF Bt V t H=Hdp  (1) 

Regarding the feet trajectories, on a previous work we 
evaluated two alternative space-time foot trajectories, 
namely a cycloidal and a sinusoidal function [10]. It was 
demonstrated that the cycloid is superior, because it 
improves the hip and foot trajectory tracking, while 
minimising the corresponding joint torques. For different 
acceleration profiles of the foot trajectory there were no 
significant changes of these results. 

Considering these results, for each cycle the desired 
trajectory of the foot of the swing leg is computed through 
a cycloid function (Eq. 2). For example, considering that 
the transfer phase starts at t = 0 for leg i = 1 we have for 
pFd(t) = [xiFd(t), yiFd(t)]

T: 
• during the transfer phase: 

( )
T

2 2
sin , 1 cos

2 2
C

F

FT t t
t V t

T T

       = − −              
Fdp

π π
π

 (2) 
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• during the stance phase: 

( ) [ ]T
0Ft V T=Fdp  (3) 

The algorithm for the forward motion planning accepts 
the desired cartesian trajectories of the leg hips pHd(t) and 
feet pFd(t)  as inputs and, by means of an inverse 
kinematics algorithm ψ−1, generates the related joint 
trajectories Θd(t) = [θi1d(t), θi2d(t)]

T, selecting the solution 
corresponding to a forward knee: 

( ) ( ) ( ) ( ) ( )T

id idt x t y t t t= = −  d Hd Fdp p p  (4a) 

( ) [ ] ( )1( ) ( )t t t t−= ⇒ =   d d d dp ψ Θ Θ ψ p  (4b) 

( )1( ) ,t t− ∂= =   ∂d d

ψΘ J p J
Θ

 (4c) 

In order to avoid the impact and friction effects, at the 
planning phase we estimate null velocities of the feet in the 
instants of landing and taking off, assuring also the 
velocity continuity. 
 

III. DYNAMICS AND CONTROL ARCHITECTURE 
 
A. Inverse Dynamics Computation 
 

The planned joint trajectories constitute the reference for 
the robot control system. The model for the robot inverse 
dynamics is formulated as: 

( ) ( ) ( ) ( )= + + − − T
RH F RFΓ H Θ Θ c Θ,Θ g Θ F J Θ F  (5) 

where Γ = [fix, fiy, τi1, τi2]T (i = 1, …, n) is the vector of 
forces/torques, Θ = [xiH, yiH, θi1, θi2]

T is the vector of 
position coordinates, H(Θ) is the inertia matrix and 
( )c Θ,Θ  and g(Θ) are the vectors of centrifugal/Coriolis 

and gravitational forces/torques, respectively. The n × m 
(m = 2) matrix ( )T

FJ Θ  is the transpose of the robot 
Jacobian matrix, FRH is the m × 1 vector of the body inter-
segment forces and FRF is the m × 1 vector of the reaction 
forces that the ground exerts on the robot feet. These 
forces are null during the foot transfer phase. 

Furthermore, we consider that the joint actuators are not 
ideal, exhibiting a saturation given by: 

( )
,

sgn ,

ijm ijMaxijC

ijm
ijC ijMax ijm ijMax

 ≤=  ⋅ >

τ ττ
τ

τ τ τ τ
 (6) 

where, for leg i and joint j, τijC is the controller demanded 
torque, τijMax is the maximum torque that the actuator can 
supply and τijm is the motor effective torque. 
 
B. Robot Body Model 
 

Figure 1 presents the dynamic model for the hexapod 
body and foot-ground interaction. It is considered a robot 
body compliance because walking animals have a spine 
that allows supporting the locomotion with improved 
stability. In the present study, the robot body is divided in 
n identical segments (each with mass Mbn

−1) and a linear 
spring-damper system is adopted to implement the intra-
body compliance according to: 

 
 

Fig. 2. Multi-legged robot control architecture 
 

( )' '
' 1

' ' ' ',

u

ixH xH i xH xH i xH
i

i xH iH i H i xH iH i H

f K B

x x x x

=

= − ∆ − ∆

∆ = − ∆ = −

∑
 (7a) 

( )' '
' 1

' ' ' ',

u

iyH yH i yH yH i yH
i

i yH iH i H i yH iH i H

f K B

y y y y

=

= − ∆ − ∆

∆ = − ∆ = −

∑
 (7b) 

where (xi’H, yi’H) are the hip coordinates and u is the total 
number of segments adjacent to leg i, respectively. In this 
study, the parameters KηΗ and BηΗ (η = {x, y}) in the 
{horizontal, vertical} directions, respectively, are defined 
so that the body behaviour is similar to the one expected to 
occur on an animal (Table I). 
 
C. Foot-Ground Interaction Model 
 

The contact of the ith robot foot with the ground is 
modeled through a non-linear system [10] with a linear 
stiffness KηF and a non-linear damping BηF (η = {x, y}) in 
the {horizontal, vertical} directions, respectively (see Fig. 
1), yielding: 

( )
0 0,

ixF xF ixF xF iyF ixF

ixF iF iF ixF iF iF

f K B

x x x x

= − ∆ − −∆ ∆

∆ = − ∆ = −
 (8a) 

( )
0 0,

v

iyF yF iyF yF iyF iyF

iyF iF iF iyF iF iF

f K B

y y y y

= − ∆ − −∆ ∆

∆ = − ∆ = −
 (8b) 

where xiF0 and yiF0 are the coordinates of foot i touchdown 
and v is a parameter dependent on the ground 
characteristics. The values for the parameters KηF and BηF 
(Table I) are based on the studies of soil mechanics [10]. 
 
D. Control Architecture 
 

The general control architecture of the multi-legged 
locomotion system is presented in Fig. 2. The trajectory 
planning is held at the cartesian space but the control is 
performed in the joint space, which requires the integration 
of the inverse kinematic model in the forward path. The 
control algorithm considers an external position and 
velocity feedback and an internal feedback loop with 
information of foot-ground interaction force. 
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On a previous work it was demonstrated the superior 
performance of introducing force feedback and this was 
highlighted for the case of having non-ideal actuators with 
saturation or variable ground characteristics [10]. 

Based on these results, in this study we adopt a PD 
controller for Gc1(s) and a simple P controller for Gc2, with 
gain Kpj = 0.9. For the PD algorithm we have: 

( )1 , 1, 2C j j jG s Kp Kd s j+= =  (9) 

where Kpj and Kdj are the proportional and derivative 
gains. 
 
IV. MEASURES FOR PERFORMANCE EVALUATION 
 

In mathematical terms we establish several global 
measures of the overall mechanism performance in an 
average sense [8 − 9]. In this perspective, we define three 
indices {Eav, Dav, TL} inspired on the system dynamics and 
one index {εxyH} based on the trajectory tracking errors. 

A first measure in this analysis is the mean absolute 
density of energy per travelled distance Eav. This index is 
computed assuming that energy regeneration is not 
available by actuators doing negative work, that is, by 
taking the absolute value of the power. At a given joint j 
and leg i, the mechanical power is the product of the motor 
torque and angular velocity. The global index Eav is 
obtained by averaging the mechanical absolute energy 
delivered over the travelled distance L: 

( ) ( )
0

1 1

1 n m T

av ijm ij
i j

E t t dt
L = =

= ∑∑∫ τ θ  (10) 

Although minimising energy appears to be an important 
consideration, it may occur instantaneous, very high, 
power demands. In such cases, the average value can be 
small while the peaks are physically unrealisable. An 
alternative index is the standard deviation per meter that 
evaluates the dispersion around the mean absolute energy 
over a complete cycle T and travelled distance L: 

( ) ( ) ( )
1 1

n m

i ijm ij
i j

P t t t
= =

=∑∑ τ θ  (11a) 

( ) 2

0

1 1 T

av i avD P t E T dt
L T

 = − ∫  (11b) 

where Pi is the total instantaneous absolute mechanical 
power. 

A third measure consists on TL, the density of power lost 
in the joint actuators per travelled distance L, that is: 

( ) 2

0
1 1

1 1 n m T

L ijm
i j

T t dt
L T = =

 =  ∑∑∫ τ  (12) 

In what concerns the hip trajectory following errors we 
can define the index: 

( )2 2

1 1

1
,

( ) ( ), ( ) ( )

SNn

xyH ixH iyH
i kS

d r d r
ixH H H iyH H H

N

x k x k y k y k

= =

= ∆ + ∆

∆ = − ∆ = −

∑ ∑ε
 (13) 

 

TABLE I 

SYSTEM PARAMETERS 
 

Robot model parameters Locomotion parameters 
SP 1 m LS 1 m 
Lij 0.5 m HB 0.9 m 

Oi 0 m FC 0.1 m 
Mb 88.0 kg Ground parameters 
Mij 1 kg KxF 1302152.0 Nm−1 

KxH 105 Nm−1 KyF 1705199.0 Nm−1 

KyH 104 Nm−1 BxF 2364932.0 Nsm−1 

BxH 103 Nsm−1 ByF 2706233.0 Nsm−1 

ByH 102 Nsm−1 v 0.9 

 
where NS is the total number of samples for averaging 
purposes and {d, r} indicate the ith samples of the desired 
and real position, respectively. 

In all cases the performance optimization requires the 
minimization of each index. 
 

V. SIMULATION RESULTS 
 

To illustrate the use of the preceding concepts, in this 
section we develop a set of simulation experiments to 
estimate the influence of parameters β, LS and HB, when 
adopting periodic gaits. 

In a first phase, we study an hexapod adopting the WG 
and then examine the variation of the performance indices 
with other gaits, for different controller tunings. 
Afterwards, an identical analysis is developed for a 
quadruped robot. 

In a second phase, we implement several walking 
patterns commonly found in nature for quadrupeds. The 
quadruped robot is then simulated in order to compare the 
performance of the different gaits versus VF, for different 
controller tunings. 

In both phases the robot is controlled through a PD joint 
leg controller. With this algorithm, large forces occur 
during the feet impact with the ground, giving rise to 
torques that propagate through the leg mechanical structure 
up to the joints. In order to determine the impact influence 
upon the results, the experiments are repeated for an ideal 
case where we have the planned robot trajectories. 

In all simulations, the discrete-time control algorithm is 
evaluated with a sampling frequency of fsc = 2.0 kHz while 
the robot and environment dynamics are calculated with a 
sampling frequency of fsr = 20.0 kHz. 
 
A. Controller Tuning Methodology 
 

For the system simulation we consider the robot body 
parameters, the locomotion parameters and the ground 
parameters presented in Table I. Moreover, we assume 
high performance joint actuators with a maximum torque 
in (6) of τijMax = 400 Nm. 

To tune the controller we adopt a systematic method, 
testing and evaluating a grid of several possible 
combinations of controller parameters, while establishing a 
compromise in what concerns the minimisation of Eav (10) 
and εxyH (13). 
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TABLE II 

HEXAPOD CONTROLLER PARAMETERS 
 

 VF = 0.2 ms−1 VF = 1.0 ms−1 VF = 5.0ms−1 

Kp1 8000 Kp1 10000 Kp1 200 

Kd1 0 Kd1 40 Kd1 100 

Kp2 500 Kp2 500 Kp2 2000 
β = 25% 

Kd2 60 Kd2 20 Kd2 60 

Kp1 9000 Kp1 1000 Kp1 700 

Kd1 120 Kd1 180 Kd1 100 

Kp2 5000 Kp2 2500 Kp2 7500 
β = 50% 

Kd2 0 Kd2 40 Kd2 10 

Kp1 7000 Kp1 4000 Kp1 7500 

Kd1 140 Kd1 180 Kd1 60 

Kp2 4000 Kp2 3500 Kp2 200 
β = 75% 

Kd2 20 Kd2 20 Kd2 10 

 
B. Locomotion Parameters versus Body Forward Velocity 
 

In order to analyse the evolution of the locomotion 
parameters β, LS and HB with VF, for a given gait, the robot 
controller is tuned for different values of the forward 
velocity VF = {0.2 ms−1, 1.0 ms−1, 5.0ms−1} and duty factor 
β = {25%, 50%, 75%}, while adopting the WG, resulting 
the possible controller parameters presented in Table II. 

After completing the controller tuning, the robot forward 
straight line locomotion is simulated for different gaits, 
while varying the body velocity on the range 
0.2 ≤ VF ≤ 4.0 ms−1. In the simulations, we consider the 
gaits {Wave, Equal Phase Half Cycle, Equal Phase Full 
Cycle, Backward Wave, Backward Equal Phase Half 
Cycle, Backward Equal Phase Full Cycle} ≡ {WG, EPHC, 
EPFC, BW, BEPHC, BEPFC} [1]. For each gait and body 
velocity, the set of locomotion parameters (β, LS, HB) that 
minimises a given optimization index is determined. 

The charts presented in Fig. 3 depict the minimum value 
of the index Eav, on the range of VF under consideration, 
for three different robot joint leg controller tunings. It is 
possible to conclude that the minimum values of the index 
Eav increase with VF, independently of the adopted 
controller tuning. Although not presented here, due to 
space limitations, the behaviour of the charts min[Eav(VF)], 
for all other controller tunings present similar shapes. This 
increase with VF is observed on the other performance 
indices, irrespectively of the controller tuning adopted, as 
can be seen in the chart of Fig. 4 for the case of Dav. 

Next we analyse how the locomotion parameters vary 
with VF. Figures 5 and 6 show that the optimal value of β 
decreases with VF, while analysing the robot locomotion 
through the indices Eav and TL, respectively. Moreover, 
Fig. 7 reveals that the optimal value of LS must increase 
with VF when considering the performance index Eav. 
Finally, Fig. 8 shows that HB must decrease with VF from 
the viewpoint of the performance index TL. 

The variations of the three locomotion parameters (β, LS, 
HB) are similar when analysing the robot locomotion 
through the other performance indices and for the different 
robot joint leg controller tunings under consideration 
(Table II). 

For the other periodic walking gaits considered on this 
study, the evolution of the optimization indices and the 
locomotion parameters with VF follows the same pattern. 
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Fig. 3. Plots of min[Eav(VF)] for FC = 0.1 m, WG 
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Fig. 4. Plots of min[Dav(VF)] for FC = 0.1 m, WG 
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Fig. 5. Plots of β(VF) for min(Eav) with FC = 0.1 m, WG 
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Fig. 6. Plots of β(VF) for min(TL) with FC = 0.1 m, WG 
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Fig. 7. Plots of LS(VF) for min(Eav) with FC = 0.1 m, WG 
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Fig. 8. Plots of HB(VF) for min(TL) with FC = 0.1 m, WG 
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Fig. 9. Plots of LS(VF) and HB(VF) for min(Eav) with FC = 0.1 m, WG 

 
Therefore, we conclude that the locomotion parameters 

should be adapted to the walking velocity in order to 
optimize the robot performance. As VF increases, the 
values of β and HB, should be decreased and the value of 
LS increased. 

Finally, the previous experiences are repeated for the 
case of the planned robot trajectories. Figure 9 shows the 
evolution of the locomotion parameters LS and HB with VF 
when considering the performance index Eav. We can see 
that LS must increase and HB must decrease with VF. These 
results agree with the previous ones. Regarding the optimal 
value of β it is independent of VF, and must be kept small. 
The variations of the three locomotion parameters (β, LS, 
HB) are similar when analysing the robot locomotion 
through the other performance indices. 

The behaviours just described for the case of a hexapod 
robot, apply as well to the case of a quadruped robot, either 
for the different locomotion gaits as for the different 
controller tunings. These results seem to agree with the 
observations of the living hexapod and quadruped 
creatures [11, 12]. 
 
C. Gait Selection versus Body Forward Velocity 
 

In a second phase we determine the best locomotion 
gait, at each forward robot velocity on the range 
0.2 ≤ VF ≤ 4.0 ms−1. 

For this purpose, we test the forward straight line 
quadruped robot locomotion, as a function of VF, when 
adopting different gaits often observed in several 
quadruped animals while they walk / run at variable speeds 
[7]. Therefore, we consider three walking gaits (Walk, 
Chelonian Walk and Amble), two symmetrical running 
gaits (Trot and Pace) and five asymmetrical running gaits 
(Canter, Transverse Gallop, Rotary Gallop, Half-Bound 
and Bound). These gaits are usually adopted by animals 
moving at low, moderate and high speed, respectively. 
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Fig. 10. Plots of min[Eav(VF)] for FC = 0.1 m 
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Fig. 11. Plots of min[Dav (VF)] for FC = 0.1 m 
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Fig. 12. Plots of min[TL (VF)] for FC = 0.1 m 
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Fig. 13. Plots of min[εxyH(VF)] for FC = 0.1 m 

 
In the analysis are used the system and controller 

parameters (obtained for the hexapod robot walking with 
the WG, VF = 1.0 ms−1 and β = 50%) presented in Tables I 
and II, respectively. 

Figures 10 – 13 present the charts of min[Eav(VF)], 
min[Dav(VF)], min[TL(VF)] and min[εxyH(VF)] for the differ-
rent gaits. Figure 10 suggests that the locomotion should 
be Trot, Amble, Canter and Bound as the speed increases. 
Figure 11 indicates that the Rotary Gallop, Amble and 
Walk gaits should be adopted for low, medium and high 
velocities, respectively. Finally, Figures 12 and 13 point 
out that the quadruped locomotion should adopt Chelonian 
Walk, Walk, Trot and Amble gaits as VF increases. 
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TABLE III 

QUADRUPED CONTROLLER PARAMETERS 
 

Gait Kp1 Kd1 Kp2 Kd2 

Walk 1000 40 2000 40 

Chelonian Walk 5000 200 2500 20 

Amble 1000 20 1000 60 

Trot 1000 140 2000 20 

Pace 1000 60 500 40 

Canter 1000 0 1500 20 

Transverse Gallop 6000 40 1000 40 

Rotary Gallop 4000 0 500 80 

Half-Bound 4000 0 3000 20 

Bound 2000 0 500 20 

 
We can conclude that, from the viewpoint of each 

proposed optimising index, the robot gait should change 
with the desired forward body velocity. These results seem 
to agree with the observations of the living quadruped 
creatures [12]. However, the results from the different 
indices are not totally consistent with each other, with 
exception of TL and εxyH (see Fig. 12 and 13). 

In order to analyse the influence of the controller tuning, 
the robot controller is re-tuned for each gait, considering a 
forward velocity VF = 1.0 ms−1 while adopting the 
locomotion parameters LS = 1.0 m and HB = 0.9 ms−1, 
leading to the controller parameters of Table III. 

Fig. 14 analyses the robot locomotion through the index 
TL and points out that the quadruped locomotion should 
adopt the Chelonian Walk, Walk, Amble, Pace and, 
finally, the Trot gait as the robot speed increases. 
However, when comparing the results obtained through the 
other performance indices, we conclude, again, that they 
are not homogeneous. 

Finally, the previous experiences are repeated for the 
case of the planned robot trajectories. Although not 
presented here, when analysing the locomotion through the 
indices Eav and TL the preferred gait is the Bound, on the 
range of VF under study. Concerning the analysis through 
the index Dav, the quadruped should adopt the Walk, 
Amble, Transverse Gallop, Bound and Rotary Gallop gaits 
as VF increases. Once again, we conclude that the results 
obtained through the different performance indices are not 
homogeneous. 
 

VI. CONCLUSIONS 
 

In this paper we have compared several dynamic aspects 
of multi-legged robot locomotion gaits. By implementing 
different motion patterns, we estimated how the robot 
responds to a variety of locomotion variables such as duty 
factor, step length and body height and to the forward 
speed. For analyzing the system performance four 
quantitative measures were defined based on the system 
dynamical properties and the trajectory errors. A set of 
experiments determined the best set of gait and locomotion 
variables, as a function of the robot velocity. 

The results show that the locomotion parameters should 
be adapted to the walking velocity in order to optimize the 
robot performance. As the forward velocity increases, the 
values of β and HB, should be decreased and the value of 
LS increased. Furthermore, for the case of a quadruped 
robot, we concluded that the gait should be adapted to VF. 
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Fig. 14. Plots of min[TL (VF)] for FC = 0.1 m 

 
While our focus has been on a dynamic analysis in 

periodic gaits, certain aspects of locomotion are not 
necessarily captured by the proposed measures. 
Consequently, future work in this area will address the 
refinement of our models to incorporate more unstructured 
terrains, namely with distinct trajectory planning concepts. 
The effect of distinct values of the robot intra-body 
compliance parameters will also be studied, since animals 
use their body compliance to store energy at medium and 
high velocities. 
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