
 

 

 

 
 

 46  
 

Çağlayan-Akay, E., & Sedefoğlu, G. (2017). What does Bayesian probit regression 
tell us about Turkish female- and male-headed households poverty?. Journal of 
International Studies, 10(1), 46-62. doi:10.14254/2071-8330.2017/10-1/3 

What does Bayesian probit regression tell 
us about Turkish female- and male-
headed households poverty?
 

Ebru Çağlayan-Akay 

Marmara University  

Turkey 

ecaglayan@marmara.edu.tr 

Gülşah Sedefoğlu 
Özyeğin University 
Turkey 
gulsahsedefoglu@gmail.com 
 

Abstract. The objectives of the study are to examine the determinants of the poverty 

status and to illustrate the probabilities of household poverty in Turkey using the 

Household Budget Survey which was prepared by the Turkish Statistical Institute, 

2013. The data is reorganized as rural and urban area considering female- and 

male-headed households so that to analyze the determinants of household 

poverty. Bayesian probit regression is applied using a Markov Chain algorithm, 

Gibbs sampler. The results of the study show that the most effective variables, 

which cause a decrease of the probability of living under poverty line, are 

education level of bachelor for 4 years, master and PhD for female-headed 

households and household type of being single adult for male-headed households 

in urban area, working full time for male- and female-headed households in rural 

area. However, other most remarkable variables, which cause an increased risk of 

poverty, are being elderly, disabled or inoperable for male-headed households, 

being illiterate for female-headed households in urban area and for rural area, 

being elderly, disabled or inoperable for male- and marital status of being single 

for female-headed households. 
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INTRODUCTION 

The most common qualitative choice model is the probit model that belongs to the class of latent 

variable threshold models for analyzing dichotomous variables. This model is appropriate when the 

response takes one of only two possible values representing success and failure, or more generally the 
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presence or absence of an attribute of interest. In the literature generally, probit model is applied ignoring 

heteroskedasticity. Caglayan & Sedefoglu (2016) mentioned in their study that heteroskedasticity and 

normality should be tested to overcome incorrect standard errors and inconsistent parameters in the probit 

model. When heteroskedasticity problem is observed in a model, heteroskedastic probit model is chosen 

instead of a probit one. Estimation of the probit model can be done either in a likelihood, or a Bayesian 

framework. Maximum likelihood estimation has limitations, particularly, in small samples  giving inefficient 

and non-normal estimations. Bayesian approach is more flexible and gives better results, especially in small 

samples, unlike likelihood approach. Furthermore, Bayesian approach gives us a rich picture of uncertainty, 

something which is essential when we have complex models and relatively few observations. 

The aim of the study is to examine the phenomenon of household poverty and to compare results by 

gender. For this aim, female- and male-headed households are examined in both rural and urban areas, 

separately. This study is the first study which uses a Bayesian method approach for Bayesian probit 

regression to analyze the determinants of poverty.  

The data is obtained from Turkish Household Budget Survey for the year 2013 and is divided into four 

groups as female-headed households and male-headed households in urban areas and female-headed 

households and male-headed households in rural areas. Dividing the data into four groups leads us to work 

on small samples. To get rid of the normality and small sample problems, Bayesian probit regression is 

employed in this study. Bayesian approach does not impose restrictive normality assumptions on sampling 

distributions of estimates and does not rely on large sample approximations. This property makes this 

approach especially appealing for studies on small samples. In the Bayesian probit regression, the aim is to 

estimate posterior distribution for all variables and for this aim, prior distribution and likelihood function 

of the probit model is employed. Besides, there is a need to see whether variables receive posterior 

distribution and stability of chain or not using some tests which are mentioned under the results of Bayesian 

probit estimation section. 

In the study, a dichotomous variable shows whether household is poor or not. Specifications of 

Bayesian probit regression model are conceived to identify micro-level household and individual 

characteristics (such as education level of the household head, the number of children in a household, 

employment status, household type etc.) having effect on the poverty status (i.e., being poor or non-poor). 

The results on poverty status are oftenly used further in policy framing. The findings show that working full 

time and education level of bachelor, master or PhD decrease the probability of living under poverty line 

having the highest effect on household poverty for female-headed household while household type of a 

single adult and having high school, technical and industrial vocational high school degrees cause a decrease 

of poverty probability for male-headed households in urban areas. In rural areas, working full time and 

having health insurance for female-headed household; working full time and having high school, technical 

and industrial vocational high school degree for male-headed household reduce the probability of living 

under poverty line. 

The importance of the study can be explained with three perspectives which are economics, 

econometrics and literature. On the economics side, this would be analyzing the determinants of household 

poverty for females, who are affected very deeply by poverty, and for males. Also, evaluating the results in 

terms of policies against poverty. On the econometrics side, applying a method which is very powerful to 

overcome some problems seen in classical probit model in small samples. On the literature side, this study 

is the first empirical one to apply Bayesian probit regression in order to analyze household poverty. 

This paper is organized as follows: The following section includes the introduction. Section 2 presents 

literature review, and Section 3 represents Bayesian Probit Regression. The data and sampling procedures 
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are introduced in Section 4. Variables are presented in Section 5. Section 6 reports the estimation results. 

The final section presents the conclusions. 

LITERATURE REVIEW 

In the literature, Bayesian logit and probit models are applied to make a comment for different topics 

such as credit scoring, life satisfaction or generally, to compare Bayesian and classical form of the models. 

For instance; Altaleb, Chauveau (2001), Mila, Michailides (2006), Genkin, Lewis & Madigan (2007), Tektas 

& Guney (2008), Cengiz, Terzi, Şenel, Murat (2012), Lund & Sørensen (2012), Merino, Olmos, Cebollero 

(2012), Acquah (2013), etc. and all those studies found that Bayesian approach gives better results than 

classical approach. However, this paper is the first study, as far as the authors know, which applies Bayesian 

approach for dichotomous probit regression to examine the determinants of household poverty. 

The probit model provides a range of applications in both econometrics and poverty analysis. Poverty 

is a common problem and threating the whole world leading a lot of problems. According to current studies, 

people still lives under the risk and tend to live under the poverty line in their future. Therefore, several 

studies focused on issues related to the household poverty in frame of the dichotomous probit model in the 

empirical literature.  

Li et al. (2011) employed probit regression model to make an empirical analysis for poverty of peasant 

households in minority regions. According to results, some variables such as educational level of family 

members, healthy condition and outside labor service have an important effect on poverty of peasant 

households. 

Using the household survey data in Fiji, Gounder (2013) estimated the correlates of household 

consumption and poverty in Fiji with ordinary least squares modelling and in order to check robustness, 

probit model was also estimated. The findings indicate that higher education level, supporting agricultural 

growth policies in rural areas and reallocation of labor into the formal sector of the economy are effective 

factors to reduce household poverty. 

Ataguba et al. (2013) analyzed multidimensional poverty in Nsukka, Nigeria using different approaches 

including probit model and according to findings of the study, large family size, low level of education, living 

in rural area, poor health and employment can be assumed as major determinants of poverty.  

Using the ordinary least squares and probit model, Adjasi & Osei (2007) examined correlates of poverty 

in Ghana using household living standards survey. Findings reveale that expenditure inequality is high and 

greater in the rural areas compared to the urban areas and probability of living under poverty line is low for 

households when the head of households are educated. However, household heads who are employing in 

the clerical, sales, services, and agricultural sectors are more likely to be poor compering with others. 

 Szulc (2006) analyzed the robustness of poverty measures for Poland employing probit model of risk 

of poverty. In the study, variables such as low education, unemployment, rural residence, large number of 

children are found as robust correlates of high poverty. 

Oluwatayo (2014) preferred probit model in order to examine the determinants of poverty among male 

and female farmers along with simple descriptive statistics. The results of the probit model indicate that 

some variables such as age, gender, level of education, household size, major occupation have significant 

effect on the poverty status. 

Khalid and Akhtar (2011) employed probit regression for female heads in Pakistan. Results show that 

illiteracy became less important in 2004-05 and living in rural areas had also a low effect on determining the 

incidence of poverty. However, self-employment in agriculture in 2004-05 had a reducing effect on poverty. 



Ebru Çağlayan-Akay, Gülşah Sedefoğlu 

 

What does Bayesian probit regression tell us about Turkish 
female- and male-headed households poverty? 

 

 

 

 
 49  

 

Mainly all those studies examined the determinants of household poverty in urban and rural area or just in 

female- and male- headed households but in our study, determinants of household poverty are analyzed in 

terms of male- and female-headed households along with urban and rural area. 

BAYESIAN PROBIT REGRESSION 

The analysis of dichotomous response data is considered as extremely important in applied micro-

econometrics. Dichotomous random variables 𝑦1, … , 𝑦𝑛 defined by, 

 

   𝑦𝑖 = {
1 𝑖𝑓 𝑦𝑖

∗ > 0

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 

 

where, 𝑦𝑖 is a dichotomous response variable that takes only two values 0 and 1 for n observations. 

𝑦𝑖
∗is not observable, as it is a latent variable. Dichotomous response variable can be analyzed by probit 

regression model. The probit regression model for dichotomous outcomes can easily and precisely be 

explained using different normal distributions for latent modeling. The probit model specifies the 

conditional probability, such as: 

 

   𝑃𝑟(𝑦𝑖 = 1|𝑋𝑖 , 𝛽) = Φ(�́�𝑖𝛽) = ∫ ∅(𝑧)𝑑𝑧
�́�𝑖𝛽

−∞

 

 

where, ∅ is the standard normal cumulative distribution function, with derivative ∅(𝑧) =

(
1

√2𝜋
) exp (−

𝑧2

2
) , which is the standard normal density function. 𝛽 is a px1 vector of unknown parametes, 

X is a vector of known covariates. Estimation of the probit model is usually based on maximum likelihood 

methods. Likelihood function for the probit regression can be written as follows: 

 

𝐿(𝛽: 𝑦, 𝑥) = ∏ 𝛷(𝑋𝑖
′𝛽)𝑦𝑖(1 − 𝛷(𝑋𝑖

′𝛽))1−𝑦𝑖

𝑛

𝑖=1

 

 

Parameters of the probit regression model is estimated by maximum likelihood function. Normal 

distribution is also considered for all estimations in the model. However, there are some disadvantages in 

the estimation of the probit regression, specially, in small samples. The model gives non-normal and 

inefficient results as a result of having small samples. On the other hand, probit model is often applied 

without testing the normality. Besides, when nonnormal distribution exists in the model, standard maximum 

likelihood estimator of the probit model is mostly biased (Greene 2002 & Wilde, 2007). For this reason, 

different approaches are needed to obtain better results besides the classical approach, and Bayesian 

approach is one of the alternative methods to classical approach. The key to the Bayesian approach is the 

use of a prior probability distribution that favors sparseness in the fitted model, along with an optimization 

algorithm and implementation tailored to that prior. Zellner and Rossi (1984) are the first authors using 

bayesian analysis of qualitative choice models in the econometrics literature. Yatchew & Grilliches (1985) 

provide an insightful discussion of what in Bayesian terms are sensitivities to prior belief in probit models.  



 

Journal of International Studies Vol.10, No.1, 2017 
 

 

 

 
 50  
 

Bayesian probit regression model combines the prior probability distribution and likelihood function 

to estimate the posterior probability distribution. Using Bayes’ Theorem, the posterior probability 

distribution for 𝛽 can be written as follows: 

 

𝑝(𝛽: 𝑦, 𝑥)  ∝  𝑝(𝛽) 𝐿(𝛽: 𝑦, 𝑥). 

 

where, 𝑝(𝛽: 𝑦, 𝑥) is posterior probability distribution function and 𝐿(𝛽: 𝑦, 𝑥) =

∏ [𝛷(𝑋𝑖
′𝛽)]𝑦𝑖[1 − 𝛷(𝑋𝑖

′𝛽)]1−𝑦𝑖𝑛
𝑖=1  is likelihood function. Posterior distribution contains all information 

regarding the uncertainty of the parameters. 𝑝(𝛽) represents the prior distribution which reflects little prior 

information. Zellner and Rossi (1984) laid out analytical approximations to the posterior distributions of 

the parameter of probit model, under diffuse and informative priors. Posterior inference in probit model 

can be carried out using Gibbs sampler with data augmentation. In Bayesian probit regression, Gibbs 

sampler, algorithm of the Markov Chain Monte Carlo (MCMC), is used instead of the maximum likelihood 

method. The posterior probability distribution includes all available information about the parameters. 

However, two types of prior distributions can be defined as informative and non-informative. If something 

is known about the unknown parameters or the prior distribution plays important role in the analysis, it is 

defined as informative prior distribution. On the other hand, if the prior distribution plays an insignificant 

role, the non-informative prior distribution can be employed (Acquah, 2013). 

Bayesian approach which has been showed an increasing development simultaneously development of 

the MCMC method and the MCMC method is seen as a revolution in statistical application (Jackmon, 2000). 

The aim of the MCMC method is create Markov chains using iterative Monte Carlo simulations (Sorensen 

& Gianola 2002). The Markov chain can be defined as a stochasting process where past, present and future 

states are accepted as independent. For creating to Markov chains, Metropolis Hasting and Gibbs Sampling 

are usually preferred by researchers (Tierney 1994). In this study, Gibbs sampler algorithm is used to 

estimate the parameters. The Gibbs sampler is a special case of the Metropolis Hasting algorithm and it has 

been introduced by Geman & Geman (1984). In line with the explosion of work using Markov Chain Monte 

Carlo methods, Albert & Chib (1993) show how data augmentation, in conjunction with Gibbs sampler, 

can be used to estimate posterior ditributions of interest for probit regression model. 

DATA AND SAMPLING PROCEDURES  

The data used in the study come from a household budget survey carried out in 2013 by the Turkish 

Statistical Institute (TURKSTAT). The sample contains 10051 Households. 7051 households are in urban 

areas and 3000 households are in rural areas for this data. To analyze the determinants of household poverty 

in Turkey the data is reorganized as rural and urban area by gender of the head of households and Bayesian 

probit regression model is fitted to the study data. 

Demographic and socioeconomic characteristics of household heads for rural and urban area by gender 

are given in Table 1. Both females and males have the highest rate in primary and middle school within 

other education levels in urban area. In rural area, 51.83% of the females are illiterate having the greatest 

rate, while the rate is approximately 7% for males. However, primary and middle school has the highest 

percentage for males in rural area comparing to other education levels. It is observed that household type 

of nuclear family experienced the highest rate for males and single adults for females for both rural and 

urban area in 2013. Furthermore, the rate of working full time for males is higher than females for urban 
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and rural area and the rate of being elderly, disabled or inoperable is around 34% in rural area while the rate 

is around 14% in urban area for females. 

 

Table 1 

Demographic and Socioeconomic Characteristics of Household Heads in 2013 
 

Urban Area 

Observation for Female: 967 

Observation for Male: 6084 

Rural Area 

Observation for Female: 382 

Observation for Male: 2618 

 Frequency Percentage Frequency Percentage 

Marital Status Female Male Female Male Female Male Female Male 

Single  112 143 11.58 2.35 17 41 4.45 1.57 

Married 183 5789 18.92 95.15 58 2484 15.18 94.88 

Others 672 152 69.50 2.50 307 93 80.37 3.55 

Education Level         

Illiterate 237 136 24.51 2.24 198 184 51.83 7.03 

Primary and middle school 392 3200 40.54 52.60 109 1856 28.53 70.89 

High school, technical and 

industrial vocational high 

school 

128 1304 13.24 21.43 9 268 2.36 10.24 

Bachelor for 4 years, master 

and PhD 

102 917 10.55 15.07 5 65 1.31 2.48 

Others 108 527 11.16 8.66 61 245 15.97 9.36 

Household Types         

Nuclear family 31 4059 3.21 66.72 7 1271 1.83 48.55 

A couple without child 21 1046 2.17 17.19 4 624 1.05 23.83 

Extended family 122 678 12.62 11.14 62 589 16.23 22.50 

Single adult 744 254 76.94 4.17 298 123 78.01 4.70 

Others 49 47 5.06 0.78 11 11 2.88 0.42 

House Type         

Detached house 305 1734 31.54 28.50 340 2274 89.01 86.86 

Apartment 662 4348 68.46 71.47 42 342 10.99 13.06 

Others - 2 - 0.03 - 2 - 0.08 

Health         

Having health insurance 924 5790 95.55 95.17 368 2414 96.34 92.21 

Others 43 294 4.45 4.83 14 204 3.66 7.79 

Second House         

Having second House 73 497 7.55 8.17 20 216 5.24 8.25 

Others 894 5587 92.45 91.83 362 2402 94.76 91.75 

Employment Status         

Working full time 234 4340 24.20 71.33 61 1807 15.97 69.02 

Working part time 56 194 5.79 3.19 32 206 8.38 7.87 

Being elderly, disabled or 

inoperable  

135 111 13.96 1.82 129 141 33.77 5.39 

Others 542 1439 56.05 23.66 160 464 41.88 17.72 

Source: Turkish Statistical Institute, Household Budget Survey, 2013 and authors’ calculations. 
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DEPENDENT AND EXPLANATORY VARIABLES 

Poverty can be separated into four groups as absolute, relative, subjective and objective poverty. In 

this study, relative poverty line is considered as many studies prefer using relative poverty line as dependent 

variable. Relative poverty line (z) is generally constructed to determine poverty status of household, which 

is a dichotomous dependent variable, using the OECD modified equivalence scale. According to OECD 

scale, a value is assigned to household size such as value of 1 is assigned to first adult who is generally head 

of the household, of 0.5 to each additional adult and of 0.3 to each child. In the study, household size is 

reorganized by OECD modified equivalence scale and household income is weighted by the composed 

household size has been obtained with respect to 50% of the median income. After assigning the values, 

equivalised household income (EHI) is derived by using calculated OECD modified scale. The dependent 

variable is defined as follows: 

 

𝐸𝐻𝐼 = {
1 𝑖𝑓 𝑡ℎ𝑒 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑖𝑠𝑒𝑑 𝑖𝑛𝑐𝑜𝑚𝑒 𝑖𝑠 𝑢𝑛𝑑𝑒𝑟 𝑡ℎ𝑒 𝑝𝑜𝑣𝑒𝑟𝑡𝑦 𝑙𝑖𝑛𝑒 (𝑝𝑜𝑜𝑟)

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (𝑛𝑜𝑛 − 𝑝𝑜𝑜𝑟)                                   
 

 

The dependent variable is dichotomous: 0 if a household above the poverty line and 1 if a household 

below the poverty line. A dichotomous response model is estimated by Bayesian probit model in the study. 

Bayesian probit model is used to analyze quantitative data reflecting a choice between these two alternative 

situations, being considered as poor or non-poor. The model measures the relation between demographic 

and socio-economic characteristics of household heads, (which are the explanatory variables) and their 

poverty status. The specifications help to define a probability to monitor poverty among households.  

In the study, demographic and socio-economic characteristics of household heads are used as 

explanatory variables. 

The explanatory variables are given in Table 2. They contain both dichotomous and continous 

variables. These variables are consumption, marital status, health insurance, education, household types, 

house types, house size, household size, employment status, having second house, age, ownership status of 

house. Nevertheless, common variables which are utilized in most of the studies are education level, age of 

the head of the household, household size, marital status, household types, etc. In this study, variables such 

as being elderly, disable or inoperable, having health insuance, house type and having second house are also 

used as independent variables along with other variables mentioned above. 
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Table 2 

Description of Explanatory Variables 

 

RESULTS OF BAYESIAN PROBIT ESTIMATION 

This section presents the Bayesian probit estimation results. Estimations have been made using R 

program and Zelig packages. In the Zelig packages, the prior distribution is accepted as standard normal 

distribution and to estimate the posterior distribution Markov Chain Gibbs sampler is employed (Imai, King 

and Lau 2008). 

A couple of tests can be applied to assess Markov chain convergence. However, in this study, Geweke 

Statistics and Heidelberger and Welch tests have been applied to test the convergence. According to Geweke 

(1992) statistics, if variables get values between -2 and +2, it means that Markov chain reaches its 

convergence or desired posterior distribution. Heidelberger and Welch test (1993) consists of two parts 

which are stability and halfwith tests. Stability test gives the probability values and considering the probability 

values, it shows that whether the chain comes from a covariance stationary process or not and the halfwith 

test results illustrate if the sample size is adequate to estimate the posterior distribution. In this study, all 

variables pass the Geweke statistics taking values between -2 and +2. Moreover, results of the Heidelberger 

Variables Short Names Description 

Household Consumption CONSUMPTION Turkish Lira 

Marital Status MARITALST1 

MARITALST2 

MARITALST1, single 1, other 0 

MARITALST2, married 1, others 0 

Health Insurance HEALTH HEALTH, having health insurance 1, others 0 

Education EDU EDU1 illiterate 1, others 0 

EDU2, primary and middle school 1, others 0 

EDU3 high school, technical and industrial vocational high 

school 1, others 0 

EDU4, bachelor for 4 years, master and PhD 1, others 0 

Household Types HTYPE HTYPE1, nuclear family 1, others 0 

HTYPE2, a couple without child 1, others 0 

HTYPE3, extended family 1, others 0 

HTYPE4, single adult 1, others 0 

HTYPE5, people who lives together in a house 1, others 0 

House Types HOUSE HOUSE1, detached house 1, others 0 

HOUSE2 apartment 1, others 0 

Employment Status EMPSTATU EMPSTATU1, working as full time 1, otherwise 0 

EMPSTATU2, working as part time, otherwise 0 

EMPSTATU3, being elderly, disabled or inoperable 1, 

otherwise 0 

EMPSTATU4, looking for work, studying, retired, soldier, 

having seasonal work or others  

Ownership Status OWNSTATU OWNSTATU1, owner of the house 1, others 0 

OWNSTATU2, tenant 1, others 0 

House Size SIZE Square meter 

Having Second House 

Age 

SECHOUSE 

AGE 

Having second house 1, others 0 

Year 

Household Size HSIZE Number 
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and Welch test give the information that chain comes from a covariance stationary process and sample size 

is enough to estimate the posterior distribution.  

Table 3 

Bayesian Probit Regression Results for Male-headed Households in Urban Area* 
 

 

Notes: R program gives the results whether the variables pass the test or not and considering to test results, all 

variables passed the test and sample size is adequate to estimate the posterior distribution. Besides, it is possible to 

calculate the test statistics for the Halfwidth test. The value of halfwidth is divided into halfwidth mean and if the 

absolute value of results is smaller than the at least one of the values of 0.01, 0.05, 0.1, it shows that sample size is 

adequate to estimate the posterior distribution. 

*Basic categories for this model are EDU2, HTYPE5, HOUSE2, EMPSTATU2 and MARITALST2. 

**When the variables get values between -2 and +2, Markov Chain reaches its convergence. 

***According to p values, if the null hypothesis is rejected, it shows that the chain comes from a covariance 

stationary process. 

Variables Mean Standard 
Deviation 

Standard 
Error 

2.5% Median 97.5% 

CONSTANT 0.5383 0.1433 0.00049 0.2598 0.5378 0.8212 

CONSUMPTION -0.00037 0.000033 0.00000011 -0.00044 -0.00037 -0.00031 

EDU1 0.6642 0.1278 0.0004384 0.4107 0.6647 0.9142 

EDU3 -0.4015 0.0917 0.000314 -0.5854 -0.4002 -0.2243 

EDU4 -0.0691 0.1338 0.000459 -0.3384 -0.0668 0.1842 

HTYPE1 -0.3940 0.0801 0.0002742 -0.5497 -0.3942 -0.2361 

HTYPE2 -0.7563 0.1054 0.000361 -0.9638 -0.7563 -0.5497 

HTYPE4 -0.8675 0.1678 0.0005755 -1.1999 -0.8662 -0.5424 

HOUSE1 0.3445 0.0595 0.000204 0.2267 0.3446 0.4614 

MARITALST1 0.4941 0.1910 0.000655 0.1144 0.4953 0.8643 

HEALTH -0.7114 0.0924 0.0003163 -0.8922 -0.7117 -0.5307 

SECHOUSE -0.5593 0.1600 0.000549 -0.8843 -0.5551 -0.2560 

EMPSTATU1 -0.4476 0.0630 0.0002162 -0.5706 -0.4478 -0.3239 

EMPSTATU3 1.6182 0.1484 0.000509 1.3308 1.6178 1.9130 

Geweke Statistics** 

Variables Test Statistics Variables Test 
Statistics 

Variables Test 
Statistics 

 

CONSTANT 1.4883 HTYPE1 -0.9754 HEALTH -0.5132  

CONSUMPTION -1.5521 HTYPE2 -0.8865 SECHOUSE 0.4763  

EDU1 -1.5283 HTYPE4 -0.7816 EMPSTATU1 -1.3259  

EDU3 0.2445 HOUSE1 -1.2427 EMPSTATU3 -0.8425  

EDU4 0.5635 MARITALST1 0.8755    

Heidelberger Welch Test*** 

Variables Stability Test 
(p values) 

Halfwidth Test 
Halfwidth Mean     Halfwidth 

   

CONSTANT 0.415 0.5383 0.00482    

CONSUMPTION 0.509 -0.00037 0.00000170    

EDU1 0.801 0.6642 0.00151    

EDU3 0.531 -0.4015 0.00244    

EDU4 0.582 -0.0691 0.00412    

HTYPE1 0.380 -0.3940 0.00148    

HTYPE2 0.504 -0.7563 0.00234    

HTYPE4 0.284 -0.8675 0.00327    

HOUSE1 0.713 0.3445 0.00112    

MARITALST1 0.733 0.4941 0.00315    

HEALTH 0.898 -0.7114 0.00124    

SECHOUSE 0.479 -0.5593 0.00498    

EMPSTATU1 0.345 -0.4476 0.00125    

EMPSTATU3 0.828 1.6182 0.00188    
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Table 3, Table 4, Table 5 and Table 6 indicate the estimation of the year of 2013 for Bayesian probit 

regression in urban and rural area considering male- and female-headed households. Mean of posterior 

distribution, standard deviation and standard error are given in the Tables. Quantiles for each variables are 

in the last three column of the tables. Quantiles give information about range of the variables; median is a 

middle value of mean of the posterior distribution and quantile of 2.5% gives the minimum value of mean 

and quantile of 97.5% maximum value of mean of the posterior distribution. 

According to Table 3 results show that mean of the posterior distribution of consumption with 

0.00037, having high school, technical and industrial vocational high school degree with 0.4015, having 

bachelor, master or PhD degree with 0.0691, having a nuclear family with 0.3940, a couple without child 

with 0.7563, household type of being single adult with 0.8675, having health insurance with 0.7114, having 

second house with 0.5593, working full time with 0.4476 decrease the probability of living under poverty 

line while being illiterate with 0.6642, living in a detached house with 0.3445, being elderly, disabled or 

inoperable with 1.6182, single adult with 0.4941 boost the probability of living under poverty line. Clearly, 

the table indicates that marital status of being single , a couple without child, having health insurance and 

having second house have a great impact to reduce the probability of living under poverty line for males in 

urban area and results are as expected because for example, in previous studies, an increase in household 

size causes a rise on poverty so a couple without child as a household type variable has a more decreasing 

impact than a couple with child or nuclear family on poverty. Also, being single can be related to household 

size since being single as a household head means no extra expenditure for other household members and 

so the probability of living under poverty line which is calculated considering the household income level is 

low for single adults. 

Table 4 represents the Bayesian probit regression results for female-headed households in urban area 

and results indicate that mean of the consumption with 0.00030, having high school, technical and industrial 

vocational high school degree with 0.2888, having bachelor, master or PhD degree with 0.8606, household 

type of being single adult with 0.5253, having health insurance with 0.7706, living in an apartment with 

0.1886, working full time with 0.8559 and an increase at age decrease the probability of living under poverty 

line. Being illiterate with 0.5504, having a nuclear family with 0.5471, being elderly, disabled or inoperable 

with 0.0877 and marital status of being single with 0.2208 increase the risk of living under poverty line. 

According to household budget survey data in 2013 in Turkey, 24% of female headed households are 

illiterate, 13.96 % are elderly, disabled or inoperable and however, those variables are main indicators on a 

person who cannot enable to earn money or to find a job. Furthermore, many studies indicate that there is 

a direct correlation between education level and finding a job or good job. Nevertheless, there is also a 

correlation between having a good job and level of income. Finding a good job is important to have enough 

income to meet all needs in a household and/ or to live above of the poverty line. 
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Table 4 

Bayesian Probit Regression Results for Female-headed Households in Urban Area* 
 

Variables Mean Standard 
Deviation 

Standard 
Error 

2.5% Median 97.5% 

  CONSTANT 1.7959 0.3166 0.0001086 1.1760 1.7947 2.4137 

CONSUMPTION -0.00030 0.0000507 0.00000017 -0.0004 -0.0003 -0.0002 

  EDU1 0.5504 0.11421 0.0003917 0.3276 0.5505 0.7731 

  EDU3 -0.2888 0.1661 0.0005698 -0.6164 -0.2882 0.0322 

  EDU4 -0.8606 0.3065 0.001051 -1.4838 -0.8505 -0.2879 

  HTYPE1 0.5471 0.3037 0.001042 -0.0521 0.5497 1.1360 

  HTYPE4 -0.5253 0.1262 0.0004329 -0.7751 -0.5245 -0.2804 

  HOUSE2 -0.1886 0.1045 0.0003585 -0.3931 -0.1887 0.0187 

  MARITALST1 0.2208 0.2011 0.0006897 -0.1767 0.2211 0.6122 

  HEALTH -0.7706 0.2154 0.0007389 -1.1961 -0.7701 -0.3515 

  SECHOUSE -0.0311 0.2032 0.0006969 -0.4351 -0.0293 0.3619 

  EMPSTATU1 -0.8559 0.1465 0.0005025 -1.1462 -0.8552 -0.5702 

  EMPSTATU3 0.0877 0.1473 0.0005051 -0.2011 0.0880 0.3765 

  AGE -0.0078 0.00392 0.0000134 -0.0155 -0.0078 -0.00018 

Geweke Statistics** 

Variables Test 
Statistics 

Variables Test 
Statistics 

Variables Test 
Statistics 

 

CONSTANT -1.5859 HTYPE1 1.1041 SECHOUSE -0.6313  

CONSUMPTION 0.8345 HTYPE4 -0.0236 EMPSTATU1 0.6208  

EDU1 -1.0050 HOUSE2 0.8441 EMPSTATU3 0.5662  

EDU3 0.8848 MARITALST1 0.8458 AGE 0.5412  

EDU4 -0.7787 HEALTH 1.6743    

Heidelberger Welch Test *** 

Variables Stability 
Test (p 
values) 

Halfwidth Test 
Halfwidth Mean  Halfwidth 

   

CONSTANT 0.0755 1.7959 0.00421    

CONSUMPTION 0.0888 -0.0003 0.00000115    

EDU1 0.4952 0.5504 0.00121    

EDU3 0.1429 -0.2901 0.00271    

EDU4 0.2213 -0.8606 0.00717    

HTYPE1 0.4748 0.5471 0.00391    

HTYPE4 0.3660 -0.5253 0.00162    

HOUSE2 0.4051 -0.1886 0.00118    

MARITALST1 0.4909 0.2208 0.00300    

HEALTH 0.1517 -0.7712 0.00250    

SECHOUSE 0.3999 -0.0311 0.00280    

EMPSTATU1 0.5059 -0.8559 0.00221    

EMPSTATU3 0.8565 0.0877 0.00163    

AGE 0.3484 -0.0078 0.0000479    
 

*Basic categories for this model are EDU2, HTYPE5, HOUSE1, EMPSTATU2 and MARITALST2. 

** All variables are between -2 and 2 so Markov Chain reaches its convergence. 

*** According to results, the chain comes from a covariance stationary process and all variables passed the test so 

sample size is adequate to estimate the posterior distribution 
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Table 5 

Bayesian Probit Regression Results for Male-headed Household in Rural Area* 
 

 

*Basic categories for this model are EDU2, EMPSTATU2, MARITALST2 and OWNSTATU1. 

**All variables are between -2 and 2 so Markov Chain reaches its convergence. 

***According to results, the chain comes from a covariance stationary process and all variables passed the test so 

sample size is adequate to estimate the posterior distribution. 

 

 

Variables Mean Standard 

Deviation 

Standard 

Error 

2.5% Median 97.5% 

CONSTANT 0.2216 0.3068 0.0009953 -0.37969 0.2206 0.8266 

CONSUMPTION -0.00033 0.0000570 0.00000018 -0.00044 -0.00033 -0.00022 

EDU1 0.3505 0.1356 0.0004401 0.0817 0.3511 0.6146 

EDU3 -0.6121 0.2728 0.0008852 -1.1890 -0.5965 -0.1235 

EDU4 -0.2736 0.5678 0.001842 -1.5541 -0.2091 0.6658 

MARITALST1 0.2911 0.3158 0.001025 -0.3508 0.2973 0.8907 

HEALTH -0.5904 0.1352 0.000438 -0.8524 -0.5915 -0.3233 

EMPSTATU1 -0.7224 0.1041 0.000337 -0.9276 -0.7224 -0.5188 

EMPSTATU3 1.3580 0.1422 0.000461 1.0818 1.3574 1.6376 

SIZE -0.00538 0.001534 0.0000049 -0.0084 -0.0053 -0.00241 

AGE -0.00673 0.003903 0.0000126 -0.01442 -0.0067 0.00089 

HSIZE 0.1136 0.01970 0.0000639 0.0750 0.11368 0.1520 

OWNSTATU2 -0.2899 0.2158 0.0007001 -0.7368 -0.2811 0.10620 

Geweke Statistics** 

Variables Test 
Statistics 

Variables Test 
Statistics 

Variables Test 
Statistics 

 

CONSTANT 1.7431 MARITALST1 -0.4213 AGE -0.3466  

CONSUMPTION -0.5587 HEALTH -1.7501 HSIZE -0.7785  

EDU1 0.4173 EMPSTATU1 -1.3483 OWNSTAT
U2 

-0.8113  

EDU3 -1.4373 EMPSTATU3 -0.7978    

EDU4 1.0431 SIZE -0.4926    

Heidelberger Welch Test*** 

Variables Stability 
Test (p 
values) 

Halfwidth Test 
Halfwidth Mean    Halfwidth 

   

CONSTANT 0.0925 0.2201 0.00641    

CONSUMPTION 0.6971 -0.00033 0.00000220    

EDU1 0.4321 0.35058 0.00183    

EDU3 0.2112 -0.6121 0.0102    

EGT4 0.1980 -0.2736 0.0228    

MARITALST1 0.5303 0.2911 0.00531    

HEALTH 0.2073 -0.5904 0.00213    

EMPSTATU1 0.2207 -0.7224 0.00201    

EMPSTATU3 0.4036 1.3580 0.00182    

SIZE 0.2199 -0.0053 0.0000350    

AGE 0.2404 -0.0067 0.0000731    

HSIZE 0.1772 0.1136 0.000400    

OWNSTATU2 0.9121 -0.2899 0.00562    
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Table 6 

Bayesian Probit Regression Results for Female-headed Households in Rural Area* 

*Basic categories for this model are EDU2, EMPSTATU2 and MARITALST2 

 

**All variables are between -2 and 2 so Markov Chain reaches its convergence. 

***According to results, the chain comes from a covariance stationary process and all variables passed the 

test so sample size is adequate to estimate the posterior distribution. 

 

Table 5 depicts the results of Bayesian probit regression for male-headed households in rural area. 

Results indicate that mean of the consumption with 0.00033, having high school, technical and industrial 

Variables Mean Standard 
Deviation 

Standard 
Error 

2.5% Median 97.5% 

CONSTANT -0.13157 0.6860 0.002226 -1.4848 -0.1296 1.2114 

CONSUMPTION -0.00068 0.00014 0.00000047 -0.00098 -0.00068 -0.00040 

EDU1 0.2438 0.1940 0.0006296 -0.1368 0.2446 0.62198 

EDU3 0.5140 0.6153 0.001996 -0.7123 0.5202 1.6982 

MARITALST1 0.8005 0.4613 0.001497 -0.1027 0.8025 1.7014 

HEALTH -0.8060 0.4233 0.001373 -1.6385 -0.8039 0.01815 

EMPSTATU1 -0.9120 0.3058 0.0009923 -1.5319 -0.9037 -0.3347 

EMPSTATU3 0.4333 0.2153 0.0006988 0.0149 0.4322 0.8586 

SIZE -0.0053 0.0027 0.0000087 -0.0106 -0.0052 -0.00002 

AGE 0.0069 0.0079 0.0000257 -0.00857 0.00689 0.0225 

HSIZE 0.2788 0.0491 0.0001595 0.1851 0.2779 0.3775 

OWNSTATU2 0.6042 0.3482 0.001130 -0.0825 0.6066 1.2805 

Geweke Statistics** 

Variables Test 
Statistics 

Variables Test 
Statistics 

Variables Test 
Statistics 

 

CONSTANT 0.9758 HEALTH -1.5497 HSIZE 0.8451  

CONSUMPTION -0.7292 EMPSTATU1 0.9928 OWNSTATU2 0.3138  

EDU1 0.1052 EMPSTATU3 -0.9849    

EDU3 1.0379 SIZE -0.9266    

MARITALST1 -0.1763 AGE 0.9796    

Heidelberger Welch Test*** 

Variables Stability 
Test (p 
values) 

Halfwidth Test 
Halfwidth Mean   Halfwidth 

   

CONSTANT 0.362 -0.1315 0.00865    

CONSUMPTION 0.739 -0.00068 0.0000076    

EDU1 0.303 0.2438 0.00288    

EDU3 0.450 0.5140 0.00867    

MARITALST1 0.117 0.8005 0.00656    

HEALTH 0.326 -0.8060 0.00529    

EMPSTATU1 0.419 -0.9120 0.00540    

EMPSTATU3 0.201 0.4333 0.00265    

SIZE 0.278 -0.0053 0.0000341    

AGE 0.483 0.00693 0.000120    

HSIZE 0.854 0.2788 0.00158    

OWNSTATU2 0.551 0.6042 0.00447    
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vocational high school degree with 0.6121, having bachelor, master or PhD degree with 0.2736, having 

health insurance with 0.5904, working full time with 0.7224, an increase in house size with 0.00538 and at 

age with 0.00673 and being tenant have a decreasing effect on living under poverty line. However, being 

illiterate with 0.3505, elderly, disabled or inoperable with 1.3580, marital status of being single with 0.2911 

and an increase in household size cause a rise on poverty. 

Table 6 shows Bayesian probit regression results for female-headed households and according to 

results of the regression, an increase in consumption with 0.00068, having health insurance with 0.8060, 

working full time with 0.9120, an increase in house size with 0.0053 have a negative effect on living under 

poverty line. Nevertheless, being illiterate with 0.2438, having high school, technical and industrial 

vocational high school degree with 0.5140, marital status of being single with 0.8005, being elderly, disabled 

or inoperable with 0.4333, an increase at age with 0.0069 and in household size with 0.2788, being tenant 

with 0.6042 increase the probability of living under poverty line in the year of 2013. 

Differences between urban-rural poverty:  

For male-headed households, the effect of the education level of high school, technical and industrial 

vocational high school is higher than other education levels in urban and rural area. However, the effect of 

education level of high school, technical and industrial vocational high school and bachelor, master or PhD 

in rural area is higher than urban area. Working full time is most remarkable variable for rural area but for 

urban area, it is less valuable than rural area. Marital status of being single in urban area is more effective 

than rural area for male-headed households.  

For female-headed households, the effect of the marital status of being single in rural area is higher than 

urban area. While the education level of high school, technical and industrial vocational high school has a 

negative effect on poverty in urban area, it has a positive effect on poverty in rural area.  

Differences between female- and male-headed household: 

Working full time is most important indicator for females while household type of single adult is most 

remarkable variable for male headed households in urban area. Education level of bachelor, master or PhD 

is more important than other education levels for female-headed households but for male-headed 

households, effect of the education level of high school, technical and industrial vocational high school is 

higher than other education levels in urban area having reducing effect on the risk of poverty although it 

was expected that the highest level of education has a highest effect to reduce the poverty for both female 

and male headed households. Education is a common factor for all the world and Turkey to reduce poverty 

as obtained in this study and other related studies in the literature. This is because education level comes at 

the top to treat some socio-economic and political problems for instance Turkey is at the list in which almost 

the lowest female employment rates are seen comparing to great part of the countries in the world, specially 

in OECD countries, and education level of the females is most remarkable factor on it. Moreover, 

household type of being single adult for male-headed households and having nuclear family for female- 

headed households are more important than other household types. In rural area, working full time and 

having education level of high school, technical and industrial vocational high school are more remarkable 

variables than others for male-headed households causing a decrease on probability of living under poverty 

line. However, working full time and having health insurance have a highest decreasing effect on poverty 

and the education level of high school, technical and industrial vocational high school has an increasing 

effect unexpectedly on poverty for female-headed households unlike male-headed households. 
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Having health is insurance also a significant indicator of household poverty for both female- and male- 

headed households in urban and rural areas having a decreasing effect on poverty. It appears that generally 

people who lives under poverty line have not a health insurance due to having not enough income to meet 

all needs or working as uninsured as mentioned Caglayan & Sedefoglu (2016) in their studies. 

CONCLUSIONS  

Poverty is a common problem and threating the whole world leading a lot of problems, also in Turkey. 

According to current studies, people still lives under the risk and tend to live under the poverty line in their 

future. According to TURKSTAT poverty statistics , poverty rates in rural area were higher than urban area 

between the year of 2006 and 2013. Even though the poverty gap, which gives the depth of poverty, in 

urban area surpassed the poverty gap in rural area in 2006 and 2013, poverty gap in rural area was more than 

urban area for other years between 2006 and 2013. 

This study examines the determinants of poverty status and focuses on male- and female-headed 

households poverty for both urban and rural areas in Turkey. The findings of the study can be summarized 

as follows:  

Education: The effect of education level of high school, technical and industrial vocational high school 

is higher than the education level of bachelor, master or PhD for male-headed households while education 

level of bachelor, master or PhD is more effective than other variables on poverty for female-headed 

households in urban area. For rural area, education level of high school, technical and industrial vocational 

high school is more important than the education level of bachelor, master or PhD causing a decrease on 

poverty for male-headed households. However, both being illiterate and education level of high school, 

technical and industrial vocational high school have an increasing effect on probability of living under 

poverty line for female-headed households. 

Marital Status: Being single increases the probability of living under poverty line for both male- and 

female-headed households in urban and rural area. Nevertheless, in rural area, it shows a quite high effect 

on poverty for female-headed households in comparison with male-headed households in urban and rural 

area and female- headed households in urban area.  

Health: Having health insurance is one of the most important variables causing a drop on poverty for 

both male- and female-headed households in urban and rural area. 

Household Types: Household type of being single adult has a highest value decreasing risk of poverty 

for male-headed households but for female-headed households, although it has a decreasing effect on 

poverty, the effect is not high as much as male-headed households in urban area. 

Employment Status: Working full time has a reducing effect on the risk of poverty for all estimations. 

Moreover, effect of the working full time for female-headed households in rural and urban area is higher 

than male-headed households. Being elderly, disabled or inoperable boosts the probability of living under 

poverty line for male- and female-headed households in urban and rural area but for male-headed 

households, it has highest value causing increasing effect on poverty. 

Others: An increase in consumption, having second house reduce the risk of poverty while living in a 

detached house rises the risk of poverty in urban area for male-headed households. For female-headed 

households, an increase in consumption and at age, having second house cause a decrease on the risk of 

poverty. Moreover, an increase in house size and at age, being tenant boost the risk of poverty for male-

headed households in rural area. For female-headed households in rural area, an increase at age rises the risk 
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of poverty unlike variable of age seen in other estimations. Furthermore, being tenant rises the probability 

of living under poverty line in rural area for female-headed households as expected. 

This study also uses Bayesian approach for binary regression models with parametric link is derived 

utilizing a Markov chain Monte Carlo algorithm to simulate from the joint posterior distribution of the 

regression and the link parameter. However, the limitations of the study, Bayesian probit regression, are the 

difficulty of decision of the prior distribution and subjectivity of the decisions taken by researchers. 

Nevertheless, this approach is more flexible than probit regression. Because it does not require any 

assumption as maximum likelihood estimation such as testing normality and heteroskedasticity. It may 

provide researchers a useful alternative approach to get rid of the normality and small sample problems of 

the probit regression.  

We believe that Bayesian probit can be useful approach for future studies not just for analyzing 

determinants of household poverty but also other topics in social science which uses small samples.  
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