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 This master’s thesis investigates the use of exponential random graph 

models for multilevel networks. It begins by describing some basic ideas in 

network analysis and then moves into the use of models to describe observed 

networks. After establishing modeling concepts for single-level networks, the 

discussion expands to modeling multilevel networks, which is a less common 

practice, and provides a brief multilevel modeling application. 

 Focus is given to ERGM theory basics and highlights potential problems 

that researchers may encounter when employing these methods. Ultimately, the 

reader leaves with a sense of how and why network complexity can be modeled 

and some of the challenges that face network research. 
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CHAPTER 1 

 

BACKGROUND 

 

1.1 Brief History of Networks 

 

Before networks can be modeled, it is important to consider how they are 

conceptualized and described. Network analysis is a method of analysis that is 

interdisciplinary with applications to social sciences, biology, computer science, statistics, 

organizational management, education, and more (Kolaczyk, 2010, pp. 3-10; Wasserman & 

Faust, 1994, p. 6). Some early advances in describing networks were done by sociologist 

Jacob Moreno in the 1930s using what he described as sociograms, or graphs of networks, 

and sociomatrices, or matrices describing networks. He and his colleagues, often working 

through their academic journal Sociometry, worked to standardize these descriptive tools. 

Following these early efforts, the next two decades were filled with an explosion of efforts 

and concepts to study networks including the introduction of graph theory, and eventually, as 

Wasserman and Faust note, “the line between sociometric and graph theoretic approaches to 

social network analysis began to become blurred” (Wasserman & Faust, 1994, p. 79). 

Graph theory itself provided a natural extension to networks considering its early roots 

from Leonhard Euler, who, in 1735, was attempting to understand flow of traffic across 
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bridges that connected the different parts of Konigsberg, Prussia. His work laid the theoretical 

foundation for modern graph theory. Much of the notation from graph theory carried over into 

network analysis, and the vocabulary became freely used by non-mathematicians by calling 

network points, or individuals, vertices and the connections, or ties, between them edges. 

However, even today, 80 years after Moreno began studying networks, much of the 

vocabulary is non-standard because of the wide range of disciplines that use network analysis. 

Despite this disagreement of terms, consensus over many of the important tools and concepts 

for describing networks has emerged. 

 

1.2 Tools to Record Network Data 

 

The two most common tools used to illustrate a network are a network graph, or 

sociogram, and an adjacency matrix, or sociomatrix. The network graph represents a network 

with vertices connected by edges. It should be noted that distance between the vertices and the 

layout of the vertices are not important. For example, in the case of a friendship network 

between six people, individuals (vertices) are connected by friendships (edges) as shown in 

Figure 1. 
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Figure 1: A small friendship network represented by a graph. 

 

 

The adjacency matrix describes an identical relationship using a matrix, Y, in which 

each row corresponds to an individual. The columns have an identical representation to the 

rows. Inside of the matrix, each cell, yij, represents a possible connection, or edge, between 

the vertex in row i and the vertex in column j. For our purposes,  

yij = {
                                                
                                                  

For example, the adjacency matrix of the friendship network for six people depicted in Figure 

1 is given in Table 1. 
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Table 1: Adjacency Matrix of the Small Friendship Network Depicted in Figure 1. 

 Sarah Alice Alecia Jason Saptarshi Chris 

Sarah 0 1 1 1 1 1 

Alice 1 0 0 1 0 0 

Alecia 1 0 0 1 0 0 

Jason 1 1 1 0 0 0 

Saptarshi 1 0 0 0 0 1 

Chris 1 0 0 0 1 0 

 

 

This specific network, shown through its adjacency matrix, has some important 

assumptions associated with it. These common assumptions will be used in this paper when 

expanding to more complicated networks: 

1) The edges between vertices either occur (1 on the adjacency matrix) or they do 

not (0 on the adjacency matrix). This means all edges are equal, and none are 

weighted. 

2) Multiple connections between vertices are not allowed. 

3) The network is undirected, meaning that an edge between Sarah and Alice is 

no different than an edge between Alice and Sarah. If the network were a directed 

network, then there could be the case where Alice considered Sarah a friend (yij=1) but 

Sarah did not consider Alice a friend (yji=0), so there would be a difference between 
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an edge going from Alice to Sarah and an edge going from Sarah to Alice. The result 

of an undirected network is a symmetric adjacency matrix. 

4) Vertices cannot connect to themselves, so the diagonal of an adjacency matrix 

is all zeroes. 

In practice, an adjacency matrix can be created from a network graph, or vice versa, 

depending on the data. 

 

1.3 Important Descriptive Statistics 

 

 Just as the tools to record networks have become more standardized through graphs 

and matrices, so have the important concepts to analyze them. Beyond the most basic 

measures of number of vertices, order, and number of edges, size, one of the most common 

concepts used to describe networks is the number of connections, or degrees, each vertex has. 

This simple measure can identify popular and unpopular vertices in the graph and, when 

observed across the entire network, can illustrate the degree distribution of a network, which 

has proved to be an important tool in comparing networks in order to understand if vertices 

have fairly uniform or widely varied degrees. For example, in the friendship network above, 

the degree distribution is given in Figure 2. 
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Figure 2: The degree distribution for the friendship network depicted in Figure 1. 

 

 

Another common statistic to report when analyzing networks is the density of a 

network. The density of a network is simply a ratio of the number of possible edges ( Nv(Nv-

1)/2, where Nv is the number of vertices) to the number or observed edges, Ne, in the network. 

This is a simple but important descriptive network statistic because it gives a basic sense of 

the connectedness of the network. In terms of the simplest model described later, it gives the 

probability that an edge occurs in the network. For example, the friendship network in Figure 

1 has 8 edges and 15 possible edges; therefore, the density is equal to 8/15 = 0.533. 

 In addition to the simple measure of density, the idea of transitivity is important to 

capture as another measure of connectedness and clustering. Transitivity is the ratio of closed 

triads to total (closed and open) triads as shown in Equation 1. An open triad is a subgraph 
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with three vertices and two edges, which leaves one possible edge missing, and a closed triad 

is a subgraph with three vertices and three edges as shown in Figure 3.  

 

              
∑                        

∑                             
 

 (1) 

 

 

 

                        

Figure 3: An open triad and a closed triad. 

                         

 

The structures of the open and closed triads are important ones to capture because they 

often show up in observed networks and have a meaningful interpretation in many situations. 

Simply put, a closed triad signifies that the friend of my friend is my friend. In our friendship 

network, there are 16 open triads. For example, an open triad occurs between Saptarshi, 

Sarah, and Alecia. There are 18 closed triads, one of which can be seen between Jason, Sarah, 

and Alice. Using Equation 1, the transitivity of this network is 0.529. These open and closed 

triads make up the building blocks of more complicated structures that can be counted or 

modeled. 
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 These more complicated structures are often called motifs. A motif is a distinct 

subgraph with a set configuration and number of edges and vertices. These motifs are 

identified and counted in networks to identify common isomorphic, or structurally equivalent, 

subgraphs. For example, in an undirected network with four vertices, there are six connected 

and undirected motifs as shown in Figure 4. 

 

 

 
  

   

Figure 4: The six undirected motifs with four vertices. 

 

 

Some of these motifs are more common than expected using some simple network 

models and, therefore, are important when considering modeling networks. Three particular 

structures are worth mentioning: stars, 2-paths, and triangles. These are used in modeling and 
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can be visualized explicitly through the first, fourth, and fifth motifs in the shape of a 3-star, 

two 2-paths, and a 2-triangle. These structures can grow beyond just 3-stars, two 2-paths, and 

2-triangles as shown in Figure 5. In general, if k is an integer, we can consider k-stars, k 2-

paths, and k-triangles. In the friendship network example, there is one 2-triangle involving 

Sarah, Jason, Alecia, and Alice. 

 

 

   

k 2-paths k-triangles k-star 

Figure 5: Structures built from k simple structures. 

 

 

1.4 Transition to Models 

 

 While the previous network statistics mentioned do not constitute an exhaustive list, it 

highlights some of the important ones used in describing the properties of networks. Using 

these characterizations, observed networks can be compared with networks generated by 
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models for the purposes of evaluating how typical or extreme the observed network is to 

networks of similar order.  



 
 

 

 

CHAPTER 2 

 

MODELING NETWORKS 

 

2.1 Simple Random Graph Models 

 

2.1.1 Erdos-Renyi Model 

 

One of the earliest attempts to describe networks in a statistical modeling framework 

was done by Erdos and Renyi in 1959 with a simple random graph framework  (Erdos & 

Renyi, 1959). The idea was to model a network of similar order to an observed network and 

compare the model against the observed network. In order to do this, they considered a 

restricted subset, G, of all possible networks that have the same number of vertices and edges 

as the observed network. Then, with equal probability, networks from this subset must be 

chosen to compare – on some statistic, say transitivity – against the observed network. 

Through this comparison, one can judge whether the observed network has more transitivity 

than expected from similarly sized networks. It is important to note that, in practice, the 

observed network is not compared to the entire subset (G) of networks, or sample space, 

because it is much too computationally intensive to enumerate all of the networks in the 

subset as networks grow larger. 
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 For example, the friendship network described earlier has six vertices and eight edges 

(15 possible edges), so the subset of networks with the same number of vertices and edges is 

(  
 
) = 6435 possible networks. Note that many of these networks are isomorphic if the 

vertices are not distinct. If some large number of those networks was chosen, say 1,000, with 

uniform probability from this subset and a histogram was created of their transitivity, the 

histogram would show variation in the transitivity of the different networks. We have done 

this below in Figure 6 for the friendship network. Furthermore, in comparison to the observed 

friendship network (shown with a dotted line), it can be seen that the observed network has a 

higher transitivity than only 62.1% of the networks with the same number of vertices and 

edges. Therefore, on this particular statistic, the Erdos-Renyi model may be a viable choice to 

describe this network on this statistic because it falls near the center of the transitivity 

distribution.  



13 

  

 

2.1.2. Gilbert Model 

 

 At the same time and with a slight difference to the more well-known Erdos-Renyi 

model, Edgar Gilbert proposed a model which considers networks with the same number of 

vertices and independently assigns edges between all pairs of them with an equal probability 

(Gilbert, 1959). If the intent is to compare the modeled network to an observed one, then the 

edge probability will be approximately equal to the density of the observed network for 

adequate comparison. For example, consider a network that was observed with a density of 

Figure 6: Transitivity histogram for 1,000 

simulations from the friendship network. 
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0.4. A Gilbert model would be created by flipping a biased coin (P(success)=0.4) for each pair 

of vertices to see whether an edge occurs between them. It’s worth noting for comparison 

with later models that the probability of an edge occurring is not dependent on any vertex 

attributes or network characteristics; it is the same for every pair of vertices.  As the number 

of vertices, Nv, increases towards infinity, the observed number of edges matches the Erdos-

Renyi model and the observed network. And just like the Erdos-Renyi model, the observed 

network could be compared against a large collection of randomly generated networks from 

the Gilbert model on some network statistic in order to understand how the observed network 

differs from networks of the same density. An advantage to considering the Gilbert model is 

that thinking about edge formation as occurring with some probability provides a natural 

extension into exponential random graph models, which provide a much more complex way 

of modeling networks while considering the appearance of edges as probabilistic. 

 

2.2 Exponential Random Graph Models for Single-Level Networks 

 

2.2.1 Why Models Need Complexity 

 

While the simple random graph models created by Erdos, Renyi, and Gilbert were a 

step forward, they usually fail to accurately model real-world networks. As Harris (2014) and 

others have summarized, when comparing real-world networks to random ones, there is often 

a skewed degree distribution, homophily (i.e. similar actors grouping together), and 

transitivity occurring more often than expected. Additionally, as the famous Watts and 
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Strogatz (1998) small-world paper explores, vertices in real-world networks are often 

separated by only a few degrees through short path lengths, which does not always happen 

with simple network models.  

 Additionally, simple random models only allow for comparison between the observed 

and randomly selected networks on a single statistic. Therefore, while the simple random 

model does provide some idea of where the observed network falls in comparison on a 

network statistic, such as transitivity, to all networks with the same number of vertices, “we 

only consider one effect at a time, and we ignore the nesting of configurations” which give us 

the nuances in observed networks described above (Robins & Lusher, 2013b, p. 31). In order 

to improve upon this model, it is necessary to include these complexities and nesting of 

configurations. Using exponential random graph models (ERGMs), network analysts can 

incorporate all of those network characteristics into the model, which allows the focus to shift 

from comparing an observed network to the distribution of simulated simple random networks 

on a specific statistic to trying to build a model that results in a sample space that is more 

consistent with the observed network. This process relegates the simple random networks, 

which have a uniform distribution over all networks of the same size, order, and a specific 

statistic, to serve as null models for the ERGM, which places varying probabilities on similar-

order networks based on configurations in the network. 
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2.2.2 How Complexity Is Modeled 

 

2.2.2.1 P1 model 

 

The framework for a general ERGM arose out of the p1 model specification by 

Holland and Leinhardt (1981) for directed graphs and the development of Markov graphs by 

Frank and Strauss (1986). 

The p1 model from Holland and Leinhardt was important because it was the first to use 

the exponential family of distributions in its model and, thus, the use of a log-linear form 

familiar to modeling data with binary outcomes, such as the presence or absence of an edge 

(Harris, 2014, p. 22). The general goal of this form was to allow network analysts to 

incorporate more complex concepts in network models. For example, Holland and Leinhardt 

had an interest in accounting for vertex attributes. Kolaczyk (2010) gives the general form of 

this ERGM as 

 

 

       
 

    
     ∑        

   

 

 

 (2) 

 

 

where Y is a random variable representing the entries of the adjacency matrix; y is a particular 

realization of the adjacency matrix as represented by Y; θH is the parameter for a graph 
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configuration represented by H, usually a subset structure such as stars or triangles; gH(y) is a 

function of cells in the adjacency matrix and is 1 if the configuration occurs in the network 

through those cells and 0 if it does not occur; κ is a normalization constant that allows the 

function to be a probability density function by summing to 1 over the sample space; and v is 

each vertex in the set of all vertices V. 

While the general form may seem complicated at first, its simplicity can be viewed 

through a model analogous to the simple random graph models. That is, the Gilbert model can 

be written in terms of an ERGM of the form 

 

 

       
 

    
     ∑      

   

   

 

 (3) 

 

 

where the only configuration is the presence or absence of an edge so that yij represents each 

possible edge in the network and θij is the parameter for the edge term. A careful look at the 

previous equation will reveal that summing all of the yij’s is equivalent to summing up all of 

the cells in the adjacency matrix, which are either 0 or 1. 

It is important to remember that in this simple random graph model, the formation of 

an edge is independent from all other vertices and edges around it. This is often referred to as 

a Bernoulli independence model because the entries of Y are essentially Ne independent 
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Bernoulli draws. In the friendship network, this means that an edge between Jason and Alecia 

is independent of an edge between Alecia and Sarah. 

 

2.2.2.2 Markov Dependence Model 

 

Markov Assumptions 

 

 By using the exponential family of distributions for modeling and introducing the 

Markov assumption, Frank and Strauss (1986) further improved the ability to easily model 

complicated network structures. This is achieved by adding the assumption that the 

probability distribution of an edge depends only on the presence or absence of edges for 

vertices also incident to that edge. In the previous example, that would mean that the 

probability of observing an edge between Jason and Alecia and an edge between Alecia and 

Sarah would be dependent on each other because they have a vertex, Alecia, in common. This 

assumption is a substantive departure from the Bernoulli independence model and is 

important because it has been shown in practice that edges often do not form independently of 

each other. 

 

Markov Model: Overview 

 

In order to incorporate this dependence concept into a quantitative form, Frank and 

Strauss (1986) employed the earlier log-linear ERGM introduced by Holland and Leinhardt 
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(1981). Through some investigation on the ramifications of this dependence assumption and 

use of the Hammersly-Clifford theroem, Frank and Strauss (1986) show that a network graph 

will be a Markov network graph if and only if it can be specified using the form 

 

 

       
 

    
    { ∑                  

    

   

} 

 

 (4) 

 

 

where Sk(y) represents the number of k-stars in the network (S1(y):edges, S2(y):2-stars, 

S3(y):3-stars, . . . ,SNv-1(y):Nv-1 stars); θk is the parameter for the k
th

 star; T(y) represents the 

number of triangles; and θt is the parameter for the triangles. This model has many more terms 

than the ERGM form of the simple random graph model, which just considered an edge 

forming between two vertices, through the addition of terms for 2-stars (i.e. an open triad) 

through k-stars and a term for the triangle structure. 

Markov Model: Nesting Structures: As shown earlier, the interpretation for the 

parameter, θ, associated with each term relates to the log-odds, which is akin to the 

interpretation of parameter coefficients in logistic regression, except that these terms are all 

nested inside one another so they cannot be considered separately. For example, when looking 

at the triangle term, one must consider the 2-star term because there are three 2-stars in a 

triangle and the edge term because there are three edges inside of each triangle. Therefore, in 

order to determine the probability of an edge occurring, it must be determined which 
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structures that edge creates. If the edge creates a 2-star and a triangle (e.g. the edge between 

Chris and Saptarshi in the friendship network) then in order to calculate the probability of that 

edge occurring, the 2-star and triangle terms would need to be included in the calculation of 

the edge probability because the probability is calculated conditionally on the rest of the 

network. In general, the probability of an edge can be found as 
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 (5) 

 

 

where there is a change statistic, δ
+
, for each structure in the model which represents the 

increase in the number of that structure by adding an edge between vertex i and j.   

Therefore, for the previous example involving Chris and Saptarshi, the conditional log-odds is 

θ1+ 2*θ2 + θT and the edge will occur with a probability of 
                 

                    
 . If this edge 

were to create structures other than an edge, two 2-stars, and triangle, it would be necessary to 

include those parameters in the calculation as well. Because the probability is calculated 

conditionally on the rest of the network, the calculation can become quite complicated as the 

network grows in order and has more complex structures.  
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Estimating the parameters of an ERGM based on an observed network can be 

computationally difficult and usually requires Markov chain Monte Carlo (MCMC) methods 

as will be explained in Chapter 3. This is particularly true as networks grow in complexity, 

which renders maximum likelihood estimation (MLE) unfeasible. Often, because of this 

complexity in estimating the parameters and the trouble interpreting those parameters due to 

nesting structures, stars over size 3 are not commonly estimated  (Kolaczyk, 2010, p. 183). 

Markov Model: Stars and Degree Distribution. One important reason to include stars 

of at least k=2 is that they can model the variance of the degree distribution (Koskinen & 

Daraganova, 2013, p. 62).  The mean of the degree distribution is already modeled through 

the edge parameter, and the variance is shown by 

  

 
∑      ̅  

 

   

  
 (6) 

 

 

where     
   ∑ (∑ ∑         ) 

     is the sum of the 2-stars in the network and  ̅ is 
  

(  
 )

. The 

variance is important to model because simple random network models do not adequately 

describe the variance and skew of the distribution. 

 

Markov Model: Modifications. Whereas the problem from the simple random graph 

models was a lack of ability to address skewed degree distributions, homophily of vertex 

attributes, and transitivity, the Markov graph model addresses all of these issues by inducing 

possible dependence between the appearance of edges. However, Markov graph models have 

issues as well. 
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One of the biggest issues with Markov graph models is that they often have trouble 

correctly modeling real-world networks. Part of this problem can be attributed to phase 

transitions in the graph (Koskinen & Daraganova, 2013; Snijders et. al., 2006). Phase 

transitions occur when a graph changes from low density to high density, and, with Markov 

graphs, this transition can occur with only a very small change in some of the parameters. The 

problem arises because of the interdependence of the terms. This results in a model that 

struggles to describe a graph that has neither high nor low density. Because of this problem, 

Snijders et al. (2006) proposed adding an alternating k-star term and an alternating k-triangle 

term. 

The alternating k-star term works by combining all of the star statistics into one term 

and alternates the sign on each of them while also down weighting the effect of each. That is, 
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where λ can be set or estimated or be set to a certain value as recommended by Snijders et al. 

(2006) in their article that introduced the alternating terms. If it is estimated, the probability 

function is no longer from the exponential family of distributions but becomes a curved 

exponential family function. Hunter and Handcock (2006) estimate λ for the same application 

performed by Snijders et al. (2006) and find that their model outperforms the original on the 
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likelihood ratio test criteria. They discuss the difficulties in estimating parameters for a curved 

exponential family and detail their approach which combines computationally intensive 

methods with biased ones in order to find an MCMC MLE (Hunter & Handcock, 2006, p. 

571).  

Koskinen and Daraganova (2013) give some basic guidelines for interpreting the AKS 

term and its parameter in the ERGM, θs (pp. 66-67). They explain that when θs is positive, the 

network tends to be more centralized, whereas when it is negative, the degree distribution is 

more even. Also, as λ increases, the centralization is focused on higher degree vertices. 

 In addition to the AKS term, Snijders et al. (2006) proposed a similar term but for 

triangles, the alternating k-triangle term which models the prevalence of the k-triangle 

structures shown in Chapter 1. Including this term in the model satisfies a dependence 

structure that is in addition to Markov dependence. Such an addition has been proposed by a 

number of network analysts and is also referred to as partial conditional dependence (Pattison 

and Robins, 2002; Snijders et al., 2006). The effect of the term is that it allows for clustering 

of triangle structures whereas the original Markov model does not account for this tendency. 

The specification of this term is similar to the AKS term in that it has a down weighting 

variable, λ, which decreases the effect of higher order triangles and has alternating signs on 

each triangle. The form of this term is given by 
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A positive parameter for the AKT term, θAT, in the ERGM model promotes clustering. A 

small value for λ, however, limits this clustering effect while a large value of λ encourages the 

clustering effect. This occurs because simple 1-triangles (3 possible edges, 3 actual edges) are 

more clustered than larger k-triangles, such as 4-triangles (15 possible edges, 9 actual edges), 

and a larger λ gives more influence to smaller k-triangles 

 While network analysts have suggested that other terms should be included with the 

original Markov network model, AKS and AKT terms have gained the most acceptance 

because of their ability to best improve the model with regard to representing observed 

networks. This method provides a better way to model degree distribution and a way to model 

clustering. 

Markov Model: Frozen Graphs and Overspecification. Because the ERGM framework 

can allow for many more terms and increasingly complicated models, the issue of model 

selection becomes an issue. With all of these complex models, it is important to remember the 

original goal: find a subset, G, of all possible networks that describe the observed network so 

that comparisons between model and observed network can be made to either understand how 

the observed network differs from expectation or how to best model the observed network. As 

Kolaczyk astutely notes, “An important practical issue is determining which G to use” 
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because it forms the basis for all of the model analysis (Kolaczyk, 2009, p. 163). Problems 

will arise if the incorrect model is chosen and that can happen in the following situations: 

 

1. The model is overspecified and too perfectly describes the observed network data.  

2. The parameter values are too extreme. 

3. Homogeneity assumptions are not made about parameters. 

 

Model selection becomes more of an issue because, when developing more complex 

ERGMs through the addition of more terms, network analysts effectively shrink the subset G. 

For example, if an ERGM was created that just modeled the number of edges in a network as 

was done in the simple random graphs and represented in Equation 3, then it would limit the 

subset G to networks with the same number of vertices and similar densities. If a network 

analyst were to further refine that model to include terms for 2-stars, 3-stars, and triangles, it 

would further limit the subset G to networks with the same number of vertices, similar 

density, and similar number of 2-stars, 3-stars, and triangles. If more complex structures were 

increasingly added to the model to account for every structure in the observed network, then 

G would become so small that there would be very few networks in the subset. The result of 

this overspecification of the model is a lack of variation in the subset, thereby limiting the 

subset to only a few networks. This is problematic because the goal is to create a statistical, 

not purely mathematical, model that considers edge formation occurring with some 

probability depending on the vertices and structures involved, so there should naturally be 

variation in the networks created by the model. This overparameterization problem, which 



26 

includes choosing terms that represent structures that do not appear in the network, is called 

model degeneracy or a frozen graph problem (Pattison & Snijders, 2013, p. 289). 

Model degeneracy not only occurs because the model has too many terms and 

describes the observed network too perfectly, but problems can also occur when the parameter 

values for the terms are so extreme (high or low) that they encourage or discourage a specific 

structure too strongly. This also causes the subset G to be too small and lack variability. In 

this scenario specifically, the network is either nearly empty or nearly completely connected. 

 In addition to including too many structures or the wrong structures in the model and 

having too extreme of parameter estimates, a homogeneity assumption is usually made about 

the parameters for each network structure. This assumption is made because otherwise it 

would be necessary to estimate a parameter for each vertex pair on a certain structure which 

would create an over-parameterized model. Homogeneity implies that, for example, in 

Equation 3, the θij parameter would be the same for all edges, and hence only one parameter 

would need to be estimated. 

 Furthermore, network estimation suffers from a problem of parameter estimation 

converging using MCMC methods. When parameter estimates fail to converge, “the estimates 

are meaningless,” and it is necessary to respecify the model (Robins & Lusher, 2013a, p. 

178). A lot of literature has suggestions on how to proceed with model selection including 

Robins and Lusher (2013a), Robins et al. (2007), Hunter et al. (2008), Goodreau et al. (2008) 

and more.  Much of the advice is practical and based in model-fitting experience, such as to 

include at least 2- and 3-star terms or include at least alternating terms.    
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As mentioned in Lusher, Koskinen, and Robins (2013), one common thread through 

most of the literature is that network researchers should incorporate existing theories about 

connections to avoid incorrectly choosing structural parameters. This is true especially 

because there is so much dependency between the terms in the model, and therefore terms 

should only be included when there is good rationale to do so. By failing to heed this advice, 

we may encounter problems which will lead to uninterpretable results at best and model 

degeneracy and frozen graphs at worst. The practical aspects of these problems will be dealt 

with through the application of the multilevel framework. 

 

2.3 Conclusion 

 

Whereas the first chapter focused on describing characteristics of networks through 

precise numerical summaries (e.g. the density is 0.2 and the transitivity is 0.3), this second 

chapter has explored describing networks using statistical models, which, at their heart, 

involve beliefs about how networks evolve and why edges exist between vertices. Having 

established these descriptions and models, Chapters 3 and 4 will apply them towards a more 

complex scenario: networks with more than one level and, therefore, vertices of different 

types. 

 



 
 

 

 

CHAPTER 3 

 

MODELING MULTILEVEL NETWORKS 

 

3.1 Introduction to Multilevel Networks 

 

3.1.1 Defining a Multilevel Network 

 

A multilevel network consists of a network with at least two distinct sets, or modes, of 

vertices. In this way, it is similar to the more commonly analyzed affiliation network. 

However, multilevel network usually denotes a network that has edges within each mode and 

between modes, whereas affiliation networks only have edges within only one of the modes 

(usually people) and between modes (usually people and events). While the multilevel 

framework can consider these affiliation networks and other networks with two modes of 

vertices, it excels at analysis of networks with edges at all levels.  

 The basic concept of the multilevel network is well-described by Wang, Robins, 

Pattison, and Lazega (2013) where they limit their research to a two-mode network. They 

describe a macro level, or more generally an A network, and a micro level, or more generally 

a B network, as the two modes, with each one separately being similar to a single-level 

network. Additionally, there are connections between these two networks in the meso level, or 
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more generally the X network. When considered alone, the meso network belongs to a class 

of networks called bipartite networks. 

The vertices within these networks often have some hierarchical feature such as 

schools and students. Often, when the network has a hierarchical structure, the higher level 

vertices, say schools, are denoted as the macro-level network. Alternatively, the lower level 

vertices, say students that go to a school in the macro level, are denoted as the micro-level 

network. Edges in the macro network between schools could represent a shared school district 

while edges in the micro level between students could represent friendships, and edges in the 

meso level between students and schools could represent students attending that school. The 

multilevel network is perhaps best explained through the visual in Figure 7, which is similar 

to the one provided by Wang et al. (2013).  

 

 

As Wang et al. (2013) establish in their concluding remarks, this multilevel framework 

can also be applied to networks that are not nested but merely consist of two distinct groups, 

such as males and females or the Jets and the Sharks. In this case, the A, B, and X network 

descriptions fit more adequately than do the macro, micro, and meso connotations. 

Figure 7: A multilevel network. 
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3.1.2 Examples of Multilevel Networks 

 

Many networks can be described as multilevel networks. For example, Wang et al. 

(2013) studied a network of elite cancer researchers connected by advice-giving and -seeking 

relationships at the micro level and research laboratories connected by collaboration 

relationships at the macro level. The macro research laboratory network is connected to the 

micro elite cancer researcher network through an employee-employer relationship which 

provides the edges for the meso level.  

Currently, a major limitation to studying multilevel networks is that many network 

datasets are not created with multilevel networks analysis in mind, so edges at all levels are 

not reported with initial data. For example, a popular affiliation dataset looks at Southern 

women and the social events they attended (Davis, Gardner, & Gardner, 1941). This dataset 

has a micro level (Southern women), a macro level (social events), and a meso level 

(Southern women attending social events). However, the only edges that were recorded were 

friendships between women and the events they attended, so the macro-level network has no 

edges in it. While the multilevel ERGM framework can work here, potential insights are lost 

by not defining edges between the social events in the macro level. If these edges are inferred 

later on, such as placing an edge between two events that have common attendees, artificial 

connections are created between macro-level vertices and does not offer additional insight or 

new information. 
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3.2 Expansion of ERGMs to Multilevel Networks 

 

3.2.1. A Simple Model 

 

 While a simple network for the single-level network was one in which only edge 

structures were modeled, the simple network for the multilevel network, which is also used as 

the null model, is one where the macro (A) and micro (B) networks are modeled without the 

edges from the meso (X) level network as part of the model. This model does not consider the 

network levels connected and would identify important structures in each network separately, 

such as Markov and social circuit structures (i.e. alternating structures). 

 

3.2.2. Introducing Complexity 

 

 By introducing connections between levels into the network model, the connections 

within each network may be better understood as a piece of a larger multilevel structure. The 

multilevel structure could lead to additional, useful interpretations of the network. For 

example, say there is a vertex in network B that is highly connected to the other vertices in B. 

The interpretation of the structure may be aided by knowing how network B is connected to 

nodes in network A (perhaps that B node is popular in network A as well). 

 In their investigation of French cancer researchers, Wang et al. (2013) discovered that 

a multilevel analysis of network connections is useful in the interpretation of the entire 

network. When each network is studied alone, features of the bigger picture are lost. For 
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example, looking at the researcher advice network alone, Wang et al. (2013) saw a tendency 

towards clustering in researchers. However, by looking at the entire multilevel structure, they 

discovered that some of this clustering is attributable to researchers at the same laboratory 

seeking advice from each other through interaction effects and also through other clustering 

effects due to researchers at collaborating laboratories seeking advice from each other through 

cross-level effects. Additionally, the inclusion of cross-level effects in the model “greatly 

simplified the previous specifications” of the researcher-level model because “complicated 

features of the within-level network structure are explained solely by the cross-level 

interactions” (Wang et al., 2013, p. 111). Therefore, by introducing a more complex 

framework through the multilevel method of analysis, Wang et al. (2013) were actually able 

to obtain a simpler and more complete model to describe the observed network. 

 

3.2.3. How Complexity Is Modeled 

 

 The multilevel network model as specified by Wang et al. (2013) takes the form  

 

               

 
 

    
   (∑{                        

 

                                   }) 

 

 (9) 
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where (1) A, X, and B are random variables representing adjacency matrices for networks A, 

X, and B; (2) a, x, and b are specific realizations of those adjacency matrices; (3) H, just as in 

Chapter 2, is a network configuration such as an edge or a star; (4) zH(a), zH(b), and zH(x) 

represent the network statistics for the macro-, micro-, and meso-level networks respectively - 

for example, using for the simple random graph model for the macro network, zH(a)= 

∑       , which is just the sum of all of the edges in the macro network; (5) zH(a,x) and 

zH(b,x) represent the network statistics for the interaction structures which have edges from 

either the macro or micro network and the meso-level network; and (6) zH(a,x,b) represents 

the network statistics for the cross-level structures which have edges from all three networks. 

To connect this back to Chapter 2, this means that all of the terms for a single network, 

say the macro level, will fit inside of θQzQ(a) term of this model. Imagine, then each term in 

the multilevel network model representing an entire network of specified structures or the 

interactions and crossing of those structures, and it becomes easy to see how this model can 

quickly become complex. 

 The following discussion of this model will describe each term in the model. Also, as 

the terms and structures become more complex, the shorthand notation used by Wang et al. 

(2013) will be introduced and employed. 
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3.2.3.1 Meso-Level Term: θQzQ(x) 

 

In the multilevel framework, the structures modeled within the macro and micro levels 

are exactly the same as for a single network. However, the structures modeled within the 

meso level are slightly different because the meso level is a bipartite network. Bipartite 

networks are a type of network that consist of two subsets of vertices and of edges that have 

an endpoint in each subset, which means none of the vertices within a subset are connected. In 

this respect, bipartite networks clearly differ from normal networks because of the restriction 

imposed on which vertices can have edges between them. The result of this restriction is that 

certain structures, such as triangles, cannot occur, which becomes important in choosing 

structures to model. Additionally, whereas having more closed than open triads indicates 

higher clustering in a non-bipartite network, having more 4-cycles than 3-paths indicates a 

higher clustering bipartite network because a 4-cycle is the smallest closure possible in a 

bipartite network. The 3-path and 4-cycle can be seen in Figure 8.  

 

  

Figure 8: Bipartite 3-path and 4-cycle. 
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These structures are relevant to modeling a bipartite network insofar as trying to have 

the model have similar characteristics to the observed one as seen in Chapters 1 and 2. 

 In addition to including 3-paths and 4-cylces into the model, Wang (2013) 

recommends using star terms, including alternating stars, and alternating 2-paths (pp. 122-

124). 

 

3.2.3.2 Interaction Terms: θQzQ(a,x), θQzQ(b,x) 

 

The modeling of the interaction terms in a multilevel network begins to introduce 

much more complexity into the model. This complexity can come in the form of a simple 

structure having complex implications when prevalent in a large network. Two examples are 

the Star2AX and TXAX structures seen in Figure 9. The Star2AX structure creates hubs in 

the A network where A vertices and B vertices are connected through popular A vertices. The 

TXAX structure involving two A vertices and a B vertex is easy enough to conceptualize, and 

the interpretation of this structure could be a number of simple concepts, such as two A 

vertices which connect to a common B vertex sharing an edge, which is very similar to the 

homophily-based triangle structure from the single-level networks. 
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Figure 9: Star2AX, TXAX, and AAAXS. 

 

However, the effect of the TXAX structure on a large network is difficult to imagine. 

Even through simulation of a network with 71 vertices and a fixed density of 0.17 in each 

network, the effects are a little unclear, as can be seen below in Figure 10 and Figure 11.  

 



38 

 

 

Figure 10: Simulated network with high prevalence of TXAX. Top: Whole 

network. Bottom: X level. 
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Figure 11: Simulated network with high prevalence of TXAX. Top: A level. 

Bottom: B level. 

 

Additionally, this complexity can be seen purely in the structures themselves before 

their effect on a large network is even considered. For example, an alternating-A/alternating-

X star, or AAAXS, is complex in itself, which can be seen in Figure 9, and has various 

possible explanations, such as one vertex being a broker between networks. 

 

3.2.3.3 Cross-Level Term: θQzQ(a,x,b) 

 

A cross-level network effect is one that includes edges from all three – macro, meso, 

micro – networks. This means there are two types of cross-level structures that can occur: a 3-

path and a 4-cycle. 
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The 3-path describes a structure where well-connected vertices in the macro network 

are connected through the meso network to well-connected vertices in the micro network. The 

L3AXB structure is shown as an example in Figure 12. However, it is important to notice that, 

unlike the 4-cycle which will be described next, only one of the vertices in the macro network 

and one of the vertices in the B network are connected. If this term were highly prevalent in 

the overall network, this would not mean that only one A vertex and only one B vertex would 

be connected for the entire network, but that this 3-path structure would occur frequently, so 

many A and B vertices would not connect directly but instead connect to the other network 

through popular vertices within their own network. This creates what Wang et al. (2013) call a 

hub where the connected vertices in each network use the hub vertex in order to connect 

through the meso network. 

 

  

Figure 12: Cross-level 3-path and 4-cycle. 

 

 The 4-cycle is identical to the 3-path except for an edge connecting both the A and B 

vertices. The interpretation of this structure is that “members of connected groups are 

themselves connected” (Wang et al., 2013, p. 105). In the larger network, this structure 

creates networks in which cliques in one level are connected to cliques in another level. 
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3.2.4 Problems 

 

Two major problems plague the fitting of models to multilevel networks: degeneracy 

(frozen graphs) and convergence. Just as in the single-level network example, model 

degeneracy can occur when a model is incorrectly parameterized. Because of the complexity 

of the multilevel network structures, this is easy to do without even realizing it since so many 

of the structures overlap and influence each other. In order to avoid this, Wang (2013) 

recommends starting with standard edge, Markov, and social circuit specifications for the 

within-network effects and just the basic edge effects for the between-network effects (p. 

120). After successfully fitting those, more complicated interaction and cross-level effects can 

be fitted. However, it is important to note that, just as with the single-level networks, if a 

network structure effect is included in the model that does not appear in the observed 

network, this will also lead to degeneracy. 

In addition to model degeneracy, convergence of parameter estimates is especially 

problematic in multilevel networks.  

 

3.2.4.1 Convergence 

 

With small networks and uncomplicated models, the estimate of the parameters for 

each effect is done through maximum likelihood estimation wherein the parameters are 

estimated as the most likely based on the observed data.  
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For example, in a network with three vertices and one edge modeled by an ERGM 

modeling just the edges, the maximum likelihood estimate (MLE) could be calculated by first 

finding the likelihood function and then maximizing the log of that function with respect to 

the edge parameter as shown in Equations 2 and 3. Because the log function is strictly 

increasing over (0,∞), the likelihood and log likelihood share the same maxima (Casella & 

Berger, 2002, p. 317). 
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Upon solving this equation, it can be seen that the MLE of the edge parameter θ for the 3-

vertex network with one edge is –ln(2). 

 Using the discussion of edge probabilities from Chapter 2 and this parameter estimate, 

we can say that the probability of an edge occurring in this network conditional on the rest of 

the graph is 1/3, as shown in Equation 12. 
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 However, as mentioned previously, when the network grows large and the model 

becomes more complicated, maximizing the log-likelihood function becomes much too 

intensive and impractical because the normalization constant becomes large and unruly. 

Because of this issue with finding the MLE of the parameter analytically in ERGMs, network 

analysts have adopted a few different approaches to parameter estimation including pseudo- 

maximum likelihood estimation (PMLE) and MCMC simulation methods of estimation. 

 MCMC methods described below are the most popular because PMLEs are often not 

accurate for many sets of data because the dependent observations create bias in the parameter 

estimates and inaccurate standard errors (Robins, Pattison, Kalish, & Lusher, 2007, pp. 186-

187). 

 It can be shown that, for exponential family distributions, the value of the parameters 

that maximize the likelihood of the observed network occurring is both the MLE and method 

of moments estimator for parameters (Lehmann, 1983). The method of moments estimator is 

found by determining the values of the parameters for which E(z(X)) = z(xobs) where xobs is 

the observed network and z(xobs) is a vector of statistics on the observed network. In other 

words, the best estimate of the parameters is the one whose expected value makes the set of 

network statistics equal to the observed network statistics (Koskinen & Snijders, 2013, p. 

147). Therefore, if we were to simulate a plethora of networks using a set of parameters, we 

could expect that the observed network statistics would fall in the center of the simulation 

distribution for the parameter values if they were close to the method of moments estimator 
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or, equivalently, the MLE. If the first set of parameters chosen does not have the observed 

network’s statistics in the center of the simulation distribution, then another set of parameters 

must be chosen to better accomplish that goal. This procedure needs to be repeated until 

E(z(X)) = z(xobs), but “because the estimation procedure is numerical, we do not expect the 

quality to hold true exactly” (Koskinen & Snijders, 2013, p. 153). Note that simulations must 

be done because the sampling distribution of most networks is too large to enumerate. 

 There are different algorithms that perform this operation, including the Geyer-

Thompson algorithm used by the popular statnet R package and the Robbins-Monro algorithm 

used in the popular PNET software (Koskinen & Snijders, 2013, pp. 149, 151). 

 Because the moment equality of expected and observed network statistics is not exact, 

it is simply important that the expected value of the statistics be very close to the observed 

statistics. Once it is very close, it is said to have converged to the MLE. In the context of the 

Robbins-Monro algorithm, very close is defined as being when the statistic in Equation 13, 

 

   ̅      

   ({        }       
)
 

 

(13) 

 

is close to zero where m is a graph from one simulation of the model with parameter θ
m

 

(Koskinen & Snijders, 2013, p. 152). More specifically, it is considered close to zero when it 

is between -0.1 and 0.1. Beyond those values, it is said that the estimate for the parameters is 

too far from the MLE (Koskinen & Snijders, 2013, p. 154). 

Sometimes parameters do not converge through this process. The process can be 

repeated a number of times by starting at the values last suggested by this simulation method. 
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However, even after many attempts, the parameters may not converge. One reason this can 

happen is that the model is degenerate for the reasons mentioned earlier. 

When models do not converge, making sure to properly specify them can help achieve 

convergence. For example, in an application done by Zhao and Rank on workplace relations, 

the addition of Markov star effects helped improve the convergence of the model even though 

those specific effects were not significant in the model (Zhao & Rank, 2013, p. 219). Also, 

Koskinen and Snijders suggest trying conditional estimation by keeping the density fixed 

(Koskinen & Snijders, 2013, p. 154). 



 
 

 

 

CHAPTER 4 

 

APPLICATION OF MULTILEVEL ERGM 

 

4.1 Introduction to Lawyer Network 

 

In order to apply this multilevel network framework, we will be looking at a network 

of lawyers who work at a law firm in the Northeast, which was originally presented by Lazega 

and Pattison (1999). Data was collected on whom the lawyers look to for advice, who they 

consider friends, and with whom they work. Furthermore, some attribute data was recorded 

including gender, law school, seniority, age, type of practice, status (partner or associate), and 

office location. 

By focusing on one of the dichotomous variables, status, we hope to discover whether 

the multilevel framework can shed more light on the structure of the advice network since 

“any network data involving binary categorization of nodes can be seen as a ‘two-level’ 

network” (Wang et al., 2013, p. 111).  The status variable defines a lawyer as either a partner 

or associate within the law firm. For our purposes, the 36 partners will populate the A 

network while the B network will be comprised of 35 associates. 

 The overall network can be seen in Figure 14 where Network B has a density of 

0.1798, Network X has a density of 0.0278, and Network A has a much higher density of 
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0.3794.  Unsurprisingly, Network A also has a much higher average degree than Network B 

(6.6389 vs. 3.0571). Network X, which connects the partners and the associates, has relatively 

few edges, with an average degree of 0.9722 with A vertices and 1.000 with B vertices. 

 

 

 

4.2 Model Selection 

 

 As mentioned in Chapter 3, it is recommended to first fit a model to each network 

level separately and then begin including interaction and cross-level terms into the model. 

Therefore, after several attempts to model both the partner (A) network and the associate (B) 

network using a variety of terms and refining each model by means of the MPNet software, a 

model with the basic Markov terms was chosen for each (Wang, Robins, & Pattison, 2009). 

Models with higher level terms such as alternating stars and alternating triangles would not 

converge. The models for each network can be found in Table 2. 

Figure 143:  Lawyer network (blue – partners; orange – associates). 
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Table 2: Model for Networks A and B Separately 

Network A      

Effects Lambda Parameter StdErr t-ratio SACF 

EdgeA  2.0 -2.1888 0.388 0.066 0.845 

Star2A  2.0 0.0647 0.027 -0.076 0.857 

Star3A  2.0 -0.0065 0.003 -0.078 0.851 

TriangleA 2.0 0.2113 0.081 -0.078 0.851 

Network B      

EdgeB 2.0 -3.2070 0.485 -0.90 0.685 

Star2B 2.0 0.1701 0.073 -0.074 0.673 

Star3B 2.0 -0.0163 0.011 -0.061 0.644 

TriangleB 2.0 0.1767 0.173 -0.061 0.635 

 

When considering these models, it is of primary importance that they are able to 

converge in estimation because, as Robins and Lusher explain, “all models will produce 

numerical output . . . but the numbers for the estimates are meaningless unless all parameters 

have converged” (Robins & Lusher, 2013, p. 178). In practical terms, this means finding 

structures that appear in the network and have a real-world interpretation, estimating them 

using network software, and increasing the multiplication factor in the estimation until the 

model converges – if it is going to. The multiplication factor allows the network software to 
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spend more time tweaking the parameter estimates in order to find a set that will converge 

(Harrington, 2007). 

While a number of network effects are modeled for these two networks, it is worth 

considering a few important ones that are not explicitly modeled such as degree distribution 

and clustering. In order to check how these models compare against the observed networks, 

goodness of fit statistics were run on each model in which 5,000 networks were simulated 

using the parameter estimates in order to ensure the models describe the data. The results can 

be seen in Table 3. 
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Table 3: GOF Statistics for Networks Modeled Separately 

Network A     

Effects Observed Mean StdErr t-ratio 

EdgeA 239.0 235.9836 65.798 0.046 

Star2A 3486.0 3361.7338 1875.617 0.066 

Star3A 18318.0 16972.3726 14162.716 0.095 

TriangleA 579.0 538.1962 436.136 0.094 

Stddev_degreeA 11.2029 7.7054 1.820 1.922 

Skew_degreeA 1.0782 1.2426 0.091 -1.803 

clusteringA 0.6186 0.4239 0.104 1.868 

Network B     

EdgeB 107.0 110.1150 39.112 -0.080 

Star2B 790.0 826.8168 543.246 -0.068 

Star3B 2174.0 2282.3018 2100.713 -0.052 

TriangleB 75.0 80.6488 72.199 -0.078 

Stddev_degreeB 4.8889 4.3867 1.202 0.418 

Skew_degreeB 1.6002 1.4341 0.160 1.038 

clusteringB 0.2848 0.2470 0.078 0.487 
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 Having established models for the A- and B- level networks, we turned to creating a 

model for the entire multilevel network. After introducing just the X-level edge term and 

achieving convergence, we moved to a slightly more complicated network which included 

Star2AX and Star2BX terms. Through many rounds of estimation, a model converged, and its 

results are seen in Table 4 and GOF statistics in Table 5. When efforts were made to try to 

improve this model by including triangle interaction terms (TXAX and TXBX), the model 

quickly became degenerate. Upon further investigation, it was revealed that the network had 

very few interaction triangles compared with other statistics in the model, as can be seen in 

Table 6. Once the TXAX and TXBX terms were removed from the model, it was no longer 

degenerate, as suggested in Chapters 2 and 3. 

Our results indicate the prevalence of Star2AX structures, which occur when A 

vertices that are popular with other A vertices are also popular with other B vertices. In the 

context of this network where A vertices represent partners in the law firm and B vertices 

represent associates in the law firm, this suggests that partners who are popular in terms of 

advice sharing within their own network are also popular with associates in the B-level 

network. This interpretation is enhanced by the comparatively small number of Star2BX 

structures because this would entail associates who are popular advice sharers with their peers 

being popular advice sharers with partners. This scenario seems more unlikely considering 

partners would likely be more willing to seek advice from other partners.  
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Table 4: Multilevel Network Model Parameters 

Effects Lambda Parameter StdErr t-ratio SACF 

EdgeA 2 -2.4767 0.394 0.024 0.233 

Star2A 2 0.0874 0.031 0.025 0.267 

Star3A 2 -0.0095 0.003 0.026 0.285 

TriangleA 2 0.212 0.087 0.026 0.284 

EdgeB 2 -3.2784 0.447 -0.019 0.195 

Star2B 2 0.1797 0.07 -0.013 0.232 

Star3B 2 -0.0187 0.011 -0.007 0.253 

TriangleB 2 0.1822 0.168 -0.006 0.25 

XEdge 2 -5.7426 0.506 0.027 0.298 

Star2AX 2 0.1297 0.031 0.03 0.299 

Star2BX 2 0.0269 0.035 0.024 0.308 
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Table 5: GOF Statistics for Multilevel Model 

Effect Observed Mean StdDev t-ratio 

EdgeA 239 240.1448 72.903 0.016 

Star2A 3486 3522.227 2321.045 0.016 

Star3A 18318 18630.0986 20009.512 0.016 

TriangleA 579 589.6763 611.227 -0.017 

EdgeB 107 104.9556 40.72  0.05 

Star2B 790 757.4529 588.786 0.055 

Star3B 2174 2042.2267 2400.73 0.055 

TriangleB 75 70.7507 80.118 0.053 

XEdge 35 35.5855 29.677 -0.02 

Star2AX 632 646.207 837.749 -0.017 

Star2BX 273 273.2115 389.896 -0.001 

stddev_degreeA 12.1393 7.8225 1.959# 2.204 

skew_degreeA 1.1013 1.2298 0.094 -1.366 

clusteringA 0.6819 0.4314 0.111# 2.255 

stddev_degreeX_A 2.2039 1.0248 0.438# 2.694 

skew_degreeX_A 0.8183 1.124 0.521 -0.587 

stddev_degreeX_B 1.5213 0.9285 0.325 1.824 

skew_degreeX_B 0.3757 0.8846 0.476 -1.07 

clusteringX 0.0778 0.0245 0.058 0.918 

(continued on following page) 



54 

Table 5 (continued) 

stddev_degreeB 5.9381 4.1698 1.18 1.499 

skew_degreeB 1.2743 1.4427 0.164 -1.027 

clusteringB 0.3291 0.2294 0.075 1.335 

 

 

 

Table 6: Counts of Structures in Lawyer Network 

Structure # Observed 

Edge A  239 

Star2A  3486 

Star3A  18318 

TriA 579 

Edge B  107 

Star2B  790 

Star3B  2174 

TriB 75 

Edge X  35 

Star2AX 632 

TXAX 25 

Star2BX 273 

TXBX 14 
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4.3 Concluding Remarks 

 

 

 While the multilevel framework illuminates some features that would not have been 

seen through single-level analysis, the process of model selection and refinement for 

multilevel ERGMs is as much of an art as it is a science. While this can be said of most model 

selection, the complex dependencies of network statistics makes the process much less direct. 

The choice of terms and simulation factors creates opportunities for many errors and many 

discussions in both journals and at conferences about the best way to proceed in building 

ERGMs. Even when a model is discovered that is not degenerate and does converge, there is 

still room for debate about whether it is the best model. 

 Beyond model selection, degeneracy, and convergence, a recent article by Shalizi and 

Rinaldo (2013) provides some evidence that ERGM parameters are not projectible from a 

sub-graph to a global network for any model other than the simple edge model. The theory 

surrounding this assertion is complex, but the implications are simple and concerning for the 

use of ERGMs:  

1) ERGM parameter estimates for simple random graph models gained from a sample 

network can be projected to the population network, but that model does not 

adequately represent the observed network. 

2) ERGM parameter estimates for more complicated model gained from a sample 

network cannot be used to describe the population network.  
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However, if a sample network is not being analyzed, then, as Robins et al. (2007) note, the 

interactions between terms is “an important model feature that assists with interpretation”  

(Robins, Pattison, Kalish, & Lusher, 2007, p. 184). 

 More specifically for multilevel ERGMs, a major barrier to analysis is lack of 

software options. MPNet works well, but its output and GOF leaves something to be desired 

even when compared to its single-level predecessor PNet (Wang et al., 2009). An additional 

barrier is the lack of network data that is prepared for multilevel analysis. Because multilevel 

analysis is not as popular as similar methods like analysis of affiliation networks, one of the 

networks usually lacks within-level ties, which hinders the multilevel framework from 

outshining other methods. 

 While there are concerns about the application of these models, there are also many 

opportunities to further clarify the procedures for proper modeling and investigate the 

underlying features of exponential random graph models.
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