
ABSTRACT

BLASCHKE PRODUCTS AND PARAMETER SPACES

Katherine Plikuhn, M.S.
Department of Mathematical Sciences
Northern Illinois University, 2014

Alastair Fletcher, Director

In this thesis, we discuss certain aspects of complex dynamics. We will introduce

the important concepts in iteration theory, discuss examples of families of holomor-

phic mappings, and their dynamics. In particular, we will discuss the family of

quadratic functions, the family of Möbius mappings of the disk, and a certain sub-

class of Blaschke products. We will exhibit some of the ideas of Fletcher [3] which

show how the dynamics depend on the parameters.
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CHAPTER 1

OVERVIEW

The aim of this thesis is to discuss the results contained in the paper [3]. We will discuss

the background to the material in this paper and explain the ideas behind the proofs of the

main results.

In [3], a certain subclass of Blaschke products of degree n is considered and their dynam-

ics are classi�ed according to a decomposition of the corresponding parameter space. To

motivate this, we will discuss some of the fundamental concepts from complex dynamics, in

particular, de�nitions and properties of the Fatou set and the Julia set of a rational function.

These concepts depend on the dynamics of a particular function, but very often we want to

be able to say something about a whole family of functions all at once.

Given a family of functions depending on a certain parameter, we will discuss how they

can be classi�ed according to the values of the parameter. As a speci�c example to illustrate

this idea, we will discuss the well-known family {fc(z) = z2 + c : c ∈ C} and how the famous

Mandelbrot setM encodes certain features of the dynamics of this quadratic family.

To motivate Blaschke products, we will give a classi�cation of the di�erent dynamical

behaviors that can occur for Möbius mappings of the unit disk D. We will de�ne Blaschke

products, discuss some of their basic properties and talk about their dynamics. They can be

classi�ed in a similar way to Möbius mappings of the disk, but this classi�cation, in terms

of parameter space, has not been extensively studied.

We will state the main result of the paper [3], which classi�es Blaschke products of a

certain form, and discuss the ideas contained in the proofs of the main results. The key
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ingredient here is recognizing that a description of the set of points where |f ′(z)| < 1 for a

given Blaschke product f and z ∈ ∂D is crucial for classifying f .



CHAPTER 2

COMPLEX DYNAMICS

In this section, we brie�y introduce some of the important concepts from complex dy-

namics. We start by de�ning what we mean by iteration.

De�nition 2.0.1. If X is a set and f : X → X is a function, then we can iterate f . We

de�ne f 1 = f and for n ≥ 2, denote by fn the n'th iterate of f , given by fn = f ◦ fn−1.

We will be interested in the case when X is the complex plane and f is holomorphic or

meromorphic.

Example 2.0.2. Let f(z) = z2, then f 2(z) = (z2)2 = z4 and in general, fn(z) = z2n .

An important notion from complex analysis is that of a normal family.

De�nition 2.0.3. Let D ⊂ C be a domain and let F be a family of holomorphic functions

de�ned on D. We say that F is a normal family if for every sequence of functions in F there

is a subsequence which converges uniformly on compact subsets to a holomorphic function

or a constant.

We will be interested in the case when F is a family of iterates of a given function.

Montel's Theorem gives us an important criterion to tell when a family is normal.

Theorem 2.0.4. (Montel's Theorem) Suppose F is a family of holomorphic functions de-

�ned on a domain D ⊂ C. If the functions from F all omit the same two values a, b ∈ C,

then F is a normal family in D.
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Now we are in a position to de�ne the set where the iterates of a holomorphic function

behave nicely.

De�nition 2.0.5. The Fatou set F (f) is the set of good dynamical behavior, i.e. z ∈ F (f)

if and only if the family of iterates on some neighborhood of z forms a normal family.

One way of viewing this is that two nearby points in the Fatou set stay near to each

other under iteration.

De�nition 2.0.6. The Julia set J(f) is the set of chaotic behavior, i.e. z ∈ J(f) if and

only if the family of iterates does not form a normal family on any neighborhood of z.

One way of viewing this is that typically two nearby points in the Julia set will eventually

end up relatively far apart under iteration. It is clear from the de�nitions that the Fatou set

and Julia set are disjoint and C = F (f) ∪ J(f).

Example 2.0.7. Let f(z) = z2. Then the Fatou set has two components: the unit disk and

{z : |z| > 1} and the Julia set is {z : |z| = 1}.

The escaping set I(f) is de�ned to be the set of points for which fn(z)→∞ as n→∞.

In the above example, we see that I(f) = {z : |z| > 1} and so we have ∂I(f) = J(f). This

is an equality which holds in general, see [2].

Some more well-known properties which illustrate the chaos of the Julia set are:

(i) The Julia set is the closure of the repelling periodic points.

(ii) The Julia set satis�es a blowing-up property: if U is any open set that intersects J(f),

then the forward orbit of U covers everything except possibly one point in C. This

follows since if the family fn de�ned on U all omit the same two points, then by

Montel's Theorem the family would be normal on U and hence the point would be in

the Fatou set.



CHAPTER 3

PARAMETER SPACES IN DYNAMICS

Given a holomorphic function f , we saw in the previous section that there are sets, the

Julia set and the Fatou set, which describe the dynamics of f . These are sets that are

de�ned by iterating f and seeing what happens; i.e. given z ∈ C, we see what happens

to the sequence f(z), f 2(z), f 3(z), . . .. The dynamical plane is the z-plane which contains

information about the iterates of one function f .

When we talk about parameter space, we are dealing with a whole family of functions at

once. We assume we can write our family as

F = {fy : y ∈ Y },

where Y is a set we call parameter space. We say Y parameterizes the family F . To illustrate

this fairly abstract idea, we use the family

F = {fc(z) = z2 + c : c ∈ C}

as an example. The parameter space here is the set of c-values, i.e. Y = C. Every c-value in

C gives rise to a di�erent function in F . A di�culty with this example is that the dynamical

plane is the plane of z-values for any particular fc and the parameter space is also a plane,

but the plane of c-values that gives rise to the various fc.
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To recap, given a family of functions, its parameter space is the set such that every

element in it gives rise to a di�erent function, but for each function, we can look at its

dynamics, and that happens in the dynamical plane.

We are very often interested in situations where the parameter space splits up into two

sets, i.e. Y = Y1 ∪ Y2, where if the parameter is in Y1 we get one type of behavior in the

dynamics of the corresponding function and if the parameter is in Y2, we get a di�erent

behavior. With the family of quadratic polynomials F , it is wellknown that the Julia set,

which lives in the dynamical plane, can be one of two things: either it is connected or it is

totally disconnected, i.e. it is a Cantor set and every component is a point. In Figure 3.1,

we see an example of a connected Julia set, for z2− 1, and in Figure 3.2, we see an example

of a totally disconnected Julia set, for z2 + 1
2
.

Figure 3.1: The Julia set of z2 − 1.

Since for the family of quadratic polynomials, we have two di�erent types of dynamical

behavior, the parameter space breaks up into two sets: one of parameters which give rise
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Figure 3.2: The Julia set of z2 + 1
2
.

to connected Julia sets and one of parameters which give rise to totally disconnected Julia

sets. The Mandelbrot setM is de�ned to be the set in parameter space which gives rise to

connected Julia sets. In other words, if c ∈M, then J(fc) is connected, and if c /∈M, then

J(fc) is totally disconnected. See Figure 3.3 for a picture of the Mandelbrot set.

We brie�y describe how the dynamical pictures were produced. Recall the escaping set

I(f) consists of those points in the dynamical plane that escape to in�nity under iteration

by f . It's a well-known fact that J(f) = ∂I(f), so dynamical plots Figures 3.1 and 3.2 are
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Figure 3.3: The Mandelbrot set.

produced by plotting those points which escape to in�nity. Since computers can only handle

�nite objects, it is computed by iterating �nitely many times and seeing if the iterates ever

lie outside some big ball. In the �gures, the blue section is the escaping set, and so the

boundary of the blue part is the Julia set.

Figure 3.3 of the Mandelbrot set is produced in a similar and slightly di�erent way by

using another way of characterizing the Mandelbrot set. If c ∈M, then 0 turns out to not be

in the escaping set for fc, whereas if c /∈ M, 0 is in I(fc). Given c, it is enough to conclude
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that c /∈ M if |fnc (0)| > 2 for any n ∈ N. Using this condition, computer programs can be

written to check if, for any large �nite n, this condition is satis�ed.

3.1 Möbius Mappings and the Hyperbolic Disk

In this section, we discuss function theory on the unit disk. In particular, we focus on

isometries in the hyperbolic metric, i.e. Möbius transformations. Some of the presentation

in this section follows [1].

3.2 The Poincaré Disk

De�nition 3.2.1. The Poincaré disk model of hyperbolic space is de�ned as the unit disk

D = {z ∈ C : |z| < 1} equipped with the hyperbolic metric density

λD(z)|dz| =
2|dz|

1− |z|2
(3.2.1)

and the hyperbolic distance

dD(z, w) = log

(
1 + | z−w

1−w̄z |
1− | z−w

1−w̄z |

)
(3.2.2)

for z,w ∈ D.

De�nition 3.2.2. An isometry of the hyperbolic metric, in the unit disk, is a map A such

that

dD(A(z), A(w)) = dD(z, w), ∀z, w ∈ D.
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De�nition 3.2.3. A Möbius transformation is a function of the form

A(z) =
az + b

cz + d
,

where a, b, c, d ∈ C and ad− bc 6= 0.

Every Möbius transformation can be represented by a matrix

a b

c d

. The condition

ad− bc 6= 0 means that the matrix is non-singular.

Now, every isometry of the hyperbolic metric in the unit disk is a Möbius transformation

and can be written in the form

A(z) = eiθ
(
z − w
1− wz

)

for some eiθ ∈ ∂D and w ∈ D. We can divide through by eiθ/2 to obtain

A(z) =
Ceiθ/2z − Ceiθ/2w
Ce−iθ/2 − Ce−iθ/2wz

,

where C = (1−|w|2)−1/2. The reason for writing A in this form is that the matrix representing

A, given by  Ceiθ/2 −Ceiθ/2w

−Ce−iθ/2w Ce−iθ/2

 ,

has determinant 1 and trace-squared equal to

τ(A) =

(
eiθ/2√
1− |w|2

+
e−iθ/2√
1− |w|2

)2

=
2(1 + cos θ)

1− |w|2
. (3.2.3)

We note that τ is invariant under conjugation, i.e. τ(P−1AP ) = τ(A).
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3.3 The Schwarz Lemma

The Schwarz Lemma is a key tool in function theory on the unit disk. It will have some

important consequences in the study of Blaschke products.

Theorem 3.3.1. (Schwarz's Lemma). Suppose that f : D→ D is holomorphic and satis�es

f(0) = 0. Then either

(a) |f(z)| < |z| for every non-zero z ∈ D, and |f ′(0)| < 1, or

(b) for some real constant θ, f(z) = eiθz and |f ′(0)| = 1.

Proof. De�ne g : D→ C by

g(z) =

 f(z)/z , z 6= 0

f ′(0) , z = 0
.

Then g is analytic in D. For

0 < r < 1 and |z| < r,

|g(z)| ≤ |f(z)|
r
≤ 1

r
,

by the Maximum Modulus Theorem. Letting r → 1 implies |g(z)| ≤ 1, ∀z ∈ D. Hence

|f(z)| ≤ |z| and |f ′(0)| = |g(0)| ≤ 1. If either equality is achieved, |g| attains its maximum

inside D, which implies g(z) ≡ c for some c with |c| = 1. Thus, f(z) = cz.

3.4 The Schwarz-Pick Lemma

The Schwarz-Pick Lemma is a generalization of the Schwarz Lemma for functions that

do not �x 0.
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Theorem 3.4.1. (Schwarz-Pick Lemma). Suppose that f : D → D is holomorphic. Then

either

(a) f is a hyperbolic contraction; that is, for all z and w in D,

dD(f(z), f(w)) < dD(z, w), λD(f(z))|f ′(z)| < λD(z), (3.4.1)

or

(b) f is a hyperbolic isometry; that is, for all z and w in D,

dD(f(z), f(w)) = dD(z, w), λD(f(z))|f ′(z)| = λD(z). (3.4.2)

Proof. We have that f is an isometry if and only if one, and hence both, of the conditions

in (3.4.2) hold.

Suppose now the f : D → D is holomorphic but not an isometry. Select any two points

z1 and z2 in D. Here is the intuitive idea behind the proof. Because we can �nd Möbius

transformations that send any point to any other point, we may assume without loss of

generality that both z1 and f(z1) are at the origin. In this special situation, (3.4.1) follows

directly from the Schwarz Lemma.

Now we write out a formal argument. Let g and h be Möbius transformations of D such

that g(z1) = 0 and h(f(z1)) = 0. Let F = hfg−1; then F is a holomorphic self-map of D that

�xes 0. As g and h are isometries, F is not an isometry or else f would be too. Therefore,
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by the Schwarz Lemma, dD(0, F (z)) < dD(0, z) and |F ′(0)| < 1, ∀z ∈ D. Thus, as Fg = hf

and g, h are hyperbolic isometries:

dD(f(z1), f(z2)) = dD(hf(z1), hf(z2))

= dD(Fg(z1), Fg(z2))

= dD(0, Fg(z2))

< dD(0, g(z2))

= dD(g(z1), g(z2))

= dD(z1, z2).

This is the �rst inequality in (3.4.1). To obtain the second inequality, we apply the Chain

Rule to each side of Fg = hf and obtain

|F ′(0)| = |f
′(z1)|(1− |z1|2)
1− |f(z1)|2

< 1.

This gives us the second inequality in (3.4.1) at an arbitrary point z1.

The Schwarz-Pick Lemma is often stated in the following form: Every holomorphic self-

map of the unit disk is a contraction relative to the hyperbolic metric. That is, if f is a

holomorphic self-map of D, then

dD(f(z), f(w)) ≤ dD(z, w), λD(f(z))|f ′(z)| ≤ λD(z). (3.4.3)

The work of Pick in geometric function theory has shown that the hyperbolic metric, not

the Euclidean metric, is the natural metric for most of the subject. Although the de�nition

of the hyperbolic metric may seem arbitrary, in fact, up to multiplication by a positive scalar,

it is the only metric on the unit disk that makes every holomorphic self-map a contraction.
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The following consequence of the Schwarz-Pick Lemma will be important later in classi-

fying Blaschke products.

Theorem 3.4.2. If a holomorphic self-map of D �xes two points in D, then it is the identity.

Proof. Let f : D → D be a holomorphic self-map such that f(w1) = w1 and f(w2) = w2.

Also, let ϕ : D → D be a Möbius map de�ned by ϕ(z) = z−w1

1−w̄1z
, where ϕ(w2) = µ and we

have ϕ(w1) = 0. De�ne f̃ = ϕ ◦ f ◦ ϕ−1. Note that ϕ−1(z) = z+w1

1+w̄1z
. So, we have

f̃(0) = ϕ[f(ϕ−1(0))] = ϕ[f(w1)] = ϕ(w1) = 0

and

f̃(µ) = ϕ[f(ϕ−1(µ))] = ϕ[f(w2)] = ϕ(w2) = µ.

Therefore, since f̃ is a holomorphic map such that f̃(0) = 0 and |f̃(w1)| = |w1|, by

Schwarz's Lemma part (b), we must have f̃(z) = eiθz. Consider when z = w1. Then f̃(z) =

f̃(w1) = eiθw1 = w1 and so θ = 0. Thus, f̃ = id, the identity. Therefore, we have f =

ϕ−1 ◦ f̃ ◦ ϕ = ϕ−1 ◦ ϕ = id. Hence, if f : D → D is a holomorphic self-map that �xes two

points, f is the identity.

3.5 Classi�cation of Möbius Maps

To �nd �xed points of a Möbius map, we need to solve
(
az+b
cz+d

)
= z. This simpli�es to

solving cz2 + (d− a)z − b = 0, which has either one or two solutions, and so a Möbius map

has one or two �xed points.

We recall that Möbius transformations of D can be classi�ed as follows:

(i) A is called hyperbolic if A has two �xed points on ∂D and none in D (Figure 3.4),
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(ii) A is called parabolic if A has one �xed point on ∂D and none in D (Figure 3.5),

(iii) A is called elliptic if A has no �xed points on ∂D and one in D (Figure 3.6).

Figure 3.4: Hyperbolic Möbius transformation.

Figure 3.5: Parabolic Möbius transformation.

Note that by Theorem 3.4.2 , if A is not the identity, A can have a maximum of one �xed

point in D, and so these three cases provide a complete classi�cation of Möbius transforma-

tions of D.
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Figure 3.6: Elliptic Möbius transformation.

This classi�cation can also be expressed in terms of τ :

(i) A is hyperbolic if and only if τ(A) > 4.

(ii) A is parabolic if and only if τ(A) = 4.

(iii) A is elliptic if and only if 0 ≤ τ(A) < 4.

We see from (3.2.3) that τ(A) is real when A is represented in the normalized form as

given above. Hence if we �x θ, the set of w-values for which A is elliptic is given by the disk

{
w ∈ D : |w| <

√
1− cos θ

2

}
.

Note this set is empty when θ = 0. Since the set of parameters for Möbius transformations

of D can be parameterized by the solid torus S1 × D, the domain of ellipticity is given by

the open set

E :=

{
(eiθ, w) ∈ S1 × D : |w| <

√
1− cos θ

2

}
. (3.5.1)

The boundary of E gives the set of parabolic parameters by the classi�cation in terms of τ .



CHAPTER 4

BLASCHKE PRODUCTS

4.1 De�nition and Properties

A �nite Blaschke product is a function B : D→ D given by

B(z) = eiθ
n∏
i=1

(
z − wi
1− wiz

)
, (4.1.1)

for some eiθ ∈ ∂D and wi ∈ D for i = 1, . . . , n. We call a Blaschke product non-trivial if

n ≥ 2.

Every �nite-degree self-mapping of D is a �nite Blaschke product [1, p.19], and so they

can be viewed as analogues for polynomials in the disk. Recalling Theorem 3.4.2, B can

have at most one �xed point in D. If z0 is a �xed point of B, then we will show that 1/z0 is

also a �xed point of B.

Theorem 4.1.1. Let B be a Blaschke product of the form

B(z) = eiθ
n∏
i=1

(
z − wi
1− wiz

)
,

where wi ∈ D for i = 1, 2, . . . , n. Then if z0 ∈ D is a �xed point of B, so is 1/z0.

Note that 1/z0 is the re�ection of z0 in the unit circle.
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Proof. Suppose that B is a Blaschke product and B(z0) = z0, then

B(1/z0) = eiθ
n∏
i=1

(
1/z0 − wi
1− wi/z0

)
= eiθ

n∏
i=1

(
1− wiz0

z0 − wi

)

= e−iθ
n∏
i=1

(
1− z0wi
z0 − wi

)
=

1

B(z0)

=
1

z0

.

Hence all but possibly two (with the convention that in�nity is a �xed point if some

wi = 0) of the �xed points of B must lie on ∂D.

The following theorem helps us classify Blaschke products (see [4, p.58]).

Theorem 4.1.2 (Denjoy-Wol� Theorem). Let f : D→ D be holomorphic and not a Möbius

transformation. Then there exists some z0 ∈ D such that fn(z) → z0 for every z ∈ D. The

point z0 is called the Denjoy-Wol� point of f .

There is a classi�cation of �nite Blaschke products in analogy with that for Möbius

transformations:

(i) B is called hyperbolic if the Denjoy-Wol� point z0 of B lies on ∂D and |B′(z0)| < 1.

(ii) B is called parabolic if the Denjoy-Wol� point z0 of B lies on ∂D and |B′(z0)| = 1.

(iii) B is called elliptic if the Denjoy-Wol� point z0 of B lies in D. In this case, we must

have |B′(z0)| < 1.
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Let B be a Blaschke product of the form

B(z) = eiθ
n∏
i=1

(
z − wi
1− wiz

)
.

Suppose we want to �nd �xed points of B. Then we need to solve the equation B(z) = z,

or in other words,

eiθ
n∏
i=1

(
z − wi
1− wiz

)
= z.

By multiplying through by the denominator of the left-hand side and rearranging, this be-

comes

z
n∏
i=1

(1− wiz)− eiθ
n∏
i=1

(z − wi) = 0.

Since this is a polynomial of degree n + 1, by the Fundamental Theorem of Algebra, there

are n+1 solutions (counting multiplicity). By Theorem 3.4.2, there can be at most one �xed

point in D, and so at most one �xed point on C \ D. All the others must be on ∂D.

This viewpoint illustrates the classi�cation of Blaschke products:

(i) Elliptic: the Denjoy-Wol� point is the �xed point in D; there is one other �xed point

in C \ D and there are n− 1 distinct �xed points on ∂D.

(ii) Parabolic: there are n distinct �xed points on ∂D, but one is taken with multiplicity 2

(the Denjoy-Wol� point).

(iii) Hyperbolic: there are n+1 distinct �xed points on ∂D, and one of them is the Denjoy-

Wol� point.
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4.2 Dynamics of Blaschke Products

Recall that the Fatou set of a rational map C→ C is the set

F (f) = {z ∈ C : the family (fn)∞n=1 is normal in some neighborhood of z},

and the Julia set is the complement of the Fatou set.

Recall the blowing-up property of the Julia set: if z ∈ J(f), then for any neighborhood

U of z, the forward orbit of U , given by
⋃
n≥0 f

n(U), covers everything in C except possibly

one point (two points if we include ∞).

Now, since a Blaschke product is composed of various Möbius transformations all multi-

plied together, we have |B(z)| < 1 whenever |z| < 1 and |B(z)| > 1 whenever |z| > 1. This

implies that B(D) = D and B(C \ D) = C \ D.

Therefore, for any z ∈ D, choose a neighborhood U contained in D. The forward orbit

of U can never leave D, so z cannot be in the Julia set. Similarly, for any z ∈ C \D, choose

a neighborhood U contained in C \ D. The forward orbit of U can never enter D and so

again z cannot be in the Julia set. This means that the Julia set of a Blaschke product is

contained in ∂D.

The following is a rough description of why the Julia set takes the form it does for the

classi�cation of Blaschke products:

(i) Elliptic: any point on ∂D has points nearby in D which iterate to the �xed point z0

and points nearby in C \ D which iterate to the �xed point 1/z0, and so the behavior

is chaotic.

(ii) Parabolic: depends on whether B′′(z0) is 0 or not, but this case is complicated!
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(iii) Hyperbolic: there is an attracting �xed point (the Denjoy-Wol� point) z0 on ∂D. Any

attracting �xed point is contained in the Fatou set, so there is a neighborhood of z0 in

∂D contained in the Fatou set (since the Fatou set is open). Taking the pre-images of

this interval in ∂D leaves just a Cantor set.

In conclusion, for Blaschke products, the Julia set is the whole of ∂D or a Cantor sub-

set of ∂D. These two cases can be characterized as follows (see [3] for references to this

characterization).

Proposition 4.2.1. Let B be a non-trivial �nite Blaschke product. Then:

(i) if B is elliptic, J(B) = ∂D;

(ii) if B is hyperbolic, J(B) is a Cantor subset of D;

(iii) if B is parabolic and z0 ∈ ∂D is the Denjoy-Wol� point of B, J(B) = ∂D if B′′(z0) = 0

and J(B) is a Cantor subset of ∂D if B′′(z0) 6= 0.



CHAPTER 5

THE MAIN THEOREM

We will now only deal with Blaschke products of the form

B(z) = eiθ
(
z − w
1− wz

)n
, n ≥ 2,

where eiθ ∈ ∂D andw ∈ D. So we have two parameters that specify the Blaschke product,

(eiθ, w) ∈ ∂D× D, the parameter space. Therefore the parameter space is a torus. Next we

will describe the subset of this parameter space that gives Blaschke products with connected

Julia sets. Recall J(B) ⊂ ∂D is either all of ∂D or a Cantor subset.

Theorem 5.0.2. We have the following identi�cation: {(eiθ, w) : B is elliptic} = {(eiθ, w) :

J(B) is connected}.

From Proposition 4.2.1, we know that when B is hyperbolic, we have that J(B) is a

Cantor subset of D. For the particular subclass of Blaschke products we are interested in,

if B is parabolic, then for the Denjoy-Wol� point z0 we have B′′(z0) 6= 0. So we know that

when B is parabolic we have that J(B) is a Cantor subset of D. Therefore, the only time we

have J(B) connected is when B is elliptic.

Now we want to �nd out exactly which of those Blaschke products are elliptic. Let us go

back to our parameter space, the torus, and �x eiθ. This gives us a slice of the torus, so we

now have a disk (Figure 5.1). Within the disk, let us �x a direction eiψ and consider the ray
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seiψ, 0 ≤ s ≤ 1. (w = seiψ in polar coordinates.) We have now reduced down to only looking

at Blaschke products of the form

B(z) = eiθ
(

z − seiψ

1− se−iψz

)
. (5.0.1)

When s = 0, B(z) = eiθzn. So when |z| = 1, |B′(z)| = n|eiθ||z|n−1 = n > 1. Thus, B

must be elliptic.

Figure 5.1: Parameter space for the subclass of Blaschke products.

Theorem 5.0.3. There exists s0 ∈ (0, 1] so that:

• s < s0, B is elliptic,

• s = s0, B is parabolic,

• and s > s0, B is hyperbolic.

So s < s0 gives elliptic Blaschke products of the form in (5.0.1). If we were to repeat

this over all rays, we would see that the parameters that give elliptic Blaschke products are

a star-like domain (Figure 5.2). Repeating over the entire torus, we see the elliptic Blaschke

products form what is called the domain of ellipticity. The domain of ellipticity is the subset

of parameter space for which J(B) is connected. This set is open, contrasting with the

Mandelbrot set which is closed.
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Figure 5.2: Star-like domain.

Now we will show the mechanics of Theorem 5.0.3.

If B is hyperbolic or parabolic, there is some Denjoy-Wol� point z0 ∈ ∂D, where |B(z0)| ≤

1. So if we have |B′(z)| > 1 on ∂D, B must be elliptic. The only way for B to be hyperbolic or

parabolic is if |B′(z)| ≤ 1 somewhere. Let K = {z ∈ ∂D : |B′(z)| ≤ 1}.We have calculations

showing that K = ∅ if s < n−1
n+1

. So B is guaranteed to be elliptic if s < n−1
n+1

. Just because

K is non-empty that does not mean we will have a Denjoy-Wol� point in K. The necessary

conditions for B to be hyperbolic are to have K be non-empty and have K contain a �xed

point which must be a Denjoy-Wol� point. Similarly, for parabolic, we need K non-empty,

but we must also have a �xed point at one of the endpoints of K, and this �xed point will

be the Denjoy-Wol� point.

From [3], we have these three lemmas:

Lemma 5.0.4. The set K is empty for s < n−1
n+1

, the single point ei(ψ+π) for s = n−1
n+1

, and is

an arc in ∂D centred at ei(ψ+π) for s > n−1
n+1

.

Lemma 5.0.5. (Figure 5.3) If s ≥ n−1
n+1

, then |K| = 2π − 2 cos−1(t), where

t = t(s) =
1− n+ (1 + n)s2

2s
,
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and |B(K)| = 2π − 2 cos−1(u), where

u = u(s) =
1− n− (1 + n)s2

2ns
.

Figure 5.3: Diagram showing the action of B on K when s > n−1
n+1

.

Lemma 5.0.6. For s ∈ (n−1
n+1

, 1), let p(s) = |K| and q(s) = |B(K)|. Then p′(s) > q′(s) and

so |K| grows faster than |B(K)|.

Lemmas 5.0.4, 5.0.5, and 5.0.6 together prove Theorem 5.0.3 in the following way (Figure

5.5). Once s ≥ n−1
n+1

, the set K is non-empty and |K| grows as s grows, with |K| → 2π as

s→ 1. Similarly, |B(K)| grows to a certain point, then shrinks, with |B(K)| → 0 as s→ 1.

So unless we are in the special case where the center of B(K) is directly opposite the center

of K (Figure 5.4), eventually an endpoint of K will agree with an endpoint of B(K). This

value of s gives us s0 in Theorem 5.0.3, which means that B is parabolic. As s increases

beyond s0, B will have a �xed point inside K, but not an endpoint of K, which means that

B is hyperbolic.
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Figure 5.4: Diagram showing the special case where the center of B(K) is directly opposite
the center of K.

Figure 5.5: Diagram showing the three situations that arise in Theorem 5.0.3, the elliptic
case (s < s0) where there are no �xed points on B in K (top), the parabolic case (s = s0)
where B(eiφ2) = eiφ2 (middle), and the hyperbolic case (s > s0) where B(K) is strictly
contained in K (bottom).
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