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Summary. In recent years there have been numerous studies made on the marine benthic assemblages of Maltese 
coastal waters, either as elements of the seascape, or in order to gain an understanding of the nature of these 
assemblages and of the factors which structure them, or to assess the potential of such assemblages as indicators of 
environmental change, principally that due to anthropogenic activities. The massive data sets generated by such studies 
can realistically only be analysed objectively using an array of sophisticated statistical techniques that it has only been 
possible to apply now that powerful computers are readily available. 

Starting with the basics of data analysis, this paper reviews the statistical techniques currently used for the analysis of 
benthic assemblages, particularly those that have been found suitable for the type and character of data from the 
Mediterranean. Emphasis is placed on multivariate techniques, since benthic data are usually highly multivariate. A 
brief review of the development of these techniques and of their application to benthic ecological research is also given. 
The objective is to provide a guide to techniques and to the literature which local workers may find useful as a starting 
point when designing an experimental, data collection, or analytical protocol. 
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Introduction 
The study of the marine benthic assemblages of Maltese 
coastal waters has developed along parallel lines as has 
the subject on a global scale, albeit with a considerable 
time lag. Thus, the earliest studies were made by 
naturalists who were primarily interested in cataloguing 
the biota (for example: McAndrew, 1850; Mamo in 
Camana, 1867; Aradas and Benoit, 1870; Medlycott, 
1870; Benoit and Gulia, 1872; Gulia, 1873; Sommier 
and Caruana Gatto, 1915; Despott, 1919; Caruana Gatto 
and Despott, 1919a,b). At most, these works included 
only general indications of abundance and habitat. While 
faunistic and floristic studies have continued to the 
present, starting in the mid-1960s, attention shifted to the 
study of the biology of individual species, mainly 
aspects of physiology, biochemistry, behaviour and 
autecology (for a compilation of the earlier work, see 
Bannister, 1974; see also Lythgoe and Woods, 1966), 
with some workers attempting to relate the biology of 
the species they studied to synecology (for example, 
Bannister, 1970; Zammit, 1972; Schembri and Jaccarini, 
1978; Fenech, 1980). 

The study of marine benthic assemblages as biological 
entities was pioneered locally by the work of Crossett 
and Larkum (1966), Crossett et al. (1965), Larkum et al. 
(1967), and Drew (1969) on algal assemblages, .and of 
Biggs and Wilkinson (1966), Wilkinson et al. (1967) 
and Richards (1983) on molluscan assemblages. In the 
late 1980s, the marine benthic assemblages of the 
Maltese Islands started being systematically investigated 
by two research groups based at the Department of 
Biology of the University of Malta. Many of these 

studies are as yet unpublished (for abstracts see Axiak 
1993, 1994, 1995, and Dandria 1996, 1997). 

This work has taken two directions: (1) the description 
of assemblages as elements of the seascape - what may 
be termed the 'geographical approach'; and (2) a more 
biological approach in which the focus is community 
structure and function. The geographical approach has 
been necessitated by the need to map and characterise 
the marine environment in connection with the 
assessment of the environmental impact of coastal 
development projects and the identification and 
designation of marine protected areas (Anderson et al., 
1992; Borg and Schembri, 1993; Mallia and Schembri, 
1995a; Schembri, 1995; Pirotta and Schembri, 1997a,b; 
Borg et al., 1997a,b). 

The primary objective of the biological study of local 
marine assemblages is to gain an understanding of the 
nature of these assemblages and of the factors which 
structure them (see abstracts in Axiak 1993, 1994, 1995, 
and Dandria 1996, 1997; see also Borg and Schembri, 
1995a,b). A secondary, but important objective is to use 
biotic assemblages as indicators of environmental 
change, principally that due to anthropogenic activities 
(Borg and Schembri, 1993, 1995c; Mallia and Schembri, 
1993, 1995b). 

As has happened elsewhere, the trend has been to move 
from purely descriptive work to quantitative studies. For 
all but a few impoverished benthic assemblages 
however, such studies generate massive data sets. The 
ready availability of powerful computers has permitted 
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the application of a wide array of sophisticated statistical between the species, using their pattern of distribution 
techniques to the analysis of such data sets, allowing among the samples. 
greater objectivity and more reliable conclusions to be 
drawn. However, the statistical analysis of ecological Data in the sample-species matrix can be theoretically 
data can be a double-edged sword - a powerful tool plotted as a multi-dimensional graph. In Q-Mode 
provided that the appropriate method is chosen and that analysis, for two species, a two-dimensional graph is 
its strengths and limitations are understood, but obtained, with each axis representing one species. If 
otherwise likely to lead to quite erroneous conclusions Species A is represented on the x-axis, and Species B on 
(James and McCulloch, 1990). This is perhaps even the y-axis, Sample 1, which contains 2 individuals of 
more so in the local situation, where numerical ecology Species A and 5 individuals of Species B, would be the 
is a fledgling field. point (2,5) on the said graph (Fig.1). In R-Mode 

analysis, the samples are the axes and the species are the 
Starting with the basics of data analysis, this paper points. 
reviews the statistical techniques 
currently used for the analysis of 
benthic assemblages, with 
particular emphasis on those that 
have been found suitable for the 
type and character of data from 
the Mediterranean. It also 
provides a brief review of the V) 6 
development of these .- Q, 

techniques, and of their $ 
application to benthic ecological 4 
research in the Mediterranean. It a 
is not our intention to review the 
entire field, nor the underlying 
statistical theory - -this has 
already been done by far better 
qualified workers than ourselves 
(for example, Williams, 1971; 0 1 2 3 4 5 6 7 
Afifi and Azen, 1979; Field et 
al., 1982; Gauch, 1982; Ludwig Species A 
and 1988' Burd et Figure 1. The multidimensionality of data sets in community ecology. 
1990; Everitt and Dunn, 1991; 
James and McCulloch, 1990; Clarke and Warwick, 
1994). What we attempt to do here is to provide a guide 
to techniques and to the literature which local workers 
may find useful as a starting point when designing an 
experimental, data collection, or analytical protocol. 

1. The Data Matrix 
Q-Mode a n d  R-Mode analysis 
Community ecology data is usually based on an analysis 
of the species present in the given samples, including a 
measure of abundance. The standard method of 
presenting these data is in the form of a sample-species 
matrix (Table 1). 

Since plots beyond the third dimension cannot be 
visualised (although they can be calculated), and since 
cases of data with less than four samples or species are 
seldom encountered in practice, statistical methods must 
be invoked to summarise the data to a two- or three- 
dimensional representation. Besides summarisation, 
which must be relatively objective and produce 
effectively presentable results, 'pattern analysis' 
techniques should also help ecologists to investigate the 
structure in their data (Gauch, 1982). Such a 
summarisation entails discarding some of the 
information (dimensionality) present in the sarnple- 
species matrix. 

Statistical analysis proceeds from this table and can be The simplest techniques reduce the dimensionality of the 
performed in two modes, Q-Mode (Normal) and R-  data to a minimum - a single variable for each species or 
Mode (Inverse). Q-Mode analysis seeks to determine sample - hence losing a considerable amount of 
relationships between samples, based on a comparison of information. Such techniques are known as univariate 
the distribution of species within each sample. R-mode techniques. More complex methods (distributional and 
analysis, on the other hand, focuses on relationships multivariate techniques) take more of the dimensionality 

Table 1.  Sample-species matrix 
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into account. Data sets in community ecology are 
multivariate (multidimensional), hence theoretically best 
analysed by multivariate methods, and the discussion of 
such analyses will constitute the bulk of this paper. 
However, we shall begin by taking a brief look at 
univariate techniques. 

2. Univariate analytical methods 
There are two main approaches to univariate data 
analysis. One reduces the data for a sample to an index 
(a 'diversity index', for example, Shannon-Wiener's, 
Simpson's, and many more; see below) and, using 
'traditional' statistics (analysis of variance, the chi- 
squared test, and others), compares the indices. The 
other approach is to select an indicator species and 
perform these same tests on its abundance in different 
samples. 

2.1 Diversity and similarity measures 
2.1.1 Alpha, beta, and gamma diversity 
A typical modem 'textbook' definition of alpha, beta, and 
gamma diversities would be as follows (Lincoln et al., 
1998): 

a-diversity: The diversity or richness of a species within 
a particular habitat, community, local area 
or individual sample. 

0-diversity: The richness of a species in a specified 
geographical region; the rate and extent of 
change in species along a gradient from one 
habitat to others. 

y-diversity: The richness of a species across a range of 
habitats within a geographical area or 
in widely separated areas. 

Diversity, however, is one of those concepts in ecology 
that have proven to be very elusive to mathematical 
definition. Robert H. Whittaker introduced the idea of 
different levels of diversity in the 1960s and this 

continued to develop through the years, with much 
active participation on his part (Colinvaux, 1993). The 
original idea sparked from the dichotomi between 
'within habitat diversity' and 'between habitat diversity' 
which Whittaker called alpha and beta diversity, 
respectively. Extending the concept, we get, on one side, 
point diversity, that is, diversity found in very small 
samples, and on the other side, gamma diversity, that is, 
diversity between whole regions. The inherent problem 
with such a classification is the subjectivity of scale, that 
is, what one understands by 'small sample', 'habitat', and 
'region'. 

In 1972. Whittaker redefined beta diversity as "a 
measure of the rate and extent of change in species 
along a gradient, from one habitat to others" 
(Southwood, 1978). Mathematically, Whittaker first 
expressed his second version of 0-diversity as the ratio 
of a-diversity to y-diversity, and eventually refined this 
to consider it equal to the mean similarity among sites. 
The most significant point to note, however, is that 0 -  
diversity is a vector quantity (ignoring Whittaker's initial 
and forgotten definition) while a -  and y-diversities are 
scalar, although both kinds are very elusive to 
quantification. 

As all natural ecosystems exhibit some degree of 
dominance, whereby a few species are much more 
abundant than the rest, it is clear that a good 
quantification of a -  or y-diversity must include, besides 
number of species (species richness), some measure of 
evenness, that is, the relative proportions of individuals 
contributed by each species (for mathematical 
approaches to the phenomenon of dominance see Cassie, 
1962; Whittaker, 1965; McNaughton and Wolf, 1970; 
Tokeshi, 1990). A habitat with 100 individuals and 10 
distinct species is considered to be more diverse if each 
species contributes 10 individuals than if one species 

Station 

contributed 91 of the individuals 
present. The weight one gives to 
each of these two ingredients 
(richness and evenness) is a 
subjective issue, and the amount 
of recipes available, more 
officially termed diversity 
indices, is immense. As 
Southwood (1978) puts it, "there 
is no universal 'best-buy', 
although there are rich 
opportunities for inappropriate 
usages", and one must select an 
index according to the purpose 
of one's research. A typical 
index is the Shannon diversity 
index1 (see Fig. 2). 

2.1.2 Similarityldistance measures 
Given this situation, it is 
virtually impossible there can 
ever be a universally accepted 
absolute measure of diversity, 

Figure 2. Univariate measures: Shannon-Wiener diversity with standard error bars for a and much of the current effort 
local benthic data set (see Micallef, 1997 and Appendix B). TX (diamonds) = Ta' 
Xbiex site; ZP (circles) = Zonqor Point site; MP (triangles) = Mignuna Point site. ' More properly known as the Shannon- 
For each site, the stations are arranged on the x-axis in order of increasing Wiener index, it is incorr- 
distance from the shore. Note that the three sites have different patterns of ~ ~ ~ J ~ ~ - ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~  
diversity change with depth, reflecting the level of pollution at each site. p.651. 
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goes into the field of P-diversity, that is, relative 
measures of the change in diversity from habitat to 
habitat. Here too there are numerous indices, 
representing similarity (or distance, its inverse) between 
habitats. However, from mathematical examination and 
practical use, a handful of measures have proven to be 
very robust, and are becoming established as standards 
in all fields of ecology; notable amongst these is the 
Bray-Curtis coefficient (see Faith et a[., 1987). 

It is significant to note at this point that similarity (or 
distance) measures, although considered as measures of 
P-diversity, can actually distinguish clearly between two 
habitats with the same species richness and dominance 
pattern, but with different species composition. This 
broadens their scope beyond studies of anthropogenic 
effects on ecosystems, wherein changes of diversity with 
pollution levels are well defined, to the study of how 
community composition varies along more subtle 
environmental gradients. The idea of comparative 
measures also lends itself to better mathematical 
treatment, hence, comparing N habitats, or in practice, 
samples, we do not end up with 10 values of absolute 
diversity, but, taking the similarity (or distance) between 
each and every habitat or sample, we obtain N(N-1)/2  
values (assuming the measure taken between habitats/ 
samples j and k is the same as that between k and j). This 
means that each habitat or sample contributes to N-1 of 
the variables, and so the data for each habitat or sample, 
which is multivariate in nature, is not tied up into one 
variable, as in the former case. Analysis of this type of 
data, although more computationally demanding, is thus 
desirable, as it contains more information than for the 
univariate case, and is not over-summxised on the onset. 

2.2.3 Diversity indices and indicator species 
As we have seen, diversity is difficult to quantify, and 
the choice of a suitable diversity index can be quite 
demanding. On the other hand, selecting an indicator 

Species rank 

species is also problematic. In typical ecological data 
sets, a few dominant species are present to some extent 
in most, if not all, of the samples. It is clear that these 
species are ubiquitous, and variations in their 
abundances tend to reflect the c l u m ~ e d  distribution of 
individuals characteristic of most ecological systems, 
rather than consistent patterns in biological or physical 
parameters (e.g. pollution gradients). o n  the othkr hand, 
many rare species will be present i n  very few of the 
samples, hence their occurrence is so sporadic that 
analysis based on these species tends to be too noisy to 
provide any insight into interesting patterns and 
relationships, especially if standard parametric modelling 
is used (see below). The significance of all this is that 
indicator species are hard, if not impossible, to decide 
upon a priori. That is to say, one cannot easily select a 
good indicator species before one sees the data set to be 
analysed. And here is the point: selecting an indicator 
species after having examined the data set, that is, a 
posteriori, is statistically unacceptable. This is because 
the selection is based on the idea that this s ~ e c i e s  is 
better than others according to some criterion chosen by 
the analyst, and this introduces bias in the rest of the 
analysis. 

2.2.4 Standard parametric modelling 
Statistical testing can be broadly classified into two main 
types: parametric tests, which assume that the data 
follow some particular distribution (e.g. normal, 
binomial, linear); and non-parametric tests, that make 
no such assumptions. Parametric tests are usually more 
robust and powerful than non-parametric ones, but are 
useless if the actual distribution of the data departs 
significantly from that assumed. To remedy this, the data 
may be modelled, the distribution determined, and then 
mathematically transformed to fit the distribution 
assumed by the test (usually the normal distribution). 
However, this procedure is n i t  very practical, and given 
its poor performance with actual ecological data, it is 

discouraged by many workers in 
& the field (e.g. Clarke and 

Warwick, 1994) 

+ TA' XBlEX 

- * -ZONQORPOINT 
--. - A -  - - - MIGNUNA POINT 

2.2 Distributional methods 
Several distributional methods of 
analysis have been proposed, 
however, although more robust 
than univariate methods, they are 
usually less powerful than 
multivariate analytical methods 
as they still largely ignore the 
multivariate nature of the data. 
These methods will not be 
treated in detail, given that the 
focus of this review is mainly on 
multivariate methods, however, 
K-Dominance Curves and plots 
of Abundance-Biomass Compar- 
ison (ABC plots) will be briefly 
discussed because of their 
increasing use in studies of 
benthic assemblages, partic- 

Figure 3. K-dominance plot for the algal taxocene from a local benthic study (see Micallef, ularly those concerned with 
1997 and Appendix B). Note that Ta' Xbiex, the most polluted site, had the lowest pollution. 
diversity. 
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Figure 4. Abundance-biomass (ABC) curves for the molluscan taxocene from a sample 
collected using a hand-net (60 strokes covering an area of ca.20m2) from a 
Posidionia oceanica meadow at a depth of 16m off the White Tower headland, 
Malta. (Hassan Howege, unpublished). This plot is typical of a non-polluted, non- 
disturbed system. 

In k-dominance curves, each sample is represented by a 
plot, and comparison of sample-sites involves comparison 
of these plots. The species within the sample are ranked 
according to dominance (the highest in abundance or 
biomass first), and placed on the x-axis, which has a 
logarithmic scale. On the y-axis, the cumulative percentage 
abundance is plotted (Fig. 3). The purpose of such curves, 
as stated by Clarke (1990) is: 

"to extract information on the dominance pattern within a 
sample, without reducing that information to a single 
summary statistic, such as a diversity index." 

In a set of k-dominance curves one expects the curves with 
lowest diversity to reside on top of others with higher 
diversity. Thus in samples with low diversity, one usually 
finds a few species with very high abundances - these are 
hence the lowest in abundance rank and cause the first few 
y-values in the curve to be very high. More diverse samples 
would have less dominance and hence lower initial y- 
values, so that the plot is less elevated than for less diverse 
samples. The span of the curve in the x-dimension indicates 
the total number of species (species richness), that is, the 
second component of diversity. 

A number of modifications may be introduced to render the 
plots clearer for the purposes of inspection. One may opt to 
compare dominance separately from number of species by 
re-scaling the x-axis from 1-100 (relative species rank), 
hence obtaining Lorenz Curves. Another option is to 

transform the y-axis for sets of 
samples wherein the curves 
approach a cumulative frequency 
of 100% for most of their length. 
Clarke (1990) proposes the use 
of the logistic transformation: 

yie = log [(I + y,)l(lOl- yi)] 

Some researchers have also 
proposed the use of partial 
dominance curves whereby 
earlier values cannot affect later 
positions on the curve (see 
Clarke, 1990 for details). 

In ABC plots, the principle is 
extended such that two attributes 
are considered on the y-axis - 
cumulative percentage biomass 
and cumulative percentage 
abundance, and two curves result 
(Fig.4). Warwick (1986) hypo- 
thesises that in non-disturbed 
circumstances, the biomass 
curve rests over the abundance 
curve, but as pollution (and 
hence disturbance) increases, the 
relative positions are expected to 
shift so that the abundance curve 
resides above the biomass curve. 
Several recent studies .(e.g. 
Reizopoulou et al., 1996) have 
found this technique quite robust 

A - 
for use in marine ecology. A 

very clear account of the use of ABC plots is given in 
Clarke and Warwick (1994). 

Distributional methods can sometimes prove to be very 
useful, especially in the analysis of disturbed 
environments. For example, on the 10th April 1991, an 
oil spill (from the carrier 'Agip Abruzzo') occurred in the 
Ligurian Sea, and Danovaro et al. (1995) set out to 
investigate its effects using univariate, distributional and 
multivariate methods. Shannon-Wiener diversity, Hill's 
evenness and some other measures were used in the 
univariate analysis, and k-dominance curves were also 
plotted. Group average clustering, the ANOSIM test, and 
NMDS (both using Bray-Curtis similarities derived from 
4th root transformed data - see below) constituted the 
multivariate techniques employed in this study. The data 
on nematodes, identified to genus level, gave very 
interpretable results in the multivariate analysis, but the 
k-dominance curves gave a clearer picture. 

3. The multivariate nature of ecological data sets 
3.1 Features of nudtivariate data sets 
We have already stated that data sets in ecology are 
multivariate in nature, and as Clarke and Warwick 
(1994) emphasise, highly so. This is because every 
sample is described by several species abundances, each 
of which is considered as a different variable, and, 
inversely, each species is described by its abundances in 
several samples. 
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"The need for multivariate analysis arises whenever 
more than one characteristic is measured on a number 
of individuals, and relationships among the 
characteristics make it necessary for them to be studied 
simultaneously" (Krzanowski 1972, as cited in Gauch 
1982). 

Therefore, the fact that each sample in a typical 
community study is described by the abundances of 
several species, several environmental factors, and 
several relationships and associations between these 
variables, clearly explains why ecological data sets are 
highly multivariate. Like all other multivariate data sets, 
they exhibit the following four characteristics. 

I .  Relationships 

Several relationships are usually present in 
ecological data: those between samples, which 
are elucidated by Q-mode analysis; those 
between species, which are the objective of R- 
mode analysis; and combinations of both, 
investigated by special analytical techniques. 
Different samples may be taken from different 
areas or from the same area at different times. 
Relationships of species distributions with 
environmental factors are extremely 
important; if these are known, they reveal 
much about community structure,khile on the 
other hand, knowledge of the latter can help 
detect changes in the former, effectively 
making community structure a bio-indicator. 

2. Noise 

Community data is usually very noisy, that is, 
many secondary patterns are present that 
obscure the more important and interesting 
underlying structure. Gauch (1982) gives one 
definition of noise in this context: 

"Noise is variation in a species' abundances 
coord:-zted markedly less with variation in 
othc species' abundances than the larger co- 
ordinations observed." 

Such a definition renders the distinction 
between noise and significant relationships (or 
co-ordinations) rather subjective, but then, this 
depends very much on what one intends to 
study. Causes of noise include local 
disturbances, environmental heterogeneity at 
scales smaller than that of the sample area, 
and chance occurrence and establishment of 
species. The goal of analysis is to summarise 
the data in such a way as to eliminate noise 
and yet retain all the interesting data structure. 

3. Redundancy 

Redundancy may be considered as the 

opposite of noise. Normally, one is looking 
for recurrent patterns in the data, and the more 
clearly these are brought out, the more evident 
does noise (elements of the data that do not fit 
the pattern) become, and hence the easier it is 
to remove. The elucidation of patterns is 
enhanced by the presence of redundant data. 

A definition of redundancy states that it 
"involves co-ordinated species' responses and 
similar samples" (Gauch, 1982). In other 
words, samples that are similar to the ones 
already present (such as replicates) do not 
provide any extra information, they are 
redundant. Species can also be redundant if 
their abundances reflect directly the 
abundances of other species (e.g. their 
predators), hence the term 'co-ordinated 
species' responses'. 

From the above, it should be clear that 
redundancy in the data is desirable for 
statistical analysis as it enhances the patterns 
being sought and distinguishes between 
interesting relationships and noise, such that 
the noise can be excluded. However, after 
making use of the redundancy in the raw data 
for this purpose, the techniques themselves 
must remove it in the summarisation they 
produce. This is because redundancy left 
within the results of analysis increases the 
bulk of the data but adds nothing to what is 
already revealed. For a good discussion about 
redundancy and techniques for quantifying it 
in ecological communities, see Clarke and 
Warwick (1998). 

4. Outliers 

"An outlier is a sample of peculiar species 
composition that has low similarity to all 
other species" (Gauch, 1982) 

This concept can be extended to species 
(species outliers) and to groups of samples/ 
species. When a data matrix is composed of 
two or more blocks that differ considerably 
from each other (a situation known as 
disjunction), one block, usually the smaller 
one, can be considered as an outlier. 

In the final result, however, statistical outliers 
are also present: a samplelspecies may seem 
different from the others simply because of 
gaps in sampling and loss of dimensionality 
during analysis (for example, the typical set of 
points not falling perfectly on the theoretical 
regression line in any scientific experiment). 
An ideal analytical method is expected to 
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produce few statistical outliers. 

Techniques however must also be evaluated 
on their method of dealing with community 
outliers. In community data these are mainly 
due to disturbance and environmental 
heterogeneity. Some statistical techniques 
give considerable importance to outliers, 
treating them as representing very long 
gradients, and hence compressing the rest of 
the data into a very tiny space. This makes it 
very difficult, if not impossible, to notice 
more significant relationships. The solution 
here is to remove the outliers and re-analyse 
the data. The most obvious of outliers is an 
empty sample (all entries are zeros); before 
analysis using multivariate techniques, all 
such samples must be removed. 

Considering the first point (relationships), it is preferable 
to work with a matrix (in Q-mode analysis) of the 
similarity of each sample with every other sample (e.g. 
multivariate analysis), than with a list in which each 
sample is reduced to a single index value (univariate 
analysis). Clearly, multivariate analytical methods are 
more suited than univarate techniques to explore 
multivariate data sets. 

The second point determines which techniques succeed 
and which fail in giving a representation of the data 
acceptably close to reality. Statistical techniques 
assuming a random distribution of species between 
samples (Q-mode analysis) usually are not suitable, since 
in biological communities, the distribution of individuals 
is often clumped (see Burd et al., 1990). The clumping 
differs from one community to another, so techniques 
that make no assumptions about the pattem of 
distribution of the data are preferable. Basic statistics do 
not offer sufficiently powerful methods of this kind, 
hence more specialised techniques have been 'borrowed' 
from a wide range of disciplines and introduced into the 
field of community ecology. While some of these 
techniques can be extremely powerful if well applied. 
others can give totally misleading and insignificant 
results. The point here is that one must select very 
carefully which technique to use. Employing an 
improper statistical analytical technique may render 
useless years spent collecting data, as the results 
obtained will probably be incorrect or at least very poor. 

3.2 Treatment of data matrices prior to ntultivariate 
analysis: the intplications of standardisation and 
transforrrzation, and truncation of rare species. 
One of the major problems with the use of univariate 
measures and the analysis of the indices they produce 
(see below) using parametric statistical techniques (e.g. 
ANOVA - analysis of variance2). is that such techniques 
assume normality while actual community data tend to 
have a skewed distribution. Appropriate trat~sformatiotls 
help to reduced the skewness and increase the symmetry 

2See Underwood (1997) for a thorough account on the use of ANOVA 
in ecological experiments. 

so that these techniques can be applied. Since the 
emphasis of this review is on multivariate methods, we 
shall limit 6urselves to referring the reader to Clarke and 
Warwick (1994), Downing (1979) and Burd et al. 
(1990), who provide concise yet very clear introductions 
to the subject. 

When applying non-parametric statistics, such as 
Classification and NMDS @Ion-metric Multidimensional 
Scaling), transformation of data sets is useful for a very 
different reason - to weight the contributions of common 
and rare species. A typical data set in marine benthic 
community work would contain a few dominant (very 
abundant) species, a good number of moderately 
abundant species, and some very rare species. The first 
two categories are usually the most relevant, since the 
recorded abundance of the very rare species often does 
not reflect reality3. 

To avoid the useless bulk4 and the noise that very rare 
species confer to data sets, many workers recommend 
their removal. This operation, which we shall hereafter 
refer to as 'trutzcation' must, however, be carefully 
performed. Field et al. (1982) recommend that all 
species that never constitute more than p% of the total 
abundance (or biomass) of any sample be removed. 
where p is arbitrarily chosen such that a suitable number 
of species are left (typically 50 to 60 species). It is very 
important not to be 'overzealous' in truncation - for 
metric ordination techniques (e.g. Principal Components 
Analysis), which are very prone to noise caused by the 
presence of rare species, it is essential, but NMDS 
requires very little truncation, if any. 

Removing the rare species leaves the very common and 
moderately common species. Often, the difference in 
abundance between these two groups of species is 
considerably large. Since many similarity measures 
place greatest emphasis on the most abundant taxa, the 
moderately common species, that may be as informative 
as the very abundant species (or more), are given 
secondary importance. Transformation seeks to address 
this issue, by decreasing the differences in abundance 
and hence increasing the importance of moderately 
abundant species in the calculation of similarities5. 

Very rare species cannot be acceptably sampled using the normal size 
of samples usually collected in most benthic work their capture is 
therefore very dependent on chance. In other words, if one individual 
of species A is recorded in a O.lm x O.lm quadrat, this does not 
necessarily mean that A has an abundance of 100/m2 - in fact, this is 
most probably incorrect. Similarity, a zero abundance in the quadrat 
sample does not mean that the species is absent in the area. Sometimes, 
species are also found in unusual places (for example, in the case of 
macrofauna within harbours where fishem~en sort catches obtained 
from deep water and dump the unwanted material at their berth). Rare 
records (e.g. a single specimen in a whole data set), besides being 
obviously useless for analysis. add to the bulk of the data set and 
increase the nolse. 

Additional data that is redundant, that is, it adds to the size of the data 
matrix (increasing analysis time immensely) but only serves to 
eniphasise a pattem that is evident even from a very small part of the 
data set. 

Transfonilations must be used with care. In a recent stud Olsgard et 
al. (1997) have shown that under certain circumstances, $r example, 
when organisms are only identified to taxonomic levels higher than 
species, the results of the analysis are greatly influenced by the 
transfomlation used and the effects of transfomlation beconle stronger 
as taxonomic level increases; moreover, taxonomic resolution and 
transfomlation affect the results of analyses in different and unrelated 
ways. 
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The most widely used transformations fall in the class of 
power transformation where, for an abundance y, the 
transformed abundance y* is given by 

for example: 
h = 0.5 for square root transformation, and 
h = 0.25 for 4th root (double square root) transformation. 

Logarithmic transformations can be considered as part 
of this family, since O, - l ) /h  becomes equal to log, y as 
h a .  Hence, since 'h, tends to zero in such 
transformations, they are more severe than double square 
root transformations. One cannot, however, use log y as 
such, as when y = 0 this tends to negative infinity (and 
zero values abound in community ecology data sets), 
rendering the calculation of similarity indices 
impossible. Instead, log O, + I )  is used since this gives 
zero when y = 0. Strictly speaking, this transformation 
does not fall within the power class of transformations. 
From a review of recent scientific literature on the 
subject (see below), it appears that some workers opt to 
use double square root transformation, while others use 
log O, + 1) .  Clarke and Warwick (1994) claim that: 

"there are rarely any practical differences between 
cluster and ordination results performed following F.25 
or log ( I  + y) transformations; they are effectively 
equivalent in focusing attention on patterns within the 
whole community, mixing contributions from both 
common and rare species." 

The only problem with logarithmic transfom~ation is the 
addition of a constant (1) to the abundance value. The 
results would tend to differ if data is standardised to 
abundance per square metre or abundance per 10m2, 
with the effect of the constant being less felt in the latter 
case. Double square root transformation is therefore 
better recommended, as it does not suffer from this 
problem. 

The most extreme method of transformation is the 
reduction of abundances to presence-absence data (that 
is, all non-zero values are converted to 1). This shifts 
importance decidedly to the moderately abundant and 
rare species, since, for most assemblages, these 
constitute a larger portion of the data set than the 
dominant species. 

The choice of which transformation to use is a 
biological, rather than a statistical question, and depends 
on the objective of the study. If the main interest is 
changes in the abundance of the most dominant species, 
a weak transformation (square root) is desirable. If the 
focus of attention are the moderately-abundant species, 
then a more severe transformation (4'h root or log) 
should be applied. Alternatively, if the object of the 
study are the rare species, then presence-absence 
transformation may be the most suitable, possibly with 
very little or no truncation (although this protocol is 
severely prone to noise, as discussed above). The choice 
whether to transform o r  not is not merely a biological 
one, however. Some amount of transformation is 
statistically necessary in most cases. For instance, a 
biomass NMDS may be completely distorted by a 

chance capture of a very large-bodied species. Similarly, 
in an abundance data set, a small-bodied species (e.g. 
barnacle spat) can attain very large abundance values 
and render the presence of all other species insignificant. 

3.3 A brief comparison of measures of 
similarityldistance 
There are two main classes of similarity (or distance) 
coefficients, as has been hinted above. One group 
considers only presence-absence (binary coefficients), 
while the second considers both presence-absence and 
relative abundance (quantitative coefficients). 

An example of the first class is Jaccard's Coefficient. 
For two samples, j and k, this considers the number of 
species common to both (the higher this number, the 
larger the similarity) and balances this out with the 
number of species found only in j or in k (this reduces 
the similarity). A scaling factor is introduced in the 
denominator so that some independence of the actual 
number of species present is achieved and so that the 
coefficient takes a value between 0 and 1 (or 0 and 
100%).The more popular binary measures are 
S~rensen ' s  Coefficient (also known as the Dice or 
Czekanowski coefficient), McConnaughey's 
Coefficient and Ochiai's Index. The main problem with 
these measures is that they implicitly perform a 
presence-absence transformation, which is usually too 
severe and prone to errors due to the chance occurrence 
of rare species, as discussed above. 

One of the biggest debates on the subject of similarity 
coefficients is whether to introduce joint absences or not. 
If all but two of the samples in a data set contain a 
certain species, would those two samples be somewhat 
more similar to each other than to the rest? In certain 
scientific disciplines, that consider other attributes rather 
than species, the answer may well be yes, but in ecology, 
where data sets abound with zero values, it makes no 
sense to consider joint absences. As Field et al. (1982) 
put it: 

"Taking account of joint absences has the effect of 
saying that estuarine and abyssal samples are similar 
because they both lack outer-shelf species." 

Table 2 lists the more popular coefficients which 
consider abundance. The idea of introducing abundances 
in a similarity measure was first proposed by Bray and 
Curtis in 1957, who modified the Sorensen coefficient to 
obtain the measure now known as the Bray-Curtis 
Coefficient (see Southwood, 1978). Many have 
criticised this measure, mainly because of the importance 
it gives to dominant species (it obviously does not 
transform the data as do binary measures), however, with 
appropriate transformation, many now recognise its 
robustness. In the same category as the Bray-Curtis 
distance, one finds the Canberra  Metric, which is also 
very popular among ecologists. There are two objections 
to the use of this measure. The first is that the scaling 
t e n  in the denominator is placed within the summation, 
the consequence of which is that rare species are given 
too much importance. The second objection is that when 
no individuals of a species are present in one sample but 
are present in the other sample, the index attains its 
111aximum value (see Krebs, 1989). 
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Equation" 

Canberra metric 
(Adkinsfom) . 

~uclidia-n Distance 

Distance 

Relative .  anh hat tat 
(Absolute) Distance 

Chord Distance 

Tabl~- 2.  The more popular quanrirarive uoefficicnrs (rliiir is. those considering abundances) for comparing w o  
samples j and k. 

(a) Symbols: i = row (species) no.; n = number of species prcsznr in one or both of die sarnples (species richness of j 
and k when pcoled together); y,, ,,1,,, = abundance (or bion~ass) in the given row and colunm of the dam rnarrix. 

(b) Refercnccs 1 = Krebs (1989); 2 = Clarke and W:~rwick (1994); 3 = Ludwig and Rcynolds (1988); 4 = Brower er 
al. (1990); 5 = Faith er 01. (1987). 

A second category of quantitative coefficients is the 
Absolute Euclidian family of measures. h e  simplest of 
which is the Manhaltan (Absolute. Ciry-Block) distance 
lhat provides the link with the previous category (Bray- 
Curtis and Canberra). Actually, the Bray-Curtis and the 
Canberra measures are forms of the Manhallan metric. 
with different standardisations (scaling terms in the 
denominator). as can be observed in Table 2. The 
question of standardisation comes back in Euclidian 
Distance. which also ranges from zero ro infinity and so 
may cause some problems in metric ordinations and 
classification if il attams very large values6 (see Clarke 
and Warwick, 1994). The formula recalls Pythagoras' 
theorern for the determination of the hypotenuse of a 
aiangle. Geometrically. it is the 'as the crow flies' 
distance between two points, while the Manhattan 
distance (sum of the shorler sides of the miangle) is h e  
absolute distance between two points. hence the 
alternative name, 'Absolute" (see Fig. I) .  

6This is especially so m data scts w i h  sevcr;~l zero cntrics. as is ~ypical 
in coninlunlly eCo!ogr. 

Euclidian group dis~ances can be relativised 
(standardised, scaled) using more formal mathematics 
han  in the Canberra or Bray-Curtis renderings of the 
Marhattan metric. In this group. known as the Relative 
Euclidian family. we find the Relative Euclidian (range 
0 + 2). Relative Manhattan (range 0 + 2) and the 
Chord distance (range 0 + 2) (see Ludwig and 
Reynolds. 1988). These last lwo measures have been 
found quite robus1 by Fa ih  er al. (1987) using simulated 
data. 

The Kulczynski measure. although no1 very popular. was 
also found to be. among the most robust measures 
available by Faith er al. (1987). who recommend its use 
(together with the Bray-Curtis measure and Relative 
Manhattan). We have also found it to be slightly superior 
to the Bray-Curtis measure in the analysis of simulated 

' lf 011c imagines 3 city with slrcas Idid oul in a regular grid (~iiaybc 
Vallerw. or as the nmic suggests. Mmhman m Nsw York). it is rhc 
shonrrsl distance one has ro walk lo go iron1 oric place lo another along 
h e  streets. hcncc the alterr~arive ndrrle 'City 131ozk'. 
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Satnple 1 

Sample 2 

Sample 3 

Sm1ple 4 

Sample 3 

Similari~y 113 Similarity 213 I -- 
Similarity 114 I Sin~ilarity 214 Sindxi ty  314 I I -- 

Table 3. Triangular Inatrlr of sinularities t'or a d;~t i~  he[ consisting ul't'our sar~~ple!. 

Samples 2+4 Sample 3 

Sinlilarity 1/(2+4) 

Similarity 113 Shi1;~rity (2+4)/3 

Table 4. Reduced triangular marrix for h e  data in  Tablc 3. 

Fiyre 5. Dendrogram showing hierarchical classificauon of samples from a local bendic 
smdy (see Micallel, 1997 and Appcndix B) based on the similarity of h e  algal 
taxocene aggregared to genus levcl. Note that samples labelled C (Mignuna Point) 
arc separated from prac~ically all the other samplcs at a similarity level of ca.6%. 
while those labelled A (Ta' Xbiex) and B (Zonqor Point) are separated at a 
similarity lcvel of ca.15%. 

data modelled on local marine 
benthic assemblages (MicalIef. 
1997). 

4. Classification and  
ordination 
4.1 Clossificution techniques 
Classification, or cluster 
analysis, involves organisation 
of the units being analysed into 
groups, according to a similarity 
(or distance) measure calculated 
between the units. The result is 
typically presented as  a dendro- 
gratn, a plot that appears rather 
like a family tree or an 
organisation chart (Fig. 5 ) .  Such 
a plot assumes hierarchical 
classification, however, reticulate 
clustering is also possible, 
whereby the unils overlap like a 
net. Hierarchical methods are by 
far the most common, being 
easier to visualise and 
understand (Krebs. 1989). 

Usually. in community ecology, 
one takes the similarities 
between each pair of samples or 
species to construct a triangular 
similarity muirir (Table 3). 

As can be seen, the similarities 
along the top left to boltom right 
diagonal, for instance that 
between Sample 1 and Sample 
1, are left out, being obviously 
100%, and only the mangular 
section benealh this diagonal is 
filled, as the triangle on the 
orher side is a mirror image (i.e. 
Similarity 211 equals Similariiy 
112). 

k t  us suppose thar the highest 
similarity in Table 3 is that 
between samples 2 and 4 
(Similarity 214). One can group 
samples 2 and 4 together, and 
produce a second rnacrix (Table 
4 )  
Similarity 1/(2+4) can be 
derived by several ways. One 
may, for instance, take the 
average between Similarity 112 
and Similarity 114. a technique 
known as group average 
linkage. Alternatively, one may 
take the higher of rhe values 
(single linkage) or the lower 
(complete linkage). The 
procedure we have followed is 
agglomerative in nature, as it 
proceeds with the units being 
brought together at ever lower 
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levels of similarity until a matrix containing only one 
value results. Another way to combine similarities is to 
assume that all units form part of a group, and then to 
break that group down into subgroups, a technique 
termed divisive classification. Theoretically, divisive 
methods are considered superior to agglomerative ones, 
because in the latter, anomalies at very low levels are 
fairly common, and since these are locked up in the 
structure as it forms, the bad combinations cascade. In 
other words, due to the limitations of the similarity 
measures, if two similarity values (such as Similarity 213 
and Similarity 214 in Table 3) are very close, two 
different indices may not differentiate between the two 
(for example, Morisita's Index could consider Similarity 
214 as higher than Similarity 213, but Jaccard's 
coefficient may provide values the other way round). 
Obviously, there is only one correct natural ranking 
(although none of the techniques available may be able 
to reproduce it faithfully for all values and in every 
analysis) and a discrepancy may cause the whole 
clustering pattern to be disrupted, since the actual 
similarities are forgotten as grouping proceeds. Divisive 
methods should also be less computationally demanding, 
as one is usually interested in the higher-level groups, 
and a small number of operations are needed to divide a 
group into a few major~subgroups. However, although 
this argument makes much sense, divisive methods are 
nevertheless more computationally demanding since a 
good method must introduce enough sophistication to 
deal with the next point (monothetic/polythetic strategies 
- see below). Due to this problem, divisive methods have 
not, as yet, gained much ground in marine ecology, 
where very large data sets are commonplace. In plant 
ecology, however, divisive clustering using techniques 
such as TWINSPAN have been used extensively. 

The easiest divisive strategy to conceive is monothetic. 

We have been assuming during this discussion that 
clustering is based on similarity measures. Taking two 
hypothetical samples, 1 and 2, a rudimentary similarity 
measure can be constructed by considering the number 
of species found in both. out of the total number of 
species. This is a presence-absence measure, as it does 
not take relative abundances into account. We can, of 
course, consider abundances, to achieve measures such 
as the Bray-Curtis similarity. On the other hand, we may 
not work with similarity measures at all, but take the 
abundance of a single species, or, in general, any 
particular variable, and use it to compare the units 
(samples). We have thus constructed a univariate version 
of cluster analysis, better known as a monothetic 
classification. In divisive strategies, the easiest way to 
divide a group is to find a single attribute found in some 
of the members but not in others, and separate the units 
on this basis. This is monothetic divisive clustering, and 
it suffers from the severe limitations we met in other 
univariate techniques. Dividing groups by taking several 
criteria into account at once is also possible, but requires 
sophisticated algorithms demanding much computational 
power, and that are more difficult to understand 
(Williams, 1971), hence turning the analysis into a 
black-box. Because of this, many ecologists have steered 
clear of divisive techniques, and for the purposes of the 
present review, it would not make much sense to delve 
further into this abandoned area of statistical ecology. 
The clustering method of choice for the analysis of 
benthic assemblages is polythetic hierarchical 
agglomerative @HA) classification. 

A final point about linkage needs to be made. Single and 
complete linkage are theoretically attractive since they 
are non-metric. If, instead of the original triangular 
similarity matrix, one alters the matrix so that the actual 
values are replaced by similarity rank. an identical 

dendrogram would be obtained. 

Simil- 
arity 

100% 

Simil- 
arity 

A B C D E  

Samples 

A  B C  D E  F 

Samples 

- 
This is an advantage over group- 
average clustering. However. 
sin& linkage has tendency to 
form chains of linked samples, 
with each successive stage in the 
agglomerative process simply 
adding another sample to an 
ever growing group (Fig. 6A). 
while complete linkage has the 
opposite effect - it produces 
many small clusters at an early 
stage (Fig. 6B). 

In practice, most workers prefer 
group-average linkage (see 
literature review below) as it has 
been found. from experience. to 
achieve an acceptable balance 
between these two extremes. 
Classification of simulated data 
sets modelled on local marine 
benthic assemblages has 
confim~ed this to be hue also for 
local situations (Micallef. 1997). 

Figure 6. Typical results obtained using (A) single linkage, and (B) complete hkage ,  in Several researchers have found 
polythetic hierarchical agglomerative classification of five samples. that group-average hierarchical 
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agglomerative clustering is efficient in the detection of 
changes in the structure of benthic assemblages along a 
pollution gradient, particularly when combined with 
other methods as recommended by Clarke and Warwick 
(1994). For example, Simboura et a/ .  (1995) applied 
ABC curves and this clustering strategy after- 
transforming the original data matrix using loglo, and t 

comparing the samples using the Bray-Curtis similarity 
measure. Univariate measures (Shannon-Wiener's 
diversity, Pielou's evenness) were also used. The 
techniques confirmed one another and provided a clear 
picture of the situation. Reizopoulou et al. (1996) 
compared macrozoobenthic assemblages in three 
Mediterranean lagoons (Tsopeli in the Ionian Sea, Vivari 
in the Aegean Sea, and Goro in the northern Adriatic) 
having different levels of disturbance. Comparisons of 
diversity (Shannon-Weiner's index), ABC plots and 
group-average cluster analysis (of loglo transformed 
data, using the Bray-Curtis similarity measure) were 
performed. The latter two methods separated the three 
lagoons, and the dredged site at Goro was clearly 
distinguished from the other sites that were not as 
disturbed. 

4.2 Ordination techniques 
Ordination seeks to depict a multidimensional data set as 
a low-dimensional plot in which similar entities are 
placed close together and dissimilar ones far apart. The 
variety of techniques available is immense, and here we 
shall only consider the major ordination-strategies of 
relevance to community ecology. 

One group of ordination techniques, that has become 
known as geometric projection methods (Kenkel and 
Orlbci, 1986), was very popular among ecologists in the 
1960s and 70s, possibly since these methods were 
developed by plant ecologists rather than by researchers 
in other disciplines. The original, and most popular, 
technique was proposed by J. R. Bray and J. T. Curtis in 
a 1957 paper published in Ecological Monographs 
entitled "An ordination of the upland forest communities 
of southern Wisconsin". This technique is formally 
known as Polar Ordination, however, it  is often termed 
Bray-Curtis or Wisconsin Ordination, for obvious 
reasons. Although the technique is now out of favour 
with ecologists, this seminal paper has had a great 
influence: 

It introduced the Bray-Curtis similarity measure 
(see Krebs, 1989), now very popular among ecologists 
due to its proven robustness (Faith et al., 1987; Clarke 
and Warwick, 1994). This was also the first similarity 
measure to consider relative abundance. 

It gave rise to a whole range of ordination methods 
that had the effect of promoting ordination techniques in 
ecology, where they were scarcely known. 

It also stimulated research in the distribution of 
species along environmental gradients (see Whittaker, 
1975), that eventually gave rise to the development of 
direct gradient analysis (see below). 

Polar Ordination involves selecting two samples to serve 
as poles at two extremes of an environmental gradient 

(typically the samples which the distance measure 
considers most dissimilar), and placing these samples at 
two ends of a line, at a distance given by the 
dissimilarity measure multiplied by a factor x (to convert 
the measure to actual distance on the plot paper or 
screen). The distance measure between each of the other 
samples and the two poles is calculated, multiplied by x, 
and geometrically speaking, placed at the intersection 
(on one side of the line) between two circles centred at 
the poles and with a radius equal to distance from the 
respective pole multiplied by x, Obviously, this is in 
practice achieved algebraically with a computer 
program. 

The major flaw in Polar Ordination is the selection of the 
poles. The greatest distance is usually that between two 
samples of which at least one is an outlier (see Gauch, 
1982). Choice of the poles is therefore subjective, and 
must be done a priori (as has been discussed above), 
hence, very evident gradients are needed (Kenkel and 
Orlbci, 1986). 

A second group of ordination methods are termed metric 
ordination methods, indicating that the actual value of 
the distance measure between any two samples is used in 
the analysis and is somewhat conserved even in the final 
plot (Minchin, 1987). On the other hand, in the third 
group, non-metric techniques, only the rank order of 
the distances between the samples is used. 

The oldest and best-known metric method is Principal 
Components Analysis (PCA) and involves the reduction 
of dimensionality by maximisation of variance along a 
few main axes. In other words - taking the two- 
dimensional case - it works by extrapolating points on a 
two-dimensional graph, normally onto the line of best fit. 
Doing this in the multidimensional case produces the 
principal component (axis 1) such that when all the 
points are extrapolated onto this line, the greatest 
distance (least clumping, maximum variance) between 
the points is achieved (Fig. 7). The second axis must be 
perpendicular to the first, and, given this criterion, must 
achieve maximum variance. In the three-dimensional 
case, the third axis is defined by virtue of the first two 
and the criterion that i t  must be perpendicular to both, 
but in n dimensions, there are n-1 axes that can be 
produced independently (n-1 degrees of freedom). Using 
a statistic, one obtains the variance (information) 
explained by each component, and for an acceptable 
two-dimensional plot (axis 1 vs. axis 2) a considerable 
amount of the variance (typically >70%) in the data must 
be given by these two components. 

The concept of 'line of best fit' is derived from the 
application of sum of squares and cross-products (SSCP) 
techniques, which assume linearity of the data. Formally, 
this type of analysis is termed eigenanalysis. PCA works 
directly on the original data matrix, having an in-built 
distance measure (the Euclidian distance). One PCA 
variant, PCoA (Principal Co-ordinates Analysis) works 
on triangular distance matrices (hence allowing much 
more flexibility*) - this is also termed metric 

In other words, i t  does not use Euclidian distances (and hence does 
not suffer the problems relative to this class of measures discussed in 
the last p n  of section 3.3) 
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multidimensional scaling. PCA, and PCoA are 
conceptually simple and computationally 
straightforward, however, they have the following 
limitations: 

The amount of distortion introduced at each 
reduction in dimensionality builds up and cannot be 
removed down the chain - hence, their distance- 
preserving properties are poor. 

They give too much weight to the actual value of 
the distance coefficient - hence, they are extremely 
sensitive to outliers that in practice compress most of the 
relevant sample (or species) points to a tiny area at the 
centre of the plot, making interpretation impossible 
unless the outliers are removed aposteriori. 

They assume independence (orthogonality) of 
factors (components), which must therefore be 
perpendicular to one another. This adds to the rigidity 
and care must be exercised in interpretation as 
mathematically independent factors need not represent 
independent patterns in nature (James and McCulloch, 
1990). 

They assume linearity, that is, that distribution of 
the proportions is approximately normal. To some 
extent, this requirement may be satisfied by proper 

transformation of the original data set (e.g. logarithmic 
transformation). 

PCA is very rigid in defining similarity (does not 
apply for PCoA). 

Another PCA variant is known as Factor Analysis. This 
does not require orthogonality (independence) of factors, 
and seeks the maximal correlation among the variables, 
rather than maximum variance. 

Correspondence Analysis (CA, also known as 
Reciprocal Averaging) is the basis of another family of 
metric techniques, based on an older and quite subjective 
method known as weighted averages ordination (WA). 
In the latter, species (for example) are given weights 
(quite subjectively), and the matrix is transformed to 
multiply each cell by the respective species weight. A 
sample score in the ordination results from the averaging 
of the transformed entries for each species within that 
sample. Hence, one obtains sample scores from species 
scores (the weights). It is of course also possible to do 
the reverse analysis, that is, to obtain species scores 
starting from sample scores. 

Correspondence analysis starts by arbitrary assignment 
of species scores (weights) and thence calculates sample 
scores (or vice versa). The second iteration works out 

Principal component 1 

Figure 7 Two-dimensional PCA ordination of the abundance of decapod crustaceans 
(double square root transformed) in 17 suction sanlples collected from a local 
Posidonia oceanica meadow. Samples were collected from 6m (A), 1 lm (B), 16111 
(C) and 7-1111 (D). The numeral indicates the collection period: 1 - August 1993, 7- 
- December 1993.3 - April 1994. PC1 (x-axis) and PC2 (y-axis) together account 
for 78% of the total sample variability. Note segregation of the shallow water 

species scores from the sample 
scores calculated in the first 
iteration, and so on, until the 
scores stabilise. The scores thus 
converge to a unique solution 
after a number of iterations, 
which solution is not influenced 
by the initial (arbitrary) choice 
of scores (hence removing the 
subjectivity in WA). Although at 
first sight this seems to have 
very little to do with PCA, it is 
nonetheless another form of 
eigenanalysis (see James and 
McCulloch. 1990). The final 
scores are actually the first axis, 
comparable to PCA's principal 
component. The second axis of 
CA (and further components, if 
required), is obtained in a similar 
iteration procedure, but the 
linear effects of the first axis are 
factored out (see Palmer, 1993). 

The method suffers from what is 
known as the arch effect 
(curvilinear distortion, horseshoe 
effect: Clarke and Warwick, 
1994: Minchin, 1987: Palmer, 
1993: James and McCulloch, 
1990; Gauch 1982). To add yet 
another metaphor to an already 
ample list. an ordination 
suffering from this effect 

samples (6m and l l m )  f& the deeper water samples (16111 and 21n1). (Data re- 
analysed from Borg and Schembri, 1998). L 

appears as a 'rainbow' of sample 
(or species) points, with the 
~ o i n t s  well se~arated along one 
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axis and very poorly distanced along the perpendicular 
axis. PCA and PCoA also suffer considerably from this 
phenomenon. Hence, a variant of CA has been proposed, 
known as Detrended Correspondence Analysis (DCA 
or DECORANA), that essentially splits the CA 
ordination space into segments, and stretches or shrinks 
the scale in each segment accordingly to remove the arch 
effect. Although this appears to be too manipulative to 
some, it is done with considerable objectivity. However, 
some arbitrary decisions are in-built in the algorithm and 
hidden from the user - thus it "[erects] a communication 
barrier between the data analyst and ecologist" (Clarke 
and Warwick, 1994) as the algorithm is conceptually 
complex. 

The third class of ordination methods that we shall 
discuss is that of non-metric methods. The best known 
technique is NMDS (Non-Metric Multidimensional 
Scaling) which, as has been stated above, uses rank order 
of the values in the triangular similarity (or distance) 
matrix. The sample points are typically spread out 
randomly in a three-dimensional space, and their 
positions optimised (to reflect the distance rank order, 
either locally or globally - see Minchin, 1987) by a 
mathematical algorithm until a minimum value of stress 
is reached (Fig. 8). The data are similarly reduced from 

3- to 2-dimensions (see Clarke and Warwick, 1994). The 
procedure has a tendency to find local stress minima and 
get locked inside these 'small holes' without finding the 
'big crater', using the analogy of a ball thrown on rough 
ground. To rninimise the possibility of not finding the 
minimum stress configuration, the procedure must be 
repeated several times (with different starting positions) 
from which the final configuration with the minimum 
stress value is adopted. (More details on the NMDS 
algorithm are in Appendix A.) 

Another form of ordination known as Gaussian 
Ordination (Gauch and Chase, 1974; Gauch et al., 
1974) seeks to maximise the least-squares fit of the 
abundance of each species in a sample to a Gaussian 
curve, hence obtaining sample points (from a first-guess 
arrangement) by "iterative fitting that changes the 
ordination values to produce optimal Gaussian fit for all 
the species together" (Gauch et al., 1974). After several 
evaluations of the technique by a number of workers, 
Gauch himself dismissed it due to its computational 
complexity (Gauch 1982) while Minchin (1987) found 
the method to be highly sensitive to quantitative noise. 
The technique is now out of favour with most ecologists 
and is hardly mentioned in the literature. 

Figure 8 NMDS plot for the molluscan taxocene from a local Cymodocea nodosa meadow, 
based on abundance, after truncation at the 3% level, double square root 
transformation and using the Kulczynski similarity measure. Stress = 0.12. The 
radius of the circles is proportional to the Cymodocea shoot density. Note the 
clear separation into two groups: an upper one consisting of samples collected 
from 4m where shoot density was high, and a lower group collected from 8m 
where shoot density was low. (Data re-analysed from Howege and Schembri, 
1997). 

A mathematical treatment of 
most of the above techniques can 
be found in Afifi and Azen 
(1979) and in Everitt and Dunn 
(1991), amongst others. 

5. Other statistical methods 
Hereunder we discuss some 
other statistical techniques 
pertinent to the analysis of 
community ecology data. 

1. Direct Gradient Analysis 
embraces a set of techniques that 
display the distribution of 
organisms along gradients of 
important environmental factors. 
One way this is done is to fit a 
statistical distribution (typically 
the normal or log-normal curve) 
to each species within samples 
taken along an environmental 
gradient. This form of direct 
gradient analysis can be used to 
construct models on which 
simulations can be based. A verv 
interesting technique, (Detren- 
ded)CanonicalCorrespondence 
Analysis, is a canonical 
Analysis variant involving tR,? 
fusion of species-sample data 
with environmental data to 
produce a separate ordination 
method (see ter Braak, 1986; 
Palmer, 1993; ter Braak and 
Verdonschot, 1995; Thiolouse et 
al., 1995). 

2. Ordinations can be compared 
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using a technique called Procrustes Analysis (see 
Schonemann and Caroll, 1970). Manually, this involves 
standardising the axis ranges (from 0 to 100) of two 
ordination plots, constructing the plots on transparencies, 
and rotating the two until the best fit of one plot on the 
other is achieved. The root mean square average of the 
distances between the observed and expected sample 
points gives a very robust statistic for evaluation of the 
ordination method. Procrustes analysis is the 
mathematical rendering of this plot-fitting algorithm. 

3. One type of non-parametric multivariate test for 
differences between groups of samples is ANOSIM 
(analysis of similarity, by analogy with ANOVA, 
analysis of variance), first described in Clarke and Green 
(1988). ANOSIM is used to test the hypothesis that a 
number of samples in the data matrix constitute a group9. 
Starting from the triangular similarity matrix converted 
to rank order similarities, one computes a test statistic 
comparing the within-site differences (in the groupings 
being tested) to the between-site differences, then 
recomputes the statistic under permutations of the 
sample labels to create a permutation distribution from 
which the significance level of the first value can be 
estimated. The method can be extended to more complex 
two-way grouping designs (see Clarke and Warwick, 
1994). 

4. In most studies on marine assemblages, the ultimate 
aim is usually to determine what is causing the 
community structure to be the way it is. Abiotic 
variables for each sample, such as water temperature and 
depth, suspended matter, sediment granulometry, organic 
content of the sediment, and the concentration of 
chemical pollutants, are often determined in typical 
studies. The analysis of these parameters is less 
demanding on techniques than that of biotic variables -- 
metric ordinations such as PCA, and distance measures 
such as Euclidian distance, which are not robust for 
species-samples matrices, give acceptable results in such 
cases, where zero values are rare. 

Linking environmental variables to ordinations can be 
performed at several levels as described below, using 
NMDS as the ordination technique of choice. 

a. Single abiotic variable: 

If this is a discrete quantity (for example, mean sediment 
particle size or sea-grass shoot density). one can give the 
different values of this parameter different numbers or 
symbols and plot these on the NMDS instead of the 
sample names (as has been done in Fig.8). 

b. Two or more  abiotic variables 
(comparison of plots): 

For two abiotic variables, a scatter diagram may be 
plotted. Otherwise an NMDS or PCA of the abiotic 
variables can be performed. The resulting scatter 
diagram or ordination plot may be compared to the biotic 
ordination using Procrustes analysis. The problem with 

g ~ e  group must be selected apriori: one should nor apply this test on 
clusters resulting from n~ultivariate analysis (see Clarke and Wawick. 
1994) 

this method, is that the. results depend on the 
dimensionality of the final plot. 

c. Two or  more abiotic variables 
(comparison of triangular matrices): 

One may rank the similarities in the triangular similarity 
matrix for the biota, and in that for any two abiotic 
variables, and then compare the ranks of the biotic and 
abiotic triangular matrices using a weighted Spearman 
(or harmonic) rank correlation, a standard non- 
parametric statistical procedure. A statistic is obtained 
that takes values between -1 (ranks in complete 
opposition) and +1 (ranks identical). The significance of 
this'camot, however, be evaluated from statistical tables, 
since the similarities that are used for constructing the 
ranks are not independent. However, one can create a 
permutation distribution similar to that for ANOSIM (for 
example, the PRIMER suite of programs [Clarke and 
Warwick, 19941 includes one called RELATE) that can 
build such a distribution to test significance of the 
statistic. 

The potential of this method extends much farther. Let 
us take, for example, the case where we have three 
abiotic variables. A triangular similarity matrix of abiotic 
variables 1 and 2 (subset 1,2) is constructed (using 
Euclidian distancelo), ranked, and compared to the 
ranked biotic triangular matrix to obtain a value of 
~ ( p ~ , ~ ) .  This is repeated using abiotic variables 1 and 3, 
and again for variables 2 and 3, to construct the abiotic 
triangular similarity matrix" and determine p for each 
case (plV3 and ~ 2 , ~ ) .  The combination of environmental 
variables giving the highest value of p should therefore 
indicate the variables that are influencing the community 
structure most. 

Conclusion 
The availability of a set of powerful statistical techniques 
for data analysis. we hope. will serve as an incentive for 
more studies on the benthic assemblages of the Maltese 
Islands. These techniques may also be applied to the re- 
analysis of existing-data-sits, whch  -may not have 
yielded very useful results when analysed using more 
traditional methods. The potential benefits of re-analyses 
of old data-sets have been amply demonstrated by. for 
example, Papathanassiou and Zenetos (1993) who re- 
analysed the data of Zenetos and Papathanassiou (1989). 
This was a study of the recov&y of the benthic 
assemblages after the introduction of a tannery-effluent 
treatment plant in the Gulf of Geras (Aegean Sea), which 
reduced chemical pollution considerably. The re-analysis 
employed univariate measures ( ~ h a n n o n - ~ e i n e r ' s  
diversity index. Pielou's evenness), k-dominance curves. 
average-linkage herarchical agglomerative classl- 
fication. non-metric MDS and ANOSlM tests (the latter 
three techniques being perfoimed 011 triangular similarity 
matrices derived from log,,, transformed data, using the 
Bray-Curtis similarity measure). The authors conclude 
their 1993 report thus (Papathanassiou and Zenetus, 
1993): 

10 As suggested by Clarke and Ainswo~th (1993). 

" A PRIMER procedure called BIO-ENV calculates p fur all pssible 
combinations of variables. Mole details are givm in Clarke and 
Ainswonh (1993) and m CLrke and Wawick (1994). 
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"The multivariate techniques and graphical descriptors 
(k-dominance curves) have detected the effects of 
recovery from pollution. Univariate methods, however, 
can only be applied with success in obvious cases of 
marked community disturbance and pollution impact ..." 

Locally, Micallef (1997) re-analysed the data in Borg 
(1991), Mallia (1991) and Mallia (1993), again with 
fruitful results. 

However, given the wide array of methods available, and 
the numerous formulations in which they can be applied, 
one has to find out which protocol works best in a 
particular situation. Techniques that work well, say in 
the Atlantic and North Sea, (for example the PRIMER 
protocol) may not be so efficient in a different ecological 
setting, such as the oligotrophic central Mediterranean. 
Zenetos et al. (1991) made use of Margalefs index12 of 
diversity to compare benthic communities in the 
Cyclades Plateau (Aegean Sea) together with NMDS and 
group-average clustering on loglo transformed data 
applying the Bray-Curtis similarity measure. They 
compared ecological and palaeoecological data sets, and 
concluded that care must be applied when drawing 
conclusions from limited data sets using these methods, 
since the expected separation into depth groups was 
observed when the analysis was performed on the total 
living fauna (329 taxonomic units) and the dead 
Mollusca (211 taxonomic units), but it was not so 
marked when only the living Mollusca (41 taxonomic 
units) were used. 

Recent work by the authors has sought to establish a 
protocol of techniques best suited for local data sets 
(Micallef, 1997). Using standard parametric modelling, 
information was extracted from typical local data sets 
and used to create simulated data sets with the 
characteristics of local benthic communities. These were 
sampled using a known pattern, that NMDS and Cluster 
Analysis were expected to reproduce. Using a variety of 
simulated communities, transformations, truncation 
methods and similarity indices, we noted which 
techniques gave ordinations and classifications that best 
reflected the original sampling pattem13 and hence 
established an optimum protocol of procedures. 

It was found that the removal of species that have 
abundances of less than 3%14 in all samples, such that a 
data set with not less than 30 species is obtained, helps 
analysis as it removes rare species (a considerable source 
of noise). Transformation of abundances to 4th root was 
found to be necessary to decrease the differences in the 
effects of rare and dominant species on similarity 
measures. The Kulczynski similarity measure was found 
to be very robust, followed closely by the Bray-Curtis 
similarity measure. Other results derived from this study 
will be discussed in a future publication. 
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Appendix A: NMDS 
- a brief description of the underlying algorithm 
From recent work in which the various ordination 
methods discussed above have been compared, NMDS 
has emerged as the most robust of the techniques 
available. To cite but one example of such research, we 
shall discuss the work of Nicolaidou et al. (1993). These 
authors challenged a number of techniques to distinguish 
between polluted and clean sites, and among the polluted 
sites, between pollution due to organic wastes and that 
due to coarse metalliferous residues. Univariate 
measures (Shannon-Weiner Diversity) separated polluted 
from clean sites by indicating a decrease in diversity for 
the polluted stations, but did not distinguish between the 
two types of pollution, except where the solid wastes 
were dumped on finer sediments. K-dominance curves 
were found to be sensitive only in an organically 
enriched area. Classification and PCA were not helpful 
either, although an elucidation of the differences 
between the extreme cases was provided by 
Correspondence Analysis. Non-metric MDS, however, 
proved to be markedly superior to the other techniques, 
distinguishing clearly clean from polluted stations, fine 
from coarse sediments, as well as organic and 
metalliferous pollution. 

NMDS was also found to be very robust in the analysis 
of data sets from the Maltese Islands (Micallef, 1997). It 
is therefore fitting to discuss this technique in more 
detail, especially since it is becoming the ordination 
method of choice among marine ecologists worldwide. 
There are several implementations of the NMDS 
algorithm, and here we shall discuss the implementation 
found in the PRIMER15 package (Clarke and Warwick, 
1994). A detailed outline of the procedure is given by 

Kruskal and, Wish (1978) and surnrnarised in Clarke and 
Warwick (1994). The following main steps are involved: 

1. The number of dimensions, m, for the final ordination 
is specified. 

2. A starting configuration with the n sample points is 
constructed. This is usually done by a randomisation 
procedure, but the initial configuration may also be 
entered from another ordination technique, e.g. PCA. 

3. The inter-point distances from this plot are regressed 
on the corresponding dissimilarities in t!!e triangular 
distance matrix. One can represent this step by plotting 
a scatter graph of distance in the NMDS plot (dJk, y-axis) 
against distance value in the triangular distance matrix 
(tijk, x-axis). If a similarity coefficient has been used, the 
resulting triangular similarity matrix is converted into a 
distance matrix by the program. A non-parametric 
regression line16 is fitted onto the plot, which is known 
as a Shepard Diagram (Fig. 9). 

4. The goodness of fit of the non-parametric regression 
is measured by calculating the deviations of the points 
from the line of best fit. The amount of deviation is 
termed stress. Stress is defined17 as: 

A where: d = dissimilarity 6jk scaled to the units of djk (so 
l k  

that they can be subtracted). 
Stress tends to zero as this value becomes equal to djk for 
all values. 

5. The current configuration is slightly modified in such 
a way that stress is reduced. Actually, this is done by a 
complex mathematical technique that seeks to "perturb 
the configuration in a direction of decreasing stress" 
(Clarke and Warwick, 1994). The non-parametric 
regression has one assumption - that as y increases x 

Is Plymouth Routines In Mult~variate Ecology Research - a suite of 
programs developed and dlstnbuted by the Plymouth Marine 
Laboratory, Plymouth, U.K. See Clarke and Wanvlck (1994), a text 
that serves as a manual for the suite. 

l 6  In standard linear regression, a line, commonly called the line of 
best fit', is fitted to a set of points. This assumes that the y-axis 
parameter varies linearly with the x-axis parameter (y a x ) .  If y a x2, a 
quadratic regression ('curve of best fit') would fit much beuer than a 
linear one, and so on with other polynomials. These regressions are 
called parametric, as one assumes there is a straightionvard 
relationship between x and y - using these models, one obtains metric 
MDS. In NMDS, the best Sitting 'line' is much more flexible: it takes 
the shape of the scatter plot, typically appearing as a 'staircase' rising 
frml the origin. This is non-parametric regression and gives NMDS its 
tlexibility. 

I' This is the original equation. In some versions. the denominator 
('scaling tern]') is modified, but the advantages of these modifications 
seems to be counterbalanced by the increased risk of convergence to 
local minima (see Clarke and Warwick, 1994). 

l 8  This is known as the monotonicity assunlption. as opposed to the 
linearity assumption in metric techniques. 



28 Micallef R. and Schembri P.  

increases18. The actual values of 
x and y are not as important as 
the fact that they increase 
together (the larger the 
dissimilarity index, the larger the 
distance on the plot). NMDS 
thus uses only the rank order of 
the similarities, and not the 
actual values. It follows that to 
reduce stress, y-values in the 
Shepard diagram (i.e. distances 
in the MDS) must increase 
correspondingly as the x-values 
increase (i.e. as rank of dissimil- 
arities increases). Figuratively, 
one seeks a fit of 'steepest ascent' 
(or descent). Techniques that 
achieve this form part of a 
branch of mathematics called 
'numerical optimisation'. 

6. Steps (3) to (5) are repeated 
until further perturbation leads to 
no decrease in stress 
(convergence). 

0 \ Scatter , 
0 ' - point 

Fitted non-wrametric 
regression line 

1 I 

' Discrepancy used in the calculation of stress I 
0 1 

0% Oh Dissimilarity in Triangular matrix (d,) IOOT 

The main problem with this algorithm, besides its 
comparatively huge demands on computer power with 
respect to metric methods, is the risk of finding local 
minima. Imagine that there are two configurations with 
low stress, one of which has the least stress (global 
minimum), and that the two configurations differ 
considerably. If the algorithm happens to find the second 
configuration (local minimum), it is almost impossible to 
escape from this as the global minimum is different 
enough that it cannot be found with the slight 
perturbation of step 5. To minimise this risk, steps 1 to 6 
should be repeated several times and the configuration 
with least stress adopted. This done, one can furthermore 
estimate the adequacy of an NMDS using several criteria, 
especially the stress value: 

Stress < 0.05 Excellent representation. 
Virtually no risk whatsoever 
of local minima. 

Stress = 0.05 - 0.1 Good ordination. Very little risk 
of misinterpretationl9. 

Stress = 0.1 - 0.2 

Stress = 0.2 - 0.3 

Stress > 0.3 

Quite a useful ordination. 
If stress values are close to 0.2, 
however, the general 
appearance, rather than the 
details, is most reliable. 

Not very useful. If stress values 
are close to 0.3, the resulting 
ordination is not acceptable. 

Not acceptable. Points 
placed randomly in an NMDS 
plot (starting configuration) 
often attain stress values of 
0.35 to 0.45. 

Figure 9. Shepard Diagram. 

Other methods of evaluating an NMDS ordination 
include inspection of the fink Shepard diagram and 
superimposing groups from cluster analysis on the 
NMDS plot. 

Appendix B: Local benthic study 
Some of the examples we have used to illustrate this 
review were taken from a local study on the benthic 
assemblages from three areas round the Maltese coast, 
subject to different degrees of anthropogenic impacts. 
This work was undertaken by a group from the 
Department of Biology of the University of Malta and 
was partly funded by the European Commission through 
its MedSPA Programme (Project leader: Prof. V. Axiak). 

The three sites sampled, Ta' Xbiex (within Marsamxett 
Harbour), Zonqor Point (Marsascala Bay), and Mignuna 
Point (St.Thomas Bay) had similar exposures, geology 
and topography, but differed in the degree of pollution, 
mainly that associated with boating activities. At each 
site, SCUBA divers laid transects perpendicular to the 
shore. Samples were collected from the rocky bottom at 
stations between which the water depth increased by 
OSm, until sediment was encountered; in effect this 
amounted to 8-9 samples per transect. At each station, all 
biota within a 35cm x 35cm quadrat were picked out or 
scarped off. In the laboratory, the biota were sorted into 
taxa and identified as far as possible. Animals were 
counted, while for algae, dry weights were determined. 
The results of this study will be presented in a future 
publication. 

l9  An ordination that converges to a local minimum is considered to 
misinterpret the data. 
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