
A Summary of Research in System Software and
Concurrency at the University of Malta: Multithreading

Kevin Vella

Department of Computer Science and AI,
University of Malta

1 Introduction

Multithreading has emerged as a leading paradigm for the development of applications with de-
manding performance requirements. This can be attributed to the benefits that are reaped through
the overlapping of I/O with computation and the added bonus of speedup when multiprocessors
are employed. However, the use of multithreading brings with it new challenges. Cache utilisation
is often very poor in multithreaded applications, due to the loss of data access locality incurred by
frequent context switching. This problem is compounded on shared memory multiprocessors when
dynamic load balancing is introduced, as thread migration also disrupts cache content. Moreover,
contention for shared data within a thread scheduler for shared memory multiprocessors has an
adverse effect on efficiency when handling fine grained threads.

Over the past few years, the System Software Research Group at the University of Malta has
conducted research into the effective design of user-level thread schedulers, identifying several
weaknesses in conventional designs and subsequently proposing a radical overhaul of the status
quo to overcome these deficiencies. Various results have been published in academic conferences
and journals [1–4]; this brief report highlights the principal findings. The related problem of com-
munication and I/O bottlenecks in multithreaded systems and contemporary computer systems in
general is discussed elsewhere in these proceedings [5].

2 The Old Testament

Many multithreaded environments utilise kernel-level threads as a lightweight alternative to heavy-
weight operating system processes. Kernel-level threads share a single address space to enable
sharing of data and to minimise thread creation and context switching times. Kernel entry is still
required when threads are created, whenever they communicate or synchronise, and at every con-
text switch. Furthermore, the threading model is implemented within the kernel and is therefore
dictated by the kernel. Systems such as Microsoft .NET make direct use of kernel threads as a
vehicle for driving multithreaded applications.

The expense and inflexiblity of kernel involvement can be eliminated through the use of user-level
threads, which operate entirely at the user level. Thread operation times as low as a few tens of
nanoseconds can be achieved using user-level threads. Since the kernel is oblivious to user-level
threads, a two-level thread hierarchy, with several user-level threads riding over a small pool of
kernel-level threads, is employed to gain access to multiple processors and other kernel resources.
This model, which is increasing in popularity, is utilised in this research, as it provides sufficient
flexibility for experimentation with alternative scheduling strategies and yields by far the fastest
implementations.

In this section we mention efforts at implementing uniprocessor and multiprocessor user-level thread
schedulers based around the traditional single shared run queue approach.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OAR@UM

https://core.ac.uk/display/84895101?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Research in System Software and Concurrency at the University of Malta: Multithreading 117

2.1 Uniprocessor Thread Scheduling

Most uniprocessor user-level thread schedulers in existence utilise a single FIFO queue to hold
descriptors for runnable threads. Cooperative round robin scheduling is used, with threads being
descheduled whenever inter-thread communication or synchronisation occurs, or when an explicit
’yield’ operation is invoked (of course, such descheduling points may be inserted automatically by
a preprocessor). Thread operation times can be as low as 20 nanoseconds, particularly when the
compiler passes register usage information to the scheduler to restrict thread state saving overhead.
Examples of this genre include our Smash [6], Kent’s KRoC [7] and CERN’s MESH [8].

The problem with such a naive scheduling strategy is that frequent context switching (a charac-
teristic of fine grained threads) disrupts the operation of the locality principle, on which cache
hits depend. The expense of repopulating the processor’s cache with a newly dispatched thread’s
footprint becomes significant when viewed in relation to the shortened thread dispatch time. To
make matters worse, an individual thread is unlikely to accumulate a significant cache footprint by
itself: only when threads are considered in groups can a long term cache footprint be identified.

2.2 Multiprocessor Thread Scheduling

The obvious way of extending a scheduler to operate on a shared memory multiprocessor is to wrap
a monolithic lock around the scheduler’s entry and exit points to protect against corruption arising
from concurrent access to the scheduler’s internal data structures. Through further refinement, the
sizes of the critical sections may be reduced, and independent internal structures may be guarded
by separate, fine-tuned locks to reduce contention. It emerges that the shared run queue is the data
structure that will experience most contention as the multiple processors compete to fetch the next
thread to execute. The locking method used must exhibit low latency, thus excluding the use of
kernel-assisted locks such as semaphores. Usually a spin-lock variant designed to minimise memory
bus traffic is used. SMP-KRoC [2] was implemented in 1998 following this design. Subsequently,
work undertaken at the University of Malta adapted CERN’s MESH [8] in a similar fashion to
produce SMP-MESH [9]. A variant of our scheduler, Shared-Smash [6], also follows this design.
We daresay that most multiprocessor user-level thread schedulers that balance thread load across
processors operate on the same lines.

While schedulers adopting this approach exhibit perfect balancing of thread load across processors,
the shared run queue causes threads to be indiscriminately migrated to processors on which they
would not have recently executed. As a consequence, newly dispatched threads are unlikely to
find any of their data footprint in the local cache. Moreover, when fine grained threads are being
executed and the thread dispatch frequency is high, contention amongst the processors for access
to the shared run queue inevitably spirals, despite efforts to minimise the critical section size.

3 The New Testament

Having glanced at what may be considered to be ’traditional’ thread scheduler design and identified
the following shortcomings:

– poor cache utilisation on uniprocessors;
– worse cache utilisation on shared memory multiprocessors; and
– high levels of contention for the run queue on shared memory multiprocessors;

we now provide a brief overview of our proposed solutions.



118 Kevin Vella

3.1 Thread Batching

Thread batching, first proposed in [10], involves grouping threads together into coarser grain entities
termed batches. In batch schedulers, the scheduled entity is a batch of threads rather than an
individual thread. A processor obtains one batch at a time from a batch pool and services the
threads on the batch for a fixed number of thread dispatches, before depositing the batch back on
the batch pool and acquiring the next batch. If the threads within a batch are scheduled repeatedly
within the same batch dispatch and the combined memory footprint of the threads in the batch fits
within the processor’s cache, cache exploitation will naturally improve. In practice, this approach
regains some of the data access locality which multithreading disrupts in the first place, even on
uniprocessors.

On shared memory multiprocessors, batching algorithms yield even better results. Since the dis-
patch time of an entire batch is large when compared to the dispatch time of an individual thread,
sufficient cache reuse is carried out within a single batch dispatch to dwarf the cache-related ex-
pense of thread or batch migration across processors. Moreover, if processors fetch batches from a
shared run queue, the relatively large batch dispatch time reduces the frequency of access to this
shared data structure, thus reducing contention for it while maintaining a balanced batch workload.

Batching can also be used to decrease the incidence of false sharing, since threads accessing data in
a common cache line may be batched together. Moreover, when balancing load across processors,
migrating threads in batches (whether in a shared batch run queue environment or otherwise)
reduces the contention that arises when migrating multitudes of individual threads.

Batching gently nudges the memory access patterns of multithreaded applications to fit into a more
sensible regime. It also coarsens the granularity of real concurrency in a manner which is dynamic
and totally transparent to the developer.

Uniprocessor thread batching was first implemented in an experimental version of uniprocessor
KRoC [10], with encouraging results: performance of fine grained multithreaded applications was
improved by as much as 28%. As the gap between processor and memory speeds grew, this figure
was only bound to improve. In fact, two years later, Unibatch-Smash registered improvements of
up to 100%. On shared memory multiprocessors, additional benefits were made apparent using
SmpBatch-Smash, a shared run queue multiprocessor batch scheduler. Various other scheduling
arrangements utilising batching were implemented with positive results. Detailed accounts of the
inner workings and performance of the thread batch schedulers implemented at the University of
Malta may be found in [6, 4, 1].

3.2 Appling Lock-free Data Structures and Algorithms

Traditionally, access control to concurrent data structures relies on the use of locks. An oft-
overlooked alternative method of synchronisation is available through the considered use of lock-
free structures and algorithms, which dispense with the serialisation of concurrent tasks. Lock-free
data structures rely on powerful hardware atomic primitives and careful ordering of instructions
to protect them from unsafe concurrent access.

Valois [11] discusses lock-free techniques in detail and supplies various definitions of relevance. Lock-
free data structures may have a further two properties: they may be non-blocking and wait free. A
lock-free data structure is termed non-blocking if some operation on it is guaranteed to complete
in finite time. When used for thread scheduling and inter-thread synchronisation, non-blocking
data structures have other advantages, including stronger fault tolerance, deadlock freedom, re-
moval of the extended spinning problem on multiprogrammed multiprocessors, and in priority-
based schedulers, elimination of priority inversion within the scheduler routines. Unfortunately,



Research in System Software and Concurrency at the University of Malta: Multithreading 119

the non-blocking algorithms usually rely on retries to recover from unexpected alterations per-
formed concurrently by other processors. This can result in unpredictable delays and starvation
under high contention. Furthermore, the use of compare-and-swap in most of the algorithms
brings about the ABA problem [11], which necessitates complex support for memory management
to avoid it.

If every operation on the data structure is guaranteed to complete in a fixed number of operations
the structure is said to be wait-free. Wait-free data structures, as discussed by Herlihy [12], do
not suffer from the ABA problem and do not ever require retries. As a consequence, starvation
is eliminated and the maximum number of instructions executed in the algorithms is fixed at
compile-time.

Lock-free algorithms and data structures are well documented in academia, but an account of the
application of this technique in a scheduler is hard to come by. We were unable to locate pub-
lications describing a wait-free scheduler implementation other than our own effort. The use of
wait-free techniques within Wf-Smash [3, 1], a multiprocessor thread scheduler designed and imple-
mented locally, removes all of the locks and critical sections that protect internal data structures.
This scheduler also utilises thread batches to coarsen the granularity of thread migration. As a
result, high levels of efficiency are sustained at very fine thread granularities on shared memory
multiprocessors, where all other thread scheduling strategies break down due to contention and
cache misses.

4 Conclusion and Further Work

We have conducted an investigation into the effectiveness of cache-conscious scheduling using
batches, and the exclusive use of wait-free synchronisation techniques in a thread scheduler for
shared memory multiprocessors. The experimental results obtained indicate that a significant re-
duction in execution times can be gained at fine levels of thread granularity through the use of
such techniques, both individually and in combination.

The implications of wait-free thread scheduling are numerous. Any path through the scheduler
involves the execution of a fixed number of instructions, thus enforcing an upperbound on the time
spent in it. In multiprogrammed systems, the extended spinning that typically ensues when a kernel
thread is descheduled whilst holding a lock is no longer an issue. In general, contention for shared
structures within the scheduler is reduced considerably. We believe that a substantial performance
improvement can be achieved on shared memory multiprocessors by avoiding any form of locking
in such scenarios, including blocking locks as well as spin locks. This approach should be at least
considered as a practical alternative to the status quo.

Further experiments with real applications are required to gather information about the perfor-
mance of batching under more realistic conditions. It should be noted that batch-based thread
scheduling as presented here may be subject to problems when the pre-set batch size limit is
greater than the total number of threads being executed in the application, since all threads would
be serviced by a single processor. While this can be advantageous in identifying situations where
parallel processing is not worth the effort, pathological cases may well occur in specific applica-
tions. Automatic modification of the batch size limit could be envisaged, whereby the batch limit is
dynamically set to match the current application’s needs. At the moment, threads are grouped into
batches by locality and indirectly through communication, so that threads created on a common
processor are placed onto the same batch. An additional grouping criterion could be based on the
frequency of inter-thread communication or rely on object-affinity [13, 14]. Furthermore, the appli-
cation programmer could be given the opportunity to manually specify viable thread groupings to
override the automatic batching arrangements adopted by the scheduler.



120 Kevin Vella

The investigations presented here fit into the wider context of a general purpose server-side parallel
processing system composed of a cluster of shared memory multiprocessors with high speed user-
level CSP communication over Gigabit Ethernet between nodes in the cluster, as well as gigabit
speed user-level TCP/IP connectivity to the outside world [15, 16, 5]. Many of the constituent
components have already been developed or are at an advanced stage of development.

References

1. K. Debattista, K. Vella, and J. Cordina. Wait-free cache-affinity thread scheduling. IEE Proceedings
- Software, 150(2):137–146, April 2003.

2. K. Vella and P.H. Welch. CSP/occam on shared memory multiprocessor workstations. In B.M. Cook,
editor, Proceedings of WoTUG-22: Architectures, Languages and Techniques for Concurrent Systems,
volume 57 of Concurrent Systems Engineering, pages 87–120. IOS Press, April 1999.

3. K. Debattista and K. Vella. High performance wait-free thread scheduling on shared memory mul-
tiprocessors. In H.R. Arabnia, editor, Proceedings of the International Conference on Parallel and
Distributed Processing Techniques and Applications, pages 1022–1028, June 2002.

4. K. Debattista, K. Vella, and J. Cordina. Cache-affinity scheduling for fine grain multithreading. In
J.S. Pascoe, P.H. Welch, R.J. Loader, and V.S. Sunderam, editors, Proceedings of Communicating
Process Architectures 2002, volume 60 of Concurrent Systems Engineering, pages 135–146. IOS Press,
September 2002.

5. J. Cordina. A summary of research in system software and concurrency at the University of Malta:
I/O and communication. In G. Pace and J. Cordina, editors, Proceedings of CSAW 2003, July 2003.

6. K. Debattista. High performance thread scheduling on shared memory multiprocessors. Master’s
thesis, University of Malta, February 2001.

7. D. Wood and P. Welch. KRoC – the Kent Retargetable occam Compiler. In B. O’Neill, editor,
Proceedings of WoTUG 19, volume 47 of Concurrent Systems Engineering, pages 143–166. IOS Press,
March 1996.

8. M. Boosten, R. Dobinson, and P. van der Stok. MESH: Messaging and scheduling for fine-grain parallel
processing on commodity platforms. In Proceedings of PDPTA, June 1999.

9. J. Cordina. Fast multithreading on shared memory multiprocessors. B.Sc. I.T. Final Year Project,
Department of Computer Science and Artificial Intelligence, University of Malta, June 2000.

10. K. Vella. Seamless Parallel Computing on Heterogeneous Networks of Multiprocessor Workstations.
PhD thesis, University of Kent at Canterbury, December 1998.

11. J. Valois. Lock-Free Data Structures. PhD thesis, Rensselaer Polytechnic Institute, May 1995.
12. M. Herlihy. Wait-free synchronisation. ACM Transacations on Programming Languages and Systems,

13(1):124–149, January 1991.
13. L. Kontothanassi and R. Fowler. Mercury: Object-affinity scheduling and continuation passing on mul-

tiprocessors. In Proceedings of the International Conference on Parallel Architectures and Languages,
Europe, 1994.

14. S. Abela. Improving fine-grained multithreading performance through object-affinity scheduling. B.Sc.
I.T. Final Year Project, Department of Computer Science and Artificial Intelligence, University of
Malta, June 2002.

15. J. Cordina. High performance TCP/IP for multi-threaded servers. Master’s thesis, University of Malta,
March 2002.

16. S. Busuttil. Integrating fast network communication with a user-level thread scheduler. B.Sc. I.T.
Final Year Project, Department of Computer Science and Artificial Intelligence, University of Malta,
June 2002.


