
Generic Chromosome Representation and Evaluation for
Genetic Algorithms

Kristian Guillaumier

Department of Computer Science and AI,
University of Malta

Abstract. The past thirty years have seen a rapid growth in the popularity and use of
Genetic Algorithms for searching for optimal or near-optimal solutions to optimisation prob-
lems. One of the reasons for their immense success is the fact that the principles governing
the algorithm are simple enough to be appreciated and understood. The major differences
between one Genetic Algorithm and another lie within the schemes used to represent chro-
mosomes, the semantics of the genetic operators, and the measures used to evaluate their
fitness. Yet, these very differences make Genetic Algorithms so complex to design and im-
plement when opposed with most real-world optimisation problems. The truth is that the
people faced with these types of optimisation problems are not necessarily computer sci-
entists or machine learning experts. Indeed, these types of problems constantly appear in
various non-computing disciplines ranging from biology to manufacturing and economics.
In this report, we present a simple, yet powerful, high-level technique that can be used to
describe the structure of chromosomes and how their fitness can be evaluated. The method is
abstract enough to insulate the practitioner from all the implementation, design, and coding
details usually associated with a Genetic Algorithm. Nonetheless, a wide array of optimisation
problems ranging from the classical travelling salesman problem and the n-Queens problem
to time-table scheduling and dynamic programs can be described.

1 Introduction – Setting the Scene

A basic Genetic Algorithm may be decomposed into the following steps:

– Create a starting population. Usually a set of random chromosomes are created.
– Repeat the following until some termination criterion is met:

• Evaluate each chromosome using a fitness function.
• Select pairs of chromosomes using some scheme such as random selection or fitness-biased

methods.
• Apply crossover on the pairs of chromosomes selected and mutation on individuals.
• Create a new population by replacing a portion of the original population with the chro-

mosomes ‘produced’ in the previous step.

The above algorithm may be implemented in any high-level programming language. However, in
conventional implementations, most parameters, the fitness function, chromosome representation,
and genetic operators are usually hard-coded. If the nature of the problem varies slightly or critical
parameters change, the original code must be revised – sometimes substantially. Moreover, as
already stated, the user may not be even computer literate and not prepared to deal with issues
such as algorithm design, programming and debugging.

In this section we will present a simple lecture-timetabling problem and eventually show how the
procedure can be made more abstract.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OAR@UM

https://core.ac.uk/display/84895075?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Generic Chromosome Representation and Evaluation for Genetic Algorithms 65

Suppose we wish to find the solution to a very simple time-timetabling problem where each of 5
lectures has to be assigned one of 3 timeslots. No lecture given by the same tutor may occur at the
same time. Sample data may be found in the tables below.

Our first task is to find a suitable chromosome representation. In such cases, a direct representation
scheme may be used. We use a vector of symbols of length 5 (one per lecture) where the symbol
at the ith position holds the timeslot assignment for the ith lecture. So, the following chromosome:

< 3, 1, 3, 2, 1 >

would be interpreted as the first lecture in timeslot 3, the second in timeslot 1, the third in
timeslot 3, and so on. Once having found a suitable encoding scheme, we proceed by selecting our
genetic operators. In order to keep things simple, we apply basic single point crossover and random
mutation as shown in the following diagrams:

We finally decide on how chromosome fitness will be evaluated. In this case, the fitness function can
be defined to return an integer value representing the number of times lectures given by the same
tutor occur at the same time. Since the return value of the fitness function may be considered to
be proportional to the severity of constraint violation, it may be interpreted as a penalty that has
to be minimised. Once the chromosome representation, genetic operators, and the fitness function
have been defined, our Genetic Algorithm can be implemented as outlined previously.

So far, we have considered a simple, yet perfectly realistic implementation of a Genetic Algorithm
for lecture timetable-scheduling. However, it should be immediately apparent that once the nature
of the problem changes, say by introducing rooms or soft-constraints, the whole program must be
revised substantially. This is because all the effort has been hard-coded and hence cannot be easily
extended.



66 Kristian Guillaumier

2 Abstracting the Problem

Many optimisation problems, directly or indirectly depend on sets of static data (such as the
Lectures and Timeslots tables) and certain relationships between them. In the lecture time-tabling
problem we have seen earlier on, each row in the Lectures table must be associated with a, yet
unknown, row in the Timeslots table. We call relationships that exist but are yet unknown, dynamic
relationships. In view of this, we found it convenient to express such static data and relationships
as a variation of database tables found in relational database management systems (RDBMSs).
The following figure shows the Lecture and Timeslots tables, and the relationship between them.

Note: In the Lectures table, we have included a 4th column called TimeslotCode. This column
holds values matching those in the Code column of the Timeslots table and serves to create the
relationship between the two. In database terminology, the TimeslotCode column is called a foreign
key column.

These tables and their relationships represent the structure of the problem. Eventually this struc-
ture will determine the chromosome representation. The search process then attempts to find
optimal, or near-optimal, values for the dynamic relationships – the TimeslotCode column above.
Once the Genetic Algorithm starts producing candidate values for the dynamic relationships, a
combination of queries, similar in concept to the Structured Query Language (SQL) Select state-
ment and conditional If-Then-Else statements are used to evaluate fitness.

Suppose the Genetic Algorithm yields the following candidate values for the TimeslotCode dynamic
column:

The following SQL statement may be used to retrieve the tutor and timeslot description from the
two tables:



Generic Chromosome Representation and Evaluation for Genetic Algorithms 67

Returning:

If we name the query above qryTutorTimeSlots, we can use the following conditional statement to
return a penalty based on how many lectures are occupied during the same timeslot.

Clearly, if no tutors are busy during the same timeslot, the if statement will return 0 – no penalty.
Otherwise the value returned will be directly proportional the number of times the constraint has
been violated.

3 Conclusion

In the previous section we briefly demonstrated how tables may be used to describe the structure
of an optimisation problem, and how combinations of SQL-like queries and conditional statements
can express the components of a fitness function.

This technique has been successfully implemented as a high-level modelling language called OPML1

together with a general-purpose Genetic Algorithm-based runtime. A wide range of optimisation
problems have been tackled including problems in linear programming, dynamic programming,
lecture time-table scheduling, the travelling salesman problem, bin packing, and the n-Queens
problem as test cases.

For a complete exposition the reader is referred to:

“A multi-purpose scripting language and interpreter for optimisation problems”, Kristian Guillau-
mier, University of Malta, October 2002.

1 Optimisation Problem Modelling Language


