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Abstract. In this report we present an introductory overview of Support Vector Machines
(SVMs). SVMs are supervised learning machines that can be analysed theoretically using
concepts from computational learning theory while being able to achieve good performance
when applied to real-world problems.

1 Introduction

The study of Support Vector Machines (SVMs) can be said to have been started by Vladimir Vapnik
in the late seventies [15]. However it was only until the late nineties that the subject started to
receive increasing attention [4, ?,7?].

Support Vector Machines, are supervised learning machines based on statistical learning theory that
can be used for pattern recognition and regression. Statistical learning theory can identify rather
precisely the factors that need to be taken into account to learn successfully certain simple types
of algorithms, however, real-world applications usually need more complex models and algorithms
(such as neural networks), that makes them much harder to analyse theoretically. SVMs can be
seen as lying at the intersection of learning theory and practice. They construct models that are
complex enough (containing a large class of neural networks for instance) and yet that are simple
enough to be analysed mathematically. This is because an SVM can be seen as a linear algorithm
in a high-dimensional space [13].

In this document, we will primarily concentrate on Support Vector Machines as used in pattern
recognition. In the first section we will introduce pattern recognition and hyperplane classifiers,
simple linear machines on which SVMs are based. We will then proceed to see how SVMs are able
to go beyond the limitations of linear learning machines by introducing the kernel function, which
paves the way to find a nonlinear decision function. Finally, we sum it all up and mention some
areas in which Support Vector Machines have been applied and given excellent results.

2 Pattern Recognition and Hyperplane Classifiers

In pattern recognition we are given training data of the form

(XLyl)a"'v(X@vy@) € R™ x {+1’_1}7 (1)

that is n—dimensional patterns (vectors) x; and their labels y;. A label with the value of +1 denotes
that the vector is classified to class +1 and a label of —1 denotes that the vector is part of class —1.
We thus try to find a function f(x) = y : R® — {41, —1} that apart from correctly classifying
the patterns in the training data (a relatively simple task), correctly classifies unseen patterns too.
This is called generalisation.
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Statistical learning theory or VC (Vapnik-Chervonenkis) theory [16], shows that it is imperative
that we restrict the class of functions that our machine can learn, otherwise learning the underlying
function is impossible. It is for this reason that SVMs are based on the class of hyperplanes

(w-x)+b=0weR"beR, (2)

which basically divide the input space into two: one part containing vectors of the class —1 and the
other containing those that are part of class +1 (see Figure 1). If there exists such a hyperplane,
the data is said to be linearly separable (nonseparable otherwise). To find the class of a particular
vector x, we use the following decision function

f(x) = sign((w - x) +b). (3)

AN

Fig. 1. A separating hyperplane (w,b) for a two dimensional (2D) training set.

2.1 The Optimal Hyperplane

As can be understood, there may be more than one hyperplane that correctly classifies the train-
ing examples (for instance, in Figure 1 the hyperplane could be closer to class —1). It has been
shown that the hyperplane that guarantees the best generalisation performance is the one with the
maximal margin of separation between the two classes [6, ?]. This type of hyperplane is known as
the optimal or maximal margin hyperplane and is unique.

The optimal hyperplane can be constructed by solving a convex (no local minima, therefore any
solution is global) optimisation problem that is minimising a quadratic function under linear in-
equality constraints. The solution to this problem has an expansion in terms of a subset of the
training examples that lie on the margin, called support vectors (see Figure 2). Support vectors
contain all the information needed about the classification problem, since even if all the other vec-
tors are removed the solution will still be the same. The details of the calculations will be omitted
but can be found in a number of our references (see for instance [6]).

Finally, another very important property of hyperplane classifiers that needs to be emphasised, is
that both the optimisation problem (used to find the optimal hyperplane) and the decision function
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Fig. 2. A maximal margin hyperplane with its support vectors encircled.

(used for the actual classification of vectors) can be expressed in dual form which depend only on
dot products between vectors. The dual representation of the decision function is

i=1

¢
f(x) = sign <Z Yo (X - X;) + b) , (4)

where «; € R is a real-valued variable that can be viewed as a measure of how much informational
value x; has. Thus for vectors that do not lie on the margin (i.e. non support vectors) this value
will be zero.

3 Feature Spaces and Kernels

Linear learning machines (such as the hyperplane classifier), while being mathematically compelling
because of their ease of analysis, have limited computational power and thus limited real-world
value [9]. In general, complex real-world applications require a learning machine with much more
expressive power.

One proposed solution to this problem was to create a network of simple linear classifiers (in
the form of neural networks) and thus be able to represent nonlinear decision surfaces. However,
neural networks have a number of inherent problems, including local minima and many tunable
parameters. In addition, it is very complex to analyse a neural network mathematically.

Another solution is to map the input vectors into a richer (usually high-dimensional) feature space
where they are linearly separable using a nonlinear mapping ¢. In feature space, build a separating
hyperplane using a well-understood linear learning machine such as the optimal hyperplane clas-
sifier (see Figure 3). This yields a nonlinear decision surface in input space and is the approach
taken by Support Vector Machines.

As we have already noted in Section 2.1, the optimal hyperplane classifier uses only dot products
between vectors in input space. In feature space this will translate to (¢(x) - ¢(y)). Clearly, this is
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Fig. 3. A nonlinear mapping from input space to feature space can simplify the classification task.

very computationally expensive, especially if the mapping is to a high-dimensional space. Boser,
Guyon and Vapnik [2], showed that a rather old trick [1]—kernel functions—can be used to accom-
plish the same result in a very simple and efficient way. A kernel is a function k(x,y) that given
two vectors in input space, returns the dot product of their images in feature space

k(x,y) = ((x) - o(y))- (5)

There are several different kernels, choosing one depends on the task at hand. One of the simplest
is the polynomial kernel k(x,y) = (x - y)?. For example, taking d = 2 and x,y € R?
(x-y)? = (z101 + T22)°
= (z1y1 + T2y2) (T1Y1 + T2Y2)
= (z1yf + 233 + 201 200192) (6)
= (a1, 23, V22129) (41, 43, V25192)
= (01(x) - d1(y))

defining ¢1(x) = (22,22, V22 123).

4 Support Vector Machines

Support Vector Machines are nothing more (or less) than linear learning machines expressed in
dual form that map their input vectors to a feature space by the use of kernels and compute the
optimal hyperplane there.

If we take Equation 4, which is the decision function for the optimal hyperplane classifier in dual
form and apply the mapping ¢ to each vector it uses, we will get

4
f(x) = sign (Z yiai(@(x) - p(xi)) + b) : (7)
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As already mention in Section 3 the explicit mapping to feature space is not desirable, since it is
very computational expensive. We will therefore use kernels which will give us a nonlinear decision
function of the form

¢
f(x) = sign (Z yiouk(x,%;) + b) . (8)

=1

The SVM algorithm is thus based on statistical learning theory, while being practical since it
reduces to an optimisation problem with a unique solution. Up to now we have only considered the
case of classification (pattern recognition). A generalisation to regression, that is, having y € R,
can be given. In this case, the algorithm tries to construct a linear function in the feature space
such that the training points lie within a distance of ¢ > 0. Similar to the pattern-recognition
case, this can be written as a quadratic programming problem in terms of kernels [13] (see [6] for
details).

5 Final Remark

Support Vector Machines have been applied to many real-world problems, producing state-of-
the-art results. These include text categorisation [7, 8], image classification [5,10-12], biosequence
analysis and biological data mining [3] and handwritten character recognition [2].
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