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Abstract: We consider the problem of optimal charging of heterogeneous plug-in electric
vehicles (PEVs). We approach the problem as a multi-agent game in the presence of constraints
and formulate an auxiliary minimization program whose solution is shown to be the unique Nash
equilibrium of the PEV charging control game, for any finite number of possibly heterogeneous
agents. Assuming that the parameters defining the constraints of each vehicle are drawn
randomly from a given distribution, we show that, as the number of agents tends to infinity,
the value of the game achieved by the Nash equilibrium and the social optimum of the
cooperative counterpart of the problem under study coincide for almost any choice of the
random heterogeneity parameters. To the best of our knowledge, this result quantifies for the
first time the asymptotic behaviour of the price of anarchy for this class of games. A numerical
investigation to support our result is also provided.
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1. INTRODUCTION

The modernization of energy systems and the integration
of increasing shares of renewable energy sources has been
a major concern worldwide, and has induced an intense
research activity towards this direction. However, the ex-
pected increase in the share of renewable energy sources
will increase the degree of uncertainty in the system,
thus posing stability and reliability challenges. To address
these contemporary challenges, and to ensure a safe and
uninterrupted energy systems operation, novel operational
paradigms are needed, exploiting consumers’ flexibility
and deferrability properties. Electric vehicles, which obtain
some or all of their energy from the electricity grid, will
play a prominent role in this paradigm shift, since they
not only contribute to pollution reduction, but also, by
appropriately scheduling their charging status (e.g., charg-
ing over low demand/electricity price periods - “valley
filling”) or shifting their consumption in time, serve as
virtual dynamic storage, contributing to the stability of
the grid (see Rahman and Shrestha (1993); Denholm and
Short (2006); Callaway and Hiskens (2011); Li et al. (2014)
and references therein).

Achieving system-wide coordination and control of elec-
tric vehicles, and avoiding the severe consequences that a
suboptimal design may have, becomes more challenging as
the vehicles population size grows, Lemoine et al. (2008).
Treating this problem from a social welfare perspective,
a centralized solution would be preferable, since it would
minimize the global cost. However, centralized computa-
tion of the vehicles charging strategies may be challenging
both from a communication and a computational point
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of view, since not all vehicles may be willing to share
private information related to their consumption patterns
(encapsulated in their individual utility functions and con-
straints), and even if this was the case the size of the
resulting problem might be prohibitive for computations
in fleets of realistic size. Decentralized algorithms to cal-
culate social welfare minimizing charging strategies while
overcoming the aforementioned challenges can be found in
Gan et al. (2013); Deori et al. (2016a), and are based on
iterative algorithms and penalty methods.

In a more realistic set-up, vehicles are not concerned with
social welfare minimizing paradigms, but act as selfish
agents that seek to minimize their local charging en-
ergy cost, thus giving rise to multi-agent non-cooperative
games. Computation of charging control strategies in such
settings is typically approached using tools from aggrega-
tive and mean-field game theory. The main concern is the
characterization of Nash equilibrium strategies associated
with such games, and their computation in a decentral-
ized fashion. The theoretical machinery for the stochastic,
continuous-time version of such problems, but in the case
where agents are not subject to constraints, is provided in
Huang et al. (2007); Lasry and Lions (2007). The deter-
ministic, discrete-time problem variant was investigated
in Ma et al. (2013), and was further extended in Parise
et al. (2014) to account for the presence of constraints. In
Grammatico et al. (2016); Paccagnan et al. (2016) various
iterative decentralized PEV charging algorithms are pro-
vided, and their convergence properties are analyzed using
fixed-point theoretic tools, Berinde (2007).

One challenge associated with the aforementioned ref-
erences is that there is no common awareness on how
the resulting Nash equilibrium solution is related to the
associated social welfare optimum, had the PEVs been
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acting in a cooperative manner, and how this is affected by
vehicles’ heterogeneity. A partial answer to this question
was given in Ma et al. (2013) for the case of a homogeneous
population of PEVs, that are, however, not subject to
constraints. A more general treatment of this problem is
proposed in the recent work of Li and Zhang (2016), where
the authors show equivalence of Nash equilibria and social
optima in terms of value at the limiting case of infinite
agent populations. This is achieved by means of a primal-
dual analysis, which for the case where the number of
agents is finite results in approximate and not exact Nash
equilibria.

In this paper we consider the problem of PEV charging
control, where each vehicle is subject to possibly differ-
ent constraints. We represent constraint heterogeneity by
assuming that certain parameters in each vehicle con-
straints are drawn randomly from a given distribution. We
show that, for any finite number of possibly heterogeneous
agents, the PEV charging control game admits a unique
Nash equilibrium, which is the minimizer of an auxiliary
minimization program (Proposition 1). We further prove
that as the number of agents tends to infinity the value of
the game achieved by the Nash equilibrium and the social
optimum of the cooperative counterpart of the problem
under study coincide for almost any choice of the ran-
dom heterogeneity parameters (Theorem 3). This result
extends Ma et al. (2013) to the case of heterogeneous
agents that are subject to constraints, without resorting
to approximate Nash equilibria as in Li and Zhang (2016),
and following a fundamentally different analysis that does
not require primal-dual update steps. At the same time,
to the best of our knowledge, this result quantifies for the
first time the asymptotic behaviour of the price of anarchy,
Koutsoupias and Papadimitriou (2016), for this class of
games.

The rest of the paper unfolds as follows: Section 2 in-
troduces the non-cooperative PEV charging control game
under study, along with its social welfare minimization
counterpart. Section 3 shows that, for any finite number of
possibly heterogeneous agents, the associated game admits
a unique Nash equilibrium, which is the social optimum
of an auxiliary minimization program. In Section 4 we
show that as the number of agents tends to infinity, the
value of the game and the social welfare optimum of the
original problem tend to coincide. This is also investigated
in the numerical example in Section 5. Finally, Section
6 concludes the paper and provides some directions for
future work.

2. ELECTRIC VEHICLE CHARGING CONTROL
PROBLEM

Consider the problem of electric vehicle charging where
we have m PEVs and each vehicle seeks to determine its
charging profile along some discrete time horizon [0, h− 1]
of arbitrary length h ∈ N so as to minimize its own
charging cost.

The price of electricity depends on the total demand and
we assume that it is given by

ct = pt
∑
j∈I

xjt, t ∈ H, (1)

where I = {0, 1, . . . ,m} and H = {0, 1, . . . , h − 1} are
the agent and time index sets, xit ∈ R is the charging

rate of vehicle i at time t, and pt > 0 is an electricity
price coefficient at time t. Note that the agent index set
I is enlarged to include a virtual agent indexed by 0 to
represent some additional fixed demand besides the one
requested by the PEVs. This choice is to avoid cluttering
notation in the subsequent derivations and makes the
dependency of the cost ct in (1) on the PEV demand affine
due the presence of x0t. The linear dependency of price
with respect to the total demand models the fact that
price depends on demand, and, agents/vehicles are price
anticipating authorities, anticipating their consumption to
have an effect on the electricity price (see Gharesifard et al.
(2016) for further elaboration).

Each agent i ∈ I optimizes its charging profile subject to
the following constraints∑

t∈H
xit = γi (2)

xit ∈ [xit, xit], for all t ∈ H (3)

where constraint (2) represents a prescribed charging level
γi ∈ R, γi > 0, to be reached by vehicle i at the end of the
considered time horizon H, whereas (3) imposes minimum
(xit ∈ R, xit ≥ 0) and maximum (xit ∈ R, xit < ∞)
limits, respectively, on xit. By appropriately choosing x0t,
and setting x0t = x0t and γ0 =

∑
t∈H x

0t, the charging
strategy of the virtual agent 0 can match any given non-
PEV demand profile.

For all i ∈ I, let xi = [xi0, . . . , xi(h−1)]> ∈ R|H|, where
| · | denotes the cardinality of its argument. Let also
f : R|H| × R(m)|H| → R be such that, for all i ∈ I, for
any (xi, x−i) ∈ R(m+1)|H|,

f(xi, x−i) =
∑
t∈H

xit
(
pt
∑
j∈I
j 6=i

xjt + ptxit
)
, (4)

where by the notation x−i we imply a vector including the
decision variables of all vehicles except vehicle i. Moreover,
for all i ∈ I, let

Xi =
{
xi ∈ R|H| :

∑
t∈H

xit = γi and

xit ∈ [xit, xit], for all t ∈ H
}
, (5)

denote the constraint set corresponding to vehicle i.

Then, each vehicle/agent i, i ∈ I, aims at determining
a charging profile xi that minimizes its pay-off function
f(xi, x−i), as this is given by (4), which depends on its
own decision vector xi and on the other agents decision
vector x−i, subject to a local constraint xi ∈ Xi, where
Xi is defined in (5).

This non-cooperative behavior naturally gives rise to a
gaming setting. We say that for all i, i ∈ I, the tuple
(xi, x−i) is a Nash equilibrium of the game, if each agent i,
given the strategies x−i of the other agents, has no interest
in changing its own strategy xi. In other words, unilateral
deviations in the agents’ local strategies can not lead to
an improvement in their pay-offs. This is formally stated
in the following definition.

Definition 1. Consider a non-cooperative game where
each agent has a pay-off function f and a constraint set
Xi, i ∈ I. The set of Nash equilibria N of the game is
given by
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N =
{
x ∈ X : f(xi, x−i) ≤ f(ζi, x−i)

for all ζi ∈ Xi, i ∈ I
}
, (6)

where x = (x0, . . . , xm) and X = X0 × . . .×Xm.

Since each agent has a pay-off function of the same
structure, the resulting game is a potential game, Facchinei
et al. (2011); Voorneveld (2000).

In Section 3 we show that set of Nash equilibria N
coincides with the set of optima of an auxiliary cooperative
optimization program involving all agents. This allows to
use the decentralized algorithm of Deori et al. (2016b) to
determine an element of N , i.e., a Nash equilibrium of the
game of interest (see also Section 6 and Deori et al. (2017)).
Interestingly, in the limiting case of an infinite population
of agents, the auxiliary optimization program tends to the
cooperative social welfare optimization problem

P : min
{xi∈Xi}i∈I

∑
i∈I

f(xi, x−i), (7)

so that the m selfish PEVs will eventually choose their own
charging profile so as to minimize the total charging cost
for the entire fleet and hence achieve a social optimum.

We impose the following standing assumption to ensure
feasibility of P.

Assumption 1. Fix any m ≥ 1, and let {xit, xit}t∈H
i∈I

,

{γi > 0}i∈I\{0}, and γ0 ≥ 0. The feasibility sets Xi,
i ∈ I, are nonempty and compact. Moreover, pt > 0, for
all t ∈ H.

Note that γ0 is allowed to be zero to encode the case
where there is no non-PEV demand. The second part of
Assumption 1 is only needed for the proof of Theorem
3, but is naturally satisfied in situations of practical
relevance. Denote the set of social optima M of P by

M = arg min
{xi∈Xi}i∈I

∑
i∈I

f(xi, x−i). (8)

Note that (8) involves minimizing a continuous function
(as an effect of being convex), over a compact set (due
to Assumption 1). As such, the minimum is achieved due
to Weierstrass’ theorem (Bertsekas and Tsitsiklis, 1989,
Proposition A.8, p. 625). Under a similar reasoning all
other minimization problems defined in the sequel are
well defined. More precisely, problem P involves a convex,
quadratic minimization program.

3. NASH EQUILIBRIA AS SOCIAL OPTIMA OF AN
AUXILIARY PROBLEM

We show that the set of Nash equilibria N defined in (6)
of the game defined in Section 2 coincides with the set of
optimizers of an auxiliary minimization program. To this
end, for all i ∈ I, let

fa(xi) =
∑
t∈H

pt(xit)2, (9)

and consider the following minimization problem.

Pa : min
{xi∈Xi}i∈I

∑
i∈I

[
f(xi, x−i) + fa(xi)

]
. (10)

We then have the following proposition.

Proposition 1. Under Assumption 1, the set of Nash equi-
libria N , and the set of minimizers of Pa coincide, i.e.,

N = arg min
{xi∈Xi}i∈I

∑
i∈I

[
f(xi, x−i) + fa(xi)

]
. (11)

Proof. Problem Pa is a centralized convex optimization
program. By Corollary 1 of Deori et al. (2016b), the set of
minimizers of Pa coincides with the set of fixed points of
the mapping Ta =

(
T 0
a , . . . , T

m
a

)
(see also equation (5) in

Deori et al. (2016b)), where, for all i ∈ I, for any c > 0,

T ia(x) = arg min
zi∈Xi

f(zi, x−i) + fa(zi)

+
∑
k∈I
k 6=i

[
f(xk, (zi, x−{k,i})) + fa(xk)

]
+ 2c‖zi − xi‖2, (12)

where f(xk, (zi, x−{k,i})) =
∑
t∈H x

kt
(
pt
∑
k∈I
k 6=i

xkt +

ptzit
)

, for all k ∈ I, k 6= i, encodes the fact that the

decision vector zi of agent i appears also in the terms with
k 6= i. By x−{k,i} we mean the elements of x but for the
ones corresponding to agents k and i. The interpretation
of (12) is that we minimize the objective function in (10)
with respect to the decision vector of agent i, where all the
other decision vectors are fixed to the values included in
vector x.

Therefore, and due to (9), we have that

T ia(x) = arg min
zi∈Xi

[∑
t∈H

zit
(
pt
∑
j∈I
j 6=i

xjt + ptzit
)

+
∑
t∈H

zitpt
∑
k∈I
k 6=i

xjt +
∑
t∈H

pt(zit)2
]

+ 2c‖zi − xi‖2, (13)

where all terms that have been dropped from the objective
function in (12) do not depend on the decision vector zi.
Rearranging the terms, we obtain

T ia(x) = arg min
zi∈Xi

2
∑
t∈H

zit
(
pt
∑
j∈I
j 6=i

xjt + ptzit
)

+ 2c‖zi − xi‖2

= arg min
zi∈Xi

f(zi, x−i) + c‖zi − xi‖2 (14)

where in the second equality we used (4) and rescaled the
objective by a factor of 2, since this does not affect the
resulting minimizer.

By Corollary 1 of Deori et al. (2017) we have that the set
of Nash equilibria N coincides with the set of fixed-points
of T ia as this appears in the second equality in (14). On
the same time, by Corollary 1 of Deori et al. (2016b), this
set of fixed-points coincides with the set of minimizers of
Pa, thus concluding the proof. 2

Note that the objective function in (10) is strictly convex
due to the presence of the auxiliary term. Therefore, it
admits a unique minimizer and, as a result of Proposition
1, the game of Section 2 admits a unique Nash equilibrium.
The uniqueness of the Nash equilibrium is due to the
equivalence result of (11), which relies on the particular
structure of the objective functions in (4); for general
convex pay-off functions (11) does not necessarily hold,
and as a result N may not be a singleton.
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The interpretation of (10) is that the auxiliary term acts
like a variance penalty in regularization methods (similar
to overfitting prevention in regression algorithms). As
shown in the next section, the relative importance of this
term becomes negligible as the number of agents increases,
since the variance in the agents’ decision vectors is reduced
automatically as their number tends to infinity.

4. SOCIAL WELFARE ARISING FROM
COMPETITIVENESS AND THE PRICE OF

ANARCHY IN PEV GAMES

In this subsection we show that in the limiting case of
an infinite population of agents, the optimal value of Pa
approaches the one of P. Under Proposition 1, this in turn
implies that the Nash equilibrium of the game in Section
2 achieves the social welfare optimum. In other words,
even if agents act in a non-cooperative manner, as their
number increases, they tend to a social welfare optimizing
behavior.

For our analysis we assume that the price coefficients
{pt}t∈H are deterministic known quantities, whereas the
consumption level γi, i ∈ I \ {0} in (2) and the upper
and lower limits in (3) are random variables, extracted
according to a given probability distribution. Since we
will eventually consider an infinite population of agents,
we impose the following assumption on the infinite se-
quence of random vectors {γi, xi, xi}i≥1, where xi =

[xi0, . . . , xi(h−1)], xi = [xi0, . . . , xi(h−1)].

Assumption 2. Let {γi, xi, xi}i≥1 be an infinite sequence
of random vectors on a probability space (Ω,F ,P) 1 . We
assume that

(1) {γi, xi, xi}i≥1 are independently and identically
distributed (i.i.d.).

(2) {γi}i≥1 are positive random vairables, while {xi, xi}i≥1
are non-negative random vectors.

(3) For any i ≥ 1, E[γi] < ∞ and E[(γi)2] < ∞, where
E[·] denotes the expectation operator associated with
the probability measure P.

Note that we do not impose Assumption 2 for the virtual
agent indexed by 0, since its demand is a deterministic
quantity. As a consequence of the second part of As-
sumption 2, E[γi] > 0, for any i ≥ 1. Recall that in
Assumption 1 we require feasibility of P, Pa for a finite
number of agents, hence the joint probability distribution
of {γi, xi, xi}i≥1 should be such that feasibility is ensured,
namely the lower and upper bounds on charging rate must
be compatible with the charging level γi to be reached.
For the subsequent analysis we employ the following law
of large numbers type of argument. Note that we will write
that an event holds (P-a.s.) when it holds with probability
one with respect to P.

Theorem 2. (Shiryaev (1995), Chapter IV, §3, Theorem 3).
Let {yi}i≥1 be a sequence of i.i.d. random variables such
that E[|y1|] <∞. For any given index set I with cardinal-
ity |I| = m, we then have that

1 Note that if {γi, xi, xi}, i ≥ 1, is defined on a given set,
by P we denote the probability measure induced on the infinite
cartesian product of these sets. For more details on the mathematical
construction of such a measure the reader is referred to Vidyasagar
(2003) (Section 2.4.1, p. 29).

lim
m→∞

1

m

∑
i∈I

yi = E[y1], (P-a.s.) (15)

Consider any given index set H with |H| = h, h ≥ 1, and
let yt ∈ R, yt ≥ 0, for all t ∈ H. Let also ȳ ∈ R such
that

∑
t∈H y

t = ȳ. Due to norm equivalence we have that
‖y‖1√
h
≤ ‖y‖2 ≤ ‖y‖1, where y = (y1, . . . , yh). The latter

implies that

ȳ2

h
≤
∑
t∈H

(yt)2 ≤ ȳ2, (16)

which we will exploit in the proof of Theorem 3 below.

Denote by Fm(x) =
∑
i∈I f(xi, x−i) the objective function

of P in (7), and let Fma (x) =
∑
i∈I fa(xi). The objective

function of Pa in (10) can be thus written as Fm(x) +
Fma (x). We introduce the superscript m in our notation
to emphasize the fact that the relevant objective functions
correspond to a set-up of m agents, since in the sequel we
will let m tend to infinity. Notice that, for any x ∈ X,

Fm(x) =
∑
t∈H

pt
(∑
i∈I

xit
)2
≥ p

∑
t∈H

(∑
i∈I

xit
)2

≥ p

(∑
i∈I γ

i
)2

h
> 0, (17)

where the first inequality is obtained by setting p =

mint∈H p
t. To see the second inequality notice that∑

t∈H
(∑

i∈I x
it
)

=
∑
i∈I
(∑

t∈H x
it
)

=
∑
i∈I γ

i. The
desired inequality follows then by the left-hand side of (16)
with

∑
i∈I x

it,
∑
i∈I γ

i in place of yt and ȳ, respectively.
The last inequality is strict, due to the fact that p > 0 (H
is a finite set) as a result of the second part of Assumption
1, and the fact that γi > 0, for all i ≥ 1, due to the first
part of Assumption 2.

We are now in a position to state the following theorem,
which is the main result of this section. We show that the
value obtained by evaluating Fm at the optimal solution
of Pa, which due to Proposition 1 corresponds to the
Nash equilibrium for the game of Section 2, tends to
the social welfare optimum (optimal value of P) as the
number of agents tends to infinity. In other words, the

ratio
Fm(x?

a)
Fm(x?) tends to 1 as the number of agents increases;

this ratio is the so called price of anarchy in the computer
science literature, Koutsoupias and Papadimitriou (2016),
mostly focused on problems where the decision variables
are discrete.

Theorem 3. Consider Assumptions 1 and 2. Let x? ∈ X,
x?a ∈ X be any minimizer of P and Pa, respectively. We
then have that

lim
m→∞

Fm(x?a)

Fm(x?)
= 1, (P-a.s.), (18)

where Fm(x?) > 0, i.e., the price of anarchy tends to 1.

Proof. Let x, xa ∈ X be feasible solutions, possibly
different, of P and Pa, respectively. By the definition of
Fm and Fma , and since Fm(x) > 0 for any x ∈ X, we have
that

Fma (xa)

Fm(x)
=

∑
t∈H p

t
∑
i∈I(x

it
a )2∑

t∈H p
t
(∑

i∈I x
it
)2 . (19)
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Let p = maxt∈H p
t and p = mint∈H p

t > 0, where the
inequality is strict due to Assumption 1. We then have
that

Fma (xa)

Fm(x)
≤

p
∑
t∈H

∑
i∈I(x

it
a )2

p
∑
t∈H

(∑
i∈I x

it
)2 . (20)

Since xita is feasible for Pa, we have that
∑
t∈H x

it
a = γi,

for all i ∈ I. By the right-hand side of (16) with xit, γi in
place of yt and ȳ, respectively, we obtain that for all i ∈ I,∑

t∈H
(xita )2 ≤ (γi)2. (21)

By the derivation of (17), we obtain that

∑
t∈H

(∑
i∈I

xit

)2

≥

(∑
i∈I γ

i
)2

h
. (22)

Employing (21), (22), and by exchanging the summation
order in the numerator of (20), we have that

Fma (xa)

Fm(x)
≤
ph
∑
i∈I(γ

i)2

p
(∑

i∈I γ
i
)2 =

ph

∑
i∈I

(γi)2

m

pm
(∑

i∈I
γi

m

)2 . (23)

Applying Theorem 2 twice, once with γi and once with
(γi)2 in place of yi, we have that P-a.s.

lim
m→∞

∑
i∈I

γi

m = lim
m→∞

∑
i∈I\{0}

γi

m + γ0

m = E[γ1] (24)

lim
m→∞

∑
i∈I

(γi)2

m = lim
m→∞

∑
i∈I\{0}

(γi)2

m + (γ0)2

m = E[(γ1)2]

However, since E[γ1] > 0 and E[(γ1)2](
E[γ1]

)2 < ∞ due to the

third part of Assumption 2,

lim
m→∞

ph

∑
i∈I

(γi)2

m

pm
(∑

i∈I
γi

m

)2 = 0. (P-a.s.) (25)

Therefore, since (23) holds for any {γi}i∈I , we have that

lim
m→∞

Fma (xa)

Fm(x)
= 0, (P-a.s.) (26)

Let now x?, x?a ∈ X denote an optimal solution of P and
Pa, respectively. By optimality of x?a we thus have that

Fm(x?a) + Fma (x?a) ≤ Fm(x?) + Fma (x?). (27)

Rearranging the terms in (27), and since Fm(x?) > 0 (see
discussion above Theorem 3), we obtain

Fm(x?a)− Fm(x?)

Fm(x?)
≤ Fma (x?)− Fma (x?a)

Fm(x?)

≤ Fma (x?)

Fm(x?)
, (28)

where the last inequality is due to the fact that Fma (x?a) ≥
0. Since (26) holds for any feasible solutions x, xa ∈ X, it
will also hold for x = xa = x?. Therefore, (26) and (28)
lead to

lim
m→∞

Fm(x?a)− Fm(x?)

Fm(x?)
= 0, (P-a.s.) (29)

which in turn implies (18), thus concluding the proof. 2

From the proof of Theorem 3 it can be observed that
(26) holds even if F , Fa, are evaluated at a possibly

different feasible solution of P and Pa, respectively. This
implies that the auxiliary term included in Pa tends to be
negligible compared to the objective function of P as the
number of agents increases.

Informally speaking, the price of anarchy quantifies the
gap between the social optimum and the value of the non-
cooperative game; Theorem 3 implies that this gap tends
to zero as the number of agents increases, i.e., even if
agents act in a non-cooperative manner, as their number
increases they tend to a social welfare optimizing behavior.
Theorem 3 extends the results of Ma et al. (2013) that
show asymptotic agreement between Nash equilibria and
social optima for the case of homogeneous agents in the
absence of constraints, to the more general set-up where
agents are subject to heterogenous constraints.

Note that the aggregate quantity 1
m

∑
i∈I x

it exhibits the
same behaviour with the corresponding objective functions
in Theorem 3, since the latter are strictly convex with
respect to the agents’ aggregate.

5. NUMERICAL EXAMPLE

To illustrate the result of Theorem 3, we performed
a numerical investigation parametric with respect to
the number of agents m. We considered a time hori-
zon h = 12, and price coefficients (p0, . . . , ph−1) =
(0.1, 1, 1.9, 2.8, 3.7, 4.6, 5.5, 6.4, 7.3, 8.2, 9.1, 10). For simplic-
ity we assumed that the probability mass is concentrated
to the lower and upper limits xit = 0 and xit = 1 for
all i ∈ I \ {0}, t ∈ H (assuming normalized charging
rates) that are effectively being treated as deterministic,
whereas the charging levels γi, i ∈ I\{0}, were extracted in
an i.i.d. fashion from a uniform distribution with support
[0, 12]. We consider a zero non-PEV demand and we set
the virtual agent 0 accordingly. For any m, we performed
100 multi-extractions of {γi}i≥1, and calculated the aver-

age (across these extractions) of the ratio
Fm(x?

a)−F
m(x?)

Fm(x?) ,

where x?, x?a are minimizers of P and Pa, respectively.
Note that x?, x?a depend on the extracted {γi}i≥1; how-
ever, we suppress this dependence in the notation for
simplicity. Figure 1 shows that this ratio tends to zero
as the number of agents m increases, as this is expected
from (18) (see also (29) in the proof of Theorem 3).

6. CONCLUDING REMARKS

In this paper we considered Plug-in Electric Vehicles
(PEVs) charging control problems as a multi-agent game.
Each vehicle/agent was subject to possibly different con-
straints, where constraint heterogeneity was represented
by assuming that the parameters defining each vehicle con-
straints are drawn randomly from a given distribution. We
formulated an auxiliary minimization program and showed
that, for any finite number of possibly heterogeneous
agents, its solution is the unique Nash equilibrium of the
PEV charging control game. Moreover, we showed that,
as the number of agents tends to infinity, the value of the
game achieved by the Nash equilibrium and the optimum
of the cooperative counterpart of the problem under study
coincide for almost any choice of the random heterogeneity
parameters, thus quantifying the price of anarchy for this
class of games. This result is particularly interesting and
somehow counterintuitive: agents are selfishly minimizing
their own cost but they end up minimizing the overall cost
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Fig. 1. Relative error
Fm(x?

a)−F
m(x?)

Fm(x?) , averaged across 100

multi-extractions of {γi}i≥1 from a uniform distribu-
tion and xit = 0, xit = 1 for all i ∈ I \{0}, t ∈ H, as a
function of the number of agents m. The error tends
to zero as m increases.

and achieving the social welfare. This is due to the fact
that each agent has a negligible effect on the price if the
number of agents is large.

Current work concentrates towards extending the de-
veloped methodology to a more general class of non-
cooperative games, with more involved pay-off functions.
Moreover, Deori et al. (2017) shows that in the case
where the agents’ heterogeneity parameters follow a dis-
crete probability distribution, agents can be abstracted
in homogeneous groups, while the effect of heterogeneity
averages out as their number tends to infinity. It should be
also noted that the established equivalence between Nash
equilibria and social minimizers of an auxiliary problem,
opens the road for the use of the regularized Jacobi al-
gorithm, constructed in our earlier work for decentralized
optimization Deori et al. (2016b), for decentralized com-
putation of Nash equilibria Deori et al. (2017).

REFERENCES

Berinde, V. (2007). Iterative Approximation of Fixed
Points. Springer-Verlag Berlin Heidelberg.

Bertsekas, D. and Tsitsiklis, J. (1989). Parallel and
distributed computation: Numerical methods. Athena
Scientific (republished in 1997).

Callaway, D. and Hiskens, I. (2011). Achieveing controlla-
bility of electric loads. Proceedings of the IEEE, 99(1),
184–199.

Denholm, P. and Short, W. (2006). An evaluation of utility
system impacts and benefits of optimally dispatched
plug-in hybrid electric vehicles. Technical Report, Na-
tional Renewable Energy Laboratory.

Deori, L., Margellos, K., and Prandini, M. (2016a). On
decentralized convex optimization in a multi-agent set-
ting with separable constraints and its application to
optimal charging of electric vehicles. IEEE Conference
on Decision and Control.

Deori, L., Margellos, K., and Prandini, M. (2016b). Reg-
ularized jacobi iteration for decentralized convex opti-

mization with separable constraint sets. under review.
URL https://arxiv.org/abs/1604.07814.

Deori, L., Margellos, K., and Prandini, M. (2017). Nash
equilibria in electric vehicle charging control games:
Decentralized computation and connection with social
optima. Technical Report, University of Oxford, 1–14.
URL https://arxiv.org/abs/1612.01342.

Facchinei, F., Piccialli, V., and Sciandrone, M. (2011). De-
composition algorithms for generalized potential games.
Computational Optimization and Applications, 50(2).

Gan, L., Topcu, U., and Low, S. (2013). Optimal Decen-
tralized Protocol for Electric Vehicle Charging. IEEE
Transactions on Power Systems, 28(2), 940 – 951.

Gharesifard, B., Basar, T., and Dominguez-Garcia, A.
(2016). Price-based coordinated aggregation of net-
worked distributed energy resources. IEEE Transactions
on Automatic Control.

Grammatico, S., Parise, F., Colombino, M., and Lygeros,
J. (2016). Decentralized convergence to Nash equilibria
in constrined mean field control. IEEE Transactions on
Automatic Control.

Huang, M., Caines, P., and Malhame, R. (2007). Large-
population cost-coupled LQG problems with nonuni-
form agents: Individual-mass behavior and decentralized
ε-Nash equilibria. IEEE Transactions on Automatic
Control, 52(9), 1560–1571.

Koutsoupias, E. and Papadimitriou, C. (2016). Worst-case
equilibria. LNCS STACS’99, C. Meinel and S. Tison
(Eds.), Springer-Verlag Berlin Heidelberg, 404–413.

Lasry, J. and Lions, P. (2007). Mean field games. Japanese
Journal of Mathematics, 2, 229–260.

Lemoine, D., Kammen, D., and Farrell, A. (2008). An
innovation and policy agenda for commercially com-
petitive plug-in hybrid electric vehicles. Environmental
Research Letters.

Li, S., Brocanelli, M., Zhang, W., and Wang, X. (2014).
Integrated Power Management of Data Centers and
Electric Vehicles for Energy and Regulation Market
Participation. IEEE Transactions on Smart Grid, 5(5),
2283–2294.

Li, S. and Zhang, W. (2016). On Social Optima of Non-
Cooperative Mean Field Games. American Control
Conference.

Ma, Z., Callaway, D., and Hiskens, I. (2013). Decentralized
charging control of large populations of plug-in electric
vehicles. IEEE Transactions on Control Systems Tech-
nology, 21(1), 67–78.

Paccagnan, D., Kamgarpour, M., and Lygeros, J. (2016).
On Aggregative and Mean Field Games with Applica-
tions to Electricity Markets. European Control Confer-
ence.

Parise, F., Colombino, M., Grammatico, S., and Lygeros,
J. (2014). Mean field constrained charging policy for
large populations of plug-in electric vehicles. IEEE
Conference on Decision and Control, 5101–5106.

Rahman, S. and Shrestha, G. (1993). An investigation into
the impact of electric vehicle load on the electric utility
distribution system. IEEE Transactions on Power
Delivery, 8(2), 591–597.

Shiryaev, A. (1995). Probability. Graduate Texts in
Mathematics. Springer, 2nd edition.

Vidyasagar, M. (2003). Learning and generalization, with
applications to neural networks. Springer-Verlag London
(second edition).

Voorneveld, M. (2000). Best-response potential games.
Economics Letters, 66(3).

Preprints of the 20th IFAC World Congress
Toulouse, France, July 9-14, 2017

14890


