
Formal Verification of Storm Topologies through D-VerT

Francesco Marconi, Marcello M. Bersani, Matteo Rossi
DEIB - Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano

Piazza Leonardo da Vinci 32, 20133 Milan
{francesco.marconi, marcellomaria.bersani, matteo.rossi}@polimi.it

ABSTRACT
Data-intensive applications (DIAs) based on so-called Big
Data technologies are nowadays a common solution adopted
by IT companies to face their growing computational needs.
The need for highly reliable applications able to handle huge
amounts of data and the availability of infrastructures for
distributed computing rapidly led industries to develop frame-
works for streaming and big-data processing, like Apache
Storm and Spark. The definition of methodologies and prin-
ciples for good software design is, therefore, fundamental
to support the development of DIAs. This paper presents
an approach for non-functional analysis of DIAs through D-
VerT, a tool for the architectural assessment of Storm appli-
cations. The verification is based on a translation of Storm
topologies into the CLTLoc metric temporal logic. It allows
the designer of a Storm application to check for the exis-
tence of components that cannot process their workload in
a timely manner, typically due to an incorrect design of the
topology.

CCS Concepts
•Theory of computation → Verification by model check-
ing; •Software and its engineering→Model-driven soft-
ware engineering;

Keywords
Formal Verification; Apache Storm; MDE; Data-intensive
Applications; Temporal Logic

1. INTRODUCTION
Data-intensive applications (DIAs) are computational sys-
tems that process, in a relative small amount of time, huge
amounts of diversified information usually produced by data
sources with high throughput. Some of the most popu-
lar companies nowadays—e. g., Twitter (www.twitter.com),

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC 2017,April 03-07, 2017, Marrakech, Morocco
Copyright 2017 ACM 978-1-4503-4486-9/17/04. . . $15.00
http://dx.doi.org/10.1145/3019612.3019769

Groupon (www.groupon.com), Spotify (www.spotify.com),
etc.—make large use of DIAs to process data gathered from
millions of users.

DIAs constitute a significant asset for the production of
large-scale software, and have been drawing the attention
of both academia and industry. The creation of frameworks
that support designers over the entire life-cycle (design, de-
velopment, testing, deployment, maintenance) of DIAs is of
crucial importance, and constitutes a key research challenge
in this area. Topics such as techniques and tools for qual-
ity assessment, architecture enhancement, agile delivery and
continuous testing of DIAs are targeted by ongoing research
projects like, for instance, the DICE European project [6].

The design approach envisioned by DICE is founded on
model-driven principles and can be summarized as follows.
The design of an application is decomposed into three dis-
tinct and consecutive phases, each one associated with a
profiled UML diagram. Each phase focuses on a specific
aspect of the design and represents a refinement of the pre-
vious one that has to be validated before starting the new
refinement step. If design flaws are detected, designers can
either change the current model, or modify the one built
in the previous step, then redo the refinement. The design
process starts from a conceptual model of the application,
called Platform-Independent Model (PIM); this is refined, in
the second step, into the so-called Platform-Specific Model
(PSM), which provides the architectural schema of the ap-
plication based on a specific (data-intensive) technology; fi-
nally, in the last step, the architectural model is refined to
obtain a deployment model. We approach the assessment
of DIAs by applying formal verification to the architectural
models described through (metric) temporal logic, according
to the technique presented in [11]. The goal of the analy-
sis is to determine, through automated techniques, whether
the behavior entailed by the architecture of the application
conforms to specific properties over time. The properties
that an application should satisfy typically depend on the
technology adopted to implement the application.

Most of the available data-intensive frameworks allow de-
signers to specify the architecture of DIAs as a directed
graph whose nodes are computational resources which carry
out specific operations. The semantics underlying a graph,
which reflects the runtime behavior of the application, is de-
termined by the target technology (e. g., the same graph has
two different interpretations in case we adopt a streaming

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Politecnico di Milano

https://core.ac.uk/display/84891962?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.twitter.com/
http://dx.doi.org/10.1145/3019612.3019769
https://www.groupon.com/
https://www.spotify.com/

or a batch technology). In this paper, we consider Apache
Storm [1], a popular technology for stream-based applica-
tions. The architecture of a Storm application is defined by
means of a topology—i. e., a directed graph—where nodes
are of two kinds: computational nodes, which implement
the logic of the application by elaborating information and
producing an outcome; and input nodes, which bring infor-
mation into the application from its environment.

This paper presents the complete verification workflow of an
architectural model defined through the concepts included
in the DICE UML profile [8]. It focuses also on all the
necessary transformations needed for translating the UML
diagram of the architecture of the DIA into a formula of the
CLTLoc metric temporal logic [5], which is solved to vali-
date the Storm architecture represented by the UML model.
Finally, it presents the verification tool, called D-VerT [2],
which is the component implementing the transformations.

The paper is structured as follow: Sect. 2 presents some
background notions on Apache Storm and briefly recaps our
approach to the modeling of Storm topologies with temporal
logic introduced in [11]. Sect. 3 introduces the methodol-
ogy for the verification of Storm topologies based on formal
validation of refined UML models. Sect. 4 describes the
structure of D-VerT and the transformations needed for en-
abling the verification of architectural models. Sect. 5 shows
the application of the methodology through and example of
Storm application which, at the end, undergoes verification
with D-VerT. Sect. 6 briefly discusses some related works,
and Sect. 7 concludes.

2. BACKGROUND

2.1 Apache Storm
Apache Storm [1] is a stream processing system, developed
and open sourced by Twitter in 2012, allowing real-time pro-
cessing of large-scale streaming data on horizontally scalable
systems through a parallel and distributed computation.

The computational model of Storm applications is the Storm
topology, i. e., a directed graph whose nodes realize the op-
erations performed over the data flowing through the ap-
plication and whose edges indicate how such operations are
combined. Data are structured into streams that are infi-
nite sequences of tuples, i. e., strings of characters, that are
processed by the application.

A topology node set consists of spouts and bolts (in the fol-
lowing also referred to as topology components). Spouts are
stream sources which usually get data from external systems,
such as queuing brokers (e. g., Kafka, RabbitMQ, Kestrel),
or from other data sources, e. g., Twitter Streaming APIs,
whereas bolts transform the incoming data streams into new
output streams to be processed by the connected bolts. Con-
nections are statically defined at design time by the subscrip-
tion of the bolts to other spouts or bolts. Fig. 1 shows an
example of Storm topology that will be used in Sect. 5.

Storm is capable of guaranteeing the so-called“at least once”
message processing. Reliable spouts keep track of all the tu-
ples they emit, and if one of them fails to be processed by
the entire topology within a certain timeout, then the spout

Figure 1: Example of Storm topology.

re-emits it into the topology. When message processing is
“best-effort”, instead, (unreliable) spouts emit each tuple
only once, without checking for the successful completion of
the processing. Bolts usually perform operations, such as fil-
tering, join, functions, database interaction, which are com-
bined through the topology to perform complex transforma-
tions. The Java interfaces defining a bolt include the exe-

cute() method that implements its functionality; it reads
the input tuples, processes the data, and emits (via the
emit() method) the transformed tuples on the output streams.

The Storm runtime is designed to leverage the computa-
tional power of distributed clusters. A deployed topology is
composed of one master node and several worker nodes run-
ning one or more worker processes, each of them executing
different parts of the same topology. Each worker process
runs a JVM where one or more executors (i.e. threads) are
spawned. Executors can run one or more tasks which, in
turn, can execute a spout or a bolt. The configuration of
the topology defines the number of worker processes and,
for each component (spout or bolt), the number of execu-
tors running it in parallel and the total number of tasks
over those executors. Communication among workers and
executors is managed through a multi-level queuing system.
Each executor has its own input queue and output queue.
Tuples are read from the input queue and processed by the
thread handling the spout/bolt logic; afterwards, they are
emitted on the outgoing queue and then moved to the parent
worker’s transfer queue.

2.2 Modeling Storm topologies
Our verification approach is founded on a formal model of
Storm topologies which provides an abstraction of their com-
putations. To this end, we identified the relevant aspects of
the executions of a generic topology, and some suitable as-
sumptions that allow us to generate models that can be prac-
tically managed by state-of-the-art formal verification tools
in a reasonable amount of time. The model of a topology
captures how the timing parameters of its components—
such as the delays between two consecutive spout events
inputting tuples in the topology and the processing time of
tuples for each bolt—affect the size of the bolts’ queue. The
formal verification assessment of a Storm topology aims at
checking for the existence of bolts that cannot process the
incoming stream of tuples on time, thus causing a monotonic
growth of the size of their queues.

Our approach facilitates the compositional definition of topol-
ogy models, mimicking how code developers create topolo-

gies. The behavior of the relevant features and parameters of
spouts and bolts is extracted by reverse-engineering the Java
interfaces of the Storm API using the following assumptions:

• Deployment details are abstracted away; topologies are
assumed to run on a single worker process and each executor
runs a single task, which is the default Storm configuration
of the runtime.

• Each bolt has a single receive queue for all its parallel
instances and no sending queue, while the workers’ queues
are not represented (single-worker scenario). For generality,
all queues have unbounded size.

• The contents of tuples is not modeled and, since tuples
are all assumed to have the same size, the size of queues is
represented by the number of tuples they contain.

• The external sources of information abstracted by the
spouts are not represented, since they are outside of the
perimeter of the application. So, their queues are not rep-
resented.

• For each component, the duration of each operation or the
permanence in a given state has a minimum and a maximum
time.

Given a Storm topology, its computation is captured through
a set of formulae written in the CLTLoc metric temporal
logic [5] augmented with a notion of counters, which is used
to represent the size of bolts’ queues during the computation.
The formal model of a topology consists of four parts, which
represent: (i) the evolution of the state of the nodes; (ii) the
behavior of the queues; (iii) timing constraints; (iv) failures.
The full list of CLTLoc formulae capturing the semantics of
a Storm topology can be found in [4]; [11], instead, presents
some of the technical details of the adopted decision proce-
dure, which is validated through some experimental results.

Let us briefly recall the salient points of the behavior of a
bolt. A bolt can alternatively be in one of the following
states: process, idle or failure. If a bolt is idle and its queue
is not empty, it reads tuples from its queue by an instan-
taneous take action, then it processes the tuples for α time
units. This corresponds to the state execute, which is part
of macro-state process, together with states take and emit.
The value α is a parameter of the bolt, a positive real value
which represents the amount of time that a bolt requires
to process one tuple. Once the execution is completed, the
bolt emits output tuples with an instantaneous action corre-
sponding to the emit state. Bolts may fail and failures may
occur at any moment; upon a bolt failure, the system goes
to the fail state. If no failure occurs, after an emit a bolt
goes to idle, where it stays until it reads new tuples.

To give a flavor of the formal model underlying our verifi-
cation approach, we introduce a few examples of CLTLoc
formulae. Formulae (1)-(2) capture how the number of ele-
ments in the queue of bolt j (qj) is updated whenever tu-
ples are enqueued (addj) or dequeued (takej). They use N-
valued discrete counters to represent the amounts of tuples
exchanged in the topology. Term Xqi represents the value of
qi in the next position of time. Every time the component
j emits (emitj holds), the queues of all bolts subscribing
to j—i. e., those which are targets of arcs outgoing from j
in the topology—receive remitj tuples—i. e., the variables qi

Figure 2: Iterative refinement process supported by
the DICE framework.

representing the occupancy level of those queues are incre-
mented by remitj . When multiple components subscribed
by a bolt emit tuples simultaneously, the increment on its
queue is equal to the sum of all the tuples emitted (the value
of raddj in Formulae (1)-(2)). Dually, when takej holds, the
occupancy level qj is decremented by rprocessj (number of tu-
ples read by bolt j). Proposition addj is true when at least
one of the components subscribed by j is emitting, whereas
startFailj is true in the first instant of a failure state.

addj ∧ ¬takej ∧ ¬startFailj ⇒ (Xqj = qj + raddj) (1)

takej ⇒ (Xqj = qj + raddj − rprocessj) (2)

To measure the duration of each state and to impose timing
constraints between events, we use a set of dense-time CLT-
Loc clock variables [5] for each component of the topology.
For example, Formula (3) imposes that when emit occurs,
the duration of the current processing phase is between α−ε
and α+ ε, where ε� α is a positive constant that captures
possible (small) variations in the duration of the processing.

process ∧ emit ⇒ (tphase ≥ α− ε) ∧ (tphase ≤ α+ ε) (3)

The formal model includes a number of parameters, such as
α introduced above, capturing the features of the topology,
which can be configured at design time. In addition to α,
other parameters are, for bolts, a coefficient σ expressing the
kind of operation performed by the bolt in terms of quantity
of output tuples emitted given an input tuple, and also the
minimum and maximum time to failure. Spouts, instead,
are characterized by the average number of tuples emitted
per time unit. Both spouts and bolts are also characterized
by their level of parallelism, corresponding to the number of
executors for the component.

3. ANALYSIS OF STORM TOPOLOGIES
D-VerT allows designers to validate temporal aspects of DIAs
by means of a logic-based formal verification approach out-
lined in Section 2.2. The implementation of D-VerT cur-
rently supports the analysis of Storm topologies, but it can
be easily extended to deal with other big-data technologies if
and when their computational model is formalized through
CLTLoc formulae.

D-VerT is part of a more complex design process which con-
forms to the principles of model-driven software engineering

Figure 3: The main steps of D-VerT workflow.

pursued by the DICE methodology. As illustrated in Fig. 2,
the designer defines the application by means of domain-
specific models with an iterative approach consisting of three
steps: (i) application design, (ii) design evaluation and (iii)
monitoring of a running deployed application. D-VerT is sit-
uated at the second level of the design workflow and enables
the refinement of the architectural design of the application
depending on the outcome of the formal analysis. The input
of D-VerT is an annotated UML (class) diagram which spec-
ifies the architecture, i.e., the topology, of the application.
In case of an incorrect timing design, the outcome of D-VerT
consists of a possible execution of the topology causing an
undesired accumulation of tuples in some bolts. In such a
case, the designer can refine the application architecture by
changing the values of some parameters of the UML dia-
gram and then redo the evaluation until (possibly) all flaws
affecting the model are removed. A different scenario, which
also entails a design refinement, might occur when some pa-
rameter values that are measured on a running application
differ from the values used for verification at design time. In
such a situation, monitored data obtained from the deployed
application can be exploited to update the model, which can
then be newly verified.

Relying on UML profiles for modeling is a common practice
in model-driven development as it allows for the creation of
domain-specific languages by extending or restricting UML
to fit a specific domain. A UML Profile is made of a set
of stereotypes, tags, constraints and meta-models that allow
the designer to represent artifacts in a specific domain. A
stereotype is a meta-concept which is used to categorize an
element in a model (for example, container) with specific
notions belonging to a domain.

As shown in Fig. 3, at the starting point of the workflow the
user creates an annotated UML model describing the rele-
vant technological aspects of the architecture of a DIA. The
UML model includes suitable design abstractions, captur-
ing specific data-intensive technologies—Storm in our case—
that are adopted for implementing the architecture of an
application. The diagram, called DICE Technology Spe-
cific Model (DTSM), is at the PSM level (see Sect. 1) in
the model-driven approach pursued by DICE. Specifically,
in a DTSM diagram, a stereotype classifies an element of
an application with aspects related to a specific technology.
A DTSM diagram includes generic concepts that fit many
data-intensive frameworks, such as ComputationNode, Stor-
ageNode or SourceNode, and specific ones, depending on the
selected technology. In the case of Storm, the relevant fea-
tures and aspects defining a Storm topology constitute the
meta-model for designing Storm applications. Some of them,
that are used in Sect. 4, are Topology, Spout, Bolt and

TopologyConfigurations. For a comprehensive description
of the concepts available in DTSM diagrams see [8].

DTSM diagrams for Storm include all the values of the
parameters that are useful to carry out the analysis of a
topology. As depicted in Fig. 3, verification of DTSM mod-
els is done through their automatic translation into a set
of CLTLoc formulae, which are then analyzed by the Zot
bounded satisfiability checker [3] using the technique pre-
sented in [11]. More precisely, Zot is fed the CLTLoc for-
mulae capturing the application under design and the prop-
erty to be checked concerning the unbounded growth of the
queues of interest. The tool produces one of two responses:
(i) a trace of the modeled Storm topology—a counterex-
ample—corresponding to an execution of the application in
which one of the queues grows in an unbounded manner—in
this case, the set of formulae is satisfiable (SAT); or (ii) the
notification that the set of formulae is unsatisfiable (UN-
SAT). In the latter case, since the language used to formal-
ize Storm topologies is in general undecidable, we cannot
conclude definitively that there is no execution of the ap-
plication such that the queues grow indefinitely, but only
that, within the bounds chosen for the search of counterex-
amples, none was found. Still, an UNSAT result increases
our confidence that no major design flaws are present in
the architecture of the Storm topology for what concerns its
ability to process data in a timely manner.

4. TOOL DESCRIPTION
This section outlines the architecture of the D-VerT tool,
the transformation enabling the verification process and the
kind of analysis currently supported by the tool.

4.1 Tool Architecture
As shown in Fig. 4, D-VerT is structured as a client-server
application. The client component is an Eclipse plug-in, and
is part of the DICE IDE. It allows users to define the de-
sign of the DIA under development, then, after providing
some additional configuration information, to launch veri-
fication tasks and to retrieve their outcomes. The server
component consists in a RESTful web application written
in Python. The D-VerT server exposes APIs to launch veri-
fication tasks and to obtain information about their status.
To simplify the setup and deployment steps, the D-VerT
server is available as a Docker1 container. The client-server
architecture decouples the application design phase from the
rather computationally-intensive verification phase. Based
on the needs of the user, the D-VerT server can be instanti-
ated either on the local machine or on a remote server.

4.2 Topology creation
The design of a DIA is specified through the DICE IDE,
which is based on the Papyrus tool. As mentioned above,
Storm topologies are described as DICE-profiled UML Class
diagrams. Each computational node of the application is de-
fined by introducing a class tagged with a stereotype speci-
fying whether the node is a spout or a bolt. Depending on
the stereotype applied, the designer defines the values for all
the necessary parameters described in Sect. 2. Subscriptions

1 Repository omitted for double-blind reviewing.

Figure 4: D-VerT workflow mapped onto the client-
server architecture of the tool.

(i. e., connections) of bolts to other components are modeled
as associations between the corresponding classes.

4.3 Transformations
The verification process is made possible by a two-step trans-
formation applied on the DICE-profiled UML models to ob-
tain the corresponding set of CLTLoc formulae.

The first step of the transformation is performed in the D-
VerT client by the UML2JSON module, which extracts from
the DICE-profiled UML model all parameters that are rele-
vant for the verification. These parameters are then serial-
ized into a JSON object, which is used to invoke the server
component. The extraction of the relevant features is done
by suitably navigating the UML file. DIA components and
their parameters are detected thanks to their being anno-
tated with proper stereotypes from the DICE profile.

The second step takes place in the D-VerT server, which re-
ceives the request from the client, produces the correspond-
ing formal model and feeds it to the underlying Zot [3] tool.
More precisely, the JSON2MC module, based on the con-
tents of the JSON object included in the request, generates
the temporal logic model using a templating mechanism.

4.4 Analysis
In its current stage of development, D-VerT provides sup-
port for the analysis of the boundedness of bolts’ queues.
Through the run configuration dialog box of the tool (see
Fig. 5) the designer can specify the bolts of interest, the
depth of the search over which the verification has to be
performed (the“time bound”, which corresponds to the max-
imum length of the trace produced) and the Zot plug-in to
be used. The analysis allows for the detection of possible
runs of the system leading to an unbounded growth in the
size of at least one of the aforementioned bolts’ queues. This
corresponds to the presence in the topology of at least one
bolt that is not able to manage the incoming flow of mes-
sages in a timely manner. In this case the tool provides
as output to the user the trace witnessing the existence of
such a run of the system—i. e., the counterexample violating
the boundedness property. The trace is returned to the user
both in a textual format (i. e., the bare output of Zot) and in
a graphical format, in order to provide a more user-friendly
visual hint about the system execution. Figure 9 shows an
example of such output trace, returned by the tool for the
use case of Sect. 5. It represents the evolution of the num-

Figure 5: Run configuration view.

Figure 6: PIM of the web crawler application.

ber of tuples in the queue over time. The trace is composed
by a prefix and a suffix: the latter, highlighted by the gray
background, captures the growing trend of the queue size,
as it corresponds to a series of operations in the system that
can be repeated infinitely many times. When no trace is
detected, the result is UNSAT.

5. D-VERT WORKFLOW IN ACTION
In this section we illustrate the usage flow of D-VerT for the
iterative refinement of a Storm topology. The use case is
taken from the open source project StormCrawler2. Suppose
we want to create a web crawler application to efficiently
fetch, parse and index web resources of our interest. Given
the dynamic nature of the web, this kind of task can be
formulated as a streaming problem, where the input consists
in a continuous stream of URLs that need to be processed by
the streaming application with low latency, and the output
is represented by the resulting indexes.

We start by modeling the application at the PIM level. In
this case, the model simply includes a source node, a com-
putation node and a storage node, as depicted in Fig. 6. We
decide to use a Kafka queue as source node, a Storm topol-
ogy as computation node and ElasticSearch as storage node.

Since we are interested in analyzing the Storm topology,

2https://github.com/DigitalPebble/storm-crawler

https://github.com/DigitalPebble/storm-crawler

Figure 7: Initial PSM of the web crawler topology.

we focus on the computation node and consider the source
node and the target storage node as “black boxes”. At the
PSM level we insert more technology-related aspects, such
as, in the case of Storm, the topology structure and a se-
ries of non-functional characteristics. Figure 7 shows the
PSM (DICE-profiled UML diagram) of the initial design of
the topology. The configuration parameters are represented
as UML comments for illustrative purposes. Notice that
associations between components have the opposite direc-
tion with respect to the data flow among them, since they
indicate the subscription of bolts to the associated compo-
nents’ streams. The diagram includes one spout in charge
of fetching the input flow of URLs from Kafka and three
bolts performing various steps of the web crawling process.
The partitioner bolt partitions the incoming URLs, while
the crawler bolt performs many operations such as resource
fetching, metadata parsing and content indexing. The status
bolt at the end of the chain indexes the URL, metadata and
its status to a specific “status” Elasticsearch index. Each
of these topology components can be executed by an arbi-
trary number of parallel threads, and is characterized by the
(average) execution time (time needed to perform its task)
and by the (average) number of tuples emitted with respect
to the number of tuples received as input. These aspects
are specified as parameters in the UML class diagram. The
formal analysis on the initial topology design helped us to
detect an unbounded increase in the queue of the crawler
bolt. This outcome from the tool led us to review the topol-
ogy structure, and to decide for the decomposition of the
crawler bolt in a series of bolts, each of them performing
a subtask of the original bolt (fetch, sitemap, parse and in-
dex). The refined version of the topology, shown in Fig. 8,
aims at lightening the load on the core crawling phase by
pipelining the main operations and by directly updating the

Figure 8: Refinement of the web crawler Storm
topology PSM.

status bolt with partial results computed by the new bolts.

After the refactoring the tool revealed another unwanted
run of the system, this time showing a growing trend in the
queue of the status bolt (Fig. 9). This bolt, subscribing to
the streams of the four newly-created bolts, needs a further
refinement to avoid excessive loads in its input buffer. In-
creasing the parallelism level of the status bolt to 4 helped
improving the design so that no counterexample was found
by D-VerT within the selected search bounds (UNSAT re-
sult). Execution times for the verification vary significantly
depending on the topology configuration, ranging from the
98 seconds of the second analysis (Fig. 8) to the 2130 seconds
of the third analysis (UNSAT result)3.

6. RELATED WORKS
Many research works in recent years investigated the usage
of MDE to support the design and the formal verification of
software and embedded systems. [9] presents a systematic
literature review on the formal verification of static software
models. Most of the works make use of UML models, of-
ten enriched with OCL constraints, and only a part of them
is fully supported by a tool implementing the model trans-
formations and the verification process. A number of other
works have used a model-driven approach for the formal ver-
ification of behavioral models (see, e.g., [7, 10]), without ad-
dressing the specificities of DIAs. To the best of our knowl-
edge, few works try to address the problem of the verification
of DIAs, none of them adopting the MDE approach. They
mainly focus on the verification of properties that depend
exclusively on the framework by building ad-hoc models; for

3Experimental analysis carried out on commodity hardware
(MacBook Air running MacOSX 10.11.4. with Intel i7 1.7
GHz, 8 GB 1600 MHz DDR3 RAM; SMT solver used by Zot
was z3 v.4.4.1).

Figure 9: Graphical output trace of the status bolt
returned by D-VerT. The black solid line represents
the number of elements in the input buffer.

example, e. g., [12] verifies data locality, deadlock freedom
and non-termination properties for the Hadoop parallel ar-
chitecture, while [13] verifies the validity of communication
data flows of Hadoop MapReduce. Our work, on the other
hand, aims at allowing for the verification of properties that
depend on the application design.

7. CONCLUSION
In this paper we presented the model-driven approach to
the formal verification of Storm topologies supported by the
D-VerT tool. It allows designers to formally check whether,
given the features of the components of the topology, it is
possible for the queues of some bolts to grow indefinitely,
which entails that incoming tuples will not be processed in
a timely manner.

Future works will focus on extending the range of big-data
technologies covered by the tool (e.g., Apache Spark), on
enlarging the set of properties that can be analyzed, and on
improving the efficiency of the verification technique.

Acknowledgments
Work supported by Horizon 2020 project no. 644869 (DICE).
We are thankful to our colleague Michele Guerriero for his
precious advice and expertise in model-driven software en-
gineering.

8. REFERENCES
[1] Apache Storm. http://storm.apache.org/.

[2] D-VerT. http://bit.ly/2do92ao.

[3] Zot. https://github.com/fm-polimi/zot.

[4] M. Bersani, M. Erascu, F. Marconi, and M. Rossi.
DICE verification tool - initial version. Technical
report, DICE Consortium, 2016. www.dice-h2020.eu.

[5] M. M. Bersani, M. Rossi, and P. San Pietro. A tool for
deciding the satisfiability of continuous-time metric
temporal logic. Acta Informatica, 53(2):171–206, 2016.

[6] G. Casale, D. Ardagna, M. Artac, F. Barbier, E. D.
Nitto, A. Henry, G. Iuhasz, C. Joubert, J. Merseguer,

V. I. Munteanu, J. Perez, D. Petcu, M. Rossi,
C. Sheridan, I. Spais, and D. Vladušič. DICE:
Quality-driven development of data-intensive cloud
applications. In Proc. of MiSE, pages 78–83, 2015.
www.diceh2020.eu.

[7] Z. Daw and R. Cleaveland. Comparing model checkers
for timed UML activity diagrams. Science of
Computer Programming, 111, Part 2:277–299, 2015.

[8] A. Gómez, M. Guerriero, J. Merseguer, E. di Nitto,
and D. A. Tamburri. Design and quality abstractions -
initial version. Technical report, DICE Consortium,
2016. www.dice-h2020.eu.

[9] C. A. González and J. Cabot. Formal verification of
static software models in MDE: A systematic review.
Information and Software Technology, 56(8):821 – 838,
2014.

[10] H. Hansen, J. Ketema, B. Luttik, M. Mousavi, and
J. van de Pol. Towards model checking executable
UML specifications in mCRL2. Innovations in
Systems and Software Engineering, 6(1):83–90, 2010.

[11] F. Marconi, M. M. Bersani, M. Erascu, and M. Rossi.
Towards the formal verification of data-intensive
applications through metric temporal logic. In Formal
Methods and Software Engineering - 18th
International Conference on Formal Engineering
Methods, ICFEM 2016, pages 193–209, 2016.

[12] G. S. Reddy, Y. Feng, Y. Liu, J. S. Dong, S. Jun, and
R. Kanagasabai. Towards formal modeling and
verification of cloud architectures: A case study on
hadoop. In 2013 IEEE Ninth World Congress on
Services, pages 306–311. IEEE, 2013.

[13] W. Su, F. Yang, H. Zhu, and Q. Li. Modeling
mapreduce with CSP. In 2009 Third IEEE
International Symposium on Theoretical Aspects of
Software Engineering, 2009.

http://storm.apache.org/
https://github.com/dice-project/DICE-Verification
https://github.com/fm-polimi/zot
http://wp.doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2016/02/D3.5_DICE-verification-tools-Initial-version.pdf
http://www.diceh2020.eu
http://wp.doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2016/02/xxx

