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Abstract: The extracellular matrix (ECM), the physiological scaffold for cells in vivo, provides 
structural support to cells and guaranties tissue integrity. At the same time, however, it represents an 

extremely complex and finely tuned signaling environment that contributes in regulating tissue 
homeostasis and repair. ECM can bind, release and activate signaling molecules and also modulate 

cell reaction to soluble factors. Cell-ECM interactions, as a result, are recognized to be critical for 

physiological wound healing, and consequently in guiding regeneration. Due to its complexity, 
mimicking ECM chemistry and architecture appears a straightforward strategy to exploit the benefits 

of a biologically recognizable and cell-instructive environment. As ECM consists primarily of sub-

micrometric fibers, electrospinning, a simple and versatile technique, has attracted the majority 
efforts aimed at reprocessing of biologically occurring molecules. However, the ability to trigger 

specific cellular behavior is likely to depend on both the chemical and conformational properties of 

biological molecules. As a consequence, when ECM macromolecules are electrospun, investigating 
the effect of processing on their structure, and the extent to which their potential in directing cellular 

behavior is preserved, appears crucial. In this perspective, this review explores the electrospinning of 

ECM molecules specifically focusing on the effect of processing on polymer structure and on in vitro 
or in vivo experiments designed to confirm the maintenance of their instructive role. 
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Abbreviations 

AA   Acetic Acid 

CD   Circular Dichroism 

DMF  Dimethyl-formamide 
DMSO  Dimethyl-sulfoxide 

DSC   Differential Scanning Calorimetry 

DSS   Disuccinimidyl suberate 
ECM  Extra-Cellular Matrix 

EDC  N-3-Dimethylaminopropyl-N’-ethylcarbodiimide hydrochloride 

ES   Electrospinning 
GAGs  Glycosaminoglycans  

HA   Hyaluronic Acid 

HEPM  Human Embryonic Palatal Mesenchymal 
HMDI  4,4’-Diisocyanato-methylenedicyclohexane 

FTIR  Fourier Transform Infrared Spectroscopy 

HFIP  1-1-1,3-3-3-hexafluoro-2-isopropanol 
HFP   1-1-1,3-3-3-hexafluoro-2-propanol 

MEM  Minimum Essential Medium 

NHS  N-hydroxysuccinimide 
PBS   Phosphate Buffered Saline 

PCL   Poly-ɛ-caprolactone 

PHB   Poly-hydroxybutyrate 
PLA   Polylactic acid 

PLGA  Poly-lactide-co-glycolide 

SHG  Second Harmonic Generation 
TCPS  Tissue-Culture polystyrene 

TEM  Transmission Electron Microscopy 

TFE   Tetrafluoroethylene 
XRD  X-ray diffraction 

 

1. Introduction 

In regenerative medicine, the possibility to generate a functional tissue strongly relies on the 

ability to fabricate scaffolds capable to direct cell organization, elicit specific cellular responses and 

orderly guide proliferation and differentiation for effective tissue repair. Unfortunately, addressing 
cell behavior is far from being a simple objective.  
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Cell fate is influenced by a variety of signals, that originates from soluble factors, neighboring 

cells and interactions with the extra-cellular matrix [1,2]. 
The ECM, in particular, not only provides physical support to cells and guaranties integrity to 

tissues, but also affects cellular processes, including migration, proliferation, differentiation and 

synthesis, through a complex variety of pathways (Figure 1) [3–6]. The most thoroughly studied 
mechanism is the direct pathway, where signaling is originated by interactions between cell surface 

receptors and ECM ligands. However, ECM also participates, indirectly, in regulating cell function 

by acting as substrate for other molecules (e.g., by binding, protecting, releasing and/or activating 
growth factors). Furthermore, it plays a role in modulating cellular reaction to soluble factors as 

interaction with ECM components can be required for an efficient response. 

The composition and morphology of ECM are tissue specific and substantial variations can also 
be observed within the same tissue. However, common components and architecture can be 

identified for ECM, and for interstitial matrix in particular [4]. In general terms, interstitial matrix 

can be described as a three dimensional network of fibrous proteins, mostly collagens (fibrillar and 
non-fibrillar), glycoproteins, glycosaminoglycans, such as HA, and proteoglycans. 

Collagens are the main structural components, primarily account for tissue strength and limit 

tissue deformation. Glycoproteins, such as laminin, elastin and fibronectin, also contribute to ECM 
architecture and properties, and elastin, in particular, is responsible for elastic recoil. Proteoglycans 

and HA, on the other hand, are interspersed among collagen fibrils and control tissue hydration by 

sequestering water molecules.  
Given the complexity of this environment, designing scaffolds that mimic, at least to some 

extent, the ECM in composition and structure appears a straightforward strategy. 

 

Figure 1. Main functions of ECM [7]. 

ECM macromolecules support non-structural functions principally through their ability to bind 

other biologically active molecules, which, in turn, are mediated by multiple domains in their 

structure [4,7]. Accordingly, reconstituted ECM polymers and decellularized ECM are excellent 
substrates for studying cell behavior and have also potential for selected regenerative applications. 
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However, they might be inadequate in terms of mechanical performance, porosity or medium term 

stability. Decellularized ECM structure, in particular, might not always be an ideal scaffold for tissue 
regeneration, as mature tissue matrix often does not possess the highly interconnected porosity 

required to support cell ingrowth and vascularization. 

For the abovementioned reasons, techniques enabling to design and control scaffold features 
(such as, pore size, interpore connectivity, etc.) are subject of intensive research efforts. In this 

perspective, natural occurring polymers should, at least partially, preserve their signaling capabilities, 

and scaffold with tunable composition, architecture, mechanical performance and degradation 
profiles can be fabricated. 

As ECM primarily consists of nanometer fibrils and fibers between 50 and 500 nm in diameter, 

techniques to fabricate nano-scaled structures from ECM occurring polymers are particularly 
attractive for creating ECM inspired scaffolds, as topographical cues can also be included and their 

role in guiding cell migration and behavior preserved. 

Although other techniques capable to process these biomolecules into fibrous scaffold are also 
encountered (e.g., molecular self-assembly or thermally induced phase separation) [8,9], 

electrospinning has attracted significant interest mostly for being a relatively simple, but extremely 

versatile technique [10]. Self-assembly relies on the intrinsic capability of molecules involved to 
spontaneously aggregate into fibers under appropriate conditions [11,12] and the possibilities to 

control the process, and its outcome, are therefore limited. Thermally-induced phase separation, on 

the other hand, is generally successful for synthetic crystalline polymers and effective for preparing 
microporous structures, while obtaining a nanofibrous structure is more challenging [8]. 

On the contrary, electrospinning allows to obtain well defined and controlled nanofibers 

morphologies from virtually any soluble polymer. Accordingly, a large variety of synthetic and 
natural polymers were successfully electrospun for the preparation of artificial ECM in many 

regenerative applications, such as skin substitutes, vascular grafts, scaffolds for bone, neural and 

cartilage tissue engineering, wound healing dressings [13–18].  
Despite the favorable results published, including excellent in vitro viabilities for both 

immortalized and primary cells [13,19] and some indication of superior performance for natural 

polymers in vivo [20], the experimental evidence supporting the extent to which using ECM 
molecules is beneficial is more rarely discussed.  

The use of ECM polymers, in fact, does not per se guarantees that signaling capabilities will be 

preserved and that the electrospun scaffold will have a favorable instructing role. In many cases, 
reprocessing biopolymers into an electrospun scaffold can compromise many of their structural and 

biological properties. Moreover, in some cases even the procedures required to isolate and purify the 

polymers can also decrease their intrinsic bioactive properties, as can the crosslinking methods, 
generally required to achieve the necessary stability. 

When materials are processed by electrospinning, the two major menaces to molecule 

conformation and structure are represented by the solvent and the intense electrostatic field. The 
former is generally considered as the major threat for biological molecules proper folding and 

systematic studies on their denaturation by solvent can be found [21]. However, the high voltage 

biomolecules are subjected to might also interfere with their structure. Although folding and 
unfolding of proteins under intense electric fields is receiving attention as an autonomous 
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phenomenon [22], this is usually overlooked in electrospinning and the effect of solvent and field are 

regarded as a whole. 
The preparation of electrospun scaffolds fabricated from ECM-polymers and their application in 

different regenerative medicine application are reviewed in previous papers [19,23] and in many of 

them the terms bioactive and biomimetic are used to support the rationale and the specific benefits 
for electrospun natural polymers. The specific objective for this work was, therefore, to review the 

experimental evidence supporting the preservation of polymer bioactivity. For this reasons, only 

papers with experimental design enabling to extract information related to the effect of the 
electrospun material itself were primarily searched for. In addition, based on the hypothesis that 

bioactivity strongly depends on macromolecule conformation, papers focusing on the effect of 

processing on their structure were also included.  

2. Electrospinning  

Electrospinning is a well-established technique to produce sub-micron non-woven fibers from 

polymer solutions or more rarely, melts and emulsions. 

In its more basic and commonly encountered configuration, high voltage (few to tens kV) is 
applied to the polymer solution using a set up as the one schematized in Figure 2. The polymer 

solution, generally, fed through a syringe pump, it is charged in a metal capillary (spinneret) and a 

grounded, or opposite charged, target is placed to set distance. When the electric field produces a 
force strong enough to overcome the surface tension of the polymer solution, a Taylor cone forms at 

the tip of the spinneret. From the Taylor cone the polymer solution is stretched and attracted to the 

grounded or oppositely charged collecting target. As the jet travels through the field and solvent 
gradually evaporates, bending instability will cause the jet to whip, stretch and elongate and almost 

dried, ultra-fine fibers will be collected on the target. 

 

Figure 2. Scheme of a typical laboratory-scale electrospinning setup. 



643 

AIMS Materials Science                                                       Volume 4, Issue 3, 638-669. 

Together with being a constructively simple process, the success of electrospinning is related to 

its high versatility. Most soluble polymers with reasonable molecular weight are likely to be 
processable and a large variety have, in fact, been successfully electrospun into micro- and nano-

fibers with diameter down to 20 nanometers [24]. 

Furthermore, many modifications of the set up are easily implemented as to obtain coaxial 
fibers [25], aligned fibers [26], composite mats [27], or 3D shaped structures [28], and to 

simultaneously spin multiple polymers to obtain mats with mixed fibers. 

Obtaining fibers instead of beads or beaded fibers, however, requires the management of a large 
number of parameters that include polymer and solution properties (polymer molecular weight, 

solution viscosity, solvent surface and vapor tension), processing parameters (voltage, distance, and 

flow-rate) and environmental conditions (temperature, relative humidity).  
All these parameters were shown to affect the morphology of the electrospun fibers and on their 

homogeneity and diameter in particular (a detailed analysis of parameter influence can be found  

in [29]). Within the range of parameters in which defect free fibers are obtained, fiber diameter can 
be controlled mainly by reducing polymer concentration or increasing voltage, distance from target 

and electrical conductivity [30,31,32].  

3. Challenges for ECM Analogous Fabrication 

Because of the morphological resemblance that electrospun fibers show with the fibrous 
structure of the ECM (Figure 3), electrospinning has attracted significant attention for cell culture 

and tissue regeneration applications [33].  

 

Figure 3. ECM collagen fibers in articular cartilage (left, scale bar = 2 m, reprinted 
with permission from [34]), and electrospun fibrinogen fibers from HFIP (right, scale bar 

= 100 m).  

Electrospun matrices are well suited as they offer a large surface area for cell migration and 

thin-fiber topography can actively support cell migration and affect cell behavior by contact 

guidance [35]. 
For biomedical applications synthetic and biodegradable aliphatic polyesters (PLA, PLGA, PCL, 

PHB) are often preferred for their good processability, tunable and controllable properties and 

mechanical performance. However, in the context of a biomimetic approach, synthetic polymers can, 
at best, only reproduce the physical architecture of ECM fibrous components, but they lack all the 
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other properties that ECM can offer, including recognition sites. Moreover, their degradation 

products can locally lower pH and have a detrimental effect on regeneration [36]. For the 
abovementioned reasons, blending with ECM polymers is a common solution to combine the 

favorable properties of synthetic polymers and cell recognition signals [19]. 

However, electrospinning appears particularly attractive when ECM molecules are processed, as 
scaffold with both morphological and chemical resemblance to the ECM structure can be designed. 

Multiple biological polymers can be spun together, and active molecules, as growth factors or drugs, 

can be loaded within the electrospun fibers, as they were shown to represent excellent matrices for 
controlled release under different profiles [37]. 

Unfortunately, processing biological polymers via electrospinning is significantly more 

challenging than processing synthetic materials. In fact, ECM polymers show poor solubility and 
only very few solvent systems with suitable characteristics (volatility, surface tension, dielectric 

constant) are suitable for their dissolution at the concentrations required for electrospinning [29]. In 

addition, the viscoelastic properties of ECM-polymer solution are frequently inadequate for 
guaranteeing a stable process [38]. Moreover, although this is generally barely discussed, stable 

interactions created between hydrophobic sites exposed by solvent can cause gelification of the ES 

polymer solution at the tip of the spinneret and consequently give discontinuity to the process [39]. 

 

Figure 4. Scanning electron micrographs of different electrospun ECM macromolecules: 
type I collagen spun from HFP (A), type A gelatin from acetic acid/distilled water (9:1) 

(B), α-elastin from HFP (C), reprinted from [40], tropoelastin from HFP (D), reprinted 

from [41], hyaluronic acid from NH4OH/DMF mixture (E) and fibrinogen from 

formic/acetic acid (F). Scale bar = 5 m. 
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4. Collagen(s) 

Collagens are a family of proteins that counts almost 30 members with a common motif of 

helical fibrils formed by three polypeptide subunits. The fibril-forming collagens (types I, II and III) 

are the primary proteins in interstitial ECM and represent the main structural component in many 
tissues [42,43]. 

Because of their predominance in the ECM, collagens are considered as ideal scaffold materials 

and type I, in particular, has been thoroughly investigated for regenerative medicine [44]. As it is 
isolated mainly from animal tissues, concerns have raised about its antigenicity. However, a variety 

of sources is available and refined purification techniques have been developed so that collagen can 

now be recognized as a biomaterial with low antigenicity [43]. 
Successful electrospinning of collagen can be achieved from fluorinated solvents (e.g., HFIP, 

TFE) (Figure 4A, Table 1) [45,46,47]. However, electrospinning of water-insoluble collagen results 

in water-soluble scaffolds; this behavior raised some concerns about the possible protein 
denaturation during the process. 

Although the D-banding pattern characteristic of the native arrangement of collagen fibrils is 

sometimes observed in TEM analysis of HFIP electrospun collagen [45,48] the majority of analysis 
investigating the effect of processing failed in finding evidence of structure preservation. 

The extensive characterization of HFIP electrospun nanofibers and HFIP-recovered collagen 

performed in [49] suggests that electrospinning in HFIP can degrade collagen into gelatin. In fact, 
the characteristic cross-striation pattern of collagen was not appreciable in TEM images, no signal 

was recorded in SHG analysis, indicating that the native crystalline structure of collagen was 

compromised, and massive loss of triple-helical structure (up to 45% according to Yang et al. [50]) 
was demonstrated with CD spectroscopy. Moreover, denaturation enthalpies measured by DSC were 

similar or even inferior to those of gelatin. Denaturation of collagen α-chains using HFIP as ES 

solvent was confirmed by SDS-PAGE even on samples where the 67 nm pattern was shown by TEM 
images [48].  

Irrespectively of the effect on collagen structure, HFIP can persist in non-negligible quantities 

and vacuum or heat treatments are required to lower the values below 100 ppm [51]. 
In the search for more benign solvents, water based acidic solutions with or without addition of 

ethanol were also found to be effective for protein solubilization and spinning. However, the results 

in terms of the effect on collagen structure are conflicting.  
In some cases, results of CD spectroscopy and FT-IR analyses on electrospun collagen fibers 

appeared to indicate that, compared to HFIP, the native helical structure can be better preserved 

using 40% acetic acid [52], or mixture with acid/EtOH (1:1) [38]. For this latter, triple helical 
fraction was found preserved up to 85% [53]. 

In similar studies, however, the opposite conclusions were drawn. For collagen electrospun 

from 40% acetic acid solution, for example, no characteristic 67 nm banding pattern was observed, 
evidence for β-sheet formations resulted from Raman spectroscopy and negligible increase in the 

folded ratio was observed with respect to fluorinated solvents [54]. Similarly, compared to native 

structure, retained fraction of triple helix was found to be 18% for diluted acidic solutions versus  
16% for fluorinated solvents [55]. 
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In terms of structure preservations, interesting results are reported in [56] where successful 

collagen spinning was obtained using a PBS and ethanol mixture as a solvent system, that is 
potentially less harmful to the protein than other more common options. 

Irrespectively of the extent of structure preservation, the conclusive question to be answered 

remains if electrospun collagen retains some of its biological activity. The response should be 
searched among in vivo and in vitro experiments that compare collagen to other materials with 

known biological activity. 

In vitro studies, in fact, generally show excellent cell viability, adhesion and proliferation, but 
frequently polystyrene multiwell plates are used as control, and this makes the comparison unfair (at 

the very least for the surface area available for cell adhesion, but also for topographical cues offered 

by sub-micron scaled fibers) and does not enable extracting the searched information. Similarly, 
studies indicating exciting results in term of tissue regeneration of electrospun collagen scaffolds for 

tissue regeneration can be found [57,58] but frequently controls are very different surgical strategies 

(e.g., no treatment, simple suture, etc.), and, again, it is difficult to isolate the effect of material itself. 
Very few studies so far have investigated the behavior of electrospun collagen scaffolds in 

experiments specifically designed to actually contribution of collagen structure, for example by 

comparison with reconstituted collagen, electrospun gelatin or synthetic materials. 
Interesting results in this direction were obtained by Jha and coworkers in a comprehensive 

research comparing the biocompatibility of electrospun collagen and electrospun gelatin [48]. Basing, 

among other, on the capacity to induce osteoblast differentiation and hydroxyapatite deposition, not 
observed for electrospun gelatin and reconstituted collagen films, they concluded that electrospun 

collagen still contains important instructive motifs. After specific investigations, they suggested this 

might be related to the presence of intact α-chains that preserve strong biological activity 
independently from their arrangement, as long as the degree of crosslinking is contained. 

Furthermore, improved healing was observed for electrospun collagen compare to electrospun 

gelatin for both in vivo dermal and muscle reconstruction, to further suggest that the exact collagen 
native structure might not be necessarily replicated to take advantage of its biological properties. 

Another significant indication can be found in the work of Liu and colleagues [59]. In their 

researches, aiming at the development of conduits for spinal cord injuries treatment, extensive cell 
penetration into the electrospun collagen was observed in constructs used to repair acute spinal cord 

injury in a rat hemi-section model, where non similarly encouraging results were obtained on 

electrospun synthetic materials tested in previous experiments. 
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Table 1. Main characteristics of electrospun collagen fibers. 

Polymer Solvent 
Polymer 

concentration 

Voltage 

applied 
Flow rate 

Tip to collector 

distance 
Fiber dimensions Porosity Reference 

Collagen type I 

and III 

HFIP 0.083 g/ml 25 kV 5 ml/h 12.5 cm 250 ± 150 nm 

100–730 nm 

- [45] 

Collagen type II HFIP 0.1 g/ml 

0.04 g/ml 

22 kV 2 ml/h 10 cm 1.75 ± 0.9 µm 0.11 

± 0.09 µm 

- [46] 

Collagen type II HFIP - 30 kV - - 70 nm–2.74 µm 

(496 nm) 

Average pore 

area: 6.94 µm2

[47] 

Collagen type I HFIP 1–7% 7–30 kV 1–5 ml/h 5–30 cm 0.2–2 µm - [60] 

Collagen type I HFIP 80 mg/ml 20 kV - 12.5 cm 500–900 nm 2000–6000 µm2 [61] 

Collagen type I HFIP 8.3% 10 kV 1–10 ml/h 15 cm 400–600 nm - [41] 

Collagen type I HFIP 8% 15–20 kV 0.02 ml/min 8 cm 100–1200 nm, 

average: 460 nm 

- [58] 

Collagen type I HFIP 0.083 g/ml 15 kV 1 ml/h 15 cm 250 nm - [62] 

Collagen type I Acetic acid/HFIP (1:1) 18% 14 kV 9 ml/h 22 cm 3–6 µm - [63] 

Collagen type II HFIP 60 mg/ml 22 kV 2 ml/h 12.7 cm 180 ± 69 nm - [64] 

Collagen type I Weak aqueous acetic 

acid solution (0.3%) 

1% 18 kV 0.01 ml/min 18 cm Hundreds 

nanometers 

- [65] 

Collagen type I PBS/EtOH (1:1) 16% 20 kV 1 ml/h 10 cm 0.54 ± 0.21 or 0.21 

± 0.06 depending 

on salts 

concentration 

- [66] 

Collagen type I HFIP– 

40% acetic acid 

8% 

25% 

10–12 kV 

15–16 kV 

1 ml/h 

0.3 ml/h 

6–8 cm 569.1 ± 124.6 nm 

149.1 ± 20.6 nm 

- [52] 

Collagen HFIP/acetic acid (1:1) 7% 15 kV 0.2 ml/h 20 cm 150–200 nm - [67] 
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Collagen type I HFIP 8% 7 kV 0.5 ml/h 10 cm 785 ± 177 nm 84.63% [68] 

Collagen HFIP 55 mg/ml 22 kV 3–7 ml/h 25 cm 500–1000 nm - [48] 

Collagen type I PBS/EtOH (3:2) 150 mg/ml 16 kV 0.3 ml/h 12 cm 200–400 nm - [56] 

Collagen type I EtOH/PBS (1:1) + 

EDC/NHS 

16% 20 kV 0.5 ml/h 12 cm 0.42 ± 0.11 µm - [69] 

Tropocollagen 

type I 

HFIP–TFE 10% 20–22 kV 0.2–0.5 

µl/min 

15 cm 150–200 nm - [38] 

Collagen type I acetic acid 7.5% 6 kV 0.15 ml/h 4 cm 272 ± 183 nm - [57] 

Tropocollagen 

type I 

50% EtOH at pH = 2.3 15% 20 kV 1 ml/h 15 cm 600 nm - [53] 

Collagen type I HFIP–acetic acid 10% 

40% 

16 kV 0.5 µl/min 15 cm 150–200 nm - [54] 

Collagen type I TFE–dilute acetic acid 10% 

30% 

18 kV 

24 kV 

0.015 ml/min 

0.001 ml/min 

- 320 ± 80 nm 

150 ± 30 nm 

- [55] 
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5. Gelatin 

Gelatin is obtained by controlled hydrolysis of insoluble collagen and is derived from sources 

rich in Type I collagen [70], frequently bovine or porcine skin. The resulting product can have 
different molecular weights (MWs) and isoelectric points according to the source and method of 

preparation. In particular, from acid and alkaline processing of collagen, gelatin with different 

isoelectric points, type A and type B respectively, are derived [43]. 
Because of its origin, gelatin has similar composition and maintains some of the favorable 

properties of collagen, including biodegradability and adhesive sequences to promote cell adhesion 

and migration [19,71]. Moreover, by virtue of processing and purification, gelatin is a non-
immunogenic product [70], has high commercial availability and low cost. However, as gelatin 

rapidly dissolves in water at temperatures above 37 °C, a crosslinking treatment is generally required 

for its use as scaffold. Both physical (e.g., dehydrothermal treatment, UV radiation or plasmo-
chemical treatment) [72,73] and chemical (e.g., glutaraldehyde, genipin, EDC) [72,74,75] methods 

can be chosen among, where these latter generally appear to be more efficient in term of mechanical 

stability, but also have more potential drawbacks in term of biocompatibility [76]. 
For the abovementioned reasons, gelatin found a number of applications in the biomedical area, 

including carrier for drug delivery [19], sealants for vascular prostheses [77] and dressings for 

wound healing [29].  
Unlike collagen, gelatin solubility does not represent a problem for its electrospinning, as it 

even dissolves in water at mild temperature (30–40 °C). However, ionizable side chains and strong 

hydrogen bonding can cause considerable aggregation and hinder fiber formation. For these reasons, 
polar organic solvents, such as HFIP and TFE, as well as formic and acetic acid are also frequently 

encountered (Figure 4B, Table 2) [71,78,79,80]. 

As gelatin is per se a denatured material, very few works are dedicated to the assessment of 
structural changes of gelatin molecules caused by electrospinning. 

Among them, Ki and colleagues investigated the potential denaturing effect of electrospinning 

in formic acid solution [78] and found smaller intensities in CD spectra compared to native gelatin, 
indicating large contents of random coil structure in the electrospun samples. The loss of biopolymer 

crystallinity was also confirmed by XRD and DSC analyses as gelatin nanofibers were found to be 

mostly amorphous.  
Similar results were obtained from Panzavolta and colleagues, that performed FTIR and XRD 

analyses to investigate structural modifications of gelatin imputable to electrospinning [75]. They 

established that both formic and acetic acid prevent the partial renaturation of gelatin that generally 
occurs in gelation from aqueous solution, and this accounts for the observed decrease in crystallinity. 

As for collagen, although very exciting results can be found for both in vitro and in vivo 

applications of gelatin electrospun membranes, the extent of the effectiveness of the biological 
molecule in scaffold is less inspected. 

The positive effect of using gelatin to improve cell compatibility of scaffolds can be presumed 

from the increased compatibility that blends with synthetic polymers generally show when compared 
to these latter alone, although a direct correlation among gelatin content and cell compatibility is not 
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always observed [81]. More rarely, direct comparison among electrospun gelatin and other polymers 

similarly processed can be found. In a comparative study on gelatin and PCL aligned fibers for 
peripheral nerve repair, for example, contrasting results were found on two different models, as 

superior differentiation of immortalized neuronal cell line was observed on gelatin but no difference 

was found when using primary cells in dorsal root ganglion model [82].  
Although different solvents were used, a direct comparison between gelatin and electrospun 

poly-caprolactone behavior can be found in [83] where significantly faster regeneration was 

observed for gelatin mats in a in vivo wound healing model, where in vitro tests on cell proliferation 
were not conclusive. 
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Table 2. Main characteristics of electrospun gelatin fibers. 

Polymer Solvent 
Polymer 

concentration 
Voltage applied Flow rate 

Tip to collector 

distance 
Fiber dimensions Porosity Reference 

Gelatin 

type A 

TFE 5–12.5% 10–16 kV 0.8 ml/h 12 cm 50–4800 nm - [84] 

Gelatin 

type A 

TFE 2.5–12.5% 0.5 kV/cm - - - - [85] 

Gelatin Formic acid 7–12% 1 kV/cm - 10 cm from 74 ± 16 nm to 

169 ± 33 nm 

- [78] 

Gelatin HFIP 100 mg/ml 20 kV - 12.5 cm 100–700 nm 2000–6000 µm2 [61] 

Gelatin 

type B 

HFIP 8.3% 10 kV 1–10 ml/h 15 cm 200–500 nm - [41] 

Gelatin HFIP 15% 15 kV 1 ml/min 22 cm 2–6 µm - [63] 

Gelatin 

type B 

TFE 10–16% 26–28 kV 8–12 ml/h - from 0.57 ± 0.01 µm 

to 3.01 ± 0.06 µm 

from 93.5% ± 0.2% 

to 89.3% ± 0.4% 

[79] 

Gelatin 

type B 

Acetic acid; 

AA/TFE; 

AA/DMSO; 

AA/ethylene 

glycol; 

AA/formamide 

15–29% 

19% 

7.5 kV - 7.5 cm 70–839 nm - [86] 

Gelatin 

type B 

Water/acetic 

acid/ethyl acetate 

10% 12 kV 0.06 ml/h 8 cm 47–145 nm - [87] 

Gelatin water, 

35–50 °C 

30–40% 22 kV - 12 cm 258–169 nm 

depending on the 

temperature 

- [88] 

Gelatin 

type B 

HFP 5–10% 25 kV - 15 cm 0.59 ± 0.09 µm or 

0.66 ± 0.25 µm 

Pore size: 50.45 ± 

10.34 or 35.01 ± 

8.13 µm2 

[71] 
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Gelatin 

type B 

20% EtOH/2% 

formic acid/water 

20% 20 kV 1 ml/h 10 cm from 85 ± 42 nm to 

169 ± 125 nm 

- [89] 

Gelatin Acetic acid/ethyl 

acetate/water 

(50:30:20) 

(60:10:30) 

10–25% 12 kV 0.5 ml/h - 110 ± 40 nm or 

600 ± 110 nm 

1.00 ± 0.61 µm2, 

10.7 ± 5.7 µm2 

[90] 

Gelatin HFP 110 mg/ml 22 kV 3–7 ml/h 25 cm 250–3000 nm - [48] 

Gelatin 

type A 

60% acetic acid 30% 15 kV 0.005 ml/min 15 cm 440 ± 50 nm - [75] 

Gelatin 

type B 

20% acetic acid 20% 35 kV 0.1 ml/h 10 cm 45–88 nm - [80] 
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6. Elastin 

Elastin is a highly insoluble protein that represents a major structural component of the ECM 

and is largely responsible for mechanical performance of tissues where elastic properties are 

essential (e.g., walls of arteries, or lungs). 
Elastin fibers consist of covalently cross-linked molecules of its precursor, tropoelastin, a 

soluble, non-glycosylated and highly hydrophobic protein [42]. Tropoelastin, per se, is a highly 

bioactive molecule and several cell-interaction sites were identified on its sequence [91]. 
Elastin can be isolated by hydrolization of animal derived elastic fibers using different methods, 

that, in turn, result in different end-products [92]. Among them, solubilization with oxalic acid or 

potassium hydroxide produce, α-elastin or κ-elastin respectively. However, water soluble 
tropoelastin is generally used for electrospinning (Table 3) [19]. 

Alpha-elastin and tropoelastin were successfully electrospun using HFIP as solvent (Figure 4C 

and 4D). Fibers with diameters ranging from 170 nm to 7 μm were reported, and frequently flattened 
fibers with a ribbon-like shape were observed [93]. Similarly to collagen, electrospun elastin is water 

soluble [94] and possesses poor mechanical properties; therefore, crosslinking agents such as 

glutaraldehyde, EDC, HMDI or DSS, are used to stabilize electrospun membranes [42]. 
According to the results in [94], electrospinning does not appear to significantly affect 

tropoelastin structure. In fact, not only no change in protein molecular weight could be observed, but 

also CD spectroscopy confirmed the conservation of the secondary structure. 
Electrospun elastin appears a very promising scaffold material as extremely encouraging results 

are generally reported from in vitro and in vivo studies. 

Interestingly, in a comparative experiment evaluating cell compatibility of electrospun collagen, 
gelatin, alpha-elastin and human recombinant tropoelastin, both alpha-elastin and tropoelastin 

scaffolds supported cell attachment, migration and proliferation better than TCPS control, and cell 

proliferation of HEPM on electrospun elastin was found to be higher than all the other proteins [41]. 
Electrospun elastin has attracted interest for different applications, and in particular for skin 

regeneration and vascular tissue engineering. To support its relevance for skin regeneration 

applications, very fast adhesion and spreading of dermal fibroblasts on electrospun elastin 
membranes was reported by Rnjak-Kovacina et al. and, when processing parameters were adjusted 

to increase membrane porosity, colonization through membrane thickness and progressive increase 

in newly deposited ECM were also observed [95]. The ability of cells to remodel highly porous 
electrospun elastin scaffold was confirmed by in vivo tests, as moderate degradation and evidence of 

collagen deposition were observed 6 weeks after implantation in mice [95]. 

For vascular graft applications, collagen and elastin are often electrospun together as they 
represent the two main constituents of native blood vessels [96]. In particular, tropoelastin and its 

biocompatibility have been evaluated seeding endothelial vascular cells [97] and smooth muscle 

cells [40,98].  
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Table 3. Main characteristics of electrospun elastin fibers. 

Polymer Solvent 
Polymer 

concentration 
Voltage applied Flow rate 

Tip to collector 

distance 
Fiber dimensions Porosity Reference 

Tropoelastin HFP 9%, 15%, 20% 18.5 kV 2 ml/h 12.5 cm 167 ± 32, 735 ± 

270 nm 

Pore sizes: 

0.4–4.9 μm 

[98] 

Tropoelastin HFP 9%, 15%, 20% 18.5 kV 2 ml/h 12.5 cm 580 ± 94 nm - [97] 

Tropoelastin HFP 20% 20 kV 1–3 ml/h 20 cm 1–4 µm 14.5 ± 0.8 %, 

34.4 ± 1.3 % 

[95] 

Tropoelastin HFP 20% 20 kV 1 ml/h 20 cm 1.8 ± 0.4 µm - [94] 

Tropoelastin HFP 20% 20 kV 1 ml/h 20 cm 1.76 ± 0.37 µm - [40] 

Tropoelastin HFP 20% 20 kV 1–5 ml/h 15 cm 2.3 ± 0.5 µm - [93] 

Alpha-elastin 

and Tropoelastin

HFP 20% 10 kV 1–10 ml/h 15 cm 0.6–3,6 µm 

1.4–7.4 µm 

- [41] 
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7. Hyaluronic Acid 

Hyaluronic acid (HA) is a linear polysaccharide, and it is the structurally simplest member in 

the GAGs family (the only not found as proteoglycan, for not being covalently associated to a core 

protein). HA is a main component of the ECM of connective tissues and skin, and actively 
participates in regulating cell proliferation, differentiation, and tissue repair [29,43,99]. 

The extremely high molar mass of HA (up to millions Dalton) is associated to its unique 

viscoelastic and rheological properties that, in turn, play important physiological roles [100]. 
Commercially available HA can be extracted from different sources (e.g., umbilical cord, 

synovial fluid or vitreous humor) or more easily and controllably produced through microbial 

fermentation [43]. 
Its excellent biocompatibility and biodegradability have made HA gels an extensively used 

material in many biomedical applications including ophthalmology, dermatology, tissue engineering, 

wound dressings, and drug delivery [99]. 
Unfortunately, despite its solubility in water, HA is not well suited for electrospinning. This is 

mainly related to its polyanionic nature [101] together with the unusually high viscosity and surface 

tension of its aqueous solutions. Furthermore, the strong water retention capability of HA generally 
impairs adequate solvent evaporation and causes the deposition of fused wet electrospun fibers on 

the collector [99,100]. 

However, the fabrication of HA into nanofibrous membranes from aqueous solution was 
successfully achieved using air-flow-assisted systems with cold or hot airflows introduced in the 

electrospinning set up to facilitate solvent evaporation [102]. 

As alternative to aqueous solutions, solvent mixtures are used to enhance fiber formation  
(Table 4). Among them DMF/water mixture was widely used for the capability of DMF to 

significantly decrease the surface tension [103,104,105]. Solvent systems capable to break intra-

molecular H-bonds and increase molecule flexibility and chain entanglements, such as NaOH/DMF 
or water/formic acid/DMF mixtures, also proved to be beneficial for fiber formation  

(Figure 4E) [104,105]. 

As most proteins from ECM, electrospun HA is generally cross-linked to increase its in vivo 
stability and proposed cross-linkers include EDC; in some cases, HA membranes can also be 

stabilized by means of aqueous acidic solutions or vapors [106,107,108]. 

As the relationship between structure and function for polysaccharides is not as important as for 
proteins, the only works investigating the effect of solvents on HA structure are mainly aimed to 

control solution properties and, therefore, their spinnability. Results of rheological measurements 

performed on HA solution in DMF/formic acid/water mixtures indicates, for example, that formic 
acid partially disrupts inter- and intra-molecular H-bonds providing better chain flexibility and 

entanglements formation, and therefore superior processability by ES [105]. However, since  

H-bonds stabilize α-helix structure of HA molecule, their disruption causes a transition of HA chain 
conformation to a coil structure. 

Because of significant HA spinnability issues, biological properties of the electrospun matrices 

have not yet been extensively investigated. However, some work was done in the direction of 
demonstrating the important functional properties of the polysaccharide in wound healing 
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applications. Electrospun collagen/HA blends gave, for example, better results as wound dressing in 

terms of scarless skin regeneration than pure collagen matrix [109].  
More recently, results of an in vivo characterization demonstrated that electrospun HA 

membranes were found to allow a faster healing of skin wounds in pig compared to solid HA 

dressing, to evidence once again the importance of the electrospun morphology [110]. 

8. Fibrinogen 

Although it cannot be considered strictly an ECM component, fibrinogen is the precursor of 

fibrin that, is the major structural element of clot and constitutes a highly instructive provisional 

structural matrix for cell migration and organization in wound repair. For this reason, it appears an 
extremely interesting material for tissue engineering scaffolds and wound dressings, and was shown 

to promote cellular migration [111] and to be non-immunogenic [112]. 

Fibrinogen is a 340 kDa glycoprotein comprised of a pair of three polypeptide chains (2Aα, 2Bβ 
and 2γ) and it contains cell binding sites and also has the capacity to bind a wide array of molecules 

that play a role in tissue regeneration (e.g., growth factors and cytokines) [113]. 

To date, the only solvent reported for fibrinogen electrospinning is HFIP with 10× MEM in 9:1 
ratio [114]. Using this system 50 to 1000 nm fibers were produced (Table 5 and Figure 4F). Likewise 

other electrospun polymers, as solution viscosity increases with polymer concentration, the fiber 

diameter increases linearly [115]. 
Despite HFIP effectiveness for electrospinning of fibrinogen, that appears mainly related to its 

capacity to break hydrophobic interactions [42], this solvent can induce changes in protein secondary 

structure and, in turn, affect fibrinogen bioactivity. In Carlisle et al., CD spectroscopy results 
demonstrated an increase in α-helical content close to 70% for fibrinogen dissolved in HFIP (from 

about 34% in PBS to 57% in HFIP) [116]. In a different study, the electrophoretic profile of HFIP 

treated fibrinogen was acquired and no substantial variation compared to native material was 
observed [39]. However, clear evidence of protein denaturation can be found in the fact that 

electrospun fibrinogen becomes water insoluble, although this behavior can even be considered 

advantageous, as eliminates or at least reduces the need for crosslinking. In fact, not only the protein 
becomes insoluble, but fibrinogen-fibrinogen homotypic interactions also increases nanofibers 

resistance to enzymatic degradation [117]. Unfortunately, the formation of intermolecular non-

covalent bonds can cause premature solution gelification, thus leading to discontinuities in the 
electrospinning process.  

Electrospun fibrinogen, however, appeared an excellent substrate for cells. In in vitro studies a 

rapid attachment and migration together with progressive collagen deposition and matrix remodeling 
were observed for different cell types, including human bladder smooth muscle cells [117] and 

neonatal rat cardiac fibroblasts [118]. 

Interestingly, with these latter cells, seeded electrospun mats appeared comparable to fibrinogen 
hydrogel in term of cell migration and scaffold remodeling [118]. In addition, up to two times faster 

adhesion was observed on fibrinogen nanofibers compared to fibrinogen-coated flat surfaces, to 

further confirm the instructive role of nanometric geometries resembling the native ECM spatial 
organization, that can also activate specific adhesion mechanisms (fibrillar adhesion) [39]. 
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It was suggested that the capacity of electrospun fibrinogen to support cellular interactions 

might be related to the exposure of a hidden molecule region (epitope β15-42) that is typical of 
thrombin cross-linked fibrin matrix and plays an important role in supporting cell spreading and 

proliferation [117,118,119]. 

9. Hybrid Strategies 

To combine the favorable processing and tunability of synthetic polymers with the biological 
advantages of ECM macromolecules, different hybrid approaches were proposed as alternatives to 

the electrospinning of purified ECM molecules. 

The most frequently adopted strategy is blending [120,121,122]. Synthetic polymers (PLA, 
PGA, etc.) are mixed in solution and spun together with ECM polymers (collagen, gelatin, 

fibronectin or laminin) to improve the interaction of resulting fibers with cells. Generally superior 

adhesion, migration and survival/proliferation are reported, although not always results are  
univocal [83,121]. As previously mentioned, from the perspective of this review, however, blending 

is also an interesting model to appraise the biological relevance of electrospun ECM polymers. 

Coating is also a common strategy to improve material compatibility and support cell  
adhesion [123,124,125]. Fibronectin and laminin are frequently chosen to this end but also collagen, 

gelatin and hyaluronic acid are employed. Coating is obtained by physical adsorption or covalent 

coupling (e.g., by glutaraldehyde [124] or EDC [125]). In this latter case, higher amounts of 
biopolymers stably immobilized were reported and improved adhesion, spreading, proliferation and 

differentiation were observed for rat bone marrow-derived mesenchymal stem cells.  

ECM polymers can also be blended with natural occurring polymers not found in  
ECM [126,127], but possessing a history of successful application in tissue engineering as silk 

fibroin [128,129] or chitosan [130]. These polymers do not generally share the processability or 

tunability of synthetic polymers, but possess other favorable properties (e.g., long term stability or 
mechanical properties) and excellent cell compatibility at the same time. 

Another possible strategy involves the electrospinning of synthetic polymers with decellularized 

ECM fragments instead of purified ECM components. In [131], for example, cauda equina fragments 
were mixed to a PLGA solution in HFIP and spun. In in vitro test, axons from dorsal root ganglia 

were found to outspread to a greater extent when ECM fragments were included. 
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Table 4. Main characteristics of electrospun HA fibers. 

Polymer Solvent 
Polymer 

concentration 
Voltage applied Flow rate 

Tip to collector 

distance 
Fiber dimensions Porosity Reference 

HA Acidic aqueous solution 

(pH = 1.5) 

1.3–1.5% 40 kV 5–10 µl/min 9.5 cm - - [102] 

HA Acidic aqueous solution 

(pH = 1.5) 

2–3% 25–40 kV 40 µl/min 9.5 cm 40–100 nm - [108] 

HA DMF/water/EtOH 1.3–1.5% 22 kV 60 µl/min 15 cm 200–250 nm - [100] 

HA DMF/H2O (1:1) 1.5% 22 kV 60 µl/min 15 cm - - [106] 

HA H2O with 

cocamidopropyl betaine 

as surfactant 

1% 15 kV 0.5 ml/h 2.5 cm from 58 ± 20 to 

645 ± 269 nm 

- [110] 

HA H2O/formic acid/DMF 

(25:50:25) 

0.8–1.2 % 20 kV 0.3 ml/h 15 cm 20–90 nm - [105] 

HA NaOH/DMF (4:1) 

NH4OH/DMF (2:1) 

3% 

1.5% 

10 kV 

20 kV 

15 µl/min 

0.01 µl/min 

5 cm 

6 cm 

224 ± 81 nm 

39 ± 12 nm 

- [104] 

HA H2O/DMF (1:1) with 

phosphate salts 

1.5% 15 kV 0.01 µl/min 

0.008 µl/min 

6 cm 143 ± 34 nm or 88 

± 17 nm depending 

on the salt 

- [103] 

HA DMF/H2O (0:1, 0.25:1, 

0.5:1, 1:1) 

0.75% 8–30 kV 1.2 ml/h 10 cm from 33 ± 5 to 113 

± 19 nm 

- [107] 
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Table 5. Main characteristics of electrospun fibrinogen fibers. 

Polymer Solvent 
Polymer 

concentration 
Voltage applied Flow rate 

Tip to collector 

distance 
Fiber dimensions Porosity Reference 

Fibrinogen HFIP/MEM 

(9:1) 

167 mg/ml 22 kV 1.85 ml/h 12.5 cm 80–700 nm - [114] 

Fibrinogen HFIP/MEM 

(9:1) 

80–140 mg/ml 22 kV 1.8 ml/h 10 cm 120–610 nm - [132] 

Fibrinogen HFIP/MEM 

(9:1) 

100 mg/ml 22 kV - 12.5–20 cm 208  18 nm 1.3–13 μm2 [116] 

Fibrinogen HFIP/MEM 

(9:1) 

110 mg/ml 22 kV 1.8 ml/h 10 cm 320  110 nm - [118] 

Fibrinogen HFIP/MEM 

(9:1) 

110 mg/ml 22 kV 1.8 ml/h 12 cm - - [117] 

Fibrinogen HFIP/MEM 

(9:1) 

120 mg/ml 25 kV 3,5 ml/h 12 cm 710  120 nm - [113] 

Fibrinogen HFIP/MEM 

(9:1) 

100–150 mg/ml 25 kV 4 ml/h 12 cm 500–1040 nm 0.57–3.7 μm [115] 

Fibrinogen HFIP/DMEM 

(9:1) 

100 mg/ml 20–25 kV 0.3 ml/h 12.5 cm 192  46 nm - [39] 

Fibrinogen HFIP/MEM 

(9:1) 

100 mg/ml 22 kV 2 ml/h 16 cm 30–200 nm - [133] 
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10. Conclusions and Future Directions 

The physiological scaffold for cells is a very complex environment that displays a finely tuned, 

highly specific and dynamic set of instructive cues. Years of research have provided a great insight 
in the mechanisms by which native ECM regulates tissue development, and many signals initiated by 

interactions between cell surface-receptors and ECM-ligands have been identified. 

Due to the complexity of these interactions, using naturally occurring biomolecules for 
fabricating fibrous scaffolds appears a shortcut strategy to mimic the natural ECM in composition 

and structure. 

Provided that in vitro and in vivo results are extremely promising, additional work appears to be 
required for understanding the extent to which the functions that ECM performs persist after 

reprocessing to achieve adequate morphological and structural properties. 

Only a minority of the studies dealing with the electrospinning of ECM molecules actually 
focuses on the effect of processing on polymer structure. With few exceptions, however, the majority 

of works looking into this aspect found evidence of substantial loss of secondary and tertiary 

structures in scaffolds. Furthermore, due to the large number of scaffold parameters involved in 
regulating the cellular functions (including fiber diameter, mechanical properties, porosity, 

degradability, water absorption) extrapolating the sole information deriving from molecular structure 

is difficult.  
However, although native conformation is likely to provide a more recognizable environment 

compared to a denatured molecule, using ECM molecule for scaffold fabrication can still be 

advantageous. After all, gelatin is considered to possess excellent bioactivity [134,135,136] and 
according to evidence, there is no need to have the exact copy of protein to have biological activity. 

The presence of recognition sequences involved in integrin-mediated cell adhesion does not 

justify, per se, the complexity of extracting and processing ECM molecules, as small peptide 
sequences can be grafted on tunable and easy processable synthetic polymers [137,138]. However, 

there is evidence that short integrin-binding fragments by themselves can be less active than the 

native molecule or than the larger sequence they are included in [139]. Moreover, biopolymers might 
still be sensitive to matrix-degrading enzymes. Misfolded proteins, in particular, can be marked for 

proteolytic degradation [140]. This would allow a cell-mediated scaffold degradation that can follow 

more accurately new matrix deposition and tissue neo-formation rates, compared, for example, to 
hydrolytic route. Finally, denaturation in some cases might even be beneficial, as exposure of hidden 

sites can sometimes activate favorable signaling, as in the case of fibrinogen [117]. 

Future work on the biological side will have to fully clarify the effect of electrospinning on 
molecular conformation and, in cascade, on biological activity of ECM polymers. In the meantime, 

regenerative applications can surely benefit from additional investigations and further refinements of 

ECM processing. In particular, spinning methods that facilitate jet formation (e.g., bubble spinning 
or other needle-less spinning methods) could enable the use of less aggressive solvents. This not only 

would allow to better preserve the structure of processed ECM polymers, but also of smaller 

signaling molecules, as cytokines and growth factors, that can be blended in the solution. 
Electrospinning can, in fact, be detrimental to the activity of many bioactive compounds that can be 
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advantageously incorporated in fibers [141]. Similarly, further research on the electrospinning of 

more controlled and less batch-sensitive artificial analogs of ECM proteins synthetized recombinant 
DNA technology can enable to more precisely govern the process. Finally, investigation on new 

crosslinking methods has the potential to further reduce the contribution of this step in alteration of 

polymer native structure. 
Research efforts in all these directions can result in the capacity to better preserve biochemical 

attributes of the reprocessed ECM polymers and fully exploit the beneficial effects of biological 

signaling by creating an instructive electrospun scaffold. 

Conflict of Interest 

The authors declare that there is no conflict of interest regarding the publication of this 

manuscript. 

References 

1. Flaumenhaft R, Rifkin DB (1991) Extracellular matrix regulation of growth factor and protease 
activity. Curr Opin Cell Biol 3: 817–823. 

2. Frantz C, Stewart KM, Weaver VM (2010) The extracellular matrix at a glance. J Cell Sci 123: 

4195–4200. 
3. Bonnans C, Chou J, Werb Z (2014) Remodelling the extracellular matrix in development and 

disease. Nat Rev Mol Cell Bio 15: 786–801. 

4. Kim SH, Turnbull J, Guimond S (2011) Extracellular matrix and cell signalling: the dynamic 
cooperation of integrin, proteoglycan and growth factor receptor. J Endocrinol 209: 139–151. 

5. Schultz GS, Wysocki A (2009) Interactions between extracellular matrix and growth factors in 

wound healing. Wound Repair Regen 17: 153–162. 
6. Roskelley CD, Srebrow A, Bissell MJ (1995) A Hierarchy of ECM-Mediated Signaling 

Regulates Tissue-Specific Gene-Expression. Curr Opin Cell Bio 7: 736–747. 

7. Altınay S (2016) Is extracellular matrix a castle against to invasion of cancer cells? In: Xu K, 
Tumor Metastasis, InTech. 

8. Laurencin CT, Nair LS (2014) Nanotechnology and regenerative engineering: the scaffold, 

CRC Press. 
9. Smith LA, Ma PX (2004) Nano-fibrous scaffolds for tissue engineering. Colloid Surface B 39: 

125–131. 

10. Khajavi R, Abbasipour M (2012) Electrospinning as a versatile method for fabricating coreshell, 
hollow and porous nanofibers. Sci Iran 19: 2029–2034.  

11. Fessler JH (1974) Self-assembly of collagen. J Supramol Struct 2: 99–102. 

12. Bellingham CM, Keeley FW (2004) Self-ordered polymerization of elastin-based biomaterials. 
Curr Opin Solid ST M 8: 135–139. 

13. Zhu X, Cui W, Li X, et al. (2008) Electrospun fibrous mats with high porosity as potential 

scaffolds for skin tissue engineering. Biomacromolecules 9: 1795–1801. 



662 

AIMS Materials Science                                                      Volume 4, Issue 3, 638-669. 

14. Lee SJ, Yoo JJ, Lim GJ, et al. (2007) In vitro evaluation of electrospun nanofiber scaffolds for 

vascular graft application. J Biomed Mater Res A 83: 999–1008. 
15. Holzwarth JM, Ma PX (2011) Biomimetic nanofibrous scaffolds for bone tissue engineering. 

Biomaterials 32: 9622–9629. 

16. Xie J, MacEwan MR, Schwartz AG, et al. (2010) Electrospun nanofibers for neural tissue 
engineering. Nanoscale 2: 35–44. 

17. Li WJ, Tuli R, Okafor C, et al. (2005) A three-dimensional nanofibrous scaffold for cartilage 

tissue engineering using human mesenchymal stem cells. Biomaterials 26: 599–609. 
18. Mogoşanu GD, Grumezescu AM (2014) Natural and synthetic polymers for wounds and burns 

dressing. Int J Pharm 463: 127–136. 

19. Sell SA, Wolfe PS, Garg K, et al. (2010) The use of natural polymers in tissue engineering: a 
focus on electrospun extracellular matrix analogues. Polymers 2: 522–553. 

20. Gomes SR, Rodrigues G, Martins GG, et al. (2015) In vitro and in vivo evaluation of 

electrospun nanofibers of PCL, chitosan and gelatin: A comparative study. Mater Sci Eng C 46: 
348–358. 

21. Herskovits TT, Gadegbeku B, Jaillet H (1970) On the structural stability and solvent 

denaturation of proteins I. Denaturation by the alcohols and glycols. J Biol Chem 245: 2588–
2598. 

22. Freedman KJ, Haq SR, Edel JB, et al. (2013) Single molecule unfolding and stretching of 

protein domains inside a solid-state nanopore by electric field. Sci Rep-UK 3: 1638. 
23. Ingavle GC, Leach JK (2013) Advancements in electrospinning of polymeric nanofibrous 

scaffolds for tissue engineering. Tissue Eng B 20: 277–293. 

24. Tan SH, Inai R, Kotaki M, et al. (2005) Systematic parameter study for ultra-fine fiber 
fabrication via electrospinning process. Polymer 46: 6128–6134. 

25. Yarin A (2011) Coaxial electrospinning and emulsion electrospinning of core-shell fibers. 

Polym Advan Technol 22: 310–317. 
26. Xu C, Inai R, Kotaki M, et al. (2004) Aligned biodegradable nanofibrous structure: a potential 

scaffold for blood vessel engineering. Biomaterials 25: 877–886. 

27. Ding B, Kimura E, Sato T, et al. (2004) Fabrication of blend biodegradable nanofibrous 
nonwoven mats via multi-jet electrospinning. Polymer 45: 1895–1902. 

28. Del Gaudio C, Bianco A, Grigioni M (2007) Electrospun bioresorbable trileaflet heart valve 

prosthesis for tissue engineering: in vitro functional assessment of a pulmonary cardiac valve 
design. Annali dell’Istituto superiore di sanita 44: 178–186. 

29. Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. 

Biotechnol Adv 28: 325–347. 
30. Pham QP, Sharma U, Mikos AG (2006) Electrospinning of polymeric nanofibers for tissue 

engineering applications: a review. Tissue Eng 12: 1197–1211. 

31. Ferreira JL, Gomes S, Henriques C, et al. (2014) Electrospinning polycaprolactone dissolved in 
glacial acetic acid: Fiber production, nonwoven characterization, and in vitro evaluation. J Appl 

Polym Sci 131. 

32. Gupta RK, Kennel E, Kim KJ (2009) Polymer nanocomposites handbook, CRC press. 



663 

AIMS Materials Science                                                      Volume 4, Issue 3, 638-669. 

33. Patel H, Bonde M, Srinivasan G (2011) Biodegradable polymer scaffold for tissue engineering. 

Trends Biomater Artif Organs 25: 20–29. 
34. Powell S (2010) Langevin Dynamics Study of Water Diffusion in Model Articular Cartilage 

[Master’s Thesis], Queensland University of Technology Brisbane, Brisbane, Australia. 

35. Chew SY, Mi R, Hoke A, et al. (2008) The effect of the alignment of electrospun fibrous 
scaffolds on Schwann cell maturation. Biomaterials 29: 653–661. 

36. Gunatillake PA, Adhikari R (2003) Biodegradable synthetic polymers for tissue engineering. 

Eur Cells Mater 5: 1–16. 
37. Hu X, Liu S, Zhou G, et al. (2014) Electrospinning of polymeric nanofibers for drug delivery 

applications. J Control Release 185: 12–21. 

38. Bürck J, Heissler S, Geckle U, et al. (2013) Resemblance of electrospun collagen nanofibers to 
their native structure. Langmuir 29: 1562–1572. 

39. Gugutkov D, Gustavsson J, Ginebra MP, et al. (2013) Fibrinogen nanofibers for guiding 

endothelial cell behavior. Biomater Sci-UK 1: 1065–1073. 
40. Rnjak J, Li Z, Maitz PK, et al. (2009) Primary human dermal fibroblast interactions with open 

weave three-dimensional scaffolds prepared from synthetic human elastin. Biomaterials 30: 

6469–6477. 
41. Li M, Mondrinos MJ, Gandhi MR, et al. (2005) Electrospun protein fibers as matrices for tissue 

engineering. Biomaterials 26: 5999–6008. 

42. Khadka DB, Haynie DT (2012) Protein-and peptide-based electrospun nanofibers in medical 
biomaterials. Nanomed-Nanotechnol 8: 1242–1262. 

43. Malafaya PB, Silva GA, Reis RL (2007) Natural-origin polymers as carriers and scaffolds for 

biomolecules and cell delivery in tissue engineering applications. Adv Drug Deliver Rev 59: 
207–233. 

44. Badylak SF (2005) Regenerative medicine and developmental biology: the role of the 

extracellular matrix. Anat Rec Part B 287: 36–41. 
45. Matthews JA, Wnek GE, Simpson DG, et al. (2002) Electrospinning of collagen nanofibers. 

Biomacromolecules 3: 232–238. 

46. Matthews JA, Boland ED, Wnek GE, et al. (2003) Electrospinning of collagen type II: a 
feasibility study. J Bioact Compat Pol 18: 125–134. 

47. Shields KJ, Beckman MJ, Bowlin GL, et al. (2004) Mechanical properties and cellular 

proliferation of electrospun collagen type II. Tissue Eng 10: 1510–1517. 
48. Jha BS, Ayres CE, Bowman JR, et al. (2011) Electrospun collagen: a tissue engineering scaffold 

with unique functional properties in a wide variety of applications. J Nanomater 2011: 7. 

49. Zeugolis DI, Khew ST, Yew ES, et al. (2008) Electro-spinning of pure collagen nano-fibres—
just an expensive way to make gelatin? Biomaterials 29: 2293–2305. 

50. Yang L, Fitie CF, van der Werf KO, et al. (2008) Mechanical properties of single electrospun 

collagen type I fibers. Biomaterials 29: 955–962. 
51. Lannutti J, Reneker D, Ma T, et al. (2007) Electrospinning for tissue engineering scaffolds. 

Mater Sci Eng C 27: 504–509. 



664 

AIMS Materials Science                                                      Volume 4, Issue 3, 638-669. 

52. Liu T, Teng WK, Chan BP, et al. (2010) Photochemical crosslinked electrospun collagen 

nanofibers: synthesis, characterization and neural stem cell interactions. J Biomed Mater Res A 
95: 276–282. 

53. Jiang Q, Reddy N, Zhang S, et al. (2013) Water‐stable electrospun collagen fibers from a 

non‐toxic solvent and crosslinking system. J Biomed Mater Res A 101: 1237–1247. 
54. Kazanci M (2014) Solvent and temperature effects on folding of electrospun collagen 

nanofibers. Mater Lett 130: 223–226. 

55. Fiorani A, Gualandi C, Panseri S, et al. (2014) Comparative performance of collagen nanofibers 
electrospun from different solvents and stabilized by different crosslinkers. J Mater Sci-Mater 

M 25: 2313–2321. 

56. Dong Z, Wu Y, Clark RL (2011) Thermodynamic modeling and investigation of the formation 
of electrospun collagen fibers. Langmuir 27: 12417–12422. 

57. Meimandi-Parizi A, Oryan A, Moshiri A (2013) Role of tissue engineered collagen based 

tridimensional implant on the healing response of the experimentally induced large Achilles 
tendon defect model in rabbits: a long term study with high clinical relevance. J Biomed Sci 20: 

28. 

58. Rho KS, Jeong L, Lee G, et al. (2006) Electrospinning of collagen nanofibers: effects on the 
behavior of normal human keratinocytes and early-stage wound healing. Biomaterials 27: 

1452–1461. 

59. Liu T, Houle JD, Xu J, et al. (2012) Nanofibrous collagen nerve conduits for spinal cord repair. 
Tissue Eng A 18: 1057–1066. 

60. Kidoaki S, Kwon IK, Matsuda T (2005) Mesoscopic spatial designs of nano-and microfiber 

meshes for tissue-engineering matrix and scaffold based on newly devised multilayering and 
mixing electrospinning techniques. Biomaterials 26: 37–46. 

61. Telemeco T, Ayres C, Bowlin G, et al. (2005) Regulation of cellular infiltration into tissue 

engineering scaffolds composed of submicron diameter fibrils produced by electrospinning. 
Acta Biomater 1: 377–385. 

62. Zhong SP, Teo WE, Zhu X, et al. (2007) Development of a novel collagen–GAG nanofibrous 

scaffold via electrospinning. Mater Sci Eng C 27: 262–266. 
63. Casper CL, Yang W, Farach-Carson MC, et al. (2007) Coating electrospun collagen and gelatin 

fibers with perlecan domain I for increased growth factor binding. Biomacromolecules 8: 1116–

1123. 
64. Barnes CP, Pemble IV CW, Brand DD, et al. (2007) Cross-linking electrospun type II collagen 

tissue engineering scaffolds with carbodiimide in ethanol. Tissue Eng 13: 1593–1605. 

65. Foltran I, Foresti E, Parma B, et al. (2008) Novel biologically inspired collagen nanofibers 
reconstituted by electrospinning method. Macromol Symp 269: 111–118. 

66. Dong B, Arnoult O, Smith ME, et al. (2009) Electrospinning of collagen nanofiber scaffolds 

from benign solvents. Macromol Rapid Comm 30: 539–542. 
67. Timnak A, Gharebaghi FY, Shariati RP, et al. (2011) Fabrication of nano-structured electrospun 

collagen scaffold intended for nerve tissue engineering. J Mater Sci-Mater M 22: 1555–1567. 



665 

AIMS Materials Science                                                      Volume 4, Issue 3, 638-669. 

68. Wang Y, Yao M, Zhou J, et al. (2011) The promotion of neural progenitor cells proliferation by 

aligned and randomly oriented collagen nanofibers through β1 integrin/MAPK signaling 
pathway. Biomaterials 32: 6737–6744. 

69. Meng L, Arnoult O, Smith M, et al. (2012) Electrospinning of in situ crosslinked collagen 

nanofibers. J Mater Chem 22: 19412–19417. 
70. Gorgieva S, Kokol V (2011) Collagen-vs. gelatine-based biomaterials and their 

biocompatibility: review and perspectives, INTECH open access publisher Croatia. 

71. Heydarkhan-Hagvall S, Schenke-Layland K, Dhanasopon AP, et al. (2008) Three-dimensional 
electrospun ECM-based hybrid scaffolds for cardiovascular tissue engineering. Biomaterials 29: 

2907–2914. 

72. Ratanavaraporn J, Rangkupan R, Jeeratawatchai H, et al. (2010) Influences of physical and 
chemical crosslinking techniques on electrospun type A and B gelatin fiber mats. Int J Biol 

Macromol 47: 431–438. 

73. Masutani EM, Kinoshita CK, Tanaka TT, et al. (2014) Increasing thermal stability of gelatin by 
UV-induced cross-linking with glucose. Int J Biomater 2014. 

74. Zhang Y, Venugopal J, Huang ZM, et al. (2006) Crosslinking of the electrospun gelatin 

nanofibers. Polymer 47: 2911–2917. 
75. Panzavolta S, Gioffrè M, Focarete ML, et al. (2011) Electrospun gelatin nanofibers: 

optimization of genipin cross-linking to preserve fiber morphology after exposure to water. Acta 

Biomater 7: 1702–1709. 
76. Sisson K, Zhang C, Farach-Carson MC, et al. (2009) Evaluation of cross-linking methods for 

electrospun gelatin on cell growth and viability. Biomacromolecules 10: 1675–1680. 

77. Madaghiele M, Piccinno A, Saponaro M, et al. (2009) Collagen-and gelatine-based films 
sealing vascular prostheses: evaluation of the degree of crosslinking for optimal blood 

impermeability. J Mater Sci-Mater M 20: 1979–1989. 

78. Ki CS, Baek DH, Gang KD, et al. (2005) Characterization of gelatin nanofiber prepared from 
gelatin–formic acid solution. Polymer 46: 5094–5102. 

79. Powell H, Boyce S (2008) Fiber density of electrospun gelatin scaffolds regulates 

morphogenesis of dermal–epidermal skin substitutes. J Biomed Mater Res A 84: 1078–1086. 
80. Okutan N, Terzi P, Altay F (2014) Affecting parameters on electrospinning process and 

characterization of electrospun gelatin nanofibers. Food Hydrocolloid 39: 19–26. 

81. Yao R, He J, Meng G, et al. (2016) Electrospun PCL/Gelatin composite fibrous scaffolds: 
mechanical properties and cellular responses. J Biomat Sci-Polym E 27: 824–838. 

82. Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, et al. (2008) Electrospun poly (ɛ-

caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials 29: 
4532–4539. 

83. Dubský M, Kubinová Š, Širc J, et al. (2012) Nanofibers prepared by needleless electrospinning 

technology as scaffolds for wound healing. J Mater Sci-Mater M 23: 931–941. 
84. Huang ZM, Zhang Y, Ramakrishna S, et al. (2004) Electrospinning and mechanical 

characterization of gelatin nanofibers. Polymer 45: 5361–5368. 

85. Zhang Y, Ouyang H, Lim CT, et al. (2005) Electrospinning of gelatin fibers and gelatin/PCL 
composite fibrous scaffolds. J Biomed Mater Res B 72: 156–165. 



666 

AIMS Materials Science                                                      Volume 4, Issue 3, 638-669. 

86. Choktaweesap N, Arayanarakul K, Aht-Ong D, et al. (2007) Electrospun gelatin fibers: effect of 

solvent system on morphology and fiber diameters. Polym J 39: 622. 
87. Song JH, Kim HE, Kim HW (2008) Production of electrospun gelatin nanofiber by water-based 

co-solvent approach. J Mater Sci-Mater M 19: 95–102. 

88. Zhang S, Huang Y, Yang X, et al. (2009) Gelatin nanofibrous membrane fabricated by 
electrospinning of aqueous gelatin solution for guided tissue regeneration. J Biomed Mater Res 

A 90: 671–679. 

89. Chen HC, Jao WC, Yang MC (2009) Characterization of gelatin nanofibers electrospun using 
ethanol/formic acid/water as a solvent. Polym Advan Technol 20: 98–103. 

90. Sisson K, Zhang C, Farach‐Carson MC, et al. (2010) Fiber diameters control osteoblastic cell 
migration and differentiation in electrospun gelatin. J Biomed Mater Res A 94: 1312–1320. 

91. Martin SL, Vrhovski B, Weiss AS (1995) Total synthesis and expression in Escherichia coli of 

a gene encoding human tropoelastin. Gene 154: 159–166. 

92. Yeo GC, Aghaei-Ghareh-Bolagh B, Brackenreg EP, et al. (2015) Fabricated Elastin. Adv 
Healthc Mater 4: 2530–2556. 

93. Nivison‐Smith L, Weiss AS (2012) Alignment of human vascular smooth muscle cells on 
parallel electrospun synthetic elastin fibers. J Biomed Mater Res A 100: 155–161. 

94. Nivison-Smith L, Rnjak J, Weiss AS (2010) Synthetic human elastin microfibers: stable cross-

linked tropoelastin and cell interactive constructs for tissue engineering applications. Acta 

Biomater 6: 354–359. 
95. Rnjak-Kovacina J, Wise SG, Li Z, et al. (2011) Tailoring the porosity and pore size of 

electrospun synthetic human elastin scaffolds for dermal tissue engineering. Biomaterials 32: 

6729–6736. 
96. Boland ED, Matthews JA, Pawlowski KJ, et al. (2004) Electrospinning collagen and elastin: 

preliminary vascular tissue engineering. Front Biosci 9: e32. 

97. McKenna KA, Hinds MT, Sarao RC, et al. (2012) Mechanical property characterization of 
electrospun recombinant human tropoelastin for vascular graft biomaterials. Acta Biomater 8: 

225–233. 

98. McKenna KA, Gregory KW, Sarao RC, et al. (2012) Structural and cellular characterization of 
electrospun recombinant human tropoelastin biomaterials. J Biomater Appl 27: 219–230. 

99. Lee KY, Jeong L, Kang YO, et al. (2009) Electrospinning of polysaccharides for regenerative 

medicine. Adv Drug Deliver Rev 61: 1020–1032. 
100. Li J, He A, Han CC, et al. (2006) Electrospinning of hyaluronic acid (HA) and HA/gelatin 

blends. Macromol Rapid Comm 27: 114–120. 

101. Schiffman JD, Schauer CL (2008) A review: electrospinning of biopolymer nanofibers and their 
applications. Polym Rev 48: 317–352. 

102. Um IC, Fang D, Hsiao BS, et al. (2004) Electro-spinning and electro-blowing of hyaluronic acid. 

Biomacromolecules 5: 1428–1436. 
103. Brenner EK, Schiffman JD, Toth LJ, et al. (2013) Phosphate salts facilitate the electrospinning 

of hyaluronic acid fiber mats. J Mater Sci 48: 7805–7811. 

104. Brenner EK, Schiffman JD, Thompson EA, et al. (2012) Electrospinning of hyaluronic acid 
nanofibers from aqueous ammonium solutions. Carbohyd Polym 87: 926–929. 



667 

AIMS Materials Science                                                      Volume 4, Issue 3, 638-669. 

105. Liu Y, Ma G, Fang D, et al. (2011) Effects of solution properties and electric field on the 

electrospinning of hyaluronic acid. Carbohyd Polym 83: 1011–1015. 
106. Xu S, Li J, He A, et al. (2009) Chemical crosslinking and biophysical properties of electrospun 

hyaluronic acid based ultra-thin fibrous membranes. Polymer 50: 3762–3769. 

107. Yao S, Wang X, Liu X, et al. (2013) Effects of ambient relative humidity and solvent properties 
on the electrospinning of pure hyaluronic acid nanofibers. J Nanosci Nanotechno 13: 4752–

4758. 

108. Wang X, Um IC, Fang D, et al. (2005) Formation of water-resistant hyaluronic acid nanofibers 
by blowing-assisted electro-spinning and non-toxic post treatments. Polymer 46: 4853–4867. 

109. Hsu FY, Hung YS, Liou HM, et al. (2010) Electrospun hyaluronate–collagen nanofibrous 

matrix and the effects of varying the concentration of hyaluronate on the characteristics of 
foreskin fibroblast cells. Acta Biomater 6: 2140–2147. 

110. Uppal R, Ramaswamy GN, Arnold C, et al. (2011) Hyaluronic acid nanofiber wound 

dressing—production, characterization, and in vivo behavior. J Biomed Mater Res B 97: 20–29. 
111. Ahmed Z, Underwood S, Brown R (2000) Low concentrations of fibrinogen increase cell 

migration speed on fibronectin/fibrinogen composite cables. Cytoskeleton 46: 6–16. 

112. Ye Q, Zünd G, Benedikt P, et al. (2000) Fibrin gel as a three dimensional matrix in 
cardiovascular tissue engineering. Eur J Cardio-Thorac 17: 587–591. 

113. Sell SA, Francis MP, Garg K, et al. (2008) Cross-linking methods of electrospun fibrinogen 

scaffolds for tissue engineering applications. Biomed Mater 3: 045001. 
114. Wnek GE, Carr ME, Simpson DG, et al. (2003) Electrospinning of nanofiber fibrinogen 

structures. Nano Lett 3: 213–216. 

115. Sell S, Barnes C, Simpson D, et al. (2008) Scaffold permeability as a means to determine fiber 
diameter and pore size of electrospun fibrinogen. J Biomed Mater Res A 85: 115–126. 

116. Carlisle CR, Coulais C, Namboothiry M, et al. (2009) The mechanical properties of individual, 

electrospun fibrinogen fibers. Biomaterials 30: 1205–1213. 
117. McManus M, Boland E, Sell S, et al. (2007) Electrospun nanofibre fibrinogen for urinary tract 

tissue reconstruction. Biomed Mater 2: 257. 

118. McManus MC, Boland ED, Simpson DG, et al. (2007) Electrospun fibrinogen: feasibility as a 
tissue engineering scaffold in a rat cell culture model. J Biomed Mater Res A 81: 299–309. 

119. Guadiz G, Sporn LA, Simpson-Haidaris PJ (1997) Thrombin cleavage-independent deposition 

of fibrinogen in extracellular matrices. Blood 90: 2644–2653. 
120. Stitzel J, Liu J, Lee SJ, et al. (2006) Controlled fabrication of a biological vascular substitute. 

Biomaterials 27: 1088–1094.  

121. Schnell E, Klinkhammer K, Balzer S, et al. (2007) Guidance of glial cell migration and axonal 
growth on electrospun nanofibers of poly-ε-caprolactone and a collagen/poly-ε-caprolactone 

blend. Biomaterials 28: 3012–3025. 

122. López-Calzada G, Hernandez-Martínez AR, Cruz-Soto M, et al. (2016) Development of 
meniscus substitutes using a mixture of biocompatible polymers and extra cellular matrix 

components by electrospinning. Mater Sci Eng C 61: 893–905. 

123. Koh HS, Yong T, Chan CK, et al. (2008) Enhancement of neurite outgrowth using nano-
structured scaffolds coupled with laminin. Biomaterials 29: 3574–3582. 



668 

AIMS Materials Science                                                      Volume 4, Issue 3, 638-669. 

124. Zhu Y, Leong MF, Ong WF, et al. (2007) Esophageal epithelium regeneration on fibronectin 

grafted poly(L-lactide-co-caprolactone) (PLLC) nanofiber scaffold. Biomaterials 28: 861–868. 
125. Cheng Y, Ramos D, Lee P, et al. (2014) Collagen functionalized bioactive nanofiber matrices 

for osteogenic differentiation of mesenchymal stem cells: bone tissue engineering. J Biomed 

Nanotechnol 10: 287–298. 
126. Yeo IS, Oh JE, Jeong L, et al. (2008) Collagen-based biomimetic nanofibrous scaffolds: 

preparation and characterization of collagen/silk fibroin bicomponent nanofibrous structures. 

Biomacromolecules 9: 1106–1116. 
127. Dhandayuthapani B, Krishnan UM, Sethuraman S (2010) Fabrication and characterization of 

chitosan–gelatin blend nanofibers for skin tissue engineering. J Biomed Mater Res B 94: 264–

272. 
128. Altman GH, Diaz F, Jakuba C, et al. (2003) Silk-based biomaterials. Biomaterials 24: 401–416. 

129. Plowman JE, Deb-Choudhury S, Dyer JM (2013) Fibrous protein nanofibers, In: Gerrard JA, 

Protein Nanotechnology: Protocols, Instrumentation, and Applications, 2nd Eds, Humana Press, 
61–76. 

130. Kim IY, Seo SJ, Moon HS, et al. (2008) Chitosan and its derivatives for tissue engineering 

applications. Biotechnol Adv 26: 1–21. 
131. Wen X, Wang Y, Guo Z, et al. (2014) Cauda Equina-Derived Extracellular Matrix for 

Fabrication of Nanostructured Hybrid Scaffolds Applied to Neural Tissue Engineering. Tissue 

Eng A 21: 1095–1105. 
132. McManus MC, Boland ED, Koo HP, et al. (2006) Mechanical properties of electrospun 

fibrinogen structures. Acta Biomater 2: 19–28. 

133. Baker S, Sigley J, Helms CC, et al. (2012) The mechanical properties of dry, electrospun 
fibrinogen fibers. Mater Sci Eng C 32: 215–221. 

134. Wan C, Frydrych M, Chen B (2011) Strong and bioactive gelatin–graphene oxide 

nanocomposites. Soft Matter 7: 6159–6166. 
135. Nadeem D, Kiamehr M, Yang X, et al. (2013) Fabrication and in vitro evaluation of a sponge-

like bioactive-glass/gelatin composite scaffold for bone tissue engineering. Mater Sci Eng C 33: 

2669–2678. 

136. Merkle VM, Zeng L, Slepian MJ, et al. (2014) Core‐shell nanofibers: Integrating the bioactivity 
of gelatin and the mechanical property of polyvinyl alcohol. Biopolymers 101: 336–346. 

137. Hersel U, Dahmen C, Kessler H (2003) RGD modified polymers: biomaterials for stimulated 
cell adhesion and beyond. Biomaterials 24: 4385–4415. 

138. Paletta JRJ, Bockelmann S, Walz A, et al. (2010) RGD-functionalisation of PLLA nanofibers 

by surface coupling using plasma treatment: influence on stem cell differentiation. J Mater Sci-
Mater M 21: 1363–1369.  

139. Nomizu M, Utani A, Shiraishi N, et al. (1992) The all-D-configuration segment containing the 

IKVAV sequence of laminin A chain has similar activities to the all-L-peptide in vitro and in 
vivo. J Biol Chem 267: 14118–14121. 

140. Lodish H, Zipursky SL (2001) Molecular cell biology. Biochem Mol Biol Edu 29: 126–133. 



669 

AIMS Materials Science                                                      Volume 4, Issue 3, 638-669. 

141. Peh P, Lim NSJ, Blocki A, et al. (2015) Simultaneous delivery of highly diverse bioactive 

compounds from blend electrospun fibers for skin wound healing. Bioconjugate Chem 26: 
1348–1358. 

© 2017 Lorenza Draghi, et al., licensee AIMS Press. This is an open 
access article distributed under the terms of the Creative Commons 

Attribution License (http://creativecommons.org/licenses/by/4.0) 


