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Abstract

This work deals with Direct Numerical Simulations (DNS) and Large Eddy Simula-
tions (LES) of a turbulent gravity current in a gas, performed by means of a Discontinuous
Galerkin (DG) Finite Elements method employing, in the LES case, LES-DG turbulence
models previously introduced by the authors. Numerical simulations of non-Boussinesq
lock-exchange benchmark problems show that, in the DNS case, the proposed method
allows to correctly reproduce relevant features of variable density gas flows with gravity.
Moreover, the LES results highlight, also in this context, the excessively high dissipation
of the Smagorinsky model with respect to the Germano dynamic procedure.

Keywords: Large Eddy Simulation, dynamical models, density currents, low
Mach number flows, Discontinuous Galerkin method.

AMS subject classification: 65M60,65Z205,76F25,76F50,76F65.

1. Introduction

Gravity currents are frequently encountered in geophysical flows, when a heavier
fluid propagates into a lighter one in a predominantly horizontal direction because of the
difference in hydrostatic pressure at the boundary between the two fluids. In atmospheric
gravity currents, such as thunderstorm outflows, density difference is typically caused by
the temperature difference between the cold front and the warmer surrounding air. In
oceanic flows, density difference is caused by salinity and temperature gradients, while
in pyroclastic flows the density difference is due to the presence of suspended particles
in the flow. The evolution of gravity currents is also very important for some engineering
applications, such as the accidental leakage of industrial gases, see e.g. [1].

In gravity currents, the density difference between the lighter and heavier fluid can
range from very small to very large. In case of small density differences, density variations
in the momentum equation can be neglected in the inertia term, but retained in the
buoyancy term. This approximation is called Boussinesq approximation, see e.g. [2], and
is sufficiently accurate for density differences up to a few percent. In most experimental
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LES of gravity currents with high order DG method

and computational studies of gravity currents reported in the literature, the Boussinesq
approximation has been employed. However, in several of the above listed phenomena
non-Boussinesq effects become important.

A wide range of interesting and important turbulent phenomena arise in gravity
driven currents, such as breaking internal waves and Kelvin-Helmholtz instabilities. While
simple algebraic closures have long been employed in many applications, see e.g. [3], a
number of recent studies have been devoted to LES of Boussinesq gravity currents, see
e.g. [4], [5], [6]. However, to the best of our knowledge, no published results are available
in the non-Boussinesq case.

In the present work, we present a first validation of the Large Eddy Simulation model
recently proposed in [7] applied to the study of turbulent gravity currents in a gas. This
model is based on a high order, Discontinuous Galerkin finite element discretization. Such
a numerical framework allows to generalize the concept of LES filter as a projection onto
the polynomial space related to the discretization, thus making it possible to apply it to
arbitrary unstructured meshes. This is conceptually close to what is done in Variational
Multi Scale (VMS) models, see e.g. [8], [9]. The LES model employed in [7], however,
was also the first to combine a VMS approach with more complex dynamical models for
the subgrid stresses. Furthermore, we model gravity currents via the full Navier-Stokes
equations for a compressible fluid, thus allowing for the simulation of both Boussinesq
and non-Boussinesq gravity currents. In the limit of very low Mach number, this entails a
loss of efficiency for the explicit time discretization presently employed in the [7] model.
For this reason, a semi-implicit discretization is presently being developed. In this work,
however, rather than on computational efficiency considerations we will focus on the
performance of the turbulence model.

We provide a first assessment of the ability of our DG-LES model to reproduce the
incompressible results obtained in [10]. The benchmark considered is the canonical lock-
exchange test case. It appears to be particularly interesting because it has been widely
investigated both experimentally and numerically and, moreover, it provides a quite com-
plex flow evolution (with the presence of shear driven mixing and internal waves), while
being specified by simple and unambiguous forcing and initial/boundary conditions, see
e.g. the discussion in [6]. We consider the lock-exchange benchmark in the non-Boussinesq
regime, carrying out first simulations where all the turbulent scales of motion are cor-
rectly captured by the computational mesh (Direct Numerical Simulations). We then
present results of simulations at higher Reynolds number on a mesh that is too coarse
for complete resolution of all turbulent scales. Large Eddy Simulations have been carried
out with the classic Smagorinsky model and with the Germano dynamic model. The
numerical results reported in section 5 show that the method proposed in [7] is able to
reproduce correctly all the relevant features of this important benchmark. The perfor-
mance of the Smagorinsky model confirms the finding of [7] that also VMS approaches
can benefit substantially from the use of more sophisticated subgrid stress models. On
the other hand, the results also highlights the need for more detailed turbulence statistics
than the bulk dissipation rate for a complete assessment of the LES models performance.

The paper is organized as follows. In section 2, the general model problem is intro-
duced. Section 3 is devoted to the description of the turbulence models that have been
applied. The space and time discretizations employed and their link with the proposed
turbulence modeling approaches are presented in section 4. The results of the numerical
simulations are presented in section 5, while some conclusions and perspectives for future
work are discussed in section 6.

129

Brought to you by | Politecnico di Milano - Biblioteca Delle Ingegnerie Bovisa
Authenticated
Download Date | 9/6/17 1:32 PM



Bassi, Abba, Bonaventura, Valdettaro

2. The model problem

We consider the compressible Navier—Stokes equations, which can be written in di-
mensional form (denoted by the superscript “*”), employing the Einstein notation, as:

(1a) I p* + 0, (p"uj) =0,

O (p*ui) + 95, (p*uiuj) + 0z, p" — 0,04
(1b) =p'fis

0 (p"e") + Opx (p" R uj) — O, (uj075) + Or, 45
(1c) = p" fjuj,

where p*, u* and e* denote density, velocity and specific total energy, respectively, p* is
the pressure, f* is a prescribed forcing (in the present investigation the gravity forcing is
considered and we have f* = (0,0, —g")), h* is the specific enthalpy, defined by p*h* =
p*e* +p*, and o* and q* are the diffusive momentum and heat fluxes. Equation (1) must
be complemented with the state equation

where T* is the temperature and R* is the ideal gas constant. The temperature can then

be expressed in terms of the prognostic variables introducing the specific internal energy
*
e, so that

1
(3) = +jupuy, T =

where ¢}, is the specific heat at constant volume. Finally, the model is closed with the
constitutive equations for the diffusive fluxes:

* %

d Ke
() of =uwstr, g =L,

where S; = 07, uj + 07, u} and Sidj’* =85 - %S};kéij, ¢y = R* + ¢} is the specific heat
at constant pressure, Pr denotes the Prandtl number, and the dynamic viscosity u* is
assumed to depend only on temperature T according to the power law

0\ Q
5) b @) =i (1)

0
following Sutherland’s hypothesis (see e.g. [11]). The dimensionless form of the problem
is obtained assuming four reference quantities: pr, Ly, Vi and T;.. All the other reference

quantities are derived from these fundamental ones by means of dimensional considera-
tions (see Table 1). As a result, the following non dimensional form will be used:

(6a) dp + 05(puj) =0,

(6b) Ot(pu;) + 9 (puiuj) + 0ip — 0j0i5 = pfi,
dc(pe) + 0;(phuj) — 9;(uioij)

(6¢) +9;a; = pfjuy,

where f = (0,0,—1/Fr?). Fr is the Froude number, which is related to the non-
dimensional gravity acceleration by the following equation:

g _ gLy 1
7 _9 _ _
(7) 9= vz T
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Table 1. Reference physical quantitites

Physical Reference Fundamental
quantities physical physical
quantities quantities
Length Ly, -
Density Pr -
Velocity Vi -
Temperature T -
Pressure pr or VT2
Gas constant R, V2T,
Time tr Ly/Vr
Internal energy er V2
Dynamic viscosity L prLr Vi
Thermal conductivity Ar pr Vi3 Ly )Ty
Specific heat (const. vol.) Cu,r V2 /T
Specific heat (const. press.) Cp,r V2T,

Some other important quantities and equations in non-dimensional form are derived in
the following. The non-dimensional form of the gas constant is given by:

_R* _R'T, 1

" Rr V2 yMa?’

(8) R

where Ma is the Mach number and ~ the ratio between specific heats. The non-
dimensional specific heat at constant volume is:
cy Ty R*T, 1

9 = = = = .
( ) v Cu,r Vr2 ('Y - 1)Vr2 7(7 - 1)Ma2

Using equations (8) and (9) we obtain for the specific heat at constant pressure: ¢p =
1/(y— 1)Ma2. The non-dimensional form of the state equation is obtained starting from
(2). Expressing the dimensional quantities as a function of the non-dimensional and
reference ones we have:

V2
(10) prViip = pro-RTT,
I

dividing by prV,«2 and using equation (8) we obtain:

pT
11 =pRT = .
(1) p=r yMa?

Starting from the dimensional equation (3), the non-dimensional internal energy is ob-
tained as:

T
12 =
12) T = DyMa?’
while the total energy is:
1
(13) e=¢e+ o Uk U
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The dynamic viscosity p is given by:

w o TTT) S N
14 == = = T,
(14) b= ™ oLV ( Ty Re

where the last equality holds because we set T51 = T In [10] the non-dimensional dynamic
viscosity is:

P
(15) k=5
Since in our simulations the pressure field is substantially constant during the compu-
tation, this dependency upon density can be reproduced by retaining the Sutherland
law (14) and by setting the parameter v = —1. Alternatively equation (15) can be
directy employed. The thermal conductivity A is given by A = pcp/Pr, while the non-
dimensional constitutive equations for the diffusive fluxes are o;; = ,quij, q; = —\O;T,

1
with Sij = Bjui + 8¢uj and S,ﬁ] = Sij — gskkél-j.

3. The LES model

We will present here a compact description of the LES models employed in this paper.
We refer to [12] for a general introduction to LES modelling and to [7] for a more complete
description of these and other LES models. As it is well known, the key ingredient of a
LES model is the filtering operator. In the approach proposed in [7], the filter operator
is embedded in the spatial DG discretization. The details of this realization of the filter
operator will be given in section 4. Here, we only anticipate that the filtering operator is
denoted by - and that it is associated with the spatial scale A. The spatial scale depends
on the local element size and is as a consequence a piecewise constant function in space.

As customary in LES of compressible flows, see e.g. [13], we introduce also the Favre
filtering operator -~ which is defined implicitly by the Favre decomposition. Given a generic
function f, the Favre decomposition is defined as:

(16) pf =5l

This decomposition is introduced for velocity, total energy, internal energy, enthalpy and
temperature, yielding the equations

(17a) pu; = pu;,
I A

(17b) pe = pe = pe; + 5 (puw;c + Tlck) ,
N 1 ~

1 pei =pé; = — T

(17¢) Pei =P = o a2

(17d) ph = ph = pe + 7,

(17e) pT = pT = yMa’p,

where the last equality in (17b) holds because of equation (13) while the last equalities
in equations (17c) and (17e) follow from the state equation written in the usual form (eq.
(11)) and in the internal energy form (eq. (12)) respectively. Notice that 7y in equation
(17Db) is the trace of the subgrid stress tensor which is defined as:

(18) Tij = PUU; — ﬁﬁzﬂ]
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We introduce also the filtered counterpart of the diffusive fluxes:
(19) gij = uSiy, @ =-2T,
with @j = 0;u; + Oju; and gzdj = g}j — %gkkf;ij- Given these definitions, the filter

operator is applied to the non-dimensional form of the Navier-Stokes equations (6), thus
obtaining:

(20a) dip+ 9;(puj) =0
O (pu;) + 9 (pusij) + 9;p — 0G5
(20b) = 78j7’ij - 8jef.;‘?’s +pfi

Ot (pe) + 0; (ﬁflﬂj) - 0j (ﬂﬁij) + 0;q;
— 0, (b + 2,65

(20c) - aj‘g;gs + pfity,
where
(21) &8 =5ij —Gij,  (phu;)™ = phu; — phil;,

SgS _ oo——— _ .5 .. 9585 _ = .
¢j = U045 — U045, 92 =4q; — 4i-

In the subgrid terms, the same simplifications are performed as in [7], to which we refer
the reader for a more detailed discussion. As a result the filtered equations (20) become:

(22a) 0+ 0; (i) =0
0 (ptis) + 0; (Pliit; ) + 0ip — 0554
(22b) = —0;7ij +pfi
8t (pe) + 0, (ﬁ%ﬁj) — 05 (UiGis) + 9;4;
1 1 - o~

The term 7;; in the momentum equation (22b) and Q;gs and J]s.gs in energy conservation
equation (22c) are subgrid terms and need modeling. In the present work both the classic
Smagorinsky model and the Germano dynamic procedure [14] have been employed.

In Smagorinsky-type subgrid models, the deviatoric part of the subgrid stress tensor
7i; in (22) is modelled by a scalar turbulent viscosity 1/°%":

1 _ ~
(23a) Tij = 3ThkOij = —p S,

(23b) V8 = C3A%S),

~ 1~ ~
where Cg = 0.1 is the Smagorinsky constant, |$|2 = éSijSZ-j and A is the filter scale.

The isotropic part of the subgrid stress tensor can be modelled as in [7]:
(24) ok = CrpA*|S|.
The subgrid temperature flux is set proportional to the resolved temperature gradient:

1 _ qosn ~
(25) QR = ~ e o80T,
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where Pr®® is a subgrid Prandtl number. Finally the term J;®° is treated as in [7]:

1
(26) T8~ QT+ Ui Thg

In the Germano dynamic model [14], the terms Cg and C; in the Smagorinsky model
are no more chosen a priori for the whole domain, but are computed dynamically as
functions of the resolved field. The deviatoric part of the stress tensor is the same as in
the Smagorinsky model:

1 B o
(27) Tij = 3Tk = —pCsA?|S|SH.

The coefficient C'g is dynamically computed by introducing a test filter operator °. This
operator is linked to the numerical discretization and will be precisely defined in the
next section; here it will suffice to point out that, as the filter operator -, the test filter
is associated to a spatial scale A (larger than the spatial scale A associated to 7). A
Favre filter denoted with * is associated to the test filter through the following Favre
decomposition:

(28) pf =pf.
If the test filter * is applied to the momentum equation (22b) we obtain:

Ot (p;) + 95 (ﬁﬁlﬂ]) + 0;p — 00,4

(29a) = —8j (%\z] + ﬁij) R
where
(30) ['ij = ﬁ’ljiﬂj - ﬁﬁlij

is the Leonard stress tensor. We now assume that the deviatoric part of the Leonard
stress tensor can be modelled using an eddy viscosity model:

(31) 7h 4 £ = —pA?S8|Cs8 s,

Substituting (27) for Tzdj and using a least square approach we obtain for the Smagorinsky

constant C'g the following expression:

LER;
39 Cg ="
(32) RiiRei

where Ry, = pAZ2 \§|§gl —§32|§|§dkl. The same dynamic procedure is applied also to the
isotropic component of the subgrid stress tensor as in [7]. A similar approach is proposed
also for the subgrid terms in the energy equation. For the subgrid heat flux we obtain:

(33) Q3 = —pA?|S|Cod;T.
After having applied a dynamic procedure we have:
LORY
(34) Co=—L-1,
QpQ
Rk Rk

with R? = pA2|8|0;T — pA?|S|9;T and lZZQ = pu; T — pu; T temperature Leonard flux.
The subgrid turbulent diffusion flux is defined as in [7]:

~ 1~ _ - .
(35) JZ-SgS = —ﬁA2|S|CJ87; <§ukuk> + 2Up Tk + Ui TR
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where C'; is dinamically computed. It is important to point out that all the dynamic coef-
ficients are averaged over each element in order to avoid numerical instabilities; moreover,
since the dynamic model allows backscattering, a clipping procedure analogous to the one
introduced in [7] is applied to ensure that the total dissipation, resulting from both the
viscous and the subgrid stresses, is positive.

4. Numerical method

The equations introduced in section 2, together with the subgrid scale models of
section 3, are spatially discretized by the Discontinuous Galerkin finite elements method.
The DG approach is analogous to that described in [15]. In particular the Local Dis-
continuous Galerkin (LDG) method is chosen for the approximation of the second order
viscous terms (see [16], [17], [18], [19]). In the LDG method, the non-dimensional system
of Navier-Stokes equations (22) is rewritten introducing an auxiliary variable G, so that

U +V -F(U) =V -F'(U,QG)

(36) -V -F*¥(U,G)+S
g - VLP = 07
_ = =T =T : : _ =T AT :
where U = [p,pu”,pe]” are the prognostic variables, ¢ = [u",T]" are the variables

whose gradients enter the viscous fluxes (19), as well as the turbulent ones and S repre-
sents the source terms. The fluxes in (36) are written in the following compact form:

~ 1T
FC = [pi,pti @ i+ T, ph|

T
F¥ — [o,aﬁTa—a] 7

and

sos 1 S ~
™ = [0,77 1z QT+ 5 (I - Tkku)] )

(y=1)

S = [0, 7F, pf - ]

Here, 7, Q%® and J*&° are given by (23), (25) and (26), respectively, for the Smagorinsky
model while they are given by (27), (33) and (35) for the dynamic model.

To define the space discretization, a tessellation 7}, of €2 into tetrahedral elements K
such that @ = U, K and K N K " = () is introduced and the finite element space is
defined as:

(37) Vh:{vaLz(Q):wh|K€]P’q(K),VKGTh},

where ¢ is a nonnegative integer and P9(K) denotes the space of polynomial functions
of total degree at most ¢ on K. For each element, the outward unit normal on 0K will
be denoted by ngg . Given d the dimension of the problem the numerical solution is now
defined as (Up,, Gp,) € (V) 2D | (V)% such that, VK € Ty, Yoy, € Vi, Vrp, € (Vi)
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(38&) di/ Uhvh dX—/ F(Uh,gh)~Vvh dx
t /K K
+/ F*(Uhvgh)‘naKUhdJ:/ Swy, dx,
oK K
(38b) /gh-rhder/ @erV - rpdx
K K

—/ ¢ 'y -rpdo =0,
0K

where Uh = [ph,phuh ,pheh]T, $h = [uh ,Th]T, F=F°-F" + Fsgs7 and F*, cp* de-
note the so-called numerical fluxes. The numerical fluxes are responsible for the coupling
among different elements. In this work we have tested a) the Rusanov flux, b) a modified
version of the Rusanov flux appropriate for low Mach number flows, employing the veloc-
ity of the fluid as upwinding velocity c) the exact Godunov Riemann solver (implemented
as in [20]). In order to avoid some numerical difficulties in simulations with small density
differences (see the discussion in section 5.3), the last one has been extensively employed
in the simulations for F*. The centered flux is employed for ¢*. On each element, the
unknowns are expressed in terms of an orthogonal polynomial basis, yielding what is
commonly called a modal DG formulation. All the integrals are evaluated using quadra-
ture formulae from [21], which are exact for polynomial orders up to 2¢. This results in a
diagonal mass matrix in the time derivative term of (38) and simplifies the computation
of L? projections to be introduced shortly in connection with the LES filters.

In the following the filter operators = and =, introduced in section 3, will be explicitly
defined in the context of the DG finite elements method. In particular the filters operators
are defined in terms of an L? projection, as suggested e.g. in [22], [23], [24]. Given a
subspace V C L? (Q), let 11y, : L? (©2) = V be the associated projector defined by

/Hvuvdx:/uvdx, Yu,v € V,
Q Q

where the integrals are evaluated with the same quadrature rule used in (38). For v €
L?(9), the filter ~ is now defined by

(39) v =1y, v.

Notice that the application of this filter is built in the discretization process and equivalent
to it. Therefore, once the discretization of equations (36) has been performed, only -
filtered quantities are computed by the model. To define the test filter, we then introduce

(40) ﬁh:{vheLz(Q):vh|KeP3(K),VKeTh},

where 0 < § < ¢, and we let, for v € L?(1),

(41) 7 =1, v.

By our previous identification of the - filter and the discretization, the quantities p, pu
and pe can be identified with py, ppup and ppey,, respectively. Therefore, they belong
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to Vp, for which an orthogonal basis is employed by the numerical method. As a result,
the computation of pj, ppuy, and ppeyp, is straightforward and reduces to zeroing the last
coefficients in the local expansion. Assuming that the analytic solution is defined in some
infinite dimensional subspace of L2, heuristically, V;, C L? is associated to the scales
which are represented by the model, while 9h C Vy C L? is associated to the spatial
scales well resolved by the numerical approximation.

The filtering operations (39) and (41) are realized by imposing pointwise the condi-
tions (17), (18) and (19). The Leonard stress tensors are computed using (41) with the
quadrature rules given in [21]. Notice that the filters defined by L? projections do not
commute with differential operators. However, in this work we neglect the commutation
errors.

The spatial scales A and A associated with the two filters (39) and (41) can be
computed by dividing the element diameter by the cubic root (or the square root in two
dimensions) of the number of degrees of freedom of P/(K), for A, and Pa(K ), for A; the
filter scales are, as a consequence, piecewise constant functions in space. Finally, time
integration was performed by a 4 stage explicit Runge-Kutta method.

All the computations were performed using the implementation of the above de-
scribed method provided in the finite element library FEMilaro [25]. This tool exploits
modern FORTRAN/MPI features, aims at providing a flexible environment for the de-
velopment and testing of new finite element formulations and is publicly available under
GPL license.

5. The lock exchange benchmark

The lock-exchange configuration used to assess the capability of the DG-LES model
is represented in Figure 1. The domain length is L = 32 and its height is H = 1. A
membrane at xg = 14 initially divides the rectangular container into two compartments.
In our case, the two chambers are filled with the same fluid at different densities on the
two sides of the membrane (higher density on the left and lower density on the right).
Upon the removal of the membrane, the dense front moves rightward along the lower
boundary, while the light front propagates leftward along the upper boundary.

The quantities chosen as reference physical quantities for nondimensionalization of
the compressible NS equations are the height of the channel H*, the larger of the two
fluid densities p] and the buoyancy velocity uj = 1/¢’* H*. Notice that g/* is the reduced

gravity, which is computed as:
* *
,% *P1 — P2
(42) g =y —

P1

where g* denotes the gravity acceleration and p5 the lower density. Some relationships
exist between the nondimensional numbers F'r and Ma and the characteristic quantities
of the test case. For the Froude number F'r, the following equation is valid:

1 *H* * 1
(43) — =9 -9

2 UZQ g* Pi—p; Tl
P1

where v = pa/p1 is the ratio between densities. If we write the definition of the Mach
number as the ratio between the characteristic velocity (i.e., the buoyancy velocity) and
the sound speed we obtain:

*2

(44) MaZ = W _ 9 H (p1 = p3)
" p* '
[

137

Brought to you by | Politecnico di Milano - Biblioteca Delle Ingegnerie Bovisa
Authenticated
Download Date | 9/6/17 1:32 PM



Bassi, Abba, Bonaventura, Valdettaro

If we write the dimensional pressure p* = ppr = pp”fuz2 as the product of the nondimen-
sional pressure multiplied by the reference pressure and we simplify, we obtain for the
Mach number the following relationship:

(45) Ma=——,

where 7 is the ratio between the specific heats. Concerning the initial conditions, even
though the DG finite element method would be able to manage a discontinuous initial
datum, in order to better reproduce the results obtained in literature, the initial density
profile is smoothed out as in [10]:

¥+ 1 1— T — x
4 - - £
(46) pola) = 2 . (ﬁ)

where x denotes the horizontal coordinate. Since we are considering the compressible
Navier-Stokes equations, it is necessary to specify the initial conditions also for pressure
and temperature. The initial pressure value at the top of the domain is computed by

using equation (45) as pi°” = 1/(yMa?). The initial pressure value in the whole domain

is then computed assuming an hydrostatic pressure profile p;, = pzzp +p(z)(1—z)/Fr?,
where z denotes the vertical coordinate. The initial datum for temperature is derived
starting from density and pressure and using the equation of state. Since our aim is to
reproduce incompressible results, a Mach number of 0.008 has been chosen. In order to

0 14 2 x
Figure 1. Initial datum for the lock-exchange configuration.

achieve effective comparisons with [10], two-dimensional simulations with slip boundary
conditions have been performed. The performance of our model has been evaluated by
comparing density contours and, more quantitatively, different kinds of energy budgets.
In particular, we have computed the time evolution of the normalized potential, kinetic
and dissipated energies integrated over the whole domain. The potential energy is:

1
4 E = | — .
(47) o(0) = [ Frzozdv
The kinetic energy is:
1
(48) Ek (t) = / quiuidw
Q

while the time evolution of the dissipated energy is computed by solving the following
equation:

dE, 1 2 2 2
(49) Wi — [ ]+ 0y - 2w w2 bav
As proposed in [10] the potential energy of the light fluid E,,,; is computed as:

1
50 E = — dV.
( ) amb 11— /Q'YTZ
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From the initial potential energy, by subtracting E,,,;, we obtain E2 0 = Epo — Eamp
(defined in [10] as initial available potential energy) and the avallable potential energy
at a generic time ¢ Ep(t) = Ep(t) — Eqmp- We then normalize each contribution to
the overall energy budget with E% po and we obtain the normahzed potentlal energy
Ep(t) = Ep(t)/Epy, the normahzed kinetic energy Ej(t) = Ex(t)/Ep and the nor-
malized dissipated energy Ey(t) = E4(t)/Epy. The second energy budget taken into
consideration provides the evaluation of the energies dissipated by the dense and the
light front separately, as suggested in [10]. The energies dissipated by the light and dense
fronts are computed respectively integrating in time the following two equations:

(51) dElzght / / [Oul"‘rauj) %(V-u)z]}dzdx,

(52) dEdme / / { (8ju; + Bjuj)? — %(v . u)Q} }dzdx.

where z¢ is the abscissa of the initial discontinuity.

5.1. Direct Numerical Simulations

For the fully resolved simulations, a grid composed by approximately 37000 elements
has been employed. The polynomial degree has been set equal to 4. Notice that, with
these choices, the total number of degrees of freedom is of the same order of magnitude
as that in [10].

In Figure 2 we compare the density contours obtained from our compressible NS
simulations with the corresponding ones in [10], as computed at ¢ = 10 for density ratios
vr = 0.2,0.7 and for Re = 4000. For both density ratios the results are quite similar to
the reference solution, both in terms of the position of the front and of the number and
appearance of the Kelvin-Helmoltz billows. In particular, considering the lower density
ratio v = 0.2 (Figures 2(c)-2(d)) we notice that, as in [10], the dense front presents a
considerably lower height and that, by ¢ = 10, it has propagated further with respect to
the light front. Moreover, by decreasing the density ratio, we observe that the vortical
structures appear to be confined to the region near the dense front. According to the
explanation in [10], this is because across the dense current the velocity difference and
the shear are larger, which has a destabilizing effect on the front. In the case of - = 0.2
we notice however some discrepancies between our results and those of [10]. The length
of the area of the density current interested by the presence of Kelvin-Helmholtz billows
is more extended in our case: the first vortex is located approximately at x = 13 in our
simulation (see Figure 2(c)) while its position is z = 15 in [10] (Figure 2(d)).

Another important feature which is correctly reproduced by the DG simulations is
the behaviour of the density current in the presence of constant dynamic viscosity (see
Figure 3). In this situation the formation of vortices is limited to a smaller region close
to the dense front (as highlighted in [10]). Considering energy budgets, in Figure 4(a)
we present the time evolution of the normalized potential energy Ey (t), the normalized
kinetic energy E} (t) and the normalized dissipated energy EJ(t) up to t = 10, for
Re = 4000 and density ratio v = 0.4. We notice that the time evolution of the different
energy budgets reported in [10] (dashed lines) is very well captured by the DG simulation
(continuous lines). In Figure 4(b) we show the time evolution of the energies dissipated
by the light and the dense front, respectively. Both in [10] (dashed lines) and in our DG
simulation (continuous lines), the dense front (red lines) is more dissipative with respect
to the light front (blue lines). However, a slight underestimation of the energy dissipated
by the dense front is present in the DG simulation.
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Figure 2. Density contours at ¢ = 10 for Re = 4000 (DNS) (a) DG simulation, v = 0.7
(b) [10], v+ = 0.7 (c¢) DG simulation, v = 0.2 (d) [10], v = 0.2

5.2. Large Eddy Simulations

Besides simulations at DNS resolution, also some Large Eddy Simulation experiments
have been carried out, using a density ratio v = 0.7 and Reynolds number Re = 40000.
Notice that, in these cases, no reference DNS results are available and no comparison with
the results of [10] is attempted. These experiments have been performed employing the
same computational grid as in the DNS at Re = 4000 and polynomial degrees p = 2, 3, 4.
The polynomial degree associated to the test filter operation was taken to be 1 for p =2
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0 4 8 12 16 20 24 28 32

Figure 3. Density contours at ¢ = 10 for v~ = 0.2 and Re = 4000 (DNS) with constant
dynamic viscosity u = 1/Re.
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Figure 4. (a) Time evolution of the normalized potential energy E; (green), normalized
kinetic energy E} (red) and normalized dissipated energy E7 (blue) for 7 = 0.4 and
Re = 4000 (DNS). Continuous lines: DG simulation. Dashed lines: [10] simulation. (b)
Time evolution of the energies dissipated by the dense (red) and light (blue) fronts for
~vr = 0.4 and Re = 4000 (DNS). Continuous lines: DG simulation. Dashed lines: [10]
simulation.

and p = 3 and 2 for p = 4. Both the Smagorinsky model and the Germano dynamic model
have been considered, together with an under-resolved DNS obtained without employing
any model. For this case, the simulation could be completed without having to add any
artificial diffusion. Notice that approximately 13500 CPU hours were necessary to carry
out the DNS at Re = 4000 until ¢ = 15. The CPU hours necessary for the LES simulations
until ¢ = 20 with the different turbulence models are shown instead in Table 2.

Table 2. CPU hours necessary for the LES simula-
tions until ¢ = 20.

- No model Smagorinsky Dynamic
p=2 4300 3800 (till ¢ = 15) 7200
p=3 11500 12800 15300
p=4 18000 26500 28000

In Figure 5 we show the dissipated energy as a function of time, obtained with
p = 4, for the different models. The Smagorinsky model (red line) presents a much more
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dissipative behaviour with respect to the no-model (blue line) and the dynamic model
(green line) simulations. This behaviour of the Smagorinsky model is confirmed by the

0.01

——no model
0.009 |- | —— Smagorinsky
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—— Dynamic
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>0.007

=

2 0.006
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& 0.005

2
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Figure 5. Time evolution of the normalized energies dissipated using no model (blue),
the Smagorinsky model (red), the dynamic model (green) for v = 0.7, Re = 40000 and
p =4 (LES).

vorticity field at a fixed instant of time ¢t = 15 (see Figure 8). The vorticity field provided
by the Smagorinsky model (Figure 8(b)) is smoother and characterized by less vortical
structures. A similar behaviour is also apparent in the results of simulations with p = 2
and p = 3 (not shown). Moreover, the vorticity peak values of the Smagorinsky model
are lower than the ones obtained with no model and the dynamic model and appear
to be less sensitive to the polynomial degree, see table 3. This excessive diffusivity of
the Smagorinsky model is in contrast with its almost universal use in the framework of
VMS approaches and supports the findings of [7] with respect to the usefulness of more
complex subgrid models also in a VMS framework.

Table 3. Vorticity peak values for different mod-
els and polynomial degrees at ¢t = 15.

- No-model Smagorinsky Dynamic

p=2 [-54,57] [—24,34]  [~42,52]
p=3 [-49,68] [—38,48]  [—44,66]
p=4 [-63,77] [—42,54]  [~74,85]

The precise role played by the dynamic model, however, is not entirely clear in this
test case. On one hand, the dynamic model is definitely active and has a growing influence
as the polynomial degree (and hence the resolution) decreases. Indeed, the extreme values
of Cy are bigger for smaller polynomial degrees (see table 4). Moreover, as it can be seen
from Figure 6, that shows the elements in which the dynamic constant is smaller than
—0.03, the number of these elements increases as the polynomial degree decreases. On
the other hand, as shown in Figure 7, which represents the normalized dissipated energy
for the no-model and the dynamic model cases as a function of time in correspondence
of different polynomial degrees, the overall impact of the dynamic model appears to be
relatively small. The results obtained with different polynomial degrees also clearly show
the impact of numerical diffusion at the lower resolutions. It is therefore possible that
both the numerical diffusion and the physical dissipation introduced by the dynamical
model suppress the energy backscatter induced by the locally negative Cy4, so that the
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model impact is small in this bulk statistics. The p = 3 case is the one in which the
model appears to have the largest influence, making the dissipated energy quite close
to the values obtained for p = 4. The simulation run with p = 3 has probably the
spatial resolution which is most suitable for LES among those considered here. In the
p = 2 case the numerical dissipation is instead far too large, while in the p = 4 case the
impact of the model appears to be smaller. In this respect, it is also to be remarked that,
for p = 4, the dynamic model yields a total dissipated energy that is larger than that
in the corresponding no-model run, as opposed to what happens for lower polynomial
degrees, for which the dynamic model always yields lower dissipated energy values. As a
conclusion, while some impact of the dynamic model is evident at intermediate resolution,
it is clear that the computation of more detailed statistics is necessary to assess more
precisely its performance.

Table 4. Minimum and
maximum values of the
dynamic constant C; at

t = 15.

_ C(rinzn Czinaz
p=2 —0.16 1.37
p=3 -—0.15 0.22
p=4 —0.1 011

Figure 6. Elements in which the dynamic constant is smaller than —0.03. (a) p2 — pl
simulation (b) p4 — p2 simulation. The results are s obtained for - = 0.7 and Re = 40000
at t = 15.

5.3. Impact of the numerical flux choice

In this section, some results obtained with the Rusanov numerical flux, a modified
version of the Rusanov flux (where the upwinding velocity is set equal to the velocity of the
fluid) and the exact Godunov Riemann solver (implemented as in [20]) will be presented.
In particular, in Figure 9 we have the density profiles of a Boussinesq simulation for
Re = 44721 and ~ = 0.96, at t = 5. We notice that the profile obtained with the
Rusanov flux (Figure 9(a)) is highly inaccurate both for the incorrect reproduction of the
shape and number of turbulent structures and for the presence of spurious oscillations.
These spurious features are instead absent in the profiles obtained with the exact Godunov
Riemann solver and with the modified version of the Rusanov flux (Figures 9(b) and 9(c)).
This behaviour is probably due to the fact that, when dealing with low Mach number
flows, the upwinding velocity in the Rusanov flux is equal to the velocity of sound, which
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Figure 7. Time evolution of the normalized energies dissipated using no model (blue)
and the dynamic model (red) for 7 = 0.7 and Re = 40000 in the time interval [10, 20].
Continuous line: p = 2. Dash line: p = 3, Dash-dot line: p = 4.

is very different from the velocity of the fluid in this regime. As a consequence, upwinding
is performed with a wrong velocity. This difficulty is indeed overcame by employing the
exact solver or simply by substituting the upwinding velocity with the velocity of the
fluid. This explanation appears to be consistent with the accurate results obtained by
upwind-based, semi-Lagrangian schemes in the simulation of variable density flows with
small density differences, see e.g. [26], [27].

6. Conclusions and future perspectives

In this paper, we have assessed the capability of a DG-LES model for the numerical
simulation of turbulent gravity currents in the non-Boussinesq regime. The results ob-
tained by application of the DG-LES method proposed in [7] have been compared with
those presented in [10] in the incompressible case. The quality of our results with respect
to [10] has been first assessed using density contours at a fixed instant of time and for
different density ratios 7. The density contours obtained with our DG simulations ap-
pears to be qualitatively similar to the ones in [10] even though some discrepancies are
present, especially for the lower density ratio v, = 0.2.

From a more quantitative viewpoint, two different energy budgets have been con-
sidered. First of all, normalized values of potential, kinetic and dissipated energies as a
function of time have been compared with the trends reported in [10], finding very good
agreement. The temporal evolution of the energy dissipated separately by the light and
dense fronts has also been computed. Also in this case, we have quite good agreement
with the results in [10], with a good prediction of the more dissipative nature of the
dense front with respect to the light one. There is however a slight underestimation of
the energy dissipated by the dense front. We can conclude that our approach is able to
reproduce quite well the incompressible results of [10] in the low Mach number regime.

Some preliminary LES results have also been presented. Even if these results have not
been compared to corresponding DNS results, we can infer that the classic Smagorinsky
model is probably too dissipative for the accurate simulation of turbulent gravity currents.
This further supports the advantage, first highlighted in [7], of employing dynamical
models also in the framework of VMS approaches. On the other hand, even though some
evidence was found that dynamical models are active at the resolutions employed, the
bulk dissipation rates computed so far are insufficient for a complete assessment of the
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Figure 8. Vorticity field obtained for v = 0.7, Re = 40000 and p = 4 (LES) at ¢ = 15.
Red: positive values. Blue: negative values. (a) No model, value range [—63,77]. (b)
Smagorinsky model, value range [—42,54]. (¢) Dynamic model, value range [—74, 85].

performance of different models. It will be therefore necessary to compute additional
diagnostics, like the available potential energy, see [28], [29], [5], [4], [30], or the local
structure function criterion employed in [31] for polynomial degree adaptation. Finally,
concerning the impact of the numerical flux choice, we can conclude that the generally
used Rusanov flux may not be the best option for variable density, very low Mach number
regimes.

From the physical point of view, the next planned step is to carry out Large Eddy
Simulations employing also more advanced models, like the anisotropic dynamic model
proposed in [32] and modeling the subgrid stresses by the novel proposals in [33] for
compressible, variable density flows. From the computational point of view, we are aware
that employing an explicit time integration method in presence of low Mach numbers leads
to computational inefficiency; we are indeed working on the implementation of a semi-
implicit time integration method in order to perform also 3D simulations. Furthermore,
a deeper investigation of the influence of the numerical flux on the solutions in variable
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()

Figure 9. Density for Re = 44721 and v, = 0.96 at time ¢ = 5. (a) Rusanov flux. (b)
Godunov exact Riemann solver. (c) Modified Rusanov flux (upwinding velocity equal to
the velocity of the fluid)

density low-Mach number would be required to better understand some of the results
presented in this paper.

Acknowledgements

This paper contains an extended version of results presented by the first author at the
2016 SIMAI Congress and is part of the first author’s PhD thesis work. We are happy to
acknowledge the continuous help of M. Restelli and M.Tugnoli with the application of the
FEMILARO code. Several useful discussions with T. Esposti Ongaro and M. Cerminara
are also kindly acknowledged, along with the useful comments of the reviewer, which
greatly helped in improving the original version of the paper. The results of this research
have been achieved using the computational resources made available at CINECA (Italy)
by the LISA high performance computing project DECLES: Large Eddy Simulation of
Density Currents and Variable Density Flows, HPL13PJ6YS.

146

Brought to you by | Politecnico di Milano - Biblioteca Delle Ingegnerie Bovisa
Authenticated
Download Date | 9/6/17 1:32 PM



10.

11.

12.

13.

14.

15.

16.

LES of gravity currents with high order DG method

REFERENCES

. W. Houf and R. Schefer. Analytical and experimental investigation of small scale

unintended releases of hydrogen. International Journal of Hydrogen Energy, 33:1435—
1444, 2008.

A.E. Gill. Atmosphere-Ocean Dynamics. Academic Press, 1982.

J.F. Louis. A parametric model of vertical eddy fluxes in the atmosphere. Boundary
Layer Meteorology, 17:197-202, 1979.

L.C. Berselli, P.F. Fischer, T. Iliescu, and T.M. OZgékmen. Horizontal Large Eddy
Simulation of Stratified Mixing in a Lock-Exchange System. Journal of Scientific
Computing, 49:3-20, 2011.

T.M. Ozgékmen, T. Iliescu, and P.F. Fischer. Large Eddy Simulation of stratified
mixing in a three-dimensional Lock-exchange system. Ocean Modelling, 26:134—155,
2009.

T.M. Ozgékmen, T. Tliescu, P.F. Fischer, A. Srinivasan, and J. Duan. Large Eddy
Simulation of stratified mixing in two-dimensional dam-break problem in a rectangu-
lar enclosed domain. Ocean Modelling, 16:106—-140, 2007.

A. Abba, L. Bonaventura, M. Nini, and M. Restelli. Dynamic models for Large Eddy
Simulation of compressible flows with a high order DG method. Computers € Fluids,
122:209-222, 2015.

T.J.R. Hughes, A.A. Oberai, and L. Mazzei. Large eddy simulation of turbulent
channel flows by the variational multiscale method. Physics of Fluids, 13:1784-1799,
2001.

V. John and A. Kindl. Numerical studies of finite element Variational Multiscale
Methods for turbulent flow simulations. Computer Methods in Applied Mechanics
and Engineering, 199:841-852, 2010.

V. K. Birman, J.E. Martin, and E. Meiburg. The non-Boussinesq Lock-exchange
problem. Part 2. High-resolution simulations. Journal of Fluid Mechanics, 537:125—
144, 2005.

H. Schlichting. Boundary-layer theory.7th edition. McGraw-Hill, 1979.

P. Sagaut. Large Eddy Simulation for Incompressible Flows: An Introduction.
Springer Verlag, 2006.

E. Garnier, N. Adams, and P. Sagaut. Large Eddy Simulation for Compressible Flows.
Springer Verlag, 2009.

M. Germano, U. Piomelli, P. Moin, and W.H. Cabot. A Dynamic Subgrid-Scale Eddy
Viscosity Model. Physics of Fluids, 3(7):1760-1765, 1991.

F.X. Giraldo and M. Restelli. A study of spectral element and discontinuous Galerkin
methods for the Navier-Stokes equations in nonhydrostatic mesoscale atmospheric
modelling: equation sets and test cases. Journal of Computational Physics, 227:3849—
3877, 2008.

D. N. Arnold, F. Brezzi, B. Cockburn, and L.D. Marini. Unified analysis of Discontin-
uous Galerkin methods for elliptic problems. SIAM Journal of Numerical Analysis,
39:1749-1779, 2002.

147

Brought to you by | Politecnico di Milano - Biblioteca Delle Ingegnerie Bovisa
Authenticated
Download Date | 9/6/17 1:32 PM



17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Bassi, Abba, Bonaventura, Valdettaro

F. Bassi and S. Rebay. High Order Accurate Discontinuous Finite Element Method
for the Numerical Solution of the Compressible Navier-Stokes Equations. Journal of
Computational Physics, 131:267-279, 1997.

P. Castillo, B. Cockburn, I. Perugia, and D. Schétzau. An a priori analysis of the Local
Discontinuous Galerkin method for elliptic problems. SIAM Journal of Numerical
Analysis, 38:1676-1706, 2000.

B. Cockburn and C.W. Shu. The Local Discontinuous Galerkin Method for Time-
Dependent Convection Diffusion Systems. SIAM Journal of Numerical Analysis,
35:2440-2463, 1998.

J.J. Gottlieb and C.P.T. Groth. Assessment of Riemann Solvers for Unsteady One-
Dimensional Inviscid Flows of Perfect Gases. Journal of Computational Physics,
78:437-458, 1988.

R. Cools. An Encyclopaedia of Cubature Formulas. Journal of Complexity, 19:445—
453, 2003.

S. S. Collis. Discontinuous Galerkin methods for turbulence simulation. In Proceed-
ings of the 2002 Center for Turbulence Research Summer Program, pages 155-167,
2002.

S. S. Collis and Y. Chang. The DG/VMS method for unified turbulence simulation.
ATAA paper, 3124:24-27, 2002.

F.van der Bos, J.J.W. van der Vegt, and B.J. Geurts. A multi-scale formulation for
compressible turbulent flows suitable for general variational discretization techniques.
Computer Methods in Applied Mechanics and Engineering, 196:2863-2875, 2007.

FEMilaro, a finite element toolbox.
https://bitbucket.org/mrestelli/femilaro/wiki/Home. Available under GNU GPL v3.

L. Bonaventura. A semi-implicit, semi-Lagrangian scheme using the height coordi-
nate for a nonhydrostatic and fully elastic model of atmospheric flows. Journal of
Computational Physics, 158:186-213, 2000.

G. Tumolo and L. Bonaventura. A semi-implicit, semi-Lagrangian, DG framework for
adaptive numerical weather prediction. Quarterly Journal of the Royal Meteorological
Society, 141:2582-2601, 2015.

K.B. Winters, P.N. Lombard, J.J. Riley, and E.A. D’Asaro. Available potential energy
and mixing in density-stratified fluids. Journal of Fluid Mechanics, 289:115-128, 1995.

Y. Tseng and J.H. Ferziger. Mixing and available potential energy in stratified flows.
Physics of Fluids, 13:1281-1293, 2001.

L.C. Berselli, M. Cerminara, and T. Iliescu. Disperse Two-Phase Flows, with Appli-
cations to Geophysical Problems. Pure and Applied Geophysics, 172:181-196, 2015.

M. Tugnoli, A. Abba, L. Bonaventura, and M. Restelli. A locally p—adaptive approach
for Large Eddy Simulation of compressible flows in a DG framework. MOX Report
37/2016, MOX - Politecnico di Milano, 2016.

A. Abba, C. Cercignani, and L. Valdettaro. Analysis of Subgrid Scale Models. Com-
puter and Mathematics with Applications, 46:521-535, 2003.

M. Germano, A. Abba, R. Arina, and L. Bonaventura. On the extension of the eddy
viscosity model to compressible flows. Physics of Fluids, 2014.

148

Brought to you by | Politecnico di Milano - Biblioteca Delle Ingegnerie Bovisa
Authenticated
Download Date | 9/6/17 1:32 PM



	FronteRivista
	BASSC01-17

