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Abstract— In this paper, a networked switched control strat-
egy based on Sliding Mode Control is presented. The idea
pursued in this work is to reduce to a minimum the packet rate
over the network, in order to limit the problems induced by
the transmission of the state measurement between the sensor
and the controller, while providing performance comparable
with that of a non networked Sliding Mode Control scheme.
The proposed scheme includes a model based controller which
contains the nominal model of the plant, and relies on a suitably
defined triggering condition. The latter considers the amplitude
of a sliding variable determined relying on nominal model, and
enables the actual state transmission only when the sliding
variable is within a predefined boundary layer. When the plant
state is not transmitted, the model state is used to determine
the control action. In this way, it is possible to guarantee
the same robustness with respect to matched uncertainties as
in conventional sliding mode control schemes, as well as the
exponential stability of the origin of the controlled system state
space, even if the actual system state is not always used to close
the feedback. Moreover, in steady-state, when the boundary
layer is reached, in order to avoid a continuous transmission of
the actual state measurement, a mechanism based on a moving
average of the current sliding variable is adopted, which allows
to suitably deactivate the state transmission even within the
boundary layer, yet maintaining some robustness. Simulation
results demonstrates the effectiveness of the proposed strategy.

I. INTRODUCTION

Sliding Mode Control (SMC) is a widely appreciated
strategy because of its capability of guaranteeing satisfactory
performance of the controlled system under critical uncer-
tainty conditions [1], [2], [3], [4]. For this reason, it can
be regarded as a good candidate to be used in Networked
Control Systems (NCSs), i.e., feedback systems including
data networks. NCSs present several advantages compared
with traditional configurations, such as reconfigurability,
low installation costs, and the possibility to create a wide
interconnected grid to transmit information [5]. However, the
presence of the network in the control loop can cause the
occurrence of packet loss, jitter, and delayed transmissions,
which deteriorate the performance of control systems designed
in the conventional way. As a consequence, suitable data
communication protocols, new fault detection strategies, and
control schemes designed explicitly taking into account the
network presence have been proposed in the literature in
recent years [5], [6], [7].
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The aim of this paper is the design of a networked
control scheme, which is able to solve the trade-off between
the stability of the controlled system and the bandwidth
allocation over the network [8]. In order to obtain satisfactory
performance, in this framework, the use of a robust control
strategy is mandatory. In this paper, the SMC methodology
is adopted to design the controller. This is of model based
type [9], [10], so that, relying on a suitably defined event
triggered strategy [11], [12], [13], [14], [15], [16], it is
possible to switch between the use of the actual plant state
and of the model state to close the feedback. More specifically,
the model based controller contains three elements: the
controller itself, the nominal model of the plant and a
triggering condition. The triggering condition verifies if a
sliding variable, determined relying on the nominal model
state, belongs to a predefined boundary layer, and enables
the actual state transmission only when this occurs. When
the condition does not hold, then the model state is used to
determine the control action.

As a result, the state of the nominal model is used during
the reaching phase, i.e. the phase during which the sliding
variable is steered to the boundary layer, while the actual
plant state is used within the boundary layer. This could
cause an intensification of state transmission in steady-state.
To circumvent this drawback, and to keep the packet rate
to a minimum, a mechanism based on a moving average
of the current sliding variable is adopted. This mechanism
enables to deactivate the state transmission even within the
boundary layer. Indeed, if the moving average remains almost
constant for a certain number of sampling time instants, then
the model state is used again.

The theoretical assessment of the proposed scheme is
provided in the paper, by addressing both robustness and
stability issues. Assuming that the deactivation mechanism
is switched off, our proposal proves to maintain the same
robustness property with respect to matched uncertainties as
conventional SMC. Moreover, the exponential stability of the
origin of the controlled system state space can be proved,
even if the actual system state is not always used to close the
feedback, which implies a clear benefit in terms of bandwidth
allocation. When the deactivation mechanism is on, then the
robustness versus matched uncertainties is attenuated. Yet, it
can be proved that the effect of such uncertainties is bounded.

Note that, in this scheme, a traditional sensor, with no
particular computational capability, is required. Moreover, the
network mathematical model is not considered in the design.
Finally, for the sake of simplicity, the network presence
is assumed only between the sensor and the model based
controller, since, the controlled system being single-input, the
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control variable transmission is definitely less onerous than
state transmission. Finally, it is worth noting that the nominal
model of the plant receives the same control variable fed into
the real plant and it is updated whenever a triggering event
occurs.

The paper is organized as follows. Section II is devoted to
the problem formulation. In Section III the overall control
strategy is described, putting into evidence the event triggered
and switched nature of the proposed networked control
scheme. In Section IV the theoretical results are presented.
Simulations on an inverted pendulum are reported in Section V
to demonstrate the efficacy of the proposal, while some
conclusions are gathered in Section VI.

II. PROBLEM FORMULATION

Consider the following perturbed chain of integrators
ẋi(t) = xi+1(t) i = 1, ...,n−1
ẋn(t) = f (x, t)+b(x, t)u(t)+h(x, t)
y(t) = σ(x(t))

(1)

where x ∈ Rn is the state, u ∈ R is the control variable,
and σ : Rn→ R is a smooth output function, called sliding
variable. The functions f (·) and b(·) are known, while h(·)
is the matched uncertainty affecting the system, such that

h(x, t) = b(x, t)um(t) (2)

where it holds that

|h(x, t)| ≤ hmax (3)

with hmax being a positive constant.
The nominal model of system (1), which is not affected

by the uncertain terms by definition, is the following
˙̂xi(t) = x̂i+1(t) i = 1, ...,n−1
˙̂xn(t) = f (x̂, t)+b(x̂, t)u(t)
ŷ(t) = σ̂(x̂(t))

(4)

where x̂ ∈ Rn is the state, u is the same control variable of
the plant, while σ̂ : Rn → R is the sliding variable of the
model.

Now, consider the control scheme illustrated in Fig. 1. The

Fig. 1. The model based networked sliding mode control scheme.

Plant, which is represented by system (1), is connected to
the sensor through a switch, controlled by the model based
Sliding Mode Control (SMC) block. In particular, the latter

generates the control law both for the plant and the model,
on the basis of a suitably defined triggering condition

|σ̂ | ≤ λ0 (5)

where λ0 is a positive constant. Moreover, we define boundary
layer the following set

Bλ0 , {x̂(t) : |σ̂ | ≤ λ0} (6)

Note that, in this paper, the network is not described by a
model and it is present only between the sensor and the
model based controller. Moreover, in Fig. 1, the notation x/∅
means that the actual state or no variable is received over the
network, on the basis of condition (5).

Considering (1)-(5), and the control scheme in Fig. 1, the
problem dealt with the proposal underlying this paper is that
of steering the system state to the origin, while guaranteeing
robustness properties in front of matched disturbances, and
ensuring a significant reduction of the packet rate over the
network with respect to a conventional (i.e., non networked)
solution.

III. THE PROPOSED CONTROL STRATEGY

The key block of the proposed control scheme is the model
based controller, depicted in Fig. 2. This block includes the
sliding mode controller, the nominal model of the plant and
the triggering condition. The proposed strategy consists of
two operating modes.

Fig. 2. A representation of the model based controller with SMC law.

Mode 1: The state of the model x̂ is provided to the
triggering condition block which computes the sliding variable
as

σ̂(t) = x̂n(t)+
n−1

∑
i=1

mix̂i(t) (7)

with mi being positive constants. When condition (5) is
violated, the state x̂ is sent to the sliding mode controller and
the following control law

uSMC(t) =−Umax sgn(σ̂(t)) (8)

is generated, with Umax > 0 being a suitably chosen control
parameter in order to enforce a sliding mode on the selected



sliding manifold σ̂ = 0. The control law (8) is fed both to
the plant and to the nominal model.

Mode 2: Contrary to Mode 1, when condition (5) is verified,
the switch between the plant and the sensor is closed and
the measured state x is sent over the network. The nominal
model is reinitialized with the plant and the following control
variable

uSMC(t) =−Umax sgn(σ(t)) (9)

where σ depends on the actual state and has the same form
in (7), is fed both to the plant and to the nominal model.
Note that, in Fig. 2 the notation ∅/x̂ means that the state
of the model is used only if the actual state has not been
received through the network.

The use of the nominal model out of the boundary layer
Bλ0 in (6), during the so-called reaching phase when also the
plant is sensitive with respect to matched uncertainties, allows
to force the sliding variable to the origin also in presence
of unknown terms. In order to guarantee the robustness of
the controlled system uniformly in time, the actual sliding
variable is used in a neighborhood of the origin where the
nominal model based control variable could not guarantee
a complete disturbance rejection. Since the objective of this
paper is also to reduce the packet rate over the network, an
additional condition has been considered within the boundary
layer Bλ0 , that is, the state of the nominal model is used
instead of the actual plant state also if

|σ̂ | ≤ λ0 ∧ |σMA| ≤ λ1 (10)

where 0 < λ1 < λ0, while σMA is the Moving Average (MA)
of the current sliding variable, computed as

σMA(τi) =
1
N

N

∑
k=1

ζ (τi− τk) (11)

ζ =

{
σ̂ if |σ̂ | ≤ λ0 ∧ |σMA(τi−1)| ≤ λ1

σ if |σ̂ | ≤ λ0 ∧ |σMA(τi−1)|> λ1
(12)

with τi being the current numerical integration step, and N
being a suitably selected number of samples.

IV. STABILITY ANALYSIS

With reference to the proposed strategy, the following
results, here reported without proofs because of space
limitation, can proved.

Theorem 1: Given system (1)-(4), the control laws (8)
and (9) depending on the triggering condition (5), assume
that the deactivation mechanism is off, then the state of the
system is exponentially steered to zero in spite of matched
uncertainty terms.

Theorem 2: Given system (1)-(4), the control laws (8)
and (9) depending on the triggering condition (10), assume
that the deactivation mechanism is on, then the effect of
matched uncertainty terms h̄ = σ̂ − σ in steady-state is
bounded, i.e., λ1 < |h̄(t)| ≤ λ0, ∀ t ≥ tr, tr being the reaching
time.

V. ILLUSTRATIVE EXAMPLE

In this section an inverted pendulum is considered as
an illustrative example. Consider Fig. 3, where x is the
linear position of the cart, θ is the angular position of
the pendulum with respect to y-axis clockwise positive, w
is the control variable, while M =0.455kg and m =0.21kg
denote the mass of the cart and the mass of the pendulum,
respectively. Moreover, let l =0.305m denote the distance

Fig. 3. A schematic view of the considered inverted pendulum.

from the pivot to the center of mass of the pendulum, let k
be the friction coefficient of the cart, let g =9.81ms−2 be
the gravitational acceleration, and let J the moment of inertia
of the pendulum with respect to its center of mass. Now, by
posing [x1 x2 x3 x4]

T = [x ẋ θ θ̇ ]T , the nonlinear coupled
system is the following

ẋ1 = x2

ẋ2 =
(J+ml2)(w+ml sinx3 ẋ3

2−kẋ1)−m2l2gsinx3 cosx3

(J+ml2)−m2l2cos2 x3

ẋ3 = x4

ẋ4 = −ml cosx3
J+ml2

(J+ml2)(w+ml sinx3 ẋ3
2−kẋ1)−m2l2gsinx3 cosx3

(J+ml2)(M+m)−m2l2cos2 x3
+

+mlgsinx3
J+ml2

(13)

Note that, in the following, k and J are considered equal to
zero, for the sake of simplicity.

In order to transform system (13) into an equivalent
decoupled system, we consider the Lie Derivatives [17] to
partially linearize the nonlinear system (more precisely, the
input-output map is linearized, while the original state system
is only partially linearized). Considering the following control
law

w = (M+msin2 x3)u−(mlx2 sinx3−mgsinx3 cosx3) (14)

where u is an auxiliary control variable, system (13) can be



expressed as
ẋ1 = x2

ẋ2 = u
ẋ3 = x4

ẋ4 =
gsinx3−ucosx3

l

(15)

Define an auxiliary output variable z1, such that

z1 = x1 + l ln
(

1+ sinx3

cosx3

)
(16)

while its time derivatives up to order 4 are the following

ż1 = x2 +
lx4

cosx3
= z2

z̈2 = tanx3

(
g+ lx4

2

cosx3

)
= z3

z(3)3 =

(
2

cos3 x3
− 1

cosx3

)
lx4

3

+

(
3g

cos2 x3
−2g

)
x4−2x4 tanx3u = z4

z(4)4 = f (x)+b(x)u

(17)

Note that, f (·) and b(·) are known functions defined as
follows

f (x) =
secx3

l

(
g2 tanx3 +9glx4

2 secx3 tanx3+

+5l2x4
2 secx3

2 tanx3 +g(3lx4
2+

+2gcosx3)sinx3 tanx3
2 + l2x4

2 tanx3
3
)

(18)

b(x) =− 1
l
(secx3(g+3lx4

2 secx3

− (3lx4
2 +2gcosx3)sinx3 tanx3)) (19)

Finally, the corresponding nominal model is

˙̂x1 = x̂2

˙̂x2 =
ml2
(

w+ml sin x̂3 ˙̂x3
2
)
−m2l2gsin x̂3 cos x̂3

ml2−m2l2cos2 x̂3
˙̂x3 = x̂4

˙̂x4 = −ml cos x̂3
ml2

ml2
(

w+ml sin x̂3 ˙̂x3
2
)
−m2l2gsin x̂3 cos x̂3

(ml2)(M+m)−m2l2cos2 x̂3
+

+mlgsin x̂3
ml2

(20)

where [x̂1 x̂2 x̂3 x̂4]
T is the state of the nominal model. In order

to verify the effectiveness of the proposed control strategy,
a matched uncertainty term h = bum has been injected to
the feedback linearized model in (16) and (17), such that
|h| ≤5.4N (see Fig. 4).

The sliding variable has been chosen equal to

σ = m1z1 +m2z2 +m3z3 + z4 (21)

where m1 = m2 =27, m3=9, while the control parameter has
been selected equal to Umax =12.

The standard Eulero solver with numerical integration
step τi =0.001s has been used, while the simulation time is
Ts =30s. The initial conditions are x(0) = [0 0 0.52 0], while
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Fig. 4. The matched uncertainties affecting the system.

the width of the boundary layer Bλ0 in (6) and the threshold
of the MA in (11) are λ0 =0.45 and λ1 =0.085, respectively.

In order to evaluate the closed-loop performance, we have
proposed the following indices:

xRMS =

√
∑

ns
i=1 ∑

n
j=1 x2

ji

ns
, σRMS =

√
∑

ns
i=1 σ2

i
ns

(22)

nup =
∑

ns
i=1 fup(τi)

ns

where xRMS is the Root Mean Square (RMS) value of the
state, σRMS is the RMS value of the sliding variable, and nup
is the number of updates of the plant state with respect to
conventional SMC. Note that in the definitions above, we
have denoted with ns the total number of the integration
steps of the simulation, with x ji and σi the j-th component,
respectively, of the state vector and of the sliding variable at
the i-th integration step.
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Fig. 5. Time evolution of the state variables of the plant (solid black line),
and of the model (dashed blue line).

Fig. 5 shows the evolution of the state variables steered
to the origin in spite of the matched disturbances injected
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Fig. 6. Time evolution of the auxiliary control variable u of the partially
feedback linearized system.

to the system. The corresponding control variable u of the
feedback linearized system is illustrated in Fig. 6. Fig. 7
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Fig. 7. The flag function of the number of updates when the actual state
is sent over the network.

shows the flag function which is equal to 1 only when the
plant state is transmitted over the network, while in Fig. 8 the
sliding variables σ and σ̂ are reported. Note that two different
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Fig. 8. Time evolution of the sliding variables of the plant (solid black
line), and of the model (solid blue line) with bounds λ0.

situations are highlighted: the case in which no uncertainties
are present, and the case in which the external disturbances
cause the violation of condition (5).

The RMS value of the state results in being equal to
xRMS =4.69×10−2, while the RMS value of the sliding
variable is σRMS =13.61×10−2. Finally, Table I and Fig. 9
report the obtained value for the index nup defined in (22), for
different values of λ1. Note that nup provides a comparison in
terms of bandwidth consumption with respect to a traditional
SMC scheme in which the effective state is transmitted over
the network at any sampling time instant, that is, in total ns
times.

TABLE I
NUMBER OF UPDATES (%).

λ1 nup
0.4 7.44
0.1 16.57

0.085 18.57
0.07 21.84
0.01 71.83
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Fig. 9. Packet rate depending on the deactivation threshold.

Moreover, in order to investigate the effect of model
mismatching in the unstable considered plant, and emulate a
quite realistic set-up, unmatched uncertainty terms ∆x2, ∆x4
with |∆x2|, |∆x4|<0.04 have been injected to the the linear
velocity and to the angular velocity of the inverted pendulum,
respectively (see Fig. 10). Fig. 11 shows the flag function
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Fig. 10. The unmatched uncertainties affecting the system.

which is equal to 1 only when the plant state is transmitted
through the network, while in Fig. 12 the sliding variables
σ and σ̂ are illustrated. The RMS value of the state also in
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Fig. 11. The flag function of the number of updates when the actual state
is sent over the network, in presence of modelling errors.
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Fig. 12. Time evolution of the sliding variables of the plant (solid black
line), and of the model (solid blue line) with bounds λ0, in presence of
modelling errors.

this case results in being equal to xRMS =4.69×10−2, while
the RMS value of the sliding variable is σRMS =13.6×10−2.
The index nup is greater than that obtained in the previous
case due to the presence of some modelling errors and it is
equal to 81%, causing, also in this case, a reduction of the
packet rate over the network.

VI. CONCLUSIONS

In this paper, a networked control strategy based on sliding
mode control is presented. The main objective is to reduce
the number of transmissions of the actual plant state over
the network, while guaranteeing performance analogous to

the performance attainable in a non networked case. The
proposed model based controller, equipped with a triggering
condition, enables to handle the switch between the usage of
the actual plant state and the nominal model state. A suitable
mechanism to deactivate the plant state transmission in steady-
state is also proposed. Robustness and stability results are
formally addressed in the paper, and an illustrative example
is reported to demonstrate the satisfactory performance of
the proposal in simulation.
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