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Abstract— This paper deals with the formulation of an
Integral Suboptimal Second Order Sliding Mode control algo-
rithm oriented to solve motion control problems for robot
manipulators, taking into account the presence of unavoidable
modelling uncertainties and external disturbances affecting the
systems. The proposed algorithm is designed so that the so-
called reaching phase, normally present in the evolution of a
system controlled via a Sliding Mode controller, is reduced to
a minimum. Moreover, since the relative degree of the relevant
system output is suitably augmented through the use of an
integrator, the control action affecting the robotic system is
continuous, with a significant benefit, in terms of chattering
alleviation, for the overall controlled electromechanical system.
The verification and validation of our proposal have been
performed by simulating the motion control scheme relying
on a model of the considered robot, i.e. a COMAU SMART3-
S2 anthropomorphic industrial robot manipulator, identified on
the basis of real data.

I. INTRODUCTION

Sliding Mode (SM) control is a widely used control
methodology which ensures good performance of the con-
trolled system even in presence of a significant class of
uncertainties [1], [2]. Yet, because of the discontinuous nature
of the Sliding Mode control law, it can produce the so-called
chattering effect [3], [4], [5], [6], [7], i.e. high frequency
oscillations of the controlled variable, which can be disruptive
for the controlled plant or significantly limit the life cycle of
the actuators. This is the reason why the use of Sliding Mode
control in robotics is quite limited. Spong and Hutchinson
in [8, subsection 8.4.11] suggested, in order to control robotic
systems, to implement a continuous approximation to the
discontinuous control, which however could only guarantee
the uniformly ultimately boundedness of the tracking error
system. This, in practice, diminishes the efficacy of Sliding
Mode control, since a pseudo-sliding mode is generated, rather
than an ideal sliding mode, and the robustness features of
the methodology are lost.

Nowadays, a well-established method to perform chattering
alleviation is that consisting in confining the discontinuity to
a derivative of the control variable, so that the control signal
actually fed into the system is continuous. This approach,
called Higher Order Sliding Mode (HOSM) control [9], [10],
[11], [12], [13], [14], [15], after a transient phase, enforces
a sliding mode, involving not only the sliding variable but
also their time derivatives up to the order r− 1 in case of
the so-called r-sliding mode.
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Because of the continuous nature of the control action,
the HOSM control approach is appropriate to be applied
even to electromechanical or mechanical systems [16], [17],
as testified by [18], [19], [20]. Yet, as highlighted in [11],
some problems remain during the transient phase, i.e. the
so-called reaching phase, since in that time interval, which
proves to be of finite, but, in general, unpredictable length,
the transient duration being affected by the uncertainty terms,
the robustness properties of the control approach do not hold.

In this paper, inspired by [21], we propose a modification of
the control algorithm considered in [18], which belongs to the
class of the so-called Suboptimal Second Order Sliding Mode
algorithms (see [9], [11]), which gives rise to a new version
of the algorithm, herein named Integral Suboptimal Second
Order Sliding Mode algorithm. The proposed algorithm
maintains the good properties of the original Suboptimal
Second Order Sliding Mode approach, in terms of chattering
alleviation, but also assigns a transient dynamics to the
controlled system, so that the reaching phase occurs with a
prescribed transient time. This feature is highly beneficial
in robotics since it limits the time periods during which
the 2-sliding mode on the selected sliding manifold is not
enforced.

The integral 2-sliding mode is kept on a suitably modified
sliding manifold from the initial time instant (this time
instant being the time instant when the adopted Levant’s
differentiator [22], [23], involved in the scheme, converges)
and from that time instant the robustness of the controlled
system is proved. The effectiveness of the proposed approach
has been assessed in simulation, relying on a model identified
on the basis of the data collected on a COMAU SMART3-S2
anthropomorphic industrial robot manipulator, and experimen-
tally, using the actual robotic system which is present in our
lab. Beacuse of space limitations, only simulation results are
hereafter reported and discussed.

The present paper is organized as follows. In Section II,
higher order sliding modes and integral higher order sliding
modes are reviewed with reference to a SISO uncertain
dynamical system. In Section III, the Integral High Order
Sliding Mode control approach is extended to the Suboptimal
control approach, and the new algorithm is presented. In
Section IV, the kinematical and dynamical models of a
three joints planar robot manipulator are introduced, and
the proposed motion control scheme is described. The final
part of the paper is devoted to present simulation results.
Some conclusions (Section V) end the paper.
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II. SOME PRELIMINARY ISSUES

Consider the SISO system given byẋi(t) = xi+1(t) i = 1, . . . ,n−1
ẋn(t) = f (x(t))+g(x(t))u(t)
y(t) = s(x(t))

(1)

where x(t) ∈ Rn is the state vector, u(t) ∈ R is the control
variable, s : Rn → R is a smooth output function, named
sliding variable in the subsequent analysis. System (1) is an
uncertain system since f (·) and g(·) are unknown smooth
functions. The relative degree of the system, i.e. the minimum
order r of the time derivative s(r) of the sliding variable in
which the control u explicitly appears, is considered well
defined, uniform and time invariant. In the following, the
dependence of s on x(t) and of all the variables on t is omitted
in some cases, when it is obvious, for the sake of simplicity.

A. Higher Order Sliding Modes

The Higher Order Sliding Mode (HOSM) control problem
is based on the definition of an auxiliary system associated
with the original uncertain system. The auxiliary system is a
perturbed chain of integrators built starting from the sliding
variable and its time derivatives. Thus, the original control
objective, attained in conventional sliding mode control by
zeroing the sliding variable in finite time, is transformed into
the aim of regulating the auxiliary system. This means, for
any r-th order sliding mode control, to force the system state
to reach in finite time and remain on the subspace named r-
sliding manifold s = ṡ = · · ·= s(r−1) = 0. The time derivative
s(r) is the bounded function which, relying on (1), can be
expressed as follows

s(r)(x(t)) = F(x(t),u(t))+g(x(t))u(t) (2)

where F(·) = s(r)|u=0 and g(·) = (∂ s(r)/∂u) 6= 0 are unknown
functions. More precisely, it is assumed that there exist
positive constants G1, G2, F , such that

0 < G1 ≤ g(x(t))≤ G2 (3)
|F(x(t),u(t))| ≤ F (4)

Note that instead of (3), one could analogously have the
opposite inequality

−G2 ≤ g(x(t))≤−G1 < 0 (5)

i.e. it is required that g(·) has constant known sign. Since the
information about the bounds of F(·) and g(·) are assumed
to be available, the original dynamical system (1) implies the
differential inclusion [24]

s(r) ∈ [−F,F ]+ [G1,G2]u (6)

The problem of making the r-sliding manifold associated
with (6) finite-time attractive, generating a sliding mode of
order r (r-sliding mode), can be solved by any r-sliding mode
controller of the type

u(t) =UmaxΨ

(
s, ṡ, . . . ,s(r−1)

)
(7)

see for instance [10], [11], [12], [13], [14], [15], where Ψ

is a discontinuous function, and Umax > 0 is chosen so as
to ensure the finite time convergence of the sliding variable
to the equilibrium s = 0, which is one of the strong points
of sliding mode control and is particularly useful in specific
applications.

B. Second Order Sliding Mode Algorithms

Second Order Sliding Mode (SOSM) control is a particular
case of HOSM control. Several algorithms, such as the Twist-
ing, the Super-Twisting [25] and the Suboptimal algorithm [9],
[11], have been proposed in the last years. In this paper, we
refer to the Suboptimal approach, and we assume that the
sliding variable is expressed as

s(x(t)) = xn(t)+
n−1

∑
i=1

mixi(t) (8)

where mi, i = 1, · · · , n − 1 are real positive constants.
According to this choice of the sliding variable the states
tends to zero asymptotically.

To construct the auxiliary system, one has to consider the
first and the second-time derivative of the sliding variable,
i.e.

ṡ(x(t)) = f (x(t))+g(x(t))u(t)+
n−1

∑
i=1

mixi+1(t) (9)

s̈(x(t)) =
d
dt

f (x(t))+
d
dt

g(x(t))u(t)+g(x(t))u̇(t)+

(10)

+mn−1 [ f (x(t))+g(x(t))u(t)]+
n−2

∑
i=1

mixi+2(t)

By defining ξ1(t) = s(x(t)) and ξ2(t) = ṡ(x(t)), it yields{
ξ̇1(t) = ξ2(t)
ξ̇2(t) = F(x(t),u(t))+g(x(t))w(t)

(11)

where ξ2(t) is assumed to be unmeasurable, F(·) and g(·)
have the bounds indicated in (3) and (4), w(t) is the auxiliary
control law which has to be designed so that ξ1(t) and
ξ2(t) are steered to zero in a finite time in spite of the
uncertainties. Note that the Suboptimal algorithm, reported
in [9], requires that the control w(t) = u̇(t) is discontinuous.
Yet, w(t) only affects s̈, but not ṡ so that the undesired high
frequency oscillations, called chattering, are alleviated. Indeed,
the control actually fed into the plant is continuous, which is
highly appreciable in case of mechanical or electromechanical
plants.

C. Integral Sliding Mode Algorithms

Recent research has been devoted to study Integral Sliding
Mode (ISM) methods, which enables to generate an ideal
sliding mode of the controlled system starting from the initial
time instant t0. A sliding mode is defined Integral Sliding
Mode if the system, while sliding, is of the same order as
the original system [26]. ISM requires to split the control
variable into two parts

u(t) = u0(t)+u1(t) (12)



where u0(t) is generated by any suitably designed high level
controller, and u1(t) is a discontinuous control action designed
to compensate the uncertainties affecting the system. A
particular sliding manifold is defined, named integral sliding
manifold, as

Σ(t) = s(x(t))−ϕ(t) = 0 (13)

where Σ is an auxiliary sliding variable, s can be chosen, for
instance, as in (8), and the integral term ϕ is

ϕ(t) = s(x(t0))+
∫ t

t0

∂ s
∂x

ẋ(ζ )dζ (14)

with the initial condition ϕ(t0) = s(x(t0)). By virtue of the
choice of ϕ(t) and ϕ(t0), it is apparent that the controlled
system is in sliding mode on the manifold Σ(t) = 0 since the
initial time instant.

D. Integral Higher Order Sliding Mode Algorithms

A novel trend of the research on sliding mode control has
led to the formulation of a joint approach which can be named
Integral Higher Order Sliding Mode (IHOSM) control. This
approach consists in defining an auxiliary sliding variable as
in (13), with the function ϕ(t) suitably chosen to fulfill some
restriction on the transient time during the reaching phase, so
that, thanks to the existence of a sliding mode on the integral
sliding manifold since the initial time instant, one has

s(t) = ϕ(t), ∀t, t0 ≤ t ≤ t f (15)

where t0 is the initial time instant, and t f is the time to reach
the condition s = 0. Moreover,

ϕ(t0) = s(t0), . . . ,ϕ(r−1)(t0) = s(r−1)(t0) (16)
ϕ(t)≡ 0, ∀t ≥ t f (17)

In analogy with (7), it yields that the sliding mode can be
enforced by the following control law

u(t) =UmaxΨ

(
Σ, Σ̇, . . . ,Σ(r−1)

)
(18)

with Ψ discontinuous function and Umax > 0 suitably chosen
design parameter.

III. THE NEW PROPOSAL: INTEGRAL SUBOPTIMAL
SECOND ORDER SLIDING MODE

In this section, the IHOSM control methodology is coupled
with the Suboptimal SOSM control approach, giving rise to
a new algorithm, herein named Integral Suboptimal Second
Order Sliding Mode (ISSOSM) algorithm. This new control
approach maintains the good properties of the original
Suboptimal algorithm in terms of capability of stabilizing
in finite time a perturbed chain of integrators with bounded
control, as well as in terms of chattering alleviation. Moreover,
the reaching phase is reduced to a minimum, as will be
clarified in a moment, by the introduction of a transient
dynamics with a prescribed time.

The transient trajectory is realized as in (15)-(17). More
specifically, an appropriate choice (see [21]) for the transient

function ϕ(t) is the following{
ϕ(t) = (t− t f )

2(c0 + c1(t− t0)), ∀t, t0 ≤ t ≤ t f
ϕ(t) = 0, ∀t > t f

(19)

where c0, c1 are found from (16) as

c0 = s(t0)T−2 (20)

c1 = ṡ(t0)T−2 +2s(t0)T−3 (21)

while T = t f − t0 is the prescribed time. Note that the
knowledge of ṡ(t0) is necessary to define the transient
function, and, since ṡ is unmeasurable, the well-known
Levant’s differentiator

ż0 =−λ0|z0− s|1/2 sgn(z0− s)+ z1 (22)
ż1 =−λ1 sgn(z0− s) (23)

where z0, z1 are the estimated values of s, ṡ, respectively,
and λ0 = L1/2, λ1 = 1.1L, L ≥ F + sup|s̈|, is a possible
choice of the differentiator parameters [22], is used for an
initialization time period ending in t0, with t0 ≥ td , td being
the differentiator convergence time or an upper bound of it.

With reference to the Suboptimal SOSM algorithm, de-
scribed in the previous section, considering the sliding
variable used to define the integral sliding manifold Σ = s−ϕ ,
and the auxiliary system (11) with ξ1 = Σ and ξ2 = Σ̇, the
following control algorithm can be written.

ISSOSM Algorithm:

1) Set Σ(t) = s(x(t))−ϕ(t).
Repeat for any t > t0, the following steps.

2) Set α∗ ∈ (0,1]∩ (0,3G1/G2).
3) Set ξ1max = ξ1(t0).
4) If t0 ≤ t ≤ t f , then set ϕ(t) = (t− t f )

2(c0 + c1(t− t0)),
else set ϕ = 0.

5) If
[
ξ1(t)− 1

2 ξmax
]
[ξmax−ξ1(t)] > 0, then set α = α∗,

else set α = 1.
6) If ξ1(t) is extremal, the set ξmax = ξ1(t).
7) Apply the control law

w(t) =−αUmax sgn
(
ξ1(t)− 1

2 ξmax
)

(24)

with

Umax > max
(

F
α∗G1

;
4F

3G1−α∗G2

)
(25)

A possibility to evaluate the extremal values ξmax can be
to use again a Levant’s differentiator. In practice, this means
that, even if the state Σ̇ is not available for measurements, it
can be estimated by the differentiator, the structure of which
is reported in (22) and (23), and the extremal values of Σ(t)
can be stored at the time instant when Σ̇(t) changes its sign.
In alternative, one can deduce Σ̇ relying on the definition of
Σ and on the estimate of ṡ obtained through (22) and (23).

Remark 1: Note that, if Σ̇ were measurable, i.e. if ṡ were
available, the controlled system would be in sliding mode
independently of the choice of the initial time instant t0.
Since instead a Levant’s differentiator is used to determine
the unavailable quantities, in spite of the choice of the integral
approach, it is necessary to provide sufficient time for the



differentiator convergence. Since the differentiator proves to
converge in a finite time td , then one can claim that, in our
case, the sliding mode is enforced for any t ≥ t0, with t0 ≥ td .

According to [11], [21], [26], the finite time convergence
of the sliding variable to the origin of the state plane and
the asymptotically convergence of the states trajectories can
be proved. By virtue of the fact that the sliding mode on
the integral sliding mode manifold is enforced since the
initial time instant, to be selected according to Remark 1, the
reaching phase can be definitely reduced, which produces a
clear benefit in terms of robustness of the controlled system.

IV. A CASE STUDY

In this section, the results of the verification and validation
of the proposed algorithm based on simulation are reported.
Simulations have been run using a model of the actual robot
identified on the basis of real data. In order to formulate the
model of a n-joints rigid robot manipulator, kinematical and
dynamical aspects have to be considered. During our tests,
for the sake of simplicity, only vertical planar motions of the
robot manipulator were enabled, by locking three of the six
joints of the robot (see Fig. 1).

Fig. 1. The COMAU SMART3-S2 anthropomorphic industrial robot
manipulator used for the tests with the joints numeration.

A. The Robot Model

Consider Fig. 2. Let li, i = 1,2,3 denote the length of
the i-th link, q1 the orientation of the first link with respect
to y-axis clockwise positive, and let q j, j = 2,3 denote the
displacement of the j-th link with respect to the ( j−1)-th one
clockwise positive. Let O−{x,y,z}, denote the base-frame
of the robotic manipulator, so that the center O is placed in
the centre of the first joint of the robot. Let Oe−{n,s,a}
denote the end-effector frame of the robot manipulator, so
that the center Oe is placed on its end-effector, and the axes
{n,s,a} are indicated in Fig. 2.

The direct kinematics of a 3-joints planar manipulator
describes the relationship between the joint variables q =
[q1 q2 q3]

T and the end-effector position and orientation
x = [px py φ ]T in the planar workspace. With reference to
Fig. 2, where the joint variables qi, i = 1,2,3 are indicated,

the direct kinematics equations in our case can be written aspx =−l1 sin(q1)− l2 sin(q1 +q2)− l3 sin(φ)
py = l1 cos(q1)+ l2 cos(q1 +q2)+ l3 cos(φ)
φ = q1 +q2 +q3

(26)

The dynamics of the robot can be described in the joint
space, by using the Lagrangian approach, as

B(q)q̈+n(q, q̇) = τ (27)
n(q, q̇) =C(q, q̇)q̇+Fvq̇+Fssgn(q̇)+g(q) (28)

where B(q) ∈ R3×3 is the inertia matrix, C(q, q̇) ∈ R3×3

represents centripetal and Coriolis torques, Fv ∈ R3×3 is the
viscous friction matrix, Fs ∈R3×3 is the static friction matrix,
g(q) ∈ R3 is the vector of gravitational torques and τ ∈ R3

represents the motors torques. Note that the static friction is

Fig. 2. A schematic planar view of the robot manipulator with the joint
variables.

neglected during the design of the ISSOSM controller but it
is present in the simulation model of the robot and, obviously,
in the actual industrial robot.

B. The Motion Control Scheme
In Fig. 3 the proposed control scheme for the robot is

illustrated. The feedback loop is designed for the position

Fig. 3. The motion control scheme with the inverse dynamics-based feedback
linearization applied to the robot system.

tracking control, the desired position being compared with
the real position. Controller C computes the control variable
u∈R3 starting from the position error e∈R3 with e = qd−q.

To feedback linearize the nonlinear system (27), the
classical inverse dynamics control approach [27] has been



adopted. The inverse dynamics of a rigid robot manipulator
can be written in the joint space as a non linear relationship
between the plant inputs and the plant outputs, relying on (27)
and (28), so that the control law results in being

τ = B(q)u+ n̂(q, q̇) (29)

where u is an auxiliary control variable. Note that B(q) and
n̂ need to be identified on the basis of experimental tests. In
our work, we assume that the identified B(q) coincides with
the actual one (or it is a quite accurate replica), which, on
the basis of our experience, is often true in practice, while n̂
is an estimate of n, which does not necessarily coincide with
n. In the following we make reference to the experimentally
identified B(q) and n̂ in [28].

By applying the feedback linearization to system (27), (28),
one obtains

q̈ = u+B−1(q)ñ(q, q̇) = u−η(q, q̇) (30)

where η(q, q̇) takes into account modelling uncertainties and
dynamical effects, and

ñ(q, q̇) = n̂(q, q̇)−n(q, q̇) (31)

Therefore, the whole system is reduced to the union of three
decoupled uncertain smooth SISO systems.

Now we design the controller C relying on the previously
described Integral Suboptimal Second Order Sliding Mode
control approach. According to this latter, a sliding variable
for each SISO system is selected as

si(t) = miei + ėi, i = 1,2,3 (32)

where mi ∈R is scalar, and ei is the position error of the i-th
joint. The relative degree of each SISO system involving a
single sliding variable si, considering si as the relevant system
output, is 1 so that the control variable appears in the first
time derivative of si as follows

ṡi(t) = miėi + ëi = miėi + q̈di +ηi−ui (33)

According to the proposed ISSOSM Algorithm, the transient
function ϕi is chosen as in (19), with (16), and (17), while
the auxiliary sliding variable defining the integral sliding
manifold for each joint is Σi = si−ϕi. The auxiliary system
can be written as

ξ̇1i(t) = ξ2i(t)

ξ̇2i(t) = mi(q̈di(t)+ηi(t)−ui(t))+
d3qdi (t)

dt3

+η̇i(t)− u̇i(t)− ϕ̈i(t)

(34)

where ξ1i(t) = Σi and ξ2i(t) = Σ̇i. Since the relative degree
turns out to be raised, the auxiliary control law u̇i is
discontinuous according to the algorithm, while the effective
control variable is

ui(t) =
∫ t

0
αiUmaxi sgn

(
ξ1i(ζ )− 1

2 ξmaxi

)
dζ (35)

which is continuous, so that the chattering alleviation is
attained.
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Fig. 4. Angular position of joints and end-effector orientation angle φ

(simulation results). From the top on the left: the desired trajectory (dotted
red line) and the real one (solid black line) for each joint.
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Fig. 5. From the top: the auxiliary sliding variable Σi for joint 1,2 and 3,
respectively (simulation results).
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C. Simulation Results

In this subsection we assess the performance of the
ISSOSM algorithm in simulation. The goal of the control
system is to steer the joint angles from a given initial
position (q10 , q20 , q30) = (0, 0, 0) to the final position
(q1 f , q2 f , q3 f ) = (π/6, π/4, −π/4), following the trajectory
qi = a3t3 +a2t2 +a1t +a0, where a0, a1, a2, a3 are coeffi-
cients depending on qi0 and qi f , i = 1,2,3. The parameters
of the function ϕi are calculated at t0 =0.1 s, while the final
time is t f =2 s. Moreover, to verify the robustness properties
of the controller, random noise with uniform distribution
η = [η1 η2 η3]

T with the following upper bounds

|η1| ≤ 20 (36)
|η2| ≤ 80 (37)
|η3| ≤ 100 (38)

has been added to the angular accelerations of the joints of
the simulated robot. Table I reports the control parameters,

TABLE I
CONTROL PARAMETERS (SIMULATION).

i mi α∗i Umaxi

1 10 0.9 630
2 10 0.9 2130
3 10 0.9 10250

used for each joint. Fig. 4 shows the evolution of the joint
variables and of the orientation angle of the end-effector φ =
q1+q2+q3. Fig. 5 and 6 respectively show the corresponding
auxiliary sliding variables Σi maintained to zero from the
initial time instant, and the sliding variables si steered to
zero. The root mean square error eRMS =3.7996×10−4 rad
is obtained with the sampling time of ts =0.0001 s.

V. CONCLUSIONS

In the paper the good features of the Integral Sliding Mode
control approach are extended to the so-called Suboptimal
algorithm, also ensuring chattering alleviation and robustness
with respect to matched uncertainties. A new version of the
Suboptimal algorithm named Integral Suboptimal Second
Order Sliding Mode control algorithm has been formulated.
Some theoretical results have been first discussed: the finite
time regulation of the auxiliary system state, the reduction of
the reaching phase, as well as the robustness of the proposed
approach guaranteed since the initial time instant to. Then, the
proposed algorithm has been used to design a motion control
scheme for robot manipulators. The scheme has been tested
in simulation, relying on the data from a real industrial robot
manipulator. The effectiveness of the proposed algorithm in
terms of convergence and robustness is confirmed by the
satisfactory simulation results.
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