
A Greedy Approach for Resource Allocation in
Virtual Sensor Networks

Sonda Bousnina⇤, Matteo Cesana⇤, Jorge Ortı́n†‡ Carmen Delgado‡, José Ramón Gállego‡, Marı́a Canales‡

⇤Dipartimento di Elettronica,
Informazione e Bioingegneria,

Politecnico di Milano,
Milano, Italy

{sonda.bousnina, matteo.cesana}@polimi.it

† Centro Universitario de la Defensa Zaragoza
Academia General Militar,

Zaragoza, Spain
jortin@unizar.es

‡Aragón Institute of Engineering Research
Universidad de Zaragoza,

Zaragoza, Spain
{cdelga, jrgalleg, mcanales}@unizar.es

Abstract—Virtual Sensor Networks (VSNs) envision the cre-
ation of general purpose wireless sensor networks which can be
easily adapted and configured to support multifold applications
with heterogeneous requirements, in contrast with the classical
approach of wireless sensor networks vertically optimized on
one specific task/service. The very heart of VSNs’ vision is
the capability to dynamically allocate shared physical resources
(processing power, bandwidth, storage) to multiple incoming
applications. In this context, we tackle the problem of optimally
allocating shared resources in VSNs by proposing an efficient
greedy heuristic that aims to maximize the total revenue out of the
deployment of multiple concurrent applications while considering
the inherent limitations of the shared physical resources. The
proposed heuristic is tested on realistic network instances with
notable performances in terms of execution time while keeping
the gap with respect to the optimal solution limited (below 5%
in the tested environments).

I. INTRODUCTION

The last ten years have witnessed huge advancements in
the field of Wireless Sensor Networks (WSNs) which have
become one of the fundamental components to empower the
vision of the Internet of Things (IoT). WSNs are nowadays
ubiquitous in several applications environments like home
automation, industrial control, healthcare, etc. Still the WSNs
ecosystem has two main drawbacks which have slowed down
the capillary diffusion of such technology: on one side, the
WSN ecosystem is highly fragmented with multiple available
alternatives at all the layers of the communication stack (PHY,
MAC, network and application), on the other side the classical
design approach is highly ”vertical” with network deployments
tightly customized on the needs of one or very few specific
applications (one-application/one-network design approach).

In this context, there is an increasing need of orchestrating
the diverse offer of communication protocols and standards,
further being able to easily configure/re-configure the deployed
WSNs to support multiple applications which might change
over time as well. This view encompasses the creation of
Virtual Sensor Networks (VSNs) in which multifold physical
resources (sensor nodes, communication protocols, etc.) are
virtually shared by multiple concurrent applications seam-
lessly. The vision of VSNs calls, on one side, for software
platforms to abstract away the complexity and diversity of

the available physical resources [1], [2], and, on the other
side, it requires effective algorithms to dynamically allocate
such physical resources to multiple incoming applications
requesting for service.

This work focuses on the problem of optimal resource
allocation in VSNs. Namely, we consider a wireless sensor
network composed of heterogeneous physical resources in
terms of sensor node hardware capabilities and communication
protocols and we propose a simple yet effective algorithm to
optimally deploy multiple applications while accounting for
the constraints posed by the physical infrastructure. The pro-
posed algorithm is then validated against the optimal solution
to the resource allocation problem obtained in our previous
work [3], which formalized the resource allocation problem
as a Mixed Integer Linear Programming (MILP) and solved it
with commercial solvers. The performance evaluation shows
that the proposed algorithm is extremely fast when coping also
with medium/large network scenarios, still providing solutions
which are only 5% away from the optimal ones.

The rest of the paper is organized as follows: sections II and
III respectively define the reference problem and introduce the
proposed algorithm for resource allocation in VSN; Section IV
reports and comments on the performance evaluation of the
proposed solution. Related works on applying greedy-based
heuristic to wireless networks are commented in Section V,
while concluding remarks are finally given in Section VI

II. REFERENCE SCENARIO AND PROBLEM STATEMENT

We consider the same reference system as in [3] with a wire-
less sensor network composed of a set S = {s1, s2, . . . , sl} of
sensor nodes, and a set A = {a1, a2, . . . , am} of applications
which need to be deployed in the wireless sensor network.
Each application in set A has specific ”sensing” requirements,
defined as specific positions in the environment which need
to be monitored (e.g., one application may require to measure
scalar parameters like the temperature at specific points/areas).
Formally, each application j has to sense a given set of test
points Tj , which requires application j to be deployed on a
subset of S such that all the test points in Tj are covered.
A test point is covered by a sensor node i if it is within its

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Politecnico di Milano

https://core.ac.uk/display/84891143?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

sensing range, Rs
i . Based on this, we can define the set Sjk as

the set of sensor nodes which physically cover the test point k,
with k 2 Tj . In other words, if the application j is deployed
on a sensor in set Sjk, then the test point k is covered for
this application. We consider here the most demanding case
in which an application to be successfully deployed needs to
cover all the test points in its set Tj ; the proposed framework
can easily be extended also to the case where partial coverage
is needed. For instance, let us assume that application j has
2 test points, Tj = {t1, t2}. We can further assume that test
point t1 is covered by sensor nodes Sj1 = {a1, a2}, and test
point t2 is covered by sensor nodes Sj2 = {a3, a4, a5}. Then,
in order to deploy application j on the network, it must be
deployed in either a1 or a2, and also in a3, a4 or a5.

Moreover, each application j in A is further characterized
by a requirement vector rj = {cj ,mj , pj} which specifies
the required source rate [bit/s], memory [bits] and processing
load [MIPS] consumed by the application when it is deployed
on a sensor node. Dually, each sensor node i in S is char-
acterized by a given resource vector oi = {Ci,Mi, Pi, Ei},
which specifies its available bandwidth, storage capabilities,
processing power and energy store.

The information generated by the applications deployed at
sensor nodes needs to be delivered remotely to sink nodes
through multihop paths which are computed by operating any
state-of-the-art routing protocol for wireless sensor networks;
without loss of generality, we consider here the RPL [4] as the
reference routing protocol, being the routing metric the hop
count measure. We denote by Pi the path from a given node si

to its closest sink and with h(si) its length. The path is formed
by a concatenation of links si ! sh ! sg ! . . . ! ssink(i),
with sh ! sg denoting the link between the node sh and
the node sg . We call lh the link sh ! ss(h), where ss(h) is
the successor of sh in the shortest path tree calculated by the
reference routing algorithm. We also indicate that the link lh

belongs to Pi by writing lh 2 Pi.
A protocol interference model with power control is used

to capture wireless interference between nodes, that is, the
transmission power of each node is set to the minimum
level required to reach the receiver node and the transmission
capacity of a given wireless link is shared by all the concurrent
transmissions in the interference range of the reference link.
Formally, the interference set of link lh, Ih, is the set of links
that interfere or are interfered by link lh. This set is formed
by the links whose receiver is within the interference range of
the node sh and the links where the node ss(h) is within the
interference range of its transmitter. Every time the link lh is
transmitting, the links in Ih must remain silent so that there
is no interference between them (and conversely, every time
a link in Ih is transmitting, lh must be silent). Therefore, the
transmission time of link lh is shared among all the links in
Ih.

We aim to maximize the overall profit of deploying appli-
cations in the VSN which can be measured as the revenues
obtained in succeeding deploying an application in the VSN
discounted by the cost incurred in terms of needed physical

resources; namely, the reference objective function is:

max

0

@
X

j2A

qjzj �
X

i2S

�ixi

1

A (1)

where qj is the revenue for deploying application j, zj is a
binary variable indicating if application j is deployed, �i is
the cost of activating sensor node i and xi is a binary variable
indicating if node i is active.

The reference optimization problem scales down to find
which applications to deploy and where to deploy them in
order to maximize Eq. (1), while matching the following
constraints set on the physical network infrastructure: (i)
resource constraints, the applications must be deployed at
sensor nodes which ”enough” physical resources (memory,
processing capacity, energy and bandwidth), (ii) capacity con-
straints, there is ”enough” bandwidth to deliver the data flow
generated by the deployed applications to the remote sinks
across multi-hop paths.

III. GREEDY ALGORITHM

The core idea of the proposed algorithm is to sort all the
applications in set A in decreasing order with respect to a profit
ratio ej , which measures the ”profit gain” that is obtained if
application j is successfully deployed. The algorithm proceeds
by selecting the application with the highest ej and try to
deploy it by checking if all the resource and bandwidth
constraints are verified. The application (deployed or not) is
removed from set A and the process is then iterated until set
A is empty. The profit ratio is defined as:

ej = qj/wj , (2)

being qj the revenue for deploying application j and wj an
estimation of the cost of deploying the application. Such cost
is:

wj =

X

k2Tj

wjk (3)

where wjk is the cost incurred in covering the k-th test point
of application j. This cost depends on the specific sensor node
i chosen to cover the k-th test point of application j, which
we define as vji. In order to consume as few resources as
possible, we assume that the application will be deployed on
the node with the lowest vji among those nodes with enough
spare resources to host it, that is,

wjk = min

i2S0
jk

vji (4)

with S

0
jk the set of nodes that cover test point k of application

j and that have enough resources to sense effectively this test
point. This implies that the nodes in S

0
jk has enough available

memory, processor capacity and energy to sense and transmit
the sensed data. They must also have a path to the sink with
enough transmission resources and energy to retransmit the
sensed information.

We consider two different alternatives for measuring the cost
factor vji. In the first case, we set vji = h(si), i.e. the number

of hops to reach the sink from the node. In the second case,
we define vji as

vji =

X

lh2Pi

cj

Ch
|Ih| (5)

This expression is a measure of the total transmission
resources used in the network when the application is deployed
on the node si: the ratio cj/Ch is the percentage of airtime
required to (re)transmit the data from application j by sensor
node h. As this airtime is also consumed for all the links that
interfere with the link h, this ratio is multiplied by the number
of elements in Ih. Finally, this amount is added up for all the
links that form the path to the sink.

The detailed pseudocode of the proposed solution is re-
ported in Algorithm 1. First, we define for each node the
variables M

(r)
i , P

(r)
i and E

(r)
i , which are used to track the

available memory, processing capacity and energy of the nodes
as applications are deployed on the network. We also define for
each link the variable B

(r)
i , which is used to store the available

transmission resources of that link. Variables M

(r)
i , P

(r)
i and

E

(r)
i are initialized to Mi, Pi and Ei, while variables B(r)

i are
set to 1 to indicate that the whole airtime of each link is fully
available at the beginning. We also initialize each set S0

jk with
all the elements in the corresponding set Sjk since we assume
at first that any application fits into any node that can sense
its test points (lines 1-2).

Next, the terms ei are computed for all the applications
in A with eqs. (2)-(5) (line 3) and the algorithm enters into
its main loop. At each iteration, we look for the application
with the highest value of ej , (application ab in line 5), and
try to deploy it on the network. For simplicity, this part of
the algorithm is explained in Algorithm 2. First, we define the
auxiliary variables M (a)

i , P

(a)
i , E

(a)
i and B

(a)
i , which are used

to store a copy of M (r)
i , P

(r)
i , E

(r)
i and B

(r)
i . These variables

allow obtaining the remaining resources of the network if ab

can be effectively deployed (i.e. if there are enough resources
in the network).

To check this, we have to verify that all the test points
of ab can be properly sensed (line 2). To that end, we try
to sense each test point with the sensor node sf that has
the lowest associated cost vbi (line 3), calculating: (i) the
remaining available memory and processor capacity that node
sf would have if the application were deployed on it (lines
4-5), (ii) the remaining transmission resources of each link of
the path Pf (line 8) and of the links in their interference sets
(line 10), (iii) the remaining energy in sf and in all the nodes
of the path Pf (line 7). For each link, the required transmission
resources correspond to the airtime needed to transmit the
sensed data, which is cb/Cg , with cb the bit rate of application
ab and Cg the available bandwidth of the node. Regarding the
energy consumption, it depends on the application type and
on the sensor node type and its role (if it senses and transmits
the data or if it only receives and retransmits it). This energy
consumption is left as a function of ab and sg .1

1Detailed expressions for this energy consumption can be found in [3].

Algorithm 1 Scheme of the proposed solution

1: Initialize variables M

(r)
i , P

(r)
i , E

(r)
i , B

(r)
i

2: Initialize sets S

0
jk

3: Compute ej with (2)-(5) for all aj 2 A

4: repeat
5: ab argmaxj2A(ej)

6: if ab can be deployed then
7: Update variables M

(r)
i , P

(r)
i , E

(r)
i , B

(r)
i

8: Remove application ab from A

9: else
10: Remove from S

0
bk the node sf that cannot sense

test point tk of application ab

11: if S0
jk is empty then

12: Remove application ab from A

13: else
14: Recompute eb with (2)-(5)
15: end if
16: end if
17: until A is empty
18: Compute objective function with (1)

If all the auxiliary variables M

(a)
i , P

(a)
i , E

(a)
i and B

(a)
i are

higher than zero once all the test points of application ab are
covered, we can state that ab can be deployed on the network
(line 18 of Algorithm 2). If so, we remove ab from the set
A and update the variables M

(r)
i , P

(r)
i , E

(r)
i and B

(r)
i with

M

(a)
i , P

(a)
i , E

(a)
i and B

(a)
i (lines 7-8 of Algorithm 1). If it

cannot be deployed (because some test point cannot be covered
with the node with the lowest cost), we remove that node from
the set S0

bk (line 10 of Algorithm 1). If this set is empty, we
remove the application from A as it is not possible to cover
test point tk (lines 11-12). If S0

bk is not empty, the application
might still be deployed, so we update eb and go back to line
5. Finally, when the set A is empty, we compute the objective
function with (1).

IV. SIMULATIONS AND PERFORMANCE EVALUATION

In this section, we evaluate the performance of the pro-
posed solution with the two different definitions of vji: h(si)
(GreedyHop), and Eq. (5) (GreedyAirtime). We also consider
the case of running the algorithm twice (one with each
definition of vji) and taking the best result (GreedyMax). We
compare the results with the optimum solution (Optimum)
given in [3] obtained by formalizing the resource allocation
problem as a MILP and solving it via commercial solvers;
optimality gap and computation time are the main performance
metrics used in the evaluation.

A. Simulation Environment

We consider a scenario with two different types of sensor
node hardware and two classes of applications. In the follow-
ing, we define the main features of both sensor nodes and
applications and the simulation parameters. Then, results are
presented.

Algorithm 2 Check if an application fits into the network

1: Initialize variables M

(a)
i , P

(a)
i , E

(a)
i , B

(a)
i

2: for all tk 2 Tb do
3: sf argmini2S0

bk
(vbi)

4: M

(a)
f M

(a)
f �mb

5: P

(a)
f P

(a)
f � pb

6: for all lg 2 Pf do
7: E

(a)
g E

(a)
g � e(ab, sg)

8: B

(a)
g B

(a)
g � cb/Cf

9: for all lh 2 Ig do
10: B

(a)
h B

(a)
h � cb/Cf

11: end for
12: end for
13: if any variable M

(a)
i , P

(a)
i , E

(a)
i , B

(a)
i is < 0 then

14: ab does not fit into the network
15: return sf

16: end if
17: end for
18: ab fits into the network
19: return M

(a)
i , P

(a)
i , E

(a)
i , B

(a)
i

1) Sensor Node Hardware: The network topologies used
for performance evaluation include two heterogeneous sensor
nodes platforms with different characteristics in terms of cost
and available resources: (i) basic highly-constrained hardware
whose parameters have been derived by taking as a reference
the TelosB sensor platforms [5]; (ii) high-level visual sensor
nodes well represented by BeagleBone platforms [6]. Table I
summarizes the main characteristics of these platforms [7].

TABLE I
SENSOR NODES.

Basic High-Level
Reference Hardware Telos-B BeagleBoard

TX Rate (Ci) 250[kb/s] 250[kb/s]
Available RAM (Mi) 7[Kbyte] 256[Mbyte]
Processing Rate (Pi) 8[MIPS] 720[MIPS]

Energy Store (Ei) 3200[J] 3200[J]

2) Applications: Two classes of applications are consid-
ered: scalar and visual applications. Scalar applications re-
quire the collection and delivery of scalar information like
temperature and luminance samples. Visual applications [8]
require the collection, processing and delivery of multimedia
content (images and video). While scalar applications can
be supported by both types of hardware platforms, visual
applications can only be deployed at high-level sensor nodes.
For visual applications we focus on visual sensor networks
(e.g. object recognition) [9]. We consider two paradigms to
perform visual tasks: the Compress-Then-Analyze (CTA) and
the Analyze-Then-Compress (ATC) [9], [10]. Tables II and III
summarize the characteristics of the reference applications [7].

3) Scenario Topologies: The results presented hereafter
have been obtained on 3.0 GHz Quad Core Intel Woodcrest

TABLE II
SCALAR APPLICATIONS.

Temperature Mon. Light Mon.l
Generated Data (cj) 0.5[kb/s] 1[kb/s]

Bytecode footprint (mj) 4462[byte] 1006[byte]
Available RAM (lj) negligible negligible

TABLE III
VISUAL APPLICATIONS.

CTA ATC
Generated Data (cj) 20[kb/s] 12[kb/s]

Bytecode footprint (mj) 10[kbyte]-256[Mbyte] 10[kbyte]-256[Mbyte]
Available RAM (lj) 17.64[MIPS] 69.23[MIPS]

Network edge length [m]
200 283 346 400

O
pt

im
al

ity
 G

ap
 (%

)

0.7

0.75

0.8

0.85

0.9

0.95

1

GreedyHops
GreedyAirtime
GreedyMax

(a)
Network edge length [m]

200 283 346 400

Co
m

pu
ta

tio
n

tim
e

[s
]

100

101

102

103

104

105

Optimum
GreedyHops
GreedyAirtime
GreedyMax

(b)

Fig. 1. Performance Evaluation. a) Optimality gap (ratio between the objective
function defined in Eq. (1) calculated by the reference heuristic and the
optimal value; b) Computation Time (in log scale)

(64 bits) machine with 8 GB RAM and 250 GB SATA storage,
averaging over 100 randomly generated network topologies for
each scenario as detailed in Table IV.

TABLE IV
SCENARIO TOPOLOGIES.

Scenario
1 2 3 4

Size 200⇥ 200 m 283⇥ 283 m 346⇥ 346 m 400⇥ 400 m
Nodes 36+36 72+72 108+108 144+144
sinks 1+1 2+2 3+3 4+4

applications 6+6+6+6 12+12+12+12 18+18+18+18 24+24+24+24

B. Evaluations and Results

Figures 1(a) and 1(b) summarize the performance of the
proposed algorithm in terms of optimality gap and processing
time, when increasing the scale of the reference network
scenario (see Table IV). As clear from the figures, the proposed
solutions are characterized by negligible computation time
with respect to the case where the problem is formalized as a
MILP and solved at the optimum with commercial solvers; yet,
the optimality of the most effective heuristic (GreedyMax) is
often within 5% in all the tested network topologies.

The objective function (1) is composed of two contrasting
terms, the first favoring solutions with higher numbers of
deployed applications, the second favoring ”cheaper” networks
(with fewer active nodes); in this view, it is worth analyzing
the behavior of the proposed heuristics as far as the two

terms of the objective function are concerned. Figures 2
and Figures 3 report the number of deployed applications
and the corresponding cost (number of sensor nodes) for
different network topologies; looking at figures 2.a and 3.a,
one can observe that the GreedyAirtime solution is able to
deploy a number of applications comparable to the optimum
case, but, on the other hand, it results in more expensive
network infrastructures; this is mainly due to the fact that the
GreedyAirtime is ”biased” in deploying applications in those
sensor nodes which are less loaded and interfered (see Eq.
(5)); this trend is verified also by Figures 3(b) and 3(c) which
report the type of activated sensor nodes.

The GreedyHop algorithm provides the cheapest network
infrastructures with the lowest number of deployed applica-
tions, whilst the GreedyMax strikes a better balance between
number of deployed applications and network cost. Figures
2(b) and 2(c) report the breakdown of the deployed applica-
tions distinguished in scalar and visual ones.

Tables V and VI analyze the sensitivity of the proposed
algorithms with respect to the cost for activating sensor nodes;
namely, the results report the number of deployed applications
and activated nodes when varying parameter � of the objective
function in Eq. (1) for the largest network instances (Scenario
4 of Table IV). Expectedly, when increasing the activation cost
for sensor nodes, the proposed algorithms all tend to trade off
the number of deployed applications (revenues) to reduce the
infrastructure cost.

TABLE V
NUMBER OF DEPLOYED APPLICATIONS WHEN VARYING THE COST

PARAMETER � OF THE OBJECTIVE FUNCTION EQ. (1). NUMBERS REFER
TO SCENARIO 4 OF TABLE IV.

GreedyHop GreedyAirtime GreedyMax
scalar visual total scalar visual total scalar visual total

�=0.01 9.15 12.6 21.75 31.72 8.09 39.81 22.72 10.34 33.06
�=0.05 9.15 9.16 18.31 6.5 0.94 7.44 9.25 9.17 18.42
�=0.1 8.31 9.16 17.47 4.27 0.93 5.2 8.31 9.16 17.47

TABLE VI
NUMBER OF ACTIVATED SENSOR NODES WHEN VARYING THE COST

PARAMETER � OF THE OBJECTIVE FUNCTION EQ. (1). NUMBERS REFER
TO SCENARIO 4 OF TABLE IV

GreedyHop GreedyAirtime GreedyMax
scalar visual total scalar visual total scalar visual total

�=0.01 41.87 44.93 86.8 80.67 79.46 160.13 64.68 65.41 130.09
�=0.05 41.87 44.93 86.8 30.28 28.3 58.58 42.28 45.16 87.44
�=0.1 39.5 43.66 83.16 20.79 20.97 41.76 39.5 43.66 83.16

V. RELATED WORKS

The efficient design of general purpose, easy-reconfigurable
wireless sensor network is recently attracting considerable at-
tention in the research community. Research efforts have been
put in place to realize such vision at different levels ranging
from the proposal of novel programming abstractions at the
sensor node level [11], [12], to the design of network-wide
management platforms to orchestrate different applications on
a shared physical infrastructure [13], [14].

In our previous work [3], which sets the basis for the
present work, we formalize the resource allocation problem

in virtual sensor network as MILP problem and we obtain the
optimal solution for small-scale network instances by resorting
to commercial solvers. Differently, the present work focuses
on sub-optimal yet efficient greedy algorithms to solve the
problem in large-scale networks.

Greedy algorithms have been applied to solve several op-
timization problems in telecommunications. For instance, in
[15], it is applied for the optimization of the spectrum effi-
ciency of an OFDM transmission system aiming to minimize
the total allocated bandwidth considering a certain transmis-
sion data rate to each user, under the constraint of a total
transmission power.

Greedy algorithms appear in network routing as well. For
example, the authors of [16] introduced a greedy algorithm for
Multi-Path routing in WSNs which allow to produce multiple
paths between source and destination nodes in quite efficient
time.

Regarding resource allocation, we can find this problem
presented in [17] where a greedy-Knapsack algorithm for
downlink resource allocation in LTE networks have been
discussed. Also in [18], greedy algorithm was proposed for
physical resource block allocation in multi-carrier wireless
communications systems.

Greedy algorithms are convenient for optimization problems
because they are efficient in time and often give good approxi-
mations to the optimum. And this is a common result obtained
in the aforementioned works. Resource allocation problem was
treated in WSNs optimization but to our knowledge this will
be the first case where a greedy based algorithm is applied to
resource allocation problem in virtual sensor network.

VI. CONCLUSION

We addressed in this work the problem of optimally al-
locate physical network resources to applications in VSNs.
We proposed a greedy algorithm which maximizes the total
profit involved in the deployment of multiple applications in
the VSN while accounting for the constraints imposed by the
physical network infrastructure. The proposed solution has
been validated via numerical analysis in terms of compu-
tation time and optimality gap with respect to the optimal
solution obtained with heavy, non-scalable MILP approaches.
The results demonstrate that the proposed approach is simple
yet effective in sensibly reducing the processing time while
keeping the optimality gap below 5% in all the scenarios at
hand.

ACKNOWLEDGEMENTS

This work has been funded by the European Commission
under the Erasmus Mundus GreenIT project (GreenIT for the
benefit of civil society. 3772227-1-2012-ES-ERA MUNDUS-
EMA21; Grant Agreement n 2012-2625/001-001-EMA2), the
Spanish Government through the grant TEC2014-52969-R
from the Ministerio de Ciencia e Innovación (MICINN), Go-
bierno de Aragón (research group T98), the European Social
Fund (ESF), Universidad de Zaragoza, Fundación Bancaria
Ibercaja and Fundación CAI (IT 2/15).

Network edge length [m]
200 283 346 400

A
ct

iv
e

A
pp

lic
at

io
ns

0

10

20

30

40

50
Optimum
GreedyHop
GreedyAirtime
GreedyMax

(a)

Network edge length [m]
200 283 346 400

A
ct

iv
e

Sc
al

ar
 A

pp
lic

at
io

ns

0

10

20

30

40

50
Optimum
GreedyHop
GreedyAirtime
GreedyMax

(b)

Network edge length [m]
200 283 346 400

A
ct

iv
e

V
isu

al
 A

pp
lic

at
io

ns

0

10

20

30

40

50
Optimum
GreedyHop
GreedyAirtime
GreedyMax

(c)

Fig. 2. Number of deployed applications. a) Total b) Scalar c) Visual

Network edge length [m]
200 283 346 400

A
ct

iv
e

N
od

es

0

50

100

150

200
Optimum
GreedyHop
GreedyAirtime
GreedyMax

(a)

Network edge length [m]
200 283 346 400

A
ct

iv
e

Sc
al

ar
 N

od
es

0

20

40

60

80

100
Optimum
GreedyHop
GreedyAirtime
GreedyMax

(b)

Network edge length [m]
200 283 346 400

A
ct

iv
e

V
isu

al
 N

od
es

0

20

40

60

80

100
Optimum
GreedyHop
GreedyAirtime
GreedyMax

(c)

Fig. 3. Number of active nodes. a) Total b) Scalar c) Visual

REFERENCES

[1] L. Sarakis, T. Zahariadis, H.-C. Leligou, and M. Dohler, “A framework
for service provisioning in virtual sensor networks,” EURASIP Journal
on Wireless Communications and Networking, 2012.

[2] S. Madria, V. Kumar, and R. Dalvi, “Sensor cloud: A cloud of virtual
sensors,” IEEE Software, vol. 31, no. 2, pp. 70 – 77, mar.-apr. 2014.

[3] C. Delgado, J. R. Gllego, M. Canales, J. Ortn, S. Bousnina, and
M. Cesana, “On optimal resource allocation in virtual sensor networks,”
Ad Hoc Networks, vol. 50, pp. 23 – 40, 2016. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1570870516301007

[4] T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister,
R. Struik, J. Vasseur, and R. Alexander, “RPL: IPv6 Routing Protocol
for Low-Power and Lossy Networks,” RFC 6550 (Proposed Standard),
Internet Engineering Task Force, Mar. 2012.

[5] TelosB Mote Platform Datasheet, MEMSIC Inc.
[6] G. Coley, Beaglebone rev a6 system reference manual, 2012.
[7] S. Bhattacharya, A. Saifullah, C. Lu, and G. Roman, “Multi-application

deployment in shared sensor networks based on quality of monitoring,”
in Real-Time and Embedded Technology and Applications Symposium
(RTAS), 2010 16th IEEE, April 2010, pp. 259–268.

[8] J. B. Javier Molina, Javier M. Mora-merchan and C. Leon, Wireless
Sensor Networks: Application. InTech, 2010, ch. Multimedia Data
Processing and Delivery in Wireless Sensor Networks.

[9] A. Redondi, M. Tagliasacchi, and M. Cesana, “Rate-accuracy opti-
mization in visual wireless sensor networks,” in IEEE International
Conference on Image Processing (ICIP2012), Orlando, Florida, Oct.
2012, pp. 1105–1108.

[10] A. Redondi, L. Baroffio, L. Bianchi, M. Cesana, and M. Tagliasac-
chi, “Compress-then-analyze vs analyze-then-compress: what is best
in visual sensor networks?” IEEE Transactions on Mobile Computing,
vol. PP, no. 99, pp. 1–1, 2016.

[11] P. Levis and D. Culler, “Mate: A tiny virtual machine for sensor
networks,” SIGARCH Comput. Archit. News, vol. 30, no. 5, pp.

85–95, Oct. 2002. [Online]. Available: http://doi.acm.org/10.1145/
635506.605407

[12] J. Koshy and R. Pandey, “Vmstar: Synthesizing scalable runtime
environments for sensor networks,” in Proceedings of the 3rd
International Conference on Embedded Networked Sensor Systems,
ser. SenSys ’05. New York, NY, USA: ACM, 2005, pp. 243–254.
[Online]. Available: http://doi.acm.org/10.1145/1098918.1098945

[13] Y. Yu, L. J. Rittle, V. Bhandari, and J. B. LeBrun, “Supporting
concurrent applications in wireless sensor networks,” in Proceedings
of the 4th International Conference on Embedded Networked Sensor
Systems, ser. SenSys ’06. New York, NY, USA: ACM, 2006, pp. 139–
152. [Online]. Available: http://doi.acm.org/10.1145/1182807.1182822

[14] I. Khan, F. Belqasmi, R. Glitho, N. Crespi, M. Morrow, and P. Polakos,
“Wireless sensor network virtualization: Early architecture and research
perspectives,” IEEE Network, vol. 29, pp. 104 – 112, may-jun. 2015.

[15] J. Farah and F. Marx, “Greedy algorithms for spectrum management in
OFDM cognitive systems - applications to video streaming and wireless
sensor networks,” November 2008.

[16] S. Masoudi, A. Rahmani, A. N. Eghbali, and A. Khademzadeh, “Gmpr:
A greedy multi-path routing algorithm for wireless sensor networks,” in
2008 Second International Conference on Future Generation Commu-
nication and Networking, vol. 1, Dec 2008, pp. 25–30.

[17] N. Ferdosian, M. Othman, B. M. Ali, and K. Y. Lun, “Greedy—
knapsack algorithm for optimal downlink resource allocation in lte
networks,” Wirel. Netw., vol. 22, no. 5, pp. 1427–1440, Jul. 2016.
[Online]. Available: http://dx.doi.org/10.1007/s11276-015-1042-9

[18] O. Nwamadi, X. Zhu, and A. K. Nandi, “Multi-criteria ranking
based greedy algorithm for physical resource block allocation
in multi-carrier wireless communication systems,” Signal Process.,
vol. 92, no. 11, pp. 2706–2717, Nov. 2012. [Online]. Available:
http://dx.doi.org/10.1016/j.sigpro.2012.04.020

http://www.sciencedirect.com/science/article/pii/S1570870516301007
http://doi.acm.org/10.1145/635506.605407
http://doi.acm.org/10.1145/635506.605407
http://doi.acm.org/10.1145/1098918.1098945
http://doi.acm.org/10.1145/1182807.1182822
http://dx.doi.org/10.1007/s11276-015-1042-9
http://dx.doi.org/10.1016/j.sigpro.2012.04.020

	Introduction
	Reference Scenario and Problem Statement
	Greedy Algorithm
	Simulations and performance evaluation
	Simulation Environment
	Sensor Node Hardware
	Applications
	Scenario Topologies

	Evaluations and Results

	Related Works
	Conclusion
	References

