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This paper deals with the design of adaptive suboptimal second order sliding mode (ASSOSM) control
laws for grid-connected microgrids. Due to the presence of the inverter, of unpredicted load changes, of
switching among different renewable energy sources, and of electrical parameters variations, the microgrid
model is usually affected by uncertain terms which are bounded, but with unknown upper bounds. To
theoretically frame the control problem, the class of second order systems in Brunovsky canonical form,
characterized by the presence of matched uncertain terms with unknown bounds, is first considered. Four
adaptive strategies are designed, analyzed and compared to select the most effective ones to be applied
to the microgrid case study. In the first two strategies the control amplitude is continuously adjusted,
so as to arrive at dominating the effect of the uncertainty on the controlled system. When a suitable
control amplitude is attained, the origin of the state-space of the auxiliary system becomes attractive.
In the other two strategies a suitable blend between two components, one mainly working during the
reaching phase, the other being the predominant one in a vicinity of the sliding manifold, is generated,
so as to reduce the control amplitude in steady-state. The microgrid system in grid-connected operation
mode, controlled via the selected ASSOSM control strategies, exhibits appreciable stability properties,
as proved theoretically and shown in simulation.

Keywords: Adaptive control, sliding mode control, robust control, uncertain systems, power systems.
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1. Introduction

The emerging presence of renewable energy sources, such as photovoltaic arrays, wind turbines,
fuel cells, diesel generators, and energy storage devices, has given rise to a new concept of energy
production and distribution (Lasseter, 2002; Lasseter and Paigi, 2004). Nowadays, new geographically
distributed generation units (DGus) play an important role in this panorama, guaranteeing technical,
economical and environmental benefits (Palizban, Kauhaniemi, and Guerrero, 2014).

In a typical DGu, the energy sources are interfaced to the main grid via pulse width modula-
tion (PWM) voltage-sourced converters (VSC), and two different operating modes are possible: the
grid-connected operation mode (GCOM) and the islanded operation mode (IOM). In GCOM, the
microgrid works in current control mode and supplies the considered load, provided that the voltage
amplitude is kept to the rated, i.e., nominal, value by the main grid. When the DGu is disconnected
from the main grid, i.e., in IOM, it works in voltage control mode.

Several control techniques are reported in the literature to control microgrids either in GCOM
or IOM. These control techniques generally uses conventional PI controllers (see Babazadeh and
Karimi (2011a,b); Hamzeh, Karimi, and Mokhtari (2012); Hamzeh, Ghazanfari, Mokhtari, and
Karimi (2013); Karimi, Nikkhajoei, and Iravani (2008), and the references therein cited), but also
more advanced control methodologies such as droop mode control (De Brabandere, Bolsens, Van den
Keybus, Woyte, Driesen, and Belmans, 2007; Lee, Chu, and Cheng, 2013; Planas, Gil-de Muro, An-
dreu, Kortabarria, and de Alegŕıa, 2013), and model predictive control (Han, Solanki, and Solanki,
2013; Ouammi, Dagdougui, Dessaint, and Sacile, 2015; Parisio, Rikos, and Glielmo, 2014).

One of the crucial problems in microgrids is the presence of the VSC which can be viewed as a source
of modelling uncertainty and disturbances. The uncertain terms affecting the microgrid model require
that robust control laws are designed to solve the associated control problems. Sliding Mode Control
(SMC) can represent a valid solution able to guarantee particularly appreciable robustness properties
of the controlled systems in spite of modelling uncertainties and external disturbances (Edwards and
Spurgeon, 1998; Utkin, 1992). Yet, SMC can feature the so-called chattering effect, i.e., high frequency
oscillations of the controlled variable due to the discontinuities of the control law (Boiko, Fridman,
Pisano, and Usai, 2007; Fridman, 1999, 2002). In the literature, several methods have been proposed
to alleviate the chattering by-product. One of the most effective consists in artificially increasing
the relative degree of the system and designing Higher Order Sliding Mode (HOSM) control laws
(Dinuzzo and Ferrara, 2009; Levant, 2003; Shtessel, Edwards, Fridman, and Levant, 2014; Shtessel,
Fridman, and Zinober, 2008). Among the HOSM control laws, those of the second order (SOSM
control laws) (see, for instance Bartolini, Ferrara, and Usai (1998c); Bartolini, Ferrara, Usai, and
Utkin (2000)) are particularly suitable to be applied to microgrids in grid-connected mode since the
original relative degree of the microgrid model is 1. Another source of uncertainty in microgrids is
the fact that only the nominal values of the parameters of the grid and of the load are typically
assumed perfectly known, and their variation could be unpredictable, making the definition of the
bounds on the uncertain terms impracticable.

In this paper, having in mind the grid-connected microgrid case study, the design of Adaptive
Suboptimal Second Order Sliding Mode (ASSOSM) control laws is addressed. In particular, four
control strategies are designed and analyzed. The first two techniques are adaptive versions of the
Suboptimal SOSM (SSOSM) control presented in (Bartolini et al., 1998c), in which during the
reaching phase, the control amplitude is continuously adjusted, so as to arrive at dominating the
effect of the uncertainty on the controlled system. When a suitable control amplitude is attained, the
origin of the state-space of the auxiliary system (i.e., the second order system with states coinciding
with the sliding variable and its first time derivative) becomes finite time attractive. The other
two control strategies are oriented to reduce the control amplitude in steady-state by applying an
additional component to the discontinuous adaptive law, based on the “average control”, obtained
at the output of a first order low pass filter, in analogy with (Bartolini, Ferrara, Pisano, and Usai,
1998a). Differently than (Pisano, Tanelli, and Ferrara, 2015), the proposed strategy is not of switched
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Figure 1. Simplified single-line diagram of a typical DGu.

type, and the adaptation mechanism is not based on the frequency of the sign commutations of the
sliding variable when this approaches the sliding manifold. All these strategies are compared and
illustrated through an academic example in order to select the most appropriate to be applied to the
microgrid. The stability properties of the proposed strategies are also theoretically analyzed proving
the finite time convergence of the auxiliary system states to the origin or to a vicinity of the origin
of the auxiliary state-space.

Two adaptive strategies are finally applied to the considered case study. The microgrid system
in GCOM controlled via the selected ASSOSM control strategies exhibits satisfactory performance
even in realistic scenarios, characterized by disturbances and critical parameters variations.

Note that, sliding mode control algorithms of second and third order (which are not adaptive)
have been already developed for microgrids in (Cucuzzella, Incremona, and Ferrara, 2015a,b,c).

The present paper is organized as follows. In Section 2 the microgrid case study is introduced,
while in Section 3 the problem to solve is formulated. In Section 4 the proposed ASSOSM control
strategies are presented. The stability analysis is reported in Section 5, while the comparison among
the strategies is performed in Section 6. Simulation tests on a quite realistic DGu in GCOM are
illustrated in Section 7. Some conclusions, in Section 8, end the paper.

2. The Microgrid Case Study

Consider the schematic electrical single-line diagram of a typical DGu, illustrated in Figure 1. The
key element of a DGu is usually an energy source of renewable type, which can be represented by
a direct current (DC) voltage source, indicated with VDC . The interface medium between the DC
voltage source and the main grid is realized through two components: a voltage-sourced-converter
(VSC) and a filter. The first component is supposed to be a pulse width modulation (PWM) inverter,
which converts DC to alternate current (AC), while the second component is a resistive-inductive
filter (RtLt), able to extract the fundamental frequency of the VSC output voltage. Let Vd and Vq
denote the direct and quadrature components of the load voltage vabc, Itd and Itq denote the direct
and quadrature components of the delivered current it,abc. The electrical connection point of the DGu
to the main grid is the so-called point of common coupling (PCC) where a local three-phase parallel
resistive-inductive-capacitive load (RLC) is connected. The PCC voltage magnitude and frequency
are dictated by the main grid, which is represented by a resistive-inductive line impedance (RsLs)
and by an AC voltage source. Moreover, the presence of a phase-locked-loop (PLL) device ensures
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the stiff synchronization with the grid, providing the reference angle θ for the Park’s transformation
(Park, 1929), and keeping the PCC quadrature voltage component Vq as close as possible to zero.
Consider now the expression of the active and reactive powers, i.e.,

P (t) = 3
2Vd(t)Itd(t), Q(t) = −3

2Vd(t)Itq(t) (1)

Then, the DGu works in current control mode in order to supply the desired active and reactive power.
According to the Park’s transformation, the AC currents generated by the VSC are referred to a
synchronous rotating dq-frame and regulated like DC signals. The control inputs are transformed back
into the stationary abc-frame according to the inverse Park’s transformation, and used to generate
the gating signals through the comparison between the modulating signals and the triangular carriers
(Mohan, Undeland, and Robbins, 2003). The gating signals are fed to the VSC block to generate
the voltage vt,abc (see Figure 1). In practice, the VSC in a DGu plays the role of actuator, since its
output is the control variable.

Given the DGu illustrated in Figure 1, assuming the system to be symmetric and balanced (i.e.,
the voltage phases are offset in time by 2π/3 radians, and the impedances are equal for each phase
(Mohan et al., 2003)), and applying the Kirchhoff’s current (KCL) and voltage (KVL) laws, the
dynamic equations modelling the considered DGu in grid-connected operation mode (GCOM) can
be written in the stationary abc-frame, as follows

it,abc(t) = 1
Rvabc(t) + iL,abc(t) + C dvabc(t)

dt + ig,abc(t)
vt,abc(t) = Lt

dit,abc(t)
dt +Rtit,abc(t) + vabc(t)

vabc(t) = L
diL,abc(t)

dt +RliL,abc(t) = Ls
dig,abc(t)

dt +Rsig,abc(t) + vg,abc(t)
(2)

where it,abc is the vector of the currents delivered by the DGu, vabc is the vector of the load voltages,
iL,abc is the vector of the currents fed into the load inductance (L), ig,abc, and vg,abc are the vectors of
the grid currents and grid voltages, respectively. Note that, in the following, for the sake of simplicity,
the dependence of the variables on time t is omitted, when it is not strictly necessary.

Let us use, for the reader’s convenience, a generic variable named sabc to indicate any three-phase
variable in (2). The generic sabc can be referred to the synchronous rotating dq-frame by applying
the Clarke’s and Park’s transformations as follows

sαβ = sae
j0 + sbe

j 2π
3 + sce

j 4π
3

Sdq = (Sd + jSq) = sαβe
−jθ

with s being any variable in {it, v, iL, ig, vt, vg}, S being any variable in ∈ {It, V, IL, Ig, Vt, Vg}, and
θ provided by the PLL.

Then, the state-space representation of (2) can be expressed as

ẋ1(t) = − 1
RCx1(t) + ωx2(t) + 1

Cx3(t)− 1
Cx5(t)− 1

Cx7(t)
ẋ2(t) = −ωx1(t)− 1

RCx2(t) + 1
Cx4(t)− 1

Cx6(t)− 1
Cx8(t)

ẋ3(t) = − 1
Lt
x1(t)− Rt

Lt
x3(t) + ωx4(t) + 1

Lt
ud(t) + 1

Lt
uV SCd(t)

ẋ4(t) = − 1
Lt
x2(t)− ωx3(t)− Rt

Lt
x4(t) + 1

Lt
uq(t) + 1

Lt
uV SCq(t)

ẋ5(t) = 1
Lx1(t)− Rl

L x5(t) + ωx6(t)
ẋ6(t) = 1

Lx2(t)− ωx5(t)− Rl
L x6(t)

ẋ7(t) = 1
Ls
x1(t)− Rs

Ls
x7(t) + ωx8(t)− 1

Ls
ugd(t)

ẋ8(t) = 1
Ls
x2(t)− ωx7(t)− Rs

Ls
x8(t)− 1

Ls
ugq(t)

yd(t) = x3(t)
yq(t) = x4(t)

(3)
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where x = [Vd Vq Itd Itq ILd ILq Igd Igq]T ∈ X ⊂ R8 is the state vector, u = [Vtd Vtq Vgd Vgq]T ∈ U ⊂
R4 is the input vector with ud = Vtd and uq = Vtq, and y = [Itd Itq]T ∈ R2 is the output vector. Note
that, the input ugd = Vgd and ugq = Vgq are the components of the input vector due to the presence
of the main grid in the model and they are assumed to be constant to the corresponding rated,
i.e., nominal, values. Furthermore, uV SCd and uV SCq are bounded Lipschitz continuous disturbances,
components of the matched uncertain terms, due to the presence of the VSC as interface medium
between the DGu and the main grid.

3. Problem Formulation

In order to formally state the current control problem for a grid-connected microgrid, the following
sliding variables can be introduced. They are defined by considering the error of Itd and Itq with
respect to their references, i.e.,

σd(t) = yd,ref (t)− yd(t) (4)
σq(t) = yq,ref (t)− yq(t) (5)

where yi,ref (t), i = d, q, are assumed to be of class C with Lipschitz continuous first time derivative.
By regarding the sliding variable in (4)-(5) as relevant system outputs, it appears that their relative
degrees (i.e., the minimum order r of the time derivative σ(r) in which the control u explicitly
appears) are equal to 1. So, a first order sliding mode control law would be adequate to steer to
zero in a finite time both σd and σq. Yet, in order to alleviate the chattering phenomenon, i.e., high
frequency oscillations of the controlled variable due to the discontinuity of the control law, which
can be dangerous in terms of harmonics affecting the electrical signals, a SOSM control can be
applied by artificially increasing the relative degree of the system. According to the SOSM control
theory (Bartolini et al., 1998c), we need to define the so-called auxiliary variables ξd,1(t) = σd(t) and
ξq,1(t) = σq(t), so that the corresponding auxiliary systems can be expressed in Brunovsky canonical
form (Isidori, 1995) as

ξ̇i,1(t) = ξi,2(t)
ξ̇i,2(t) = fi(x(t), u(t), di(t)) + giwi(t)
u̇i(t) = wi(t)

i = d, q (6)

where wi(t), i = d, q, are the first time derivatives of the actual control variables ui(t), i = d, q,
ξi,2(t), i = d, q, are assumed to be unmeasurable, and the functions fi, gi, i = d, q, namely

fd(x(t), u(t), dd(t)) = −( 1
RLtC

+ Rt
L2
t
)x1(t) + 2ω

Lt
x2(t)

+(ω2 + 1
LtC
− R2

t

L2
t
)x3(t) + 2ωRt

Lt
x4(t)

− 1
LtC

x5(t)− 1
LtC

x7(t) + Rt
L2
t
ud(t)

− ω
Lt
uq(t) + ẍ3,ref (t) + dd(t)

fq(x(t), u(t), dq(t)) = −2ω
Lt
x1(t)− ( 1

RLtC
+ Rt

L2
t
)x2(t)

−2ωRt
Lt

x3(t) + (ω2 + 1
LtC
− R2

t

L2
t
)x4(t)

− 1
LtC

x6(t)− 1
LtC

x8(t) + ω
Lt
ud(t)

+Rt
L2
t
uq(t) + ẍ4,ref + dq(t)

gi = − 1
Lt

i = d, q

(7)
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are bounded for physical reasons, but uncertain since they could be evaluated only relying on the
nominal (not on the actual) values of the parameters, which are typically time-varying. Note that,
the sign of gi , i = d, q, is known and positive. The disturbances dd and dq depend on uV SCi , i = d, q,
as follows

dd(t) = Rt
L2
t
uV SCd(t)− ω

Lt
uV SCq(t) + 1

Lt
u̇V SCd(t)

dq(t) = Rt
L2
t
uV SCq(t) + ω

Lt
uV SCd(t) + 1

Lt
u̇V SCq(t)

(8)

In this paper, to face the problem in a realistic way, we assume not to know the bounds on the
uncertain terms in (7)-(8).

Now, we are in position to state the control problems solved in the paper.

Problem 1: Given the auxiliary systems (6)-(8), design bounded control laws such that a second
order sliding mode is enforced in a finite time, in spite of the uncertain terms in (7)-(8), and the
ignorance of their bounds.

Problem 2: Given the auxiliary systems (6)-(8), design bounded control laws such that the sliding
variables and their first time derivatives are ultimately bounded in a vicinity of the origin of the
auxiliary systems state-space, in spite of the uncertain terms in (7)-(8), and the ignorance of their
bounds.

4. The Proposed Adaptive Suboptimal Second Order Sliding Mode Control Laws

In this section, four adaptive control strategies based on the SSOSM control algorithm (Bartolini
et al., 1998c) are proposed to solve the control problems previously formulated. The strategies will
be designed making reference to the auxiliary systems (6)-(8) and will produce the control laws wi,
i = d, q. Yet, for the sake of simplicity, the subscript i = d, q will be hereafter omitted.

In the following subsections, the proposed strategies are presented and illustrated through an aca-
demic example. They are also compared in order to identify the strategies which are more appropriate
to be applied to the microgrid case study.

4.1 Strategy 1

The first ASSOSM control strategy, proposed to steer ξ1 and ξ2 to zero in a finite time in spite of
the uncertainties and of the ignorance of the uncertainties bounds, is very simple but effective. It
allows the amplitude of the discontinuous Suboptimal control law to grow until the sliding manifold
becomes an attractive subspace of the controlled system state-space. In analogy with (Bartolini et al.,
1998c), the control law can be first expressed as follows

w(t) = wad(t) = −Wad(t) sgn
(
ξ1(t)− 1

2ξ1max

)
(9)

This law does not require to measure ξ2 (this variable is unmeasurable by assumption). In fact, the
extremal values ξ1max can be detected by determining

∆(t) = [ξ1(t− δ)− ξ1(t)]ξ1(t) (10)

δ > 0 being an arbitrarily small time delay, and considering the change of sign of ∆(t), according to
the following algorithm.
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Peak Detection Algorithm (Bartolini, Ferrara, and Usai, 1998b):
Let t0 be the initial time instant. Set ξ1max = ξ1(t0) and ξ1(t − δ) = 0, ∀ t < δ, and repeat, for any
t > t0, the following steps:

(1) If ∆(t) < 0, then ξ1mem = ξ1(t), else ξ1mem = ξ1mem .
(2) If ∆(t) ≤ 0 then,

If {ξ1memξ1max > 0} ∧ {|ξ1mem | < |ξ1max |} then
ξ1max = ξ1mem , else ξ1max = ξ1max

else ξ1max = ξ1mem .
Furthermore, let

Ξ1max = max {ξ1maxi
} (11)

denote the maximum of the sequence of the values of ξ1 stored as ξ1max . Then, the design parameter
Wad can be chosen according to the following adaptation mechanism

Ẇad(t) =
{
γ1|ξ1(t)| if |ξ1(t)| > |Ξ1max |
0 otherwise

(12)

where γ1 is a positive constant arbitrarily set, and Wad(t0) = Wad0 . Note that in (12), the increment
of the control amplitude is activated only when the sliding variable tends to increase with respect
to the value Ξ1max , otherwise the previous value of Wad is kept.

An alternative implementation of Strategy 1 can be based on the use of the Levant’s differentiator
(Levant, 1998, 2003). A first advantage of this version is that the Peak Detection Algorithm is no
more necessary, which improves the stability properties of the controlled system as will be clari-
fied in Section 5. A second advantage is that the estimate of ξ2, obtained with high (theoretically
ideal) accuracy after a finite time, can be used to improve the response promptness of the adaptive
mechanism, by introducing a term depending on |ξ̂2|. The new formulation of (12) can be expressed
as

Ẇad(t) =
{
γ1|ξ1(t)|+ γ2|ξ̂2(t)| if |ξ1(t)| > |Ξ1max |
0 otherwise

(13)

where γ2 is a positive constant arbitrarily set, and the estimate ξ̂2 is computed via the Levant’s
differentiator

˙̂
ξ1 = −λ0|ξ̂1 − ξ1|1/2 sgn(ξ̂1 − ξ1) + ξ̂2 (14)
˙̂
ξ2 = −λ1 sgn(ξ̂1 − ξ1) (15)

where ξ̂1, ξ̂2 are the estimated values of ξ1, ξ2, respectively, and λ0 = 1.5L1/2, λ1 = 1.1L,L > 0, is
a possible choice of the differentiator parameters (Levant, 1998, 2003).

Remark 1: Since the Levant’s differentiator is used to determine ξ2, the extremal values ξ1max can
be evaluated by using, as an alternative with respect to Peak Detection Algorithm, the scheme in
Figure 2, as observed in (Ferrara and Incremona, 2015). That is, ξ1max is stored at the time instants
when ξ̂2 changes its sign.

Remark 2: The adaptation mechanism in (13) has the advantages previously mentioned. Its dis-
advantage with respect to the strategy proposed in (12) is the introduction of additional parameters
to set (those of the Levant’s differentiator and γ2). Moreover, it is necessary to provide sufficient
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Figure 2. Representation of the peak detector.

time for the differentiator to converge (the differentiator proves to converge in a finite time), to get
a usable estimate of ξ2.

Strategy 1, in the extended version based on the Levant’s differentiator, i.e., (13)-(15), will be
hereafter illustrated through an academic example, consisting of a perturbed double integrator.

Example
Consider the following uncertain auxiliary system{

ξ̇1(t) = ξ2(t)
ξ̇2(t) = cos(ξ1(t))− sin(ξ1(t))ξ2(t) + d(t) + u(t) + w(t) (16)

where d(t) represents an exogenous bounded disturbance. Two instances of d(t) are considered,
namely Disturbance 1 and Disturbance 2, as illustrated in Figure 3. Note that (16) is a system

0 2 4 6 8 10 12 14 16 18 20
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time [s]

d

(a)

0 2 4 6 8 10 12 14 16 18 20
0

50

100

150

200

250

300

time [s]

d

(b)

Figure 3. The two instances of the matched disturbances d used in the example: (a) Disturbance 1; (b) Disturbance 2.

analogous to (6), since it can be written as
ξ̇1(t) = ξ2(t)
ξ̇2(t) = f(x(t), u(t), d(t)) + gw(t)
u̇(t) = w(t)

(17)

with f(x(t), u(t), d(t)) = cos(ξ1(t))−sin(ξ1(t))ξ2(t)+d(t)+u(t), x(t) = [ξ1, ξ2]T , and g = 1. Strategy
1 in the version expressed by (13)-(15) is applied with γ1 = 30 and γ2 = 15. Figure 4 shows the
time evolution of the adaptive gain Wad for both Disturbance 1 and Disturbance 2, while Figure 5
illustrates the discontinuous control w(t) and the continuous input u(t), respectively. Figure 6 reports
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Figure 4. Strategy 1: time evolution of the adaptive gain Wad: (a) in case of Disturbance 1; (b) in case of Disturbance 2.
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Figure 5. Strategy 1: time evolution of the discontinuous auxiliary control w (top) and of the continuous input u (bottom):
(a) in case of Disturbance 1; (b) in case of Disturbance 2.
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Figure 6. Strategy 1: time evolution of σ and σ̇: (a) in case of Disturbance 1; (b) in case of Disturbance 2.

the time evolution of the sliding variable σ and its first time derivative σ̇, for both the disturbance
instances.
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Figure 7. Strategy 2: time evolution of the adaptive gain Wad: (a) in case of Disturbance 1; (b) in case of Disturbance 2.
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Figure 8. Strategy 2: time evolution of the discontinuous auxiliary control w (top) and of the continuous input u (bottom):
(a) In case of Disturbance 1; (b) In case of Disturbance 2.
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Figure 9. Strategy 2: time evolution of σ and σ̇: (a) in case of Disturbance 1; (b) in case of Disturbance 2.

4.2 Strategy 2

The adaptation mechanism proposed in Strategy 1 indicated in (12) or even in the alternative
version (13), is aimed at overcoming the ignorance of the upper bound on the uncertainty terms, so
transforming the ASSOSM control law into a plain SSOSM law after a transient, which is necessary
for the adaptive gain to reach the appropriate size. This means that when the minimum gain to
dominate the uncertainty is reached, the sliding variable is steered to zero as in a conventional
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Figure 10. Strategy 3: time evolution of the adaptive gain Wad: (a) in case of Disturbance 1; (b) in case of Disturbance 2.
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Figure 11. Strategy 3: time evolution of the discontinuous auxiliary control w (top) and of the continuous input u (bottom):
(a) in case of Disturbance 1; (b) in case of Disturbance 2.
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Figure 12. Strategy 3: time evolution of σ and σ̇: (a) in case of Disturbance 1; (b) in case of Disturbance 2.

SSOSM control law. For this reason, Strategy 1 has the same conservativeness features of the original
SSOSM control algorithm. In order to decrease the control amplitude whenever the sliding variable
tends towards the sliding manifold, a second adaptive SOSM control strategy can be proposed. As
for Strategy 1, one could write a first version based on the Peak Detection Algorithm and a second
version based on the Levant’s differentiator. To keep the treatment concise, we will report hereafter
only the version based on the Levant’s differentiator. Specifically, the following adaptive mechanism

12



June 18, 2017 International Journal of Control ASSOSM˙Microgrids˙manuscript

0 2 4 6 8 10 12 14 16 18 20
0

500

1000

1500

2000

2500

time [s]

W
a
d

(a)

0 2 4 6 8 10 12 14 16 18 20
0

500

1000

1500

2000

2500

time [s]

W
a
d

(b)

Figure 13. Strategy 4: time evolution of the adaptive gain Wad: (a) in case of Disturbance 1; (b) in case of Disturbance 2.

0 2 4 6 8 10 12 14 16 18 20

−2000

−1000

0

1000

2000

time [s]

w

0 2 4 6 8 10 12 14 16 18 20
−400

−200

0

200

400

time [s]

u

(a)

0 2 4 6 8 10 12 14 16 18 20

−2000

−1000

0

1000

2000

time [s]
w

0 2 4 6 8 10 12 14 16 18 20
−400

−200

0

200

400

time [s]

u

(b)

Figure 14. Strategy 4: time evolution of the discontinuous auxiliary control w (top) and of the continuous input u (bottom):
(a) in case of Disturbance 1; (b) in case of Disturbance 2.
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Figure 15. Strategy 4: time evolution of σ and σ̇: (a) in case of Disturbance 1; (b) in case of Disturbance 2.

is designed

Ẇad(t) =
{
γ1|ξ1(t)| sgn(ξ1(t)) sgn(ξ̂2(t)) if Wad(t) ≥ 0
−γ1|ξ1(t)| sgn(ξ1(t)) sgn(ξ̂2(t)) otherwise

(18)
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where ξ̂2 is determined through (14)-(15), γ1 is a positive constant arbitrarily set, and Wad(t0) =
Wad0 .

Remark 3: In analogy with Remark 1, also in this case the promptness of the adaptation mechanism
(18) can be increased adding a term depending on |ξ̂2|, i.e.,

Ẇad(t) =
{

(γ1|ξ1(t)|+ γ2|ξ̂2(t)|) sgn(ξ1(t)) sgn(ξ̂2(t)) if Wad(t) ≥ 0
−(γ1|ξ1(t)|+ γ2|ξ̂2(t)|) sgn(ξ1(t)) sgn(ξ̂2(t)) otherwise

(19)

where γ2 is a positive constant arbitrarily set.

Example
The performance of Strategy 2 can be illustrated making reference again to the academic example
(16). Specifically, Figure 7 shows the time evolution of the adaptive gain Wad, Figure 8 illustrates
the discontinuous control w(t) and the continuous input u(t), while Figure 9 reports time evolution
of the sliding variable σ and its first time derivative σ̇, for both the disturbance instances.

4.3 Strategy 3

As shown in (Bartolini et al., 1998a), the estimate of the equivalent control associated with the
second order sliding mode control law can be used to compensate the uncertain terms. In fact,
only an approximate cancellation of the uncertainties can be performed, which however allows for a
reduction of the control effort. In the following, the previous consideration is used to design alternative
strategies oriented to improve the performance of Strategies 1 and 2.

Let the discontinuous control input be expressed as

w(t) = γ3wad(t) + γ4wav(t) (20)

where γ3, γ4 are positive definite functions, wad is chosen as in Strategy 1, that is as indicated in
(12) or (13), and wav is the average control obtained at the output of a first order filter having the
discontinuous signal wad as input, i.e.,

τ1ẇav(t) + wav(t) = wad (21)

τ1 being a suitably chosen time constant. Note that, according to the theory introduced in (Utkin,
1992), and the definition of “equivalent control” for systems controlled via SOSM control strategies
given in (Bartolini et al., 1998b), wav tends to asymptotically coincide with the equivalent control
when a second order sliding mode is established. In this strategy, γ3 and γ4 are selected through a
weight tuning mechanism analogous to that in (Bartolini et al., 1998a), i.e.,

γ3(t) =


1 if |z(t)| ≥ 1
|z(t)| if γ3min < |z(t)| < 1
γ3min if |z(t)| ≤ γ3min

(22)

γ4 = 1− γ3 (23)
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where z is the output of a first order filter designed as

τ2ż(t) + z(t) = γ3(t)[w(t)− wav(t)] (24)

with τ2 being a suitably chosen time constant. Note that, the value γ3 = 1 corresponds to the case
in which only the adaptive discontinuous control law of Strategy 1 is applied. Further, note that
γ3min is set on the basis of the various error sources in filtering which can be a priori evaluated. In
practice, Strategy 3 tends to coincide with Strategy 1 when the controlled system is far from being
in sliding mode. On the other hand, when the sliding mode is almost reached or even enforced, the
major component of the control law (20) is the estimate of the equivalent control. The suitable blend
between the adaptive SOSM control law of Strategy 1 and its filtered version according to (21) is
realized by the peculiar switching logic in (22)-(23).

Example
Consider again the academic example in (16) and apply Strategy 3 with γ3min = 0.05, τ1 = 0.5,
τ2 = 10, and the same parameters used for Strategy 1. Figure 10 reports the time evolution of the
adaptive gain Wad for both Disturbance 1 and Disturbance 2, when Strategy 3 is applied. Figure 11
illustrates the discontinuous control w(t) and the continuous input u(t), respectively. Finally, Figure
12 reports the time evolution of the sliding variable σ and its first time derivative σ̇, for both the
disturbances.

4.4 Strategy 4

A further adaptive SOSM control strategy can be attained by composing Strategy 2 with the mech-
anism to estimate the equivalent control described in Strategy 3. Let the discontinuous control input
be expressed as in (20), where wad is chosen as in Strategy 2, i.e., as given by (18) or (19), and wav
is the average control obtained as in (21). Moreover, also in this case, γ3 and γ4 are selected as in
(22)-(24).

Example
Consider again the academic example in (16), and apply Strategy 4. Also in this case γ3min = 0.05,
τ1 = 0.5, τ2 = 10, and the values of the other parameters are those used for Strategy 2. Figure
13 reports the time evolution of the adaptation gain Wad for both the disturbance instances, while
Figure 14 illustrates the discontinuous control w(t) and the corresponding continuous input u(t),
respectively. Figure 15, finally, reports the time evolution of the sliding variable σ and its first time
derivative σ̇, in both the considered scenarios.

5. Stability Analysis

In this section, the ASSOSM control strategies previously introduced are theoretically analyzed.
Explicit theorems are provided for Strategies 1 and 3. Moreover, comments on the stability features
of Strategy 2 and 4 are also reported. Note that the proposed adaptive control laws are valid for
systems of type (6) with g having known sign. In the considered microgrid case study, g = 1/Lt (see
(7)), i.e., it is positive even if Lt is not perfectly known. So, even if hereafter g is assumed to be
positive, all the following considerations also hold, with minor changes, for negative g.

Let {Fi}, {G1i} and {G2i}, i ∈ N denote the sequences of relative unknown extremal values of

15



June 18, 2017 International Journal of Control ASSOSM˙Microgrids˙manuscript

function f and g, such that

|Fi| ≤ F, G1i ≥ G1, G2i ≤ G2 (25)

with F being the unknown upper bound of function f , G1 and G2 being the unknown lower bound
and upper bound of function g, respectively. Let tdi be the time instants when

Wad > max
( |Fi|
G1i

; 4|Fi|
3G1i −G2i

)
, i ∈ N (26)

and td be the time instant when (26) holds, with |Fi| = F , G1i = G1 and G2i = G2. Moreover, let
trδ be the time instant when the sliding variable reaches a δ-vicinity of the origin of the auxiliary
state-space, and tr be the time instant when the sliding manifold is finally reached, i.e., σ(t) =
0, σ̇(t) = 0, ∀ t ≥ tr.

With reference to the ASSOSM control strategies proposed in the previous section, the following
results can be proved.

Theorem 1: Given the auxiliary system (6)-(8), applying Strategy 1 with the control law (9), the
Peak Detection Algorithm and the adaptive mechanism in (12), then, in a finite time trδ ≥ td, the
auxiliary system state variables ξ1 and ξ2 are ultimately bounded in a δ-vicinity of the origin of the
auxiliary system state-space.

Proof. Two different cases can occur.
Case 1 (|Fi| = F , G1i = G1 and G2i = G2, for some i ∈ N): In this case, one can distinguish
between two subcases:

Subcase 1.1: Wad(t0) = Wad0 is such that

Wad0 > max
(
F

G1
; 4F

3G1 −G2

)
(27)

which implies that td = t0. Then, since the standard convergence condition for the SSOSM algorithm
(Bartolini et al., 1998c) is satisfied, the control law (9) enforces the generation of a sequence of states
with coordinates featuring the contraction property expressed by

|ξ1maxi+1
| < |ξ1maxi

| (28)

where ξ1maxi
is the i-th extremal value of variable ξ1. Considering the Peak Detection Algorithm,

and assuming a finite time to evaluate ξ1(t) and the change of sign of ∆(t) in (10), in the worst
case, the extremal value ξ1maxi

is detected with a delay of δ/2 with respect to the actual time instant
tmaxi , when ξ1maxi

actually occurs. Consider for the sake of simplicity the case in which the estimate
ξ̂1maxi

> 0 (the opposite case is specular), and assume to apply (9) with the amplitudeWad(td) = Wad0

to the auxiliary system (6). In analogy with (Bartolini, Ferrara, and Usai, 1997), one has that

ξ̂1maxi
= ξ1maxi

−
(
Wad0 −

F

G1

)
δ2

8 (29)

Deriving (29), one obtains

ξ̂2 = ξ2 −
(
Wad0 −

F

G1

)
δ

4 (30)

This means that the actual evolutions of ξ1 and ξ2 differ of O(δ2) and O(δ), respectively, with respect
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to the ideal evolutions. This implies that in a finite time trδ ≥ td the distance of the sliding variable
and its first time derivative from the origin of the auxiliary state-space is of O(δ).

Subcase 1.2: Wad(t0) = Wad0 does not satisfy (27). Then, the adaptive mechanism (12) makes
the adaptive gain Wad(t) grow, while the sliding variable increases. This process lasts until time
instant tdi = td, when the adaptive gain is such that (27) holds. At this point, Subcase 1.1 occurs.
Case 2 (Fi < F , G1i > G1 and G2i < G2 i ∈ N): Also in this case two subcases can be distinguished.

Subcase 2.1: Wad(t0) = Wad0 is such that (26) holds. In this subcase, until |f(·)| ≤ |Fi| and
G1i ≤ g(·) ≤ G2i , the control amplitude is sufficient to dominate the uncertain terms, so that a
contraction, analogous to that described in (28) for Subcase 1.1, occurs. When |f(·)| > |Fi| and/or
g(·) < G1i or g(·) > G2i , the auxiliary variable ξ1(t) tends to increase. If |ξ1(t)| > |Ξ1max(t)|, Ξ1max(t)
as in (11), the adaptive mechanism (12) makes the adaptive gain Wad(t) grow until the time instant
tdi+1 when

Wad > max
(
|Fi+1|
G1i+1

; 4|Fi+1|
3G1i+1 −G2i+1

)
, i ∈ N (31)

So, a contraction as in (28) occurs again. This mechanism iterates until Fj = F , G1j = G1 and
G2j = G2, j > i+ 1, when Subcase 1.1 occurs.

Subcase 2.2: Wad(t0) = Wad0 does not satisfy (26). Then, ξ1(t) tends to increase until the time
instant tdi when the adaptive gain Wad is such that (26) holds. At this point, Subcase 2.1 occurs.

Theorem 2: Given the auxiliary system (6)-(8), applying Strategy 1 with the control law (9), the
adaptive mechanism in (13), and the Levant’s Differentiator (14)-(15), assume that t0 ≥ tLd, tLd
being the finite time necessary for the differentiator convergence, then, in a finite time tr ≥ td ≥ t0,
the auxiliary system state variables ξ1 and ξ2 are steered to the origin of the auxiliary system state-
space, i.e., a second order sliding mode is enforced.

Proof. In analogy with Theorem 1, two different cases can occur.
Case 1 (|Fi| = F , G1i = G1 and G2i = G2, for some i ∈ N): In this case, one can distinguish
between two subcases:

Subcase 1.1: Wad(t0) = Wad0 is such that (27) holds, which implies that td = t0. Then, since
the standard convergence condition for the SSOSM algorithm (Bartolini et al., 1998c) is satisfied,
the control law (9) enforces the generation of a sequence of states with coordinates featuring the
contraction property expressed by (28). Since the peak detection device in Figure 2 and the Levant’s
differentiator (14)-(15) are used, and, by assumption, t0 ≥ tLd, the value of ξ2 is perfectly known
so that the maximum value ξ1maxi

is detected in principle with ideal accuracy. This implies that the
auxiliary system state variables reach in a finite time the origin of the auxiliary state-space, and a
second order sliding mode is enforced.

Subcase 1.2: Wad(t0) = Wad0 does not satisfy (27). Then, the adaptive mechanism (13) makes
the adaptive gain Wad(t) grow, while the sliding variable increases. This process lasts until time
instant tdi = td, when the adaptive gain is such that (27) holds. At this point, Subcase 1.1 occurs.
Case 2 (Fi < F , G1i > G1 and G2i < G2 i ∈ N): Also in this case two subcases can be distinguished.

Subcase 2.1: Wad(t0) = Wad0 is such that (26) holds. In this subcase, until |f(·)| ≤ |Fi| and
G1i ≤ g(·) ≤ G2i , the control amplitude is sufficient to dominate the uncertain terms, so that a
contraction, analogous to that described in (28) for Subcase 1.1, occurs. When |f(·)| > |Fi| and/or
g(·) < G1i or g(·) > G2i , the auxiliary variable ξ1(t) tends to increase. If |ξ1(t)| > |Ξ1max(t)|, Ξ1max(t)
as in (11), the adaptive mechanism (13) makes the adaptive gain Wad(t) grow until the time instant
tdi+1 when (31) holds. So, a contraction as in (28) occurs again. This mechanism iterates until Fj = F ,
G1j = G1 and G2j = G2, j > i+ 1, when Subcase 1.1 occurs.

Subcase 2.2: Wad(t0) = Wad0 does not satisfy (26). Then, ξ1(t) tends to increase until the time
instant tdi when the adaptive gain Wad is such that (26) holds. At this point, Subcase 2.1 occurs.
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Remark 4: Note that, also in case of Strategy 2, Theorem 1 and Theorem 2 hold. The proofs are
analogous to the previous ones, with the difference in the mechanism to tune the amplitude Wad.

Now, by virtue of Theorem 1 and Theorem 2 also the following result can be proved.

Theorem 3: Given the auxiliary system (6)-(7), applying Strategy 3 with the control law (20)-(24)
and (9), the Peak Detection Algorithm and the adaptive mechanism (12), then, in a finite time
trδ ≥ td, the auxiliary system state variables ξ1 and ξ2 are ultimately bounded in a δ-vicinity of the
origin of the auxiliary system state-space.

Proof. The proof is analogous to that of Theorem 1, observing that the saturation level γ3 = γ3min

in the weight tuning mechanism (22)-(23) corresponds to the fact that the discontinuous control (9)
is never switched off, so that it again guarantees, in a finite time trδ ≥ td, the reaching of a δ-vicinity
of the sliding manifold.

Theorem 4: Given the auxiliary system (6)-(8), applying Strategy 3 with the control law (20)-(24)
and (9), the adaptive mechanism in (13), and the Levant’s differentiator (14)-(15), assume that
t0 ≥ tLd, tLd being the finite time necessary for the differentiator convergence, then, in a finite time
tr ≥ td ≥ t0, the auxiliary system state variables ξ1 and ξ2 are steered to the origin of the auxiliary
system state-space, i.e., a second order sliding mode is enforced.

Proof. The proof is analogous to that of Theorem 2, observing that the saturation level γ3 = γ3min in
the weight tuning mechanism (22)-(23) corresponds to the fact that the discontinuous control (9) is
never switched off, so that it guarantees that, in a finite time tr ≥ td (td ≥ t0 ≥ tLd), the reaching of
the sliding manifold is attained. This is true even if the predominant control component, to reduce
the control amplitude in steady-state, is the average control obtained at the output of the first order
filter (21).

Remark 5: Theorems 3 and 4 are valid also for Strategy 4 which differs only for the adaptive
mechanism to tune Wad.

As a final comment, note that all the proposed ASSOSM control strategies, independently of the
adaptive law adopted, solve Problem 1 when the Levant’s differentiator is used, while they solve
Problem 2 when they are implemented via the Peak Detection Algorithm.

6. Selection of the ASSOSM Control Strategies to Apply to the Microgrid Case
Study

In order to better evaluate the performance of the four strategies and select those to apply to the
microgrid case study, we have considered two indices: i) the RMS value of the sliding variable, σRMS ;
ii) the control effort, Ec. They are defined as follows

σRMS =
√∑ns

i=1 σ
2
i

ns
, Ec =

√∑ns
i=1 u

2
i

ns
(32)

where ns is the number of integration steps during simulations, and σi and ui are the sliding variable
and the control variable at the i-th integration step, respectively.

Table 1 reports the performance indices obtained for the four strategies with the two disturbances,
when both the transient phases and the steady-state evolution are taken into account. Table 2 reports
the performance indices in the case in which only the steady-state is considered. Note that, since the
bounds on the uncertain terms are assumed to be unknown, the control gain in all the considered
strategies is adaptively tuned whenever a new disturbance, greater in magnitude than previous ones,
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Table 1. Performance indices to evaluate the four strategies
with Disturbances 1 and 2. Evaluation done also considering
transient phases.

Strategy/Index σRMS Ec
Disturbance 1 2 1 2

1 5.1936 6.7733 12.7915 20.6718
2 6.9745 12.0762 13.6804 45.4156
3 5.1937 6.5806 18.1438 24.1180
4 21.7294 22.3844 101.2887 100.8426

Table 2. Performance indices to evaluate the four strategies with Dis-
turbances 1 and 2. Evaluation done only in steady-state.

Strategy/Index σRMS Ec
Disturbance 1 2 1 2

1 1.0385 × 10−5 1.5098 × 10−5 0.3011 0.3226
2 2.3072 × 10−6 1.9269 × 10−6 0.2499 0.2908
3 1.2471 × 10−6 7.1426 × 10−7 0.2979 0.3162
4 1.8650 × 10−6 7.7260 × 10−7 0.3161 0.3162

affects the system. The sliding variable leaves the sliding manifold, that is a new transient period is
observed. The duration of the transient also depends on the choice of the parameters of the adaptive
control law. From the comparison, it appears that Strategies 1 and 3 result better than Strategies
2 and 4, both in terms of RMS value of the sliding variable (70% improvement of Strategy 3 with
respect to Strategy 4), and of control effort (76% improvement of Strategy 3 with respect to Strategy
4) when also the transient phases are considered (see Table 1). If one considers only the steady-state
(see Table 2), while the control energy results in being similar for all the strategies, the RMS value
of the sliding variable is better in case of Strategy 3 (8% improvement with respect to Strategy
4). Strategies 2 and 4 give rise to frequent changes of sign of the derivative of the adaptive gain
which could introduce harmonics distortions in current and voltage profiles, possibly making the
load supply impracticable and violating the IEEE recommendation for power systems (IEEE, 2009).
Thus, having in mind the application to the microgrids, where the transient phases can be frequent
(especially in case of load variations, exogenous disturbances, and disconnection/reconnection to the
main grid), and steady-state tracking accuracy is required, Strategy 1 and 3 appear to be the most
adequate. Note that Strategy 2 and Strategy 4 do not appear suitable for the considered microgrid
(this could be also due to the difficulties to determine the ideal parameters tuning). Anyway, they
could be of interest for other applications even of electrical type.

7. Application of the Selected ASSOSM Control Strategies to the Microgrid Case
Study

In this section, Strategy 1 and Strategy 3 are verified in simulation by applying them to the model
of a DGu. Moreover, in order to show the advantages of the proposed methods, a conventional PI
control has been also applied and tuned relying on the standard Ziegler-Nichols method (Ziegler
and Nichols, 1942), to obtain a satisfactory behaviour of the controlled system such that the control
effort is almost equal to the smallest one between Strategy 1 and Strategy 3. The nominal values
of the electrical parameters of the DGu considered in the tests (see Figure 1) are reported in Table
3, while the parameters of the proposed control strategies are indicated in Table 4, in which it is
assumed that t0 = 0 s, and Wad,d(0), Wad,q(0) are chosen relying on an estimate of the upper bounds
of (7)-(8), in order to dominate the uncertain terms. In simulation the electrical parameters have
been set to values which differ from the nominal values of an additive 10%. From t = 0.05 s to t =
0.1 s a matched disturbance uV SCq with trapezoidal shape and maximum value equal to 3× 103 V
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Table 3. Electrical parameters of the DGu.

Quantity Value Description

VDC 1000 V DC voltage source
fc 10 kHz PWM carrier frequency
Rt 40 mΩ VSC filter resistance
Lt 10 mH VSC filter inductance
R 4.33 Ω Load resistance
L 100 mH Load inductance
C 1 pF Load capacity
Rs 0.1 Ω Grid resistance
f0 60 Hz Nominal grid frequency
VnRMS 120 V Nominal grid phase-voltage
Itd,ref 60 A d-component of current ref.
Itq,ref 0 A q-component of current ref.

Table 4. Parameters

Parameter Value

Wad,d(0) = Wad,q(0) 4.5 × 107

γ1,d = γ2,d 5.0 × 107

γ1,q = γ2,q 5.0 × 105

τ1d
= τ1q 0.5 × 103

τ2d
= τ2q 10 × 103

γ3min,d = γ3min,q 1/35
KPd

= KPq 30
KId

= KIq 2 × 103
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Figure 16. Comparison between Strategies 1 and 3: (a) adaptive gain Wad,q ; (b) discontinuous control wq .
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Figure 17. Comparison between Strategies 1 and 3: (a) continuous input uq ; (b) modulating voltage signal ua of phase a.
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Figure 18. Comparison between Strategies 1 and 3 and PI control: (a) phase-to-phase VSC output voltage vt,ab; (b) error
signals σq .
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Figure 19. Instantaneous three-phase current delivered by the DGu in presence of a matched disturbance: (a) Strategy 1; (b)
Strategy 3; (c) PI control.

acts on the same channel of the input uq. The trapezoidal shape is justified by the assumption on
the Lipschitz continuity of the disturbance signals. The discretization interval is Ts = 1× 10−6 s and
the simulation time is Tf = 0.2 s.

Figure 16 shows, both for Strategy 1 (S1) and Strategy 3 (S3), the time evolution of the adaptive
gain Wad,q, and the discontinuous control variable wq. Note that, since the gain Wad cannot decrease
according to Strategy 1 and Strategy 3, the decreasing of the gain is due to the adaptation law
(20). Figure 17 reports the continuous input uq, and the modulating signal ua of the phase a to
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Table 5. Performance indices to evaluate Strat-
egy 1 and Strategy 3. Evaluation done also con-
sidering transient phases.

Strategy/Index σRMS,q Ec,q THD

1 0.3680 1385.5 0.0104
3 1.5408 528.92 0.0224
PI 26.46 489.81 0.1831

Table 6. Performance indices to evaluate Strat-
egy 1 and Strategy 3. Evaluation done only in
steady-state.

Strategy/Index σRMS,q Ec,q THD

1 0.3116 737.40 0.0087
3 0.2161 446.21 0.0047
PI 1.28 460.30 0.0129

apply the PWM technique, while Figure 18 shows the phase-to-phase VSC output voltage vt,ab and
the sliding variable σq, i.e., the error of Itq with respect to the corresponding reference Itq,ref . Note
that, when Strategy 3 is implemented, then the typical PWM waveform of the phase-to-phase VSC
output voltage (see Figure 18 (a)) is obtained with a smaller number of switchings, which implies
lower IGBTs energy losses. In Figure 19 the instantaneous three-phase currents delivered by the
DGu, by applying Strategy 1, Strategy 3 and PI control, respectively, are compared.

In order to quantitatively compare the selected strategies when they are applied to the microgrid
case study, the performance indices in (32) are used. They are reported, together with the Total
Harmonics Distortion (THD) index (Mohan et al., 2003), in Table 5 including in the evaluation also
the transients phases and, in Table 6 considering for the evaluation only the steady-state. Considering
also the transient phase, Strategy 1 results better than Strategy 3 and PI in terms of RMS value
of the sliding variable (76% and 98.61% improvement), and THD (54% and 94% improvement). In
terms of control energy, PI control is more performant (65% and 7% improvement). If one considers
only the steady-state, Strategy 3 results in being the most effective in terms of RMS value of the
sliding variable (31% and 83% improvement), while the PI in terms of control energy (38% and
3% improvement). Strategy 3 is the better also in terms of THD (46% and 64% improvement). On
the whole, both Strategies 1 and 3 are effective and satisfactory, but the one which appears most
performing in all the situations is Strategy 3.

8. Conclusions

In this paper, adaptive second order sliding mode control strategies based on the Suboptimal algo-
rithm have been presented for a class of uncertain systems with unknown uncertainty bound. Four
strategies have been designed and analyzed. They adjust the amplitude of the control law in order
to dominate the uncertain terms and enforce the attainment of a second order sliding mode, or the
convergence of the auxiliary system state variables to a vicinity of the origin in a finite time. The
first two strategies are purely adaptive versions of the basic Suboptimal algorithm, while the other
two, in order to reduce the control amplitude, exploit a well-balanced blend between two control
components: one mainly working during the reaching phase, the other being the predominant one
in a vicinity of the sliding manifold. In the paper, the proposed adaptive second order sliding mode
control strategies have been compared taking into account the tracking accuracy and the control
effort. Two strategies have been selected as the most appropriate to be applied to the microgrid
case study. The performance of the selected adaptive control laws have been satisfactorily assessed
in simulation by considering a DGu model in realistic scenarios, characterized by disturbances and
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parameters variations.
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