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Abstract—In the latest years, we observed an exponential
growth of the market of the mobile devices. In this scenario, it
assumes a particular relevance the rate at which mobile devices
are replaced. According to the International Telecommunicaton
Union in fact, smart-phone owners replace their device every 20
months, on average. The side effect of this trend is to deal with
the disposal of an increasing amount of electronic devices which,
in many cases, are still working. We believe that it is feasible
to recover such an unexploited computational power. Through a
change of paradigm in fact, it is possible to achieve a two-fold
objective: 1) extend the mobile devices lifetime; 2) enable a new
opportunity to speed up mobile applications. In this paper we
aim at providing a survey of state-of-art solutions aim at going
in the direction of a Distributed Mobile Computing paradigm.
We put in evidence the challenges to be addressed in order to
implement this paradigm and we propose some possible future
improvements.

Keywords—Mobile applications, Distributed computing, Mobile
computing, Distributed systems, Parallel processing, Pervasive com-
puting, Middleware, Software systems.

I. INTRODUCTION

Today mobile and personal devices are becoming more
pervasive than ever. Moreover the hardware and the com-
puting resources currently available on such devices make
them capable of executing performance-hungry multi-tasking
applications.

A worth to be considered indication comes from the
International Telecommunication Union. According to it, the
average rate at which smartphones are replaced by the respec-
tive owners is around every 20 months. The consequence of
this is an increasing amount of unused devices forgotten in our
drawers or destined to disposal.

In this paper, we aim at focusing on the fact that this
multitude of mobile devices can be still exploited, for instance
to run “background” tasks. Despite their different hardware
capabilities (e.g. screen resolution, camera quality, sensor
availability, . . . ) in fact, these devices can share the same
operating system (e.g. Android), such that it is possible to
have the same software stack on a wide variety of devices,
allowing us to seamlessly deploy applications on a device or
another. These considerations lead us to think that a set of
mobile devices can be potentially exploited as a distributed
computing system, where each node is represented by a de-
vice and the interconnection infrastructure relies on wireless
communication technologies. In a scenario like this, we could
start addressing problems like defining a novel programming

paradigm, and we could design an inter-device run-time layer
in charge of handling the placement of the application tasks
in a distributed fashion [19], [33], [62].

However, in such a scenario we should also take into
account the typical constraints of mobile devices, concerning
thermal and energy management. In this regard, a distributed
rearrangement of mobile devices can lead to improvements in
terms of energy efficiency and heat dissipation, by means of
task offloading and dynamic load balancing.

Of course, there are some practical challenges and technical
issues that we need to overcome in order to effectively exploit
devices in a distributed manner. First, as already said, we
must introduce a specific programming paradigm. Second,
the device management requires a distributed strategy that
takes into account the heterogeneous distribution of capabilities
and current battery status over all the available devices. Last
but not least, we must guarantee consistent executions, given
the unreliable nature of battery-powered devices [36], [80],
without breaking security.

The paper is structured in two main parts: the first, covered
by Section II, discusses the main approaches related to the
mobile distributed computing, while the second one, covered
by section III, introduces the main techniques and imple-
mentations focusing on task offloading in mobile contexts.
Section IV exposes briefly how we can introduce resource
management strategies in the overall picture, in order to
achieve the aforementioned benefits. Section V discusses about
the direction of future researches and conclusions.

II. MOBILE DISTRIBUTED COMPUTING APPROACHES

In recent years early studies began to explore the idea of
implementing the distributed computing paradigm in systems
based on mobile devices [21]. The approaches and depicted
scenarios are however quite different from each other.

The wireless network improvements lead researchers to
create distributed systems that cooperate in computational-
intensive tasks and to coin some paradigms. For example,
in the opportunistic computing paradigm [17], [16], mobile
devices are connected in an ad-hoc local wireless network to
take advantage of the computing resources of other devices.
The most recent proposal in this direction is the AnyRun
Computing (ARC) [27] system, which dynamically selects the
best device for offloading the execution of tasks.

In what follows, we present some recent and noticeable
solutions for mobile systems that exploit some well-known
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distributed infrastructures and approaches. They can be divided
mainly in five categories, based on the computing paradigm
they exploit:

• Transparent Computing

• Flexible Computing

• Voluntary Computing

• Enterprise Computing

• High-Performance Computing

It is also common to find service-oriented architectures as
they enable an high level of transparency for the user, and
they are easily extensible with new services and interfaces. An
example of a service-oriented approach can be found in [75].
The authors proposed a Web Service Initiation Protocol (WIP)
integrated in Android, making the device a web service SOA-
based platform with real-time communication capabilities. This
solution uses a proprietary application, the 2SAP, to perform
the service discovery and registration. It does not allow to in-
clude a developer-extension of the application, and the services
can be managed only through the given application proxy.
Moreover, the solution does not consider the availability of
computing resources and energy budget, because the exposure
of the service is not linked to the capabilities of the device.

A. Transparent Computing

A service-oriented approach that must be aware of the
system resources is presented in [77], where the concept of
transparent computing [79] is transposed to the mobile world.
Its goal is to provide users with transparent services: users
only concern whether they can get the service or not, but
without any need to know the underlying details. To do this, the
solution requires a lightweight terminal without an operative
system installed in advance. The software stack, including the
operating system, the applications and the data is downloaded
from a remote server as a virtual machine, on the basis of the
user requirements and the computing resources availability. In
terms of security there is also the possibility of introducing
different authority provisioning to different resources and
services. Unfortunately, this approach requires the devices to
have an Internet connection. Furthermore, there is no mention
of an energy-aware run-time management of the device.

The distributed aspect of this approach is given by the
possibility of having the same services available for different
terminals. However this is not properly what we intend as ”dis-
tributed computing”, since the computation is not distributed
among devices but it is locally performed on the current device,
once the service or the application is loaded.

B. Elastic Personal Computing

Based on the concept of Flexible Computing [60] this
paradigm takes advantage of the interconnected devices, re-
lying on the fact that in many cases processing data in-place
and exchanging them directly between devices can overcome
bandwidth limitations, hence resulting in a more efficient
approach with respect to offloading the entire job to a remote
server.

Daz-Sanchez et al. [22] proposed the Light Weight Map
Reduce (LWMR) framework to enable the possibility of sub-
mitting a job by any device or group of devices, collecting the
outcome and delegating tasks to other devices upon battery,
network or location changes. This refines the Elastic Comput-
ing concept exposed in [70], providing a mobile version of
the Hadoop MapReduce framework.

Similarly, the Hyrax system [54] implemented the job
distribution mechanism by porting Hadoop to interconnected
Android devices. The centralized-architecture limitations of
Hyrax are then overcome by MC2 [40], which makes possible
the setup of personal cloud computing systems made by nearby
mobile devices. MC2 provides the possibility to create a private
or public cloud service.

Elespuru [25] instead, investigates the feasibility of using
smart mobile devices in a MapReduce system. The author
implements a client-server MapReduce system for mobile
devices, which shows that the devices are capable of per-
forming at roughly an order of magnitude more slowly than
the traditional clients, demonstrating that a large portion of
processing can be moved to them, if many enough exist at a
given time to perform the necessary workload.

Finally, it is worth to mention GEMCloud [4], whose
purpose is to exploit mobile devices to execute computa-
tionally intensive and parallel tasks with a high degree of
energy efficiency. The system is made by a central server
and a database, in charge of discovering available devices
onto which deploying tasks. On the device side, a client
application makes the devices visible or not, according to the
device status, e.g. CPU and memory usage, battery level, and
running applications. However, what is still missing in this
solution is the possibility of implementing a scheduling and
task placement policy, aiming at maximizing performance or
minimizing energy consumption.

C. Volunteer Computing

The so-called volunteer computing [1] paradigm has been
introduced in 1996 by Luis F. G. Sarmenta. In this approach
users make their devices available for hosting external compu-
tational by intensive tasks. It became more and more attractive
for the users so that some projects received considerable media
attention, such as SETI@home [2] and Folding@home [29].

The most representative framework enabling this paradigm
is BOINC [10], started as a project for researchers to exploit
the processing power of personal computers around the world.
It has been extended by the NativeBOINC project [66] for
Android devices. Similarly, [24] links the BOINC middleware
and the concept of volunteer computing to the mobile world.

In [32] the volunteer computing paradigm has been ex-
tended to the mobile devices not connected to Internet, exploit-
ing WiFi Direct to setup point-to-point connections. The device
(node) can therefore become a distribution point or a simple
proxy node towards Internet. The main goal of the solution
is to extend the task distribution network, with an eye on the
device applications and resources management.

Another extension of the volunteer computing paradigm is
REPC [23], a generic “randomized” task assignment frame-
work that exploits mobile devices for participatory computing.
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REPC is another example of server-based distributed system.
A centralized server in fact, hosts the execution of a Task
Manager, in charge of assigning tasks to subscribed devices.
The overall goal is to guarantee the completion of a given
minimal number of tasks, minimizing the number of tasks
assigned per device. The central server is involved also in
the estimation of the run-time statistics regarding the tasks
execution.

D. Enterprise Computation

The idea of using mobile devices for distributing the com-
putational load has found interest also in the enterprise world.
Arslan et al. in [3], [55] proposed a distributed computing
infrastructure using smartphones in enterprise context. The
main idea is to use employees enterprise device to perform
the computation while they are recharging, instead of the
company’s servers, in order to reduce energy consumption
and costs. Although the solution is quite complete and takes
into account also the device computation capability and power
status, the application context is closely linked to enterprise
workloads. Moreover, the client-server architecture represents
a limitation in terms of scalability and flexibility. Another lack
of this solution is the fact that the computation capability
of the device is evaluated by the server by estimating the
task completion time from previous task executions. It does
not rely instead on a resource manager instance, running on
the device that can expose capabilities and perform local
optimizations, taking into account also the workload launched
on the device by the user. Moreover, the recharging status is
the only condition for which the mobile device is considered
available.

E. High-Performance Computing (HPC)

The High Performance Computing (HPC) area had also
considered mobile devices as computational nodes of a parallel
system. In this regard, the DroidCluster proposal [12] proved
to be feasible with collaborative Android systems by using
the Message Passing Interface (MPI) as reference program-
ming paradigm. DroidCluster claims to be non-invasive, i.e.,
the framework does not interfere with the devices primary
function. Obviously, in this case the target workload is made
by parallel HPC applications, and no resource management is
considered.

F. Experimental Results and Limitations

Analyzing the previous works we noticed that they do not
consider some aspects of the devices that could be interesting
to study in depth. First of all they do not perform resource and
energy management, and optimization at single device level:
[3], [23] and [4] are the only that consider device resource
capabilities, even if in the first work the estimation is done
remotely by the server basing on the previous completion time
of the tasks, whereas in the second one it is delegated to a local
”passive” application. In future works it will be interesting
to investigate how a local resource manager affects resources
utilization and remote server decision.

A local resource manager could also act as a decision-
maker for device selection during tasks distribution, monitoring
the device resources and energy, and performing an optimal

Fig. 1. The graph shows the growth of power dissipation and the battery
limit (ordinate-axis) over years.

task distribution to other devices or servers. Moreover most
solutions rely on a single device that acts as a ”supernode”
and makes decisions, while recently research is moving on to
investigate a multi-agent context where nodes cooperate and
make decisions in a fully distributed way.

Finally, no previous solutions consider the management
and optimization of Android applications, but mainly HPC
applications already designed and implemented for multi-node
parallel execution. Future research is going to concentrate on
studying in depth the possible interactions between HPC and
device applications, and their management strategies.

III. COMPUTATION OFFLOADING FOR MOBILE SYSTEMS

In this section we expose many issues and solutions related
to computation offloading. The offloading is a practice studied
from the mid 1990s, consisting of executing part of an appli-
cation (a specific task) on a secondary computing device or
system.

Since, as shown in Figure 1, the energy budget management
is still a challenging activity, a possible exploitation of task
offloading can be the pursuing of a device lifetime extension
goal, by scheduling the task execution on a remote server
providing higher performance.

Before going through the various solutions, it is necessary
to clarify the difference between offloading practice and other
type of distributed computing approaches. As exposed by [46],
offloading is not a classic client-server architecture because
the device is not a thin client and it can decide whether
delegating the computation to the server or doing it locally.
Moreover, it differs from the load balancing techniques used
in grid computing because with the former the offloaded tasks
are migrated to servers that are not in the same computing
environment. An exception can be found by exploiting mobile
distributed computing, because in this case the offloaded tasks
are migrated to other personal devices.

Looking at the research since nineties onward, we can
group literature works in three different categories: feasibility
studies, decision algorithms and framework proposals. Regard-
ing the first category, most of the feasibility studies have
been proposed before the year 2000 [8], [30], [41], [43], [57],
[61], [71], [73], [74]. Since 2000s onward, more works on
policies and decision algorithms started to appear. The pro-
posed algorithms aim at managing or adapting the execution
of the mobile applications, on the basis of three different
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approaches: program partitioning [14], [28], [47], [48], [56],
[67], [69], [76], [78], energy-aware execution [63], [65] and
context-awareness [35], [37], [38], [72]. A policy for task
offloading decision is typically driven by objectives of perfor-
mance improvement, i.e., meeting response time requirements,
meeting real-time constraints, etc. . . or energy saving, i.e.,
extending battery life, achieving green-computing purposes.
Recently, some frameworks for mobile computing offloading
have been proposed and have gained attention. In what follows
we discuss about some implemented tools that enable the
computation offloading. Mainly offloading is performed on
cloud-based systems, exploiting the computational power of
high performance servers, although some recent works aim at
exploiting an interconnected mobile device as a cloud system:
probably this will be the future research scenario. Among
the various technological improvements that contributed to
the growth of offloading interest, there are wireless network
bandwidth increasing, mobile agents development and the
rebirth of virtualization [46].

Regarding the development of Mobile Cloud Computing-
applications, Orsini et al. [59] identified six main require-
ments: availability, portability, portability, scalability, usabil-
ity, maintainability and security. Among these, to reach the
scalability requirement, one of the most used approach is to
partition the application into tasks of different granularity level,
although it involves some major difficulties such as:

• Correctness: identifying which parts of the application
have to run on the local device;

• Effectiveness: avoiding that a network delay caused by
offloading is greater than the reduced execution time;

• Adaptability: offloading adaptation to applications user
requirements and run-time environment changes.

Application partitioning and offloading can be performed
at class or method level to obtain a more fine-grained resource
allocation. Table I shows further analyzed tools and their
corresponding partitioning level. It can be noticed that works
originally concentrated at VMs and class level, while in recent
years they exploited the method-level partitioning both rely-
ing on programmer annotations or on automatic partitioning
tools [50]. In what follows, we will provide a taxonomy
partition of some noticeable works that perform application
partitioning and offloading.

A. Server-based Architecture

The first noticeable work that handles application partition-
ing we can find is J-Orchestra [67]. It is a tool that partitions
any Java application at bytecode level, providing a GUI to ask
programmers to manually select the “offloadable” classes, but
it does not consider mobile applications and devices.

In 2010 Cuervo et al. presents the MAUI system [20], a
server-based system that enables a fine-grained energy-aware
offload of mobile code to a server infrastructure. It embraces
the programmer-guided partitioning approaches in which the
programmer can annotate the method that can be offloaded for
remote execution. MAUI has a client-server architecture: the
server acts as a coordinator for the offloading decision and
local resources management for the incoming request. Four
important goals are reached by this work: code portability

TABLE I. OFFLOADING TOOLS PARTITIONING LEVEL

Year Paper Tool name Partitioning Level

2002 [67] J-Orchestra VM

2004 [64] Cloudlets Class

2010 [20] MAUI Method

2011 [53] μcloud Class

2011 [15] CloneCloud Thread

2012 [44] MACS Class

2012 [34] COMET Thread

2012 [78] DPartner Class

2012 [42] ThinkAir Method/VM

2012 [13] N.A. Method/VM

2016 [27] ARC Method

2016 [52] COMPSs-Mobile Method

exploiting partitioning for .NET applications, programming
reflection, type safety and method profiling through serial-
ization to determine its network shipping costs. However, it
is not considered the real scalability and usage of the cloud
infrastructure.

In [78] the authors proposed an automatic tool (DPartner)
to refactor the Android application bytecode to enable task
offloading. The tool performs various static analysis on the ap-
plication bytecode, detecting which classes can be considered
“movable” among different devices, through a novel proxy and
endpoint software design pattern (Figure 2). The refactored
application package file is then deployed in form of a Java
archive file for the device, and movable Java bytecode classes
for the remote server. The decision about offloading classes is
also based on a static analysis of the performance and power
consumption of the bytecode execution [9]. The endpoint then
is in charge of monitoring the top n computational intensive
classes, executing a prediction algorithm and handling the
actual communication between classes. A major goal reached
by this work is the fact that, unlike ThinkAir or MAUI, it is
transparent to the developer and it does not require any input
or environmental conditions as CloneCloud does.

Eom et al. [26] presented MALMOS, a machine-learning
task offloading scheduler. This framework enables a dynamic
adaptation of the scheduling decisions based on the observa-
tion of the correctness of the previous offloading decisions.
In this work, the authors integrated their system with the
DPartner partitioning tool, improving the need of user-input
and static decision rules previously required by DPartner. The
major contribution is that, albeit some offloading tools retrieve
dynamically the status of the device, however they depend
on static pre-defined rules, application pre-processing or user-
input to make decisions on whether and where to offload.

B. Cloud-based Architecture

The main difference between cloud-based and server-based
solutions is that the former use remote cloud services that are
not necessarily in the same environment of the device. While
cloud-based systems are highly scalable, server-based (or
cloud-free) architectures can count on the local proximity of
the servers, avoiding network latency, but lacking of flexibility
because of the need of dedicated computing resources without
the possibility of dynamically scaling the system. The Cloudlet
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model coined and presented by Satyanarayanan et al. in 2004
is one of the first works that exploit a cloud-based architecture.
Cloudlet is a mobile small-scale cloud datacenter that is
usually located closer to the personal device environment than
common cloud infrastructures (i.e. in the same Local Network).
The study shows the limitations of a WAN-based solution from
the perspective of the communication latency impacting on
the usability and responsiveness of mobile applications. The
solution uses a VM approach over target devices to encapsulate
and separate the guest software environment from the cloudlet
host.

In [15] it is introduced the CloneCloud framework. It is a
cloud-based tool extracting binary pieces of a given process
to be potentially executed on a virtual smartphone clone.
The clone would run on a cloud to speed-up the overall
process execution. Unlike MAUI, CloneCloud does not require
developer help or code annotation, because it performs an
offline static analysis of different running conditions of the
binary on both the target smartphone and the cloud. The
outcome of this analysis populates a database composed by the
pre-computed partitions of the binary that should be migrated.
The main lack of this approach is the need of input and
environmental conditions, and consecutively their limitation, to
perform the offline analysis for every application built. At run-
time, the profiler collects data from execution time and energy
consumption both in the mobile device and server context. This
in order to construct a cost model for the application, according
to different scenarios. The offloading decision is based on the
optimal solution calculated relying on both the static analysis
and the dynamic profiling, and it is performed by migrating a
thread from the mobile device to the clone in the server.

In 2012 Kosta et al. proposed the ThinkAir framework [42],
which is a cloud-based framework that improves the idea of
the MAUI and CloneCloud projects. In particular it addresses
the MAUI lack of scalability using a VM-based approach
and eliminates the restrictions of the offline static analysis of
CloneCloud by adopting an online method-level offloading.
The framework provides to the developers an API to sign
which method they want to make offloadable and a specific
compiler to translate the annotated code. The offloading is
driven by an Execution Controller that takes a decision basing
on the current environment data and method invocation history
considering previous execution time and energy consumption.
It is interesting the possibility for the user to set a policy
among proposed ones. The framework provides also hardware,
software and network profilers to collect various data and feed
the energy estimation model used by the offloading policy.

C. Opportunistic Computing Paradigm

A first recent work that moves the attention from a cen-
tralized cloud architecture to a distributed mobile architecture
is the AnyRun Computing system (ARC) [27], [28]. It ex-
plores the opportunistic computing paradigm [17], [16], where
mobile devices are connected in an ad-hoc local wireless
network to take advantage of the computing resources of other
devices. The major differences from the previous solutions
are that cloud or server based systems suffer from a lack
of flexibility, because of the need of a specific piece of
computing infrastructure known a priori. Moreover they have
hidden latencies and a energy cost due to the networking

Fig. 2. DPartner: on-demand remote invocation design pattern [78].

communication and server power consumption. Recent year
improvements of device hardware performance made possible
to get over those limitations, by using mobile devices instead
of servers. In this direction, ARC provides a framework to
refactor the code of the application to make classes and
methods offloadable to any close device, and an inference
engine, based on Bayesian statistics, that decides whether and
where to offload the method.
Recently the authors extend the refactoring starting from the
compiled application by extracting the portable offloadable
code and embedding the task code in an Android Application
Package.

Another recent work that exploits the Mobile Cloud Com-
puting paradigm is COMPSs-Mobile [52]. It is a framework
that transposes the COMPSs programming model [51] to the
mobile world. This model relieves the application developers
from the parallelization and distribution details. COMPSs
applications are composed by annotated methods, called Core
Elements (CE), that can run in parallel. The framework par-
titions the original Android applications during the building
process, by replacing CE invocations from asynchronous tasks.
These tasks are then coordinated at run-time by the toolkit
basing on energy, economic and temporal cost prediction of
hosting and offloading a task execution. Moreover the system
comprises a check-pointing and restore mechanism to avoid a
full re-execution of the application if some nodes fail.
This work marks the frontier of future offloading techniques
that exploit interconnected mobile devices as a cloud system,
albeit it does not exploit all the device capabilities such as
GPUs or dynamic resource provisioning with a local resource
manager.

D. Overall results and limitations

Due to the heterogeneous benchmarks and devices used by
the different works, it is impossible to compare their results.
Anyway it appears evident the benefit of using the offloading
for mobile devices both for execution time and energy saving
objectives, so that it will be a promising research line for the
next years.

However, as stated by [59], while coexistence and deploy-
ment are reaching high results, adaptation scenarios and ease
of use require further investigation. For this reason the research
can reasonably be focused on an effective distributed resource
management strategy, hosted on the mobile device. This should
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improve context-awareness and offloading policies. Certainly
opportunistic offloading can get an enormous advantage from
this vision because of the possibility to enrich the instances
of the resource manager towards an intelligent multi-agent
system, which could cooperate to achieve an energy-efficient
performance speed-up.

IV. RESOURCES MANAGEMENT FOR MOBILE SYSTEMS

The aforementioned vision and the energy-budget man-
agement limitations of mobile systems suggest us to further
investigate the possibility of employing a run-time resource
manager on each device, in charge of performing task allo-
cation and hardware configuration decisions. This in order to
maximize an energy efficient exploitation of the distributed
devices. In this work, we propose the BarbequeRTRM [5], [6],
[7], which already supports embedded and distributed systems.
For the last ones, MPI is currently considered the reference
programming paradigm [31], [68].

The main advantages of such a vision are the possibility
to manage application execution dynamically, monitoring the
device status at run-time and enabling a distributed mobile
computing resources allocation strategy, which will be trans-
parent to the users. The BarbequeRTRM has been already
extended in order to support Android systems and mobile
oriented platform, like ARM big.LITTLE based SoC.

V. CONCLUSION AND FUTURE WORK

In this work we presented an overview of the main ap-
proaches for distributed mobile computing and computation
offloading over the last two decades. The main contributions
of these works are related to the power saving and performance
improvements of mobile devices, both using powerful servers
and other mobile devices. Although application partitioning
and distributed architectures have reached a good maturity,
the resource awareness design of similar solutions needs to
be investigated more deeply. We think that one of the most
promising research line in the future is to integrate a run-time
resource manager, such as those exposed in section IV, with
the architectures and offloading techniques exposed in sections
II and III, in order to create an energy and resource-aware
agent that can manage local resources, schedule tasks and
applications. The agents will cooperate, configuring a multi-
agent system aiming at properly exploiting the distributed
mobile computing infrastructure in an energy-efficient way.
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