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Abstract In this paper, we propose an extension to Banksealer, one
of the most recent and effective banking fraud detection systems. In
particular, until now Banksealer was unable to exploit analyst feedback
to self-tune and improve its performance. It also depended on a complex
set of parameters that had to be tuned by hand before operations.
To overcome both these limitations, we propose a supervised evolution-
ary wrapper approach, that considers analyst’s feedbacks on fraudu-
lent transactions to automatically tune feature weighting and improve
Banksealer’s detection performance. We do so by means of a multi-
objective genetic algorithm.
We deployed our solution in a real-world setting of a large national bank-
ing group and conducted an in-depth experimental evaluation. We show
that the proposed system was able to detect sophisticated frauds, im-
proving Banksealer’s performance of up to 35% in some cases.

Keywords: Internet banking; Fraud detection; Genetic algorithm; Supervised
learning

1 Introduction

Nowadays, Internet banking has become one of the major target of fraudu-
lent cyber-attacks such as as phishing, malware, and trojan infections, and has
brought to a worldwide loss of billions of dollars every year [36,4]. According
to Kaspersky, in 2016 financial malware infected about 2,8 millions personal
devices, a 40% increase since 2015 [1].

To contrast fraudulent cyber-attacks, banks developed fraud analysis and
detection systems that aim at identifying unauthorized activities as quickly as
possible. These systems monitor and scrutinize transactions, scoring suspicious
ones for analyst verification. In spite of the importance of the subject, very little
research is openly carried out, because of privacy restrictions and difficulties in
obtaining real-world data.

Thanks to the collaboration with a major banking group, we were able to
develop Banksealer [7,8], a novel, unsupervised fraud analysis system that au-
tomatically ranks frauds and anomalies in banking transactions. While the ex-
periments presented in [8] showed that Banksealer is an effective approach in
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identifying frauds and seems to provide a meaningful support to the banking
analysts in fraud investigation, one of its main limitations is the inability to
collect and exploit banking analyst’s feedback. It also depended on a complex
set of parameters that had to be tuned by hand before operations.

To overcome these limitations, in this paper we propose a general supervised
evolutionary wrapper approach that considers analyst feedback on fraudulent
transactions to find an optimal tuning of Banksealer’s parameters. Our approach
implements the Non-dominated Sorting Genetic Algorithm II (NSGA-II) to find
a configuration of parameters that optimizes the ranking of potential frauds at
runtime. Most of the parameters are feature weights, which makes the task par-
ticularly challenging, since we are confronted with large and unbalanced datasets
in which there are multiple variants of frauds that are, overall, extremely rare (i.e.
less than 1% with respect to legitimate transactions), and dynamically evolve
over the time.

We deployed our solution in a real-world setting of a large national bank-
ing group and conducted an in-depth experimental evaluation. Thanks to col-
laboration with this bank and leveraging the domain expert’s knowledge, we
reproduced frauds (in a controlled environment) performed against online bank-
ing users, and recorded the resulting fraudulent transactions. We show that the
proposed system was able to detect sophisticated frauds improving Banksealer’s
performance up to a factor of 35%.

In summary, in this paper we make the following novel contributions:

– We propose a supervised learning module based on Multi-Objective-Genetic-
Algorithm (MOGA) able to automatize the feature weighting task and to
improve detection performances of Banksealer.

– We free banking analysts from the manual job of the feature weighting task
and exploit their knowledge analyzing their feedback.

– We improve Banksealer’s ability to evolve over the time and to adapt itself
to changes in both threats and user behavior.

2 Overview of Banksealer and Goals

In this section we will recall the main concepts underlying the existing Banksealer
system, insofar as they are needed to explain the motivation of the present work.
We refer the interested reader to the original paper [8] for additional details.

Banksealer characterizes the customers of the bank by means of a local, a
global, and a temporal profile, which are built during a training phase taking
as input a list of transactions. Each type of profile extracts different statistical
features from the transaction attributes, according to the type of model built.
A list of the employed attributes is presented in Table 1.

Once the profiles are built, Banksealer processes new transactions and ranks
them according to their anomaly score and the predicted risk of fraud. The
anomaly score quantifies the statistical likelihood of a transaction being a fraud
w.r.t. the learned profiles. The risk of fraud prioritizes the transactions, com-
bining the anomaly score with the transaction amount. Banksealer provides the
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analysts with a ranked list of potentially fraudulent transactions, along with
their anomaly score.

The local profile characterizes each user’s individual spending patterns. Dur-
ing training, we aggregate the transactions by user and compute the empirical
marginal distribution of the features of each user’s transactions (for simplicity,
we do not consider correlation between features). This representation is simple
and effective, and hence is indeed directly readable by analysts who get a clear
idea of the typical behavior by simply looking at the profile. At runtime, we
calculate the anomaly score of each new transaction using a modified version of
the Histogram Based Outlier Score (HBOS) [14] method. HBOS computes the
log-likelihood of a transaction according to the marginal distribution learned.
The HBOS score is a weighted sum:

HBOS(t) =
∑

0<i≤d

wi ∗ log
1

f(ti)
;

∑
0<i≤d

wi = 1

where wi is the weighting coefficient of the i-th feature, that allows analysts
to tune the system. It is worth noting that f(ti) is the application of the min-
max normalization [15, pp. 71–72] to the frequency histi of the i-th feature. This
normalization was necessary in order to account the variance of each feature.

The global profile characterizes “classes” of spending patterns, clustering
users together. Each user is represented as a feature vector of six components:
total number of transactions, average transaction amount, total amount, aver-
age time span between subsequent transactions, number of transactions executed
from foreign countries, number of transactions to foreign recipients (bank trans-
fers dataset only). To find classes of users with similar spending patterns, we
apply an iterative version of the Density-Based Spatial Clustering of Applica-
tions with Noise (DBSCAN), using the Mahalanobis distance [22] between the
aforementioned vectors. We assign to each user global profile an anomaly score,
which tells the analyst how “uncommon” the spending pattern is with respect
to other customers. For this, we compute the unweighted-Cluster-Based Local
Outlier Factor (CBLOF) [3] score, which considers small clusters as outliers with
respect to large clusters. More precisely, the more a user profile deviates from
the dense cluster of “normal” users, the higher his or her anomaly score will be.

The global profile is also leveraged to mitigate the issue of undertraining.
Undertrained users are users that performed a low number of transactions, and
represent a relevant portion of a typical dataset. For undertrained users, we
consider their global profile and select a cluster of similar users.

Table 1. Attributes for each type of transaction. Attributes in bold are hashed for
anonymity needs.

Dataset Attributes

Bank Transfers Amount, CC ASN, IP, IBAN, IBAN CC, Timestamp
Phone recharges Amount, CC ASN, IP, Phone operator, Phone number, Timestamp
Prepaid Cards Amount, Card type, Card number, CC ASN, IP, Timestamp
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Finally, the temporal profile deals with frauds that exploit the repetition of
legitimate-looking transactions over time, by comparing the current spending
profile of the user against their history. During training, we extract the mean
and standard deviation of the following aggregated features for each user: total
amount, total and maximum daily number of transactions. At runtime, according
to the sampling frequency, we calculate the cumulative value for each of the
aforementioned features for each user, and compare it against the previously
computed metrics.

2.1 Research goal

While the experiments presented in [8] showed that Banksealer is an effective
approach in identifying frauds and seems to provide a meaningful support to the
banking analysts in fraud investigation, one of its main limitations is the lack of a
bi-directional communication channel between the unsupervised system and the
banking analyst to collect and exploit analyst’s feedback and knowledge to im-
prove detection performance. Furthermore, Banksealer works with an empirical
configurations of weights, manually set by analysts.

Therefore, the focus of this work is to overcome this limitation by exploiting
banking analysts’ feedback to auto-tune Banksealer. With auto-tune we mean
to find an optimal features weights configuration used by Banksealer to compute
the transaction’s anomaly score.

This is basically an instance of the feature weighting problem, a variant of
the more common feature selection one [38]. The difference is that in feature
selection we basically assign a binary weight to discard redundant or irrelevant
attributes. Feature weighting instead assigns real-valued weights to each feature,
based on relevance [37,10,33].

Feature weighting algorithms can be classified into two categories, based on
whether or not the feature weighting is done independently from the detection
learning algorithm. If feature weighting is done independently from the detection
task, the technique is said to follow a filter approach. Otherwise, it is said to
follow the wrapper approach. A filter approach works exclusively on the data
and uses probabilistic dependence measures to determine correlations among
features. Being independent of the detection task means that changes to the
detection system do not impact assigned weights. Also, it is more efficient than
a wrapper approach from the computational point of view, since the detection
system does not need to be ran to evaluate the candidate weights configurations.

On the other hand, a wrapper approach [19] consists of executing feature
weighting, intertwined with the detection task. Wrapper approaches usually out-
perform filter approaches from a detection point of view, but obviously they are
computationally more demanding.

In this work we opted for the more computationally intensive wrapper ap-
proaches. In particular, we made use of genetic algorithms, as they can handle
multiple local optima and are designed to support also multiple objective cri-
teria [38]. In fact, as we will detail in the following, our problem requires to
trade off between multiple objectives. For a deeper and more exhaustive notion
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Figure 1. Logical view of Banksealer integrated with the feature weighting module.

of Genetic Algorithm (GA) we invite the reader to refer to [25,13,24] as this is
beyond the scope of this paper.

3 Approach Overview

Our approach to solve the feature weighting problem stated in § 2.1 is summa-
rized in Fig. 1. It is composed of three logical steps:

1. Transaction Ranking. Banksealer generates in output a ranking of the
transactions based on the fraud risk score. As shown in § 2, Banksealer uses
the HBOS score to compute the anomaly score of a transaction by combining
the weighted contribution of each feature. The formula can be simplified as
follow HBOS(t) =

∑
0<i≤d wi · ci, where d is the number of features of the

dataset, wi and ci are respectively the weight and the score contribution of
the ith feature.

2. Feedback Collection. Analysts, after going through the ordered transac-
tion list, flag as fraud transactions that have been verified to be fraudulent,
or as Suspect the ones that – even if they turned out to be benign – were defi-
nitely anomalous enough to warrant investigation. All other transactions are
benign. The labeled dataset is the input for the feature weighting process.

3. Feature Weighting. After having collected all transaction feedbacks in
a labeled dataset, our solution follows the wrapper approach. We opted
to use a GA, and specifically Non-dominated Sorting Genetic Algorithm
II (NSGA-II) [12]. The basic idea we follow is to generate a population
that represents different feature weight configurations, and then evaluate
the accuracy of the fraud detection system for each candidate, by calling
the Banksealer testing function on each individual of the population. We
will describe in detail the fitness function used for evaluation, operators, and
other details of the application of the algorithm in § 4.3.
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While describing the specificities of Non-dominated Sorting Genetic Algo-
rithm II (NSGA-II) is beyond the scope of this paper, and we refer the reader
to the original work [12], it is relevant to point out that the algorithm exhibits
a time complexity of O(MN2) and a spatial complexity of O(N2) (where M
is the number of objectives and N is the population size). It also implements
elitism that can be shown [39,34,27,29] to speed up the performance of GAs sig-
nificantly. Finally, NSGA-II is parameterless regarding the sharing mechanism
used to introduce diversity in the population, which suits our purpose of making
the tuning mechanism completely automated.

4 Approach Implementation

In this section we describe in detail the application of the NSGA-II to our prob-
lem. We describe the encoding scheme, the handling of constraints, the selection
of operators, and the fitness function used.

4.1 Encoding Scheme and Constraints

The first step in designing a GA is the representation of the genes in an individ-
ual (i.e., encoding scheme). For our feature weighting problem, this is straight-
forward. In fact, we decide to implement the weight configuration as a list of
real numbers. Each cell of the list is associated to a feature of those used by
Banksealer (see Table 1), and the value that each cell contains represents the
weight associated to the feature.

Furthermore, at this stage we must consider also possible constraints that
may influence our encoding scheme design, but above all the implementation of
crossover and mutation operators that we will present later. Our problem has
two constraints:

1. wi ∈ [0, 1], which means that the weight wi of the ith feature must be a real
value between 0 and 1.

2.
∑F
i=1 wi = 1, which means that the sum of all weights belonging to a con-

figuration must be equal to 1 (F is the total number of features).

Both constraints can be satisfied by normalizing to 1 the sum of all genes
values whenever a new individual is created, and by ensuring that each values
is positive and real.

4.2 Population

Another very important aspect of GA is the number of individuals in the pop-
ulation. A small population size leads to a faster convergence of the fitness
functions. However, the drawback is that this might get the algorithm stuck in
local optima.
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Therefore, we had to find a trade-off for the population size to get a good
solution in a reasonable time. In Fig. 2, we report the evolution of fitness func-
tions according to population size. In all three cases, we get similar results. We
can see that for smaller population sizes the algorithm stagnates in local optima
for several generations. For population sizes of 500 and 1000, we have almost
the same performance, and no relevant improvements are obtained by increasing
population to 5000. As a consequence, we chose a population size of 1000 since
it represents the optimal trade-off between diversity and performance.

Figure 2. Population size estimation.

4.3 Fitness Functions

Fitness functions are needed to evaluate feature weights configurations and allow
to choose the best ones. We choose three fitness functions: True Positive Rate,
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Average Precision, and Remaining Frauds Penalty. The first two are defined in
§ 5.4, and they are both meant to be maximized. The Remaining Frauds Penalty
(RFP ) assigns a penalty (equal to the number of frauds not yet detected) for

each normal transaction detected as fraudulent: RFP =
∑R
k=1RF (k) × N(k),

where R is the number of total transactions in the ranking and RF (k) is the
number of frauds not yet detected at the kth position of the ranking; N(k) = 1
if the kth transaction is normal, 0 otherwise. In this case, we want to minimize
Remaining Frauds Penalty (RFP).

The reason for choosing TPR is self-explaining: our main goal is to detect as
many as possible frauds in the top N positions of the ranking. Its main drawback,
however, is that it does not keep into consideration how frauds are arranged in
the ranking: it neither considers how “high” are frauds present in the top N
positions, nor how “far” down are the missed frauds. To overcome this problem,
we use AP and RFP in addition to TPR. By doing this, we reduce the spread of
frauds and push them from the lower positions to the upper part of the ranking.
In particular, minimizing the RFP value, we push up complex frauds from the
very last positions of the ranking. However, RFP tends to penalize more frauds
at the bottom of the ranking. Instead, maximizing the Average Precision (AP),
we gather frauds together reducing the distance between sequent fraudulent
transactions. However, it has less influence on frauds in the last positions.

As a consequence, the combination of these three fitness functions makes the
algorithm stable also in very complex scenarios.

4.4 Operators

The choice of selection, crossover and mutation operators is domain specific. Fur-
thermore, we must find a good trade-off between exploitation (using knowledge
already available to find better solutions) and exploration (investigating new and
unknown areas in the search space).

For the selection operator we picked a tournament selection: the operator
selects K random individuals from the population, and compares them. The
winner is inserted into the mating pool. The tournament repeat until the mating
pool is filled. The mating pool, being comprised of tournament winners, has a
higher average fitness than the average population fitness. In particular, we used
a binary tournament selection, i.e. K = 2. We prefer this operator because its
selection pressure is not high, and it assures genetic diversity, reducing the risk
of converging to local optima. On the other hand, it does not take a lot of time to
converge thanks to the elitist property guaranteed by NSGA-II. It is also proven
to be robust in the presence of noise [23].

For the crossover operator, we chose the simulated binary crossover [11]. The

operator computes offspring solutions x
(1,t+1)
i and x

(2,t+1)
i from parent solutions

x
(1,t)
i and x

(2,t)
i by defining the spread factor βi as the ratio of the absolute

difference in offspring values to that of the parent values:

βi =

∣∣∣∣∣x
2,t+1
i − x1,t+1

i

x2,t
i − x1,t

i

∣∣∣∣∣
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The spread factor βi is distributed according to the following probability
distribution:

P(βi)

0.5(ηc + 1)βηi β ≤ 1

0.5(ηc + 1) 1

β
η+2
i

otherwise

Where ηc is a parameter we set to control the variance of the distribution:
A large value of ηc gives a higher probability to create offspring “near” the
parents, while a small one allows distant solutions to be selected as offspring.
For our problem we set the probability of crossover between two parents to 0.9,
and ηc = 5. This because in our tests greater values of ηc resulted in a slow
down of the algorithm convergence, since creating offspring very similar to their
parent favors exploitation much more than exploration.

We decide to use the simulated binary crossover for three reasons:

– It is designed for offspring with real variables, like our weights.
– It preserves parents schemata in the offspring. By doing this, the crossover

operator does not destroy every time the solution creating a new one very
different from the parents.

– It has a very interesting self-adaptation property: the location of the offspring
solution depends on the difference in parent solutions. If the difference in
the parent solution is small, the difference between the offspring and parent
solutions is also small and vice-versa.

Finally, we chose the polynomial mutation as mutation operator. It attempts
to simulate the offspring distribution of binary-encoded bit-flip mutation on real-
valued variables. This operator is usually used in pair with simulated binary
crossover because it works in a very similar way, favoring mutated offspring
nearer to the parents. Adopting the same notation used before for crossover, a
new mutated offspring is obtained as xt+1

i = xti + (xUi −xLi )δi, where xUi and xLi
are respectively the upper bound and the lower bound of the variable at position
i. Instead, δi is defined as:

δi =

(2ri)
1

ηm+1 − 1 ri ≤ 0.5

1 − [2(1 − ri)]
1

ηm+1 otherwise

where, similarly to crossover, ri is a random number between 1 and 0, and
ηm is the mutation distribution index. We set ηm = 10, in such a way that
resulting offspring are different but rather close to the non-mutated individual.
We choose this high mutation rate, because it allows to obtain a high diversity
on the Pareto front. Instead, the probability of mutating a single variable is
equal to 1

F where F is the number of total features used by the algorithm. This
results in one mutation per offspring on average (which corresponds roughly to
the idea of “shifting the value of one variable”).

5 Experimental Evaluation

In this section we describe the experimental evaluation of our learning module
integrated with Banksealer.
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Type of Fraud IP Country IBAN country
Scenario 1 Information Stealing foreign foreign
Scenario 2 Information Stealing foreign Italian
Scenario 3 Information Stealing Italian foreign
Scenario 4 Information Stealing Italian Italian
Scenario 5 Transaction Hijacking - foreign
Scenario 6 Transaction Hijacking - Italian

Table 2. Scenarios of fraudulent activities.

5.1 Hardware and computation times

Our experiments have been executed on a desktop computer with the following
specifications: Quad-core 3.40 GHz Intel i7-4770 CPU, 16GB of RAM, and the
Linux kernel 3.7.10 x86 64. The results of the experiments we made are obtained
computing the average on 30 tests to avoid statistical oscillations. In average,
a single weighting process of 80 generations on a one-month dataset lasts 1
hour and 30 minutes. We obtained this execution time thanks to the parallel
fitness function evaluations that resulted to be about 3 times faster than the
non-parallel version.

5.2 Dataset

The dataset in our possession belongs to an important Italian banking institute
and is anonymized to protect privacy of customers. The dataset covers the period
from April 2013 to August 2013. We split the data in a training dataset, used
to train Banksealer, consisting of 3 months of data; a weighting dataset of one
month, containing the analyst feedback and used to learn the optimal configura-
tion of weights; and finally, a testing dataset, consisting of the last month of data
(and also containing analyst feedback). We show the results on the bank transfer
data for brevity, but similar results can be obtained for the other contexts such
as prepaid cards and phone recharges.

5.3 Synthetic Fraud Scenarios

The dataset under analysis does not contain frauds. Therefore, as already suc-
cessfully done in [7,8], we inject fraud scenarios that replicate the typical attacks
performed against online banking users. We consider two types of fraudulent at-
tacks, reconstructed using domain expert and analyst advice:

– Information stealing scenario. It simulates a banking trojan or a phishing
attack in which the customer is deceived into entering its credentials and a
one-time-password (OTP). The stolen informations are sent to the fraudster,
who uses them to execute a transaction towards an unknown IBAN. In this
scenario, we suppose that the fraudster is interested into stealing as much
money as he or she can. As a consequence the amount transferred will be
very high, from 10.000e to 50.000e. The fraudster can connect to the bank
server from an Italian or a foreign IP address and money can be transfered to
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an Italian or foreign IBAN. To inject the transactions, we randomly choose a
user between those present in the testing dataset and we inject a transaction
with a random timestamp.

– Transaction hijacking scenario. It simulates the infection of the user’s
computer by a MitB attack. The malware deceive the user into entering two
OTPs and then exploit its capabilities to execute a second transaction using
the user’s browser. In this scenario, the transaction is still directed toward an
unknown IBAN, which can be Italian or foreign, however the connection is
executed from the victim’s computer. As in the Information stealing scenario,
we suppose that the fraudster is interested into stealing as much money as
possible and, as a consequence, the amount transferred will be very high,
from 10.000e to 50.000e. To inject the transaction we randomly choose a
user between those present in the testing dataset and after that we randomly
select one of his or her transaction. The injected transaction will be executed
no more than ten minutes after the selected transaction to simulate the MitB
session hijacking.

In Table 2 we report the synthetic scenarios and their characteristics.

5.4 Metrics

Given the nature of our system, that “ranks” transactions according to anomaly,
we need to slightly redefine the traditional evaluation metrics. We define as “pos-
itive” any transaction scored among the top N positions of the ranking, where
N is the number of fraudulent transactions in the dataset. In our experiment we
inject synthetic fraudulent transactions equivalent to the 1% of the dataset.

A True Positive (TP) is a fraudulent transaction that appears in the first N
positions of the ranking. We similarly define True Negative (TN), False Positive
(FP), and False Negative (FN). Then we use the traditional definition of True
Positive Rate (TPR):

TPR =
TP

TP + FP

We also compute the Average Precision (AP), which takes into account the
position of fraudulent transactions in the ranking:

AP =

∑R
k=1 P (k) × F (k)

N

where R is the number of total transactions in the ranking, P (k) = #frauds
k ,

and F (k) = 1 if the kth transaction is fraudulent, 0 otherwise.
Since our dataset is highly unbalanced in favor of normal transactions, we

use the Matthews Correlation Coefficient (MCC) and Average Accuracy (AA)
metrics, because they are less affected by this problem.

The MCC expresses the relationship between the observed and predicted
binary classifications (MCC = 1 perfect prediction, MCC = 0 no better than
random prediction, and MCC = −1 total disagreement between prediction and
observation):
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MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

The AA is an average of the accuracy obtained for both fraudulent and
normal transactions classes:

AA =
1

2

[
TP

TP + FN
+

TN

TN + FP

]

5.5 Experiment 1

In this experiment, we want to verify the quality of the Weighted Banksealer on
single scenarios listed in Table 2, and compare it with Banksealer. We use the
dataset described in § 5.2. We compute the TPR of both systems as defined in
§ 5.4. The results of our experiment can be seen in Table 3.

It is evident that feature weighting brings an improvement in almost all sce-
narios under analysis. Since Banksealer already guarantees good fraud detection
performance in the information stealing scenario, the most significant gains are in
the hijacking scenario, which is the most complex to detect. In particular, when
looking at the limited results for Scenario 6, keep in mind that the fraudulent
transactions are almost indistinguishable from benign ones in this case.

5.6 Experiment 2

With the objective of verifying the quality of Weighted Banksealer on a sce-
nario closer to the real world, we test our approach against a “mixed scenario”
obtained injecting in the dataset the same number of frauds, but randomly ex-
tracted from all of the scenarios of the first experiment. The results can be seen in
Table 4. As we can see, Weighted Banksealer gets a TPR higher than Banksealer
with a difference of 23%. But we also improve the ranking, concentrating most
frauds in the top positions. This is expressed by the Average Precision, or it
can be seen in Figure 3, where we plot the cumulative distribution of the de-
tection ordered by ranking. The yellow line models the detection performance

Fraud scenario IP IBAN BS BSW Improvements

T
P

R
(%

)

A
A

(%
)

M
M

C

T
P

R
(%

)

A
A

(%
)

M
M

C

T
P

R
(%

)

A
A

(%
)

M
M

C

1: Information Stealing Foreign Foreign 97 98 0.97 98 99 0.98 +1 +1 +0.01
2: Information Stealing Foreign National 91 95 0.91 94 97 0.94 +3 +2 0.03
3: Information Stealing National Foreign 97 98 0.97 97 98 0.97 0 +0 0
4: Information Stealing National National 91 95 0.91 92 96 0.92 +1 +1 +0.01
5 - Transaction Hijacking - Foreign 75 87 0.77 95 97 0.95 +20 +10 +0.18
6 - Transaction Hijacking - National 22 68 0.34 57 78 0.63 +35 +10 +0.29

Table 3. Experiment 1: TPR, AA and MCC results of Experiment 1. BS = Banksealer,
BSW = Weighted Banksealer
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Figure 3. Ranking comparison for Experiment 2.

of an ideal fraud detection system. It is evident that Banksealer diverges earlier
than Weighted Banksealer from it. For a further comparison of Banksealer and
Weighted Banksealer we report in Figure 4 also the Receiver Operating Charac-
teristic curve (ROC ), which confirms the better overall performance of Weighted
Banksealer.

5.7 Overfitting Problem

In the design of the system and during the experimental evaluation, we put great
effort in limiting overfitting (a real issue in noisy, unbalanced datasets like ours).

In our problem, overfitting may be caused by an over-weighting of the system
caused by the execution of too many generation of the GA. In that case, we
could see that the performance over the weighting dataset keeps to increase,
while performance decreases on validation dataset, which contains data unseen
by the system. To limit overfitting we study how many generations are needed
to learn the weights configuration and we stop the algorithm as soon as it starts
to learn noise. This approach is usually called early stopping. We wait that
all three functions converge and reach an equilibrium and as we can see this
happens at 80th generation. In fact, after 80th generation in all three functions
for several generations no relevant improvements are obtained. The performance
on the validation dataset starts to get worse around the 115th generation for
the Average Precision fitness function. It is not very visible, but performance on
weighting dataset are increasing. In addition, after some generations we can see

TPR Average Matthews Correlation Average
Precision Coefficient Accuracy

Banksealer 58% 68% 0.67 82%
Weighted Banksealer 81% 88% 0.83 91%
Improvements +23% +20% +0.16 +9%

Table 4. Results of Experiment 2.
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Figure 4. ROC curve for Experiment 2.

also that the other functions start to be affected by overfitting. In Figure 5 we
report the results of our overfitting test.

In addition, we put effort to produce synthetic transactions that resemble
the real ones to be as realistic as possible and to avoid the overfitting of our
approach to “trivial” fraudulent transactions. To evaluate the quality of simu-
lated data with respect to the real one, we empirically compare the distribution
of transactions features by applying the kernel density estimation method [30]
and box-plot diagrams. In addition, we applied the non- parametric two-sample
permutation test for the comparison between central tendency of the features.
With respect to other non-parametric tests it does not require verification of
any assumption about distribution’s shape and variability of the two samples.
The null hypothesis specifies that the permutations are all equally likely with a
significance level α = 0.05. In other words, the distribution of the data under
the null hypothesis satisfies exchange-ability. Since we found a p − values > α,
we failed to reject the null hypothesis that the samples are drawn from the same
distribution.

6 Related Works

Fraud detection, mainly focused on credit card fraud, is a wide research topic,
for which we refer the reader to [9,31,5]. In this section we focus on the feature-
weighting task.

The filter approach has been used in [26] where is presented an unsupervised
feature selection algorithm suitable for dataset containing a lot of dimension.
The method is based on measuring similarity among features using the maximum
information compression index. [32] is an example of application of this algorithm
in bioinformatics field. FOCUS [2] is a feature selection algorithm for noise-free
Boolean domains. It exhaustively examines all subsets of features, selecting the
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Figure 5. Overfitting analysis on the different fitness functions.
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minimal subset of features sufficient to determine the label value for all instances
in the training set. The relief algorithm [20,17] assigns a weight to each feature,
which is meant to denote the relevance of the feature to the target concept.
The relief algorithm attempts to find all relevant features. Tree filters [6] use
a decision tree algorithm to select a subset of features, typically for a nearest-
neighbor algorithm.

The wrapper approach has been used to select features of a Bayesian Clas-
sifier [21] or for parameter tuning[18]. In [16] a genetic algorithm has been im-
plemented to identify the optimal set of predictive genes that classify samples
by cell line or tumor type. Multi-objective approaches have been implemented
in several feature selection problems, like handwriting digit recognition [28] and
facial expression recognition [35].

7 Conclusions

In this paper we presented a supervised learning module for the optimization
of Banksealer, an online banking frauds and anomaly detection framework used
by banking analysts as a decision support system. The module was created to
solve one of the limitation of the previous version of Banksealer, the inability to
collect the feedback given by the analysts and process it to improve the detection
performance. The module uses the Non-dominated Sorting Genetic Algorithm
II (NSGA-II), a Multi-Objective-Genetic-Algorithm (MOGA), to automatically
learn feature weights configurations that optimize the performance of the overall
system, instead of relying on manual tuning.

We field-tested the algorithm on real-world data, showing that it is able
to self-tune Banksealer over large, unbalanced datasets, and it improves the
detection rates over time. The system is extensible and almost transparent to
analysts, who just need to express their feedback on the transaction ranking.

Obviously, the system shows some limits that we wish to address in future
works. A first experimental limitation is that, while the dataset of transaction is
real, in order to create significant tests we needed to inject synthetically gener-
ated frauds to evaluate the quality of the detection task. In the future, we will
proceed with further tests on real-world fraud samples.

A more relevant limitation is that, as shown in § 5.6, complex fraudulent
transactions can still escape the top of the ranking. While we consider the current
results already very successful, we believe that the key to improve them further
is to design and test other fitness functions and new features (e.g., sum of the
amount) that focuses on solving the complex fraud issue. Redesigning fitness
functions can also address different motivations for the analysts: for instance,
we are experimenting with a fitness function that aims to maximize the total
amount of all fraudulent transactions (as opposed to their number). In a MOGA
it is rather easy to add and remove fitness functions, and we are going to exploit
this modularity in future works.
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