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Abstract: The goal of this study is to compare surface morphologies on dental implants 

created by a range of five different surface-modification technologies and, in addition, cell 

assays to assess the subsequent cell proliferation on each treated surface. In our research, 

we surface-treated 5 mm-diameter – 2 mm-thick discs, machined from Grade 1 titanium. 

We treated the surfaces of the discs with chemical etching, electro-polishing, Al2O3 sand-

blasting, and surface melting with 1 Joule or 3 Joule impulse-energy laser beam. We 

carried out quantitative as well as qualitative analyses with stereo and scanning electron 

microscopes (SEM), confocal and atomic force microscopes (AFM) and goniometer. We 

examined each surface with cell-testing, as a measure of osseointegration. In tests with 

fibroblasts, the highest cell proliferation occurred on the Al2O3-roughened surfaces. In the 

case of osteoblasts, we measured the greatest cell activity on the laser-melted samples with 

different energy levels. 
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1 Introduction 

Currently the examination and deliberate structuring of surface morphologies of 

dental implants, designing new processes for surface manipulation and the 

assessment of those results, are all at the cutting edge of implantology. Surface 

treatment of implants influences, to a major extent, the success of integration with 

bone [1], making these processes crucial to the functional value of implants. To 

ensure this integration, a suitable morphology must be created on the surface of a 

given implant [2]. 
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1.1 Conditions for Osseointegration 

Thirty years ago researchers considered how surface engineering, topography, and 

the morphology or lack of contamination of implant surface, might affect 

osseointegration. Since that time, investigators have made substantial progress in 

making issues of surface shape and contamination central to dental implantology 

research. In the early 1970s, development has sought to: understand the interaction 

between the bone and the implant surface, explain the process of osseointegration 

from the moment of implantation until the phase when secondary stability is 

attained, and define both the duration of, and the biological mechanisms involved 

in, each phase [3, 4, 5, 6]. 

Exact phases of the development of the interface zone are still unknown. The 

interface  layer ensures a connection between the oxide layer on the implant 

surface and bone proteins. The layer around the osseointegrated implant has a 

thickness of 2 to 5 nm [7, 8]. By the beginning of the 1970s, Hulbert et al. had 

already established that porous surfaces enable bone regeneration to occur more 

quickly and allow osseous tissue to grow [9]. The consensus since the year 2000 

has been that rough surfaces are better for osseointegration than smooth or 

polished surfaces [10-15]. 

Molecular biology has gradually gained significance in surface treatment. 

Researchers are developing increasingly sophisticated surface-engineering 

techniques that take into account biochemical signals and cues involved in how 

various materials bond with bone tissue. The possibility of applying organic 

materials (chemical modifications) and several proteins (BMP) on an implants 

surface, creates new areas of investigation [16]. The interaction of proteins at the 

nanometric level is emerging as a major decider in the integration of implants. 

Up until the end of the 1990s, investigations mostly addressed surface topography 

and morphology. Since then, attention has increasingly focused on surface-

chemistry research. Surfaces are modified with physical-chemical methods to 

promote faster and more comprehensive osseointegration. High surface energy 

optimally promotes interaction with the biological environment [17-19]. It is 

accepted that surface roughness influences alkaline phosphatase (ALP) and 

osteocalcin (OC) levels, thus indicating the osteoblast activity of the surrounding 

tissues [20, 21]. On a smooth surface, “osteoblast-like” cells show a sparse and 

flat distribution, while greater numbers and more dense distributions are found on 

rough surfaces [22, 23]. Rough surfaces have an impact on cytoskeleton functions 

as well [24]. Micro-scale surface structures influence cellular functions while 

nano-scale elements have an effect on sophisticated cascades involved in protein 

binding (Figure 1) [25-27]. 
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Figure 1 

The effect of surfaces with various degrees of structure on the binding of organic elements 

According to the current status of the science for osseointegration, it is not a 

function of quantitative porosity but qualitative porosity [28]. In the case of dental 

implants the most commonly used and at least accepted parameters are the 

following: the average height differences of elements raised above the surface, 

usually represented as ”Sa” (in the case of a two-dimensional examination the 

same value is signified by ”Ra”), effectively the average of the wave-lengths 

(distances), which is named ”Scx”, and finally the sum of treated and untreated 

surfaces, which is called Sdr and is described as a ”hybrid” value. According to 

Wennerber and colleagues as well as most of the research community, what can 

be described as ideal surface parameters are Sa = 1.4 µm, Scx = 11.6 µm, 

Sdr = 1.5 µm [29-33]. On the basis of the literature a surface can be viewed as 

rough when the hybrid value is >2 µm. It is medium rough if that given value falls 

between 1 µm and 2 µm, and smooth, or at least mildly rough if <1 µm [34]. 

Wennerberg and colleagues showed with animal experiments the 1.5 µm hybrid 

value is the most favorable and associated with cases of the greatest 

osseointegration [35]. Lazzara and colleagues showed this and Ivanov was doing 

human experiments supported with results involving human volunteer subjects 

[36, 37]. 

It’s possible to characterize the quality of a surface with bone-implant contact 

(BIC) values, which show what percentage of an implant surface comes into direct 

contact with bone. After decalcification, with a histology-morphology 

examination of a tissue slice it is possible to tabulate the percentage ratio of bone-

implant connection (BIC) [38]. For sufficient bone integration the lower jaw BIC 

average is 40.7%, while in the case of the upper jaw this average is only 37.2% 

[39]. 
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The percentage ratio of bone-implant contact is not easy to calculate. Results 

recorded as obtained in various journals in the literature vary widely across a very 

broad scale. They depend on the species of experimental animal, the type of bone 

the implant was attached to (femur, tibia, jaw), the healing time, and the surface 

treatment applied to the implant. 

Hansson devised a mathematical model describing interdependences between the 

measure of osseointegration and the surface roughness of an implant. Surfaces of 

commercially obtainable implants serve as the basis of the model. He established 

that hollows of depth 1.5 µm and diameter of 3 to 5 µm in the implant surface are 

advantageous for integration with bone [40]. 

1.2 Surface-Modification Methods 

Current machining methods give dental implants unique geometries. Leading 

manufacturers most often create implants with diameters from 1 to 4.2 mm and 

lengths from 2 to 14 mm [41]. The geometric structure and surface-preparation of 

implants plays a central role in primary and secondary stabilization [42]. The most 

common methods for modifying surface morphology are chemical etching [43-

45], sand-blasting [46], these two in combination [47], grit blasting [48], surface 

melting by laser [49], and anodic oxidation [50, 51]. 

A freshly machined surface is often used as a reference in experiments for mutual 

comparison. Literature discussing machined surfaces describes massive bone 

formation around the implants, which results in a stable connection between 

implant and bone tissue [52]. Anomalies on the machined surface go to a depth of 

5 µm in profile. On the surface at a spacing of 5-8 µm, slightly unevenly arranged 

but roughly parallel grooves can be observed. The separation and depth of the 

grooves was equal. With the help of a profileometer the three most characteristic 

pieces of data were Sa = 0.836 µm, Scx = 8.38 µm and Sdr = 1.3 µm [35]. In the 

literature there are reports of quite wide intervals (between grooves) on the 

machined surface with Ra, in the range 0.08 – 4.7 µm [53]. 

The BIC ranges between 39 and 47% according to Ericsson and colleagues, as 

opposed to around 50% according to Wennerbeg et al. [54, 55]. In animal-

experiment studies the value has been observed at 62% after 3 months [56]. One 

drawback is that in several places the surface is contaminated by noticeable 

machining fragments. 

On the basis of the profilometer studies by Wennerberg et al (Sa = 1.9 µm; 

Scx = 12.3 µm; Sdr = 1.42 µm) the parameters of the acid-treated surface closely 

approach the supposedly ideal values [35]. The results of animal studies support 

this, showing a BIC value of 88% after three months of healing [56]. According to 

Baker et al. animal experiments in the case of acid-treated surfaces bone adhesion 

starts earlier than with other treated surfaces [57]. Human trials carried out by 

Trisi and colleagues showed that in case of acid-treated surfaces the BIC 
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percentage value resembles that of freshly-machined surfaces [58]. They regard 

the payoff from this method to be the chance to load the implant early on. The 

other big benefit in each acid-treating process is a high level of surface 

cleanliness, in that the acid removes the outermost layer of the surface. 

In the case of sand-blasting the surface can be blasted with particles of different 

sizes (25, 75, 250 µm). With animal studies Wennerberg and colleagues showed 

that smaller particles resulted better osseointegration than larger, and suggested 

using 75 µm sized granules. According to data obtained with the help of an optical 

profilometer, granules of the size of 25 µm produced a surface characterized by Sa 

values = 1.13 µm; Scx = 9.78 µm; and Sdr = 1.39 µm, while the surface produced 

by 75 µm particle blasting has the following values Sa = 1.38 µm; Scx = 11.62 

µm; Sdr = 1.47 µm (although they approach the ideal parameters very closely). In 

the case of the 250 µm particles the values were Sa = 2.15 µm; Scx = 13.54 µm; 

Sdr = 1.79 µm. The BIC was 62/62% (the mandible/maxilla ratio). During animal-

experiment studies this value rose after 3 months to 71% [14, 35, 56, 59]. The 

disadvantage of the process is that the material used for the sand-blasting can 

contaminate the surface, and because of this the chemical features of the implant 

can be unacceptable. 

Buser et al examined surface treatments of the titanium used as dental-implant 

base material. The samples were treated with chemical etching, electro-polishing, 

or coated with hydroxyapatite. They established that surfaces treated with 

chemical etching and hydoxyapatite underwent more bone-integration than the 

samples with electro-polished surfaces [60]. 

The development of nanotechnology, analyzing the possibilities of implants with 

nanostructured surfaces, is at the center of numerous current research-and-

development projects. Christenson and colleagues looked at organized 

nanostructures falling into the 1 to 100 nm size range. The ”nano” expression can 

cover crystal structures of material, extracted or built out from the surface layer 

[61]. 

Carlos et al completed studies on surface treatments to dental implants made of 

Grade 4 titanium. They changed the surface morphology with sand-blasting, 

chemical etching, and anodic oxidation. They prepared SEM images of the surface 

and then established the level of surface roughness with confocal microscopy. 

They tested each surface for wettability with contact angle measurements. The 

surface-modified implants were inserted into live rat tibias and then after 

12 weeks removed. They established that chemical etching created a 

homogeneous surface. Surfaces treated with anodic oxidation measured the lowest 

while at the same time those implants had the highest screw-out force values [62]. 

Luiz’s research group demonstrated the surface modification and testing 

possibilities of titanium as a raw material for dental implants. In their work they 

compared surfaces modified by mechanical polishing, electro-polishing, nano-

hydroxyapatite, and sprinkling with titanium dioxide and fluoride granules. With 
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an atomic force microscope, a SEM and an X-ray photoelectron spectroscope the 

surface structures of the samples were tested. Experiments carried out on rats 

(time period: 4 weeks) measured the differently surface-treated implants with pull-

out tests. It was observed that implants coated with hydroxyapatite and modified 

with fluoride had better osseointegration than polished-surface implants. They 

established that in the several weeks after insertion the nanostructure assisted 

osseointegration [63]. 

In the research work of Vinzenz usable surface-treatment techniques for titanium 

implants are demonstrated. Furthermore he discusses several coating techniques, 

giving special attention to anodic plasma-chemical treatment of surfaces. Using 

scanning electron microscopy, X-ray spectroscopy, Raman spectroscopy, and 

laser-surface-roughness measurements he examined surfaces created by coating. 

With the results of cell and animal-experimentation examinations he showed that 

from the point of view of osseointegration the anodic plasma-chemical treated 

surface performed better than when untreated [64]. 

Research by Göransson introduces several surface-treatment and examination 

possibilities for dental implants made of titanium. In the experimental work 

samples with surfaces modified in 12 different ways were examined. He tested 

measures of osseointegration using cell experiments, animal experiment models, 

and human experiments. His result was that the surface structure did not 

significantly influence osseointegration and further that bioactive coatings also 

failed to produce significant results aiding improved osseointegration [65]. 

1.3 Methods of Examining the Surface 

1.3.1 In Vitro Methods 

It’s usual to categorize methods of examination on the basis of which properties of 

surface morphology are tested by which method. This creates the primary division 

into chemical methods of analysis (X-ray Photoelectron Spectroscopy, Auger 

Electron Spectroscopy, Secondary Ion Mass Spectroscopy) and physical methods 

of analysis (Atomic Force Microscopy, Scanning Electron Microscopy). 

1.3.2 In Vivo Methods 

An often-used method for quantitative evaluation of the bone-implant contact’s 

load-bearing capacity and the effects of the implant’s geometrical characteristics 

(disregarding some unusual biological and chemical consequences of bone 

integration) is the pull-out test [66, 67]. After the appropriate healing time has 

elapsed (in the literature 6 weeks, or else 3 or 6 months) with the help of a special 

instrument the already bone-embedded implant is removed from the bone and the 

torque necessary to do this is recorded [68, 69]. Values shown by the instrument 

can be checked against an already-derived table of standard results to obtain a 

Ncm value. Removal torque is a very widely used method for animal studies. 
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In addition to studying implant morphology and with the above progress in mind, 

we decided to investigate how the nanostructure surface influences the 

proliferation of osteoblasts. Micro- and nano-morphological analyses revealed 

some correlations, including the potential biological, biochemical and 

physiological effects of surface roughness on bone cells adjacent to the implants. 

In these experiments titanium Grade 1 material was used. 

2 Materials and Methods 

For these experiments titanium Grade 1 (ISO5832 Pt.2 Grade I.) supplied thanks 

to the PROTETIM® company was made use of, machined discs of diameter 5 mm 

and thickness 2 mm. The surfaces of the discs were first cleaned with  ultrasonic 

equipment in pure ethanol. The chemical modification of the surfaces of the discs 

chemical treatment involved passivation in sodium-hydroxide + H2O2, oxalic acid, 

nitric acid solution, electropolishing, sandblasting was performed with Al2O3 

particles of 250 μm, along with laser modification (Pulsed Nd/Yag laser (Kvant 1) 

with a 1 J/pulse as the low-pulse energy laser, and the 3 J/pulse was used for 

surface treating as high-pulse energy laser). In these experiments, the surface-

treated samples were compared with the machined discs as reference standards. 

The machined surfaces of the discs were examined and images taken before their 

various treatments, first with a stereomicroscope (type: Olympus SZX 16), then 

with a scanning electron microscope (type: Philips XL 30). The discs’ surface 

roughness values were compared quantitatively and qualitatively using a confocal 

microscope (type: Alicona Infinite Focus). Microscopic measures of the discs’ 

nanostructures were taken (type: Veeco® diInnovaTM). Comparisons were carried 

out to measure contact angles and therefore hydrophilic or hydrophobic 

characteristics of the surfaces of the discs (equipment type: Rame-hart). The 

measurements were taken at 23°C temperature and 50% humidity. The device 

released 5-5 droplets (5 µl/droplet). The tests all used distilled water. Following 

the drop test (by 5 seconds) images were taken and the contact angles were 

measured using image-analysis software. 

2.1 Experiments Done with Cells 

Before the cell test the discs were placed for 20 minutes into tripsin solution, and 

for 20 minutes in alcohol, then sterilized in an autoclave. In twenty-four dishes, 

variously treated discs had NIH3T3 fibroblast and MC3T3 osteoblast cells added 

to their surfaces. For two days these cells were cultured on the disc surfaces in a 

cell-culturing medium (DMEM + 10% FBS). At the end of the incubation period 

discs with identical surface treatments are divided up into separate groups. 
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2.2 Cell-Counting 

Cells dissolved from the disc surfaces in tripsin solution were counted using a 

Bürker camera. After cell-counting, cells were dissolved in a low-temperature  

200 μl Triton (30 mM HEPES, 100 mM NaCl, 1 mM EGTA, 20 mM NaF, 1% 

Triton X-100, 1 mM PMSF, 20 μl/ml protease inhibitory cocktail, 1 mM Na3VO4) 

and then with the help of a spectrometer by the Bradford method, the 

concentration of dissolved protein (Bio-Rad Laboratories) was measured. Cell-

counting was completed with a CyQuant DNA proliferation test. After culturing 

for two weeks CyQuant dye was added to the cells, coloring the DNA of each cell. 

After 5 minutes incubation the quantity of DNA was read off with a plate reader. 

Table 1 below lists the surface-treatment types and test methods used. 

Table 1 

Surface treatments and testing possibilities for Grade 1 titanium 

Type of surface treatment Tests Results 

Machined  

- stereomicroscope 

- scanning electron microscope 

- confocal microscope 

 - contact-angle measurement 

- cell testing (MC3T3) 

- surface morphology 

- surface roughness 

- wettability 

- cell-proliferation 

Machined + chemical etched 

Machined + electro-polished 

Machined + sandblasted (Al2O3)  

Machined + 1 Joule impulse-energy 

laser surface modified 

Machined + 3 Joule impulse-energy 

laser surface modified 

3 Results 

In the illustrations below stereomicroscope images of samples are shown (Fig. 2). 

 

Figure 2 

Stereo-microscope images of titanium disks machined (a), chemical etched (b), electro-polished (c), 

Al2O3 sandblasted (d), 1 J laser surface modified (e), and 3 J laser surface modified 
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Machined: 3-10 µm width concentric grooves, running parallel to each other, 

irregular microgrooves. The depth and spacing of the furrows mostly regular. At 

numerous places on the surface contamination and machine-turning residue 

observable. 

Machined + chemical etched: 1-3 µm width regularly arranged grooves. The 

primary leaf-form in the grooves run parallel to each other, but with grooves in the 

adjacent formations nearly perpendicular. This indicates that the groove patterning 

is not due to the original machining, but is caused by the subsequent surface 

modification. The leaf-shaped primary structure, about 20 to 25 µm in diameter, is 

the basic unit of the surface. 

Machined + electro-polished: smooth surface, although some traces of grooving 

from the machined surface are still visible. 

Machined + sandblasted (Al2O3): irregularly-shaped, sharp-contoured raised areas, 

showing similar geometric depths. 

Machined + surface modified with 1 Joule impulse energy laser: 50-70 µm width 

grooves, regular waves on the surface. The surface is regular and smooth, insofar 

as microgrooving is smoothed down. 

Machined + surface modified with 3 Joule impulse energy laser: 20-50 µm width 

furrows and 10-20 µm diameter droplets. An orderly spaced, wave like primary 

structure can be observed with a distance of 30-60 µm from each other. The wave 

crest projections show 30 to 50 µm. The so-called secondary structure is pear 

shaped having a size of 10-15 µm. 

On the SEM images 3-10 µm width grooves can be seen on the surface of the 

machined sample (Figure 3). 

 

Figure 3 

Scanning electron microscope images (magnification 1000×) machined (a), chemical etched (b), 

electropolished (c), Al2O3 sandblasted (d), 1 J laser surface modified (e), and 3 J laser surface modified 
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After chemical etching there were ordered structure on the surface of the disk, 

parallel – though oriented in the original direction of the surface machining – 

grooves separated by intervals of about 1-3 µm. After electropolishing, a smooth 

uniform surface – absent the concentric grooving seen on the freshly machined 

samples – was apparent. The surface bombarded with Al2O3 sandblasting shows 

irregular roughly granular zones. The effect of 1 Joule impulse energy laser 

surface modification is 50-70 µm wide, regular, wave-like grooving. Whereas 3 

Joule impulse energy laser surface modification has the effect of creating 20-50 

µm width grooves on the surface, in which solidified droplets of diameter 10-20 

µm are visible. 

With a confocal microscope of 3-3 measurements the average surface roughness 

(Ra) was established. Measurements were taken at 1500 µm intervals. The 

different surface morphologies were compared in this case with the machined 

sample as a reference. The results of these measurements are brought together in 

Figure 4 below. 

 

Figure 4 

Measured values for the surface roughness (Ra) of the discs 

The surface roughness of the sample treated with electropolishing was the lowest 

(Ra = 0.6 ± 0.2 µm), while the highest value (Ra = 3.8 ± 0.4 µm) was for the discs 

treated with 3 Joule impulse laser modification. The chemically etched discs’ 

surface roughness (Ra = 1.0 ± 0.1 µm) was slightly less than that of the freshly 

machined sample (Ra = 1.1 ± 0.1 µm). The titanium discs sandblasted with Al2O3 

particles had a roughness of Ra = 1.6 ± 0.1 µm. The 1 Joule impulse energy laser 

modified surface had a roughness level (Ra = 3.2 ± 0.2 µm) only slightly less than 

that created by the 3 Joule laser. 
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In the case of the measurements by the atomic-force microscope the measured 

surface was 400 µm2. The results of the measurements are collected together in 

Figure 5 below. 

 

Figure 5 

Titanium Grade 1 discs measurement results: machined (a), etched (b), electropolished (c), Al2O3 

sandblasted (d) 

The Ra roughness value for various treatments to the surface of the disc was as 

follows: machined 0.62 µm; chemically etched 0.08µm; electropolished 0.04 µm; 

Al2O3 sandblasting 0.27 µm. Samples treated with laser surface-modification did 

not get subjected to AFM measurements. This is accounted for by physical 

limitations on the measurement method (extremely large Ra surface roughness, 

which goes beyond the measurement capacity of the instruments – NB: both the 

AFM and confocal microscope use methods which establish surface roughness 

values, but there are variations in the results which deviate from the surfaces 

examined). On the basis of the AFM measurements it was established that the 

value of surface roughness Ra was lowest for the electropolished discs and highest 

for the machined samples. 

Contact angles were established, with the Al2O3 sandblasting (60 ± 10°) and 

1 Joule impulse energy laser surface modification (51 ± 3°) results close together 

within margins of error. The electropolished sample surface had the lowest value 

(27 ± 4°), while the 3 Joule impulse energy laser treatment gave the highest 

contact-angle values (102 ± 4°). 

The following quantitative and qualitative characteristics were subjected to cell 

testing. 
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3.1 Cell-Counting and Protein Concentration Measurement 

Results of cell-counting and protein concentration in both the fibroblast and the 

osteoblast cases showed increased cell proliferation on the roughened surfaces 

when compared with the machined surface. Tables 2 and 3 present the measured 

results as averages ± standard deviation. Numbers in the columns are relative 

values which show what the cell count or protein concentration was on the given 

surface to the value for the machined surface – used widely in the literature as the 

reference surface. 

Table 2 

Changes of cell numbers and protein concentration of NIH3T3 fibroblast cells measured on various 

modified surfaces compared to the group with a machined surface 

Sample Cell number Prot. Conc. 

Machined  1 1 

Machined + chemical etched 1.85 ± 0.15 1.34 ± 0.28 

Machined + electropolished 3.24 ± 0.12 2.53 ± 0.35 

Machined + sandblasted (Al2O3)  5.19 ± 0.59 3.18 ± 0.41 

Machined + 1 Joule impulse energy laser 

surface modified 
3.17 ± 0.33 2.66 ± 0.26 

Machined + 3 Joule impulse energy laser 

surface modified 
2.83 ± 0.36 2.31 ± 0.15 

Table 3 

Changes of cell numbers and protein concentration of MC3T3 osteoblast cells measured on various 

modified surfaces compared to the group with a machined surface 

Sample Cell number Prot. Conc. 

Machined  1 1 

Machined + chemical etching   1.55 ± 0.16 1.40 ± 0.21 

Machined + electropolished  2.15 ± 0.32 2.32 ± 0.41 

Machined + sandblasted (Al2O3)   3.25 ± 0.33 3.05 ± 0.45 

Machined + 1 Joule impulse energy laser 

surface modification   
3.25 ± 0.22 2.40 ± 0.37 

Machined + 3 Joule impulse energy laser 

surface modification  
3.83 ± 0.29 3.41 ± 0.41 

Conclusions 

In the experiments 5 mm diameter, 2 mm thickness discs machined from Grade 1 

titanium were used. The chemical treatment to the surface of the discs involved 

passivation in sodium-hydroxide + H2O2, oxalic acid, nitric acid solution, 

electropolishing, Al2O3 sandblasting, as well as laser pulse surface modification 

(Pulsed Nd/Yag laser (Kvant 1) with a 1 J/pulse is the low pulse energy laser, and 
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the 3 J/pulse was used for surface treating as high pulse energy laser). Images 

were taken of the discs using a stereomicroscope and a scanning electron 

microscope. On the scanning electron microscope images 3-10 µm width grooving 

can be seen on the freshly-machined sample surfaces. 

After chemical etching, structures appear on the surface of the discs parallel to 

each other – but these follow the orientation of the structures on the machined 

surface, 1-3 µm grooves. 

After electropolishing we obtain a smooth surface, without the concentric grooves 

visible on the machined samples. 

The Al2O3 sandblasted surfaces showed irregular, roughly granular zones. The 

effect of the 1 Joule impulse energy laser surface modification was 50-70 µm 

width, regular, wave-shaped surface grooving. Whereas the effect of 3 Joule 

impulse energy laser surface modification was to create 20-50 µm width grooves 

on the surface, in which solidified droplets of diameter 10-20 µm were visible. 

During examination with a confocal microscope, it was established that the 

surface roughness value of the electropolished samples (Ra = 0.6 ± 0.2 µm) was 

the lowest, while the highest roughness values (Ra = 3.8 ± 0.4 µm) were produced 

on 3 Joule impulse energy laser modified discs. The roughness value for those 

discs treated with chemically etching (Ra = 1.0 ± 0.1 µm) was slightly less than 

that for the freshly machined samples. The surface roughness of the titanium discs 

treated with Al2O3 sandblasting was Ra = 1.6 ± 0.1 µm. Roughness values for 

discs surface-modified by the 1 Joule pulsed energy laser (Ra = 3.2 ± 0.2 µm) 

deviated only slightly from the 3 Joule laser value. 

AFM measurements of the samples were carried out. The machined discs had 

surface roughness values of 0.62 µm, the chemically etched 0.08 µm, the 

electropolished 0.04 µm, the Al2O3 sandblasted samples 0.27 µm. It was not 

possible to take accurate AFM measurements of the laser surface modified 

surfaces. 

Contact angles were established for wetting of the Al2O3 sandblasted surfaces 

(60 ± 10°), the 1 Joule pulse energy laser modified surfaces (51 ± 3°), values that 

were very close together. On the electropolished surfaces these were measured 

with the lowest values (27 ± 4°), while the highest contact-angle values (102 ± 4°) 

appeared on the 3 Joule impulse-energy laser modified surfaces. Quantitative and 

qualitative cell-test characterizations of the surfaces were made. In the case of 

tests with fibroblasts the greatest degree of cell proliferation was the surfaces 

sandblasted with Al2O3 particles. With the osteoblast tests the highest levels of cell 

activity were for the two types of laser-modified surface. 
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