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Abstract: We study aspects of heterotic/F-theory duality for compactifications with

Abelian gauge symmetries. We consider F-theory on general Calabi-Yau manifolds with

a rank one Mordell-Weil group of rational sections. By rigorously performing the stable

degeneration limit in a class of toric models, we derive both the Calabi-Yau geometry as

well as the spectral cover describing the vector bundle in the heterotic dual theory. We

carefully investigate the spectral cover employing the group law on the elliptic curve in

the heterotic theory. We find in explicit examples that there are three different classes of

heterotic duals that have U(1) factors in their low energy effective theories: split spectral

covers describing bundles with S
`

UpmqˆUp1q
˘

structure group, spectral covers containing

torsional sections that seem to give rise to bundles with SUpmq ˆ Zk structure group and

bundles with purely non-Abelian structure groups having a centralizer in E8 containing

a U(1) factor. In the former two cases, it is required that the elliptic fibration on the

heterotic side has a non-trivial Mordell-Weil group. While the number of geometrically

massless U(1)’s is determined entirely by geometry on the F-theory side, on the heterotic

side the correct number of U(1)’s is found by taking into account a Stückelberg mechanism

in the lower-dimensional effective theory. In geometry, this corresponds to the condition

that sections in the two half K3 surfaces that arise in the stable degeneration limit of

F-theory can be glued together globally.
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1 Introduction and summary of results

The study of effective theories of string theory in lower dimensions with minimal super-

symmetry are both of conceptual and phenomenological relevance. Two very prominent

avenues to their construction are Calabi-Yau compactifications of the E8 ˆ E8 heterotic

string and of F-theory, respectively. The defining data of the two compactifications are

seemingly very different. While a compactification to 10 ´ 2n dimensions is defined in the

heterotic string by a complex n-dimensional Calabi-Yau manifold Zn and a holomorphic,

semi-stable vector bundle V [1, 2], in F-theory one needs to specify a complex pn ` 1q-

dimensional elliptically-fibered Calabi-Yau manifold Xn`1 [3–5]. For an elliptic K3-fibered

Xn`1 and an elliptically fibered Zn, however, both formulations of compactifications of

string theory are physically equivalent. The defining data of both sides are related to each

other by heterotic/F-theory duality [3–5]. Most notably, this duality allows making state-

ments about the heterotic vector bundle V in terms of the controllable geometry of the

Calabi-Yau manifold Xn`1 on the F-theory side. Studying the structure of the heterotic

vector bundle V is crucial for understanding the gauge theory sector of the resulting effec-

tive theories. In this note, we present key steps towards developing the geometrical duality

map between heterotic and F-theory compactifications with Abelian gauge symmetries in

their effective theories.

Since the advent of F-theory, the matching of gauge symmetry and the matter content

in the effective theories has been studied in heterotic/F-theory duality [3–5]. Mathemat-

ically, the duality astonishingly allows to use the data of singular Calabi-Yau manifolds

Xn`1 in F-theory to efficiently construct vector bundles V on the heterotic side, which

is typically very challenging. The duality can be precisely formulated in the so-called

stable degeneration limit of Xn`1 [6], in which its K3-fibration degenerates into two half

K3-fibrations X˘n`1,

Xn`1 Ñ X`n`1 YZn X
´
n`1 , (1.1)

that intersect in the heterotic Calabi-Yau manifold, X`n`1 XX´n`1 “ Zn. It can be shown

that X˘n`1 naturally encode the heterotic vector bundle V on elliptically fibered Calabi-Yau

manifolds Zn [7]. The most concrete map between the data of Xn`1 in stable degeneration
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and the heterotic side is realized if V is described by a spectral cover employing the Fourier-

Mukai transform [7, 8] (for more details see e.g. [9] and references therein). Heterotic/F-

theory duality has been systematically applied using toric geometry for the construction of

vector bundles V with non-Abelian structure groups described both via spectral covers and

half K3 fibrations, see e.g. [10, 11] for representative works. More recently, heterotic/F-

theory duality has been used to study the geometric constraints on both sides of the

duality in four-dimensional compactifications and to characterize the arising low-energy

physics [12], see also [13]. Furthermore, computations of both vector bundle and M5-

brane superpotentials could be performed by calculation of the F-theory superpotential

using powerful techniques from mirror symmetry [14–16]. In addition, the heterotic/F-

theory duality has been recently explored for studies of moduli-dependent prefactor of

M5-instanton corrections to the superpotential in F-theory compactifications [17, 18]. The

focus of all these works has been on vector bundles V with non-Abelian structure groups,

see however [19, 20] for first works on aspects of heterotic/F-theory duality with Up1q’s.

In this work, we will apply the simple and unifying description on the F-theory side

in terms of elliptically fibered Calabi-Yau manifolds Xn`1 to study explicitly, using stable

degeneration, the structure of spectral covers yielding heterotic vector bundles that give rise

to Up1q gauge symmetry in the lower-dimensional effective theory, continuing the analysis

explained in the 2010 talk [21].1

Abelian gauge symmetries are desired ingredients for controlling the phenomenology

both of extensions of the standard model as well as of GUT theories. Recently, there has

been tremendous progress on the construction of F-theory compactifications with Abelian

gauge symmetries based on the improved understanding of elliptically fibered Calabi-Yau

manifold Xn`1 with higher rank Mordell-Weil group of rational sections, see the represen-

tative works [22–31]. In contrast, it has been long known that Abelian gauge symmetries

in the heterotic theory can for example be constructed by considering a background bundle

V with line bundle components [1]. The setup we are studying in this work is the duality

map between the concrete and known geometry of the Calabi-Yau manifold Xn`1 with a

rank one Mordell-Weil group in [22] on the F-theory side and the data of the Calabi-Yau

manifold Zn and the vector bundle V defining the dual heterotic compactification. We will

demonstrate, at the hand of a number of concrete examples, the utility of the F-theory

Calabi-Yau manifold Xn`1 for the construction of vector bundles with non-simply con-

nected structure groups that arise naturally in this duality. In particular, the F-theory

side will guide us to the physical interpretation of less familiar or novel structures in the

heterotic vector bundle.

There are numerous key advancements in this direction presented in this work:

• We rigorously perform the stable degeneration limit of a class of F-theory Calabi-Yau

manifolds Xn`1 with Up1q Abelian gauge symmetry using toric geometry, applying

and extending the techniques of [32]. We explicitly extract the data of the two half-K3

surfaces inside X˘n`1, the spectral covers and the heterotic Calabi-Yau manifold Zn.

We point out the non-commutativity of the stable degeneration limit and birational

1We have recently learned that A. Braun and S. Schäfer-Nameki have been working on similar techniques.
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maps, such as the one to the Weierstrass model. The stable degeneration limit we

perform, which we denote as “toric stable degeneration”, preserves the structure

of the Mordell-Weil group of rational sections before and after the limit, which is,

in contrast, obscured in the stable degeneration limit performed in the Weierstrass

model. We apply our general techniques to Calabi-Yau manifolds with elliptic fiber

in Bl1P2p1, 1, 2q, which yield one Up1q in F-theory [22].

• We illuminate the systematics in the mapping under heterotic/F-theory duality be-

tween F-theory with a Mordell-Weil group and heterotic vector bundles with non-

simply connected structure groups leading to Up1q’s in their effective theories. We

find that a single type of F-theory geometry Xn`1 can be dual to a whole range

of different phenomena in the heterotic string, at the hand of numerous concrete

examples. We find three different classes of examples of how a Up1q gauge group

is obtained in the heterotic string: one class of examples has a split spectral cover,

which is a well-known ingredient for obtaining Up1q gauge groups in the heterotic

literature starting with [33] and the F-theory literature, see e.g. [34–36]; another

class of models have a spectral cover containing a torsional section of the heterotic

Calabi-Yau manifold Zn, where duality suggests that this should describe zero-size

instantons of discrete holonomy, as considered in [37]; in a last set of examples, the

Up1q arises as the commutant inside E8 of vector bundles with purely non-Abelian

structure groups. We analyze the emerging spectral covers by explicit computations

in the group law on the elliptic curve in Zn. In the first two classes of examples,

it is crucial that the heterotic elliptic fibration Zn exhibits rational sections, as also

found in [38]. In addition, in certain examples, the Up1q is only visible in the half K3

fibration (and in Zn), but not in the spectral cover.

• Whereas the number of massless Up1q’s on the F-theory side equals the Mordell-Weil

rank of Xn`1, it is on the heterotic side a mixture of geometry and effective field

theory effects: while the analysis of the spectral cover can be performed already in

8D, in 6D and lower dimensions Up1q’s can be lifted from the massless spectrum by

a Stückelberg effect, i.e. gaugings of axions [1]. We understand explicitly in all three

classes of examples how these gaugings arise and what is the remaining number of

massless Up1q fields.

We note that although our analysis is performed in 8D and 6D, it is equally applicable also

to heterotic/F-theory duality for compactifications to 4D.

This paper is organized in the following way: in section 2, we provide a brief review of

the key points of heterotic/F-theory duality as well as a discussion of the new insights gained

in this work into spectral covers and half K3-fibrations for vector bundles with non-simply

connected structure groups. We review and discuss heterotic/F-theory duality in 8D and

6D, the spectral cover construction for SUpNq bundles, specializations thereof giving rise to

Up1q factors in the heterotic string and the Stückelberg mechanism rendering certain Up1q

gauge fields massive. Section 3 contains the toric description of a class of F-theory models

Xn`1 for which we describe a toric stable degeneration limit. We specialize to the toric
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fiber Bl1Pp1,1,2q and obtain the half K3-fibrations as well as the dual heterotic geometry and

spectral cover polynomial. In section 4, we present selected examples of F-theory/heterotic

dual compactifications. We illustrate the three different classes of examples with heterotic

vector bundles of structure groups S
`

Upnq ˆ Up1q
˘

and S
`

Upnq ˆ Zk
˘

, as well as purely

non-Abelian ones having a centralizer in E8 with one Up1q factor. There we also illustrate

the utility of the Stückelberg mechanism to correctly match the number of geometrically

massless Up1q’s on both sides of the duality. In section 5, we conclude and discuss possi-

bilities for future works. This work has four appendices: we present the birational map of

the quartic in Pp1,1,2q to Tate and Weierstrass form in appendix A; appendix B contains

examples with no Up1q factor, consistently reproducing [4]; in appendix C we state the

condition for the existence of two independent rational sections and appendix D illustrates

explicitly the non-commutativity of the stable degeneration limit and the birational map

to Weierstrass form.

2 Heterotic/F-theory duality and U(1)-factors

The aim of this section is two-fold: on the one hand, we review those aspects of heterotic/F-

theory duality in 8D and 6D that are relevant for the analyses performed in this work. On

the other hand, we point out subtleties and new insights into heterotic/F-theory dual-

ity with Abelian Up1q factors. In particular, we discuss in detail split spectral covers

for heterotic vector bundles with non-simply connected gauge groups and the heterotic

Stückelberg mechanism.

In section 2.1, we discuss the fundamental duality in 8D, the standard stable degen-

eration limit in Weierstrass form and the principal matching of gauge groups and moduli.

There, we also discuss a subtlety in performing the stable degeneration limit of F-theory

models with Up1q factors due to the non-commutativity of this limit with the map to the

Weierstrass model. Section 2.2 contains a discussion of the spectral cover construction for

SUpNq bundles as well as of split spectral covers giving rise to S
`

UpN ´ 1q ˆ Up1q
˘

and

S
`

UpN ´ 1q ˆ Zk
˘

bundles. In section 2.3 we briefly review heterotic/F-theory duality in

6D, before we discuss the Stückelberg effect in the effective theory of heterotic compacti-

fications with Up1q bundles as well as the relation to gluing condition of rational sections

in section 2.4.

In the review part, we mainly follow [7, 9, 39], to which we refer for further details.

2.1 Heterotic/F-theory duality in 8D

The basic statement of heterotic/F-theory duality is that the heterotic string (in the fol-

lowing, we always concentrate on the E8 ˆ E8 string) compactified on a torus, which we

denote by Z1, is equivalent to F-theory compactified on an elliptically fibered K3 surface

X2. The first evidence is that the moduli spaces M of these two theories coincide and are

parametrized by

M “ SOp18, 2,Zq
H

SOp18, 2,Rq
L`

SOp18q ˆ SOp2q
˘

ˆ R`. (2.1)
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From a heterotic perspective this is just the parametrization of the complex and Kähler

structure of the torus Z1 as well as of the 24 Wilson lines. On the F-theory side it corre-

sponds to the moduli space of algebraic K3 surfaces X2 with Picard number two. The last

factor corresponds to the vacuum expectation value of the dilaton and the size of the base

P1 of X2, respectively.

Lower-dimensional dualities are obtained, applying the adiabatic argument [40], by

fibering the eight-dimensional duality over a base manifold Bn´1 of complex dimension

n´ 1 that is common to both theories of the duality.

2.1.1 The standard stable degeneration limit

In order to match the moduli on both sides of the duality, the K3 surface X2 has to undergo

the so-called stable degeneration limit. In this limit it splits into two half K3 surfaces X`2 ,

X´2 as

X2 Ñ X`2 YZ1 X
´
2 . (2.2)

Each of these are an elliptic fibration π˘ : X˘2 ÝÑ P1 over a P1. These two P1’s intersect

in precisely one point so that the two half K3 surfaces intersect in a common elliptic fiber

which is identified with the heterotic elliptic curve, X`2 XX
´
2 “ Z1. On the heterotic side,

the stable degeneration limit corresponds to the large elliptic fiber limit of Z1.

Matching the gauge groups. The F-theory gauge group is given by the singularities of

the elliptic fibration of X2, determining the non-Abelian part G, and its rational sections,

which correspond to Abelian gauge fields [3, 5, 41]. In stable degeneration the non-Abelian

gauge group of F-theory is distributed into the two half K3 surfaces X˘2 and matched with

the heterotic side as follows.

It is a well-known fact that the homology lattice of a half K3 surface X˘2 is given in

general by

H2pX
˘
2 ,Zq “ Γ8 ‘ U (2.3)

Here, U contains the classes of the elliptic fiber as well as of the zero section. Γ8 equals

the root lattice of E8 and splits into a direct sum of two contributions [42]: the first

contribution is given by the Mordell-Weil group of the rational elliptic surface while the

second contribution is given by a sub-lattice which forms, for the half K3 surfaces X˘2 at

hand, the root-lattice of the part G˘ of the non-Abelian F-theory gauge group G “ G`ˆG´
that is of ADE type. In the F-theory limit all fiber components are shrunken to zero size

and the half K3 surface develops a singularity of type G˘. The possible ADE-singularities

in the case of complex surfaces have been classified by Kodaira [43]. Thus, one can always

read off the corresponding gauge group from the order of vanishings of f, g and ∆ once the

half K3 has been brought into affine Weierstrass normal form

y2 “ x3 ` fxz4 ` gz6, ∆ “ 4f3 ` 27g2, (2.4)

with f and g in Op4q and Op6q of P1, respectively. For convenience of the reader, we

reproduce Kodaira’s classification in table 1.
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order pfq order pgq order p∆q singularity

ě 0 ě 0 0 none

0 0 n An´1

ě 1 1 2 none

1 ě 2 3 A1

ě 2 2 4 A2

2 ě 3 n` 6 Dn`4

ě 2 3 n` 6 Dn`4

ě 3 4 8 E6

3 ě 5 9 E7

ě 4 5 10 E8

Table 1. The Kodaira classification of singular fibers. Here f and g are the coefficients of the

Weierstrass normal form, ∆ is the discriminant as defined in (2.4) and order refers to their order

of vanishing at a particular zero.

In contrast, the gauge group on the heterotic side is encoded in two vector bundles V1,

V2 that generically carry the structure group E8. Their respective commutants inside the

two ten-dimensional E8 gauge groups of the heterotic string are to be identified with the

F-theory gauge group. As observed in [7], the moduli space of semi-stable E8-bundles on

an elliptic curve E corresponds to the complex structure moduli space of a half K3 surface

S whose anti-canonical class is given by E. Furthermore, if S has an ADE singularity of

type G̃˘ then the structure group of V1, V2 is reduced to the centralizer H˘ of G̃˘ within

E8, respectively. In heterotic/F-theory duality, a matching of the gauge group is then

established by identifying S ” X˘2 yielding G̃˘ ” G˘.

Notice that the full eight-dimensional gauge group is given by GˆUp1q16´rkpGqˆUp1q4.

Here, the last factor accounts for the reduction of the metric and the Kalb Ramond B-field

along the two one-cycles of the torus in the heterotic string. From the F-theory perspective,

all Up1q factors arise from the reduction of the C3 field along those 2-forms in the full K3

surface X2 that are orthogonal to the zero section and the elliptic fiber. In particular, the

Up1q16´rkpGq arises from the generators of the Mordell-Weil group of the half K3 surfaces.

For a derivation in Type IIB string theory, see the recent work [44].

Matching complex structure and bundle moduli. In this section, we discuss how

the heterotic moduli can be recovered from the data of the F-theory K3 surface [4, 45].

Here we restrict the discussion to the moduli of the heterotic torus Z1 and the vector

bundle (i.e. Wilson line) moduli, ignoring the heterotic dilaton modulus.

So far, this discussion has been restricted to the case that the elliptic fibration of the K3

surface is described by a Weierstrass model. In this case, the standard stable degeneration

procedure applies. Given the Weierstrass form (2.4) for X2 with f , g sections of Op8q and

Op12q on P1, respectively, we can expand these degree eight and twelve polynomials in the

affine P1-coordinate u as

f “
8
ÿ

i“0

fiu
i, g “

12
ÿ

i“0

giu
i. (2.5)

– 6 –
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Then, the two half K3 surfaces X˘2 arising in the stable degeneration limit, given as the

Weierstrass models

X˘2 : y2 “ x3 ` f˘z4 ` g˘z6, (2.6)

can be obtained from (2.5) by the split

f` “
4
ÿ

i“0

fiu
i, f´ “

8
ÿ

i“4

fiu
i, g` “

6
ÿ

i“0

giu
i, g´ “

12
ÿ

i“6

giu
i, (2.7)

The “middle” polynomials f4 and g6 correspond to the heterotic elliptic curve, which then

reads

Z1 : y2 “ x3 ` f4xz
4 ` g6z

6, (2.8)

while the “upper” and “lower” coefficients correspond to the moduli of the two E8-bundles.

2.1.2 Stable degeneration with other elliptic fiber types

The focus of the present work are F-theory compactifications with one Up1q gauge group

arising from elliptically fibered Calabi-Yau manifolds with two rational sections. These are

naturally constructed using the fiber ambient space Bl1Pp1,1,2q [22]. More precisely, we will

consider K3 surfaces given as sections χ of the anti-canonical bundle ´KP1ˆBl1Pp1,1,2q of

P1 ˆ Bl1Pp1,1,2q reading

χ “
ÿ

i

siχ
i. (2.9)

Here si and χi are sections of the anti-canonical bundles ´KP1 “ Op2q and ´KBl1Pp1,1,2q ,

respectively.

Then, analogously to the above construction, one can perform a stable degeneration

limit for these hypersurfaces as well. However, it is crucial to note here that we can perform

the stable degeneration limit in two possible ways, as shown in figure 1: one way is to first

take the Weierstrass normal form Wχ (upper horizontal arrow) of the full Bl1Pp1,1,2q-model

and then apply the split (2.7) to obtain two half K3 surfaces (right vertical arrow); a second

way is to first perform stable degeneration (left vertical arrow), yielding two half K3 surfaces

χ˘ with elliptic fibers in Bl1Pp1,1,2q, and then compute their Weierstrass normal forms W˘
χ

(lower horizontal arrow). It is important to realize, however, that these two possible paths

in the diagram 1 do not commute, as explicitly shown in appendix D.

We propose and demonstrate in section 3 that the natural order to perform heterotic/F-

theory duality for models with Up1q factors and different elliptic fiber types than the

Weierstrass model is to first perform stable degeneration with the other fiber type (left

vertical arrow) and then compute the Weierstrass model of the resulting half K3-fibrations

(lower horizontal arrow) in order to analyze the physics of the model.

2.2 Constructing SUpNq bundles on elliptic curves and fibrations

While the description of the structure group of the vector bundle via half K3 surfaces as

reviewed above is of high conceptual importance, it is in practice often easier to construct

vector bundles with the desired structure group directly. In the following section, we review

– 7 –
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Section χ of ´KPp1,1,2qˆP1

χ “
ř8
i“1 siχ

i si P OP1p2q

//

��

Weierstrass normal form

Wχ : y2 “ x3 ` fχxz
4 ` gχz

6

��

{œ

Two half K3 surfaces X˘2

χ˘ “
ř8
i“1 s

˘
i χ

i s˘i P OP1p1q

//
Two half K3 surfaces W˘

χ

W˘
χ : y2 “ x3 ` f˘χ xz

4 ` g˘χ z
6

Figure 1. Computing the Weierstrass normal form (horizontal arrows) and taking the stable

degeneration limit (vertical arrows) does not commute.

this construction for SUpNq bundles and specializations thereof which has been studied first

in [46] and was further developed in [7, 8, 47].

In this section E always denotes an elliptic curve with a marked point p. The curve is

defined over a general field K, which does not necessarily have to be algebraically closed.

It is well-known that an elliptic curve with a point p has a representation in the Weierstrass

normal form (2.4), where p reads rx : y : zs “ r1 : 1 : 0s. In general, a degree zero line

bundle L ÝÑ E, i.e. a Up1q-bundle, takes the form

L “ Opqq bOppq´1 “ Opq ´ pq , (2.10)

where q denotes another arbitrary rational point on E (note that over K “ C every point

is rational). Furthermore, we note that there is a bijective map φ from the elliptic curve

E onto its Picard group of degree zero which is defined by

φ : E ÝÑ Pic0pEq , q ÞÑ q ´ p . (2.11)

In particular, this extends to an isomorphism from the space of line bundles onto Pic0pEq,

defined by divpLq “ q ´ p. To be more precise, the divisor map ‘div’ is to be applied

to a meromorphic section2 of L. For later purposes, we also recall that the addition law

in Pic0pEq can be identified with the group law on E, which we denote by ‘, via this

isomorphism.

2This map is independent of the section chosen.
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A semi-stable SUpNq vector bundle of degree zero V is then given as the sum3 of N

holomorphic line bundles Li, i.e. we have V “ ‘Ni“1Li “ ‘Ni“1Opqi ´ pq, such that the

determinant of V is trivial. The latter implies that

bNi“1 Opqi ´ pq “ O ô ‘N
i“1qi “ 0 . (2.12)

An SUpNq vector bundle is therefore determined by the choice of N points on E that

sum up to zero. Any such N -tupel is determined by a projectively unique element of

H0
`

E,OpNpq
˘

, i.e. a function with N zeros and a pole of order N at p. Thus, the moduli

space of SUpNq vector bundles is given by

MSUpNq “ PH0
`

E,OpNpq
˘

. (2.13)

In the affine Weierstrass form of E, given by (2.4) with z set to one, the coordinates

x, y have a pole of order two and three at p, respectively. Accordingly, any element of

PH0
`

E,OpNpq
˘

enjoys an expansion

w “ c0 ` c1x` c2y ` c3x
2 ` . . .`

#

cNx
N
2 if N is even ,

cNx
N´3

2 y if N is odd ,
(2.14)

with ci P K. The section w is called the spectral cover polynomial and has N common

points with E, called the spectral cover, which define the desired SUpNq bundle. Counting

parameters of (2.14), one is lead to the conclusion that

MSUpNq “ PN´1. (2.15)

Finally, a comment on rational versus non-rational points is in order. Generically, p

is the only point on E over a general field K. However, in such a situation, it is possi-

ble to mark N points in a rational way by the polynomial w “ 0 which give rise to an

SUpNq bundle in the way just described. Nevertheless, under the circumstances that there

are additional rational points on E and the spectral cover polynomial w “ 0 specializes

appropriately, the structure group reduces in a certain way, as discussed next.

2.2.1 Vector bundles with reduced structure groups

As described in the previous section, the choice of N points on E describes an SUpNq

bundle. If we consider just an elliptic curve E over C, which is the geometry relevant

for the construction of heterotic compactifications to 8D, the spectral cover (2.14) can be

factorized completely. This corresponds to the 16 possible Wilson lines on T 2.

In contrast, if we consider an elliptic curve over a function field, as it arises in elliptic

fibrations Zn of E over a base Bn´1 used for lower-dimensional heterotic compactifications,

the N points are the zeros of (2.14), which defines an N -section of the fibration. In non-

generic situations, where subsets of the N sheets of this N -section are well-defined globally,

3If two or more points coincide, the situation is a bit more subtle [47, 48]. In this case the bundle is

given by ‘N
i“1Opqi ´ pqIri , where ri denotes the multiplicity of the point qi and Ir is inductively defined

by the extension sequence 0 ÝÑ O ÝÑ Ir´1 ÝÑ O ÝÑ 0. However, one usually only considers bundles up

to S-equivalence which identifies Ir with O‘r.
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i.e. are monodromy invariant, the structure group of the vector bundle is reduced. For

example, a separation into two sets of k and l sheets (with k` l “ N), respectively, results

in the structure group S
`

UpkqˆUplq
˘

. The spectral cover defined by (2.14) is called “split”

and defines a reducible variety inside Zn, see e.g. [33–36]. In the most extreme case, one

could have k “ 1 and l “ N ´ 1. In this case, the elliptic fibration of Zn has to necessarily

have another well-defined section in addition to the section induced by the rational point p:

it is the one marked by the component of the spectral cover w “ 0 with just one sheet [38].

Thus, the fiber E has a rational point, which we denote by q and one can, as discussed

above, define a Up1q line bundle L via (2.10). As this fiberwise well-defined line bundle

is also well-defined globally, it will induce a line bundle on Zn, whose first Chern class is

given, up to vertical components, by the difference of the sections induced by q and p,

cf. [49]. The structure group H of the vector bundle is in this case given by

H “ S
`

UpN ´ 1q ˆUp1q
˘

. (2.16)

We will see later that this situation will be relevant situation for the construction of Up1q

gauge groups in the heterotic string.

We emphasize that for a Up1q-bundle alone there is no spectral cover polynomial (2.14)

that would be able to detect this additional rational point. This is due to the fact that

there is no function that has only one zero on an elliptic curve E . However, if the rational

point is accompanied by further points, rational or non-rational points over the field K, it

can very well be seen by the spectral cover. For instance, one could construct a spectral

cover from q and ´q, which would describe a bundle of structure group S
`

Up1q ˆUp1q
˘

.

Finally, it needs to be discussed what interpretation should be given to the case that

the rational point q on the curve E happens to be torsion of order k. In this case the

structure group H reduces further to S
`

UpNq ˆ Zk
˘

. To argue for this, we invoke again a

fiberwise argument. The fiber at a generic point in Bn´1 admits a line bundle L “ Opq´pq
with the property that Lk “ O. This is clear as the transition functions gij will be subject

to gkij “ 1 in Čech cohomology as k times the Poincaré dual of its first Chern class is trivial.

However, this is just the statement that the fiberwise structure group of L is contained

in Zk. Employing that p and q are globally well-defined sections then suggests that this

argument also holds on Zn.

2.3 Heterotic/F-theory duality in 6D

Six-dimensional heterotic/F-theory duality arises by fibering the eight-dimensional duality

over a common base B1 “ P1, employing the adiabatic argument [40]. Thus, the heterotic

string gets compactified on an elliptically fibered K3 surface Z2 while F-theory is compact-

ified on an elliptically fibered Calabi-Yau threefold X3 over a Hirzebruch surface Fn. Our

presentation will be brief and focused on the later applications in this work. For a more

detailed discussion we refer to the classical reference [4, 5, 7] or the reviews [9, 39].

On the F-theory side, the non-Abelian gauge content originates from the codimension

one singularities of the elliptic fibration π : X3 Ñ Fn. The singularity is generically

of type G1, which gets broken down to G Ă G1 by monodromies corresponding to outer
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automorphisms of the Dynkin diagram of G1 [41]. The resulting gauge symmetry is encoded

in the order of vanishing of the coefficients a0, a1, a2, a3, a4, a6 in the Tate form of the

elliptic fibration

y2 ` a1xy ` a2 “ x3 ` a3x
2 ` a4x` a6 . (2.17)

In addition, we introduce the Tate vector ~tX which encodes the orders of vanishing of

the coefficients ai along the divisor defined by the local coordinate X:

~tX “
`

ordXpa0q, ordXpa1q, ordXpa2q, ordXpa3q, ordXpa4q, ordXpa6q, ordXp∆q
˘

. (2.18)

The results of the analysis of singularities, known as Tate’s algorithm, are summarized in

table 2 [41, 50], see, however, [51] for subtleties.

On the heterotic side, the gauge theory content is encoded in a vector bundle V where

the following discussion restricts itself to the case of SUpNq bundles. The six-dimensional

bundle is defined in terms of two pieces of data, the spectral cover curve C as well as a line

bundle N which is defined on C. Here, the spectral curve C is the 6D analog of the points

defined by the section of PH0
`

E,Opnpq
˘

which has been discussed in 2.2. In 6D, the elliptic

curve Z1 – E gets promoted to an elliptic fibration, which can again be described by a

Weierstrass form (2.4) with coordinates x, y, z being sections of L2, L2, O, respectively,

for L “ K´1
P1 “ Op´2q and coefficients f , g being in L4, L6, respectively. Accordingly, the

coefficients ci entering the spectral cover (2.14) are now sections of M b L´i, M being

an arbitrary line bundle on P1 and C is defined as the zero locus of the section of (2.14).

Thus, C defines an N -sheeted ramified covering of P1, i.e. a Riemann surface. The spectral

cover C defines the isomorphism class of a semi-stable vector bundle above each fiber. The

line bundle N describes the possibility to twist the vector bundle without changing its

isomorphism class. It is usually fixed, up to a twisting class γ, by the condition c1pV q “ 0

for an SUpNq bundle, see [7] for more details.

2.4 Massless U(1)-factors in heterotic/F-theory duality

As previously discussed, the perturbative heterotic gauge group is obtained by commuting

the structure group H of the vector bundle V within the two E8-bundles. We propose

three possibilities, how Up1q gauge groups can arise from this perspective:

• H contains a Up1q factor, i.e. it is of the form H “ H1 ˆUp1q, or S
`

UpMq ˆUp1q
˘

,

• H contains a discrete piece, i.e. a part taking values in Zk,

• or H is non-Abelian and is embedded such that its centralizer in E8 necessarily

contains a Up1q-symmetry.

The construction of a vector bundle for these three different cases employing spectral covers

has been discussed in section 2.2.

In general, we emphasize that Up1q-factor which arises from a split spectral cover is

usually massive due to a Stückelberg mass term which is induced by the first Chern class of

the Up1q background bundle, as we review next. However, if the Up1q term originates from a
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Type Group a1 a2 a3 a4 a6 ∆

I0 teu 0 0 0 0 0 0

I1 teu 0 0 1 1 1 1

I2 SUp2q 0 0 1 1 2 2

I3 SUp3q 0 1 1 2 3 3

I2k, k ě 2 Sppkq 0 0 k k 2k 2k

I2k`1, k ě 1 Sppkq 0 0 k ` 1 k ` 1 2k ` 1 2k ` 1

In, n ě 4 SUpnq 0 1
“

n
2

‰ “

n`1
2

‰

n n

II teu 1 1 1 1 1 2

III SUp2q 1 1 1 1 2 3

IV Spp1q 1 1 1 2 2 4

IV SUp3q 1 1 1 2 3 4

I˚0 G2 1 1 2 2 3 6

I˚0 Spin(7) 1 1 2 2 4 6

I˚0 Spin(8) 1 1 2 2 4 6

I˚1 Spin(9) 1 1 2 3 4 7

I˚1 Spin(10) 1 1 2 3 5 7

I˚2 Spin(11) 1 1 3 3 5 8

I˚2 Spin(12) 1 1 3 3 5 8

I˚2k´3, k ě 3 SOp4k ` 1q 1 1 k k ` 1 2k 2k ` 3

I˚2k´3, k ě 3 SOp4k ` 2q 1 1 k k ` 1 2k ` 1 2k ` 3

I˚2k´2, k ě 3 SOp4k ` 3q 1 1 k ` 1 k ` 1 2k ` 1 2k ` 4

I˚2k´2, k ě 3 SOp4k ` 4q 1 1 k ` 1 k ` 1 2k ` 1 2k ` 4

IV˚ F4 1 2 2 3 4 8

IV˚ E6 1 2 2 3 5 8

III˚ E7 1 2 3 3 5 9

II˚ E8 1 2 3 4 5 10

non-min ´ 1 2 3 4 6 12

Table 2. Results from Tate’s algorithm.

background bundle with non-Abelian structure group there is tautologically no Up1q back-

ground factor which could produce a mass term and therefore the six-dimensional Up1q field

is expected to be massless. Finally, we propose, for consistency with heterotic/F-theory

duality, that a six-dimensional torsional section gives rise to a point-like instanton with

discrete holonomy, as introduced in [37]. Indeed, we will show in several examples in sec-

tion 4 that all three cases naturally appear in heterotic duals of F-theory compactifications

with one Up1q and that a matching of the corresponding gauge groups is only possible if

the arising spectral covers are interpreted as suggested here.
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2.4.1 The heterotic Stückelberg mechanism

In six and lower dimensions, it is well-known that a geometric Stückelberg effect can render

a Up1q gauge field massive [1]. To identify the mass term of the six- (or lower-) dimensional

Up1q, one considers the modified ten-dimensional kinetic term of the Kalb-Ramond field

B2 which reads, up to some irrelevant proportionality constant, as

L10d
kin “ H ^ ‹10dH , H “ dB2 ´

α1

4

`

ω3Y pAq ´ ω3LpΩq
˘

. (2.19)

Here, ‹10d is the ten-dimensional Hodge-star and ω3Y , ω3L denote the Chern-Simons terms

of the gauge field and the spin connection, respectively. The physical effect we want to

discuss here arises from the former one, which is given explicitly by

ω3Y “ Tr

ˆ

A^ dA`
2

3
A^A^A

˙

. (2.20)

Now, we perform a dimensional reduction of the kinetic term (2.19) in the background

of a Up1q vector bundle on the heterotic compactification manifold Zn, ignoring possible

additional non-Abelian vector bundles for simplicity. On such a background, we can expand

the ten-dimensional field strength F 10D
Up1q of the Up1q gauge field as

F 10D
Up1q “ FUp1q ` F “ FUp1q ` kαω

α. (2.21)

Here F “ 1
2πic1pLq is the background field strength, i.e. the first Chern class c1pLq of the

corresponding Up1q line bundle L, and FUp1q is the lower-dimensional gauge field. We have

also introduced a basis ωα, α “ 1, . . . , b2pZnq, of harmonic two-forms in Hp2qpZnq, where

b2pZnq is the second Betti number of Zn, along which we have expanded F into the flux

quanta kα. We also expand the ten-dimensional Kalb-Ramond field as

B2 “ b2 ` ραω
α, (2.22)

where b2 is a lower-dimensional two-form and ρα are lower-dimensional axionic scalars .

We readily insert this reduction ansatz into the ten-dimensional field strength H in (2.19),

where we only take into account the gauge part, to arrive, dropping unimportant prefactors,

at the lower-dimensional kinetic term for the axions ρα of the form

LStück. “ Gαβpdρα ` kαAUp1qq ^ ‹pdρβ ` kβAUp1qq . (2.23)

Here we introduced the kinetic metric

Gαβ “

ż

Zn

ωα ^ ‹ωβ . (2.24)

It is clear from (2.23) that a single Up1q gauge field will be massive if we have a non-

trivial c1pLq ‰ 0. However, we note that in the presence of multiple massive Up1q gauge

fields, appropriate linear combinations of them in the kernel of the mass matrix can remain

massless Up1q fields. A computation similar to the one above has appeared in e.g. [33],

where also the case of multiple Up1q’s is systematically discussed.
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2.4.2 U(1)-factors from gluing conditions in half K3-fibrations

We conclude this section by discussing the connection between the previous field theoretic

considerations that lead to a massive Up1q via the Stückelberg action (2.23) on the heterotic

side and geometric glueing conditions of the sections of half K3 surfaces to global sections

of the two half K3-fibrations X˘n that arise in stable degeneration as well as of the full

Calabi-Yau manifold Xn. We illustrate this in 6D for concreteness, i.e. for F-theory on

a Calabi-Yau threefold X3 and the heterotic string on a K3 surface Z2, although the

arguments hold more generally.

It is well known that the number of Up1q factors in F-theory is given by the rank of

the Mordell-Weil group, i.e. by the number of independent global rational sections of the

elliptic fibration X3 in addition to the zero section. As discussed in section 2.1, a half K3

surface with ADE singularity of rank r has an p8 ´ rq-dimensional Mordell-Weil group.

Promoting the half K3 surface to a fibration of half K3 surfaces over the base P1, such as

the threefolds X˘3 , these sections need not necessarily give rise to sections of the arising

three-dimensional elliptic fibrations. Considering the half K3 surfaces arising in the stable

degeneration limit of F-theory, there are those sections which also give rise to sections of e.g.

the full half K3 fibration X`3 . These sections will induce a Up1q-factor on the heterotic side

which is embedded into one E8-bundle and which is generically massive with a mass arising

via the Stückelberg action (2.23). If there is also a globally well-defined section of the other

half K3 fibration X´3 and this section glues with the section in the first half K3 fibration

X`3 , then there is a linear combination of Up1q’s that remains massless in the Stückelberg

mechanism on the heterotic side. This is clear from the F-theory perspective, as these two

sections can then be glued along the heterotic two-fold Z2 to a section of the full Calabi-Yau

threefold X3, i.e. give rise to an element in its Mordell-Weil group and a massless Up1q.

3 Dual geometries with toric stable degeneration

In this section, we describe a toric method in order to study the stable degeneration limit of

an elliptically fibered K3 surface. This stable degeneration limit will be at the heart of the

analysis of the examples of heterotic/F-theory dual geometries in section 4. In a first step

in section 3.1, we construct an elliptically fibered K3 surface. Afterwards in section 3.2,

we fiber this K3 surface over another P1 which is used to investigate the splitting of the

K3 surface into two rational elliptic surfaces, as discussed in section 3.3. In the concluding

section 3.4, we prove that the surfaces arising in the stable degeneration of the K3 surface

indeed define rational elliptic surfaces, i.e. half K3 surfaces.

3.1 Constructing an elliptically fibered K3 surface

We start by constructing a three-dimensional reflexive polytope ∆˝
3 given as the convex

hull of vertices that are the rows of the following matrix:
¨

˚

˚

˚

˚

˚

˝

a1 b1 0 x1
... 0 xi
an bn 0 xn
0 0 1 U

0 0 ´1 V

˛

‹

‹

‹

‹

‹

‚

. (3.1)
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Figure 2. On the left we show the reflexive polytope ∆˝
3, while its dual ∆3 is shown on the right.

In this example, the ambient space for the elliptic fiber, specified by ∆˝
2, is given by Bl1Pp1,1,2q.

Here pai biq denote the points of a two-dimensional reflexive polytope ∆˝
2, which will specify

the geometry of the elliptic fiber E. It is embedded into ∆˝
3 in the xy-plane, see the first

picture in figure 2. The last column contains the homogeneous coordinate associated to a

given vertex. We label the rays of the two-dimensional polytope counter-clockwise by the

coordinates x1, . . . xn. In addition, we assign the coordinates U , V to the points p0 0 1q and

p0 0 ´ 1q which correspond to the rays of the fan of the P1-base. We use the shorthand

notation P1
rU :V s to indicate its homogeneous coordinates. Finally, we use the notation ρH

for the ray with corresponding homogeneous coordinate H. We denote by Σ3 the natural

simplicial fan associated to ∆˝
3 and denote the corresponding toric variety over the fan of

∆˝ as PΣ3 . Provided a fine triangulation of the polytope ∆˝
3 has been chosen, the toric

ambient space PΣ3 will be Gorenstein and terminal.

A general section χ of the anti-canonical bundle OPΣ3
p´KPΣ3

q defines a smooth ellip-

tically fibered K3 surface X2. The ambient space of its elliptic fiber E is the toric variety

PΣ2 that is constructed from the fan Σ2 of the polytope ∆˝
2 induced by Σ3. As the toric

fibration of Σ2 over ΣP1 is direct, the section χ takes the form

χ “ siη
i for si “ s0

iU
2 ` s1

iUV ` s
2
iV

2. (3.2)

Here ηi are the sections of the anti-canonical bundle of OPΣ2
p´KPΣ2

q, i.e. the range of

the index i is given by the number of integral points in ∆2, and ski , k “ 1, 2, 3, are

constants. Note that, for a very general4 X2, the dimension hp1,1qpXq, of the cohomology

group Hp1,1qpX2,Cq can be computed combinatorically from the pair of reflexive polyhedra

∆3, ∆˝
3 by a generalization of the Batyrev’s formula [52]:

hp1,1qpXq “ lp∆˝q ´ n´ 1´
ÿ

Γ˝

l˚pΓ˝q `
ÿ

Θ˝

l˚pΘ˝ql˚pΘ̂˝q . (3.3)

Here lp∆q (l˚p∆q) denote the number of (inner) points of the n-dimensional polytope ∆. In

addition, Γ (Γ˝) denote the codimension one faces of ∆ (∆˝), while Θ denotes a codimension

two face with Θ̂ being its dual.

4A point is very general if it lies outside a countable union of closed subschemes of positive codimension.
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3.2 Constructing K3 fibrations

As a next step, we fiber this ambient space over a second P1
rλ1,λ2s

with homogeneous co-

ordinates λ1, λ2. The following construction is such that the generic fiber consists of a

smooth K3 surface X2 over a generic point of P1
rλ1,λ2s

and a split fiber, i.e. a splitting into

two half K3 surfaces, over a distinguished point of P1
rλ1,λ2s

, as explained below.

The four-dimensional polytope which describes this construction is given by

∆4“

#

pm1,m2,m3,m4qPZ4 | pm1,m2,m3qP∆3 , ´1ďm4ď1 ,

"

m4ě´1 if m3ď0 ,

m4ěm3 ´ 1 if m3ě0 .

+

.

(3.4)

Here, ∆3 denotes the dual polytope of ∆˝
3, cf. the second picture in figure 2. The faces of

∆4 are given by the (intersection of the) hyperplanes

m4 “ 1 , m4 “ ´1 , m4 “ ´1`m3 , m3 “ ´1 , m3 “ 1 ,
2
ÿ

j“0

ajimj “ 1 ,

(3.5)

where the last expression is given by the defining hyperplanes of ∆2, the dual of ∆˝
2. We

denote by Σ4 the fan associated to the dual polytope ∆˝
4 of ∆4. In particular, the normal

vectors of the facets of ∆4 give the rays of Σ4. To be explicit, the rays of Σ4 are given by

the rows of the matrix
¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

a1 b1 0 0 x1

... 0 0 xi
an bn 0 0 xn
0 0 1 0 U

0 0 0 1 λ1

0 0 ´1 1 µ

0 0 ´1 0 V

0 0 0 ´1 λ2

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (3.6)

We note that the coordinates assigned to its rays as displayed in (3.6) transform as follows

under the C˚-actions

pU : λ1 : µ : V : λ2q „ pa
´1U : ab´1λ1 : a´1bc´1µ : b´1cV : c´1λ2q (3.7)

with a, b, c P C˚.
In analogy to the discussion in the previous section, a section χ4 of the anti-canonical

bundle ´KPΣ4
of the toric variety PΣ4 defines a three-dimensional smooth Calabi-Yau

manifold X. In particular, the Calabi-Yau constraint (3.2) generalizes as

χ4 “ siη
i, (3.8)

where the ηi are given as before and the coefficients si now read

sipU, V, λ1, λ2, µq “ s1
iλ1λ2U

2 ` s2
iλ

2
1µU

2 ` s3
iλ

2
2UV ` s

4
iλ1λ2µUV ` s

5
iλ

2
1µ

2UV

` s6
iλ

2
2µV

2 ` s7
iλ1λ2µ

2V 2 ` s8
iλ

2
1µ

3V 2 (3.9)

with constants sji P C.
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Figure 3. The toric morphism f2.

We proceed by observing that the projection on the last two columns in (3.6) yields

the polytope ∆˝
dP2

of the toric variety dP2, cf. figure 3. Denoting the fan of ∆˝
dP2

by ΣdP2

this projection gives rise to a toric map

f1 : Σ4 ÝÑ ΣdP2 . (3.10)

In addition, dP2 is fibered over the P1
rλ11:λ12s

as can be seen by projecting onto the fourth

column of ∆4, cf. figure 3, i.e. there is a toric map

f2 : ΣdP2 ÝÑ ΣP1 , (3.11)

where ΣP1 is the fan of P1
rλ11:λ12s

. Note that this P1 is isomorphic to P1
rλ1:λ2s

. We denote the

composition map of the two by f “ f2 ˝ f1.

In summary, we have the following diagram of toric morphisms and induced maps on X:

PΣ4

f //

f1

  

f // P1
rλ11:λ12s

dP2

f2
<<

dP2

π2

""
X
?�

OO

π1

>>

π // P1
rλ11:λ12s

–

OO

Here we denote the toric maps f1, f2, f and their induced morphisms of toric varieties by

the same symbol, respectively. Note that for a generic point, the fiber of π is given by a

smooth K3 surface X2.

In order to prepare for the discussion of the stable degeneration limit, we proceed by

discussing the fibration map in more detail. For this purpose, we note the correspondence

of facets and rays as displayed in table 3. The dual ∆dP2 of ∆˝
dP2

with associated monomials

is shown in figure 4. These monomials are the global sections of KdP2 and are constructed
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ray facet constraint

ρλ1 m4 “ ´1 sλ1 “ s3iU ` s
6
iµ

ρµ m4 “ m3 ´ 1 sµ “ s1iλ1 ` s
3
iV

ρλ2 m4 “ 1 sλ2 “ s2iU
2 ` s5iUV ` s

8
iV

2

Table 3. The correspondence between the rays of ∆˝
dP2

and the facets of ∆dP2
. The last column

displays the global sections that embed the associated divisor into P1 and P2, respectively. The

coefficients on the right-hand side refer to equation (3.9).

Figure 4. The dual polytope ∆dP2
and the associated monomials.

according to [53]

χdP2 “
ÿ

PP∆dP2

ź

P˚P∆˚dP2

aPx
xP,P˚y`1
P˚ . (3.12)

Here xP˚ denotes the coordinate which is associated to the corresponding ray of the toric

diagram and aP are constants. By the correspondence between cones of ∆˝
dP2

and vertices

of ∆dP2 the vertex corresponding to the monomial V 2λ2
2µ is dual to the cone spanned by

the rays ρU and ρλ1 . We denote the coordinates associated to the two rays of P1
rλ1:λ2s

inside ∆0
dP2

appearing in (3.11) by ρλ11 and ρλ12 . Note that f´1
2 pρλ11q “ tρλ1 , ρµu, while

f´1
2 pρλ12q “ tρλ2u.

3.3 The toric stable degeneration limit

In the following, we aim to show that the general fiber of the map π gives rise to a smooth K3

surface while the pre-image of the point rλ11 : λ12s “ r1 : 0s gives rise to a degeneration into

two half K3 surfaces X˘2 that intersect in the elliptic fiber Z1 over the point of intersection

of the two P1 which are the respective bases of their elliptic fibrations.

Let us first consider the toric variety f´1
2 pλ12 “ 0q corresponding to the pre-image in

∆0
dP2

of ρλ12 . It is given by the star of ρλ2 in ∆0
dP2

which is just the generic fiber of f2.

Indeed, if λ2 “ 0, the coordinates µ and λ1 are non-vanishing due to the Stanley-Reisner

ideal. Two of the scaling relations (3.7) can be used in order to eliminate the latter two

variables while the remaining (linear combination) endows the coordinates U , V with the

well-known scaling relations of P1
rU,V s. In addition, the monomials associated to the vertices

– 18 –



J
H
E
P
0
4
(
2
0
1
6
)
0
4
1

of the dual facet of ρλ2 give rise to the following sections

sλ2 :“ s2
iU

2 ` s5
iUV ` s

8
iV

2, (3.13)

as follows from (3.9) by setting λ2 “ 0. These provide precisely the global sections of

OP1p2q that are needed for the Veronese embedding, i.e. the embedding of P1
rU,V s into P2

as a conic

rU : V s ÞÝÑ rU2 : UV : V 2s . (3.14)

In contrast, the preimage of ρλ11 consists of the two divisors λ1 “ 0 and µ “ 0. In this

case the Stanley-Reisner ideal forbids the vanishing of the coordinates V , λ2 and U , λ2

respectively. Taking again into account the scaling relations (3.7), one observes that the

pre-image of the divisor λ11 “ 0 consists of two P1’s that are given by

Dλ1 “ rU : 0 : µ : 1 : 1s , Dµ “ r1 : λ1 : 0 : V : 1s . (3.15)

These intersect in precisely one point given by r1 : 0 : 0 : 1 : 1s. One identifies the dual

facets of ρλ1 and ρµ as m4 “ ´1 and m4 “ m3 ´ 1. In this case the global sections are

given by

sλ1 :“ s3
iU ` s

6
iµ , sµ :“ s1

iλ1 ` s
3
iV , (3.16)

as follows again from (3.9). This induces in this case only the trivial embedding via the

identity map. Note that the union of the two divisors Dλ1 and Dµ is given by a degenerate

conic

z1z3 “ z2
2λ1µ , with pV 2µ,UV, U2λ1q ÞÑ rz1 : z2 : z3s P P2, (3.17)

which splits as just observed into the two lines z1 “ 0, z3 “ 0 at λ1 “ 0 and µ “ 0.

A similar reasoning applies to the pre-image of ρλ11 under the composite map f . As

noted above, we have f´1pρλ11q “ tρµ, ρλ1u, which implies that the pre-image is given by

the two divisors PΣ`3
“ tµ “ 0u and PΣ´3

“ tλ1 “ 0u in PΣ4 . They are obtained as the star

of ρµ and ρλ1 in ∆0
4, respectively, with their fans Σ˘3 induced by Σ4. The corresponding

respective dual facets are given by the three-dimensional facets m4 “ ´1 and m4 “ m3´ 1

in ∆4. In addition, this gives rise to a splitting of ∆3 as

∆`
3 “

 

pm1,m2,m3q P Z3 | pm1,m2q P ∆2 , m3 P t0, 1u
(

, (3.18)

∆´
3 “

 

pm1,m2,m3q P Z3 | pm1,m2q P ∆2 , m3 P t´1, 0u
(

, (3.19)

which is also referred to as the top and bottom splitting [10], cf. figure 2. Thus, the section

of the anti-canonical bundle Op´KPΣ3
q in (3.2) in the limit becomes the sum of

χX`2
:“ s`i η

i, with s`i “ s`
0
iV ` s

`1
iλ1 ,

χX´2
:“ s´i η

i, with s´i “ s´
0
iU ` s

´1
iµ , (3.20)

so that we can define the two surfaces X˘2 as

X`2 “ X2|P
Σ`3

“ tχ “ µ “ 0u , X´2 “ X2|P
Σ´3

“ tχ “ λ1 “ 0u . (3.21)
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As we will prove in the next subsection, X`2 and X´2 are two rational elliptic surfaces (half

K3 surfaces).

In contrast, the pre-image of ρλ12 is given by the whole three-dimensional fan Σ3 as it

is also for a generic point in P1
rλ1:λ2s

. To justify the latter statement inspect the fiber above

the origin 0 of the fan ΣP1 corresponding to a generic point in P1
rλ1:λ2s

.

Finally, we remark that the two rational elliptic surfaces X`2 , X´2 that arise at the

loci tµ “ 0u and tµ “ 0u, respectively, are independent of the K3 surface which appears

over the locus tλ2 “ 0u. In the following, we explain how the half K3 surfaces can be

obtained from the data of the K3 surface X2 directly. As the notation used so far is rather

heavy, which is unfortunately necessary, we introduce a slightly easier notation that will be

used in the discussion of explicit examples in section 4. We rewrite a general hypersurface

constraint as

χ “ siη
i, si “ si1U

2 ` si2UV ` si3V
2, (3.22)

which requires, depending on the situation at hand, the following identifications between

the coefficients of (3.22) and of (3.9):

si1 ” s2
i , si2 ” s5

i , si3 ” s8
i ,

or si1 ” s1
i , si2 ” s3

i , si3 ” s6
i . (3.23)

However, it is crucial to note that the pair of coordinates U, V is only suited to describe

the base P1 of the K3 surface X2, while the base coordinates P1’s of X`2 and X´2 are given

by λ1, V and U , µ, respectively.

3.4 Computing the canonical classes of the half K3 surfaces X˘
2

In this subsection, we discuss how the half K3 surfaces X˘2 can be re-discovered in the toric

stable degeneration limit. Note that the two components PΣ`3
and PΣ´3

of the degenerate

fiber, as divisors in PΣ4 , should equal the generic fiber PΣ3 :

PΣ`3
` PΣ´3

– PΣ3 . (3.24)

In addition, we have

PΣ3 ¨ PΣ˘3
“ 0 (3.25)

as the generic fiber can be moved away from the locus λ11 “ 0, cf. figure 3. This allows us

to compute the canonical bundle of PΣ˘3
using adjunction in PΣ4 as

KP˘Σ3

“
`

KPΣ4
bOPΣ4

pPΣ˘3
q
˘ˇ

ˇ

P˘Σ3

“ KPΣ4

ˇ

ˇ

P˘Σ3

bOP˘Σ3

p´PΣ˘3
¨ PΣ¯3

q , (3.26)

where we used (3.24) and (3.25). Note that the divisor corresponding to the last term

equals the class of the ambient space PΣ2 of elliptic fiber of X2, i.e. PΣ`3
¨ PΣ´3

“ PΣ2 .

Making one more time use of the adjunction formula, one finally arrives at

KX˘2
“

`

KP
Σ˘3

bOP
Σ˘3

pX˘2 q
˘
ˇ

ˇ

X˘2
“

`

KPΣ4

ˇ

ˇ

P˘Σ3

bOP˘Σ3

p´PΣ2q bOP
Σ˘3

pX˘2 q
˘
ˇ

ˇ

X˘2

“ OP˘Σ3

p´PΣ2q
ˇ

ˇ

X˘
“ OX˘2 p´Eq ,
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where we used (3.26) in the second equality and KPΣ4
|P˘Σ3

“ OP
Σ˘3

pX˘2 q. Thus, the anti-

canonical class of X˘2 is given by that of the elliptic fiber E which leads to the conclusion

that X˘2 is indeed a rational elliptic surface.

4 Examples of heterotic/F-theory duals with U(1)’s

In the section, we use the tools of section 3 to construct explicit elliptically fibered Calabi-

Yau two- and threefolds whose stable degeneration limit is well under control. Our geome-

tries have generically two sections, which give rise to a Up1q-factor in the corresponding

F-theory compactification. Performing the toric symplectic cut allows us to explicitly track

these sections through the stable degeneration limit and to make non-trivial statements

about the vector bundle data on the heterotic side in which the Up1q-factor in the effec-

tive theory is encoded. Finally, after having performed the stable degeneration limit as

discussed in section 3.3, we split the resulting half K3 surfaces into the spectral cover poly-

nomial and the constraint for the heterotic elliptic curve. Then, we determine the common

solutions of the latter two constraints which encode the data of a (split) spectral cover.

The general geometries we consider as well as the procedure we apply is discussed in sec-

tion 4.1. Despite the fact that we do not determine the embedding of the structure group

into E8 directly, we are able to match the spectral cover with the resulting gauge group in

all cases. In particular, we consider three different classes of examples. In subsection 4.2 we

investigate a number of examples whose heterotic dual gives rise to a split spectral cover.

This class of examples has generically one Up1q factor embedded into both E8-bundles of

which only a linear combination is massless. The next class of examples considered in

subsection 4.3 displays torsional points in its spectral cover. There is one example with a

Up1q-factor on the F-theory side which is found to be only embedded into one E8-bundle

while the other E8-bundle is kept intact. Finally, in the last subsection 4.4 we consider

an example where the structure group reads SUp2q ˆ SUp3q. However, we argue that it is

embedded in such a way that its centralizer necessarily contains a Up1q factor.

4.1 The geometrical set-up: toric hypersurfaces in P1 ˆ Bl1Pp1,1,2q

For convenience, we recall the three-dimensional polyhedron ∆˝
3 for the resolved toric am-

bient space PΣ3 “ P1 ˆ Bl1Pp1,1,2q. It is given by the points
¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

´1 1 0 x1

´1 ´1 0 x2

1 0 0 x3

0 1 0 x4

´1 0 0 x5

0 0 1 U

0 0 ´1 V

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (4.1)

Here, x1, . . . x5 are homogeneous coordinates on the resolved variety Bl1Pp1,1,2q, while U, V

denote the two homogeneous coordinates of P1. In particular, x5 resolves the A1-singularity

of the space Bl1Pp1,1,2q.
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A generic section of the anti-canonical bundle of the ambient space PΣ3 takes the form

χ :“ s1x
4
1x

3
4x

2
5 ` s2x

3
1x2x

2
4x

2
5 ` s3x

2
1x

2
2x4x5 ` s4x1x

3
2x

2
5 ` s5x

2
1x3x

2
4x5

` s6x1x2x3x4x5 ` s7x
2
2x3x5 ` s8x

2
3x4 “ 0 , (4.2)

where the coefficients si are homogeneous quadratic polynomials in U, V . An elliptically

fibered K3 surface is defined by X2 “ tχ “ 0u. As can be seen for example in its Weierstrass

form, the K3 surface generically has a Kodaira fiber of type I2 at the locus s8 “ 0. It is

resolved by the divisor tx5 “ 0u X X2 as mentioned above.5 In addition, X2 generically

has a Mordell-Weil group of rank one. A choice of zero section S0 and generator of the

Mordell-Weil group S1 are given by

S0 “ X2 X tx1 “ 0u , S1 “ X2 X tx4 “ 0u . (4.3)

Explicitly, their coordinates read

S0 “

$

’

’

&

’

’

%

r0 : 1 : 1 : s7 : ´s8s generically ,

r0 : 1 : 1 : 0 : 1s if s7 “ 0 ,

r0 : 1 : 1 : 1 : 0s if s8 “ 0 ,

S1 “

$

’

’

&

’

’

%

rs7 : 1 : ´s4 : 0 : 1s generically ,

r0 : 1 : 1 : 0 : 1s if s7 “ 0 ,

r1 : 1 : 0 : 0 : 1s if s4 “ 0 .

(4.4)

Here we distinguished the special cases with s7 “ 0 and s8 “ 0, respectively, from the

generic situation. Using the fact that the generic K3 surface X2 has hp1,1q “ 5 [52], we,

hence, conclude that the full F-theory gauge group GX2 is6

GX2 “ SUp2q ˆ SUp2q ˆUp1q . (4.5)

We note that if s7 “ 0, one observes that the two sections coincide, as was also employed

in [54]. That the converse is true is shown in appendix C. This is expected as the vanishing

of s7 can be interpreted as a change of the toric fibre ambient space from Bl1Pp1,1,2q to

Pp1,2,3q, which has a purely non-Abelian gauge group [30].

4.1.1 Engineering gauge symmetry: specialized sections of ´KP1ˆBl1Pp1,1,2q

In order to construct examples with higher rank gauge groups, we tune the coefficients of

χ further. To be concrete, every si in (4.2) takes the form

si “ si1U
2 ` si2UV ` si3V

2 (4.6)

and a specialization corresponds to the identical vanishing of some sij . This specialization

of coefficients implies that ∆, the dual polyhedron of P1 ˆ Bl1Pp1,1,2q, gets replaced by

the Newton polytope ∆spec. of the specialized constraint, compare also figure 5. As a

technical side-remark we note that we strictly speaking refer with ∆spec. to the convex

5As the details of the resolution are not important, we can set x5 “ 1 in most computations performed

here.
6We note that s8 “ 0 has two solutions on P1. If we consider higher dimensional bases of the elliptic

fibration, we will just have one SUp2q factor as s8 “ 0 is in general an irreducible divisor.
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Figure 5. This figure illustrates a specialization of the coefficients of the hypersurface χ “ 0 such

that the resulting gauge group is enhanced to E7ˆE6ˆUp1q, see also the discussion in section 4.2.2.

In the left picture, the non-vanishing coefficients are marked by a circle in the polytope ∆3. In

the right figure the new polytope, i.e. the Newton polytope of the specialized constraint χ “ 0, is

shown.

hull of the points defined by the non-vanishing monomials in (4.6) respectively (4.2). As

a consequence, also ∆˝ changes to the dual of ∆˝
spec.. Thus, we have secretly changed the

toric ambient space by this specialization of coefficients. It is crucial to note that only those

specializations are allowed whose corresponding specialized polyhedron ∆spec. is reflexive.

The latter condition is equivalent to the associated toric variety being Gorenstein and Fano.

Set-ups which are not reflexive can in particular have ill-defined stable-degeneration limits

within our formalism.

In order to determine the gauge group of this specialized hypersuface, we need to

transform χ “ 0 into its corresponding Tate or Weierstrass normal form. For convenience,

we provide the Weierstrass as well as the Tate form of the most general hypersurface in

appendix A.

4.1.2 Stable degeneration and the spectral cover polynomial

As a next step, we show how the K3 surface X2 defined via (4.2) can be decomposed into

the two half K3 surfaces X˘2 and the heterotic elliptic curve as well as the two spectral

cover polynomials, respectively. First, we write the Calabi-Yau hypersurface equation (4.3)

for X2 as

χ “ p`pxi, sj1qU
2 ` p0pxi, sj2qUV ` p

´pxi, sj3qV
2, (4.7)

for appropriate polynomials p`, p0 and p´ depending on the fiber coordinates xi. By the

results of the previous section 3.3, the K3 surface X2 in the semistable degeneration limit

can be described by the half K3 surfaces X˘2 . Practically, X`2 arises by setting the term

V 2 in (4.7) to zero and factoring out U and vice versa, X´ is obtained by setting U2 to

zero and factoring out V . In conclusion, the defining equations for X˘2 are given as

X`2 : p`pxi, sj1qU ` p0pxi, sj2qV “ 0 , X´2 : p´pxi, sj3qV ` p0pxi, sj2qU “ 0 .

(4.8)

However, it is crucial to note that this is just a shortcut to obtain the defining equations

for X˘2 and that U, V are not the right coordinates for the base P1 of the two rational

elliptic surfaces X˘2 . As explained in more detail in section (4.7), X` is coordinized by

V, λ1 and X´ is coordinized by U, µ. Thus, the correct form of the defining constraint for
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X`2 is given by

X`2 : p`pxi, sj1qλ1 ` p0pxi, sj2qV “ 0 , X´2 : p´pxi, sj3qµ` p0pxi, sj2qU “ 0 .

(4.9)

It follows that generically the two linearly independent sections (4.4) of the K3 become

independent sections in the half K3s, which we denote, by abuse of notation, by the same

symbols. They intersect along the common (heterotic) elliptic curve. This is a novel

property of our toric degeneration.

In addition, the heterotic elliptic curve is given as p0pxi, sjq “ 0 while the data of the

two background bundles are given by the spectral cover polynomials p`pxi, sj1q “ 0 and

p´pxi, sj3q “ 0. The structure group of the two heterotic bundles is then determined by the

common solutions of p0pxi, sjq “ 0 with p˘pxi, sj1{3q “ 0 using the results and techniques

from section 2.2.

4.1.3 Promotion to elliptically fibered threefolds

Eventually, we are interested in examples of six-dimensional heterotic/F-theory duality. In

order to promote the K3 surfaces X2 constructed above to elliptically fibered threefolds

we promote the coefficients sij , defined in (4.6), to sections of a line bundle of another P1

with homogeneous coordinates R, T . The base of the previously considered K3 surface and

the new P1 form a Hirzebruch surface Fn. At this point, we only consider base geometries

which are Fano and restrict our discussion to F0 and F1 for simplicity, avoiding additional

singularities in the heterotic elliptic fibration. For these two geometries, the explicit form

of the sij reads

sij “ sij1R
2 ` sij2RT ` sij3T

2, (4.10)

for F0 and

si “ si11R`si12T`si21R
2`si22RT`si23T

2`si31R
3`si32R

2T`si33RT
2`si34T

3, (4.11)

for the geometry F1.

Next, we observe that the explicit expression of the discriminant of the heterotic Calabi-

Yau manifold Zn, which is given by p0 “ 0, contains a factor of s2
82. While this is certainly

not a problem in 8D, as s82 is just a constant there, it gives rise to an SUp2q-singularity

at co-dimension one in the heterotic K3 surface Z2. This can be cured by a resolution

of this singularity through an exceptional divisor E, which is the analog of x5 in (4.1).

In particular, the solutions to the spectral cover constraint will pass through the singular

point in the fiber. Thus, one expects that the spectral cover curve will pick up contributions

from the class E in general. A similar situation has been analyzed in [55] where it has

been argued that the introduction of this exceptional divisor will not change the structure

of the spectral cover as an N -sheeted branched cover of the base except for a finite number

of points where it wraps a whole new fiber component over the base. As discussed in [55],

this introduces more freedom in the construction of the heterotic vector bundle V . As this

work focuses on the mapping of Up1q-factors under the heterotic/F-theory duality, we only

concentrate on the generic structure of the spectral cover and leave the resolution of this

singularity as well as an exploration of the freedom in the construction of V to future works.
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4.2 U(1)’s arising from U(1) factors in the heterotic structure group

In this section, we consider examples that have an additional rational section in the dual

heterotic geometry. We consider K3 surfaces in F-theory, which are given as hypersurfaces

in Bl1Pp1,1,2q ˆ P1 with appropriately specialized coefficients generating a corresponding

gauge symmetry. Elliptic K3 fibered Calabi-Yau threefolds are constructed straightfor-

wardly as described in section 4.1.3. Thus, our following discussion will be equally valid

in 6D, although, in order to avoid confusion, we present our geometric discussions in 8D.

Having this in mind we, therefore, drop here in the rest of this work the subscripts on all

considered manifolds Xn`1, X˘n`1 and Zn, respectively. In the following, we discuss the

main geometric properties of the Calabi-Yau manifold X, demonstrate heterotic/F-theory

duality and relations among different examples by a chain of Higgsings.

We begin by a summary of key results and by setting some notation. As we will see,

all considered examples have the same heterotic Calabi-Yau manifold Z in common. It is

given by the most generic section of the anti-canonical bundle in Bl1Pp1,1,2q reading

Z : s12x
4
1 ` s22x

3
1x2 ` s32x

2
1x

2
2 ` s42x1x

3
2 ` s52x

2
1x3 ` s62x1x2x3 ` s72x

2
2x3 ` s82x

2
3 “ 0 .

(4.12)

Here and in the following, we refer to the Pp1,1,2q coordinates only and work with the limit

x4 Ñ 1, x5 Ñ 1.

The examples considered in the following only differ among each other by the spectral

covers, i.e. by the choice of the coefficients si1 and si3 in (3.22), which will be different in

each case. Generically, all examples will have a Up1q-factor embedded into the structure

groups of both heterotic vector bundles V1, V2. Thus, the maximal non-Abelian gauge

group determining any chain of Higgsings is given by E7 ˆ E7. For later reference we also

note the Weierstrass normal form of (4.12) is given by

WZ : y2 “ x3 `

ˆ

´
1

48
s4

62 `
1

6
s52s

2
62s72 ´

1

3
s2

52s
2
72 ´

1

2
s42s52s62s82 `

1

6
s32s

2
62s82

`
1

3
s32s52s72s82 ´

1

2
s22s62s72s82 ` s21s

2
72s82 ´

1

3
s2

32s
2
82 ` s22s42s

2
82

˙

x

`

ˆ

1

864
s6

62 ´
1

72
s52s

4
62s72 `

1

18
s2

52s
2
62s

2
72 ´

2

27
s3

52s
3
72 `

1

24
s42s52s

3
62s82

´
1

72
s32s

4
62s82 ´

1

6
s42s

2
52s62s72s82 `

1

36
s32s52s

2
62s72s82 `

1

24
s22s

3
62s72s82

`
1

9
s32s

2
52s

2
72s82 ´

1

6
s22s52s62s

2
72s82 ´

1

12
s21s

2
62s

2
72s82 `

1

3
s21s52s

3
72s82

`
1

4
s2

42s
2
52s

2
82 ´

1

6
s32s42s52s62s

2
82 `

1

18
s2

32s
2
62s

2
82 ´

1

12
s22s42s

2
62s

2
82

`
1

9
s2

32s52s72s
2
82 ´

1

6
s22s42s52s72s

2
82 ´

1

6
s22s32s62s72s

2
82 ` s21s42s62s72s

2
82

`
1

4
s2

22s
2
72s

2
82 ´

2

3
s21s32s

2
72s

2
82 ´

2

27
s3

32s
3
82 `

1

3
s22s32s42s

3
82 ´ s21s

2
42s

3
82

˙

.

(4.13)

In the stable degeneration limit the heterotic geometry Z generically inherits two sections

SZ0 , SZ1 from the elliptically fibered K3 defined in (4.2). These are the zero section as well
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as the generator of the Up1q and are in Weierstrass normal form explictly given as

SZ0 “ r1 : 1 : 0s , (4.14)

SZ1 “

„

1

12
ps2

62s
2
72 ´ 4s52s

3
72 ´ 12s42s62s72s82 ` 8s32s

2
72s82 ` 12s2

42s
2
82q :

1

2
s82ps42s

2
62s

2
72

´ s42s52s
3
72 ´ s32s62s

3
72 ` s22s

4
72 ´ 3s2

42s62s72s82 ` 2s32s42s
2
72s82 ` 2s3

42s
2
82q : s7



.

(4.15)

Here, the first section SZ0 is the point at infinity, while the second section SZ1 can be

seen also in the affine chart. We note that SZ0 can be obtained by a simple coordinate

transformation7 from S0 defined in (4.3), while SZ1 needs to be constructed using the

procedure of Deligne applied in [22].

4.2.1 Structure group Up1q ˆUp1q: E7 ˆ E7 ˆUp1q gauge symmetry

We start with a model which has a heterotic vector bundle of structure group Up1qˆUp1q.

Upon commutation within the group E8 ˆE8, the centralizer is given as E7 ˆUp1q ˆE7 ˆ

Up1q. On the heterotic side, the two Up1q factors acquire a mass term so that only a

linear combination of them is massless. This matches the F-theory gauge group given by

E7 ˆ E7 ˆUp1q.

Our example is specified by the following non-vanishing coefficients:

Coefficient X X´ X`

s1 s11U
2 ` s12UV ` s13V

2 s12U ` s13µ s11λ1 ` s12V

s2 s22UV s22U s22V

s3 s32UV s32U s32V

s4 s42UV s42U s42V

s5 s52UV s52U s52V

s6 s62UV s62U s62V

s7 s72UV s72U s72V

s8 s82UV s82U s82V

Here, the first columns denotes the coefficient in the Calabi-Yau constraint (3.2), the second

column indices the chosen specialization and the third as well as fourth column contain the

resulting coefficient in the half K3 fibrations X˘, respectively.

Using the identities (3.16) and (3.21), we readily write down the defining equations for

the half K3 surfaces X˘2 obtained via stable degeneration explicitly. They read

X` : ps11λ1 ` s12V qx
4
1 ` s22V x

3
1x2 ` s32V x

2
1x

2
2 ` s42V x1x

3
2

`s52V x
2
1x3 ` s62V x1x2x3 ` s72V x

2
2x3 ` s82V x

2
3 “ 0 ,

X´ : ps12U ` s13µqx
4
1 ` s22Ux

3
1x2 ` s32Ux

2
1x

2
2 ` s42Ux1x

3
2

`s52Ux
2
1x3 ` s62Ux1x2x3 ` s72Ux

2
2x3 ` s82Ux

2
3 “ 0 . (4.16)

7To be more precise, we refer in this case to (4.3) as a section of the heterotic geometry.
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Figure 6. This figure shows the stable degeneration limit of a K3 surface which has E7ˆE7ˆUp1q

gauge symmetry. There are the two half K3 surfaces, X` and X´ which have both an E7 singularity

and intersect in a common elliptic curve. Both have two sections, S0 and S1 which meet in the

common elliptic curve. Thus, there are two global sections in the full K3 surface and therefore a

Up1q factor.

By explicitly evaluating the Tate coefficients (A.3), one obtains the following orders of

vanishing for the Tate vector at the loci U “ 0 and V “ 0 for the full K3 surface,

~tU “ ~tV “ p1, 2, 3, 3, 5, 9q , (4.17)

which reveal two E7 singularities. Also, the two half K3 surfaces inherit an E7 singularity

each, which are located at U “ 0, V “ 0, respectively. Thus, the non-Abelian part of the

gauge group is given by E7 ˆ E7. Both half K3 surfaces have two rational sections given

by SX
˘

0 “ r0 : 1 : 0s and SX
`

1 “ r0 : s82V : ´s72s82V
2s and SX

´

1 “ r0 : s82U : ´s72s82U
2s,

respectively. In the intersection point of the two half K3’s given by rU : λ1 : µ : V : λ2s “

r1 : 0 : 0 : 1 : 1s, the sections SX
˘

0 from both half K3’s intersect and meet each other, and

similarly the sections SX
˘

1 from both half K3’s intersect and meet each other, cf. figure 6.

Thus, the six-dimensional gauge group contains a Up1q factor.

However, if one evaluates the spectral cover, as described in section 4.1.2, one obtains8

p` “ s11x
4
1 , p´ “ s13x

4
1 . (4.18)

which is mapped by use of the transformations (A.9) onto

pW` “ s11z
4, pW´ “ s13z

4. (4.19)

These expressions gives rise to a constant spectral cover in affine Weierstrass coordinates

x, y defined by z “ 1. However, on an elliptic curve there does not exist any function

which has exactly one zero at a single point, in this case S1.9 Nevertheless, one can use

the two points SZ0 and SZ1 on the heterotic elliptic curve in order to construct the bundle

L “ OpSZ1 ´ SZ0 q fiberwise, which is symmetrically embedded into both E8-bundles. As

argued in [49], this bundle promotes to a bundle L6D in 6D whose first Chern class is

8Here, and in the following we set x4 Ñ 1, x5 Ñ 1 for convenience.
9However, note that the homogeneous expression x4

1 vanishes at the loci of SZ
0 and of SZ

1 . Indeed, the

common solutions of lim
x4Ñ1

lim
x5Ñ1

χ defined in (4.2) with x1 “ 0 are given by rx1 : x2 : x3s “ r0 : 1 : 0s or

r0 : s8 : ´s7s8s.
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given by the difference of the two sections c1pL6Dq “ σSZ
1
´ σSZ

0
, up to fiber contributions.

Thus, the heterotic gauge group is given by E7ˆE7ˆUp1qˆUp1q. Due to the background

bundle L6D, these two Up1q’s seem both massive according to the Stückelberg mechanism

discussed in section 2.4. However, due to the symmetric embedding into both E8’s their

sum remains massless. Thus, one obtains a perfect match with the F-theory gauge group.

We conclude with the remark that one can interpret this model also as a Higgsing

of a model with E8 ˆ E8 gauge symmetry as presented in the appendix B.1. Here, the

Higgsing corresponds to a geometrical transition from the ambient space geometry Pp1:2:3q

to Bl1Pp1,1,2q where the vacuum expectation value of the Higgs corresponds to the non-

vanishing coefficient s72.

4.2.2 Structure group Up1q ˆ S
`

Up2q ˆUp1q
˘

: E7 ˆE6 ˆUp1q gauge symmetry

As a next step, we investigate an example which has E7 ˆE6 ˆUp1q gauge symmetry. On

the heterotic side we find an Up1qˆS
`

Up2qˆUp1q
˘

structure group which directly matches

the non-Abelian gauge group and gives rise to one massless as well as one massive Up1q.

The model is specified by the following non-vanishing coefficients:

Coefficient X X´ X`

s1 s11U
2 ` s12UV ` s13V

2 s12U ` s13µ s11λ1 ` s12V

s2 s21U
2 ` s22UV s22U s21λ1 ` s22V

s3 s32UV s32U s32V

s4 s42UV s42U s42V

s5 s52UV s52U s52V

s6 s62UV s62U s62V

s7 s72UV s72U s72V

s8 s82UV s82U s82V

The evaluation of the order of vanishing of the Tate coefficients is summarized in the two

Tate vectors
~tV “ p1, 2, 2, 3, 5, 8q ~tU “ p1, 2, 3, 3, 5, 9q . (4.20)

It signal one E6 singularity at V “ 0 and one E7 singularity at U “ 0. The E7 singularity

is inherited by the half K3 surface X´ while the E6 singularity is contained in the half K3

surface X` after stable degeneration.

Next, we turn to the heterotic side. Here, the analysis of sections and Up1q symmetries

from the perspective of the gluing condition is completely analogous to the geometry with

E7 ˆ E7 ˆ Up1q gauge symmetry discussed in the previous section 4.2.1. The situation at

hand is summarized in figure 7. However, there is a crucial difference in the evaluation of

the spectral cover which we discuss next.

The corresponding split of the two half K3 surfaces into a spectral cover polynomial

and the heterotic elliptic curve results in

p` “ s11x
4
1 ` s21x

3
1x2 , p´ “ s13x

4
1 . (4.21)

Again, in order to evaluate the spectral cover information, one needs to transform both

constraints into Weierstrass normal form. p´ is again just a constant and its interpretation
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Figure 7. The interpretation of this figure is similar to figure 6. The additional structure arises

from two sections shown in yellow which form together with aS1 the zeros of the spectral cover.

is along the lines of the previous example in section 4.2.1. However, in the case of p`

something non-trivial happens. Its transform into Weierstrass coordinates reads explicitly

p`W “ ps21s
3
62s72 ´ 4s21s52s62s

2
72 ´ 2s11s

2
62s

2
72 ` 8s11s52s

3
72 ´ 2s21s42s

2
62s82

´ 4s21s42s52s72s82 ´ 4s21s32s62s72s82 ` 24s11s42s62s72s82 ` 12s21s22s
2
72s82

´ 16s11s32s
2
72s82 ` 8s21s32s42s

2
82 ´ 24s11s

2
42s

2
82 ´ 12s21s62s72x

` 24s11s
2
72x` 24s21s42s82x` 24s21s72yq{

`

2p´s2
62s

2
72 ` 4s52s

3
72

` 12s42s62s72s82 ´ 8s32s
2
72s82 ´ 12s2

42s
2
82 ` 12s2

72xq
˘

. (4.22)

In contrast to the well-known case of the spectral cover in the Pp1,2,3q-model which

takes only poles at infinity, one observes that the denominator of (4.22) has two zeros

at SZ1 and at aSZ1 , the negative of SZ1 in the Mordell-Weil group of Z. In addition, the

numerator has zeros at two irrational points Q1, Q2 and at aS1. Finally, there is a pole

of order one at SZ0 . Here, SZ0 and SZ1 refer to the two sections (4.14), (4.15). Thus, the

divisor of p`W is given by

divpp`W q “ Q1 `Q2 ´ S1 ´ S0 . (4.23)

Clearly, in order to promote the points defined by the spectral cover polynomial in 8D to

a curve in 6D, the current form of p´W is not suitable due to its non-trivial denominator.

However, one observes that the polynomial given by the numerator of p`W gives rise to the

divisor

div
`

Numeratorpp`W q
˘

“ Q1 `Q2 `aS1 ´ 3S0 (4.24)

which is, however, linearly equivalent10 to the divisor (4.23). Consequently, a spectral

cover, valid also for the construction of lower-dimensional compactifications, is defined by

the numerator of (4.22).

Thus, the three zeros Q1, Q2 and aS1 form, following section 2.2, a split SUp3q spectral

cover, i.e. an S
`

Up2q ˆ Up1q
˘

spectral cover. All three points extend as sections into the

half K3 surface X`, cf. figure 7. Two of these sections are linearly independent and are in

10To see this, one notices that the element ´S1 ` S0 in Pic0
pEq is equivalent to ´S1 ` S0 ` f where f is

defined as x´ xS1 on E with xS1 denoting the x-coordinate of S1. It holds that divpfq “ S1 `aS1 ´ 2S0.

Thus, ´S1 ` S0 maps to aS1 on E under the map (2.11).
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8D the generators of the rank two Mordell-Weil group corresponding to a rational elliptic

surface with an E6 singularity. However, due to monodromies of Q1 and Q2 only aS1

survives in 6D as a rational section.

In conclusion, this spectral cover gives rise to an S
`

Up2q ˆ Up1q
˘

background bundle

which is embedded into the E8 factor corresponding to X`. The centralizer of this is given

by E6 ˆ Up1q. The latter factor seems again massive due to the Up1q background bundle.

However, this Up1q forms together with the seemingly massive Up1q of the half K3 surface

X´ a massless linear combination. In conclusion, there is a perfect match with the F-theory

analysis of the low energy gauge group. Analogously to the previous case in section 4.2.1,

this model can be understood as arising by Higgsing the non-Abelian model B.2 with

gauge symmetry E8 ˆ E7. Here, a (massive) Up1q factor is embedded minimally into both

factors. Again, the vacuum expectation value of the Higgs corresponds to the coefficient

s72. In addition, we can view this model also as arising by a Higgsing process from a

compactification with E7 ˆ E7 ˆ Up1q gauge group where a vacuum expectation value of

the Higgs corresponds to s21.

4.2.3 Structure group Up1q ˆ
`

SUp2q ˆ SUp2q ˆUp1q
˘

: E7 ˆ SOp9q ˆUp1q gauge

symmetry

The final example in this chain of Higgsings is given by a model with E7 ˆ SOp9q ˆ Up1q

gauge symmetry. On the heterotic side we find an Up1qˆ
`

SUp2qˆSUp2qˆUp1q
˘

structure

group which matches the non-Abelian gauge content. Also in this case we find one massless

as well as one massive Up1q on the heterotic side.

As before, we define the model by the following choice of coefficients in X:

Coefficient X X´ X`

s1 s11U
2 ` s12UV ` s13V

2 s12U ` s13µ s11λ1 ` s12V

s2 s21U
2 ` s22UV s22U s21λ1 ` s22V

s3 s31U
2 ` s32UV s32U s31λ1 ` s32V

s4 s42UV s42U s42V

s5 s52UV s52U s52V

s6 s62UV s62U s62V

s7 s72UV s72U s72V

s8 s82UV s82U s82V

Once again we begin the analysis on the F-theory side with the evaluation of the order of

vanishing of the Tate coefficients. We obtain the Tate vectors

~tV “ p1, 1, 2, 3, 4, 7q , ~tU “ p1, 2, 3, 3, 5, 9q , (4.25)

which signal one SOp9q singularity at V “ 0 and one E7 singularity at U “ 0, each of which

being inherited by one half K3 surface.

For the analysis of the heterotic side, we split the two half K3 surfaces into a spectral

cover polynomial and the heterotic elliptic curve. We obtain

p` “ s11x
4
1 ` s21x

3
1x2 ` s31x

2
1x

2
2 , p´ “ s11x

4
1 , (4.26)

– 30 –



J
H
E
P
0
4
(
2
0
1
6
)
0
4
1

Figure 8. The half K3 surface X´ only exhibits the section S1 in addition to the zero section. In

contrast, X` gives rise to a spectral cover polynomial that has two pairs of irrational solutions Q1,

Q2, R1, R2 that sum up to SZ1 each.

from which we see that p´ is again a trivial spectral cover. Again, in order to evaluate

the non-trivial spectral cover p`, one needs to transform both constraints into Weierstrass

normal form. The interpretation of p` is as in the previous cases. We again obtain a

Weierstrass form p`W with a denominator. The explicit expression is rather lengthy and

can be provided upon request. Its divisor is given by

divpp`W q “ Q1 `Q2 `R1 `R2 ´ 2S1 ´ 2S0 , (4.27)

Here Q1, Q2 and R1, R2 are two pairs of irrational points which obey Q1 ‘ Q2 a S1 “ 0

and R1 ‘R2 aS1 “ 0. The divisor of p`W is again equivalent to the divisor of its numerator

reading

div
`

Numeratorpp`W q
˘

“ Q1 `Q2 `R1 `R2 ` 2 a S1 ´ 6S0 . (4.28)

By a similar token as before, we thus drop the denominator and just work with the numer-

ator of p`W .

All the points appearing here extend to sections of the half K3 surface X`. However,

while Q1, Q2, R1, R2 extend to rational sections of the half K3 surface they do not lift to

rational sections of the rational elliptic threefold. Altogether, we obtain as in the previous

examples two rational sections in both half K3 surfaces which glue to global sections and

therefore give rise to a Up1q factor. Besides that the spectral cover is split and describes a

vector bundle with structure group S
`

Up2qˆUp1q
˘

ˆ S
`

Up2qˆUp1q
˘

, where the Up1q part

in both factors needs to be identified. This is due to the fact that in both cases the same

point, aSZ1 , splits off. Thus, the spectral cover is isomorphic to SUp2qˆSUp2qˆUp1q whose

centralizer11 within E8 is given by SOp9q ˆ Up1q. Thus, we obtain again two seemingly

massive Up1q’s which give rise to one massless linear combination.

This model can be understood by a Higgsing mechanism. Either it can be viewed as

arising from the non-Abelian model in section B.3 with E8 ˆ SOp11q gauge symmetry, by

giving a vacuum expectation value to a Higgs corresponding to s72, or from the previous

example in section 4.2.2, by giving a vacuum expectation value to a Higgs associated to s31.

11We employ here the breaking E8 ÝÑ SOp9q ˆ SUp2q ˆ SUp2q ˆ SUp2q.
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Figure 9. The half K3 surface X´ has only one section SX
´

0 which merges with the section SX
`

0

from the other half K3 surface X`. X` has in addition also the section SX
`

which does not merge

with a section of X´. Thus, there is no Up1q-factor on the F-theory side.

4.2.4 Example with only one massive U(1): S
`

Up1q ˆUp1q
˘

structure group

Finally, we conclude the list of examples with a model which has only one Up1q-bundle

embedded into one of its E8 factors while the other E8 stays untouched. Accordingly there

is only one massive Up1q symmetry. On the F-theory side we obtain an E8 ˆ E6 ˆ SUp2q

gauge symmetry which matches the findings on the heterotic side.

The model is defined by the following specialization of the coefficients in the con-

straint (4.2):

Coefficient X X´ X`

s1 s13V
2 s13µ 0

s2 s22UV s22U s22V

s3 s32UV s32U s32V

s4 s41U
2 ` s42UV s42U s42V ` s41λ1

s5 s52UV s52U s52V

s6 s62UV s62U s62V

s7 0 0 0

s8 s82UV s82U s82V

First of all, we note that the coefficient s7 vanishes identically. Thus, we have changed

the ambient space of the fiber from Bl1Pp1,1,2q to Pp1,2,3q. Therefore, we do not expect to

see another section besides the zero section on the F-theory side and therefore no Up1q, cf.

appendix C.

First, we determine the gauge group on the F-theory side. As before, we evaluate the

Tate coefficients along the singular fibers which are in the case at hand located at U “ 0,

V “ 0 and s41U ` s42V “ 0. One obtains the Tate vectors

~tU “ p1, 2, 3, 4, 5, 10q , ~tV “ p1, 2, 2, 3, 5, 8q , ~ts41U`s42V “ p0, 0, 1, 1, 2, 2q . (4.29)

Clearly, these signal an E8 ˆ E6 ˆ SUp2q gauge group in F-theory. Also, after the stable

degeneration limit, one obtains one half K3 surface X´ with an E8 singularity and one,

X`, with an E6 ˆ SUp2q singularity.

For the further analysis we remark that there is the zero section S0 “ r0 : 1 : 0s in

the K3 surface only. As in the previous discussion, we refer to the Pp1,1,2q coordinates
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rx1 : x2 : x3s only, i.e. we work in the limit x4 Ñ 1, x5 Ñ 1. For the two half K3s one finds

that X´ has only a zero section. In contrast, one observes the sections12 SX
`

“ r1 : 0 : 0s

and aSX
`

“ rs82V : 0 : ´s52s82V
2s in the other half K3 surface X`. However, these

sections do not glue with another section of X´ and therefore do not give rise to a Up1q

symmetry from the F-theory perspective. However, from the heterotic perspective they

should give rise to a massive Up1q which upon commutation within E8 leaves an E6ˆSUp2q

gauge symmetry.

This result is in agreement with the spectral cover analysis. One evaluates the spectral

cover polynomials as

p´ “ s13x
4
1 p` “ s41x1x

3
2 . (4.30)

As observed already before, the Weierstrass transform p´W of p´ does not have any com-

mon solution with the heterotic elliptic curve and therefore the E8-symmetry does not get

broken. For the half K3 surface X`, the common solutions to p`W and the heterotic elliptic

curve are given in Weierstrass coordinates rx : y : zs as

SZW “

„

1

12
ps2

62 ´ 4s32s82q : ´
1

2
s42s52s82 : 1



,

aSZW “

„

1

12
ps2

62 ´ 4s32s82q :
1

2
s42s52s82 : 1



. (4.31)

Here, SZW and aSZW denote the intersections of SX
`

and aSX
`

with the heterotic geometry

Z respectively, in Weierstrass coordinates. Thus, we observe a split spectral cover pointing

towards the structure group S
`

Up1qˆUp1q
˘

. Using the breaking E8 ÝÑ E6ˆSUp2qˆUp1q,

this spectral cover matches with the observed gauge group. The Up1q is decoupled from

the massless spectrum via the Stückelberg effect of section 2.4.

4.3 Split spectral covers with torsional points

In the following, we discuss examples which exhibit a torsional section in their spectral

covers. As mentioned before, heterotic/F-theory duality suggests that the structure group

of the heterotic vector bundle should contain a discrete part.

4.3.1 Structure group Z2: E8 ˆ E7 ˆ SUp2q gauge symmetry

We consider a model which arises by the following specialization of coefficients in (4.2):

Coefficient X X´ X`

s1 s13V
2 s13µ 0

s2 s22UV s22U s22V

s3 s32UV s32U s32V

s4 s41U
2 ` s42UV s42U s42V ` s41λ1

s5 0 0 0

s6 s62UV s62U s62V

s7 0 0 0

s8 s82UV s82U s82V

12Clearly, as the rank of the Mordell Weil group of X` is positive, there are in fact infinitely many

sections.
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Figure 10. The stable degeneration limit of a K3 surface with E8 ˆ
`

E7 ˆ SUp2q
˘

{Z2. The

half K3 surface X´ has trivial Mordell-Weil group, while the half K3 surface X` has a torsional

Mordell-Weil group Z2.

Figure 11. The left picture shows the specialized two-dimensional polytope ∆2 corresponding to

the monomials parameterizing the elliptic fiber of the half K3 surface X`. The right figure shows

its dual, ∆˝
2, which specifies the ambient space of the elliptic fiber of X`.

We start the analysis with the gauge group on the F-theory side first. There are three

singular loci of the fibration at U “ 0, V “ 0 and s41U ` s42V “ 0. The evaluation of the

Tate coefficients reveals the Tate vectors

~tU “ p1, 2,8, 4, 5, 10q , tV “ p1, 2,8, 3, 5, 9q , ~ts41U`s42V “ p0, 0,8, 1, 2, 2q .

(4.32)

Thus, there are an E8 singularity as well as an E7 and an SUp2q singularity. The E8

singularity is inherited by the half K3 surface X´ while X` gets endowed with an E7 and

an SUp2q singularity.

As a next step, we observe that there is only one section given by r1 : 0 : 0s in the half

K3 surface X´ and two sections given by rx1 : x2 : x3s “ r0 : 1 : 0s and rx1 : x2 : x3s “

r1 : 0 : 0s in the half K3 surface X`. Here, we work again in the limit x4 “ x5 “ 1. In

contrast, the full K3 surface has only one section namely the point at infinity. Moreover,

a transformation into Weierstrass coordinates shows that the generic section SX
`

1 has

specialized into a torsional section of order two as can be checked using the results of [37].

This is expected, as the centralizer of the gauge algebra13 E7 ˆ SUp2q within E8 is given

by Z2, which is also expected from the general analysis of [56]. In contrast, the full K3

surface X does not have a torsional section of order two [57].

13To be precise, E8 only contains the group
`

E7 ˆ SUp2q
˘

{Z2 as a subgroup.
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Finally, we turn towards the analysis of the gauge group from the heterotic side. Here,

the spectral cover is given by

p´ “ s13x
4
1 , p` “ s41x1x

3
2 . (4.33)

After transformation to Weierstrass normal coordinates p´W is given by a constant which

has no common solution with the elliptic curve. In contrast, the transformed quantity p`W
gives rise to the point

rx : y : zs “

„

1

3

ˆ

s2
62

4
´ s32s82

˙

: 0 : 1



. (4.34)

which is a torsion point of order two. In other words we see that the spectral cover is just

given by a torsional point.

In [37] it has been suggested that an F-theory compactification with a torsional section

in an elliptically fibered Calabi-Yau manifold and its stable degeneration limit should be

dual to pointlike instantons with discrete holonomy on the heterotic side. Due to the simi-

larity to the considered example, we propose that the spectral cover p`W is to be interpreted

as describing such a pointlike instanton with discrete holonomy. In addition, as pointed

out above, the matching of gauge symmetry on both sides of the duality only works if the

spectral cover p`W is interpreted in this way. It would be exciting to confirm this proposal

further by a more detailed analysis of the spectral cover, computation of the heterotic

tadpole, or an analysis of codimension two singularities in F-theory.

4.3.2 Structure group S
`

Up2q ˆ Z2

˘

: E8 ˆ E6 ˆUp1q gauge symmetry

In this section we present another example whose spectral cover polynomial contains a

torsional point and leads to an E8 ˆ E6 ˆ Up1q gauge symmetry. As one E8 factor is left

intact, the Up1q factor needs to be embedded solely into one E8 bundle.

The starting point of our analysis is the following specialization of coefficients in (4.2):

Coefficient X X´ X`

s1 s13V
2 s13µ 0

s2 s22UV s22U s22V

s3 s32UV s32U s32V

s4 s41U
2 ` s42UV s42U s42V ` s41λ1

s5 0 0 0

s6 s62UV s62U s62V

s7 s71U
2 0 s71λ1

s8 s82UV s82U s82V

As in the previous cases, we compute the orders of vanishing of the Tate coefficients

in order to determine the gauge group on the F-theory side. The computed Tate vectors

signal an E8 symmetry at U “ 0 and an E6 symmetry at V “ 0. As a next step, we

investigate the rational sections of X. As the coefficient s7 does not vanish for the full

K3 surface, there are the two generic sections S0, S1 realized in this model. However, the

half K3 surface X´ only has the zero section SX
´

0 . In contrast, the half K3 surface X`
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Figure 12. The half K3 surface X´ exhibits only the zero section, while the half K3 surface X`

has also the section SX
`

1 which merges with the section SX
´

0 along the heterotic geometry. Thus

there are two independent sections in the full K3 surface giving rise to a Up1q gauge group factor.

In addition, the inverse of SX
`

1 becomes a torsion point of order two when hitting the heterotic

geometry.

has two linear independent sections given by SX
`

0 , SX
`

1 , which lift to rational sections of

the elliptic threefold. Due to the theory of rational elliptic surfaces, there is another linear

independent section of X` in 8D which nevertheless does not lift to a rational section

of the rational elliptic threefold. The two linear independent rational sections unify in

the heterotic elliptic curve and continue as one section into the other half K3 surface, see

figure 12. This behavior of rational sections explains the origin of the Up1q-factor from the

gluing condition discussed in section 2.4.2.

As a further step, we investigate how this Up1q factor is reflected in the spectral cover

on the heterotic side. The spectral cover polynomials computed by stable degeneration read

p´ “ s13x
4
1 , p` “ s41x1x

3
2 ` s71x

2
2x3 . (4.35)

The interpretation of p´ is as in all the other cases just a trivial spectral cover. The

common solution to p` and the heterotic Calabi-Yau manifold Z is given by a pair of

irrational points R1, R2 as well as a further point Tt which has in Weierstrass normal form

coordinates

Tt “

„

1

3

ˆ

1

4
s2

62 ´ s32s82

˙

: 0 : 1



. (4.36)

Thus, it is a torsion point of order two. However, it does not extend as a full torsional

section into the half K3 surface X`. The corresponding section is rather the inverse of S1.

Again we see that the split spectral cover p` contains a torsional section. Let us

comment on the interpretation of this for the structure group of the heterotic vector bundle.

Heterotic/F-theory duality implies that the low-energy effective theory contains a massless

Up1q-symmetry. However, as we have seen in section 2.4, a Up1q background bundle in

the heterotic theory has a non-trivial field strength and thus a non-vanishing first Chern

class, which would yield a massive Up1q in the effective field theory. Thus, we can not

interpret the torsional component Tt to the spectral cover as a Up1q background bundle.

By the arguments of section 2.2 and the similarity to the setups considered in [37], it is

tempting to identify this torsional component Tt as a pointlike heterotic instanton with

discrete holonomy. In order to justify this statement, it would be necessary to compute
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the first Chern class of a heterotic line bundle that is defined in terms of components

to the cameral cover given by rational sections of the half K3 fibrations arising in stable

degeneration. In [49], it has been argued that the first Chern class is given, up to vertical

components, by the difference of the rational section and the zero section. If the first Chern

class would be completed into the Shioda map of the rational section, which we conjecture

to be the case, it would be zero precisely for a torsional section [58]. Consequently, the

Up1q in the commutant of E8 would remain massless as the gauging in (2.23) would be

absent. It would be exciting to confirm this conjecture by working out the missing vertical

part in the formula for the first Chern class of a Up1q vector bundle.

4.4 U(1) factors arising from purely non-Abelian structure groups

In this final section, we present an example in which the heterotic vector bundle has only

purely non-Abelian structure group, while the F-theory gauge group analysis clearly signals

a Up1q factor.

As in the previous cases, we start by specifying the specialization of the coefficients in

the defining hypersurface equation for X:

Coefficient X X´ X`

s1 s12UV ` s13V
2 s12U ` s13µ s12V

s2 s22UV s22U s22V

s3 s32UV s32U s32V

s4 s42UV s42U s42V

s5 s52UV s52U s52V

s6 s62UV s62U s62V

s7 s71U
2 0 s71λ1

s8 s82UV s82U s82V

We determine the gauge symmetry of the F-theory side by analysis of the Tate coefficients.

We obtain the Tate vectors

~tU “ p1, 2, 3, 4, 5, 10q ~tV “ p1, 1, 2, 2, 4, 6q , (4.37)

which reveal an E8 singularity at U “ 0 and an SOp7q singularity at V “ 0. We note that

it is not directly possible to distinguish an SOp7q singularity from an SOp8q singularity

using the Tate table 2 only. To confirm that the type of singularity is indeed SO(7) we

have to investigate the monodromy cover [59] which is for an I˚0 fiber given by

A : ψ3 `

ˆ

f

v2

ˇ

ˇ

ˇ

ˇ

v“0

˙

ψ `

ˆ

g

v3

ˇ

ˇ

ˇ

ˇ

v“0

˙

“ 0 . (4.38)

Here, v is the affine coordinate V {U and f, g are the Weierstrass coefficients. An I˚0 fiber

is SOp7q if the monodromy cover A factors into a quadratic and a linear constraint, which

is indeed the case for the example at hand.

The stable degeneration limit yields two half K3 surfaces, X` and X´, cf. figure 13.

There only exists the zero section in X´. In contrast, X` has two independent sections

which are given by SX
`

0 and SX
`

1 and lift to rational sections of the rational elliptic
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Figure 13. The half K3 surface X´ exhibits only the zero section, while the half K3 surface X`

has also the section SX
`

1 which merges with the section SX
´

0 in the heterotic geometry. Thus, there

are two independent sections in the full K3 surface giving rise to a Up1q gauge group factor.

threefold.14 As in the previously considered case in section 4.3.2, SX
`

1 unifies with SX
´

0 on

the heterotic elliptic curve. Thus, there are two global sections in the full K3 surface and

therefore a Up1q factor in the F-theory compactification.

Turning towards the discussion of the heterotic gauge bundles, one finds that the Up1q

factor is encoded in the data of the spectral cover polynomial as follows. We observe that

the spectral covers following X` and X´, respectively, are given by

p´ “ s13x
4
1 , p` “ s71x

2
2x3 . (4.39)

The intersection of its Weierstrass transform p`W with the heterotic elliptic curve gives five

irrational points R1, R2, T1, T2, T3 with R1 ‘R2 “ 0 and T1 ‘ T2 ‘ T3 “ 0. Thus we have

a heterotic vector bundle with SUp2q ˆ SUp3q structure group. As the spectral cover p`

has one free parameter only, namely s71, this model does not seem to have any moduli.

As our understanding of the precise embedding of the structure group into E8 is limited,

we have checked all possible ways to embed the group SOp7q ˆ SUp2q ˆ SUp3q into E8.

Independently of the chosen embedding, there is always a Up1q in all possible breakings.

Thus, we are led to conclude that the centralizer of SUp2q ˆ SUp3q necessarily produces a

Up1q factor which matches with the F-theoric analysis.

5 Conclusions and future directions

In this paper we have presented a first explicit analysis of the origin of Abelian gauge

symmetries for string theory compactifications within the duality between the E8 ˆ E8

heterotic string and F-theory. Here we summarize the framework of the analysis, highlight

the key advancements, and conclude with future directions.

Framework. We have focused on F-theory compactifcations with a rank one Mordell-

Weil group of rational sections both for compactifications to 8D and 6D. We have system-

atically studied a broad class F-theory compactifications on elliptically fibered Calabi-Yau

pn`1q-folds (with n “ 1, 2, respectively) with rational sections and rigorously performed the

14On the level of the rational elliptic surface X`2 , there are additional linear independent sections which

however do not lift into the six-dimensional geometry.
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stable degeneration limit to dual heterotic compactifications on elliptically fibered Calabi-

Yau n-folds. All considered examples are toric hypersurfaces and the stable degeneration

limit is performed as a toric symplectic cut.

The key aspects of the analysis are the following:

• We have carefully investigated the solutions of the spectral cover polynomial and the

hypersurface for the heterotic elliptically fibered Calabi-Yau manifold. We have used

the group law of the elliptic curve in Weierstrass normal form in order to determine

the structure group of the heterotic background bundle.

• We have analyzed the origin of the resulting gauge group. In 6D this involves in-

corporation of the massive Up1q gauge symmetries, due to the heterotic Stückelberg

mechanism, that are not visible in F-theory.

Key results. While the F-theory side provides a unifying treatment of Abelian gauge

symmetries, as encoded in the Mordell-Weil group of elliptically fibered Calabi-Yau pn`1q-

folds, a detailed analysis of a broad classes of toric F-theory compactifications has resulted

in the proposal of three different classes of heterotic duals that give rise to Up1q gauge

group factors:

• Split spectral covers describing bundles with S
`

Upmq ˆ Up1q
˘

structure group. Ex-

amples of this type have been discussed in section 4.2.

• Spectral covers containing torsional sections giving rise to bundles with SUpmq ˆ Zk
structure group. Classes of examples with this structure group have been presented

in section 4.3.

• The appearance of bundles with structure groups of the type SUpmq ˆ SUplq whose

commutants inside E8 contain a Up1q-factor. Explicit examples of this form can be

found in section 4.4.

Future directions. While the work presents a pioneering effort, addressing comprehen-

sively the origin of Abelian gauge group factors in heterotic/F-theory duality for a class of

compactifications, the analysis provides a stage for further studies, both by extending the

systematics of the analysis and by further detailed studies of the dual heterotic geometry

and vector bundle data.

• It would be important to extend the studies to examples within larger classes of

pairs of dual toric varieties as well as of more general elliptically fibered Calabi-Yau

manifolds, respectively. In particular, this would allow to account for studies of dual

geometries with broader classes of complex structure moduli spaces, and thus for an

analysis of more general spectral covers of dual heterotic vector bundles. In 6D our

analysis has been limited to a specific elliptically fibered Calabi-Yau pn ` 1q-fold,

which has resulted in constrained appearances of non-Abelian gauge symmetries and

additional Up1q’s. In particular, it would be illuminating to elaborate on the stable

degeneration limit for general toric fibrations of two-dimensional polyhedra over P1

in 8D and, in addition, over Hirzebruch surfaces in 6D.

– 39 –



J
H
E
P
0
4
(
2
0
1
6
)
0
4
1

• It would be interesting to have the tools to study the spectral cover directly in the

Bl1Pp1,1,2q model or more generally for fiber geometries which are given by the sixteen

two-dimensioal reflexive polyhedra. This would require in particular a notion of the

group law for these representations of elliptic curves.

• The study of the properties of the spectral cover was primarily confined to the deriva-

tion of the resulting gauge symmetries and the structure groups of the heterotic vector

bundles. Further analysis of the spectral cover in compactifications to 6D (and ex-

tensions to 4D) is needed; it should shed light on the further spectral cover data,

which enter Chern classes, anomaly cancellation and matter spectrum calculations.

This study is complicated by the resolution of singularities of the heterotic geometry

that may have to be performed, resulting in spectral covers, which are not finite [55].

• Our analysis has been primarily constrained to studies of Abelian gauge symmetries

in the language of a perturbative heterotic dual. Although we have encountered

spectral covers which seem to describe small instantons, i.e. non-perturbative M5-

branes, with discrete holonomy, we have not systematically analyzed their effect.

In F-theory, M5-branes are visible as non-minimal singularities which occur at co-

dimension two loci that have to be blown up. It would be interesting to thoroughly

perform this geometric analysis. We expect in addition rich structures of Abelian

gauge symmetry factors in F-theory whose heterotic duals are due to other types

of non-perturbative M5-branes. Furthermore, it would be interesting to study the

geometric transitions between F-theory geometries with different numbers of tensor

multiplets, whose discussion is again related to this resolution process.
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A Weierstrass and Tate form of the hypersurface χ

In this appendix, we summarize the Weierstrass normal form as well as the Tate coefficients

of the χ model. For convenience, we recall the most general form of the hypersurface χ
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which reads in the limit x4 Ñ 1, x5 Ñ 1

χ :“ s1x
4
1`s2x

3
1x2`s3x

2
1x

2
2`s4x1x

3
2`s5x

2
1x3`s6x1x2x3`s7x

2
2x3`s8x

2
3 “ 0 , si P OP1p2q .

(A.1)

This can be brought in the so-called Tate form

y2 ` a1xy ` a3y “ x3 ` a2 ` a4x` a6 . (A.2)

The Tate coefficients are explicitly given as [30]

a1 “ s6 ,

a2 “ ´s5s7 ´ s3s8 ,

a3 “ ´s4s5s8 ´ s2s7s8 ,

a4 “ s3s5s7s8 ` s1s
2
7s8 ` s2s4s

2
8 ,

a6 “ ´s1s3s
2
7s

2
8 ´ s1s

2
4s

3
8 ` s4s7p´s2s5s

2
8 ` s1s6s

2
8q . (A.3)

In addition, it is useful, to introduce the quantities

b2 “ a2
1 ` 4a2 ,

b4 “ a1a3 ` 2a4 ,

b6 “ a2
3 ` 4a6 . (A.4)

The Weierstrass normal form of χsing reads

f “

ˆ

´
1

48
s4

62 `
1

6
s52s

2
62s72 ´

1

3
s2

52s
2
72 ´

1

2
s42s52s62s82 `

1

6
s32s

2
62s82

`
1

3
s32s52s72s82 ´

1

2
s22s62s72s82 ` s21s

2
72s82 ´

1

3
s2

32s
2
82 ` s22s42s

2
82

˙

.

g “

ˆ

1

864
s6

62 ´
1

72
s52s

4
62s72 `

1

18
s2

52s
2
62s

2
72 ´

2

27
s3

52s
3
72 `

1

24
s42s52s

3
62s82

´
1

72
s32s

4
62s82 ´

1

6
s42s

2
52s62s72s82 `

1

36
s32s52s

2
62s72s82 `

1

24
s22s

3
62s72s82

`
1

9
s32s

2
52s

2
72s82 ´

1

6
s22s52s62s

2
72s82 ´

1

12
s21s

2
62s

2
72s82 `

1

3
s21s52s

3
72s82

`
1

4
s2

42s
2
52s

2
82 ´

1

6
s32s42s52s62s

2
82 `

1

18
s2

32s
2
62s

2
82 ´

1

12
s22s42s

2
62s

2
82

`
1

9
s2

32s52s72s
2
82 ´

1

6
s22s42s52s72s

2
82 ´

1

6
s22s32s62s72s

2
82 ` s21s42s62s72s

2
82

`
1

4
s2

22s
2
72s

2
82 ´

2

3
s21s32s

2
72s

2
82 ´

2

27
s3

32s
3
82 `

1

3
s22s32s42s

3
82 ´ s21s

2
42s

3
82

˙

. (A.5)

In particular, the discriminant reads

∆ “ 4f3 ` 27g2 “
1

48
s2

82p . . . q . (A.6)

where the expression in the bracket denotes a generic polynomial.
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A.1 The map to Weierstrass normal form

In this subsection we discuss the bi-rational map of (A.1) to Weierstrass normal form. As

a first step, we transform (4.2) into the form

s̃1x
4
1 ` s̃2x

3
1x2 ` s̃3x

2
1x

2
2 ` s̃4x1x

3
2 ` s7x

2
2x3 ` x

2
3 “ 0 . (A.7)

Here, we have introduced the new quantities

s̃1 “ ´
1

4
s2

5`s0s8 , s̃2 “ ´
1

2
s5s6`s1s8 , s̃3 “ ´

1

4
s2

6´
1

2
s5s7`s3s8 , s̃4 “ ´

1

2
s6s7`s4s8

(A.8)

Next, one uses the transformations provided in [22]

x1 ÞÝÑ z

x2 ÞÝÑ
6s7y ` 6s̃4xz ` 2s̃3s̃4z

3 ` 3s̃2s
2
7z

3

2p3s2
7x´ 3s̃2

4z
2 ´ 2s̃3s2

7z
2q

x3 ÞÝÑ p108s3
7x

3 ´ 108s3
7y

2 ´ 108s̃4s
2
7xyz ´ 216s̃2

4s7x
2z2 ´ 108s̃3s

3
7x

2z2 ´ 108s̃3
4yz

3

´ 144s̃3s̃4s
2
7yz

3 ´ 108s̃2s
4
7yz

3 ´ 36s̃3s̃
2
4s7xz

4 ´ 54s̃2s̃4s
3
7xz

4 ` 12s̃2
3s̃

2
4s7z

6

´ 54s̃2s̃
3
4s7z

6 ` 16s̃3
3s

3
7z

6 ´ 72s̃2s̃3s̃4s
3
7z

6 ´ 27s̃2
2s

5
7z

6q
L

12p3s2
7x´ 3s̃2

4z
2 ´ 2s̃3s

2
7z

2q2 (A.9)

in order to finally bring (A.7) into Weierstrass normal form in Pp1,2,3q. We also note that

the transformations (A.9) simplify in the case s7 “ 0, in particular their denominators

loose their dependence on x, y.

B Spectral cover examples with no U(1)

For convenience and to demonstrate how our formalism works in a well-understood sit-

uation, we analyze several examples with pure non-Abelian gauge content only. These

are related to the examples 4.2.1, 4.2.2 and 4.2.3 by a Higgsing process which gives s72 a

vacuum expectation value.

B.1 Trivial structure group: E8 ˆ E8 gauge symmetry

As described in the section 4.1, we can obtain examples with higher rank gauge symmetry

by specializing the coefficients of χ. Aiming for a model with E8 ˆ E8 gauge symmetry,

one obtains the following coefficients.

Coefficient K3 X´ X`

s1 s11U
2 ` s12UV ` s13V

2 s12U ` s13µ s12V ` s11λ1

s2 s22UV s22U s22V

s3 s32UV s32U s32V

s4 s42UV s42U s42V

s5 s52UV s52U s52V

s6 s62UV s62U s62V

s7 0 0 0

s8 s82UV s82U s82V
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Here the second row displays the coefficients of the full K3 surface while the coefficients

of the two half K3 surfaces are displayed in row three and four. In particular, one notices

that the coefficient s7 is missing which means that one is passing from the toric ambient

space Bl1Pp1,1,2q ˆ P1 to the ambient space Pp1,2,3q ˆ P1. Clearly, a generic section of the

anti-canonical bundle of Pp1,2,3q does not have a second rational section, so there is also no

reason to expect any Up1q.

We proceed by analyzing the F-theory gauge group. The analysis of the Tate vectors

reveals that
~tU “ ~tV “ p1, 2, 3, 4, 5, 10q (B.1)

and thus there is an E8 ˆ E8 gauge symmetry. After the stable degeneration limit, both

half K3 surfaces X` and X´ obtain one E8 singularity each.

Finally, we turn to the heterotic side. The splitting of the two half K3’s into the

heterotic elliptic curve and the spectral cover contributions reveals that

p` “ s11x
4
1 , p´ “ s13x

4
1 . (B.2)

After transforming these expressions into the affine Weierstrass coordinates x, y, one ob-

tains

p`W “ s11 , p´W “ s13 (B.3)

In both cases, one obtains an SUp1q spectral cover. However, the centralizer of the identity

in E8 is E8 and one obtains a perfect match with the F-theory calculation.

B.2 Structure group SUp1q ˆ SUp2q: E8 ˆ E7 gauge symmetry

We consider the following model which is specified by the following coefficients in (4.2).

Coefficient K3 X´ X`

s1 s11U
2 ` s12UV ` s13V

2 s12U ` s13µ s12V ` s11λ1

s2 s21U
2 ` s22UV s22U s22V ` s21λ1

s3 s32UV s32U s32V

s4 s42UV s42U s42V

s5 s52UV s52U s52V

s6 s62UV s62U s62V

s7 0 0 0

s8 s82UV s82U s82V

This time, we obtain the following Tate vectors

~tV “ p1, 2, 3, 3, 5, 9q , ~tU “ p1, 2, 3, 4, 5, 10q (B.4)

which signal an E7 singularity at V “ 0 as well as an E8 singularity at U “ 0. The latter

one is inherited by the half K3 surface X´ while the former one moves into X`.

The spectral cover is in this case given by

p` “ x3
1ps11x1 ` s21x2q , p´ “ s11x

4
1 . (B.5)
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We only comment on the non-trivial spectral cover. After applying the transforma-

tion (A.9), it reads

p`W “ c0 ` c1x (B.6)

which defines an SUp2q spectral cover and is precisely what is expected. Explicitly, the

ci’s read

c0 “ s21s
2
62 ´ 4s21s32s82 ` 12s11s42s82 c1 “ ´s21 (B.7)

Note that the ci are indeed proportional to s11, s21 which define the spectral cover. Thus,

we obtain an SUp2q spectral cover in the case of X` and a trivial structure group for the

case of X´. In conclusion, there is a perfect match with the F-theory analysis.

B.3 Example with gauge group E8 ˆ SOp11q

We consider the following model which is specified by the following coefficients in (4.2).

Coefficient K3 X´ X`

s1 s11U
2 ` s12UV ` s13V

2 s12U ` s13µ s12V ` s11λ1

s2 s21U
2 ` s22UV s22U s22V ` s21λ1

s3 s31U
2 ` s32UV s32U s32V ` s31λ1

s4 s42UV s42U s42V

s5 s52UV s52U s52V

s6 s62UV s62U s62V

s7 0 0 0

s8 s82UV s82U s82V

This time, we obtain the following Tate vectors

~tV “ p1, 1, 3, 3, 5, 8q , ~tU “ p1, 2, 3, 4, 5, 10q (B.8)

which signal an SOp11q singularity at V “ 0 as well as an E8 singularity at U “ 0. The

former one is inherited by the half K3 surface X` while the latter one moves into X´.

The spectral cover is in this case given by

p` “ x2
1ps11x

2
1 ` s21x1x2 ` s31x

2
2q , p´ “ s11x

4
1 . (B.9)

We only comment on the non-trivial spectral cover. After applying the transforma-

tion (A.9), it reads

p`W “ c0 ` c1x` c2x
2 (B.10)

which defines an Spp2q – SOp5q spectral cover15 [7] and is precisely what is expected.

Thus, we obtain an Spp2q spectral cover in the case of X` and a trivial structure group

for the case of X´. The commutant of SOp5q within E8 is given by SOp11q.

15Sometimes, SPpNq is denoted by SPp2Nq.
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C Tuned models without rational sections

In this appendix we reproduce [22, 54] the following

Lemma C.1. The two sections denoted by x1 “ 0 and x4 “ 0 in (4.3) merge into a

single section if and only if s7 “ 0 in (4.2). Furthermore, the single section is given by

rx1 : x2 : x3 : x4 : x5s “ r0 : 1 : 1 : 0 : 1s.

Proof. Suppose the two sections x1 “ 0 and x4 “ 0 merge into a single section. Then this

single section obeys both x1 “ 0 and x4 “ 0, everywhere. Thus the Stanley-Reisner ideal

requires x2 ‰ 0, x3 ‰ 0 and x5 ‰ 0 everywhere. Making use of the skaling relations (3.7)

of the resolved space Bl1Pp1,1,2q, one obtains that this section is indeed given by rx1 : x2 :

x3 : x4 : x5s “ r0 : 1 : 1 : 0 : 1s.

Suppose now that s7 “ 0. Setting x1 in (4.2) to zero, results in the equation s8x
2
3x4 “ 0.

As x3 ‰ 0 due to the Stanley Reisner ideal, x4 has to vanish as well resulting in the merging

of the two sections. Similarly, x4 “ 0 requires that s4x1x
3
2x

2
5 “ 0. The Stanley Reisner

ideal requires x2 and x5 to be non-vanishing. Thus, there is also in this case only one

section given by rx1 : x2 : x3 : x4 : x5s “ r0 : 1 : 1 : 0 : 1s.

D Non-commutativity of the semi-stable degeneration limit and the map

to Weierstrass form

We illustrate the non-commutativity of the diagram 1 using the above example with gauge

group E7 ˆ SOp9q ˆUp1q. To be precise, on the top left corner of the diagram, the section

χ of ´KBl1Pp1,1,2qˆP1 is given by

χ : s1x
4
1 ` s2x

3
1x2 ` s3x

2
1x

2
2 ` s4x1x

3
2 ` s5x

2
1x3 ` s6x1x2x3 ` s7x

2
2x3 ` s8x

2
3 “ 0 ,

where s1 “ s11U
2 ` s12UV ` s13V

2, si “ si1U
2 ` si2UV for 2 ď i ď 3 ,

si “ si2UV for 4 ď i ď 8 . (D.1)

Under the stable degeneration limit, denoted by the left map in the diagram 1, χ is split

into χ˘, which are in turn defined by

χ˘ : s˘1 x
4
1 ` s

˘
2 x

3
1x2 ` s

˘
3 x

2
1x

2
2 ` s

˘
4 x1x

3
2 ` s

˘
5 x

2
1x3 ` s

˘
6 x1x2x3 ` s

˘
7 x

2
2x3 ` s

˘
8 x

2
3 “ 0 ,

where s`1 “ s12U ` s13µ , s´1 “ s11λ1 ` s12V,

s`i “ si2U and s´i “ si1λ1 ` si2V for 2 ď i ď 3 ,

s`i “ si2U and s´i “ si2V for 4 ď i ď 8 . (D.2)

We further map χ˘, under the bottom map of the diagram 1, into their respective Weier-

strass forms

W˘
χ : y2 “ x3 ` f˘χ xz

4 ` g˘χ z
6. (D.3)

We can show that W˘
χ obtained in this way is different compared to W

1˘
χ obtained by

taking the other route in diagram 1, namely start from χ on the top left corner of the
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diagram, first map χ into its Weierstrass form Wχ using the map on top of 1, and then use

the map on the right of 1 to split Wχ into

W
1˘
χ : y2 “ x3 ` f

1˘
χ xz4 ` g

1˘
χ z

6. (D.4)

Indeed,

W`
χ ‰W

1`
χ , W´

χ ‰W
1´
χ . (D.5)

To be precise,

f˘χ “f
1˘
χ but g˘χ ‰g

1˘
χ , g`χ ´ g

1`
χ “

2

3
U6s13s31s

2
72s

2
82 , g´χ ´ g

1´
χ “

2

3
V 6s13s31s

2
72s

2
82 .

(D.6)
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[28] M. Cvetič, D. Klevers, H. Piragua and P. Song, Elliptic fibrations with rank three

Mordell-Weil group: F-theory with Up1q ˆUp1q ˆUp1q gauge symmetry, JHEP 03 (2014) 021

[arXiv:1310.0463] [INSPIRE].

[29] V. Braun, T.W. Grimm and J. Keitel, Complete intersection fibers in F-theory,

JHEP 03 (2015) 125 [arXiv:1411.2615] [INSPIRE].

[30] D. Klevers, D.K. Mayorga Pena, P.-K. Oehlmann, H. Piragua and J. Reuter, F-theory on all

toric hypersurface fibrations and its Higgs branches, JHEP 01 (2015) 142 [arXiv:1408.4808]

[INSPIRE].

– 47 –

http://dx.doi.org/10.1007/JHEP04(2010)015
http://arxiv.org/abs/0909.2025
http://inspirehep.net/search?p=find+EPRINT+arXiv:0909.2025
http://dx.doi.org/10.1016/j.nuclphysb.2010.06.011
http://arxiv.org/abs/0912.3250
http://inspirehep.net/search?p=find+EPRINT+arXiv:0912.3250
http://dx.doi.org/10.4310/ATMP.2010.v14.n5.a3
http://arxiv.org/abs/0912.3265
http://inspirehep.net/search?p=find+EPRINT+arXiv:0912.3265
http://dx.doi.org/10.1007/JHEP11(2011)101
http://arxiv.org/abs/1107.2388
http://inspirehep.net/search?p=find+EPRINT+arXiv:1107.2388
http://dx.doi.org/10.1007/JHEP11(2012)004
http://arxiv.org/abs/1209.4906
http://inspirehep.net/search?p=find+EPRINT+arXiv:1209.4906
http://dx.doi.org/10.1016/S0550-3213(96)00699-2
http://arxiv.org/abs/hep-th/9607121
http://inspirehep.net/search?p=find+EPRINT+hep-th/9607121
http://arxiv.org/abs/hep-th/9607139
http://inspirehep.net/search?p=find+EPRINT+hep-th/9607139
http://www.ipmu.jp/node/552
http://dx.doi.org/10.1007/JHEP10(2012)128
http://arxiv.org/abs/1208.2695
http://inspirehep.net/search?p=find+EPRINT+arXiv:1208.2695
http://dx.doi.org/10.1103/PhysRevD.88.046005
http://arxiv.org/abs/1303.5054
http://inspirehep.net/search?p=find+EPRINT+arXiv:1303.5054
http://dx.doi.org/10.1007/JHEP06(2013)067
http://arxiv.org/abs/1303.6970
http://inspirehep.net/search?p=find+EPRINT+arXiv:1303.6970
http://dx.doi.org/10.1007/JHEP04(2014)010
http://arxiv.org/abs/1306.3987
http://inspirehep.net/search?p=find+EPRINT+arXiv:1306.3987
http://dx.doi.org/10.1016/j.nuclphysb.2014.02.006
http://arxiv.org/abs/1307.2902
http://inspirehep.net/search?p=find+EPRINT+arXiv:1307.2902
http://dx.doi.org/10.1007/JHEP12(2013)056
http://arxiv.org/abs/1307.6425
http://inspirehep.net/search?p=find+EPRINT+arXiv:1307.6425
http://dx.doi.org/10.1007/JHEP03(2014)021
http://arxiv.org/abs/1310.0463
http://inspirehep.net/search?p=find+EPRINT+arXiv:1310.0463
http://dx.doi.org/10.1007/JHEP03(2015)125
http://arxiv.org/abs/1411.2615
http://inspirehep.net/search?p=find+EPRINT+arXiv:1411.2615
http://dx.doi.org/10.1007/JHEP01(2015)142
http://arxiv.org/abs/1408.4808
http://inspirehep.net/search?p=find+EPRINT+arXiv:1408.4808


J
H
E
P
0
4
(
2
0
1
6
)
0
4
1
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