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Abstract. We study the phenomenon of stochastic resonance on diffusive,
small-world and scale-free networks consisting of bistable overdamped
oscillators. Important thereby is the fact that the external subthreshold periodic
forcing is introduced only to a single oscillator of the network. Hence, the forcing
acts as a pacemaker trying to impose its rhythm on the whole network through
the unit to which it is introduced. Without the addition of additive spatiotemporal
noise, however, the whole network, including the unit that is directly exposed to
the pacemaker, remains trapped forever in one of the two stable steady states
of the local dynamics. We show that the correlation between the frequency of
subthreshold pacemaker activity and the response of the network is resonantly
dependent on the intensity of additive noise. The reported pacemaker-driven
stochastic resonance depends most significantly on the coupling strength and
the underlying network structure. Namely, the outreach of the pacemaker obeys
the classic diffusion law in the case of nearest-neighbor interactions, thus being
proportional to the square root of the coupling strength, whereas it becomes
superdiffusive by an appropriate small-world or scale-free topology of the
interaction network. In particular, the scale-free topology is identified as being
optimal for the dissemination of localized rhythmic activity across the whole
network. Also, we show that the ratio between the clustering coefficient and the
characteristic path length is the crucial quantity defining the ability of a small-
world network to facilitate the outreach of the pacemaker-emitted subthreshold
rhythm. We additionally confirm these findings by using the FitzHugh–Nagumo
excitable system as an alternative to the bistable overdamped oscillator.
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1. Introduction

The study of noise-induced constructive effects in nonlinear dynamical systems has gained a
lot of attention in the last two decades [1]. Two of the perhaps most famous phenomena are
stochastic resonance (examples of reviews are [2]), where noise enhances the response of a
system to weak external forcing in a resonant manner, and coherence resonance [3], where the
impact of noise alone induces coherent system behavior. Seminal works within the context of
stochastic resonance have been related to the analysis of the response of a stochastic overdamped
bistable system [4]. Later on, the mechanism of stochastic resonance was reported in excitable
systems [5], whereby excitability has subsequently been noted as an important system property
for a broad variety of noise-induced phenomena [6]. In contrast to bistable systems, excitable
systems have one stable steady state, but possess a threshold to an unstable excited state that
manifests as a large amplitude deviation from the stable steady state. In addition, proximities to
special bifurcation points have also received substantial attention as being possible mechanisms
for stochastic and coherence resonance [7]. Notably, stochastic and coherence resonance have
also been reported in systems exhibiting bimodal chaos [8].

Following initial advances in understanding effects of noise on individual dynamical
systems, the scope shifted to spatially extended systems. Primary investigations were focused
on the stochastic resonance in coupled nonlinear overdamped oscillators [9]. Later on,
similar systems served for several other reports about non-trivial effects of noise, such as
array-enhanced stochastic resonance [10], diversity-induced resonance [11] and system size
resonance [12]. Of course, spatio-temporal stochastic and coherence resonance were also
reported in other set-ups, for instance in excitable media [13], but since investigations in this
direction grow so fast, it is impossible to overview here all the relevant contributions. Therefore,
reference [14] should only be considered as a guide for interested readers.

While in the past the majority of scientific research dealing with the dynamics of
spatially extended systems was devoted to the study of regular diffusively coupled networks,
recently, the focus has been shifting toward networks with more complex topologies [15].
Since already a small fraction of random links between distant units largely decreases the
typical path length between two arbitrary sites, such networks were termed appropriately as
‘small-world’ networks [16]. On the other hand, growth and preferential attachment may result
in networks with a power-law degree distribution, hence the name ‘scale-free’ networks fits
best [17]. Importantly, networks with small-world or scale-free properties appear to be excellent
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for modeling interactions among units of complex systems. Examples range from social
networks [18], scientific-collaboration networks [19], food webs [20], computer networks [21],
as well as neural and excitable networks in general [22].

Stochastic resonance has already been studied in networks with small-world topology.
Particularly, it has been shown that the output of a network of coupled bistable overdamped
oscillators can be further improved by increasing the number of random shortcut links, whereby
the ordering effect depends largely on the coupling strength and the fraction of rewired
links [23]. Subsequently, the idea has also been applied to opinion formation models [24],
where the role of randomness and connectivity, combined with external periodic modulation
representing a so-called ‘fashion wave’ has been studied. Recently, an interesting study
about the amplification of signals in scale-free networks of bistable oscillators has also
been published [25]. Moreover, the coherence resonance has been reported on small-world
networks [26], as was pattern formation in two-dimensional, small-world media [27], and the
ability of complex topologies to suppress spatiotemporal chaotic behavior [28].

Presently, we wish to expand the scope of stochastic resonance on diffusive small-world
and scale-free networks by studying its emergence in the presence of subthreshold pacemaker
activity. Pacemakers are isolated units in the system that dictate the operating rhythm of
neighboring units, i.e. pace, and so guide the functioning of a larger ensemble. Due to the
considerable importance of pacemakers in real-life systems, some studies have already been
devoted to their impact on excitable systems [29], as well as on networks with small-world
topology [30]. To extend the subject, we study the possibility of stochastic resonance on a
network of overdamped bistable oscillators via a pacemaker. More precisely, we introduce
a subthreshold periodic pacemaker to one unit of the network and study the noise-supported
outreach of the pacemaker to other units of the network. We show that the correlation between
the periodic driving and the response of the system depends resonantly on the noise intensity.
Moreover, for diffusive nearest-neighbor interactions there is a square root relationship between
the outreach of the pacemaker and the coupling constant, thus indicating the applicability of the
classical diffusion law. However, in the case of small-world connectivity the latter relationship
becomes superdiffusive provided the topology is adequately adjusted. Namely, we demonstrate
that there exists an optimal fraction of rewired links, determined by the clustering coefficient
and the characteristic path length of the underlying small-world network, at which the noise-
induced spreading of pacemaker activity is pronounced best. We support the latter finding
further by considering as an alternative model to the bistable oscillator the FitzHugh–Nagumo
excitable system [31], showing that such qualitative differences in the dynamics do not affect the
properties of optimal small-world topology. Finally, we also consider the scale-free interaction
topology amongst bistable oscillators, whereby the pacemaker is introduced to the main
hub of the network. We find that the scale-free topology warrants the best noise-supported
dissemination of pacemaker-emitted rhythmic activity across the whole network, albeit at the
expense of a lower correlation with the directly paced unit when compared to the diffusive
case. Again, this result is shown to be independent of differences between the bistable and the
FitzHugh–Nagumo excitable dynamics governing the network.

The paper is structured as follows. In section2, we introduce the bistable overdamped
oscillator and the FitzHugh–Nagumo model, as well as considered networks and other
mathematical methods presently in use. Results are presented in sections3, 4 and5 separately
for diffusive, small-world and scale-free networks, respectively. In the last section, we
summarize the results and briefly comment on the potential applicability of our findings.
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2. Mathematical models and set-up

The main model to be used presently consists of noisy bistable overdamped oscillators, governed
by the Langevin equations of the form

dxi

dt
= xi − x3

i +
∑

j

εi j (x j − xi ) +
√

2Dξi (t), (1)

whereεi j is the coupling strength between unitsi and j, while 2D is the variance of Gaussian
noise with zero mean and autocorrelation〈ξi (t)ξ j (t ′)〉 = δi j δ(t − t ′). In the thermodynamic
limit, the model given by equation (1) exhibits an Ising-type phase transition by a critical
coupling strength [32], taking it from the disordered phase, characterized by a vanishing mean
field, to an ordered phase with a finite mean field, corresponding to one of the two symmetric
stable steady states of the local dynamics centered around±1 that correspond to the minima of
the pertaining potential energy functionV(xi ) = −x2

i /2 +x4
i /4. For finite system sizes, on the

other hand, the ordered phase is characterized by irregular switches between the two possible
finite mean fields, whose average is again vanishing irrespective of the coupling strength.
As already argued [12], in the bistable case equation (1) provides a paradigmatic set-up for
stochastic resonance, hence implying that a fine tuning ofD might optimize the response of the
model to a subthreshold periodic forcing in a resonant manner.

To widen the scope of our findings, we occasionally consider as an alternative to the
above bistable model, small-world as well as scale-free networks characterized with the
FitzHugh–Nagumo excitable dynamics [31] of the form

κ
dui

dt
= ui (1− ui )

[
ui −

(vi + b)

a

]
+

∑
j

εi j (u j − ui ) +
√

2Dξi (t),

dvi

dt
= ui − vi , (2)

where the Gaussian noise has exactly the same properties as in equation (1). Moreover,κ = 0.02
implies that the dynamics ofui is much faster than that ofvi , thus providing the necessary
ingredient for excitability. For parameter valuesa = 0.75 andb = 0.01 each FitzHugh–Nagumo
unit is governed by a single stable excitable steady stateui = vi = 0. Weak perturbations of
this state may give rise to large-amplitude excursions towardui = vi = 1, which however,
is unstable resulting in a quick reoccupation ofui = vi = 0. The excitable dynamics of the
FitzHugh–Nagumo system is thus qualitatively different from the one characterizing the bistable
oscillator. Nevertheless, both the bistable as well as the excitable dynamics (see review in [6])
have proven viable candidates for the observation of stochastic resonance, and it is interesting
to examine whether differences between them result in qualitatively different behavior within
this study.

To explore the possibility of stochastic resonance, we presently introduce a subthreshold
pacemaker of the formfr (t) = Acos(ωt) to a single unit i = r [variable ui = ur by
equation (2)] of the network, which remains exposed to the periodic forcing during the whole
simulation period. Throughout this study, we useA = 0.08 andω = π/300 for the bistable
oscillator andA = 0.02 andω = 0.7 for the FitzHugh–Nagumo model, which warrant that in
the absence of noise(D = 0) the pacemaker is subthreshold, meaning it cannot by itself induce
transitions between the two stable steady states or evoke large-amplitude excitations; not by
the unit which is directly exposed and neither by any other constitutive unit of the network.
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Figure 1. Examples of considered network topologies. For clarity regardingk
andp only 25 vertices are displayed in each panel. (a) Regular ring characterized
by p = 0 with periodic boundary conditions. Each vertex is connected to its
k = 4 nearest neighbors. (b) Realization of small-world topology via random
rewiring of a certain fractionp of links (in this case 4 out of all 100 were rewired,
hencep = 0.04).

Instead, the unit directly perturbed by the pacemaker (as well as those directly linked to it, but to
a much lesser extent depending on the coupling strength) exhibits small-amplitude oscillations
around the stable steady state with the frequencyω.

As announced, we consider diffusive and small-world networks constituting the
interactions amongst coupled units, which we obtain via the procedure described in [16] by
starting from a regular ring with periodic boundary conditions, comprisingN = 200 vertices
each having connectivityk = 4, as shown in figure1(a). In this scheme, each vertex (or unit)
corresponds to one noise-driven overdamped bistable oscillator or one FitzHugh–Nagumo
system (depending on which dynamics we use). The probability of rewiring a link is denoted
by p and can occupy any value from the unit interval, wherebyp = 0 constitutes a regular
graph whilep = 1 results in a random network. For 0< p < 1, as exemplified in figure1(b),
the resulting network may have small-world properties in that the normalized characteristic path
lengthL between distant units is small, i.e. comparable with that of a random network, while the
normalized clustering coefficientC is still large, i.e. comparable with that of a regular nearest-
neighbor graph constituting diffusive interactions amongst coupled units. According to [16], the
characteristic path length is defined as the average number of edges in the shortest path between
any two vertices, while the clustering coefficient is the average fraction of allki (ki − 1)/2
allowable edges that actually exist amongst vertexi and all its ki neighbors. Furthermore,
in section5 we use scale-free networks generated via growth and preferential attachment as
proposed by Barabási and Albert [17], again comprisingN = 200 vertices and having average
degreek = 4. Since the degree distribution of such networks is of power-law-type with the slope
of the line equaling−2.9 on a double logarithmic graph, the degree inhomogeneity of individual
vertices forming such a scale-free network is substantial. Here, we consider the introduction of
the pacemaker to the vertex with the highest degree (main hub), as the latter seems optimally
suited for disseminating weak localized rhythmic activity across the whole network. Note
that by small-world networks the degree inhomogeneity follows a Poissonian distribution (in
the limit p → 1) centered aroundk = 4. Hence, small-world networks are statistically more
homogeneous, and therefore the particular placing of the pacemaker within them is not so
crucial. If by any of the employed networks verticesi and j are connected thenεi j = ε j i = ε

but otherwiseεi j = ε j i = εi i = 0 in equations (1) and (2).
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For each set of the two main parametersε andD, as well as the employed network topology,
the temporal output of each unit is recorded forT = 3000 periods of the pacemaker, and the
correlation of each series with the frequency of the pacemakerω = 2π/tf is computed via the

Fourier coefficientsQi =

√
R2

i + S2
i according to [33]:

Ri =
2

tfT

tf T∫
0

xi sin(ωt) dt, Si =
2

tfT

tf T∫
0

xi cos(ωt) dt. (3)

If the FitzHugh–Nagumo excitable system given by equation (2) is used for the description of
network dynamics, thenxi in equation (3) is replaced byui . Since the Fourier coefficients are
exactly proportional to the (square of the) spectral power amplification [34], which is frequently
used as a measure for stochastic resonance, the signal-to-noise ratio (SNR) for each bistable
oscillator is simply given byQi . Importantly, the final results presented in the figures later in
the paper were obtained by averaging the SNR over up to 100 different realizations of network
configurations and initial conditions for each set of parameters.

3. Diffusive networks

We start by examining the results obtained if the bistable oscillators are coupled exclusively in
a diffusive manner, as exemplified in figure1(a). Hence, throughout this section, we setp = 0.
First, we consider space–time plots obtained by a givenε and differentD. Panels in figure2
feature the results. For smallD (top two panels in figure2), noise is clearly unable to induce
frequent shifts between the two steady states as all coupled units exhibit lengthy and highly
irregular stays in one of the two minima of the corresponding potential. Moreover, even the unit
directly perturbed by the pacemaker(i = r = 100) and its immediate neighbors do not benefit
from their special status, because noisy perturbations are too weak to assist the pacemaker
strongly enough to evoke shifts between the two minima of the potential in accordance with the
frequency of the subthreshold periodic driving. In sharp contrast, for largeD (bottom two panels
in figure 2) shifts between the two steady states are constant, but also irregular. In particular,
also the units around the pacemaker oscillate much more frequently than would be necessary to
warrant a good correlation with the subthreshold periodic driving. Finally, for an intermediate
value ofD (middle two panels in figure2), the space–time plot is also quite far from being
nicely correlated with the pacemaker, but nevertheless, the graining of the color map along the
temporal direction does provide subtle clues that indeed the temporal output of the network
might be better correlated with the localized periodic driving than by the former two cases. The
validity of this conclusion is additionally amplified by the temporal output of the unit directly
perturbed by the pacemaker and its nearest neighbors, where clearly the shifts between the
two steady states often follow the pacemaker in a quite convincing manner. Although more
persuasive pictures of temporal and/or spatial dynamics are usually shown as first evidence for
stochastic resonance, we included these space–time plots to emphasize: firstly, that the outreach
of the pacemaker seems to decay fast with the distance from the origin if diffusive coupling is
employed and secondly, that the phenomenon is rather subtle and requires extensive computer
simulations for proper and in-depth treatment. In what follows, we will support the existence of
stochastic resonance more firmly via the SNR, and study the phenomenon in dependence onD
andε, as well as the distance from the unit directly perturbed by the pacemaker.
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Figure 2. Space–time plots obtained with the bistable dynamics [equation (1)]
by p = 0 andε = 0.0625 forD = 0.05 (top two panels),D = 0.12 (middle two
panels), andD = 0.5 (bottom two panels). By all three cases the pacemaker
has been introduced to the middle oscillatori = r = 100, and the narrower
space–time plots show an excerpt of the whole network around the pacemaker-
driven unit. The color profile in all panels is linear, white depictingxi = −1.5
and blackxi = 1.5. A color stripe indicating the frequency of the pacemaker is
also shown for easier comparisons.

New Journal of Physics 10 (2008) 053008 (http://www.njp.org/)

http://www.njp.org/


8

Figure3 features color-contour plots of SNR in dependence onD andi (index for coupled
units) for differentε. Presented results convey that there indeed exists a maximum of SNR for
an intermediate value ofD irrespective ofε, albeit the value of the coupling strength crucially
determines to what extent this holds also for units that are not in the immediate proximity of
the oscillatori = r = 100 that is under the direct influence of the pacemaker. More precisely,
while the stochastic resonance is clearly inferable for nearby neighbors of the pacemaker-driven
oscillator for allε, more distinct units are able to correlate their noise-induced oscillations with
the subthreshold driving only ifε is large. Results in figure3 show that by diffusive networks
coupling strengths as high asε = 2 (or higher) may be necessary to warrant thatall units
comply (at least to some extent) with the frequency of the pacemaker by an intermediateD.
Nevertheless, the presented color-contour plots provide ample evidence for pacemaker-driven
stochastic resonance in a diffusively coupled network of bistable oscillators.

What figure3 somewhat fails to convey accurately is that the price for an outreach of
the pacemaker even to the most distinct units of the network is a rather steep drop of the
overall maximal SNR, which sets in due to increasing values ofε required for transmitting
the localized subthreshold stimulus across the whole diffusively coupled network. To elaborate
on this fact, we present in figure4(a) SNR curves in dependence onD only for the oscillator
that is under the direct influence of the pacemaker. As is evident already from the results
presented in figure3, this is the unit of the network by which the most correlated response
with respect to the subthreshold periodic driving sets in, and accordingly, the overall maximal
SNR is obtained. Indeed, the left panel of figure4 shows that the peak value of SNR drops by
an order of magnitude as the coupling strength increases fromε = 0.0625 to 4.0. This is also in
agreement with the fact that the optimalD increases continuously with increasingε. Note that
higherD directly contribute to a lower value of SNR, because the level of background noise
is accordingly higher also in the system’s output. To elucidate the subtleties of the examined
stochastic resonance phenomenon further, the right panel of figure4 shows SNR curves in
dependence oni by the value ofD warranting the peak SNR by a givenε in the left panel.
Again, the decrease in the peak height of SNR due to increasingε is obvious, but in addition,
the spreading of the enhanced correlation with the localized periodic driving to units far from
the pacemaker-driven oscillator is evident as well. The inset in figure4 features a color map
evidencing the decay of peak SNR values and the accompanying spreading to more and more
distinct units asε increases, thus additionally supporting conclusions derived from the two main
graphs.

We argue that the noise-supported spreading of the outreach of a localized subthreshold
periodic driving in a diffusively coupled network of bistable oscillators can be explained by
the classic law of diffusion in that, while the peak value of SNR decays proportionally to
ε−1/2, the area under the SNR curve in dependence oni is preserved. Indeed, the area under
different curves in the right panel of figure4 is equal for allε within ±3%, and the drop of
the maximal SNR is rather accurately proportional toε−1/2 as shown in figure5. The outlined
compliance of the SNR dependence oni with the diffusive law is, however, not particularly
startling because the underlying network of the model dictates precisely such a spreading of
localized perturbations. While this spreading may be optimized by an appropriate amount of
additive Gaussian noise as evidenced earlier, there is no reason why the diffusive law would be
violated. Different observations will be made in the next two sections, where the topology of
the underlying network, being either of small-world or scale-free type, clearly violates the basic
premise of diffusive spreading, either due to the introduction of shortcut links between distinct
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Figure 3. Color-coded SNR in dependence onD and i for differentε, obtained
when the diffusive networks are governed by the bistable dynamics. In all panels,
the pacemaker has been introduced to the middle oscillatori = r = 100 and
the color profile is linear, blue marking minimal and red maximal values of
SNR. The specific intervals of SNR from top to bottom are: 0.0–0.2, 0.0–0.14,
0.0–0.093, 0.0–0.066, 0.0–0.045, 0.0–0.032 and 0.0–0.024 (note that the overall
maximum of SNR decreases continuously asε increases).
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Figure 4. Characteristic cross-sections of color maps presented in figure3. Left
panel: SNR in dependence onD for the oscillatori = r = 100 that is under the
direct influence of the pacemaker. Right panel: SNR in dependence oni by the
value ofD warranting the peak SNR by a givenε in the left panel. The inset
additionally features the same SNR color-coded, blue marking minimal (0.0)
and red maximal values (0.2), in dependence oni andε.

Figure 5. Decay of the overall peak height of SNR in dependence onε for
p = 0.0, obtained when the diffusive network is governed by the bistable
dynamics. Squares are numerically obtained values, whereas the line represents
a fit via wε−1/2, w being a numerically determined constant presently equaling
0.048.

units of the network [16] as exemplified in figure1(b), or due to the highly inhomogeneous
degree distribution resulting from growth and preferential attachment [17].

4. Small-world networks

In this section, we present the results obtained if the diffusive coupling of bistable oscillators
is relaxed via the introduction of a certain fractionp of shortcuts amongst arbitrary units of the

New Journal of Physics 10 (2008) 053008 (http://www.njp.org/)

http://www.njp.org/


11

Figure 6. Color-coded SNR in dependence onD and i for differentp, obtained
if the small-world networks are governed by the bistable dynamics. In all panels
the pacemaker has been introduced to the middle oscillatori = r = 100 and the
color profile is linear, blue marking minimal and red maximal values of SNR.
The specific intervals of SNR from top to bottom are: 0.0–0.059, 0.0–0.053,
0.0–0.048, 0.0–0.04, 0.0–0.037 and 0.0–0.033 (note that the overall maximum
of SNR decreases continuously asp increases).

network. First, we setε = 0.5 and examine the dependence of SNR onD and i for different
p. Figure6 features the resulting color-contour plots for increasing values ofp from top to the
bottom panel. As for the diffusive coupling, it is evident that there exists an optimalD by which
the SNR is maximal. Although the stochastic resonance phenomenon is better expressed for
units that are in the immediate proximity of the oscillatori = r = 100 that is under the direct
influence of the pacemaker, the fine-tuning ofp clearly has the ability to optimally facilitate the
outreach of the localized subthreshold periodic forcing. In particular, forp = 0.15 all units of
the network feature the best expressed bell-shaped dependence of the SNR onD, whereas for
smaller and largerp this feature deteriorates substantially. Hence, results presented in figure6
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Figure 7. Characteristic cross-sections of color maps presented in figure6. Left
panel: SNR in dependence onD for the oscillatori = r = 100 that is under the
direct influence of the pacemaker. Right panel: color-coded SNR in dependence
on p and i by the value ofD warranting the peak SNR for a givenp in the
left panel. The color profile is logarithmic, blue marking SNR= 0.005 and red
SNR= 0.066.

indicate that there exists an optimal small-world topology for the transmission of localized
rhythmic activity across a noisy array of bistable oscillators.

To study the above possibility more precisely, and to give a better quantitative view of the
results presented in figure6, we examine characteristic cross-sections of the examined color
maps. The left panel of figure7 features SNR curves in dependence onD only for the oscillator
that is under the direct influence of the pacemaker. As for the diffusive coupling, this is the unit
of the network by which the most correlated response with respect to the subthreshold periodic
driving sets in, and accordingly, the overall maximal SNR is obtained. Results in the left panel
of figure7 have a remarkable qualitative resemblance with those presented in the left panel of
figure4. Likewise as in figure4 due to increasing values ofε, in figure7 the optimalD increases
continuously (and accordingly the peak value of SNR decays) asp increases. It thus may be
argued that the introduction of shortcut links acts similarly, at least on the unit that is directly
perturbed by the pacemaker, as the increase of coupling strength. Indeed, this is easy to justify
as shortcuts effectively shorten the distance between units, and thus a localized stimulus is able
to reach a distant unit faster. While largerε of course do not shorten the distance between units,
they do, however, increase the speed (the rate of diffusive spread) at which a locally emitted
perturbation travels to other units, which in turn results in a faster transfer, similarly, as if the
effective path were shortened. Turning back to establishing the existence of an optimalp, results
in the left panel of figure7 allow us to determine the optimalD in dependence onp. We use
these values to examine the cross-sections of colored maps in figure6 alongi. The right panel
of figure7 features a colored map depicting SNR values in dependence onp andi for the value
of D giving the peak SNR for a givenp in the left panel. Again, the decrease in the peak height
of SNR due to increasingp is obvious, but in addition, the optimal spreading of the enhanced
correlation with the localized periodic driving to units far from the pacemaker-driven oscillator
occurring for p ≈ 0.15 is clearly evident as well (marked additionally by two dashed vertical
lines). We thus conclude that there exists an optimal small-world topology for the transmission
of localized rhythmic activity across a noisy array of bistable oscillators.
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Figure 8. Color-coded SNR in dependence onD and i for different ε,
obtained when the small-world networks are governed by the FitzHugh–Nagumo
excitable dynamics [equation (2)]. In all panels the pacemaker has been
introduced to the middle oscillatori = r = 100 and the color profile is linear,
blue marking minimal (0.0) and red maximal (0.03) values of SNR.

In order to further strengthen the existence of the optimalp and to widen the scope of this
finding, we substitute the bistable model considered so far with the FitzHugh–Nagumo excitable
dynamics described by equation (2). We setε = 0.2, and as in figure6, examine the dependence
of SNR onD and i for differentp. Results are presented in figure8 for increasing values ofp
from the top to the bottom panel. As for the bistable dynamics, there always exists an optimal
D by which the SNR is maximal, and moreover, for smallp the stochastic resonance is better
expressed for units that are in the immediate proximity of the uniti = r = 100 that is under the
direct influence of the pacemaker. However, asp increases, we can again observe the existence
of an optimal topology for which the outreach of the localized subthreshold periodic forcing
optimally extends across all coupled units. In particular, forp = 0.15 peak SNR values remain
large, yet are almost equally distributed across all units. Smallerp localize the optimal response
to units within the proximity ofi = r = 100, whereas largerp induce an overall decrease of
peak SNR values. Thus, even if the bistable overdamped oscillator is replaced by the excitable
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Figure 9. Normalized clustering coefficientC (squares), normalized characteris-
tic path lengthL (circles), and the ratioR = C/L (triangles) in dependence onp
for a network consisting ofN = 200 vertices having average connectivityk = 4.
Results were averaged over 50 different realizations of each network, and the
ratio R was uniformly rescaled to the unit interval (the shape of the dependence
onp was completely preserved) for better comparisons of all three curves. Lines
are solely a guide to the eye.

FitzHugh–Nagumo system, the optimal small-world topology warranting the best transmission
of localized rhythmic activity prevails.

Aiming to explain the existence of the above-established optimal small-world topology,
we employ classical measures such as the normalized characteristic path lengthL and the
normalized clustering coefficientC [16], as defined in section2. While L is often the more
appraised quantity (echoing in the name ‘small-world’ describing such networks), the clustering
coefficient is presently also crucial since it quantifies to what extent local interactions are
intact or broken. In particular,C = 1 means that the cliquishness of the nearest neighbors is
perfect, whereasC = 0 means that the neighbors connected to a given unit of the network are
disconnected from one another. Since the effectiveness of the pacemaker to transmit its rhythm
also to units that are not within its immediate proximity relies both on effective nearest-neighbor
interactions as well as on the ability to reach physically distant units to which excitations
might die out via the diffusive route, we propose the ratio between the normalized clustering
coefficient and the characteristic path lengthR = C/L as the crucial quantity defining the
optimal properties of a network to facilitate the spreading of a localized pacemaker-emitted
rhythmic activity. The higher the value ofR, the better the network structure is adapted to
enforce the pacemaker activity on other network units. A high value ofR suggests that the
nearest-neighbor interactions are largely intact, while at the same time considerable benefits
in terms of excitation propagation may be expected from long-range connections. On the
other hand, a low value ofR indicates either that nearest-neighbor interactions are largely
broken or that long-range connections are sparse, whereby any of these two properties would
act detrimentally on the ability of a pacemaker to enforce its rhythm on other units of the
network. Results for the presently employed network (N = 200,k = 4) are shown in figure9.
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Figure 10. Decay of the overall peak height of SNR in dependence onε for
p = 0.15, obtained when the small-world network is governed by the bistable
dynamics. Squares are numerically obtained values, whereas the line shows the
samewε−1/2 fit as depicted in figure5. The decay is clearly faster than on a
diffusive network due to the introduction of small-world connectivity.

Indeed, the peak value ofR is obtained by roughly the same value of the small-world
connectivity, equalingp ≈ 0.15, that also warrants the best outreach of the pacemaker to units
that are not in its immediate proximity. This result confirms our reasoning and introduces a
compact measure for assessing the ability of a small-world network topology to promote the
spreading of localized rhythmic activity across coupled units.

It is noteworthy that, by comparing the results presented in figures4 and 7 obtained
for the bistable dynamics, it becomes obvious that while the effect of increasingε and p is
similar with respect to the continuous decrease of the overall maximal SNR observed by the
pacemaker-driven unit, it is in fact qualitatively different with respect to warranting the best
possible outreach of the pacemaker to units that are not within its immediate proximity in the
network. In particular, while increasing values ofε continuously improves the outreach of the
pacemaker (albeit at the expense of the decaying correlation with the pacemaker-driven unit),
increasing values ofp start destroying it once an optimal value, presently equalingp ≈ 0.15,
is exceeded. It thus seems appropriate to examine whether the introduction of small-world
connectivity introduces qualitatively new behavior with respect toε as well, which might in
turn explain the facilitation of the pacemaker’s outreach by the optimalp. To study this, we set
p = 0.15 and examine how the overall peak of SNR (obtained by scanning the parameter space
overD andi) decays in dependence onε if the bistable model is considered. Results presented
in figure10show that, indeed, the decay and with it related outreach of the pacemaker to distant
units, no longer obey the classic law of diffusion exemplified in figure5. In fact, the decay
is faster, clearly departing from theε−1/2 dependence especially towards largerε. This result
indicates that on a small-world network the outreach of the pacemaker is no longer governed by
the classic diffusion but becomes superdiffusive, which in turn additionally explains the increase
of its range and effectiveness for an appropriate value ofp.
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Figure 11. Color-coded SNR in dependence onD andi for differentε, obtained
when the scale-free networks are governed by the bistable dynamics. In all
panels the pacemaker has been introduced to the main hub of the scale-free
networki = r = 200 and the color profile is linear, blue marking minimal and red
maximal values of SNR. The specific intervals of SNR from top to bottom are:
0.0–0.046, 0.0–0.025, 0.0–0.016 and 0.0–0.013 (note that the overall maximum
of SNR decreases continuously asε increases).

5. Scale-free networks

Finally, it remains of interest to examine results obtained if the underlying interaction topology
of bistable overdamped oscillators is of scale-free type. Figure11 features color-contour plots
of SNR in dependence onD and i for different ε. As for previously considered networks,
there exists an optimal value ofD for which the response of units is optimally correlated
with the frequency of the pacemaker, thus evidencing pacemaker-driven stochastic resonance
on scale-free networks of bistable oscillators. Remarkably, irrespective ofε the outreach of the
pacemaker extends nearly equally across all units, especially if compared with results obtained
for diffusive networks presented in figure3. Moreover, by considering the bottom panel of
figure11 featuring results obtained byε = 0.5 and comparing it with the panel showing results
for p = 0.15 in figure6 for the sameε, it can be concluded that the scale-free topology warrants
the best noise-supported dissemination of pacemaker-emitted rhythmic activity acrossthe whole
network. Nevertheless, the correlation between the pacemaker and the unit (main hub) that is
under its direct influence (having indexi = r = 200 in figure11) is smaller than that for the two
previously considered network types.
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Figure 12. Characteristic cross-sections of color maps presented in figure11.
Left panel: SNR in dependence onD for the unit (main hub of the network)
i = r = 200 that is under the direct influence of the pacemaker. Right panel:
SNR in dependence oni for the value ofD giving the peak SNR for a givenε in
the left panel.

To give a better quantitative view of these claims, we examine characteristic cross-sections
of colored maps presented in figure11. The left panel of figure12 features SNR curves
in dependence onD for the oscillatori = r = 200 that is under the direct influence of the
pacemaker. It is evident that, similarly as shown in the left panel of figure4, the peak value
of SNR decreases and moves toward higherD asε increases. As for the diffusive and small-
world coupling, the paced oscillatori = r = 200 should be the unit of the network by which
the most correlated response with respect to the subthreshold periodic driving sets in, resulting
in the overall peak SNR for each particularε. However, by simultaneously considering also the
results presented in the right panel of figure12, it becomes quickly obvious that forε > 0.25 the
SNR for the optimalD (derived from the left panel) is, aside from small-amplitude deviations,
practically equal for all unitsi. This fact is additionally put forward by a dashed red line depicted
in the right panel of figure12, indicating the plateau forε = 0.5. Only forε = 0.125, and even
more so forε = 0.0625, the peak SNR for the paced main hub (i = r = 200) is substantially
larger than that for other constitutive units of the scale-free network. Nevertheless, by reaching
0.046 if ε = 0.0625, the overall peak SNR is still more than five times smaller than under the
same conditions on a diffusive network (see inverted triangles in figure4), which is the cost of
an effective transmission of the pacemaker rhythm across all units. We argue that the scale-free
topology enables the latter due to its distinct inhomogeneous property [17] via which individual
units, and particularly the main hub, have the ability to instantly and directly influence many
other constitutive units of the network, and thus effectively (superdiffusively) propagate the
pacemaker-emitted rhythmic activity.

To generalize our findings related to the scale-free network topology, we again substitute
the bistable model with the FitzHugh–Nagumo excitable dynamics and repeat the calculations
for ε = 0.2. Note that the same coupling strength has already been considered in figure8 when
examining the noise-induced dynamics on small-world networks. The left panel of figure13
features the obtained color-contour plot of SNR in dependence onD andi. The presented results
are truly convincing, as it is completely impossible to infer the indexi of the main hub hosting
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Figure 13. Left panel features color-coded SNR in dependence onD andi for ε =

0.5, obtained when the scale-free network is governed by the FitzHugh–Nagumo
excitable dynamics. The pacemaker has been introduced to the main hub of
the scale-free networki = r = 200 and the color profile is linear, blue marking
minimal (0.0) and red maximal (0.048) values of SNR. The right panel shows
the cross-section of the color map across alli obtained forD = 0.00048.

the pacemaker (it isi = r = 200 as in figure11). In other words, all units of the network are
equally well correlated with the frequency of the pacemaker, which is additionally emphasized
in the right panel of figure13featuring the cross-section of the left panel for the optimalD. Thus,
irrespective of whether the network dynamics is bistable or excitable, the scale-free topology
warrants the best noise-supported dissemination of locally imposed rhythmic activity across the
whole network, outperforming the diffusive as well as the small-world topology.

6. Summary

There exists several natural and artificial bistable signaling devices that are connected via
networks. Presently, we employ different networks of overdamped bistable oscillators to study
the phenomenon of stochastic resonance brought about by a subthreshold pacemaker. We
introduce the pacemaker in the form of a subthreshold periodic forcing to a single oscillator
of the network. With the aid of additive Gaussian noise, the pacemaker tries to enforce its
rhythm on the whole network, and hence we observe an interesting interplay between noise,
coupling strength, network topology and the outreach of the pacemaker. First, we examine
only nearest-neighbor interactions among coupled units. We show that the response of the
pacemaker-driven unit and the network as a whole is resonantly dependent on the noise intensity,
as only an appropriate intensity of additive noise ensures the optimal correlation between
the pacemaker signal and jumps between the stable steady states of overdamped oscillators.
However, the outreach of the pacemaker decays with the distance from its origin rather fast.
We investigate this phenomenon thoroughly, and show that the impact of the pacemaker
on other units is proportional to the square root of the coupling strength, thus obeying the
classical law of diffusion. Second, we introduce the small-world topology among coupled
oscillators, where our results indicate that for a suitable fraction of rewired links the spreading of
pacemaker activity is pronounced best. Namely, due to the introduction of shortcut links, the
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effective distance between units shortens, and accordingly, the localized stimulus is able to
reach distant units faster without the accompanying loss of strength occurring by diffusive
coupling. Moreover, if at the same time the clustering coefficient of the small-world network
is comparable with that of a diffusive network, the nearest-neighbor connections responsible
for an effective impact by units in the immediate vicinity of the pacemaker are also largely
preserved, which combined yields an optimal topology for the spreading of localized rhythmic
activity across all coupled units. We additionally support these arguments by considering, as
an alternative to the bistable dynamics, the excitable FitzHugh–Nagumo system, in particular,
by showing that the qualitative change in the properties of the governing differential equations
does not induce different results. In addition, our calculations indicate that by the optimal small-
world topology the outreach of the subthreshold periodic forcing is no longer diffusive but
becomes superdiffusive, thus providing an explanation for the small-world-related facilitation
of the pacemaker’s influence on the whole network. Finally, we examine the effects of scale-
free network topology on the phenomenon of pacemaker-driven stochastic resonance, and find
that it is optimal for the transmission of weak localized rhythmic activity across the whole
network. This is attributed to the distinct inhomogeneous structure of scale-free networks via
which individual units (hubs) have the ability to instantly influence many other units, and thus
effectively propagate the pacemaker-induced rhythm. As for the small-world topology, these
network-related features are shown to apply irrespective of the particularities of the governing
dynamics. Due to the significant importance of pacemakers in various networks connecting
natural and artificial systems, we hope our study will be applicable in real-life motivated
problems, and foster the understanding of processes whose proper functioning relies on an
effective pacemaker.
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