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This paper describes the use of a multiobjective genetic algorithm for robust motion controller design. Motion controller structure
is based on a disturbance observer in an RIC framework. The RIC approach is presented in the form with internal and external
feedback loops, in which an internal disturbance rejection controller and an external performance controller must be synthesised.
This paper involves novel objectives for robustness and performance assessments for such an approach. Objective functions for
the robustness property of RIC are based on simple even polynomials with nonnegativity conditions. Regional pole placement
method is presented with the aims of controllers’ structures simplification and their additional arbitrary selection. Regional pole
placement involves arbitrary selection of central polynomials for both loops, with additional admissible region of the optimized
pole location. Polynomial deviation between selected and optimized polynomials is measured with derived performance objective
functions. A multiobjective function is composed of different unrelated criteria such as robust stability, controllers’ stability, and
time-performance indexes of closed loops.The design of controllers and multiobjective optimization procedure involve a set of the
objectives, which are optimized simultaneously with a genetic algorithm—differential evolution.

1. Introduction

Modern positioning systems require high performance and
complex operation, which demand highly efficient and com-
plex controller structures. Complex controller algorithms
and their designs are mostly related to very complex design
procedures and optimisation techniques, with which design-
ers try to achieve the desired performance specification. To
date, many advanced design methods have been developed,
based on different structures of closed-loop systems and
paradigms.Themost widely used designs are based on distur-
bance observers [1–3], internal model control [4], and model
based disturbance attenuation [5]. The disturbance observer
designs have been mostly used in industrial environments
because of its simple transparent structure and capability to
ensure proper tradeoff between robustness and performance
properties. Tradeoffs between criteria can be handled with
heuristic optimization approaches ormathematical program-
ming optimization techniques, abbreviated as LP, QP, SDP,
NP, and so forth [6, 7]. Optimization-based methods in

computer aided design (CAD) have proved to be a valuable
tool in engineering practice, with which one can achieve
proper performance and suitable controllers for closed-loop
systems. In general, the optimization procedure can be
divided into convex or nonconvex optimization problems.

Mathematical programming approaches, such as LP, QP,
and SDP, are very efficient for convex problems, which
cover many modern robust controller designs in state space
approach [8–10]. However, there are also many control
problems, where the evaluation of the objective is not strictly
convex or where the desired criteria cannot be combined
into a set of convex objective functions. For example, poly-
nomial synthesis with fixed order controller in a transfer
function form and controller structure optimization is a
basically nonconvex problem [11, 12]. One way to over-
come this problem is by combining heuristic optimization
methods with new or conventional controller designs [13–
15]. This combination provides a set of efficient tools to
address complex multivariable problems with performance
constraints [13].There is much evidence which indicates high
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Figure 1: Disturbance observer in an RIC framework.

efficiency of the heuristic optimization technique, especially
with genetic algorithms (GAs). The GA optimization tech-
nique with well-formulated objective functions can preserve
satisfactory results of controlled systems while overcoming
some problems and limitations of conventional designs [13,
16–18].

This paper considers a robust disturbance observer
(DOB) in a robust internal compensator framework (RIC)
with multiobjective optimization of different robustness
and performance criteria. The DOB structure has already
been studied in detail and has several different structural
approaches [1, 19]. The more convenient and straightforward
methods of DOB are based on Q-filter and inverse nominal
models within the internal feedback branch [1, 20, 21]. The
more advanced approaches are based on internal reference
models in RIC framework [2, 20]. Bothmethods, Q-filter and
RIC, deal well with disturbance attention and have similar
approaches and structures [2, 20, 22]. However, the RIC
approach is more transparent and reliable in comparison
with the Q-filter design. The main difference between both
approaches is in the design of their internal loops [5, 22].The
significant disadvantage of the DOB with Q-filter design is
the usage of an inverse nominal model within the internal
feedback loop. Most mechanical systems are presented as
strict proper functions, which prevents direct usage of the
model inverse. The second disadvantage is the internal-loop
structure with a low-pass Q-filter within a partially positive
feedback loop.The property of the Q-filter lowers the closed-
loop’s stability and the selection is strictly empirical with
some vague guidance for the first-, second-, and third-order
filters [5, 21, 23, 24]. Each selection of approximated inverse
function and Q-filter requires additional assessment of the
closed-loop’s performance and robustness. The RIC on the
other hand has better structural transparency and can be
much easily incorporated into the optimization procedure.
Internal and external controllers can be acquired from the
optimization procedure, so that the robustness of the RIC
system can be ensured [25, 26].

This paper describes the design of an RIC disturbance
observer with optimization of robustness and performance
criteria with multiobjective differential evolution (DE) [27,
28]. The main contribution of the presented paper is a
multiobjective optimization approach with simultaneous
optimization of a set of criteria for inner and outer loops
of the RIC structure. The used robustness and performance
criteria are derived directly from the property of the norm
𝐻
∞

and uncertainty models [29, 30]. The criteria have the
formof even polynomials, where simple quasi-convex control

problems arise. Robust stability of the system can be quite
straightforwardly assessed, if the nonnegativity condition
of the polynomial is provided. Even polynomials can be
directly used in the optimization technique within genetic
algorithm, without any other additional transformation.
The second contribution of this paper is the design of
a simple parameterized controller structure with selected
central characteristic polynomial. The central characteristic
polynomial has an admissible region in the stable half plain
prescribed so that it ensures the expected performance and
stability of the RIC system. The basic idea comes from
the pole-colouring technique and regional pole assignment
method [31, 32]. In comparison to similar methods, the
presented approach uses objective functions of the regional
pole placement technique and can be used for nonparametric
uncertainties. The presented objectives are optimized with a
genetic algorithm, differential evolution (DE).DEhas evident
advantages over other similar techniques: simple structure,
fast convergence, lower space complexity, adaptive parameter
settings, and so forth [33]. All design criteria within the DE
algorithm are evaluated over the nonnegativity property of
robustness criteria and roots calculations of the closed-loop
characteristic polynomial for regional pole placement.

This paper is divided into seven sections. In Section 2,
we describe the RIC disturbance observer for a positioning
system. Section 3 describes the regional pole placement for
internal and external loops of the RIC system and applied
parameterization of the controller structure. Thereafter, in
Section 4, we describe performance and robustness proper-
ties with the metric𝐻

∞
, based on nonnegativity assessments

of the even polynomial. Section 5 describes a multiobjective
optimization approach with DE and a composite multiobjec-
tive function. After Section 5, a design example of an RIC
system with multiobjective optimization results is provided
in Section 6.The conclusions of the paper are summarized in
Section 7.

2. RIC Disturbance Observer for
Positioning Systems

A disturbance observer in the RIC framework is composed of
internal and external loops [34–36].Thedesign of the internal
loop is based on input disturbance attention, where most
often appearing disturbances are reaction and load torque,
friction, and unmodeled dynamics [20, 34].The external loop
is designed so that it ensures the overall performance of the
closed-loop system. The RIC structure is shown in Figure 1,
where𝐾(𝑠), 𝑃

0
(𝑠), 𝑃󸀠(𝑠), 𝑃

𝑚
(𝑠), 𝐶(𝑠), and 𝐹(𝑠) are the internal
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controller, plant, reference model, and 2 DOF structures
with an external controller and a prefilter, respectively. The
internal loopwith𝑃

0
(𝑠) covers the angular velocity in relation

to input torques and disturbance rejection 𝑑in, where 𝑃
󸀠

(𝑠)

is the transfer function of the rotary encoder. The transfer
function of the rotary encoder is mostly treated as a system
with pure integral behavior. The RIC transfer functions are

𝑃
0
(𝑠) =

𝐵
0
(𝑠)

𝐴
0
(𝑠)
, 𝑃

󸀠

(𝑠) =
𝐵
󸀠

(𝑠)

𝐴󸀠 (𝑠)
, 𝐾 (𝑠) =

𝐿
𝐾
(𝑠)

𝑅
𝐾
(𝑠)
,

𝑃
𝑚
(𝑠) =

𝐵
𝑚
(𝑠)

𝐴
𝑚
(𝑠)
, 𝐶 (𝑠) =

𝐿
𝐶
(𝑠)

𝑅
𝐶
(𝑠)
, 𝐹 (𝑠) =

𝐿
𝐹
(𝑠)

𝑅
𝐹
(𝑠)
.

(1)

The matrix form of the RIC system in Figure 1 is

[
[
[
[
[

[

𝐹
−1

0 0 𝐹
−1

0

−𝐶 (𝑃
𝑚
𝐾 + 1) 1 0 0 𝐾

0 −𝑃
0
𝑃
󸀠

1 0 0

0 0 −1 1 0

0 −𝑃
0

0 0 1

]
]
]
]
]

]

(

𝑒

𝑖

𝑦

𝑦

̃̇𝑦

)

=(

𝑟

𝑑in
𝑑out
𝜉

𝜉
󸀠

),

(2)

where 𝑟, 𝑑in, 𝑑out, 𝜉, and 𝜉
󸀠 are reference signal, input

disturbance, output disturbance, internal noise, and external
noise, respectively.

The closed-loop transfer function is

(

𝑒

𝑖

𝑦

𝑦

̃̇𝑦
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1
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.

(3)

The RIC system in Figure 1 is slightly a modified clas-
sic structure. The internal loop in the modified structure
embraces only the angular velocity, while the classical internal
loop uses for the feedback branch the same output as for
the external loop [21, 22]. The modified structure provides
indirect decupling of the internal and external loops, where
the poles of the internal loop do not directly influence
the zeroes of the external loop. Most RIC designs include
standard controller structures in internal loops [20, 24].
Standard controllers, like PID or PI, with integral behaviour
improve disturbance rejection for low-frequency disturbance
𝑑in. On the other hand, internal integral behaviour causes
a double-integrator effect on the external loop, which sig-
nificantly lowers the stability domain and generates unde-
sired responses on the output disturbances and reference
signals. This paper will consider an RIC structure, shown
in Figure 1, where the internal integral behaviour of the
controller 𝐾(𝑠) does not directly influence the external
loop. For the sake of the RIC structure simplification, we
assume that the prefilter function is constant and is equal to
𝐹(𝑠) = 1.

3. Regional Pole Placement of the RIC System

The design procedure of the RIC system can be addressed in
two steps: the first step covers the internal loop controller
design and the second step the external loop controller
design. Both controllers are designed with the regional
pole placement technique based on the selected central
polynomial in the expected stable area. The expected area
is freely chosen by the designer and exhibits closed-loop
dynamic performance.The parameterization of controllers is
applied to ensure good disturbance rejection and robustness
properties.

Let us consider the internal loop of the system in Figure 1.
The closed-loop system is

(
̇𝑦

𝑖
) =

1

1 + 𝐾𝑃
0

[
𝑃
0
(1 + 𝐾𝑃

𝑚
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𝑚

1
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(
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𝑖
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𝑃
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(1 + 𝐾𝑃

𝑚
) 𝑃

0

1 + 𝐾𝑃
𝑚

1
](

𝑐

𝑑in
) ,

(4)
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Figure 2: Settling-time objective function with settling-time
boundaries 𝜎

𝑡𝑠 low and 𝜎
𝑡𝑠 high.

where 𝑆in is the sensitivity function of the internal closed-
loop. The characteristic polynomial is defined as

𝐴
0
(𝑠) 𝑅

𝐾
(𝑠) + 𝐵

0
(𝑠) 𝐿

𝐾
(𝑠) = 𝐶in (𝑠) . (5)

Equation (5) is the standard starting point of pole place-
ment design. The solution of the equation is provided under
strict polynomial degree conditions [37]. The presented
approach uses only the conditions when an exact solution
does not exist, deg𝑅

𝑘
≤ deg𝐴

0
−2. In this case, the controller

structure does not depend on plant order, like in the classic
pole placement design, and is arbitrarily selected by the
designer. The only way to satisfy expression (5) is regional
pole placementwith a prescribed region and deviation assess-
ment, as described in [32]. Deviation is assessed between
the given polynomial 𝐶in(𝑠) and the candidate polynomial
obtained with optimization. The term prescribed region of
the closed polynomial is similar to the term domain stability
[29, 38]. The prescribed region with the selected central
polynomial offers more leeway for further multiobjective
optimization of robustness and performance criteria. The
polynomial equation for regional pole placement is

𝐴
0
(𝑠) 𝑅

𝐾
(𝑠) + 𝐵

0
(𝑠) 𝐿

𝐾
(𝑠) = 𝐶in (𝑠) , 𝐶in (𝑠) ≈ 𝐶in (𝑠) ,

(6)

where 𝐶in(𝑠) is the candidate polynomial obtained with the
optimization with controller coefficient 𝐾(𝑠). The prescribed
region of the desired pole location can be derived from the
properties of the Laplace stability domain,𝐷in = {𝑠 = 𝜎+𝑗𝜔 ∈

C | 𝜎 ∈ −R𝑒, 𝑗𝜔 ∈ I𝑚}, where 𝐶in ∈ 𝐷in holds true. The
possible objective functions of the prescribed region for con-
trollers𝐾(𝑠), 𝐶(𝑠) are described in the following subsections.

3.1. Settling-Time Objective Function. Roughly speaking, the
settling time of the closed-loop system is inversely propor-
tional to the real part of dominant poles in the complex
domain𝐷in. The objective function can be composed so
that all closed-loop poles lie in a vertical stripe, bounded
by parameters𝜎

𝑡𝑠 high and 𝜎
𝑡𝑠 low. The vertical stripe belongs

to domain𝐷in. Parameters𝜎
𝑡𝑠 high and 𝜎

𝑡𝑠 low specify the
objective function criteria of the closed-loop settling time
(see Figure 2).

The proposed objective function is

𝐽
1
= min

𝐾

(

1−∑

𝑛

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
R𝑒 {𝐶in}

󵄨󵄨󵄨󵄨󵄨
−
󵄨󵄨󵄨󵄨𝜎𝑡𝑠 low

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨
R𝑒 {𝐶in}

󵄨󵄨󵄨󵄨󵄨

, ∀𝜎
𝑡𝑠 high < R𝑒 {𝐶in} < 𝜎𝑡𝑠 low ∧

∑

𝑛

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨R𝑒 {𝐶in}
󵄨󵄨󵄨󵄨 −

󵄨󵄨󵄨󵄨󵄨
R𝑒 {𝐶in}

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨

max (󵄨󵄨󵄨󵄨R𝑒 {𝐶in}
󵄨󵄨󵄨󵄨 ,R𝑒

󵄨󵄨󵄨󵄨󵄨
{𝐶in}

󵄨󵄨󵄨󵄨󵄨
)

) , 𝐶in ∈ 𝐷in, (7)

where 𝜎
𝑡𝑠 high and 𝜎

𝑡𝑠 low indicate the location of the stripe
boundary and 𝑛 indicates the number of closed-loop
poles. The right boundary 𝜎

𝑡𝑠 high of the stripe prevents
the possibility of obtaining poles with large negative
real part values. Large negative real part pole values can
cause a too high dynamic of the closed-loop system. A
higher dynamic of the closed-loop can render proper
real-time implementation of the discrete controller on the
embedded system or cause improper behaviour of controller
outputs. Improper higher dynamic of the controller output
mostly manifests itself as tempestuous responses, which
indicate nonoptimal energy behaviour of the closed-loop
system.

The first term of the 𝐽
1
indicates a normalized value of

the objective if all poles lie on the left of the vertical line
𝜎
𝑡𝑠 low.The second term assesses the deviation of the real part

pole value between the desired 𝑝 and the optimized 𝑝 pole
location, where 𝑝 is 𝑝 ∈ 𝐶in,𝑝 ∈ 𝐶in.

3.2. Rise-TimeObjective Function. Therise time of the closed-
loop system is roughly proportional to the inverse of the
dominant poles imaginary values andmay be upper-bounded
by the parameter𝜔

𝑡𝑟
.Theobjective function can be composed

so that all closed-loop poles lie on the horizontally bounded
stripe with bounds±𝑗𝜔

𝑡𝑟
(see Figure 3). The selected stripe

belongs to domain𝐷in.
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The proposed rise-time objective function is

𝐽
2
= min

𝐾

(

1− ∑

𝑛

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
I𝑚{𝐶in}

󵄨󵄨󵄨󵄨󵄨
−
󵄨󵄨󵄨󵄨𝜔𝑡𝑟

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝜔𝑡𝑟

󵄨󵄨󵄨󵄨

, ∀
󵄨󵄨󵄨󵄨󵄨
I𝑚{𝐶in}

󵄨󵄨󵄨󵄨󵄨
<
󵄨󵄨󵄨󵄨𝜔𝑡𝑟

󵄨󵄨󵄨󵄨

∑

𝑛

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨I𝑚{𝐶in}
󵄨󵄨󵄨󵄨 −

󵄨󵄨󵄨󵄨󵄨
I𝑚{𝐶in}

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨

max (󵄨󵄨󵄨󵄨I𝑚{𝐶in}
󵄨󵄨󵄨󵄨 ,I𝑚

󵄨󵄨󵄨󵄨󵄨
{𝐶in}

󵄨󵄨󵄨󵄨󵄨
)

) , 𝐶in ∈ 𝐷in. (8)

The objective function 𝐽
2
describes the desired stripe in

the complex plain, where the first term indicates the position
inside the horizontal stripe and the second the imaginary
deviation between the desired 𝑝 and the optimized 𝑝 poles.

3.3. Damping-RatioObjective Function. Damping ratio is also
an important design criterion of the closed-loop dynamic
performance and is related to the angle of the vectors between
the negative real and the imaginary axis of the dominant
poles [32]. The damping ratio is determined with the angle
boundary ±𝜑

𝜁
(see Figure 4).

The proposed damping-ratio objective function is

𝐽
3
= min

𝐾

(1 −∑

𝑛

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝜑 {𝐶in}

󵄨󵄨󵄨󵄨󵄨
−
󵄨󵄨󵄨󵄨𝜑𝜍
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝜑𝜍
󵄨󵄨󵄨󵄨

, ∀
󵄨󵄨󵄨󵄨󵄨
𝜑 {𝐶in}

󵄨󵄨󵄨󵄨󵄨
<
󵄨󵄨󵄨󵄨𝜑𝜍
󵄨󵄨󵄨󵄨 ) ,

𝐶in ∈ 𝐷in.

(9)

The proposed objective function 𝐽
3
represents the cone

region of the desired poles. All objective functions 𝐽
1
–𝐽
3

represent min-optimization procedure, where all objectives
are normalized on the interval [0-1].

3.4. The Composite Objective Function of the Dynamic Crite-
ria. The composite objective function represents the inter-
section of objectives 𝐽

1
–𝐽
3
. A graphical presentation of the

composite objective function is shown in Figure 5.
The composite objective function can be presented as

multiobjective criteria for DE, where the expected solution
area is equal to

Ψin = (𝐽1 ∩ 𝐽2 ∩ 𝐽3) ∧min (dev (𝑝in, 𝑝in))

∀Ψin ∈ 𝐷in,

∀𝑝in = {𝑝in ∈ 𝐶in | 𝐶in ∈ 𝐷in} ,

∀𝑝in = {𝑝in ∈ 𝐶in | 𝐶in ∈ 𝐷in} .

(10)

The multiobjective optimization approach will be dis-
cussed in the following sections.

3.5. Internal Controller Parameterization 𝐾(𝑠). Controller
parameterization is an applied technique, which ensures
satisfied properties of the closed-loop system. The internal

controllers 𝐾 and 𝐶 can be parameterized so as to ensure
good input disturbance rejection and robustness properties.
Inmany applications, the input disturbance 𝑑in in positioning
systems represents the load torque and Coulomb’s friction
with a typical low-frequency characteristic [20]. The inter-
nal system can provide good elimination of low-frequency
disturbances 𝑑in and reference tracking 𝑐 if the sensitivity
function |𝑆in| ≪ 1 has a proper damping effect on the
frequency span 𝐵 = [𝜔

𝑙
, 𝜔
ℎ
], 𝑐(𝐵) ∧ 𝑑in(𝐵) ≫ 1. Under

this assumption, the controller𝐾 can be parameterized using
different polynomial structures, with a known effect on the
sensitivity function |𝑆in|. Controller parameterization with
integral action 𝑅

𝐾
(𝑠) = 𝑅

󸀠

𝐾
(𝑠)𝑠 has a well-known influence

on the sensitivity function at low-frequency characteristics,
such as the known simple structures PI and PID. For the
sake of operational safety, the integral action can in many
cases be approximated with the stable pole (𝑠 + 𝛿), {𝛿 ∈ R |

0 < 𝛿 ≪ 1}, where 𝐾(𝑠) denominator polynomial is equal
to 𝑅󸀠

𝐾
(𝑠)(𝑠 + 𝛿). In this case, the damping of the sensitivity

function 𝑆in is lowered by parameter 𝛿. The lowered damping
value of 𝑆in is not noticeable in real-time operation, especially
if the absolute damping value is lower than the absolute
measurement accuracy.

A minimized tracking error 𝑒 and good low-frequency
input disturbance rejection 𝑑in can be achieved if the follow-
ing holds true:

lim
𝜔→𝐵

|𝐾 (𝐵)| ≫ 1, 𝐵 = {𝐵 ∈ R | 0 < 𝐵 ≤ 𝜔low} , (11)

where 𝐵 is the low-frequency span of the sensitivity func-
tion. Sensitivity function 𝑆in for span 𝐵 with controller
parameterization (𝑠 + 𝛿) is

lim
𝜔→𝐵

󵄨󵄨󵄨󵄨𝑆in (𝛿, 𝜔)
󵄨󵄨󵄨󵄨 = lim

𝜔→𝐵

(
󵄨󵄨󵄨󵄨𝑆in (𝜔)

󵄨󵄨󵄨󵄨
√𝜔2 + 𝛿2) ,

lim
𝜔→𝐵

|𝑆 (𝐵)| ≈ 𝛿 󳨐⇒ |𝑆 (𝛿, 𝐵)| ≈ 0.

(12)

Parameter 𝛿 determines the closed-loop tracking accu-
racy and the capability of disturbance rejection with charac-
teristic polynomial𝐶in(𝑠). Controller structure 𝐾 is parame-
terized as

𝑅
𝐾
(𝑠) =

{{

{{

{

𝑅
󸀠

𝐾
(𝑠)

𝑝

∏

𝑘=1

(𝑠 + 𝛿
𝑘
) ,

𝑅
󸀠

𝐾
(𝑠) 𝑅

𝐾par (𝑠) .

(13)
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Parameter 𝛿
𝑘
represents an additional parameter for

further optimization of performance and robustness criteria.
The polynomial equation with parametric solutions is

𝐴
0
(𝑠) 𝑅

󸀠

𝐾
(𝑠)

𝑝

∏

𝑘=1

(𝑠 + 𝛿
𝑘
) + 𝐵

0
(𝑠) 𝐿

𝐾
(𝑠) = 𝐶in (𝑠) ,

𝐴
0
(𝑠) 𝑅

𝐾
(𝑠, 𝛿) + 𝐵

0
(𝑠) 𝐿

𝐾
(𝑠) = 𝐶in (𝑠) .

(14)

The solution of the optimization procedure is a proper
set of polynomial coefficients, where the internal polynomial
𝐶in(𝑠) belongs to the Ψin and a strong proximity condition
𝐶in(𝑠) ≈ 𝐶in(𝑠) holds true.

3.6. The Design of the External Controller 𝐶(𝑠). Controller
𝐶(𝑠)design technique is the same as for the internal controller
𝐾(𝑠), where the external characteristic polynomial 𝐶out is

𝐴
0
(𝑠) 𝐴

󸀠

(𝑠) 𝐴
𝑚
(𝑠) 𝑅

𝐾
(𝑠) 𝑅

𝐶
(𝑠)

+ 𝐵
0
(𝑠) 𝐿

𝐾
(𝑠) 𝐴

󸀠

(𝑠) 𝐴
𝑚
(𝑠) 𝑅

𝐶
(𝑠)

+ 𝐵
0
(𝑠) 𝐵

󸀠

(𝑠) 𝐿
𝐶
(𝑠) 𝐴

𝑚
(𝑠) 𝑅

𝐾
(𝑠)

+ 𝐵
0
(𝑠) 𝐵

󸀠

(𝑠) 𝐵
𝑚
(𝑠) 𝐿

𝐾
(𝑠) 𝐿

𝐶
(𝑠) = 𝐶out (𝑠) .

(15)

The possible controller parameterization 𝐶(𝑠) is

Γ (𝑠) 𝑅
󸀠

𝐶
(𝑠)

𝑝

∏

𝑘=1

(𝑠 + 𝜂
𝑘
) + Υ (𝑠) 𝐿

𝐶
(𝑠) = 𝐶out (𝑠) ,

Γ (𝑠) 𝑅
𝐶
(𝑠, 𝜂) + Υ (𝑠) 𝐿

𝐶
(𝑠) = 𝐶out (𝑠) ,

(16)

where polynomials Γ(𝑠) and Υ(𝑠) are

Γ (𝑠) = 𝐴
󸀠

(𝑠) 𝐴
𝑚
(𝑠) (𝐴

0
(𝑠) 𝑅

𝐾
(𝑠) + 𝐵

0
(𝑠) 𝐿

𝐾
(𝑠)) ,

Υ (𝑠) = 𝐵
0
(𝑠) 𝐵

󸀠

(𝑠) (𝐴
𝑚
(𝑠) 𝑅

𝐾
(𝑠) + 𝐵

𝑚
(𝑠) 𝐿

𝐾
(𝑠)) .

(17)

Coefficient 𝜂 can also be used as an additional parameter
for criteria optimization in the same sense as parameter 𝛿.

The controller𝐶(𝑠) is the proper solution of the optimiza-
tion problem for external loop if the following conditions are
satisfied:

Ψout = (𝐽out 1 ∩ 𝐽out 2 ∩ 𝐽out 3) ∧min (dev (𝑝out, 𝑝out))

∀Ψout ∈ 𝐷out,

∀𝑝out = {𝑝out ∈ 𝐶out | 𝐶out ∈ 𝐷out} ,

∀𝑝out = {𝑝out ∈ 𝐶in | 𝐶out ∈ 𝐷out} .

(18)

Objective functions 𝐽out 1–𝐽out 3 have the same properties
and meanings as objective functions 𝐽

1
–𝐽
3
.

4. Nonparametric Uncertainty and
Robustness Criterion of RIC

The robustness of the RIC system is assessed using uncer-
tainty models Δ𝑃 and a stable proper input weight 𝑉󸀠noise.

𝜎

p1

p3

p2

p̃2

p̃3

p̃1

j𝜔

Frequency bound
j𝜔tr

−j𝜔tr

Figure 3: Rise-time objective function with a horizontal bound-
ary±𝑗𝜔

𝑡𝑟
.

𝜎

p1

p3

p2

p̃2

p̃3

p̃1

j𝜔Damping line

𝜑𝜁

−𝜑𝜁

𝜁

𝜑p̃1

𝜑p̃2

Figure 4: Damping-ratio objective function with parameter ±𝜑
𝜁
.

The uncertainty models describe model deviation within the
given frequency space and are represented with a nominal
model and stable uncertainty weights Δ𝑊 [30, 39]. Weights
𝑉
󸀠

noise representmeasured noise spectrumof the signal𝑤󸀠
1
. For

RIC design, we assume that the reference model is 𝑃
𝑚
≈ 𝑃

0
∈

𝑃𝐻
∞
. The internal loop of the RIC with uncertainty models

is shown in Figure 6.
The robustness assessment of the internal loop should

be considered with multiplicative and inverse uncertainty.
The multiplicative uncertainty represents uncertainties by
lower frequencies, while the inverse uncertainty represents
uncertainties by higher frequencies [39].
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p̃1
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𝜑𝜁

𝜁
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−j𝜔tr

Ψ

Figure 5: Intersection of objectives 𝐽
1
–𝐽
3
.

c i
Pm(s) K(s, 𝜎)

K(s, 𝜎)

din

ΔP(s)
ẏ

𝜉󳰀
w󳰀

1V󳰀
noise(s)−

Figure 6: Internal loop with uncertainty models Δ𝑃.

Let us consider the multiplicative uncertainty model
Δ𝑃

𝑀
= 𝑃

0
(1 +Δ𝑊

𝑀
)with nominal plant 𝑃

0
. The closed-loop

characteristic using the multiplicative uncertainty model
Δ𝑃

𝑀
is

(

̃̇𝑦

𝑖̃
) = (1 + 𝐾𝑃

0
(1 + Δ𝑊

𝑀
))
−1

× [
𝑃
0
(1 + Δ𝑊

𝑀
) (1 + 𝐾𝑃

𝑚
) 𝑃

0
(1 + Δ𝑊

𝑀
)

1 + 𝐾𝑃
𝑚

1
](

𝑐

𝑑in
) .

(19)

Robust stability for the multiplicative uncertainty is pre-
served if the following holds true:

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

Δ𝑊
𝑀

𝐾𝑃
0

1 + 𝐾𝑃
0

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∞

< 1

∀ |Δ (𝜔)| < 1 𝜔 = {𝜔 ∈ R | 0 ≤ 𝜔 < ∞} ,

󵄩󵄩󵄩󵄩Δ𝑊𝑀𝑇in
󵄩󵄩󵄩󵄩∞

< 1,

(20)

where 𝑇in is a complementary sensitivity function of the
internal loop.

+e c y

z

Ws(s)

C(s, 𝜂) TP𝑚 in(s)
ẏ

P󳰀(s)

++
−

w1

dout

Vout(s)

𝜉
Vnoise(s)

w2

Figure 7: External loop optimization structure.

The internal loop with inverse uncertainty Δ𝑃
𝐼

=

𝑃
0
(1 + Δ𝑊

𝐼
)
−1 is defined as

(

̃̇𝑦

𝑖̃
) = (1 + 𝐾𝑃

0
(1 + Δ𝑊

𝐼
)
−1

)
−1

× [
𝑃
0
(1 + Δ𝑊

𝐼
)
−1

(1 + 𝐾𝑃
𝑚
) 𝑃

0
(1 + Δ𝑊

𝐼
)
−1

1 + 𝐾𝑃
𝑚

1
]

× (
𝑐

𝑑in
) .

(21)

The robustness for inverse models is satisfied if the following
holds true:

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

Δ𝑊
𝐼

1

1 + 𝐾𝑃
0

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∞

< 1

∀ |Δ (𝜔)| < 1 𝜔 = {𝜔 ∈ R | 0 ≤ 𝜔 < ∞} ,
(22)

where 𝑆in is the sensitivity function of the internal loop.
The noise suppression 𝜉

󸀠 of the internal loop can be
assessed with the following criterion:

𝑇
𝑤
󸀠

1

= (1 + 𝐾 (𝛿) Δ𝑃)
−1

𝑉
󸀠

noise. (23)

The robustness criterion of noise suppression with the
uncertainty model is

𝑇
𝑤
󸀠

1

= min
𝐾

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

[𝑊
𝑀

𝑊
𝐼
] [
𝑇in 0

0 𝑆in
]𝑉

󸀠

noise

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

. (24)

After derivation of robust stability conditions of the
internal loop, robust stability conditions for the external
loop can be presented. The purpose of external controller
design is to ensure overall performance characteristics like
proper reference tracking 𝑟, output disturbance rejection
𝑑out, and good measurement noise cancellation 𝜉. The
optimization structure of the external loop is shown in
Figure 7.

Selected weights𝑊
𝑠
, 𝑉out, 𝑉noise belong to the PH

∞

domain. Input weights𝑉out,𝑉noise represent the input spectral
characteristics of disturbance 𝑑out and noise 𝜉, where the per-
formance weight𝑊

𝑠
is selected to ensure a smooth frequency

characteristic of the external-loop sensitivity function 𝑆out(𝑠).
A smooth characteristic of the sensitivity function is also
an additional indicator of the closed-loop time-performance
characteristics.
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The closed-loop characteristic of the external loop with
weights𝑊

𝑠
, 𝑉out, 𝑉noise is

𝑇
𝑧𝑤
= 𝑊

−1

𝑠
[(1 + 𝐶 (𝜂) 𝑇in𝑃

󸀠

)
−1

(1 + 𝐶 (𝜂) 𝑇in𝑃
󸀠

)
−1

(1 + 𝐶 (𝜂) 𝑇in𝑃
󸀠

)
−1

] [

[

1

𝑉out
𝑉noise

]

]

= 𝑊
−1

𝑠
[𝑆out 𝑆out 𝑆out] [

[

1

𝑉out
𝑉noise

]

]

.

(25)

The optimal solution of the optimization problem is

min
𝐶

󵄩󵄩󵄩󵄩𝑇𝑧𝑤
󵄩󵄩󵄩󵄩∞

= 𝛾min. (26)

Themain goal of expression (26) is to minimize the influ-
ences of inputs𝑤

1
, 𝑤

2
on the sensitivity function 𝑆out and to

ensure final feedback performance with 𝑆out ≈ 𝑊
𝑠
∧ |𝑆out| <

|𝑊
𝑠
|.

4.1. Robustness Criteria Assessment via Nonnegativity of the
Even Polynomial. Let us consider the property of the norm
‖ ⋅ ‖

∞
related to robust stability with uncertainty models

[30, 39]. The robust stability criterion is ensured with
condition ‖ ⋅ ‖

∞
< 1, where the criterion is derived for a

given transfer function𝑃
0
(𝑠) = 𝐵(𝑠)𝐴

−1

(𝑠). The condition
‖𝑃
0
‖
∞

< 1 holds if the even polynomial 𝜋(𝜔2) is a strictly
nonnegative function,

𝐴(𝜔
2

) − 𝐵 (𝜔
2

) = 𝜋 (𝜔
2

) > 0. (27)

The property of the function 𝜋(𝜔2) is derived from the
functionΦ(𝑗𝜔), defined as in [30]:

Φ(𝑗𝜔) = 𝛾
2

𝐼 −
𝐵 (𝑗𝜔)

𝐴 (𝑗𝜔)

𝐵 (−𝑗𝜔)

𝐴 (−𝑗𝜔)
. (28)

Function Φ(𝑗𝜔) is a strictly continuous function for all
∈ R ∪ {∞} and has no imaginary zeroes. The norm of the
function equals ‖𝑃

0
‖ ≤ 𝛾 only if Φ(𝑗𝜔) > 0 for all 𝜔 ∈

R. The robustness property for nonparametric uncertainty
can be assessed with even polynomial 𝜋(𝜔2) > 0 (27),
where we assume that 𝛾 = 1 and 𝐴(𝑗𝜔)𝐴(−𝑗𝜔) = 𝐴(𝜔

2

),
𝐵(𝑗𝜔)𝐵(−𝑗𝜔) = 𝐵(𝜔

2

) holds true.

Theorem 1. The norm ‖ ⋅ ‖
∞

of the system with
polynomials 𝐴, 𝐵 is ‖𝐵/𝐴‖

∞
< 1 only if the corresponding

polynomial𝜋(𝜔2), for all 𝜔, is a strictly nonnegative function
and 𝐵(𝑠)𝐴(𝑠)−1 belongs to 𝑃𝐻

∞
.

Proof. The simple explanation of the norm ‖ ⋅ ‖
∞

is
‖𝐵/𝐴‖

∞
:= sup

𝜔
|𝐵(𝑗𝜔)𝐴

−1

(𝑗𝜔)|, where we assume that
𝐵(𝑠)𝐴(𝑠)

−1 belongs to 𝑃𝐻
∞
. The norm of the transfer

function is ‖𝐵/𝐴‖
∞

< 1 only if the ratio of polynomials
|𝐵(𝑗𝜔)||𝐴(𝑗𝜔)|

−1

< 1. It is obvious from the above-
mentioned that the difference (27), 𝜋(𝜔2), must be a strictly

nonnegative function and that 𝜋(𝜔2) has no real zeroes. The
positivity condition of the 𝜋(𝜔2) is an objective of robustness
assessment.

Based on condition (27), the controllers’ robustness
property can be achieved with the assessment of the non-
negativity of the even polynomial. Each single robustness
criterion ((20), (22), (24), and (26)) can be presented
in the form of an even polynomial and a nonnegativity
condition.

4.2. Robust Stability Assessment with a Nonnegativity
Condition for the Internal Loop. The internal-loop
robustness conditions are presented with expressions
(20), (22), and (24). Based on condition (27), the even
polynomial 𝜋

𝑀
(𝜔
2

, 𝛿) for multiplicative uncertainty (20)
is

𝜋
𝑀
(𝑠, 𝛿) = 𝐶in (𝑠) 𝐶in (−𝑠) 𝑤𝑎𝑀 (𝑠) 𝑤

𝑎𝑀
(−𝑠)

− 𝐵
0
(𝑠) 𝐵

0
(−𝑠) 𝐿

𝐾
(𝑠, 𝛿) 𝐿

𝐾
(−𝑠, 𝛿) 𝑤

𝑏𝑀
(𝑠)

× 𝑤
𝑏𝑀

(−𝑠) ,

𝜋
𝑀
(𝜔
2

, 𝛿) = 𝐶in𝑤𝑎𝑀 (𝜔
2

) − 𝐵
0
𝐿
𝐾
𝑤
𝑏𝑀

(𝜔
2

, 𝛿) > 0,

(29)

where the weight 𝑊
𝑀
(𝑠) is 𝑊

𝑀
(𝑠) = 𝑤

𝑏𝑀
(𝑠)𝑤

−1

𝑎𝑀
(𝑠).

Even polynomial 𝜋
𝐼
(𝜔
2

, 𝛿) for robust stability with
inverse uncertainty model (22) with stable weight 𝑊

𝐼
(𝑠) =

𝑤
𝑏𝐼
(𝑠)𝑤

−1

𝑎𝐼
(𝑠) is

𝜋
𝐼
(𝑠, 𝛿) = 𝐶in (𝑠) 𝐶in (−𝑠) 𝑤𝑎𝐼 (𝑠) 𝑤𝑎𝐼 (−𝑠)

− 𝐴
0
(𝑠) 𝐴

0
(−𝑠) 𝑅

𝐾
(𝑠, 𝛿) 𝑅

𝐾
(−𝑠, 𝛿) 𝑤

𝑏𝐼
(𝑠)

× 𝑤
𝑏𝐼
(−𝑠) ,

𝜋
𝐼
(𝜔
2

, 𝛿) = 𝐶in𝑤𝑎𝐼 (𝜔
2

) − 𝐴
0
𝑅
𝐾
𝑤
𝑏𝐼
(𝜔
2

, 𝛿) > 0.

(30)
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Even polynomial 𝜋
𝑇
𝑤
󸀠

1

(𝜔
2

, 𝛿) for condition (24) with
stability weights 𝑊

𝑀
(𝑠) and 𝑊

𝐼
(𝑠) and input weight

𝑉
󸀠

noise(𝑠) = V󸀠
𝑏noise(𝑠)V

󸀠−1

𝑎noise(𝑠) is

𝜋
𝑇
𝑤
󸀠

1𝑀

(𝜔
2

, 𝛿) = 𝑤
𝑎𝑀
𝐶inV

󸀠

𝑎noise (𝜔
2

)

− 𝑤
𝑏𝑀
𝐴
0
𝐴
𝑚
𝑅
𝐾
V󸀠
𝑏noise (𝜔

2

, 𝛿) ,

𝜋
𝑇
𝑤
󸀠

1
𝑆

(𝜔
2

, 𝛿) = 𝑤
𝑎𝑆
𝐶inV

󸀠

𝑎out (𝜔
2

)

− 𝑤
𝑏𝑆
𝐴
0
𝐴
𝑚
𝑅
𝐾
V󸀠
𝑏out (𝜔

2

, 𝛿) ,

𝜋
𝑇
𝑤
󸀠

1

(𝜔
2

, 𝛿) = 0.5 (𝜋
𝑇
𝑤
󸀠

1𝑀

(𝜔
2

, 𝛿) + 𝜋
𝑇𝑤
󸀠

1𝑆

(𝜔
2

, 𝛿)) > 0.

(31)

To simplify the optimization procedure in comparison to
the classic approach, the composed condition (24) is treated
similarly as the criterion in augments plant transformation
in a classic 𝐻

∞
design, wherein the condition 𝜋

𝑇
𝑤
󸀠

1

(𝜔
2

, 𝛿)

(31) is a simple even polynomial function. In the multi-
objective optimization approach, the condition 𝜋

𝑇
𝑤
󸀠

1

(𝜔
2

, 𝛿)

(31) can be also considered as two distinct functions:
𝜋
𝑇
𝑤
󸀠

1𝑀

(𝜔
2

, 𝛿) and𝜋
𝑇
𝑤
󸀠

1
𝑆

(𝜔
2

, 𝛿).

4.3. Robust Stability Assessment with a Nonnegativity Con-
dition for the External Loop. A polynomial function for
robustness and performance condition (26) for the external
loop in Figure 7 can be formulated the sameway as conditions
(24) and (31). The even polynomial of condition (26) with
performance weights 𝑊

𝑆
(𝑠) = 𝑤

𝑏𝑆
(𝑠)𝑤

−1

𝑎𝑆
(𝑠), 𝑉out(𝑠) =

V
𝑏out(𝑠)V

−1

𝑎out(𝑠), and 𝑉noise(𝑠) = V
𝑏noise(𝑠)V

−1

𝑎noise(𝑠) is

𝜋
𝑤
1
𝑧
(𝜔
2

, 𝜂) = 𝑤
𝑎𝑆
𝐶out (𝜔

2

) − 𝑤
𝑏𝑆
𝐴
0
𝐴
𝑚
𝐴
󸀠

𝑅
𝐾
𝑅
𝐶
(𝜔
2

, 𝜂) ,

𝜋
𝑤
2
𝑧
(𝜔
2

, 𝜂) = 𝑤
𝑎𝑆
𝐶outV𝑎out (𝜔

2

)

− 𝑤
𝑏𝑆
𝐴
0
𝐴
𝑚
𝐴
󸀠

𝑅
𝐾
𝑅
𝐶
Vbout (𝜔

2

, 𝜂) ,

𝜋
𝑧𝑤
(𝜔
2

, 𝜂) = (𝜋
𝑤
1
𝑧
(𝜔
2

, 𝜂)
2

+ 𝜋
𝑤
2
𝑧
(𝜔
2

, 𝜂)
2

) > 0.

(32)

As with condition (31), we can use composite objective
function 𝜋

𝑧𝑤
(𝜔
2

, 𝜂) to simplify the optimization procedure.
Additional criteria are imposed to achieve strong stability

of the RIC, where the real-time operational safety for the
controlled systemmust be preserved in case some parts of the
feedback system fail, for example, sensors’ failure, electronic
driver failure, and faulty motor. Controllers’ stability can
be assessed over strict positive realness (SPR) criteria [40].
Controllers𝐾(𝑠), 𝐶(𝑠) are stable transfer functions if SPR’s
conditions hold true:

R𝑒 [𝐾 (𝑗𝜔) + 𝐾 (−𝑗𝜔)] > 0,

R𝑒 [𝐶 (𝑗𝜔) + 𝐶 (−𝑗𝜔)] > 0,
(33)

where R𝑒[𝐾(𝑗𝜔)] and R𝑒[𝐶(𝑗𝜔)] are even functions. The
even polynomials of stability conditions (33) are

𝜋
𝐾SPR

(𝜔
2

, 𝜎)

= 2 (𝑅
𝐾
(−𝑗𝜔, 𝜎) 𝐿

𝐾
(𝑗𝜔) + 𝑅

𝐾
(𝑗𝜔, 𝜎) 𝐿

𝐾
(−𝑗𝜔)) > 0,

𝜋
𝐶SPR

(𝜔
2

, 𝜂)

= 2 (𝑅
𝐶
(−𝑗𝜔, 𝜂) 𝐿

𝐶
(𝑗𝜔) + 𝑅

𝐶
(𝑗𝜔, 𝜂) 𝐿

𝐶
(−𝑗𝜔)) > 0.

(34)

The robust conditions and the stability property of con-
trollers (29)–(32), (34) can be directly used in amultiobjective
optimization algorithm with DE.

5. Multiobjective Optimization with
DE for RIC Design

The paper presents a multiobjective optimization procedure
with DE. Genetic algorithm DE is known as a very efficient
and powerful stochastic optimization procedure. DE includes
similar operation steps as other GAs, but, in comparison with
other classic GAs, DE deviates the current population with
scaled differences between two randomly selected members
[28]. There are many reasons for using the DE algorithm for
solving various optimization problems in different scientific
disciplines. Compared to other similar algorithms, DE has a
simpler structure and is easier to implement on real problems.
Because of its simple structure, it is suitable for large scale
optimization problems. The control parameters of DE have
been well studied, and their influence on the optimization
procedure is well known.

This paper presents the design of a robust, efficient,
simple, and structured disturbance observer, based on sim-
ple objective functions for performance and robustness
assessment. The main problem in optimal control design
is formulating proper efficient objective functions, which
can be further used in a corresponding optimization algo-
rithm. Objective functions with their properties must ensure
optimal or suboptimal solutions of the given problem. The
given optimization problem in RIC structure with regional
pole placement technique does not provide a convex set of
objective functions. There also do not exist general straight-
forward procedures to convert such objectives to convex
problem, which are mostly in conflict with each other and
unrelated. For example, unrelated criteria are strong stability
and robustness, closed-loop pole location and controller
stability, controller structure and robustness performance,
and so forth. In such cases where engineering simplifications
are needed, it is very appropriate to use a metaheuristic
optimization tool, like DE. For this reason, this paper does
not deal with the efficiency of multiobjective DE algorithms
and their variants but only considers the efficiency of the used
approach in an optimal control problem in anRIC framework
with formed objective functions for dynamic properties (7)–
(9) and robustness (29)–(32) and (34).

Multiobjective optimization problems with DE involve
multiple objectives, whichmust be optimized simultaneously,
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(1) Select central polynomials 𝐶in(𝑠), 𝐶𝑜ut(𝑠) and weights𝑊(𝑠), 𝑉(𝑠).
(2) Select controllers’ structure 𝐾,𝐶 and parameters 𝜎, 𝜂.

deg𝐾 = deg𝐶in − deg𝑃
0
,

deg𝑅
𝐾
= deg 𝐿

𝐾
,

deg𝐶 = deg𝐶out − (deg𝐶in + deg𝑃
𝑚
+ deg𝑃󸀠),

deg𝑅
𝐶
= deg 𝐿

𝐶
.

(3) Parameters’ selection of the DE-optimization algorithm.
(Number of parents-NP, differential weight-F, crossover probability-CR, mutation strategy)

(4) while (min𝑓(𝜔2, 𝑋))
(5) DE selects value of parameters 𝜎, 𝜂.
(6) Solve polynomial equations (14), (16).
(7) Derive convex polynomials 𝜋(𝜔2, 𝑋).
(8) Find current Pareto-front of the 𝑓(𝜔2, 𝑋).
(9) end while

Algorithm 1: Multiobjective DE algorithm.

and a set of possible solutions must be obtained. The set
of possible solutions is evaluated based on the concept of
dominance and Pareto optimality [14, 17, 33]. The presented
RIC design uses DEMO algorithm presented by Robič and
Filipič [42]. The DEMO combines the advantages of DE
with the mechanisms of Pareto-based ranking and crowding
distance sorting. The advantage of the DEMO algorithm is
that it ensures convergence to the Pareto-front and a uniform
spread of individuals along the front [42].

A multiobjective function is composed of derived objec-
tive functions (7)–(9), (29)–(32), and (34) and is equal to

min
𝜔
2
∨𝑋

𝑓 (𝜔
2

, 𝑋) =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝐽
1
(𝑋) ∧ 𝐽out 1 (𝑋)

𝐽
2
(𝑋) ∧ 𝐽out 2 (𝑋)

𝐽
3
(𝑋) ∧ 𝐽out 3 (𝑋)

𝜋
𝑀
(𝜔
2

, 𝑋)

𝜋
𝐼
(𝜔
2

, 𝑋)

𝜋
𝑇
𝑤
󸀠

1

(𝜔
2

, 𝑋)

𝜋
𝑧𝑤
(𝜔
2

, 𝑋)

𝜋
𝐾SPR

(𝜔
2

, 𝑋)

𝜋
𝐶SPR

(𝜔
2

, 𝑋)

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

s.t. 𝑓 (𝜔
2

, 𝑋) > 0,

𝑋 ∈ 𝑃,

(35)

where 𝑃 is parameter space and 𝑋 is decision
vector. Decision vector 𝑋 contains the coefficients
of polynomials 𝐿

𝐾
, 𝑅

𝐾
, 𝐿

𝐶
, 𝑅

𝐶
(1) with possible

parameterization coefficients 𝛿 and 𝜂. Figure 8 shows
the structure of the decision variable𝑋.

Note.The solution𝑋 ∈ 𝑃 is Pareto-optimal if and only if there
does not exist𝑋 ∈ 𝑃 that satisfies𝑓(𝜔2, 𝑋) < 𝑓(𝜔2, 𝑋).

The optimization algorithm starts with the preselected
central polynomials 𝐶in,𝐶out, where the controllers’ degrees
are prescribed in the same way as in the classic polynomial
design (6), (16) [37].The degree of controller 𝐾 is equal to the
condition deg𝐾 = deg𝐶in − deg𝑃

0
, where deg𝐶in > deg𝑃

0

holds true. The degree of controller 𝐶 can be determined

Table 1: Parameters of an electromechanical system.

Motor parameters
𝐽 6.2 ⋅ 10

−3 kgm2

𝐵 4.2 ⋅ 10
−3Nms

𝑘
𝑃

0.081Nm/A
𝑅 7.9Ω
𝐿 5.7mH

C

LK RK

K

LC RC

Figure 8: Structure of decision variable𝑋.

the same way as for controller𝐾, where deg𝐶 = deg𝐶out −

(deg𝐶in+deg𝑃𝑚+deg𝑃
󸀠

) and deg𝐶out ≥ (deg𝐶in+deg𝑃𝑚+
deg𝑃󸀠) holds true. The optimization procedure is shown in
Algorithm 1.

6. The Design Procedure for RIC Controllers

The proposed robust motion controller design is demon-
strated by an electromechanical positioning system with the
parameters given in Table 1.

The parameters 𝐽, 𝐵, 𝑘
𝑃
, 𝑅, and 𝐿 are rotor inertia,

viscous friction, torque factor, terminal resistance, and rotor
induction, respectively. To ensure simple controller struc-
tures of 𝐾(𝑠) and 𝐶(𝑠), we use a simplified model of the
mechanical system 𝑃

0
(𝑠). The simplification is often applica-

ble if the plant has more strongly expressed dominant stable
poles in comparison to other stable poles. The given model is

𝑃
0
(𝑠) =

𝜔 (𝑠)

𝑖 (𝑠)
=

𝑘
𝑃

𝐽𝑠 + 𝐵
=

130.6

𝑠 + 0.667
,

𝑃
󸀠

(𝑠) =
𝜑 (𝑠)

𝜔 (𝑠)
=
1

𝑠
.

(36)
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Table 2: Uncertainty parameters of the positioning system.

Uncertainty parameters
Δ𝐽 [2.4 ÷ 9.8] ⋅ 10

−3 kgm2

Δ𝐵 [3.3 ÷ 6.5] ⋅ 10
−3Nms

Δ𝑘
𝑃

[0.6 ÷ 1.3] Nm/A

Table 3: RIC control requirements.

Feedback loop RIC requirements
Settling time 𝑡

𝑠
< 1.4 s

Nominal plant overshooting 𝑀Pn < 3%
Worst-case plant overshooting 𝑀worst < 20%
Tracking accuracy 𝑒error < |0.0015| rad
Tracking reference frequency [0 ÷ 1] rad/s
Input disturbance rejection |0.05| Nm, [0 ÷ 0.2] rad/s
Output disturbance rejection |0.5| rad, [0 ÷ 0.5] rad/s
Input current limit ±1.5A
Voltage limit ±14.8V
Robust stabilization
Stable and low-order controllers 𝐾,𝐶

The output of the controller 𝐾(𝑠) is an armature current
𝑖[𝐴] through a magnetic coil, which is proportional to the
electrical torque. To avoid additional nonlinearities, it is
sensible to consider terminal voltage |𝑅𝑖 + 𝑘

𝑒
𝜔| < |𝑈limit|,

especially if the system is driven conventional by anH-bridge
and PWM signal. The coefficient 𝑘

𝑒
is an electromotive force

constant.
The uncertainty plant is given by

Δ𝑃 (𝑠) =
Δ𝑘

𝑃

Δ𝐽𝑠 + Δ𝐵
, (37)

where the parameters vary in intervals according to changed
operation points, friction, load, gear box, and so forth. The
uncertainty parameter intervals are shown in Table 2.

The estimated uncertainty weights for the robustness
criteria (20), (22), and (24) are

𝑊
𝑀
(𝑠) =

1.34 × 𝑠
3

+ 1.156 × 𝑠
2

+ 0.32 × 𝑠 + 0.062

𝑠3 + 1.57 × 𝑠2 + 0.48 × 𝑠 + 0.096
,

𝑊
𝐼
(𝑠) =

0.65 × 𝑠
2

+ 0.39 × 𝑠 + 0.083

𝑠2 + 0.82 × 𝑠 + 0.17
.

𝑉
󸀠

noise (𝑠) =
0.0023 × 𝑠 + 1.2 ⋅ 10

−6

𝑠 + 980.3
.

(38)

The desired requirements of the RIC systems are given in
Table 3.

The reference model𝑃
𝑚
(𝑠) is selected so as to ensure

proper internal dynamic of the RIC structure, where holds
𝑃
𝑚
(𝑠) ≈ 𝑃

0
(𝑠). The selected 𝑃

𝑚
(𝑠) is

𝑃
𝑚
(𝑠) =

289.2

𝑠 + 1.5
. (39)

Table 4: Allowed region for optimized internal-loop poles 𝐶in(𝑠) in
a complex plain.

Allowed poles region 𝐷in for 𝐶in

𝜎
𝑡𝑠 low −0.7

𝜎
𝑡𝑠 high −4

±𝑗𝜔
𝑡𝑟

±𝑗10

±𝜑
𝜁

±30
∘

Table 5: Allowed region for optimized internal-loop poles 𝐶out(𝑠)

in a complex plain.

Allowed poles region 𝐷out for 𝐶out

𝜎
𝑡𝑠 low −0.35

𝜎
𝑡𝑠 high −9

±𝑗𝜔
𝑡𝑟

±𝑗14

±𝜑
𝜁

±74
∘

According to the RIC dynamic requirement for input
and output disturbance rejection and tracking property, the
additional performance weights are selected as follows:

𝑊
𝑆
(𝑠) =

2.1 × 𝑠
2

+ 0.46 × 𝑠 + 0.001

𝑠2 + 3.98 × 𝑠 + 0.99
,

𝑉out (𝑠) =
0.002 × 𝑠 + 0.0012

𝑠 + 0.0014
,

𝑉noise (𝑠) =
2.9 ⋅ 10

−3

× 𝑠 + 1.2 ⋅ 10
−3

𝑠 + 1.001 ⋅ 103
.

(40)

The controller transfer function 𝐾(𝑠) is selected so as to
ensure simple structure and maintain desirable closed-loop
performance. The selected low-order structure is

𝐾(𝑠, 𝑟
𝑘0
) =

𝑙
𝑘1
𝑠 + 𝑙

𝑘0

𝑟
𝑘1
𝑠 + 𝛿

, (41)

where the parameter 𝛿 represents controller parameterization
(14) and the allowable desired value is given on the interval
[10

−4

−10
−2

].The value of 𝛿 ensures proper input disturbance
rejection for low-frequency signals and stable approximate
integral behaviour.

Accordingly, the following internal central polynomial
𝐶in(𝑠) is chosen on the selected controller structure 𝐾(𝑠) on
the condition deg𝐶in = deg𝐾 + deg𝑃

0
. The internal central

polynomial is

𝐶in (𝑠) = 𝑠
2

+ 2 × 𝑠 + 1. (42)

The polynomial 𝐶in(𝑠) ensures proper dynamic and sta-
bility of the internal system. The selected allowed region 𝐷in
of the optimized internal loop poles 𝐶in(𝑠) is presented in
Table 4.

The selected controller structure 𝐶(𝑠) is

𝐶 (𝑠, 𝑟
𝑐0
) =

𝑙
𝑐2
𝑠
2

+ 𝑙
𝑐1
𝑠 + 𝑙

𝑐0

𝑟
𝑐2
𝑠2 + 𝑟

𝑐1
𝑠 + 𝜂

. (43)
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Table 6: Parameters of DE-optimization algorithm.

Optimization algorithm parameters
Number of parents NP 50

Differential weight 𝐹 0.85
Crossover probability CR 0.92

Mutation strategy DE/rand/1/bin

Table 7: Polynomials 𝐶in, 𝐶in roots comparisons.

Polynomials 𝐶in(𝑠) 𝐶in(𝑠)

−1 −0.944 − 𝑗0.04

−1 −0.944 + 𝑗0.04

Table 8: Polynomials 𝐶out, 𝐶out roots comparisons.

Polynomials 𝐶out(𝑠) 𝐶out(𝑠)

−3.4 − 𝑗12.3 −3.09 − 𝑗10.2

−3.4 + 𝑗12.3 −3.09 + 𝑗10.2

−2.5 − 𝑗3 −2.61 − 𝑗2.76

−2.5 + 𝑗3 −2.61 + 𝑗2.76

−1.2 −1.09

−0.5 −0.48

The parameter 𝜂 represents 𝐶(𝑠) controller parameteri-
zation in such a way that the double-integrator effect in the
external loop is avoided. The admissible value is 𝜂 > 50.
According to controller structures 𝐾(𝑠) and 𝐶(𝑠) and the
reference model 𝑃

𝑚
(𝑠), the external central polynomial is

selected as

𝐶out (𝑠) = 𝑠
6

+ 13.5 × 𝑠
5

+ 234 × 𝑠
4

+ 1286 × 𝑠
3

+ 4171 × 𝑠
2

+ 4773 × 𝑠 + 1490,

(44)

where the following condition holds true: deg𝐶out = deg𝐶 +
(deg𝐶in + deg𝑃

𝑚
+ deg𝑃󸀠). The selected allowed region𝐷out

of the optimized external-loop poles 𝐶out(𝑠) is presented in
Table 5.

The structure of the decision variable𝑋 for the given
example is shown in Figure 9.

The selected parameters of DE algorithm are presented in
Table 6.

7. Results

Optimized controllers 𝐾(𝑠) and 𝐶(𝑠) after optimization with
DE and objective function (35) are as follows:

𝐾 (𝑠) =
13.56 ⋅ 10

−3

× 𝑠 + 8.4 ⋅ 10
−3

𝑠 + 0.18 ⋅ 10−3
,

𝐶 (𝑠) =
0.27 × 𝑠

2

+ 2.3 × 𝑠 + 2.29

𝑠2 + 9.324 × 𝑠 + 102.1
.

(45)

The optimization results are presented below. The differ-
ence between the selected internal central polynomial 𝐶in(𝑠)

and the optimized polynomial 𝐶in(𝑠) is presented in Table 7.

CK

lk1, lk0 rk1, 𝛿 lC1, lC1, lC0 rC2, rC1, 𝜂

Figure 9: The structure of the decision variable 𝑋 with 10 parame-
ters.
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Figure 10: Step-reference tracking.
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Figure 11: Output of the controller 𝐾(𝑠).

A comparison of polynomials 𝐶out(𝑠) and 𝐶out(𝑠) is
presented in Table 8.

From the results of polynomial comparisons in Tables
7 and 8, it is evident that the optimization procedure
with Pareto-optimal solution ensures a satisfactory fitting
of pole positions in the dominant region. The obtained
controllers𝐾(𝑠) and𝐶(𝑠) are stable, and all poles of internal
and external loops lie in the prescribed region.

The final values of robust criteria (20), (22), (24), and (26)
are presented in Table 9.

The tracking RIC capabilities on step-reference signals for
the nominal and worst-case systems are shown in Figure 10.
The reference signal presents a rotation of the RIC system for
half a turn to the left and to the right. The worst-case model
is selected accordingly, as a possible real operational case
with valuesmax(Δ𝐽), max(Δ𝐵), and min(Δ𝑘

𝑃
), chosen from

Table 2. Controllers’𝐾 and𝐶 outputs are shown in Figures 11,
12, and 13, respectively.
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Figure 12: Output of the controller 𝐶(𝑠).
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Figure 13: Output-voltage of the RIC system.

The disturbance rejection capability of the positioning
system is shown in Figures 14, 15, 16, and 17.

Figures 10–17 show that the robust motion controller
presented in the RIC framework satisfies all control design
criteria. Table 9 and Figures 10–17 provide evidence that the
stability and performance conditions are preserved. The sys-
tem does not exceed the limit values for the operation voltage
and current in the given operation interval, so that the system
does not exhibit additional nonlinear or oscillating behaviour
(Figures 11 and 13).The influence of themeasured noise is also
minimized with conditions ‖𝑇

𝑤
󸀠

1

‖
∞

and ‖𝑇
𝑤𝑧
‖
∞
, Table 9.The

system has good reference tracking and disturbance rejection
within the prescribed area of system uncertainty (Figures
14–17) and simple low-order structures of the internal and
external controllers.

8. Conclusion

This paper presented the design of a robust RIC structure
for a positioning system. The proposed approach shows
the capability of robustness and performance optimization
over nonnegativity of an even polynomial, where regional
pole placement is used. The even polynomial can be also
formulated for other types of uncertainty and performance
criteria. Controllers 𝐾 and 𝐶 can be parameterized approx-
imately by using known characteristics, which allows the
possibility of preserving strong stability of the controlled
system. Optimizationwith themulticriterion algorithm, such
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Figure 14: Input-output disturbance rejection.
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Figure 15: Output of the controller 𝐾(𝑠) with disturbance attenua-
tion.

Table 9: Value of robust criteria.

Criteria ‖ ⋅ ‖
∞

Value
󵄩󵄩󵄩󵄩𝑇in𝑊𝑀

󵄩󵄩󵄩󵄩∞
0.82

󵄩󵄩󵄩󵄩𝑆in𝑊𝐼

󵄩󵄩󵄩󵄩∞
0.62

󵄩󵄩󵄩󵄩𝑇𝑤󸀠1
󵄩󵄩󵄩󵄩∞

0.23

󵄩󵄩󵄩󵄩𝑆out𝑊
−1

𝑠

󵄩󵄩󵄩󵄩∞
0.73

󵄩󵄩󵄩󵄩𝑊
−1

𝑠
𝑆out𝑊out

󵄩󵄩󵄩󵄩∞
0.123

󵄩󵄩󵄩󵄩𝑊
−1

𝑠
𝑆out𝑊noise

󵄩󵄩󵄩󵄩∞
0.47

as DE, offers the possibility of including many criteria and
an arbitrary number of free parameters, as shown in the pre-
sented example. The criteria can include system knowledge,
uncertainties, and perturbation characteristics, as well as
criteria related to frequency and time domain characteristics
of a closed-loop system. The presented results in the design
example confirmed the validity of the proposed approach.
The DE-optimization procedure with different robustness
and performance criteria can be used in a wide range of
different controller and feedback structures designs. The
presented approach can be straightforward extended to the
𝐻
2
or𝐻

∞
/𝐻
2
controller design. Further work will be focused

on the pole placement robust state space controller design
forMIMOsystem,where the polynomial equation introduces
a set of parametric solutions. In MIMO case, the exact
solution of the polynomial equation is limited to the number
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Figure 16: Output of the controller 𝐶(𝑠) with disturbance attenua-
tion.
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Figure 17: Output voltage of the RIC system with disturbance
attention.

of the inputs and outputs of the system. The parametric
solutions can be used as optimization parameters, similar to
the presented approach.
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control scheme based on the PD controller plus disturbance
observer and low-order integrating first-order plus dead-time
model,” ISA Transactions, vol. 48, no. 4, pp. 410–416, 2009.

[3] B. Yao, M. Al-Majed, and M. Tomizuka, “High-performance
robust motion control of machine tools: an adaptive robust
control approach and comparative experiments,” IEEE/ASME
Transactions on Mechatronics, vol. 2, no. 2, pp. 63–76, 1997.

[4] Y. Wang, Z. H. Xiong, and H. Ding, “Robust internal model
control with feedforward controller for a high-speed motion
platform,” in Proceedings of the IEEE IRS/RSJ International

Conference on Intelligent Robots and Systems (IROS ’05), pp. 187–
192, August 2005.

[5] B. K. Kim and W. K. Chung, “Unified analysis and design
of robust disturbance attenuation algorithms using inherent
structural equivalence,” in Proceedings of the American Control
Conference, pp. 4046–4051, June 2001.

[6] P. B. Stephen, C. A. Hax, and T. L.Magnanti,AppliedMathemat-
ical Programming, Addiosn-Wesley, 1997.

[7] S. Boyd andL.Vandenberghe,ConvexOptimization, Cambridge
University Press, 2004.

[8] H. Khatibi, A. Karimi, and R. Longchamp, “Fixed-order con-
troller design for polytopic systems using LMIs,” IEEE Transac-
tions on Automatic Control, vol. 53, no. 1, pp. 428–434, 2008.

[9] T. Bakka and H. R. Karimi, “Robust 𝐻
∞

dynamic output
feedback control synthesis with pole placement constraints
for offshore wind turbine systems,” Mathematical Problems in
Engineering, vol. 2012, Article ID 616507, 18 pages, 2012.

[10] P. Gahinet and P. Apkarian, “Linear matrix inequality approach
to 𝐻

∞
control,” International Journal of Robust and Nonlinear

Control, vol. 4, no. 4, pp. 421–448, 1994.
[11] L. Jin and Y. C. Kim, “Fixed, low-order controller design with

time response specifications using non-convex optimization,”
ISA Transactions, vol. 47, no. 4, pp. 429–438, 2008.

[12] K. J. Hunt, “Polynomial LQG and 𝐻
∞

infinity controller
synthesis: a genetic algorithm solution,” inProceedings of the 31st
IEEE Conference onDecision and Control, vol. 4, pp. 3604–3609,
1992.

[13] A. Shenfield and P. J. Fleming, “Multi-objective evolutionary
design of robust controllers on the Grid,” Engineering Applica-
tions of Artificial Intelligence, vol. 27, pp. 17–27, 2014.

[14] A. A. Hussein and R. Sarker, “The pareto differential evolution
algorithm,” International Journal on Artificial Intelligence Tools,
vol. 11, no. 4, pp. 531–555, 2002.

[15] L. Wang and L.-P. Li, “Fixed-structure𝐻
∞
controller synthesis

based on differential evolution with level comparison,” IEEE
Transactions on Evolutionary Computation, vol. 15, no. 1, pp.
120–129, 2011.

[16] K. J. Hunt, “Polynomial LQG and 𝐻
∞

infinity controller
synthesis: a genetic algorithm solution,” inProceedings of the 31st
IEEE Conference onDecision and Control, vol. 4, pp. 3604–3609,
1992.

[17] A. Chipperfield and P. Fleming, “Gas turbine engine controller
design using multiobjective genetic algorithms,” in Proceed-
ings of the 1st IEE/IEEE International Conference on Genetic
Algorithms in Engineering Systems: Innovations and Applications
(GALESIA ’95), pp. 214–219, September 1995.

[18] G. Avanzini and E. A. Minisci, “Evolutionary design of a full-
envelope full-authority flight control system for an unstable
high-performance aircraft,” Proceedings of the Institution of
Mechanical Engineers G—Journal of Ae, vol. 225, no. 10, pp.
1065–1080, 2011.

[19] H. Kobayashi, S. Katsura, and K. Ohnishi, “An analysis of
parameter variations of disturbance observer for motion con-
trol,” IEEE Transactions on Industrial Electronics, vol. 54, no. 6,
pp. 3413–3421, 2007.

[20] H. S. Lee and M. Tomizuka, “Robust motion controller design
for high-accuracy positioning systems,” IEEE Transactions on
Industrial Electronics, vol. 43, no. 1, pp. 48–55, 1996.

[21] T. Umeno and Y. Hori, “Robust speed control of DC servomo-
tors using modern two degrees-of-freedom controller design,”
IEEE Transactions on Industrial Electronics, vol. 38, no. 5, pp.
363–368, 1991.



The Scientific World Journal 15

[22] B. K. Kim and W. K. Chung, “Advanced disturbance observer
design for mechanical positioning systems,” IEEE Transactions
on Industrial Electronics, vol. 50, no. 6, pp. 1207–1216, 2003.

[23] K. Kong and M. Tomizuka, “Nominal model manipulation for
encancement of stability robustness for disturbance observer,”
Internationl Journal of Control, Automation, and Systems, vol.
11, no. 1, pp. 12–20, 2013.

[24] K. Kong, J. Bae, and M. Tomizuka, “Control of rotary series
elastic actuator for ideal force-mode actuation in human-
robot interaction applications,” IEEE/ASME Transactions on
Mechatronics, vol. 14, no. 1, pp. 105–118, 2009.

[25] A. Sarja, R. Sveko, and A. Chowdhury, “Strong stabilization
servo controller with optimization of performance criteria,” ISA
Transactions, vol. 50, no. 3, pp. 419–431, 2011.
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[32] M. T. Söylemez and N. Munro, “A note on pole assignment in
uncertain system,” International Journal of Control, vol. 66, no.
4, pp. 487–497, 1997.
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