
Edith Cowan University Edith Cowan University 

Research Online Research Online 

ECU Publications Post 2013 

2017 

Using surface regolith geochemistry to map the major crustal Using surface regolith geochemistry to map the major crustal 

blocks of the Australian continent blocks of the Australian continent 

E. C. Grunsky 

P. de Caritat 

Ute A. Mueller 
Edith Cowan University, u.mueller@ecu.edu.au 

Follow this and additional works at: https://ro.ecu.edu.au/ecuworkspost2013 

 Part of the Physical Sciences and Mathematics Commons 

10.1016/j.gr.2017.02.011 
Grunsky, E. C., De Caritat, P., & Mueller, U. A. (2017). Using surface regolith geochemistry to map the major crustal 
blocks of the Australian continent. Gondwana Research, 46, 227-239. 
Available here 
This Journal Article is posted at Research Online. 
https://ro.ecu.edu.au/ecuworkspost2013/2848 

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/ecuworkspost2013
https://ro.ecu.edu.au/ecuworkspost2013?utm_source=ro.ecu.edu.au%2Fecuworkspost2013%2F2848&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/114?utm_source=ro.ecu.edu.au%2Fecuworkspost2013%2F2848&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1016/j.gr.2017.02.011
https://doi.org/10.1016/j.gr.2017.02.011


Using surface regolith geochemistry to map the major crustal blocks of
the Australian continent

E.C. Grunsky a,⁎, P. de Caritat b,c, U.A. Mueller d

a Department of Earth and Environmental Sciences, University of Waterloo, N2L 3G1, Canada
b Geoscience Australia, GPO Box 378, Canberra, ACT 2601, Australia
c Research School of Earth Sciences, The Australian National University, Canberra, ACT 2601, Australia
d School of Science, Edith Cowan University, Joondalup, WA 6027, Australia

a b s t r a c ta r t i c l e i n f o

Article history:
Received 19 November 2016
Accepted 21 February 2017
Available online 22 March 2017

Handling Editor: F. Pirajno

Multi-element near-surface geochemistry from the National Geochemical Survey of Australia has been
evaluated in the context of mapping the exposed to deeply buried major crustal blocks of the Australian
continent. The major crustal blocks, interpreted from geophysical and geological data, reflect distinct tec-
tonic domains comprised of early Archean to recent Cenozoic igneous, metamorphic and sedimentary
rock assemblages. The geochemical data have been treated as compositional data to uniquely describe
and characterize the geochemistry of the regolith overlying the major crustal blocks across Australia ac-
cording to the following workflow: imputation of missing/censored data, log-ratio transformation, multi-
variate statistical analysis, multivariate geospatial (minimum/maximum autocorrelation factor) analysis,
and classification. Using cross validation techniques, the uniqueness of each major crustal block has been
quantified. The ability to predict the membership of a surface regolith sample to one or more of the major
crustal blocks is demonstrated. The predicted crustal block assignments define spatially coherent regions
that coincide with the known crustal blocks. In some areas, inaccurate predictions are due to uncertainty
in the initial crustal boundary definition or from surficial processes that mask the crustal block geochemical
signature. In conclusion, the geochemical composition of the Australian surface regolith generally can be
used to map the underlying crustal architecture, despite secondary modifications due to physical transport
and chemical weathering effects. This methodology is however less effective where extensive and thick
sedimentary basins such as the Eromanga and Eucla basins overlie crustal blocks.
Crown Copyright © 2017 Published by Elsevier B.V. on behalf of International Association for Gondwana Research.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

1.1. Background

The composition of surface sediment or soil (s) varies spatially as a
result of changes in climate (cl), organisms (o), relief (r), parentmaterial
(p) and time (t). This was expressed over 75 years ago by Jenny (1941)
in the well-known expression: s= f(cl,o,r,p, t). Although this relation-
ship has been understood conceptually for a long time, it is only recently
that its quantitative prediction has become possible through (1) the de-
velopment of large digital databases, (2) advances in analytical capabil-
ities, and (3) application of multivariate and data mining statistical
methods. The digital soil mapping community has been quick to show
how this predictive capability can benefit knowledge discovery in pe-
dology (e.g., McBratney et al., 2003). Applications of this new ‘big
data’ approach in the geosciences are emerging. In a lake sediment

study in Nunavut, Canada, Grunsky et al. (2014) concluded that multi-
variate statistical analysis of the geochemical data provided an objective
basis for validating and potentially improving existing geological maps.
Thus insights into parentmaterial (p) of the sediments could be gained.
Similarly, Drew et al. (2010) and Grunsky et al. (2013a, 2013b) showed
that soil geochemistry over the United States of America could accurate-
ly map climate zones (cl), ecosystems (~o), landforms (~r), and surface
geology (~p) at the continental scale. All these variables are proxies for
the soil formation controls listed above. Previous work by Caritat and
Grunsky (2013) and Grunsky et al. (2014) demonstrated the usefulness
of applying multivariate statistical methods such as principal compo-
nent analysis to describe linear combinations of elements that ultimate-
ly are controlled by the stoichiometry of minerals and associated
geochemical/geological processes.

The Australian continent preserves a diverse geological record span-
ning over 3 Ga, and is composed of different crustal blocks delimited by
major crustal boundaries (e.g., Korsch and Doublier, 2016). In the pres-
ent contribution we apply statistical analysis to the National Geochem-
ical Survey of Australia (NGSA) dataset. We compare the geochemical
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composition of surface sediments collected on different crustal
blocks, then calculate and map the posterior probabilities (PP) of
all NGSA samples relative to those crustal blocks. The scientific ques-
tion motivating this investigation can be stated as follows: Can we
predict the location and extent (spatial distribution) of Australian
crustal blocks based on surface regolith geochemistry using multi-
variate statistical and geospatial techniques? A positive answer to
this question opens up an avenue for mapping deeper geological fea-
tures from surface materials even with poor/absent outcrop, with
implications for geological mapping as well as mineral exploration
through cover. This effort aligns directly with two main themes of
the current Australian government-industry-academia UNCOVER
strategic initiative for ‘providing the knowledge base and technology
that will substantially increase the success rate of mineral exploration
beneath post-mineralisation cover in Australia’ (UNCOVER, 2016).
The present contribution represents an extension of the earlier sta-
tistical analysis of NGSA data presented by Caritat and Grunsky
(2013) and Mueller et al. (2014).

1.2. The National Geochemical Survey of Australia

The National Geochemical Survey of Australia (NGSA) project, a
cooperation between the Federal and State/Northern Territory (NT)
geoscience agencies in Australia, was part of the 5-year Onshore

Energy Security Program managed at Geoscience Australia between
2006 and 2011 (Johnson, 2006). The NGSA was initiated to bridge a
significant knowledge gap in Australia about the composition of sur-
face regolith at the continental scale by providing internally consis-
tent pre-competitive (i.e., government sponsored, regional and
publicly available) data and knowledge to aid exploration for energy
and mineral resources (Caritat and Cooper, 2016). The NGSA deliv-
ered a continental geochemical atlas (Caritat and Cooper, 2011), a
series of reports, and a public-domain geochemical dataset (www.
ga.gov.au/ngsa).

Previously existing geochemical data in Australia were perceived
to have limited spatial coverage, poor internal comparability and/or
inadequate extent of reported elemental compositions (Caritat et al.,
2008a). During a series of pilot projects that preceded the NGSA a va-
riety of sampling media, depths and grain-size fractions were tested
at different sampling densities (Caritat et al., 2005, 2007, 2008b;
Caritat and Lech, 2007; Lech and Caritat, 2007a, 2007b). It was
found that regolith samples collected on floodplains or similar low-
lying depositional landforms near the outlet of large catchments, or
‘catchment outlet sediments’, provided a ubiquitous sampling
medium suitable for low-density geochemical mapping in Australia.
These materials usually are a fine-grained mixture of detrital materi-
al originating from themain rock and soil types foundwithin a catch-
ment (Ottesen et al., 1989; Bølviken et al., 2004). In places, a

Fig. 1. (a) Map showing the major crustal blocks (MCBs) of Australia used in the present analysis (coloured and numbered)). The line styles of the MCB boundaries reflect the confidence
level in their position/existence (solid thick: high; solid thin:moderate; dashed: low; dot-dashed: none). (b)Map showing the surface geology and the geological regions of Australia. The
NGSA sample site locations are shown as black dots on both maps. All maps are presented here in the Lambert conformal conic projection of Australia (with standard parallels at 18 and
36°S latitude, central meridian at 134°E longitude and earth ellipsoid GRS80). Sources: Blake and Kilgour (1998), Caritat and Cooper (2011), Korsch andDoublier (2015, 2016), Nakamura
and Milligan (2015), Raymond (2012).
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component of eolian material is inevitably present in these settings
in Australia. The effect of quartz-rich sand undoubtedly will interfere
with the statistical analysis of geochemical data from surficial mate-
rials, however, the origin of the quartz-rich sand is likely the result of
weathering from nearby crustal blocks. Thus, the eolian effect is ex-
pected to ‘smear’ the boundaries of the blocks. Pedogenic processes
have occurred to some extent in those landforms and to those mate-
rials over time, and the sample material collected can be referred to
as soil (topsoil and subsoil) developed on (allochthonous) fluvial
± eolian sediment as the parent material (Caritat et al., 2011, 2012).

Many geochemical surveys have been carried out in Australia by
Federal and State/NT geoscience agencies, industry, and/or academic
institutions (e.g., Cox and Curtis, 1977; Ryall and Nicholas, 1979;

Grunsky, 1990, 1991; Bain and Draper, 1997; Cohen et al., 1999;
Davy et al., 1999; Morris et al., 2003; Cornelius et al., 2008). Before
the NGSA, none was continental in scope mainly because a ‘univer-
sal’ sampling medium had not been recognised and also because of
the perception that a relatively high sampling density was required,
which would have been prohibitively expensive (Walker, 1978; L.
Wyborn, pers. comm., 2003). Thus, the NGSA (Caritat and Cooper,
2011) is the first local attempt at delivering a uniform, internally
consistent geochemical atlas and database using a common sampling
medium, harmonised sampling protocols, and state-of-the-art
multi-element analytical equipment for an area of 6,172,000 km2 in
extent covering ~81% of the continent (Fig. 1). By necessity, the sam-
pling density of NGSAwas very low, on average 1 site/5200 km2, sim-
ilar to, for instance, the European FOREGS project (stream sediments
and soils collected at 1 site/4700 km2; Salminen, 2005; De Vos and
Tarvainen, 2006) and the ‘Shacklette dataset’ collected over the con-
terminous United States of America (soil and other surficial mate-
rials collected at 1 site/5925 km2; Shacklette and Boerngen, 1984;
Gustavsson et al., 2001). Recent applications of the NGSA data were
reviewed in Caritat and Cooper (2016).

1.3. Major crustal blocks of Australia

We classify the surface geochemistry dataset according to the
major crustal blocks (MCBs) of Australia. The MCBs were obtained
from polygonising and simplifying the major crustal boundaries of
Korsch and Doublier (2015, 2016), which were defined to better

Fig. 1 (continued).

Table 1
Sample Site Count for Major Crustal Blocks. Shaded cells were not considered for further
evaluation because of insufficient number of sample sites.

Block 1 2 3 4 5 6 7 8 9 10
NGSA 
Count 568 448 380 244 284 268 144 156 40 208

Block 11 12 13 14 15 16 17 18 19 20
NGSA 
Count 228 92 152 72 100 124 20 80 100 76

Block 21 22 23 24 25 26 27 28 29 30
NGSA 
Count 156 80 84 56 4 8 36 19 20 24
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understand the crustal architecture and geodynamic evolution of
Australia's key geological provinces and basins. For the generation
of the major crustal boundaries dataset, the main crustal breaks
interpreted from regional, deep seismic reflection lines collected
across the continent since 1980 were used as starting points. Next,
those major crustal boundaries were mapped in plan view away
from the seismic profiles, using geological (e.g., outcrop maps, drill
hole information, geochronology, isotope data) and geophysical
(e.g., gravity, aeromagnetic, magnetotelluric) data. While some
boundaries are exposed (e.g., Yilgarn Craton), others are covered
by younger sediments/regolith and occur at greater depth. In this
case the position of the boundary in map view represents the vertical
surface projection of the position interpreted at depth in the deep
seismic reflection data. Because a boundary between crustal blocks
is not necessarily vertical and can be oblique, the surface projection
of a contact between blocks can be located at some horizontal dis-
tance from the oblique upward continuation of the boundary, espe-
cially under deep sedimentary basins such as the Eromanga Basin
in northeastern Australia. It is important to note that most deep
crustal materials are crystalline basement rocks, except in some
cases where metamorphosed sedimentary rocks may exist at quite
some depth, e.g., under the Thomson Orogen in northeastern
Australia.

Where crustal blocks were too small relative to the density of NGSA
sampling points, they were merged either together or with an adjacent,
larger block in the most geologically sensible fashion for the present
analysis (M. Doublier, pers. comm., 2015). A map of the resulting
30 MCBs is shown in Fig. 1a. Table 1 shows the number of NGSA
samples included in each MCB. Of the 30 MCBs, eight (MCBs 9, 17,
25–30) did not have a sufficient number of samples to warrant
further statistical processing and were consequently dropped from

the dataset. Supplementary material Table 1 shows the summary
statistics of the chemical composition for each of the 22 MCBs that
were retained for statistical evaluation and prediction. Fig. 1b shows
the distribution of surface lithology (Raymond, 2012) and of the
geological regions (Blake and Kilgour, 1998) over Australia, which will
be referred to in the Results and discussion below.

1.4. Motivation for this study

Caritat and Grunsky (2013) applied principal component analysis
(PCA) to the four combined sample types of the NGSA dataset
(Caritat and Cooper, 2011) after a centred log-ratio (clr) transforma-
tion was applied (see Supplementary material). The resulting princi-
pal components enabled the description and interpretation of a
number of geological and geochemical processes, and formed the
basis for extending the NGSA data analysis into the prediction of spa-
tially and geochemically defined regions, as developed here. For the
present study, MCBs interpreted from geological and geophysical
datasets (Korsch and Doublier, 2015, 2016) were used as a frame-
work to validate any geochemically distinct blocks. Of particular sig-
nificance in the present study is the ability to identify and predict
these distinct crustal blocks from the near-surface soil geochemistry.
Since their formation these crustal blocks have been subjected to
various physical and chemical processes (e.g., uplift, weathering,
erosion, alluvial, colluvial and eolian deposition, and locally glacia-
tion), implying that their primary geochemical signature has been
in part obscured/modified by secondary processes.

The use of the centred log-ratio transformation ensures that the
data are represented within the real number space along with the
relative relationships of the data. The compromise with this ap-
proach is the possibility of not achieving multivariate normality in

 

Sample collec�on, prepara�on, analysis 

Quality assurance/quality control 

Correction for censoring (imputa�on) 

Apply centred log-ra�o transform to composi�onal data 

Tag each sample site with associated major crustal block (MCB) ID 

Apply minimum/maximum autocorrela�on factor (MAF) analysis 

Apply analysis of variance to MAF results based on MCB classifica�on 

Apply linear discriminant analysis to validate and provide a classifica�on 
framework of the MCBs using non-robust es�mates of covariance 

Apply alloca�on procedure for classifying MCBs and associated typicali�es using 
robust and non-robust es�mates of covariance 

Map the classifica�on accuracies and measures of entropy and of uncertainty 
for further evalua�on based on geospa�al rela�onships 

The Process of Characterizing and Classifying Major Crustal Blocks  
Using Mul�-Element Surface Regolith Geochemistry 

Fig. 2.Workflow developed for evaluating and predicting the major crustal blocks (MCBs) based on the NGSA data, minimum/maximum autocorrelation factor analysis and subsequent
classification.
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the transformed data. However, we are not able to achieve perfection
in the mathematical/statistical treatment of the data, as seen in the
summary statistics of Supplementary Table 2, which contains sum-
mary statistics for the minimum/maximum autocorrelation factors
(MAF) for each of the major crustal blocks. In this study, we intend
to show that the definition of the MCBs is controlled by the relative
relationships of the soil geochemistry. Non-normality may have an
influence on this but our conclusion is that the influence is not signif-
icant. Our experiments with robust versus non-robust methods indi-
cated that the results of the classification do not change by any
significant amount. Our conclusions are the same regardless of the
use of robust versus non-robust methods.

2. Methods

Details on the sample collection, preparation and analysis, as
well as the methods of data evaluation, analysis and classification

are provided as Supplementary material. The workflow developed
from the methods employed in this study is graphically represented
in Fig. 2. In the following, ‘TOS’ refers to ‘top outlet sediment’ (0–10 cm
depth), ‘BOS’ to ‘bottom outlet sediment’ (~60–80 cm depth), ‘c/g’
to ‘coarse-grained’ (b2 mm grain-size fraction), and ‘f/g’ to ‘fine-
grained’ (b75 μm grain-size fraction), as detailed in the Supplemen-
tary material.

3. Results and discussion

3.1. Process discovery using minimum/maximum autocorrelation factor
(MAF) analysis

MAF analysis does not offer the equivalent ‘process discovery’ of pat-
terns or trends of multivariate data that can be observed in PCA biplots.
Based on the previous work by Caritat and Grunsky (2013) and prelim-
inary research for this paper, PCA biplots of the NGSA data coded by

Fig. 3. Plots of ordered F-values for elements (a: TOS c/g; b: BOS f/g) as a measure of discrimination power. Elements with high F-values are better at discriminating between the major
crustal blocks. The concentrations were centred log-ratio transformed.
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MCB identifiers demonstrated similar linear trends and patterns that
exhibit distinct differences and overlaps amongst the MCBs. However,
MAF analysis also includes the spatial context of themulti-element geo-
chemistry, which will provide a spatially coherent pattern of trends as-
sociated with the MCBs, forming the basis for the following discussion
on process validation.

3.2. Process validation of MAF using analysis of variance (ANOVA)

A critical step in process validation is the identification of vari-
ables that assist in uniquely defining the classes assigned to the
data through the application of an ANOVA. ANOVA can be carried
out on the clr transformed concentrations or the MAFs derived
from the clr transformed data. The results of the ANOVA based on
the clr transformed elements for the TOS c/g and BOS f/g are shown
in Fig. 3a,b. The figures show the ordered F-values, which provide a

measure of group uniqueness (see Supplementary material section
Methods 2.5), of the elements based on their ability to separate the
22 MCBs used here.

The plots of F-values for the elements describe the “relative” dis-
criminating power for the variables (elements). Maximum discriminat-
ing power is obtained by using all of the elements. However, this can
create degrees-of-freedom problems if there are too few observations.
Thus, as a rule-of-thumb, a reduced set of elements are selected based
on the identification of “inflection points” along the F-value trend. In
Fig. 3a, Y-Er-Yb-Dy-Gd-Th-Cr-Na-Ho-Tb could be considered the
“best” suite of elements.

For both media there is a gradual decay of F values for the elements.
For TOS c/g the ten best discriminators are the elements Y, Er, Yb, Dy, Gd,
Th, Cr, Na, Ho and Tb whereas the variables Au, F, As, LOI, Be, Al, Rb and
Mg are poorest for group separation.

For BOS f/g eight of the ten best discriminators are the same as for
TOS c/g albeit the discriminatory power differs. Similarly, five of the

Fig. 4. Plots of ordered F-values for MAF (a: TOS c/g; b: BOS f/g) as a measure of discrimination power. Factors with high F-values are better at discriminating between the major crustal
blocks.
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elements (As, Au, Be, F and Rb) are poor at group separation for both
media.

Figs. 4a,b show the ordered F-values based on the MAFs for the
TOS c/g and BOS f/g sample types. These plots are significantly differ-
ent from the ordered plots of F-values for the variables of Figs. 3a,b.
The charts that accompany Figs. 4a,b show that MAF1, followed by
MAFs 1, 2, 5, 4, 3 and 6 have high F-values relative to the other
MAFs for the TOS c/g sample type. The remaining MAF F-values are
quite low and the graph shows a gradual decay in their values. For
the BOS f/g the chart shows that MAFs 1, 2, 5, 3, 4 and 6 account for
most of the discrimination between the MCBs. We found that the
grain-size based F-value patterns (c/g vs f/g) have a greater contrast
and discrimination ability compared to the depth based ones (TOS vs
BOS), a result echoing the PCA based findings of Caritat and Grunsky
(2013). For the sake of brevity, the remainder of the discussion of the
results therefore will focus on the TOS c/g and BOS f/g classifications.

3.3. Linear discriminant analysis (LDA)

LDA and classification of the MCBs were applied to the MAFs of
the NGSA samples. Supplementary Table 3 shows a matrix of classi-
fication accuracies from the LDA for the four sample types and the

22 classes. The diagonal along each matrix gives the proportion of
correctly classified samples for each MCB, based on the training
sets derived from cross validation. These classification accuracies
range from 0.04 (MCB 19 TOS c/g) to 0.94 (MCB 14 TOS c/g). The
overlap (confusion) of the classification is shown in the off-diagonal
elements. The overall accuracies of the classification, which are de-
fined as the sum of the diagonal of the classification accuracy matrix,
divided by the row sums of the classification accuracy matrix, are
shown in Table 2 with values of: 0.55 (TOS c/g), 0.59 (TOS f/g),
0.54 (BOS c/g) and 0.55 (BOS f/g). These averages are weighted ac-
cording to the number of sites within each MCB. These nearly identi-
cal accuracies suggest that there is little difference between the four
media with respect to their ability to correctly classify the MCBs. For
some of theMCBs the predictive accuracies are different between the
media and this is discussed below.

In the following we are going to discuss maps of PPs for selected
MCBs. Although the PPs are compositional in nature, the application
of a log-ratio transformation is problematic because of the existence
of 0 probabilities and collinearity issues so that compositional co-
kriging cannot be used for the generation of maps. Thus, the PP
maps were interpolated using soft indicator co-kriging. The follow-
ing MCBs were selected for closer scrutiny (listed from west to

Table 2
Diagonal of predictive accuracies (%) for the four sample types of the NGSA and the 22 major
crustal blocks (MCBs), ordered by decreasing average accuracy for TOS c/g. Cells are coloured
from highest (red) to lowest (blue).

MCB TOS c/g TOS f/g BOS c/g BOS f/g

MCB14 0.94 0.89 0.83 0.89

MCB01 0.87 0.82 0.81 0.85

MCB02 0.74 0.80 0.71 0.72

MCB04 0.72 0.69 0.57 0.69

MCB08 0.69 0.69 0.62 0.72

MCB03 0.67 0.74 0.67 0.69

MCB15 0.60 0.48 0.72 0.64

MCB18 0.60 0.70 0.60 0.65

MCB07 0.53 0.56 0.42 0.53

MCB21 0.49 0.62 0.56 0.44

MCB10 0.46 0.63 0.42 0.44

MCB05 0.42 0.44 0.41 0.24

MCB06 0.40 0.45 0.55 0.54

MCB12 0.39 0.30 0.48 0.48

MCB11 0.30 0.44 0.32 0.32

MCB23 0.29 0.24 0.33 0.43

MCB24 0.29 0.36 0.14 0.14

MCB20 0.26 0.47 0.32 0.21

MCB16 0.23 0.19 0.19 0.26

MCB13 0.21 0.26 0.18 0.29

MCB22 0.15 0.25 0.10 0.15

MCB19 0.04 0.16 0.16 0.12

Overall 
Accuracy TOS c/g TOS f/g BOS c/g BOS f/g

0.55 0.59 0.54 0.55
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east): 4, 15, 18, 1, 3, 19, 11, 2, 6, and 10, because they cover a repre-
sentative range of larger to smaller blocks, and situations with great-
er to lesser degrees of accuracy in the predictions. For brevity, only
three maps of the co-kriged MCB predictions are shown, namely for
MCBs 4, 2 and 6. The results for all MCBs are available in the Supple-
mentary material.

Fig. 5 shows maps of the co-kriged PP for MCB 4 based on a non-
robust LDA. Only PP values N 0.2 are shown. Regardless of sample
type, the predictive accuracy of MCB 4 is high especially in the south-
western part of the block. High PPs (warm colours) are marginally
more extensive for the f/g than for the c/g sample types. PPs N 0.2
only occur within and near the border of MCB 4, indicating that its
composition is geochemically quite unique based on the statistical
methods applied in this study.

Fig. 6 shows the PPs for MCB 2. This block shows PPs as high as 0.9
(c/g fractions) and overlaps with MCBs 1 (BOS c/g), 5, 6, 7, 10, 11, 13,
19, and 20. This is also reflected in Supplementary material Table 3.
The highest probabilities (N0.6), however, are contained within the
boundary of MCB 2. The smearing into the adjacent crustal blocks
likely reflects the fact that much of the surface material for the sedi-
ments atop this crustal block consists of the Mesozoic Great Artesian
(Eromanga) Basin, which contains clastic material from the sur-
rounding highlands, particularly to the southwest (MCB 13), north-
west (MCB 19) and east (MCBs 10, 5). Conversely, younger (mostly

Cenozoic) sedimentary basins to the south (Murray-Darling Basin;
MCB 6), west (Lake Eyre Basin; MCB 20), and north (Carpentaria/
Karumba Basin; MCB 11), partly contain recycled clastic material
from the Great Artesian Basin, explaining the compositional overlap
in these directions. Thus, over the area of MCB 2, very little basement
material proper crops out (e.g., the Anakie Inlier) and thus the
surface geochemistry in this case more likely reflects the overlying
basins' geochemical signature rather than the true basement signa-
ture. Note the similarity, in places, between the PP contours and
the Eromanga geological region (see Fig. 1b). For the BOS c/g sample
type there is minor confusion with the central region of MCB 1,
which is likely attributable to similar mineralogy.

In Fig. 7, the PPs of MCB 6 reach a maximum of 0.6, which is low rel-
ative to many of the other MCBs. There is some overlap observed with
MCBs 2, 5, 11, 13, and 24,which is also indicated by the confusion values
in Supplementary material Table 3. Most of these overlaps, which are
the result of recycled clastic material and recent erosional/depositional
processes have been discussed above.

Table 2 also shows the diagonal elements of the four matrices
coloured according to the accuracy of prediction. They are also sorted
according to the predictive accuracy of the TOS c/g sample type. The
table shows that the MCBs with the highest classification accuracies
are: MCBs 14, 1, 2, 4, 8, 3, 15 and 18, whilst those MCBs with the low-
est classification accuracies are MCBs 19, 22, 13, 16, 20, 24, 23 and 11.

Fig. 5.Maps of the co-kriged PP predictions for major crustal block (MCB) 4 for the TOS c/g (a), TOS f/g (b), BOS c/g (c) and BOS f/g (d) sample types.
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This is also geographically expressed in Figs. 8a and 9a mapping the
accuracies for the TOS c/g and BOS f/g sample types for each of the
MCBs. Both Figs. 8a and 9a show similar features, namely that the
crustal blocks with the highest prediction accuracies are MCBs 14,
1, 2, 4, 8 and 3 regardless of sample type.

Measures of entropy (i.e., randomness; see Supplementary materi-
al), φ (local classification uncertainty), and ‘most likely’ MCB assign-
ment for the TOS c/g and BOS f/g sample types are mapped spatially in
Figs. 8b–d and 9b–d respectively.

In Fig. 8b, the lowest values of entropy (0.5 and below) occur
mostly withinMCBs 1, 2, 4, 7, 14, 15, 16 and 18. The highest entropies
(1 and above) occur mainly in parts of MCBs 2, 5, 6, 8, 11, 13, 16, 22,
23 and 28. Fig. 9b shows the values of entropy for the BOS f/g sample
media. The patterns of high and low measures of entropy are similar
to the TOS c/g patterns of Fig. 8b. In bothmaps, the entropy values in-
dicate greater variability in the northeast and southeast regions as
well as in a central region and along some of the margins of the
Yilgarn craton in the west. Conversely, the lowest entropy is
displayed in the central north and south of the continent, as well as
in the southwest and central east. The cause of this lower entropy
(decreased disorder) may be the greater compositional stability or
homogeneity of the (1) Eromanga, (2) Eucla, (3) Yilgarn and (4)
Pilbara geological regions (see Fig. 1b), which are dominated, re-
spectively (and in a simplified way) by (1) clastic sediments, (2)

clastic and carbonate sediments, (3) granite and greenstone bedrock,
and (4) felsic and mafic intrusive bedrock with sedimentary rocks
and banded iron formations. MCBs 1 and 7 in northern central
Australia also have low entropy in all four sample types, but the com-
position of surface materials and lithology of the basement is not as
clearly homogeneous as for the other regions mentioned.

Local uncertainties (φ) for the TOS c/g and BOS f/g (Fig. 8c and 9c)
are quite similar. Low uncertainties (0.4 and below) are associated
with MCBs 1, 2, 3, 4, 7, 8, 9, 14, 15, 16 and 18. Elevated values of φ
(0.8 and above) representing greater uncertainty are associated
with MCBs 6/13/22, 2/11, 16 and 19/20. Fig. 9b (BOS f/g) shows pat-
terns nearly identical to those in Fig. 8b, with larger areas of low en-
tropy in MCBs 1, 4, 8 and 14. As for TOS c/g low values φ (0.4 and
below) are associated with MCBs 1, 2, 3, 4, 7, 8, 9, 14, 16 and 18.
The overall accuracy for sample type TOS c/g (0.47) is nearly equal
to that of the BOS f/g sample type (0.48). Elevated values of φ (0.8
and above) are associated with MCBs 5/6/13/22, 2/11, 16, 18 and
19/20. The spatial patterns of φ (uncertainty) and of increased entro-
py (randomness) in Figs. 8 and 9 are very similar. The preliminary in-
terpretation is suggested to be that increased uncertainty relates to a
greater heterogeneity/mixture of the lithological source material in
the above crustal blocks/regions. Regardless of interpretation, it is
clear that greater uncertainty and disorder exist as spatially coherent
regions for all four sample types.

Fig. 6.Maps of the co-kriged PP predictions for major crustal block (MCB) 2 for the TOS c/g (a), TOS f/g (b), BOS c/g (c) and BOS f/g (d) sample types.
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Figs. 8d and 9d show maps of the ‘most likely’ MCB based on the
compositional similarity of a sample to a MCB from the PPs described
above. Most of the cells match the MCB in which they are located,
(e.g., MCBs 1, 2, 3, etc.). However, there are a few exceptions. MCBs
19 and 20 appear to be in large parts compositionally similar to
MCB 2 for all four sample types. Here, transport of clastic sediments
across these MCB boundaries in the Eromanga geological region (see
Fig. 1b) can explain the compositional similarity. The southeastern
part of MCB 6 appears to have a composition similar to that of MCB
24 to varying degrees in the four sample types. These regions being
far removed from one another (eastern Victoria and northeastern
Queensland), the compositional similarity cannot be explained by
fluvial or eolian transport, but must instead be caused by coinciden-
tal similarity in the basement rocks (source materials for the sedi-
ments collected).

4. Conclusions

The results presented here identify two important features. First,
the MCBs as defined through a combination of geophysical data and
geological information are, for the most part, geochemically distinct.
Despite long histories of weathering and deposition, the geochemi-
cal character of near-surface sediment atop these blocks persists
and is by-and-large statistically unique, except where thick (several

km) and widespread (100,000s km2) younger sedimentary se-
quences cover the basement (e.g., Eromanga Basin over the Thomson
basement, MCB 2). Second, the use of MAF analysis, which represents
linear relationships of the data along with a measure of geospatial
proximity, defines a metric from which the prediction of MCBs can
be carried out with slightly greater prediction accuracy than PCA
(Mueller and Grunsky, 2016). Use of MAFs is effective at describing
linear combinations of elements that define distinct geochemical
compositions.

The accuracy of prediction for the MCBs is highly variable. This vari-
ability is the result of compositional overlap between the MCBs. Those
blocks with relatively low PPs show overlap with other crustal blocks.
The off-diagonal elements of Supplementary material Table 3 show
which blocks overlap with each other. The overlap of PPs can be due
to a primary similarity of compositions between the MCBs or it can be
due to compositional mixing through surficial processes. In most
cases, the latter prevails in Australia (long periods for surface
weathering and transport) especially with the sampling medium
analysed here (fluvial sediment locally with eolian influence). Applica-
tion of this method to outcrop rocks and drilled, fresher bedrock in
areas of cover would likely reflect to a greater degree the inherentmin-
eralogical/geochemical dissimilarities between crustal blocks.

Compositional overlap occurs in both contiguous blocks (overlap
with adjacent MCBs) and, less commonly, in a spatially discontinuous

Fig. 7. Maps of the co-kriged PP predictions for major crustal block (MCB) 06 for the TOS c/g (a), TOS f/g (b), BOS c/g (c) and BOS f/g (d) sample types.
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form; the latter represents a similarity of compositions based on
similar geochemistry (mineralogy). Thus, compositional overlap
that is not geospatially associated can be interpreted as similar min-
eralogy and/or lithologies within these MCBs or the cover material
(e.g., Cenozoic sedimentary or eolian cover). Compositional overlap
between adjoiningMCBsmay be due to a combination of similar geo-
chemistry of the source lithology and modification and mixing of the
original compositions through mechanical and/or hydromorphic
transport processes.

In areas where the PP is low (e.g., MCB 19), the overlap with other
blocks (MCBs 1 and 2) suggests that surficial processes may mask the
unique character of the block, particularly its potential to host base
metal mineralisation.

The findings from this study demonstrate that the MCBs that form
continental Australia are largely geochemically distinct and that despite
longhistories of uplift, burial,metamorphism, alteration throughhydro-
thermal and groundwater interaction, with subsequent weathering,
erosion, transport and deposition, these compositions persist through-
out the geological history of the continent. The implications of this for
mineral exploration, for instance, include the prospect of being able to
geochemically recognise different parts of the architecture of Australia
and use regionally meaningful geochemical background values against

which anomalous samples, perhaps reflecting mineral deposits, can be
identified.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.gr.2017.02.011.
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