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ABSTRACT  

Athletes regularly monitor exercise workload in an attempt to improve and maintain 

exercise performance. Within road cycling, workload is commonly measured using power 

output. Yet, it is plausible that power output during road cycling is influenced by several 

factors such as topography, road gradient or rider specialities. If these factors do influence 

power output they may influence quantification of workload demands. As such, the purpose 

of this thesis was to improve our understanding of external workload in professional road 

cycling and describe the factors which influence power output during performance analysis. 

Specifically, this thesis examined the power output within single stage (1 day, Study One) 

and multi-stage races (4-21 days, Study Two, Three and Four). The within seasonal changes 

in power output of professional cyclists were also examined (Study Five).   

Study One calculated the frequency distribution of maximal power output (POpeak) values 

during road cycling events over different topography categories and analysed the power 

output 600 s prior to POpeak using a new time series analysis called changepoint. 

Changepoint estimated the four largest statistical changes in power output to find distinct 

segments. Seven professional male road cyclists (mean ± SD: age 29.5 ± 2.8 y, mass 69.7 

± 5.5 kg, height 182 ± 5 cm) participated in Study One and were all members of a single 

professional cycling team. It was found that a greater frequency of POpeak values (54%) 

occurred during flat stages in the final 80 to 100% of race time compared with the previous 

0 to 80% race time. Using changepoint, power output was lower (P <0.05) in segment four 

compared with POpeak in all topography categories (flat: 235 vs. 823 W, semi-mountainous: 

157 vs. 886 W and mountainous: 171 vs. 656 W). These results demonstrate that POpeak 

values occur at differing time points depending on the topography category and that 

changepoint demonstrated its ability to analyse power output data.  
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Study Two calculated the maximal mean power (MMP) of professional cyclists from grand 

tour events. The MMP was examined across various topographies and rider specialities. 

Study Two also examined the percentage of race time spent in different power output bands 

between topographies, road gradients and rider specialities. Thirteen male professional 

cyclists (mean ± SD: age 25 ± 3 y, mass 69 ± 7.5 kg, height 178 ± 0.5 cm) participated in 

Study Two. MMP for durations longer than 1200 s were greater in semi-mountainous and 

mountainous stages, when compared with flat stages (1200 s: 5.1 ± 0.2, 5.2 ± 0.3, 4.5 ± 0.3 

W·kg-1 respectively; P <0.05). Sprinters and climbers spent greater percentage of race time 

at a power output greater than 7.5 W·kg-1, when compared with general classification riders 

and domestiques (11.3, 11.4, 7.1 and 5.3%, respectively; P <0.05). A greater proportion of 

race time was spent at a power output above 3.7 W·kg-1 when cycling at a road gradient 

greater than 5% (P <0.05), compared with road gradients 0 to 5% and less than 0%. In 

conclusion, caution should be taken when comparing MMP between different races of 

varying topography or rider specialities.  

It was found in Study Two that MMP differs between flat and mountainous stages. Given 

that critical power (CP) can be estimated from MMP values during competition it is 

plausible that such differences will influence CP estimation. It is also plausible that 

difference in MMP between flat and mountainous stages is because cyclists are able to 

produce greater power output uphill rather than on flat gradients. As such, Study Three 

examined the use of MMP in the estimation of CP when calculated from stages of differing 

topographies.  Also, Study Three compared estimated CP from a flat (mean gradient 0.4%) 

and uphill (mean gradient 6.2%) field-based test. Data from thirteen professional male road 

cyclists (age 29 ± 4 y, height 171 ± 0.9 cm, mass 67 ± 8.2 kg) were analysed.  No differences 

(P >0.05) were observed in estimated CP between topography categories. However, a large 

effects size (d = 0.8) was observed in CP between flat stages and both semi-mountainous 
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and mountainous stages. Estimated CP was 11.6% lower in flat field-based test, compared 

with the uphill field-based test (5.0 vs. 5.6 W·kg-1). Study Three demonstrates a large 

difference between estimated CP from alternative topography categories and from two 

different gradient specific field-based tests. With an 11.6% difference in CP observed in 

Study Three between 0 and 6.2% road gradients, Study Four investigated the magnitude of 

change in 1 and 5 min MMP from grand tour mountain stages. Road gradients of -5% to 

+5% were compared chronologically from lowest to highest. Seven professional male road 

cyclists (age 30 ± 4 y, height 169 ± 8 cm, body mass 69 ± 9 kg) from two professional 

cycling teams were analysed. In total 50 mountainous stages were analysed in Study Four 

from grand tours between 2011 and 2016. Power output from road gradient -1% was lower 

(P <0.001) in both 1 and 5 MMP compared with 0% (2.4 to 3.3 and 2.2 to 3.1 W·kg-1
,
 

respectively). Power output from road gradient 1% was lower in both 1 and 5 MMP 

compared with 2% (3.6 to 4.2 and 3.4 to 4.1 W·kg-1
;
 (P <0.05)). These results highlight the 

need to consider road gradient when using power output for cycling performance analysis.  

Study Five described the within-season external workloads of professional male road 

cyclists for optimal training prescription. Four professional male cyclists (mean ± SD: age 

24 ± 2 y, body mass 77.6 ± 1.5 kg, height 184 ± 4.3 cm) from the same professional cycling 

team were monitored for 12 months. Within three seasonal phases (phase one: Oct-Jan, 

phase two: Feb-May and, phase three: June-Sept), the volume and exercise intensity during 

training and racing was measured. Total distance (3859 ± 959 vs 10911 ± 620 km) and time 

(240.5 ± 37.5 vs 337.5 ± 26 h) was lower (P <0.01) in phase one compared with phase two, 

respectively. Total distance decreased (P <0.01) from phase two compared with phase three 

(10911 ± 620 vs 8411 ± 1399 km, respectively). Mean absolute (236 ± 12.1 vs. 197 ± 3 W) 

and relative (3.1 ± 0 vs. 2.5 ± 0 W·kg-1) power output was higher (P <0.05) during racing 



x 

 

compared with training, respectively. These results highlight the importance in 

acknowledging the difference in volume and intensity changes during a season.  

In conclusion, this thesis demonstrates that cycling power output is affected by multiple 

factors including topography, road gradient and a rider’s speciality. Caution should be 

taken when interpreting cycling performance analysis using power output measures such 

as MMP and CP. 
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1 CHAPTER ONE 

INTRODUCTION 

1.1 Overview 

This doctoral thesis contains five research studies. A thematic aim underlying all five 

studies is to improve our understanding of external workload in professional road cycling 

and describe the factors which influence power output during performance analysis. 

Specifically, the purpose of this research is to examine factors which influence power 

output distribution (e.g. topography and road gradient) during a single-stage race, a 

multiple-stage race and throughout a professional road cycling season. Furthermore, this 

thesis examines current methods in analysing external workload data and power output 

used in performance analysis.    

1.2 Background 

The professional European cycling season runs from approximately February to 

September, during which time professional road cyclists will compete in single day, multi-

day (typically 4-10 days) and 21 day grand tour events (1). Throughout the season, 

professional road cyclists are required to maintain very high training and racing volumes 

and intensities, resulting in significant fatigue and physical stress (2, 3), often with little 

recovery time. Additionally, individual variations in age, sex, psychological, metabolic, 

hormonal and genetic factors (4) all influence the training stimulus and response. It is, 

therefore, essential to regularly monitor each individual cyclist’s training and racing load 

for signs of fatigue and/or symptoms of illness and injury (5), which can lead to 

underperformance.   
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To date, a range of performance analysis methods and devices have been developed to 

determine the external and internal load of athletes. The International Olympic Committee 

consensus statement on load in sport and risk of injury defines external and internal load 

(6, 7). External load refers to any external stimuli applied by an athlete that is measured 

independently from their internal characteristics. Internal load of each individual athlete 

refers to the physiological and psychological responses following interaction with 

biological and environmental factors (6, 7). The terms external and internal ‘workload’ will 

be used for the remainder of this thesis.  

There are different ways in which external and internal workload can be measured. The 

measurement of external workload normally involves quantifying the training and racing 

of an athlete according to time (8-15), distance (14, 16, 17) and intensity (14, 18, 19). 

During cycling exercise, this would typically be the mean power output sustained by a 

cyclist for a given time (e.g. 300 W for 60 min) (20). The internal workload is a 

measurement of an internal physiological or psychological function such as heart rate, 

blood lactate, rate of perceived exertion or psychological stressors (4). With the exception 

of heart rate, measurements of internal physiological function such as lactate or rate of 

perceived exertion are often difficult to conduct in the field, especially during professional 

road cycling competition.  

Power meters are the most widely used method of measuring external workload for 

performance analysis in cycling and provide a range of variables, including power output, 

speed and cadence. Recent power meter devices also have an internal thermometer and 

barometric altimeter for the measurement of environmental conditions. It is important to 

measure power output data for the signs and symptoms of overtraining (20) and under 

performance from high workload (5). However, power output data are stochastic (that is 

‘having a random probability distribution or pattern that may be analysed statistically but 
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may not be predicted precisely’ (21)) and difficult to interpret. From a single 1 hour ride, 

3600 data points can be created. This highlights the need for techniques which simplify 

power output data without the loss of key information.   

Simple statistical summary methods such as the mean power output for a stage fail to reflect 

the stages stochastic power output distribution and metabolic demand. Binning power 

output data (9, 10, 22) into training and racing zones- that is, categorising power output 

into smaller manageable sizes, can begin to provide useful feedback to a cyclist which can 

be easily calculated.  An example used in the majority of external load cycling research (9, 

10, 15, 18, 23) is to bin data using the accumulated time spent in each zone (e.g. 30% time 

spent at < 100 W and 70% time spent > 100 W). While binning power output data provides 

information on the accumulated time spent in various zones, much of this is submaximal 

(24) and not useful for easy monitoring of changes in a cyclist’s exercise capacity. Rather 

than binning power output data, alternative approaches to understand the maximal exercise 

capacities of a cyclist include examining the maximal mean power (MMP) curve (25-27)  

or the critical power (CP) (23, 28, 29). The MMP curve calculates the maximum power 

produced by a cyclist over any given time (e.g. 350 W for 5 min). The curve starts with the 

single highest power output value recorded (POpeak) and then plots the maximum power 

output for each corresponding time point (i.e. POpeak, 5 s, 15 s, 30 s etc.). MMP values are 

the highest values observed by a cyclist and therefore, may not represent their absolute 

physiological maximum which can be obtained in a laboratory test. It is not possible to 

determine if performance during laboratory testing is maximal whereas cyclists will reach 

maximal values in the field during competitive situations. Further, while field values may 

not reflect true physiological maximal values, they do present the load experienced by the 

cyclists which is important in the accuracy in load quantification. Alternatively, the CP 

model has become a very popular method for modelling endurance performance. The 



 

 

4 

 

hyperbolic relationship between power output and time or CP measurement, has recently 

been demonstrated to reflect training-induced changes in a grand tour cyclist (30). 

Traditionally, to measure CP a 3 min all out test (31, 32) is conducted in a laboratory 

environment. Recently, researchers have begun developing a valid field-based test to 

measure CP (23, 33, 34). However, there are several limitation with the CP model in the 

optimal protocol and length of the test and that it is asymptotic (i.e. the power value at 

which power output levels out) in nature (30). 

To conduct these performance analyses, large volumes of training and racing data are 

required. This can be particularly challenging as there are limited data available on 

professional athletes. Furthermore, problems remain with the influence of environmental 

factors such as temperature, altitude, wind resistance and gradient on performance analysis.   

1.3 Statement of the Problem  

Despite the relatively easy process of collecting power output data, an understanding of the 

environment factors influencing performance analysis is limited and presents several issues 

(35). Firstly, power output is collected from a range of topography categories (flat, semi-

mountainous and mountainous). Previous studies have demonstrated changes in power 

output across different topography categories (9, 10, 15, 23, 36). However, little is known 

if topography influences performance analysis using power output measures such as MMP 

and CP. Secondly, several studies have demonstrated that road gradient causes power 

output to change (37-39). To the author’s knowledge, no study has looked at alternative 

road gradients on performance analysis using power output. Thirdly, recent work has begun 

to develop a CP field test (33, 34, 40). A valid and reliable CP field test would be useful 

for both professional and enthusiast cyclists. To date, research using the new CP field test 
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has been conducted in recreational cyclists (33, 34, 40). Therefore, research is warranted 

using the new test in professional road cyclists.  

As well as environment factors, several other factors influence cycling performance. 

Firstly, power output is stochastic, therefore, methods in reducing the stochastic nature of 

power output without the loss of important information are needed. Secondly, as well as 

multiple topography categories, a range of rider specialities exist (sprinter, climber, 

domestiques and general classification). Very few studies (26, 41-43) have investigated 

how different riders influence performance analysis. Thirdly, analyses of the seasonal 

performance of professional male road cyclists are limited in the literature. With the 

exception of a case study by Pinot and Grappe (44), no detailed performance analysis data 

exists on the seasonal practices of professional male road cyclists.  

1.4 Significance of the Research 

This research will improve our understanding of external workload in professional road 

cyclists. The contribution that this research makes is beneficial to professional and amateur 

alike. Specifically, the influence of environmental factors on cycling power output used 

during performance analysis is examined. A greater understanding of performance analysis 

using power output data will aid in explaining the external workload of racing and training 

more accurately and ameliorate the need to estimate the physical condition of a rider. 

Additionally, results from this research will further our understanding of the physiological 

demands of professional male road cycling. While the physiological demands of 

professional road cyclists have been documented (1, 13, 45-47), much of this research was 

based on data collected in the late 90’s and early 2000’s, when doping in endurance cycling 

was known to be highly prevalent (48). As such, it is plausible that previous performance 

data provides an over estimation of the requirements within professional road cycling. 
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However, Lippi et al. (49) have shown that since the introduction of the biological passport, 

no decline in speed during grand tours has been observed.  

1.5 Purpose of the Research   

This thesis aims to examine the influence of specific external variables (i.e. topography 

categories, road gradients and rider specialities) on power output during single, multi-stage 

and seasonal cycling performance in professional male road cyclists. It also examines 

current performance analysis methods (i.e. MMP or CP) using power output data and 

investigates a novel time series based analysis.  

The primary purpose of Study One is to describe the frequency distribution of POpeak values 

from different stage topography categories (flat, semi-mountainous and mountainous). An 

additional aim of Study One is to use a novel changepoint method to analyse the distribution 

in power output 600 s prior to POpeak efforts from the different stage topography categories.  

Determining the distribution of power output and where these POpeak efforts occur will 

assist our understanding of the demands on professional road cycling during a stage race 

and maybe identify some of the tactical differences adopted in various stage types.  

The primary purpose of Study Two is to examine if MMP obtained from a 21 day grand 

tour events differs between stages for each topography category and rider speciality. Such 

findings will provide specific information on the requirements of professional road cyclists 

from a range of specialities. Furthermore, if MMP is influenced by factors such as 

topography then other performance analysis measurements using power output may also 

differ. A further purpose of Study Two is to quantify the time spent in power output zones 

for each topography, road gradient and rider speciality during 21 day grand tour event.  
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The purpose of Study Three is to investigate the use of power output for the estimation of 

CP from different topography categories during a 21 day grand tour.  If CP estimated from 

power output was influenced by different topography categories, CP measurement would 

be erroneous. In this case, it is plausible that the time spent in different road gradients 

caused the differing MMP outputs and changes in CP values between topographies.  

The purpose of Study Four is to investigate the influence of road gradient on power output 

obtained from mountainous stages during 21 day grand tours. If road gradient is found to 

influence power output in Study Four, then this may explain any differences observed in 

Studies Two and Three.  

Finally, the purpose of Study Five is to investigate within-season variation of external 

workload (i.e. distance and distribution of power output) in a group of professional road 

cyclists preparing for the world team time trial championships.    
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1.6 Research Questions & Hypotheses 

The research questions (denoted “Q”) and corresponding hypotheses (denoted “H”) for 

each study of this thesis are outlined below: 

1.6.1 Study One (Chapter Three) 

Examining the Distribution of Maximal Power Output Efforts and the Use of 

Changepoint Analysis in Professional Road Cyclists  

Q1: Does the frequency distribution of POpeak values change from stage races of differing 

topography categories (flat, semi-mountainous and mountainous) in professional road 

cyclists? 

H1: The majority of POpeak values will occur during the final section (> 80%) of flat stage 

races as the exercise intensity increases towards the finish. Alternatively, during semi-

mountainous and mountainous stages, the frequency of POpeak values will be more evenly 

distributed across the stage races. 

Q2: How is power output distributed in the 600 s prior to POpeak values on different 

topography categories (flat, semi-mountainous and mountainous)? 

H2: The distribution of power output will progressively increase during the 600 s prior to 

POpeak in flat compared with semi-mountainous and mountainous stages. A more even 

distribution will be observed in power output prior to POpeak in semi-mountainous and 

mountainous stages. 
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1.6.2 Study Two (Chapter Four) 

Effects of Topography, Road Gradient and Rider Speciality on Maximal Mean Power 

Output during Professional Cycling 

Q1: Do MMP’s between 1 and 3600 s differ between topography categories (flat vs. semi-

mountainous vs. mountainous)? 

H1: Greater power output values in short MMP durations (i.e. 1, 5 and 15 s) will be 

observed in flat stages, compared with semi-mountainous or mountainous stages. Greater 

power output values in longer MMP durations (i.e. 1200, 1800 and 2400 s) will be observed 

during mountainous stages, compared with flat and semi-mountainous stages. 

Q2: Does MMP differ between riders of differing specialities (climber vs. domestic vs. 

sprinter vs. general classification)? 

H2: The sprinters will have the greatest maximal power output values in short MMP 

durations (< 60 s), when compared with domestiques, climbers and general classification 

riders. Domestiques, climbers and general classification riders will have greater MMP in 

longer durations (> 300 s), when compared with sprinters.  

Q3: Do topography categories, road gradients and rider specialities influence the 

distribution of race time spent in power output zones? 

H3: The distribution of race time in high power output zones will be greater in mountainous 

stages with steeper road gradients. Domestiques and climbers will display more race time 

in greater power output zones, when compared with general classification and sprinters.   
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1.6.3 Study Three (Chapter Five) 

Estimation of Critical Power in Professional Road Cycling   

Q1: Does estimated CP differ between topography categories (flat vs. semi-mountainous 

vs. mountainous) from grand tours in professional male road cyclists? 

H1: Estimated CP from grand tour race data will be greater in semi-mountainous and 

mountainous stages compared with flat stages.   

Q2: Is CP determined from a field-based cycling test different when conducted on flat-

terrain compared to uphill? 

H2: CP determined from an uphill field-based test will be greater than a flat-terrain field-

based test. 

 

1.6.4 Study Four (Chapter Six) 

Road Gradient Influences Cycling Power Output during Grand Tour Mountain 

Stages  

Q1: Does road gradient change one and five min MMP output in professional male cyclists 

from mountainous stages obtained from grand tour events?  

H1: Power output will increase in relation to increases in road gradient for both one and 

five MMP.  
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1.6.5 Study Five (Chapter Seven) 

The Within-Seasonal Distribution of External Training and Racing Workload in 

Professional Male Road Cyclists  

Q1: How does external workload vary within-season in professional road cyclists preparing 

for the world team time trial event? 

H1: A greater external load will be observed during the season at the point when major 

competitive events occur (i.e. greater during a grand tour) whereas, the external load will 

be lower during the off-season.  
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1.7 Definition of Abbreviations  

Unit or Term Abbreviation 

analysis of variance  ANOVA 

anaerobic work capacity  AWC 

beats per minute bpm 

confidence interval CI 

critical power CP 

degrees Celsius  °C 

fraction of inspired oxygen FIO2 

functional threshold power  FTP 

maximum heart rate  HRmax 

hour h 

kilometre (s) km 

kilometres per hour km·h-1 

kilojoule kJ 

lactate threshold LT 

minute (time) min 

minutes per day min·d-1 

meter m 

millilitres per kilogram per minute mL∙kg-1·min-1 

maximal mean power MMP 

power output peak POpeak 

revolutions per minute  rpm 

second (time) s 
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standard deviation SD 

Schoberer Rad Messtechink SRM 

total elevation gain TEG 

maximal oxygen uptake  V̇O2max 

watt balance model  W’bal 

watt W 

watts per kilogram W·kg-1 
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2 CHAPTER TWO 

REVIEW OF THE LITERATURE 

2.1 Introduction 

Professional road cycling is a complex and dynamic sport, with a range of race categories 

or competition types, topography categories and rider specialities (Table 2.1). Briefly, 

competition types are heavily influenced by the duration of the race. Races range in 

duration from one to twenty one days. Road cycling competitions are also often categorised 

into mass-start events or time trial events (i.e. individual or team time trials). Single day 

mass-start races or stages have historically been categorised according to the topography 

in which the race is conducted (9, 10, 15, 36). Given the complex race categories, 

competition types, topography categories and environments in which road cycling is 

performed, athletes typically have specialised roles within a cycling team. Rider specialities 

are predominantly based upon an individual’s physiological characteristics and area of 

strength. To date, several differing rider specialities have been documented within the 

literature (sprinter, climber or uphill rider, domestiques, all terrain, time trial and general 

classification) (1, 26, 41-43). The complex nature of road cycling and various roles of 

individual athletes, makes performance analysis within professional cycling difficult. Yet, 

understanding the diversity of these external variables and their influence on the external 

workload of professional road cycling will improve our understanding of the physical 

demands placed upon cyclists. Such findings are important in athlete preparation, talent 

identification and performance analysis.   
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Table 2.1: The classification of cycling competition types, topography categories and rider 

specialities. 

Competition Types Topography Categories Rider Specialties 

Grand Tours Flat Team/Tour Leaders 

Multi-Stage races Semi-mountainous Sprinters 

Single-Stage races 

Mountainous 

Climbers 

Time Trial Domestiques 

 

Various portable electronic devices have been developed to provide information on both 

the external and internal workload measurements during cycling exercise. These devices 

continuously monitor power output, heart rate, cadence, speed, elevation and temperature 

(35). A portable electronic device which attaches to a bicycle specifically measuring power 

output is called a power meter. Power output is an extremely important measure within 

cycling as it provides a direct assessment of the work or energy expended by a cyclist. 

Within the past ten years there has been a dramatic increase in the number of commercially 

available power meters.  These power meters measure or estimate power output based on a 

range of different methods including calculations from wind speeds, chain tensions, and 

strain gauges built into the pedal, crank, or rear wheel/hub of the bicycle. The reliability 

and accuracy of these monitors have been shown to vary. Several methods or systems 

provide much higher accuracy than others. The SRM power meter is often regarded as a 

gold standard meter due to its accuracy and early development (50). When calibrated, SRM 

power meters are accurate to within approximately 2% (51). 

The ability to accurately quantify work from power output makes cycling a unique sport in 

terms of the level of understanding possible on the demands of training and racing (35).  



 

 

16 

 

Despite the importance of measuring power output it is complex and difficult to analyse. 

As a result, the core business of several commercially available software companies (e.g. 

Training Peaks and Golden Cheetah) is to aid in the interpretation and analysis of power 

output data.  

Cycling power data is typically collected at a fast sample rate (1Hz or faster) and can result 

in extremely large data files from a single training session or race. Along with the large 

number of training sessions and races performed by cyclists, this has resulted in difficult to 

interpret datasets. As a result, scientists, coaches and athletes have explored data reduction 

methods to improve interpretation (30). A simple method is to calculate the average power 

output over a single duration. However, this approach does not demonstrate the stochastic 

nature of power output from stage racing (35). For example, a flat stage with little variance 

in power output may result in a mean power of 270 W. Alternatively, a stage with 

undulating topography may require periods of very high and low power output, and result 

in a lower average power output of 255 W.  

These data reduction methods can simplify the data and ease interpretation and 

understanding. However, an oversimplification of the data can lead to considerable 

misinterpretation. Several data reduction methods have been developed to better 

understand the highly stochastic nature of power output including normalised power (35), 

maximal mean power (26, 27) and exposure variation analysis (8).  

Initially, this review will highlight the different ways to monitor workload in professional 

road cyclists from an internal and external perspective. Following, this review will more 

specifically highlight how external factors influence power output and describe the methods 

used to analyse cycling performance.   



 

 

17 

 

2.2 Workload Monitoring in Professional Road Cycling 

Professional cycling is a dynamic and complex sport. As such, the workload demands of 

competition and training require prolonged periods of low-intensity cycling, numerous 

short and explosive high-intensity efforts and sustained periods of high-intensity cycling. 

These periods result in stress and if prolonged can cause overtraining syndrome which 

decreases performance (52). Workload has been separated into what has been defined as 

internal and external load (6, 7). This section introduces the various methods of assessing 

internal and external workload in road cycling.  

2.2.1 Internal workload  

Each individual athlete will have a physiological and psychological response to exercise 

and environmental factors, referred to as ‘internal load’ (6, 7). This section introduces the 

measurements of internal workload and describes how they relate to professional road 

cycling performance. Specifically, the use of V̇O2max, heart rate and RPE will be discussed. 

The influence of external factors including stage type and environmental temperature will 

also be discussed as these both influence the internal physiological stress of a cyclist.  

An athlete’s V̇O2max is the maximum amount of oxygen the body can consume (53, 54), 

and it is closely associated with maximal aerobic capacity. Professional road cyclists 

demonstrate extremely high aerobic capacities with males exhibiting V̇O2max values 

ranging from 69.7 to 84.8 mL∙kg-1·min-1 (1) whereas females exhibit a range between 57 to 

64 mL∙kg-1·min-1 (22). V̇O2max has been demonstrated to separate different types of 

professional male road cyclists. In a study by Lucía et al. (42) on the physiological 

responses of professional male road cyclists, climbers had a significantly greater V̇O2max 

than time trialists; 78.6 ± 2.0 mL∙kg-1·min-1 vs. 72.0 ± 2.6 mL∙kg-1·min-1 respectively. 

During the Tour de France and Vuelta a Espana, professional male road cyclists have 
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recorded long periods of time near V̇O2max with up to 93 min of flat and 123 min of 

mountainous stages (32% of total stage time in flat and 40% in mountainous stages) riding 

greater than 70% of V̇O2max (11). Furthermore, another study recorded the percentage time 

over ventilatory thresholds (VT1 and VT2) (55). Ventilatory thresholds obtained from a 

V̇O2max test have been demonstrated as an accurate performance level indicator during 

cycling exercise (56). Specifically, VT1 is represented as the first increase in minute 

ventilation that is proportional to CO2 output whereas, VT2 is represented as the point at 

which blood lactate increases considerably and hyperventilation occurs (56). Cyclists have 

been shown to spend 71 h (70%) below VT1 and 8 h (7%) of Tour de France race time at 

VT2 with 23 h (23%) of time spent in between (VT1-VT2) (55). While the percentage of 

time at V̇O2max and above thresholds provides detailed information on the internal 

workload, scientists commonly use heart rate which is correlated with V̇O2max intensity 

zones to measure internal workload during professional road cycling events (55, 57).     

Heart rate can be used to prescribe and monitor exercise intensity (58). At the beginning of 

a season, a single laboratory exercise test can provide heart rate zones as a reliable indicator 

of exercise intensity such as V̇O2max, lactate threshold and the first and second ventilatory 

thresholds (56). Under those circumstances, regular laboratory exercise testing is required 

to continually update metabolic zones and thresholds as physiological adaption occurs 

during training and racing. For example, Lucía et al. (56)  investigated the stability of target 

heart rate values corresponding to metabolic thresholds including lactate and first, and 

second ventilatory thresholds, in thirteen professional road cyclists during a season. Three 

ramp V̇O2max tests were conducted during the season (rest (November), pre-competition 

(January) and competition (May) periods). Significant improvements were observed in 

power output at lactate threshold (LT), VT1 and VT2 (Power output at LT: 319 ± 10, 350 ± 

8 and 379 ± 9 W; power output at VT1 321 ± 8, 338 ± 10 and 350 ± 8 W and at VT2; 411 ± 
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11, 428 ± 11 and 436 ± 10 W during rest, pre-competition and competition periods 

respectively) as well as slight changes in the target heart rate, (Heart rate at LT: 154 ± 3, 

152 ± 3 and 154 ± 2 bpm; heart rate at VT1: 155 ± 3, 156 ± 3 and 159 ± 3 bpm; and heart 

rate at VT2: 178 ± 2, 173 ± 3 and 176 ± 2 bpm during rest, pre-competition and competition 

periods respectively). This study by Lucía et al. (56) demonstrates that a single laboratory 

testing session during the season would be adequate to prescribe training load based upon 

heart rate in elite endurance athletes. 

Research using V̇O2max and heart rate during cycling exercise is confounded by several 

factors. V̇O2max is influenced by a decrease in the fraction of inspired oxygen as altitude 

increases. Mountain stages are conducted at moderate altitudes (1500 - 2500 m), therefore, 

a decrease in V̇O2max occurs resulting in a lower power output demonstrated by several 

laboratory studies (59-61) and a recent multi-stage field study (62). It is likely that the 

decrease in power output is due to the decline in oxygen availability at the muscular level. 

Heart rate is influenced by several factors with up to a 6.5% daily variation being 

demonstrated in submaximal heart rate (63). These factors include cardiovascular drift, cold 

environments, altitude and longitudinal adaptive changes during grand tours (58, 64). 

Cardiovascular drift is the gradual decrease in stroke volume and increase of heart rate (65). 

Factors which contribute to cardiovascular drift include dehydration, hyperthermia and 

peripheral vasodilation (58). Exercise in cold environments result in decreases in skin blood 

flow and increases in metabolic rate. Similar to V̇O2max, altitude influences heart rate with 

submaximal heart rate increasing while V̇O2 remains stable (58). Finally, physiological 

adaptation occurs over time, however, Lucía et al. (56) demonstrated that heart rate remains 

stable in professional road cyclists during the course of a season.   

Given these confounding factors, caution should be taken when analysing heart rate as a 

measurement of internal workload. The influence of environmental temperature on 
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endurance cycling exercise performance is well documented within the literature (66-68). 

Exposure to hot environments for long periods of time cause significant impairment on 

exercise performance resulting from thermal strain (64, 69, 70) and large endogenous heat 

production (71). While multiple studies have investigated the influence of heat on cycling 

performance (68, 72, 73), few have looked at cycling performance with a dynamic 

component replicating the demands of field-based road cycling studies (8, 9, 23, 74).  

RPE measures an athlete’s perception of exertion (in some cases perception of effort (75, 

76)) and is commonly used within sports science literature for monitoring, prescribing, 

regulating exercise intensity, and assessing training load (77). The majority of research 

using RPE as a measurement of exercise intensity has been completed in team sports. 

Specifically, the approach was demonstrated to be effective in basketball (78) and soccer 

(79). Several studies have been conducted into the use of RPE and exercise intensity in 

competitive (80, 81) and professional road cyclists (44, 82). These studies have assessed 

RPE at the end of training or competition, which is known as session RPE (4, 20). Session 

RPE is a method of quantifying training load whereby an athletes RPE (on a 1-10 scale) is 

multiplied by the duration of the session (in minutes) (78). Specifically, Rodríguez-

Marroyo et al. (83) analysed the heart rate and session RPE of twelve professional road 

cyclists from 5, 7 and 21-day races to quantify competition load. The session RPE of 

cyclists was measured approximately 30 min after the end of each stage using the 0 to 10 

RPE scale (84). Interestingly, mean session RPE was significantly greater in 21-day stage 

races (5.9 RPE) compared with 5 and 7 day races (5.1 and 5 RPE respectively). The 21-day 

stage races also showed significantly lower maximal (183 ± 1 vs. 186 ± 1 and 187 ± 2 bpm 

for 21, 5 and 7 day races respectively) and mean heart rates (141 ± 1 vs. 146 ± 1 and 148 ± 

3 bpm for 21, 5 and 7 day races respectively). Numerous laboratory studies have 

highlighted that session RPE may be extremely important in monitoring fatigue during 
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cycling exercise (73, 85-87). However, unlike team sports, it is difficult to obtain session 

RPE intermittently (i.e. half or quarter time) during cycling races.  

In conclusion, the internal workload can be measured in professional road cyclists but, 

measurements are difficult to conduct in the field except for heart rate. Heart rate provides 

information on the exercise intensity and physiological stress experienced by a cyclist.  

Session RPE provides an alternative measurement of internal load for monitoring exercise 

intensity and can be recorded at the end of any race or training session. 

2.2.2 External workload  

The term ‘external load’ refers to any external stimuli produced by an athlete that is 

measured independently from their internal characteristics (6, 7). Data can be collected 

from the cyclist’s using portable electronic devices (i.e. power output, cadence or speed). 

This section begins by assessing the reliability of the SRM power meter (within this thesis, 

all experimental data were collected using SRM power meters) before introducing external 

workload measurements (i.e. power output and cadence).  

Power output is calculated throughout training and professional road cycling races using a 

portable electronic device called a power meter. Examples of commercially available 

power meters on the market include Schoberer Rad Messtechink (SRM), PowerTap and 

Ergomo Pro. These power meters provide a range of external workload variables including 

power, speed and cadence. As well as these external workload variables, the SRM power 

meter has been demonstrated to provide an accurate estimation of energy expenditure (88). 

Energy expenditure is calculated from the knowledge of power output and gross efficiency. 

This provides useful information for professional road cycling teams to monitor their 

individual riders given the demand in maintaining hydration status (89, 90), energy intake 

and expenditure (91-95).   
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It is important for cyclists and coaches to be confident in their power meter and that the 

data provided is accurate and reliable. The reliability of the SRM has been assessed in 

multiple studies (45, 51, 96, 97) described in table 2.2. These studies assess reliability using 

a range of performance trials including constant power output, sprint tests and field tests. 

For example, Gardner et al. (51) compared SRM vs. Powertap power meters demonstrating 

a reduced reliability (increased variability) of the SRM with temperature (2.3 vs. 5.2% 

respectively). The finding that both SRM and Powertap power meters were sensitive to 

temperature changes has implications for field data interpretation. The authors recommend 

re-setting the off set back to zero at regular intervals when temperatures change throughout 

a ride. Furthermore, Wooles et al. (50) used a static method for obtaining a calibration 

factor from 153 SRM bicycle power cranks. Using a known mass and lever arm to apply 

torque load, output frequencies are used to calculate the calibration factor. The authors 

accepted a reproducibility of ± 0.01 Hz/Nm (i.e less than 1W per 1000W), however, 

identified a drift -0.15 W with a standard deviation of 1.51 W. Calibration every six months 

is recommended due to measurement drift in the calibration factor over time. If calibration 

procedures are adhered to, researchers can have greater confidence in their findings.  
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Table 2.2:  Studies assessing the reliability of the SRM (Schoberer Rad Messtechink) power meter compared with other commercially available 

power meters. 

Author Participants/devices 
Comparison vs. 

SRM 
Reliability Trials Results 

Gardner et al. 

(51) 
19 SRM, 5 PT PT vs. SRM 

Average power (50 - 1000 W) 

Cadence (60,80,100,120 rpm) 

Temperature (8 & 21 oC) 

Time (1 h - 300 W) 

Mean error in average power; SRM 

2.3 ± 4.9% & PT -2.5 ± 0.5%.  No 

difference in cadence or time. 

Temperature did influence power; 

SRM 5.2% & PT 8.4%. 

 

Bertucci et al.  

(96) 

n = 1, national level 

cyclist 
PT vs. SRM 

Sub-maximal incremental 

intensity’s (100 - 420 W), 

cadence (45 - 120 rpm), 

cycling position (standing or 

seated), continuous trial (30 

min), maximal sprints (8 s) 

and road cycling event. 

Mean error in average power sub-

maximal intensity’s (-1.3 ± 1.3%). 

Franklin et al. 

(98) 
n = 8 Monark vs. SRM 60 rpm, 3 kg for 5 min 

Monark overestimates power 

compared with SRM system. 

Hurst & 

Atkins (99) 

n = 12 trained male 

cyclists 
Polar vs. SRM 

3 min intermittent cycle test 

containing 12 all-out efforts, 

separated by passive recovery 

between 5 to 15 s 

Mean power; SRM 556 ± 102 W % 

& Polar 446 ± 61 W. 

Duc et al. (97) 
n = 1, regional level 

cyclist 
EP vs. SRM/PT 

Eight sub-maximal 

incremental tests (100 - 400 

W), eight 30min sub-maximal 

constant power test (180 W), 

eight sprint tests (> 750 W) 

Mean error in average power 

output; EP-SRM 6.3 ± 2.5%, EP-

PT 11.1 ± 2.1%. Mean error in 

sprint power output; EP-SRM 1.6 ± 

2.5%, EP-PT 3.2 ± 2.7%. Mean 
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Author Participants/devices 
Comparison vs. 

SRM 
Reliability Trials Results 

and eight field performance 

training sessions. 

error during field performance; EP-

SRM 12 ± 5.7%, EP-PT 11.1 ± 

2.1%. 

Abbiss et al. 

(45) 

n = 15 (only for 30 

km time trial) 

Velotron Ergo vs. 

SRM 

Two sustained constant power 

trials (250 & 414 W), two 

incremental power trials & 

three high-intensity interval 

power trials, 30 km 

performance time trial. 

< 1% error in constant power trials. 

High-intensity interval power trials 

less accurate (Velotron 3% % SRM 

-2.6%).  Velotron was 3.7 ± 1.9% 

greater than SRM. 

Bouillod et al. 

(100)  

n = 1 national-level 

male competitive 

cyclist 

PT, STG and VCT vs. 

SRM 

Three laboratory cycling tests 

including a sub-maximal 

incremental tests, as 30-min 

sub-maximal continuous and a 

sprint test. Vibrations were 

also tested in the laboratory 

and field settings.  

Power output for STGA was lower 

(-5.1%) than SRM during heavy 

exercise and VCT lower (-4.5%) 

than SRM during moderate 

exercise 

 (SRM, Schoberer Rad Messtechink power meter; PT, PowerTap power meter; EP, Ergomo Pro; Polar, Polar S710 heart rate monitor, and power 

sensor kit; Monark, Monark 824E); STG, Stages; VCT, Garmin vector). 
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The accuracy and reliability of power output produced by a power meter is important as 

the resulting data are used to measure and monitor external workload. Numerous 

observational studies have examined the direct power output produced by professional male 

and female cyclists in competition (8-10, 15, 18, 36). Vogt et al. (18) evaluated the power 

output of six professional male cyclists over a 6 day multi-stage professional road race. 

Vogt et al. (18) found that cyclists spend the majority of the race time (58%) during mass-

start stages at intensities near lactate threshold (220 ± 22 W). Within the multi-stage race, 

power output during an uphill individual time trial was recorded considerably greater (392 

± 60 W). Indeed, the demands of professional road cycling are dependent on numerous 

factors including the race format (i.e. time-trials, short circuit of criterium events or longer 

road races (8)), topography categories (semi-mountainous vs. flat stages; Table 2.1) (10) 

and race dynamics (i.e. team and individual tactics) (74). 

In longer grand tour stage races, little actual direct power output data are available (Table 

2.3). Specifically, Vogt et al. (15) documented the power output demands from fifteen 

professional road cyclists from the 2005 Tour de France. The authors found a trend of 

increasing power output from flat (218 ± 21 W) semi-mountainous (228 ± 22 W) to 

mountainous (234 ± 13 W) stages. It could, therefore, be suggested that the more 

mountainous the stage, the greater power output demands are required. In a follow up study 

by the same research group, Vogt et al. (36) attempted to illustrate the varying power output 

between flat and mountainous stages in a single professional road cyclist from the Giro 

d’Italia. Mean power output was lower (132 ± 26 W) for flat stages compared with 

mountainous stages (235 ± 10 W). While these studies highlight the mean power output 

demands during grand tours, they fail to provide any insight into the stochastic nature of 

power output. Previous research has characterised flat stages to be more variable in power 

output due to short bursts of high power (74) whereas, mountainous stages observed 
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showed a constant power output for extended periods of time. Future research should aim 

to develop methods in reducing power output data into smaller concise data points which 

can still highlight important changes in load.  

Measuring power output is important for the monitoring of workload in professional road 

cyclists. While power meters are becoming more common, limitations or issues still exist 

(i.e. calibration or complex noisy data). For example, multiple field studies from 

professional road races have been conducted using power meters (Figure 2.2) however,  

their level of accuracy for detecting important changes in professional road cyclists still 

presents an issue (30). The data are most meaningful when relative to physiological 

characteristics (% of time at VO2max or heart rate), which is why studies have tried to model 

power output (55, 56, 101, 102).  
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Table 2.3: Field studies comparing direct power output differences between flat and mountainous road cycling stages in professional cyclists 

(male and female). 

Study Participants (n) Stage (n) 
Age 

(y) 

Height 

(cm) 

Body 

Mass 

(kg) 

V̇O2peak 

(mL∙kg-

1·min-1) 

Flat mean 

power 

output (W) 

Hilly/mountainous 

mean power output (W) 

Ebert 

et al. 

(9) 

n = 15 national 

female road 

cyclists 

World Cup races (flat n 

= 19: hilly n = 8) 

24.1 

± 4.0 

168.7 ± 

5.6 

57.9 ± 

3.6 
63.6 ± 2.5 169 ± 17 192 ± 21 

Ebert 

et al. 

(10) 

n = 31 national 

male road cyclists 

6 year Tour of Down 

Under (flat n = 38: 

hilly n = 37) 

20.9 

± 0.4 

177 ± 

0.4 

69.8 ± 

2.8 
74.0 ± 2.4 188 ± 30 203 ± 32 

Vogt et 

al. (36) 

n = 1 male 

professional cyclist 

(case study) 

Giro d’Italia 

 

(flat n =5: mountainous 

n = 4) 

26  172  67  - 132 ± 26 235 ± 10 

Vogt et 

al. (15) 

n = 15 professional 

cyclists 

Tour de France 

 

(flat n = 55: semi-

mountainous n = 45: 

mountainous n = 48) 

29 ± 

4.0 
181 ± 7 72 ± 7 - 218 ± 21 

234 ± 13 (semi-

mountainous: 228 ± 22) 
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During road races cadence is freely chosen. It is the selection of the cyclist rather than a 

specific cadence being dictated (103). The most optimal cadence depends on the task (104). 

As task demands change so does the optimal cadence. The most optimal cadence for 

cyclists is one that minimises metabolic cost (105), reduces muscular stress (103) and 

perception of effort (103, 104, 106). The optimal cadence adopted by cyclists in the field 

is debated within the literature (103, 107). Research suggests that professional road cyclists 

adopt high cadences of between 80 to 100 rpm (103), contrary to the metabolically optimal 

cadence of between 50 to 70 rpm (107) recorded in triathletes. The optimal cadence chosen 

is influenced by a range of factors including aerobic fitness, biomechanical, hemodynamic 

and exercise duration (103, 108). Interestingly, laboratory research has recently shown that 

with an increased gradient lower cadences were adopted (109). In the field, several studies 

have demonstrated a preferred higher cadence during flat compared with mountainous 

stages (15, 110). One reason for the observation of lower freely chosen cadences while 

cycling uphill is believed to be due to the crank inertial load of cycling. The crank inertial 

load is the quadratic function of a bicycle’s gear function ratio (111). Cyclists change gear 

ratio according to road gradient, thus influencing the choice of pedal cadence. For example, 

a cyclist’s speed will decrease during uphill cycling resulting in the selection of a low gear 

ratio whereas, horizontal cycling will lead to high speeds and requires the selection of a  

high gear ratio (112). Sassi et al. (113) observed ten professional cyclists and reviewed 6 

to 8 of their hardest training sessions ranging on road gradients from -4% to 12%. They 

found a linear decrease in freely chosen cadence as road gradient increased. This decrease 

appeared to be related to a reduction in speed as a result of increased gradient. Therefore, 

the crank inertial load is affected by the freely chosen cadence. This in turn, has an impact 

on the amount of time spent on the pedal, resulting in a change to the required power output. 
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It could, therefore, be speculated that power output would be change due to this 

requirement, influencing power output data. 

In conclusion, the external workload of professional road cyclists can be measured during 

cycling using reliable portable electronic devices (Table 2.2). These devices provide a 

wealth of information including direct power output and freely chosen cadence in which 

coaches, cyclists and enthusiasts can analyse performance. Nevertheless, the choice of 

performance analysis is required with multiple options available.   
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2.3 The Dynamics of Professional Road Cycling 

Professional road cycling can be classified into competition types, topography categories 

and rider specialities (Table 2.1). This section describes the characteristics and workload 

demands within each classification. An understanding of the different factors (Table 2.1) 

is required before we describe how to monitor and analyse the workload demands.   

2.3.1 Competition types 

During a single cycling season, professional male road cyclists can expect to race between 

60 and 100 days of the year and, together with training, cover exceptionally long total 

distances (~ 35000 km) (3). In season competitions vary from single time trials (~ 20 - 100 

km), single-day races (~ 60 - 270 km), multi-stage races (~ 3 - 10 days) and grand tours (21 

days) (114). This section discusses the characteristics and workload of each competition.  

The time trial event can be a single event or integrated into a multi-day tour race (115). 

These races either involve an individual (individual time trial) or team (team time trial) 

completing a set distance (e.g. 20 km) in the least amount of time possible. Alternatively, 

special one-off events have been staged where riders attempt to cover as much distance as 

possible in a single hour. Rider/s have been reported to hold power outputs in the range of 

320 to 450 W during time trials ranging from 5 to 100 km (3), while Chris Boardman 

averaged an estimated 442 W and an average speed of 56.3 km·h-1 when previously 

breaking the 1 hour cycling record (114). Jacobs et al. (116) analysed the key physiological 

determinants for optimal time trial performance. They concluded that the key requirements 

were for a high capability in oxygen transport, high maximal oxygen uptake (V̇O2max) and 

haemoglobin mass (Hbmass) also, increased oxygen, oxidative phosphorylation and electron 

transport system capacities. Studies on pacing have indicated that performance during the 

time trial is largely influenced by these physiological characteristics (117-119). It has also 
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been shown that performance during time trials of an extended duration (> 2 min) are 

typically optimised with an even pacing strategy compared with a negative, all-out, 

positive, parabolic-shaped and variable pacing strategies (117). However, most studies into 

pacing and cycling have been conducted in laboratory settings (118, 120-127). There are 

only a few studies which have been conducted in field settings (128-130) where, pacing 

and performance during the time trial is largely influenced by both physiological 

characteristics and various external environmental conditions.     

External environmental conditions demonstrated to influence time trial performance 

include topography (131-133), gradient (131, 134, 135), temperature (136-138) and wind 

speed (121, 132). Studies using mathematical models have shown that varying power 

output can be detrimental during a flat, windless 40 km time trial performance (132, 139, 

140). During stages of varying gradient, adjusting power output in conjunction with 

changes in gradient can improve time trial performance (132-134, 139). These studies 

demonstrate that performance can be improved by slightly increasing power output on 

uphill and headwind segments and a reduction in power during downhill and on tailwind 

segments of a time trial. However, in the field cyclists appear to have difficulty maintaining 

these optimal requirements (135, 139). This is thought to be due to mechanical and/or skill 

limitations (135) and an inability to physiologically maintain the required power output 

(139). Rather than mathematical models, more studies are required into the actual practices 

of professional road cyclists during the time trial. While these studies acknowledge 

topography, gradient and wind, the environmental temperature must also be considered. 

While it has been well documented that thermoregulation and heat stress can influence 

pacing and time trial performance (137, 138, 141), few studies have examined how 

performance can be optimised in such conditions. Abbiss et al. (136) compared different 

starting pacing strategies by ±10% power output in a 20 km cycling time trial performed in 
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the heat (32.7 °C). The authors found no differences in 20 km performance time by 

manipulating starting power output either 10% above or 10% below that of a self-paced 

trial. Therefore, while it is clear that environmental temperature may influence optimal 

pacing, no studies have been able to take this variable into account when developing or 

modelling optimal profiles. It is likely that this is because of the complexity of 

thermoregulation. Indeed, fatigue in the heat is believed to be most closely related to 

internal body temperature which can differ greatly from skin and environmental 

temperature. Research is needed in quantifying core body temperature during exercise 

before this variable can be accounted for in fatigue and performance models. Overall, these 

studies indicate that several environmental factors may influence power output distribution 

during cycling. While research has begun to examine how some of these factors may 

influence time trial performance and exercise capacity, more research on actual cycling 

events is required.   

Mass-start one-day races are a single race often, but not always, performed over a circuit 

of set repeated laps. Important one day races are performed at the Olympics, World 

Championships, World Cup series and multiple famous one-day classic races (e.g. Paris - 

Roubaix, Milan - San Remo and Liège - Bastogne - Liège). These events start with a large 

number of competitors (e.g. 200 riders started the 2016 Paris - Roubaix) and, unlike the 

time trial where the objective is to finish as quickly as possible, the objective here is to 

simply cross the finish line ahead of your opponents. As a result, tactics become an 

extremely important aspect of such races. Such tactics and the capacity to draft behind 

opponents and team members also has a considerable influence on the race. To the author’s 

knowledge, no study has described the demands of one-day races in professional male road 

cyclists. However, a few studies exist in female cyclists (8, 9, 142). Ebert et al. (9) 

compared the average power output from 19 flat and 8 hilly world cup road races in fifteen 
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professional female road cyclists. Average power output was greater in hilly (3.3 ± 0.3 

W·kg-1) compared with flat (3.0 ± 0.4 W·kg-1) stages during World Cup road races. This 

study highlights that topography influences the demands placed on female cyclists during 

mass-start road races. However, few studies have extensively examined the influence of 

topography and gradient on performance within one day road cycling. Furthermore, given 

that the study by Ebert et al. (9) only provides average data on varying sections of a race, 

it is unclear if such differences are due to the race demands or differences in maximal 

exercise capacities.   

Multi-stage races typically consist of racing over 3 to 10 days, sometimes with multiple 

stages in one day. The workload demands required to complete each professional multi-

day road racing event have been shown to influence performance. Specifically, the length 

of the stage may influence performance. For example, Rodríguez-Marroyo et al. (14) 

examined the average heart rates of thirty professional male road cyclists from three (5-

day, 8-day and 21-day) alternative stage race lengths. They found that the average time 

spent in zone three (above respiratory compensation point) was significantly greater in 5-

day (~ 31 min) stage races, compared with eight (~ 28 min) and 21 (~ 14 min) day stage 

races. Gradient may also influence performance. For example, Vogt et al. (18) described 

the power output demands during multi-stage racing in six professional male road cyclists 

at the Regio-International road race. The authors found that average power output was 3.4 

± 0.3 W·kg -1 for the six day stage race. Interestingly, with the removal of an uphill time 

trial in the race, average power output was measured 0.3 W·kg-1 lower at 3.1 ± 0.2 W·kg-1 

This removal of the data highlights the possible influence of uphill cycling exercise on 

power output. 

The tactics within a multi-stage race largely depend on the race demands/characteristics 

and the individual or teams objectives for that race (e.g. stage wins, mountain or sprint 
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classifications and general classification). For instance, teams may specifically target the 

general classification and not focus on individual stages wins within a multi-stage event. 

Alternatively, a cyclist may deliberately conserve energy throughout the race in order to 

reach the final sprint in the best position for the win. Breakaways are also common within 

multi-stage races in an attempt to win the stage, gain individual and team media exposure 

or gain intermediate mountain/sprint points (74). Few breakaways will be maintained for 

the whole duration of the day due to fatigue, team tactics, and race dynamics. Indeed, 

Menaspà et al. (143) investigated the correlations between the total elevation gain (TEG) 

and bunch dimensions and demonstrated that the greater the TEG in a stage (i.e. 

mountainous stages), the greater the likelihood there was for a successful breakaway. 

Furthermore, it was observed that stages with lower TEG were more likely to end in a 

bunch sprint. These results highlight the importance of topography on tactical decisions 

and task demands within multi-stage racing. With the exception of a few studies on 

breakaways (74) and sprinting (144), little research has extensively examined these tactics 

and their influence on the demands of cycling.   

Grand cycling tours (Tour de France, Giro d’Italia and Vuelta a Espan͂a) are perhaps the 

most popular and demanding races in the professional road cycling calendar. Since the first 

tour in France in 1903, these grand tours have been established as some of the most 

predacious sporting events in history. These races are performed over 21 days, with 

minimal recovery time between stages (only 1 - 2 days of complete rest).  Historically, the 

Tour de France covered over 5000 km, however, this and the average time for completion 

has reduced over recent years (145).  Modern day tours consist of more than 200 cyclists 

at the beginning of the race. The cyclists cover around 3650 km in an average time of 92 ± 

6 h (46, 146).  Competing in a grand tour is similar to a multi-day stage race. These tours 

have several teams (e.g. the 2016 Tour de France started with 219 riders from 22 teams) 
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and each team may have different objectives. For example, objectives may include sprint, 

mountain and general classification classifications, high podium finishes or stage wins. 

With multiple objectives, grand tour events are extremely complex with many tactical 

decisions influencing the race outcomes. To date, the majority of research that has 

examined the workload demands of professional male road cyclists during a grand tour 

event has quantified exercise intensity using heart rate (11-14, 56, 102, 109). The majority 

of these studies have found that topography influences exercise intensity (11-13). For 

example, Padilla et al. (102) examined the heart rate of sixteen world-class professional 

male cyclists during grand tours. In this study, the average percentage HRmax was 61 ± 5%, 

58 ± 6% and 51 ± 7% in high-mountain, semi-mountain and flat stages, respectively. With 

the advancement in power meter technology, more recent studies have provided more 

detailed description of power output in professional cyclists during grand tours (15, 18). 

For example, Vogt et al. (15) described the power output of fifteen professional road 

cyclists across three topography categories (flat, semi-mountainous and mountainous) from 

the 2005 Tour de France. They found that relative power output was significantly lower on 

flat stages compared with semi-mountainous and mountainous stages (3.1 ± 03, 3.3 ± 0.3 

and 3.3 ± 0.2 W·kg-1 respectively). Additionally, cadence was significantly lower on 

mountainous stages, compared with flat and semi-mountainous stages (81, 87 and 86 rpm 

respectively). However, the influence of topography on power output and self-selected 

cadence during professional road cycling is not well established. Such information is 

important given the range of race characteristics and various objectives within such events.  

In conclusion, professional road cyclists compete in a variety of road racing types (time-

trial, single-day, multi-stage and grand tour). These events have distinct characteristics, are 

extremely dynamic, and may have multiple objectives within a single event. As a result, 

the demands of each of these events differs drastically. The physiological requirements of 
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a cyclist change depending on the event or task of an individual cyclist (described in section 

2.3.3) (14). Furthermore, external demands appear to be heavily influenced by external 

variables such as stage topography. 

2.3.2 Topography categories 

The influence of topography is one of the most significant challenges facing professional 

road cyclists. Within the literature, cycling stages and events that have been categorised 

based on topography are typically defined as flat, semi-mountainous or mountainous stages 

(Figure 2.1). Several factors are taken into consideration when classifying these stages, 

including the length and grade of the climb and where the climb occurs during a race or 

tour. These climbs or mountain passes are classified by number categories (1 to 4) based 

upon their difficulty. This section introduces the current literature examining flat, semi-

mountainous and mountainous stages.  

Figure 2.1: An example of three Tour de France stage types based on topography 

categories.  

Flat races and stages are typically over 200 km and performed over durations of 

approximately 4 to 5 h (146). During flat stages from a grand tour, Fernandez-Garcia et al. 
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(11) calculated that approximately 93 min of cycling time were spent above 70% of V̇O2max. 

Air resistance is the most dominant resistive force the cyclists experience during flat stages 

(147). As a result, flat stages are typically the fastest with average velocities of around 45 

km·h-1 reported for flat grand tour stages, compared with around 20 km·h-1 during uphill 

cycling in mountainous grand tour stages (146). At higher speeds greater power output is 

required to overcome air resistance. To reduce the impact of air resistance, riders will draft 

behind others within the race. Such drafting has a drastic influence on energy demands 

during cycling. Indeed, a reduction in V̇O2 of approximately 40% when riding in a large 

group has been reported between 21-40 km·h-1 (148). As a result, cycling teams will often 

deliberately shelter specific team members depending on an individual’s role within the 

team (described in more detail in section 2.3.3). The ability of riders to position themselves 

in various sections within a peloton and at different stages of a race, results in varying 

energy demands, even during flat road cycling events. Indeed, power output has been 

shown to vary drastically during flat stages of road cycling events (8). While several studies 

have attempted to replicate such events in laboratory settings (23, 137, 149, 150), few 

studies have attempted to describe their stochastic nature. Further work is needed to 

describe the power output characteristics of road racing before replicating studies in the 

laboratory.   

Semi-mountainous or mountainous stages are typically over 200 km and performed over 

durations of approximately 5 to 6 h (146). These stages are extremely important in the 

overall outcomes of grand tours. Indeed, performance in these stages in the 2001 Tour de 

France has been shown to be correlated (r = 0.94) to total race time (151). These stages are 

extremely demanding and contain multiple mountain passes, which typically range 

between 5-10 km at grades of 3-15% (146). Semi-mountainous and mountainous stages 

also involve long constant periods of uphill cycling (13, 102). During such cycling a 
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significant energy contribution is required to overcome gravity. As a result, success during 

such events requires athletes to have high aerobic capacities and very high power to mass 

ratios (W·kg-1).  

During the mountainous stages of a road cycling race, altitude increases result in a reduction 

in the fraction of inspired oxygen and increased time on steeper road gradients. While there 

has been a significant amount of research demonstrating the influence of cycling 

performance at altitude (152), few studies have looked at data from actual professional road 

cycling races. Only one study has investigated the impact of altitude on power output during 

a multi-stage race (62). This study demonstrated an 11.7% reduction in peak power output 

and maximal mean power (MMP) between 5 and 600 s while racing at greater than 3000 

m compared with sea level. Overall, an approximately 6% reduction in performance 

capacity per 1000 m above sea level was observed (62). Research has similarly 

demonstrated the influence of an increased road gradient on cycling performance (37-39, 

153, 154). However, little is known about the influence of road gradient from actual 

professional road cycling races other than Padilla et al. (12) who discussed the demands of 

grand tour ascents of differing length and gradient. The authors concluded that mountain 

passes were highly demanding and that a cyclist’s intensity was not only related to the 

difficulty of accent but also their position within a stage. During uphill cycling the task 

demands change with a lower speed and freely chosen cadences (155). Under those 

circumstances, more time is put through the pedal with the most difference occurring 

between 45° and 135° of the crank torque profile during maximal aerobic power (156). 

With a decrease in performance capabilities at altitude and on increased road gradients, 

greater attention to detail in the performance analysis of these stages is warranted given 

these stages have a high correlation with the overall success of a professional road cycling 

team. 
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In conclusion, there are three main stage types: flat, semi-mountainous and mountainous. 

The definition of each of these stage types is based on their individual topography 

(excluding time trial). Before each race, riders should be aware of the stage dynamics and 

where and when to expect difficult sections.  

2.3.3 Rider specialities  

Each of the UCI (Union Cycliste Internationale) professional cycling teams comprises of 

approximately 24 riders (1). Given the complexity of professional road cycling, athletes are 

often categorised into separate speciality groups, depending upon their specific strengths, 

physiology and role within a team. The classification of these groups has varied within the 

literature. Padilla et al. (157) described the classifications as uphill riders, flat terrain riders, 

all terrain riders, time trial specialists and sprinters. Other studies have described rider 

specialities in terms of their skill (26) or role (15) within the team. These groups typically 

include the general classification rider (or team leader), domestiques (or team helper (15)), 

climbers, and sprinters. Additionally, categories based upon age have appeared within the 

literature and include masters (Over 35) (158), amateurs (Under 23) (43, 159) and juniors 

(Under 19) (160). This section introduces the current literature examining general 

classification, domestiques, climbers and sprinters.  

The general classification rider is a cyclist who specialises in multi-day stage or grand tour 

events. The most important objective for this rider is to be placed as high as possible in the 

general classification. To do this, the rider must have the lowest time over multiple days. 

Within any one team there are a limited number of general classification riders, with teams 

usually starting a multi-day tours with a single cyclist as the general classification rider. 

The physiological characteristic of general classification riders have been reported as an 

extremely high aerobic capacity (V̇O2max > 85 mL∙kg-1·min-1 (44), peak power output at the 
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end of aerobic test > 525 (161) and 572 W (130), and gross efficiency of > 23% (161)). To 

the author’s knowledge, only one published case study has described the workloads of a 

general classification rider who reported an increase in weekly total duration (from 10.1 h 

to 18.1 h) and training load (from 3061 arbitrary unit (AU) to 5608 AU) during a six year 

period. While other data do exist on a general classification rider (162), these data were 

collected during a period of doping and are, therefore, questionable (163). The limited 

research on general classification riders is likely due to the reluctance of professional road 

cycling teams to publish power output data and the very small population of these riders. 

Therefore, more research is required into the physiological characteristics and workloads 

of these general classification riders.  

It is the role of the domestiques to protect the general classification rider as much as 

possible from any additional workload, ensuring that the general classification rider is still 

in good condition towards the end of each stage. No known study has examined the specific 

physiological characteristics or workloads of domestiques riders. While Vogt et al. (15) do 

mention a ‘team helper’ and climber categories, no analysis was conducted between each. 

Future research is warranted into the characteristics and workload demands on the 

domestique riders in this role. 

Climbers are cyclists who perform well during mountainous stages. They excel on specific 

topography type and single stages rather than a total multi-stage race win. Climbers will 

contest for a stage victory in the mountains and attack when the gradient increases. 

Professional male climbers have a lower body mass (~ 62 ± 4 kg) compared with flat (~ 76 

± 3 kg) and all-terrain (~ 68 ± 3 kg) riders (1). Despite lower absolute peak aerobic power 

in climbers (404 ± 34 W) compared with flat (461 ± 39 W) an all-terrain (432 ± 27 W) 

riders, a lower body mass means that climbers typically have a greater power to mass ratio 

(6.5 ± 0.3 W·kg-1) and relative V̇O2max (80.9 ± 3.9 mL∙kg-1·min-1) compared with flat (6.0 
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± 0.3 W·kg-1, 74.4 ± 3.0 mL∙kg-1·min-1) and all-terrain (6.4 ± 0.2 W·kg-1, 78.9 ± 1.9 mL∙kg-

1·min-1) riders (1). Overall, it has been suggested that the minimum workload requirements 

for successful professional male climbers are a power to mass ratio of greater than 6 W·kg-

1 held for at least 40 min (56, 157).  

Sprinters will contest for stage victory and will only attack in the very final stages of a race. 

Sprinters are protected by fellow teammates leading into the finish which is necessary for 

a successful sprint performance (164). The physiological demands of under 23 (164) and 

professional (165) male road sprint cyclists during and leading into the sprint has been well 

defined. During the final sprint, professional male sprint cyclists have, at sprint peak, 

demonstrated absolute power output values of 1248 W and relative power output values of 

17.4 W·kg-1, cadence of 114 rpm, and peak speeds of 66 km·h-1 (165). This final maximal 

sprint is influenced by pedal rate, muscle size, fibre type and how fatigued the rider is 

leading into the sprint (166). The whole duration of the final sprint demonstrated absolute 

power values of 1020 W and relative values 14.2 W·kg-1, cadence of 110 rpm and peak 

speeds of 63.9 km·kg-1 (165).  

Menaspà et al. (144, 159, 165, 167) have extensively examined the external workload 

demands leading into the final sprint. These authors found that average power output 

increased by 10, 5 and 1 min leading into the sprint (332 ± 23, 376 ± 28 and 450 ± 40 W, 

respectively). It is plausible that the set average time periods have caused these results. A 

more statistical time series based approach would be more applicable where the researcher 

does not dictate the length of each time period (168). This would not only be useful during 

a final sprint but also throughout a stage. While the sprint is an extremely important aspect 

of many races, little information is available regarding other maximal efforts which may 

be observed during professional cycling events.  
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In conclusion, several different rider specialities exist resulting in a variety of different roles 

within a professional cycling team. There is a substantial lack of understanding on how the 

workload demands differ between the roles (14). Future research should begin to 

investigate the different workload demands between rider specialities.   
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2.4 Methods to Analyse Power Output in Professional Road Cycling  

While numerous external variables can be measured, power output measured using a power 

meter provides the most useful information in quantifying external workload from 

professional road cyclists (30). This section introduces existing methods used to analyse 

power output including data reduction and power-duration curves as well as suggesting a 

new time series based method entitled ‘changepoint’ analysis.    

2.4.1 Data reduction methods 

Data from a single ride can result in a significant amount of data points provided by a 

number of different variables (i.e. altitude, gradient, cadence, power output, speed, heart 

rate and temperature). Previous research using professional road cyclists have reduced large 

scale heart rate, cadence, distance and speed data sets into training/race ‘bins’ or ‘zones’, 

using histograms for graphical analysis (12-14, 101, 102). This section describes the 

research into training or racing power output zones in professional road cyclists and 

procedures in which these zones have been developed.   

2.4.2 Time in training zones (power binning) 

Power output distribution can be described within a single stage, multi-stage, within-season 

and between seasons using time spent in designated data bins or zones. Data bins are 

generated using percentage total time spent within a power band. Ebert et al. (10) used four 

power (0-100 W, 100-300 W, 300-500 W and > 500 W) and power/mass (0-2 W·kg-1, 2-5 

W·kg-1, 5-8 W·kg-1 and >8 W·kg-1) bins when analysing an elite men’s multi-stage race 

and again four power bins (0-1.9 W·kg-1, 2.0-4.9 W·kg-1, 5.0-7.9 W·kg-1 and >8.0 W·kg-1) 

when analysing women’s World Cup road cycling events (9). Using relative power bands 

provides a better comparison when comparing demands as a rider’s body mass has been 
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demonstrated to be different between riders of differing speciality  (1, 23, 41-43). In the 

literature, an alternative to power output bins is to use functional threshold power (FTP). 

Functional threshold power is the maximum average power a cyclist can hold for one hour 

and can be measured in the field using a validated 20 min test (169). In a longitudinal study 

of power output in elite cyclists (170), time in exercise intensity zones was related to FTP 

bins (< 50%FTP, 50-70%FTP, 71-85%FTP, 86-105%FTP, 106-125%FTP,126-170%FTP 

& > 170%FTP). Ultimately, the objective of data bins is to break down large stochastic 

data sets and to simplify complex data. Although power binning large data sets, variations 

in the power output are lost in analysis and may lose important characteristics such as an 

attack or breakaway. Also, power zones for each rider are individualised (i.e. each rider has 

their own physiological characteristics). Therefore, intra-subject variability should be 

considered when analysing multiple riders, however, this is difficult as analysis is based 

upon physiological limitations. This requires laboratory testing for each cyclist which is 

difficult, expensive and time consuming.   

2.4.3 Exposure variation analysis  

Exposure variation analysis is a more detailed way of analysing binned data which 

described not only the distribution of power output bands but also the acute time spent in 

each time band. Exposure variation analysis first used by Mathiassen & Winkel (171) is 

designed to reduce the activity of a stochastic dataset and has now been applied to some 

stochastic models in cycling (137, 138, 165, 172). Results using exposure variation analysis 

have been reported using cycling power output data in two studies (8, 172) and pacing 

strategy in a single triathlon study (173). During different cycling events, Abbiss et al. (8) 

found meaningful variations in the results of each event. The authors concluded that the 

analysis might be a useful tool for quantifying changes in the amplitude and time 

distribution of power output. Thereafter, Peiffer & Abbiss (138) and Menaspá et al. (165) 
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used exposure variation analysis to investigate power output distribution in different 

environmental conditions and in professional road cycling sprint demands respectively. 

The limitation with exposure variation analysis is that it requires the analyser to select the 

scale of amplitude and time bins, similar to power band distribution. Consequently, 

Passfield et al. (172) used a data-reduction method named Shannon’s entropy to reduce the 

subjectivity of data binning choices when using exposure variation analysis. Subsequently, 

data binning choices available to the experimenter increases the room for error in data 

interpretation. For example, one investigator may use five data binning choices whereas 

another may use ten. This makes it difficult to compare results and if inconsistent over time 

will result in comparison error. There is also little research about transferring exposure 

variation analysis output into clear practical feedback for training interventions. Realising 

the gap in the literature, more research is needed into the practical use of exposure variation 

analysis.  

2.4.4 Power-Duration curves  

Much of this research described has simply been characterising the time spent within 

various workload intensities or the average power output/heart rate zones during different 

stages of a race. While these analyses can provide the percentage time in exercise intensity 

zones they do not give any indication of time at maximal capacities. Within the literature, 

CP and MMP are two popular power-duration analyses which aim to quantify the maximal 

capacities of professional road cyclists. This section describes these two methods and how 

they can be used to analyse power output.  

2.4.5 Critical power model  

In 1925, A.V Hill (174) first noted the curvilinear relationship between work rate and 

performance time. It was not until the 1960’s that Monod & Scherrer (175) during lifting 
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exercise, developed a mathematical formula for the curvilinear relationship originally 

observed by Hill. The model, defined as CP was extended during the 1980’s (176, 177) 

using whole body exercise with humans exercising to exhaustion at different work rates. 

The concept is now very popular in modelling across a range of endurance performance 

disciplines. A simple two-parameter model, CP is defined as the hyperbolic relationship 

between power (P) and time (t), mathematically represented where CP is critical power and 

AWC is anaerobic capacity. 

(𝑃 − 𝐶𝑃)𝑡 = 𝐴𝑊𝐶 

Practically, the CP model provides an easy to use mathematical model in analysing power 

data, in doing so, quantifying specific physiological zones, but the CP model does come 

with several inaccuracies and assumptions (178). The CP model assumes that there are 

three energy producing pathways including high-energy compounds, glycolysis and 

oxidative phosphorylation. The model also assumes that power output declines below the 

CP given enough time. However, this time varies between 2 and 30 min but, can last up to 

60 min certain individuals (179). Furthermore, there is a finite limit in W’ depending on 

maximum power and exhaustion can occur even though W’ is not completely depleted 

(180). Moreover, the two-parameter CP model tends to overestimate the CP and AWC. 

Therefore, modifications to the CP model have been developed into a three-parameter 

model (181) to address these limitations, mathematically represented where k is asymptote 

and assumes a negative value. 

𝑡 =  
𝐴𝑊𝐶

(𝑃 − 𝐶𝑃)
+ 𝑘, (𝑘 < 0) 

Cycling power output is stochastic and highly intermittent in nature with previously 

described CP models failing to take this fluctuation into account. CP was first applied to 
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intermittent exercise by Morton and Billat (182) in runners and implemented to intermittent 

cycling exercise by Chidnok et al. (183). The intermittent CP model proposed by Morton 

and Billat (182) is mathematically represented where t is the total time, Pw and Pt are equal 

to the work and rest interval power, and Tw and Tr are equal to work and rest interval time.  

𝑡 = 𝑛(𝑡𝑤 + 𝑡𝑟) + 𝑊′ − 𝑛[𝑃𝑤 − 𝐶𝑃)𝑡𝑤 − (𝐶𝑃 − 𝑃𝑟)𝑡𝑟]/(𝑃𝑤 − 𝐶𝑃) 

CP is an important fatigue threshold in exercise physiology (28, 29). The hyperbolic power-

duration curve can be broken down and defined as severe, heavy and moderate exercise 

based upon exercise intensity (29). The point of CP defines the boundary between heavy 

and severe exercise intensity domains. Exercise below CP can be maintained whereas 

exercise above CP results in an exponential rise in oxygen uptake leading to exhaustion 

(28). Theoretically, CP represents a power output which can be maintained using aerobic 

metabolism and has been shown to be related to cycling time trial performance (184). 

In professional road cycling, exercise physiologists can use CP to prescribe and analyse 

exercise performance. To do this, an accurate measurement of CP is required. Traditionally, 

CP can be measured using multiple exhaustive bouts of exercise on separate days (185), 

however, recent studies have proposed a single 3 min all-out test (32) and field-based tests 

(33, 34). Using an all-out 3 min test in the laboratory, Vanhatalo et al. (32) suggested that 

the final 30 s power output represents CP and can be used to track training-induced 

alterations (31). Alternatively, the retrospective analysis of professional road cycling power 

meter data can be analysed to obtain a CP estimation. Karsten et al. (34) reported a high 

reliability and validity in estimated CP using 12, 7 and 3 min MMP values. While these 

options provide a retrospective analysis, our understanding of how accurate these models 

are is limited. Indeed, both Triska et al. (186) observed a 34% decrease when determining 

CP in the field (road cycling) and Dekerle et al. (187) observed a 14% decrease in CP when 



 

 

48 

 

cycling at altitude. In that case, an acknowledgement in the variation of retrospective 

analysis in power output from alternative altitudes is required. Failure to not adjust CP 

measurement would result in a high level of error to prescribed exercise and post-exercise 

performance analysis.  

2.4.6 W’ balance model (W’bal) 

In establishing the CP curve, exercise completed above the curve is termed anaerobic work 

capacity (AWC). Exercise above CP expands AWC whereas below reconstructed AWC 

(45, 183, 188-190). Chidnock et al. (183) found that exercise tolerance is improved during 

recovery intervals in proportion to the restoration of finite AWC, if exercise is performed 

below CP. The restoration of finite AWC is directly related to the intensity and duration of 

the recovery interval. The mechanisms determining AWC remain uncertain, however, in 

healthy populations, it has been proposed that AWC is associated with intramuscular 

energy store depletion (191-194) and metabolite accumulation (190, 191, 195, 196). As a 

result, alterations in the breadth of the server domain (197, 198), the volume of oxygen 

uptake slow component kinetics (199) and the development of fatigue (198) all occur.   

Integrating the mechanisms of CP and AWC, Skiba et al. (200) recently proposed a 

simplified dynamic model for the real-time monitoring of intermittent exercise using the 

discharge and recharge of AWC kinetics during intermittent exercise as observed by 

Chidnock et al. (183). The equation by Skiba et al. (200) for AWC remaining at any given 

time during an exercise session is mathematically represented as W’bal where AWC equals 

the subject’s know AWC as calculated using a two-parameter CP model, W’exp is equal to 

expanded AWC,(t – u) is equal to the time in seconds between segments of exercise session 

that result in depletion of AWC and tw’, is the time constant of the reconstitution of the W’.   

𝑊′𝑏𝑎𝑙 = 𝐴𝑊𝐶 − ∫ (𝑊′𝑒𝑥𝑝)(𝑒−(𝑡−𝑢)/𝑡𝑤′
𝑡

0
) 
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The W’bal model proposed by Skiba et al. (200) is of highly practical significance for the 

retrospective analysis of power output and has been validated in the field (201) in well-

trained triathletes. The model has also recently remained valid during hypoxic conditions 

(202). No difference in W’bal balance estimates was observed between normoxic and 

hypoxic conditions. However, a correction factor for CP will need to be considered for 

successful W’bal balance. Otherwise, W’bal can be under or overestimated depending on 

condition. Indeed, Valli et al. (203) recently demonstrated a 45% reduction in AWC at high 

altitude (5050 m, FIO2 ~ 0.11) compared with sea level cycling exercise. Future work is 

required to determine the practical application of W’bal in professional road cyclists training 

and racing. 

2.4.7 Maximal mean and record power curves  

To better understand the physiological requirement of professional road cycling events, 

researchers, coaches and sports scientists have recently begun to quantify the acute time 

spent over a set duration using a hyperbolic power curve analysis called the maximal mean 

power (MMP) curve. The MMP is based upon the power-duration relationship introduced 

in section 2.4.5. The field-based method determines the hyperbolic relationship between 

work capacity and time. Therefore, MMP may be able to provide an indication on the 

physiological capacities (i.e. CP) of professional road cyclists in the field. Quod et al. (27) 

have shown that a cyclist’s MMP curve produced over a range of durations (5, 15, 30, 60, 

240 and 600 s) within the laboratory, accurately reflects their maximal capacity and MMP 

curve from analysis of competition data. This study shows that data in the field might be 

beneficial in quantifying maximal power producing capabilities of athletes.  

Determining the MMP curve of cyclists over various periods of time allows for better 

quantification of the physiological demands during professional road cycling. Pinot and 
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Grappe (26) performed an investigation into monitoring the MMP curve (1, 5, 30, 60s, 5, 

10, 20, 30, 45, 60, 120, 180 and 240 min) over a 10 month period in seventeen male road 

cyclists (9 professional and 8 elite). The authors demonstrated a hyperbolic relationship 

between recorded power output and the time durations from a MMP curve. The authors 

also noted that alternative rider specialities showed specific changes to the MMP curve 

although participant numbers were low (sprinters n = 5, climbers n = 7 and flat n = 5). 

Specifically, power output was greatest in sprinters in between 1-5 s (20.2 W·kg-1) whereas, 

climbers presented their highest recorded power output between 30 s and 60 min (6.8 W·kg-

1). Climbers and time trial specialists also presented high power outputs in zone 1 (1 to 4 

hrs of moderate intensity) between 120 and 240 min (4.1 and 4.0 W·kg-1 respectively). 

These results suggest the MMP curve could be a useful external load monitoring tool 

showing physiological changes over time (25) yet, there are few studies which have 

examined this in professional male road cyclists.  

Continuous analysis of MMP curves has been recorded during a professional road cycling 

competitive season (25). The highest power values recorded during the season were 

described as a record power profile. While Pinot and Grappe uses ‘record power profile’ 

(204), the term ‘maximal mean power’ (MMP) will be used throughout this thesis for the 

same value. Recently, the MMP curve was used as a power tool for the assessment of 

longitudinal performance in a single professional male road cyclist who has twice finished 

in the top ten of a grand tour event (44). The study monitored the cyclist over a six-year 

period between the ages of 18 and 23 y. The authors concluded that MMP was able to 

illuminate the cyclist’s maturation for physical potential as a top 10 grand tour cyclist.  The 

study highlights the use of the MMP and the development of MMP for longitudinal 

monitoring of power data rather than bulk training bands. For example, figure 2.2 

demonstrates two MMP curves, pre-competitive and during the competitive season. The 



 

 

51 

 

curve demonstrates adjustment depending on what time of the season it is recorded. 

Unfortunately, few studies have been carried out on monitoring the MMP curve in 

professional male road cyclists and, therefore, needs to be addressed. 

 

Figure 2.2: An example of expected change in a cyclist’s MMP curve between pre-

competitive and competitive periods.  

MMP may be beneficial for talent identification and monitoring training and racing 

adaptations, performance, and fatigue in professional cyclists. This being said, only a few 

studies have examined how various external factors (i.e. topography, rider speciality, or 

race dynamics) may influence MMP (15, 25). For example, Quod et al. (27) calculated 

MMP from multiple races (n = 10) of varying duration (1 to 10 days), distance, (80 to 180 

km), topography (flat, rolling or mountainous) and race format (criterium, circuit and point-

to-point races). Therefore, it is not clear if MMP differs when calculated for different 

factors.  

In conclusion, direct power output provides a reliable measurement of external workload. 

While direct power output figures from professional male road cyclists have been 
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published, future research is warranted into the effect of varying the external workload on 

the MMP curve. More research is also required into the within-season variation of the MMP 

curve. Also, research into the season to season variation is required to confirm the MMP 

method as a valid way to assess external workload over time.  

2.4.8 Time series data (changepoint)  

Power output is a sequence of multiple data points over a chronological period and can be 

described as time series data. Current methods of analysing power output over time are 

limited in locating trends within the single and multiple data files. The ability to pinpoint 

certain segments of time where power output is increased or decreased between a mean 

could be a valuable way to assess power output data without using a reduction method. 

Within a time series or sequence set of data, the ability to locate multiple statistical changes 

can be achieved using changepoint analysis (168). Sports scientists and cycling coaches 

can determine how detailed they required analysis to be using either single or multiple 

changepoints. Unlike time in training zones or mathematical models, changepoint provides 

a fast an easy method in reducing the stochastic nature of a single stage.  

In this example (Figure 2.3), a single stage has been analysed. However, changepoint has 

implications for the analyses of periodic longitudinal data. To date, no study has 

investigated the use of changepoint analysis in sports science and more specifically, cycling 

power output. Future research is warranted on the practical application of this analysis and 

its integration into cycling power output data analysis.  
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Figure 2.3: An example of segments from a changepoint analysis in a single professional 

road cyclist’s power output over 600 s.  
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2.5 Summary and Conclusions 

Professional road cycling can be categorised into several subsections including competition 

types (section 2.3.1), topography categories (section 2.3.2) and rider specialities (section 

2.3.3). Our understanding on quantifying the influence of competition types, topography 

categories and rider specialities (Table 2.1) from endurance cycling performance in 

professional male road cyclists is currently limited.  In this literature review, there appears 

to be no shortage of methods in which cycling power output data can be analysed (section 

2.4). However, there appears to be a gap (e.g. first black box) in our understanding of how 

external factors such as topography and road gradient or rider speciality influence the 

performance analysis (Figure 2.4). It is, therefore, essential that existing methods are tested 

using these external factors and new techniques are developed if appropriate (e.g. second 

black box). 

  

 

Figure 2.4: A schematic on the gap between different external factors and performance 

analysis techniques covered in this literature review.    



 

 

55 

 

3 CHAPTER THREE 

EXAMINING THE DISTRIBUTION OF MAXIMAL POWER OUTPUT 

EFFORTS AND THE USE OF CHANGEPOINT ANALYSIS IN PROFESSIONAL 

ROAD CYCLISTS  
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3.1 Abstract  

Introduction: Power output during road cycling is stochastic with multiple maximal efforts 

occurring throughout a stage race. Purpose: The purpose of this study was to calculate the 

frequency distribution of maximal power output (POpeak) values during road cycling events 

over different topography categories and analyse the power output 600 s prior to POpeak 

using a new time series analysis. Methods: Fifty-seven stages from seven professional male 

road cyclists were analysed. Power output was recorded using SRM power meters. Stages 

were classified as either flat (n = 37), semi-mountainous (n = 8) or mountainous (n = 12) 

based upon total uphill riding time and the total elevation gain. POpeak was determined as 

the highest single absolute power output value recorded for each stage. The frequency 

distribution of POpeak values was calculated into five percentage of race time bands (0-20, 

20-40, 40-60, 60-80 and 80-100% of race time). The 600 s prior to POpeak was analysed 

using a time series based analysis: changepoint. Changepoint estimated the four largest 

statistical changes in power output to find four distinct segments. Power output and time 

were compared between segments. Results: A greater frequency of POpeak values (54%) 

occurred during flat stages in the final 80 to 100% of race time compared with the previous 

0 to 80% race time. Power output was lower (P <0.05) in segment four compared with 

POpeak in all topography categories (flat: 235 vs. 823 W, semi-mountainous: 157 vs. 886 W 

and mountainous: 171 vs. 656 W). Conclusion: POpeak values were alternatively distributed 

depending on the topography category. Changepoint demonstrated its ability to reduce 

stochastic data while maintaining meaningful information.    

Keywords: Time-Series, Stochastic, Topography, Performance Analysis.  



 

 

57 

 

3.2 Introduction   

During professional road cycling races, riders conduct periods of maximal exercise. These 

are so-called ‘matches’ or ‘peak efforts’ (POpeak) and place a high metabolic demand on the 

rider, often within a short period of time resulting in a sustained reduction in anaerobic 

energy sources. Prior to establishing a breakaway, Abbiss et al. (74) demonstrated that 

numerous short-duration (~ 5-15 s), high-intensity (~ 9.5-14 W·kg-1) efforts are produced. 

It is likely that the distribution of such efforts is heavily influenced by serval factors 

including topography, gradient, wind or race dynamics.  

These POpeak efforts increase the stochastic nature of power output and the complexity of 

analysing such data. Several studies have attempted to describe (8, 205) or replicate (167, 

206) the stochastic nature of cycling. Tucker et al. (205) found continuous oscillations in 

power output during a 20 km self-paced time trial. While Abbiss et al. (8) used exposure 

variation analysis in illustrating variations in power output during five- and single-day 

professional road cycling events. Studies which have tried to replicate the stochastic nature 

in the laboratory have used efforts interspersed constantly throughout a trial. To replicate, 

Schabort et al. (206) used five 1 km efforts (10, 32, 52, 72 and 99 km) and five 4 km efforts 

(20, 40, 60 and 80 km) during a 100 km time trial. In shorter efforts, Menaspà et al. (167) 

replicated stochastic power output using a variable and a non-variable condition for 600 s 

prior to a maximal sprint.   

Changepoint analysis is an analytical method developed to analyse time series data. Briefly, 

changepoint estimates the point at which the statistical properties of a sequence observe 

change. These points are split into segments for further analysis. To the author’s 

knowledge, changepoint method has not been used within the discipline of sport and 

exercise sciences. However, recent examples in other disciplines include its use in 
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oceanography (207) to quantify wave height during storm events across the Gulf of Mexico 

between 1900 to 2005 and in medical imaging (208) to detect changes in brain blood flow 

using functional magnetic resistance imaging. An advantage of changepoint is that the 

resulting output detects changes in the stochastic data which are not necessarily easy to 

detect by an experimenter. For example, in cycling exercise Menaspà et al. (159) analysed 

power output for 600 s prior to a sprint effort. The experimenters selected to analyse 

average power output segments of 600 s, 300 s and 60 s prior to sprint performance. 

Changepoint analysis may provide a more accurate alternative to arbitrarily selecting 

segments. It is, therefore, possible that analysing the changepoint segments from power 

output data in cycling exercise may provide a more accurate measurement.  

Knowledge of where these POpeak efforts occur during a stage race and the exercise intensity 

prior to that point will aid in our understanding of the race dynamics of professional road 

cycling. The primary purpose of this study was to describe the frequency distribution of 

POpeak values from different stage topography categories (flat, semi-mountainous and 

mountainous). We hypothesised that a higher frequency of POpeak values would occur 

during the final section (> 80% of total race duration) of flat stage races as exercise intensity 

increases towards the finish. It was also hypothesised that in semi-mountainous and 

mountainous stages, the frequency of POpeak values will be more evenly distributed across 

the stage races as few sprint finishes are produced. The secondary aim of this study was to 

use a novel changepoint method to analyse the distribution in power output 600 s prior to 

POpeak efforts from different stage topography categories (flat, semi-mountainous and 

mountainous). We hypothesised that power output 600 s prior to POpeak will progressively 

increase during flat compared to semi-mountainous and mountainous stages due to the 

demands of a final sprint towards the finish. A more even distribution will be observed in 

power output prior to POpeak in semi-mountainous and mountainous stages.   
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3.3 Methods   

3.3.1 Participants 

Seven professional male road cyclists (mean ± SD: age 29.5 ± 2.8 y, mass 69.7 ± 5.5 kg, 

height 182 ± 5 cm) participated in this study and were all members of a single professional 

cycling team. The cyclists were classified as level 5 based on the study of De Pauw et al. 

(209). All participants gave their written informed consent. The study was approved by the 

Edith Cowan University Human Ethics Research Committee. 

3.3.2 Data collection and analysis 

In total, fifty-seven stages from multi-stage road races in four professional road cycling 

tours between 2011 and 2013 (Volta ao Algarve 2011 (n = 10 stages), Internationale 

Osterreich Rundfahrt 2011 (n = 19 stages), Tour de Belgique 2012 (n = 8 stages) and 

Criterium du Dauphine 2013 (n = 20 stages)) ranging from 4 to 7 days were analysed. 

Three riders were analysed in each event, therefore, not all seven professional road cyclists 

competed in the same events. Multi-stage road races were broken down into stage type for 

comparative analysis based upon the stage topography (flat n = 37, semi-mountainous n = 

8, mountainous n = 12). Stage topography was classified using previously published 

research (102) as well as updating the classification criteria using the total elevation gain 

(TEG) provided by the power meter during each stage. TEG is calculated from a barometric 

altimeter. The SRM power meter has been demonstrated to provide accurate and reliable 

measurement of TEG (210), however, weather conditions causing a reduction in barometric 

pressure may reduce accuracy (211). Specifically, flat stages were classified stages with a 

total uphill riding distance of less than 13 km and TEG of less than 800 m. Semi-

mountainous stages were classified stages with a total uphill riding distance between 13 
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and 35 km and a TEG between 800 and 2000 m. Mountainous stages were classified as a 

total uphill riding distance of more than 35 km and a TEG of more than 2000 m.  

Power output and altitude were recorded using SRM (SRM Trainingsystems, Schoberer 

Rad Messtechink, Julich, Germany) power meters mounted on the participant’s bikes 

during each stage. The validity and reliability of the SRM devices have been previously 

reported (45, 51). All power meters were statically calibrated at the beginning of each 

season and re-calibrated if battery replacement occurred during each season. The SRM 

PowerControl was set to perform the zero-offset for every race automatically. Race files 

were uploaded to a computer. Race data was then stored and analysed using Golden 

Cheetah (v.3.1.0) and Microsoft Excel 2012 (Microsoft, USA). Power values were recorded 

at a frequency of 1Hz. The single highest power output value recorded from each stage race 

was classified as the stage’s POpeak value.  

3.3.3 Changepoint detection  

Power output 600 s prior to stage POpeak was modelled using a software package entitled 

‘changepoint’ (168) with function ‘cpt.mean’ in the R statistical programme (212). All 

models were instructed to estimate the ‘four’ greatest statistical changes within the 600 s 

before POpeak. Specifically, penalty (statistical change) was based upon AIC (Akaike 

Information Criteria) at a penalty value of 0.05 (α = 0.05). The “BinSeg” method was 

adopted were by the maximum number of segments were searched for (Q = 4).  In this case, 

the maximum number of segments was 4 (+1). The most common approach in the literature 

(168, 213) which identifies multiple changepoints was used: 

∑ [𝐶(𝑦(𝑡𝑖−1 + 1): 𝑡𝑖)]

𝑚+1

𝑖=0

+ 𝛽𝑓(𝑚) 
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where 𝐶 is the cost function of each segment, 𝛽𝑓 is the penalty guard against overfitting, 𝑦 

is the ordered sequence of data, 𝑡 is he position of changepoints and 𝑚 is the number of 

changepoints.   

3.3.4 Statistical analysis 

The frequency distribution of POpeak values were calculated using the R statistical 

programme (212). The number of times POpeak values occurred was calculated on the 

frequency distribution between 0 to 20, 20 to 40, 40 to 60, 60 to 80 and 80 to 100% of total 

stage time. Frequencies were compared as a percentage of raw POpeak values. For each 

changepoint segment, power output and time were compared between corresponding 

segments left-to-right (1 - 2, 2 - 3, 3 - 4 and 4 - POpeak) in each topography category using 

a one-way repeated measure ANOVA. Where significant effect was observed, Bonferroni’s 

multiple comparisons post-hoc test was applied. The 95% confidence intervals [95% CI] 

were also calculated for the power output and time of each segment. Segment values were 

extracted using ‘summary’ and ‘coef’ functions after changepoint analysis (168). For all 

variables, statistical significance was accepted at P <0.05.   
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3.4 Results  

The percentage of frequency distributions between topography categories are shown in 

figure 3.1. Greater frequency of POpeak values (54%) occurred during flat stages in the final 

80 to 100% of race time compared with previous 0 to 80% race time (Figure 3.1). Figure 

3.2 demonstrates an example of changepoint analysis for each topography category. Power 

output and time length for each changepoint segment is presented in table 3.1. Power output 

was lower (P<0.05) in segment four compared with POpeak in all topography categories 

(Table 3.1).   

 

 

Figure 3.1: The percentage frequency distribution of POpeak occurrences during flat (A, n 

= 37), semi-mountainous (B, n = 8) and mountainous (C, n =12) stages.  
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Figure 3.2: An example of the stochastic distribution of absolute power output before 

POpeak using changepoint analysis across flat (A), semi-mountainous (B) and mountainous 

(C) stages in a single professional male road cyclist.
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Table 3.1: Power output and length of time for each changepoint segment in topography categories (mean ± SD) [95% CI].  

Topography Categories Power Output and Time Segment One Segment Two Segment Three Segment Four POpeak  

Flat 

n = 37 

Power Output (W) 

272 ± 125  

[230, 315] 

316 ± 236  

[236, 396] 

369 ± 173* 

[310, 427] 

235 ± 179*** 

[175, 296] 

823 ± 213  

[751, 895] 

Time (s) 

228 ± 153* 

[176, 280] 

109 ± 125  

[66, 151] 

111± 113 

[73, 150] 

121 ± 131** 

[77, 166] 

29 ± 70  

[5, 53] 

Semi-Mountainous 

n = 8 

Power Output (W) 

319 ± 185  

[164, 474] 

186 ± 83* 

[116, 256] 

512 ± 205* 

[340, 683] 

157 ± 123*** 

[54, 260] 

886 ± 51  

[843, 928] 

Time (s) 

212 ± 152  

[85, 339] 

199 ± 171  

[55, 342] 

63 ± 83 

[6, 133] 

120 ± 93* 

[39, 201] 

4 ± 2  

[2, 5] 

Mountainous 

n =12 

Power Output (W) 

220 ± 117  

[145, 295] 

184 ± 153  

[86, 281] 

404 ± 229 

[259, 552] 

171 ± 119*** 

[95, 247] 

656 ± 125  

[577, 736] 

Time (s) 

240 ± 173  

[130, 350] 

191 ± 141  

[101, 281] 

77 ± 109 

[8, 147] 

76 ± 55* 

[41, 111] 

14 ± 19  

[1, 28] 

* P <0.05, **P <0.01, ***P <0.001; significant difference from left-to-right.
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3.5 Discussion  

The primary purpose of this study was to describe the frequency distribution of POpeak 

values from different stage topography categories (flat, semi-mountainous and 

mountainous) in professional road cyclists. In line with our hypothesis, a higher frequency 

of POpeak values (54%) occurred during flat stages in the final 80 to 100% of race time 

compared with the previous 0 to 80% of race time (46%) (Figure 3.1). Furthermore, the 

frequency of POpeak values from semi-mountainous and mountainous stages were 

comparatively more evenly distributed compared with flat stages. The secondary purpose 

of this study was to analyse the power output 600 s prior to POpeak values using a novel 

changepoint method across different stage topography categories (flat, semi-mountainous 

and mountainous). In flat stages, while power output increased from segment one to two, a 

decrease was observed from segment three to four (Table 3.1). Furthermore, contrary to 

our hypothesis, power output did not linearly increase in semi-mountainous and 

mountainous stages prior to POpeak. Power output was significantly greater in flat and semi-

mountainous topography categories from segment three to segment four.   

The frequency distribution of POpeak values from different stage topography categories are 

shown in figure 3.1. To the author’s knowledge, this is the first time in which the frequency 

distribution of POpeak values have been described in professional road cyclists. 

Interestingly, figure 3.1 demonstrates that POpeak values are more likely to occur in the first 

or final 20% of a flat road race. Semi-mountainous stages demonstrated that 75% of POpeak 

values occur between 0 to 60% of race time whereas 50% of POpeak values during 

mountainous stages occur between 60 to 100% of race time. Typically, high-intensity 

efforts are performed early in an attempt to separate from a group of cyclists or late when 

few cyclists remain in the group (74). As well as multiple high-intensity efforts, Abbiss et 

al. (74) demonstrated a short period (~ 30 - 60 s) of low power output (100 - 300 W) prior 
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to a breakaway or attack. A similar finding was observed in our study with power output in 

both flat and semi-mountainous stages significantly decreasing from segment three 

compared with segment four. However, the time spent in a low power output in segment 

four was twice as long (~ 120 s) in flat and semi-mountainous stages compared with 

mountainous stages (76 s) similar to Abbiss et al. (74) (~ 30 - 60 s) description. It is 

plausible that the reduced length of time in low power output is due to the characteristics 

of mountainous stages. Mountainous stages require longer periods of constant power output 

due to uphill cycling compared with flat stages (12, 13). It is plausible that POpeak efforts 

are occurring during periods of sustained effort. Therefore, lower periods of time at a low-

intensity power output is unsurprising.  

In the present study, power output was analysed using a novel method called ‘changepoint’, 

demonstrated in figure 3.2. The analysis was able to highlight where the greatest changes 

in power output occur more easily than a visual estimation from a coach or exercise 

physiologist. It was hypothesised that power output would increase prior to POpeak during 

flat stages. Indeed, power output increased between segment one and two (272 vs. 316 W). 

However, a significant decrease in power output was observed between segment three and 

four (369 vs. 235 W). This decrease could be due to participants’ knowledge of their 

requirements to soon conduct a maximal effort. Interesting, a decrease between segment 

three and four was also observed in semi-mountainous and mountainous stages (521 vs. 

157 and 404 vs. 171 W respectively).  This finding is contrary to the study by Menaspà et 

al. (159) who observed an increase in power output prior to POpeak. However, data within 

this present study was from the entire stage whereas in Menaspà et al. (159) was directly 

before final stage sprints. This is important as cyclists have knowledge that the final stage 

sprint is about to happen whereas, in the present study, cyclists may or may not have 

knowledge of the impending POpeak effort. However, as 54% of POpeak values were 
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conducted in the final 80 to 100% of flat race time, most POpeak efforts occurred during 

final sprints.  

A benefit of the analysis used in Study One was that the four largest changes in power 

output within the 600 s prior to the POpeak were statistically determined (Figure 3.2), rather 

than an aribitary selection process as conducted in previous research (159). This analysis 

provided differing increments in time thus is important in the development of ecologically 

valid road cycling simulation protocols. 

In calculating the mean power output and time of each changepoint segment for each rider, 

the stochastic nature of power was reduced. In doing so, key parts of the analysis may have 

been lost. Therefore, the use of changepoint as a tool for the analysis of time series power 

output data may be only applicable in individualised power output files as shown in figure 

3.2. Unfortunately within this study it was not possible to quantify the role of each rider. It 

is plausible that the role of each rider may influence the interpretation of the data analysed. 

In this study, three riders were analysed in each event however, their roles may have change 

from one event to another.  

3.6 Practical Application 

The ability to describe and understand power output prior to POpeak values will assist 

coaches in matching training programs. Moreover, changepoint analysis may assist in better 

understanding power output data from professional road cycling and ensure the 

development of more accurate laboratory based trials. 

3.7 Conclusion  

In conclusion, the frequency distribution of POpeak values changed in races of varying 

topography with a higher frequency occurring at the end of flat stages. Changepoint may 
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be able to provide a more detailed understanding of the variability within power output 

during cycling.   
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4 CHAPTER FOUR 

EFFECTS OF TOPOGRAPHY, ROAD GRADIENT AND RIDER SPECIALITY 

ON MAXIMAL MEAN POWER OUTPUT DURING PROFESSIONAL CYCLING  
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4.1 Abstract  

Introduction: A common method used in the performance analysis of a cyclists is the 

determination of maximal mean power (MMP). Purpose: The purpose of this study was to 

examine if MMP outputs differ across various topographies and rider specialities within 

grand tour cycling events. Methods: Power output was collected from 13 professional male 

cyclists during a total of 229 mass start stages of three grand tour cycling events between 

2011 and 2015. The MMP obtained for 5, 15, 30, 60, 300, 600, 1200, 1800, 2400 and 3600 

s were compared between stages of varying topography (flat (n = 104); semi-mountainous 

(n = 57); mountainous (n = 68)) and between riders of differing specialities (domestiques 

(n = 5); climber (n = 4); sprinter (n = 2); general classification (n = 2)). The proportion of 

race time spent in eleven power bands, ranging from less than 0.75 to greater than 7.5 W·kg-

1, was compared between categories of topography, rider speciality and road gradient (<0%, 

0 to 5% and >5%) . Results: MMP for durations longer than 1200 s were greater in semi-

mountainous and mountainous stages, when compared with flat stages (1200 s: 5.1 ± 0.2, 

5.2 ± 0.3, 4.5 ± 0.3 W·kg-1 respectively; P <0.05). Sprinters and climbers spent greater 

percentage of race time at a power output greater than 7.5 W·kg-1, when compared with 

general classification riders and domestiques (11.3, 11.4, 7.1 and 5.3%, respectively; P 

<0.05). A greater proportion of race time was spent at a power output above 3.7 W·kg-1 

when cycling at a road gradient greater than 5% (P <0.05), compared with road gradients 

0 to 5% and less than 0%. Conclusion: Topography, gradient and rider speciality influence 

the MMP values observed during grand tour races. Caution should be taken when 

comparing and interpreting MMP values between cyclists of differing speciality or when 

obtained from races of varying gradients and topographies. These results have implications 

for calculations that may rely on MMP values, such as the estimation of critical power. 

Keywords: Physical capacities, Power meter, Environment.   
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4.2 Introduction   

Cycling is a unique and demanding sport. Intensity during cycling exercise is highly 

variable and influenced by a range of factors including race format (i.e. time-trials, short 

circuit of criterium events or longer road races) (8), topography categories (i.e. flat, semi-

mountainous or mountainous) (10, 15, 36), rider specialities (i.e. climbers, sprinters or 

domesiques) (1, 26, 41-43) and race dynamics (i.e. team and individual tactics) (74). The 

demands of professional road cycling have been described using heart rate (11, 12, 56), the 

rate of perceived exertion (83) and power output (9, 10, 14, 18, 26) . Typically, these studies 

distribute raw data into intensity zones. For example, Ebert et al. (9, 10) compared 0 to 100, 

100 to 300, 300 to 500 and greater than 500 W power output intensity zones between 

differing topography categories. These zones provide a general indication of external load 

but, they do not provide an indication of maximal exercise capacities.   

Several studies have examined the MMP output produced by cyclists over given durations 

(i.e. typically 1 - 3600 s) during competition. Such data are thought to be important because 

they may provide valuable information regarding a cyclist’s capabilities. Indeed, Quod et 

al. (27) showed that a cyclist’s MMP outputs, measured over a range of durations (5, 15, 

30, 60, 240 and 600 s) in the laboratory, accurately reflect maximal aerobic capacity and 

MMP observed from the analysis of competition data. Consequently, several studies have 

used MMP obtained from professional road cyclist’s field data as a method of analysing 

performance (25-27, 44).  

Given that the MMP is the maximal power output an athlete achieves over a given duration, 

it is believed to be important in talent identification (25, 44) and monitoring performance 

(26, 27). It is, therefore, important to understand any external factors that may influence 

MMP other than the cyclist’s physical capacity. Several studies have demonstrated MMP 
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changes on differing topographies (15, 36), however, one of these was a case study of a 

single cyclist (36). To date, only one study has been published comparing MMP between 

different rider specialities (26). The authors observed sprinters recording the greatest 1 and 

5 s MMP outputs while climbers recorded the greatest  5 to 60 s MMP outputs. But, this 

study was conducted throughout the course of a season. It is common that MMP are 

analysed for weekly and monthly comparisons, therefore, an understanding of changes 

during short periods is required. Collectively, these studies indicate that MMP outputs 

could be influenced not only by the cyclists’ capacity but also the topography of the event 

and rider specialities. However, limited research has been conducted comparing MMP 

outputs within grand tour cycling events.  

It is plausible that changes in road gradient between topography categories causes an 

adjustment in the MMP outputs. Indeed, Sassi et al. (154) demonstrated that both speed and 

freely chosen cadence decrease in a linear fashion from -4% to 12% road gradient. To date, 

the distribution and the amount of time spent during professional road races in differing 

power output zones in different road gradients is unknown.  

The primary aim of this study was to examine if MMP outputs during grand tour cycling 

events differ across various topographies and rider specialities. It was hypothesised that 

MMP would increase on mountainous stages compared with flat stages. It was also 

hypothesised that sprinters would have the greatest peak MMP outputs (1 and 5 s) 

compared with all other rider specialties. Furthermore, that longer MMP outputs (~ 15 - 60 

s) would be lower in domestiques compared to all other rider specialities due to the constant 

power output required to protect other rider specialities. The secondary aim of this study 

was to determine if the percentage of race time spent in different power output bands differs 

between categories of topography, road gradient and rider speciality during a grand tour. It 
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was hypothesised that the percentage of race time in greater power outputs will be greater 

in mountainous stages, sprinters, climbers and on steeper (> 5%) road gradients.  
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4.3 Methods  

4.3.1 Participants 

Thirteen male professional cyclists (mean ± SD: age 25 ± 3 y, mass 69 ± 7.5 kg, height 178 

± 0.5 cm) participated in this study. Participants were members of two different 

professional cycling teams. All participants gave their written informed consent prior to 

data analysis. The study was approved by the Edith Cowan University Human Research 

Ethics Committee in accordance with the declaration of Helsinki.   

4.3.2 Race and rider characteristics  

Power output in this study was collected from 13 grand tour events between 2011 and 2015. 

Each of the grand tours covered approximately 3000 km over 21 stages with 2 rest days. A 

total of 273 stages were recorded with 44 missing or removed stages leaving 229 stages 

analysed in this study. Missing stages were unavailable either because recordings were not 

conducted or were removed from analysis due to loss of data. Stages were categorised based 

upon topography, and included 104 recordings of flat stages, 57 recordings of semi-

mountainous stages and 68 recordings of mountainous stages. Time trial stages were 

eliminated from analysis. The topography of each stage was classified according to the 

distance cycled uphill and the TEG during each stage (102, 210). TEG was calculated from 

elevation data measured with a barometric altimeter. Flat stages were classified where total 

uphill riding distance was less than 13 km and a TEG of less than 800 m. Semi-mountainous 

stages were classified where a total uphill riding distance was between 13 and 35 km and a 

TEG of between 800 and 2000 km.  Mountainous stages were classified where total uphill 

cycling distance was greater than 35 km and TEG was greater than 2000 m. Riders were 

categorised based upon specialty, and included 36 recordings of sprinters, 85 recordings of 

domestiques, 69 recordings of climbers and 39 recordings of general classification riders. 
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Categorisation was determined by the role of the rider in their team during the grand tour 

(personal communication by the team’s coaches). Sprinters were racing to win stages in 

bunch sprints, general classification riders were racing for top ten place in the final general 

classification, climbers were racing to win stages during semi-mountainous or mountainous 

stages, and domestiques were racing to help other teammates. The distribution of stage type 

per rider is presented in table 4.1.  

 

Table 4.1: Distribution of the different stages per cyclist. 

Rider Speciality 
Number of 

Recordings 
Flat 

Semi – 

Mountainous 
Mountainous 

Climber 17 9 3 5 

Climber 19 10 3 6 

Climber 19 10 3 6 

Climber 14 7 3 4 

Domestique 16 10 2 4 

Domestique 19 10 3 6 

Domestique 16 4 7 5 

Domestique 17 7 6 4 

Domestique 17 5 7 5 

Sprinter 17 8 3 6 

Sprinter 19 10 3 6 

General 

Classification 
19 7 7 5 

General 

Classification 
20 7 7 6 

Sum 229 104 57 68 

 

4.3.3 Power measurements  

Power output was recorded throughout each stage using mobile SRM power meters (SRM 

Trainingsystems, Schoberer Rad Messtechink, Julich, Germany). The validity and 

reliability of the SRM devices have been previously reported (45, 51). It has also been 
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demonstrated to provide accurate and reliable measurement of TEG (210), however, 

weather conditions causing a reduction in barometric pressure may reduce accuracy (211). 

The zero offset of the power meters were completed by the riders in accordance with the 

manufacturer’s instructions prior to the start of each stage. Power values were recorded at 

a frequency of 1Hz. Power meter recordings were downloaded using SRM Training 

software (v6.42.18, Schoberer Rad Messtechnik, Germany). Power values were analysed 

using Golden Cheetah (v.3.1.0) and Microsoft Excel 2012 (Microsoft, USA). Power output 

data are presented relative to individual body mass (W·kg-1).  

4.3.4 MMP calculation 

The MMP output achieved by cyclists over time periods of  1, 5, 15, 30, 60, 300, 600, 1200, 

1800, 2400 and 3600 s were determined for each rider on each stage. These time periods 

were based on prior research (25, 26, 44). All stage files were separated into topography 

categories and rider specialities. MMP was then calculated for each topography category 

and rider speciality. 

4.3.5 Power output distribution 

Power output was seperated into eleven discrete power bands for the determination of 

percentage race time previously used in the literature (22). These power bands included 

power output of less than 0.75, 0.76 to 1.50, 1.51 to 2.25, 2.26 to 3.00, 3.01 to 3.75, 3.76 

to 4.55, 4.56 to 5.25, 5.26 to 6.00, 6.01 to 6.75, 6.76 to 7.50 and greater than 7.5 W·kg-1. 

The race time spent in differing power output bands was determined for topography 

categories, road gradients and rider specialities. Specifically, road gradients were banded 

as less than 0%, 0 to 5% and greater than 5%.  
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4.3.6 Statistical analysis 

The MMP for topography categories and rider specialities were compared using a two-way 

repeated measures ANOVA. The percentage of race time in power output bands were 

compared within topography categories, rider specialities and road gradients using a one-

way repeated measures ANOVA. Where significant effect was observed, Tukey-Kramer-

HSD post-hoc test was applied. Statistical analyses were performed using SPSS, version 

23 (Chicago, Illinois, USA). Results are presented as means ± standard deviation (mean ± 

SD). For all variables, statistical significance was accepted at P <0.05.   
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4.4 Results 

4.4.1 MMP 

The MMP curves for topography categories and rider specialities are shown in figures 4.1 

and 4.2, respectively. The MMP in both semi-mountainous and mountainous stages for 

periods longer than 1200 s were greater (P <0.05) compared with flat stages (Figure 4.1). 

No differences (P >0.05) were observed in any other comparisons (Figure 4.1).  

  

Figure 4.1: Relative MMP output of professional road cyclists during flat (n = 104), semi-

mountainous (n = 57) mountainous (n = 68) stages of grand tours (mean ± SD) (P <0.05: * 

flat vs. semi-mountainous; # flat vs. mountainous).  
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The MMP observed over 1 and 5 s was greater (P <0.05) in general classification riders, 

when compared with both domestiques and sprinters (Figure 4.2). MMP averaged over 15 

s was greater (P <0.05) in climbers compared with domestiques (Figure 4.2). The MMP 

observed over 30, 60, 300 and 600 s was greater (P <0.05) in general classification riders, 

compared with domestiques (Figure 4.2). The MMP over 600, 1200 and 1800 s was greater 

(P <0.05) in general classification riders, compared with sprinters (Figure 4.2). No 

differences (P >0.05) were observed between rider specialities across 30, 2400 and 3600 s 

(Figure 4.2).  

  

Figure 4.2: Relative MMP for durations 1-3600 s distributed for rider specialities 

domestiques (n = 85), sprinters (n = 36), climbers (n = 69) and general classification riders 

(n = 39) (mean ± SD) (P <0.05: ~ general classification vs. sprinters, * general classification 

vs. domestiques, # climbers vs. domestiques). 
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4.4.2 Power output distribution  

The percentage of stage duration spent within discrete power bands across stages of varying 

topography (A) riders of differing speciality (B) and across varying road gradients (C) are 

presented in figure 4.3. The time spent in lower power bands (< 0.75, 0.76 - 1.50 and 1.51 

- 2.25 W·kg-1) was greater (P <0.05) in flat stages, compared with semi-mountainous and 

mountainous stages (Figure 4.3A). The percentage of race time spent between 2.26 and 

3.00 W·kg-1 was greater (P <0.05) in flat stages, compared with mountainous stages (Figure 

4.3A). The time spent between 3.01 and 6.00 W·kg-1 was greater (P <0.05) in both semi-

mountainous and mountainous stages compared with flat stages (Figure 4.3A). A greater 

(P <0.05) amount of time was spent between 6.76 to 7.50 W·kg-1 during semi-mountainous 

stages, compared with mountainous stages (Figure 4.3A). A greater (P <0.05) amount of 

time was spent above 7.5 W·kg-1 power band in the mountainous stages compared with 

semi-mountainous stages (Figure 4.3A). No differences (P >0.05) were observed in any 

other topography comparison.    

Climbers spent greater (P <0.05) percentage of race time at power outputs lower than 0.75 

W·kg-1 when compared with domestiques (Figure 4.3B). Domestiques spent greater (P 

<0.05) percentage of race time at power outputs lower than 1.51 to 2.25 W·kg-1 when 

compared with climbers (Figure 4.3B). Domestiques spent greater (P <0.05) percentage of 

race time at power outputs 2.26 to 4.55 W·kg-1 when compared with all other rider 

specialities (Figure 4.3B). General classification riders spent greater (P <0.05) percentage 

of race time at power outputs 5.26 to 6.00 W·kg-1 and 6.01 to 7.50 W·kg-1 when compared 

with sprinters and domestiques (Figure 4.3B). Climbers spent greater (P <0.05) percentage 

of race time at power outputs 6.01 to 7.50 W·kg-1 when compared with domestiques (Figure 

4.3B). General classification riders spent greater (P <0.05) percentage of race time at power 

outputs 6.76 to 7.50 W·kg-1 when compared with domestiques (Figure 4.3B). Domestiques 
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spent greater (P <0.05) percentage of race time in power outputs greater than 7.50 W·kg-1 

when compared with general classification riders (Figure 4.3B). Sprinters spent greater (P 

<0.05) percentage of race time in power outputs greater than 7.50 W·kg-1 when compared 

with domestiques (Figure 4.3B).  No differences (P >0.05) were observed in any other rider 

comparison.    

The percentage of race time at gradients less than 0% was greater (P <0.05) at power 

outputs less than 0.75 W·kg-1 when compared with 0 to 5% and greater than 5% road 

gradient (Figure 4.3C). The percentage of race time at gradients between 0 to 5% was 

greater (P <0.05) at power outputs less than 0.75 W·kg-1 when compared with greater than 

5% road gradient (Figure 4.3C). The percentage of race time at gradients between 0 to 5% 

was greater (P <0.05) at power outputs 0.76 to 3.00 W·kg-1 when compared with road 

gradient less than 0% and greater than 5% (Figure 4.3C). The percentage of race time at 

gradients greater than 5% was greater (P <0.05) at power outputs 3.76 to greater than 7.5 

W·kg-1 when compared with road gradients less than 0% and 0 to 5% (Figure 4.3C). No 

differences (P >0.05) were observed the percentage of race time in any other gradient 

comparison. 
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Figure 4.3: Influence of relative topography categories (A) rider specialties (B) and road 

gradients (C) on power output distribution during grand tours. Data are divided into 0.75 

W·kg-1 power bands and expressed as a percentage of total race time (Mean ± SD) (P <0.05; 

A: * flat vs. semi-mountainous; # flat vs. mountainous, +semi-mountainous vs. 

mountainous B: + domestiques vs. climbers, ~ general classification vs. climbers, ○ general 

classification vs. domestiques, X sprinters vs. domestiques, # sprinters vs. general 

classification. C: # <0% – 0 to 5%, + <0% – >5%, * 0% to 5% – >5%). 
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4.5 Discussion  

The primary aim of this study was to examine if MMP during grand tour cycling events 

differs across various topographies and rider specialities. In accordance with our 

hypothesis, MMP output longer than 1200 s significantly increased on mountainous stages 

compared with flat stages (Figure 4.1). Furthermore, MMP changed depending on rider 

specialities (Figure 4.2). The secondary aim of this study was to determine if the percentage 

of race time spent in power output bands differs between categories of topography, road 

gradient and rider speciality during a grand tour.  

In this study it was found that MMP output over longer durations (> 1200 s) were greater 

in semi-mountainous and mountainous stages compared with flat stages (Figure 4.1). 

Furthermore, while not significant, MMP for mountainous stages was lower than both flat 

and semi-mountainous stages between 1 and 60 s (Figure 4.1). This is probably due to the 

constant power output required while riding uphill in mountainous stages (Figure 4.3), 

rather than short explosive efforts required in flat stages. Results are similar to that of Vogt 

et al. (15) who observed greater power output in mountainous stages for long durations (> 

1800 s) and lower output for short durations (< 15 s) in professional cyclists during a grand 

tour. There are several possible reasons for this increase including longer time spent at 

greater power output intensities, tactics and road gradient. The distribution of race time in 

power output bands on different topography categories and increasing road gradients 

differed (Figure 4.3A). The distribution showed semi-mountainous stages had significantly 

greater race time spent at power output intensities of 3.01 to 3.75 up to 5.27 to 6.00 W·kg-

1 compared with flat stages (Figure 4.3A). It could be related to tactics as mountainous 

stages are important tactical sections of a race which are very reliant on aerobic capacity 

(13). Riders deliberately increase power output during uphill cycling to alter the race, 

however, little research has been conducted on the tactics of professional road cycling. 
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Several studies have demonstrated power output to be greater during uphill cycling exercise 

compared to flat (37, 38). Therefore, this could be the case for increased MMP outputs 

during longer durations. However, this is under the assumption that all MMP values 

recorded were indeed maximal values. These MMP outputs were the maximal values from 

each individual cyclist and it is plausible that these values do not reflect maximal 

physiological limits. However, it could also be argued that field power meter data provide 

a more accurate representation of actual MMP, when compared to laboratory testing. This 

is because it is highly likely that performance during racing is maximal. Whether maximal 

values were achieved over the range of durations and environmental conditions examined 

in this study is not clear and warrants further investigation. Regardless, these results have 

implications for the monitoring of performance and load of cyclists. It has been suggested 

that MMP from races may provide an indication of changes in fitness (25, 27, 44). This 

study indicates that caution should be taken because MMP values may need to be 

determined over both flat and mountainous stages.  

MMP for rider specialities revealed significant differences, predominantly around the 

general classification riders (Figure 4.2). General classification riders showed the highest 

1 and 5 s time point power output values of 16 ± 0.4 and 14.2 ± 0.5 W·kg-1, respectively, 

and constantly maintained high power output values during middle time points of 60 to 600 

s (Figure 4.2). This is highly surprising as it was hypothesised that sprinters would 

demonstrate the greatest 1 and 5 s MMP. It is plausible that the MMP of sprinters over 60 

and 300 s within this study were not maximal. Indeed, race dynamics and tactics are likely 

to heavily influence the MMP values observed during actual competition. Previous research 

has demonstrated sprinters peak power around 17.4 W·kg-1, that is ~ 3 W·kg-1 greater than 

the sprints in this study (165). It is plausible that the two sprinters analysed in this study 

were not the same quality as previous studies or that there were few sprints in which they 
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were involved in. Also, the general classification riders may have been required to produce 

maximal efforts themselves during a stage attack. Although not significant, general 

classification riders appeared to be greater than domestiques between 800 and 1800 s 

(Figure 4.2). This is surprising as teams protect general classification riders with 

domestiques for the mountain stages which are considered the hardest sections of any grand 

tour, and where the race is often won or lost. At this time, attacks (riding away from a group 

of cyclists) are established in final climbs to build stage time gaps, ensure victory or to 

build time gaps in the overall tour standings. For example, while on the flat, it has been 

reported that numerous short (5 - 15 s), high intensity (~ 9.5 - 14 W·kg-1) surges are 

typically observed before an attack (74). During this section of the race greater power 

output is observed in relation to the challenging topography and increased demand is placed 

on domestiques to protect general classification riders for as long as possible. 

Similar to topography category race intensities, rider speciality showed large amounts of 

time in power outputs of less than 0.75 and greater than 7.5 W·kg-1 (Figure 4.3B). 

Domestiques and general classification riders showed significantly lower race time than 

sprinter and domestiques in power output greater than 7.5 W·kg-1. The domestiques spent 

the majority of their race time in medium power bands (2.26 - 3.00, 3.01 - 3.75 and 3.76 - 

4.55 W·kg-1, Figure 4.3B). It is plausible that this is due to the majority of demestiques 

energy being used protecting general classification riders. The general classification riders 

were also looking to save energy. Consequently, little time was spent at very high power 

outputs. However, figure 4.2 demonstrated general classification riders maintained higher 

power outputs compared with all other riders between 600 and 1800 s. Sprinters produce 

high bursts of power output (165), but this study also demonstrates that climbers also put 

out greater power outputs with 11.4% of race time spent at greater than 7.5 W·kg-1. If 

climbers are to win a stage, they need to maintain a relatively high power output (> 
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7.5W·kg-1) when they are attacking in the mountains, however, high power outputs in 

sprinters occur in the build up to a sprint (159, 165).   

In this study race intensities on differing road gradients were measured (Figure 4.3C). As 

road gradient increased, cyclists produced greater power outputs (Figure 4.3C) to overcome 

the resistive forces of gravity, and maintain their speed. Studies on pacing during different 

road gradients have demonstrated that maintaining power output results in the most optimal 

uphill performance (117). This could be tactical in response to an increase in race intensity 

from other riders. However, it could also be due to cyclists needing to produce greater 

power output on uphill sections of road. Regardless, this study shows that cyclists are 

required to produce considerable high-intensity efforts (> 7.5W·kg-1) at high cycling road 

gradients (Figure 4.3C). Given that the position/angle of the bike changes cycling 

biomechanics (109, 112, 153) and muscle recruitment strategies (214-217) these results 

may be important in the preparation of athletes for competition. Indeed, rather than 

performing interval training on flat ergometers, athletes may wish to consider spending a 

significant proportion of high-intensity training on higher gradients. 

4.6 Conclusion 

In conclusion, the results of this study indicate that MMP output changes in differing 

topography categories and rider specialities during grand tour cycling events. Furthermore, 

race time spent in higher power output bands on steeper road gradients could have caused 

the MMP output for topography to change. Consequently, caution should be taken when 

analysing the MMP in relation to topography categories and rider specialities, and when 

considering the data, which is highly stochastic as an indicator of fitness.  
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5 CHAPTER FIVE 

ESTIMATION OF CRITICAL POWER IN PROFESSIONAL ROAD CYCLISTS 
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5.1 Abstract  

Introduction: It has been demonstrated that MMP is affected by topography, possibly due 

to differing road gradients. Purpose: To examine if estimated CP changes when calculated 

from stages of differing topography. Also to compare estimated CP from a FLAT and 

UPHILL field-based test.  Methods: In Part 1, grand tour power output data (n = 219 stages) 

from thirteen professional male road cyclists were used to calculate CP. CP was estimated 

from the MMP achieved by cyclists over 12, 7 and 3 min of each stage. Stages were 

separated into one of three topography categories (flat (n = 97), semi-mountainous (n = 60) 

and mountainous (n = 62)). In Part 2, a single professional road cyclist performed three 

maximal efforts of 12, 7 and 3 min on both FLAT (mean gradient 0.4%) and UPHILL 

(mean gradient 6.2%) roads. For both parts, linear regression analysis from MMP outputs 

and maximal efforts of 12, 7 and 3 min were used to estimate CP. Results: In Part 1, no 

differences (P >0.05) were observed in estimated CP between all topography category 

comparisons. A large effects size (d = 0.8) was observed for differences in CP between flat 

stages and both semi-mountainous and mountainous stages. In Part 2, estimated CP was 

11.6% lower in FLAT field-based test, compared with the UPHILL field-based test (5.0 vs. 

5.6 W·kg-1). Conclusion: This study demonstrates a large difference between estimated CP 

values from alternative topography categories and from two different gradient specific 

field-based tests. It is recommended that CP is estimated using topography categories. 

Caution should also be taken when estimating CP from MMP values. A field-based test 

may be an appropriate alternative for measuring CP.   

Key Words: Power Output, Gradient, Uphill, Modelling.  
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5.2 Introduction  

The critical power concept represents the curvilinear relationship between work rate and 

exercise duration described in a hyperbolic equation (178): 

𝒕 =
𝑾′

(𝑷 − 𝑪𝑷)
 

CP measurement has been demonstrated to represent an important predictor and fatigue 

threshold of endurance exercise performance (28, 29, 197). Exercise maintained below CP 

is theoretically based upon aerobic metabolism with an unlimited capacity but limited in 

rate (28). Exercise above CP is often regarded as anaerobic, defined as anaerobic work 

capacity (AWC), and represents a finite work capacity available to the athlete. While 

referred to as AWC, recent research indicates that work capacity above CP is not influenced 

entirely by anaerobic metabolism (29, 218).  

For cycling exercise, CP can be measured in the laboratory. However, the majority of 

cyclists have limited access to regular laboratory facilities. Recent studies (33, 34, 186) 

have begun to look at the feasibility of an accurate and reliable single field-based test to 

measure CP during cycling. For instance, Karsten et al. (34) have reported that three 

separate field-based cycling tests may provide similar reliability in the estimation of CP. In 

particular, CP and AWC were determined using a field-based test which comprised of a 12 

min, followed by a 7 min and a final 3 min maximal efforts with 30 min low-intensity 

recovery time in between. The protocol resulted in a high level of agreement (-2 ± 12 W) 

and low CP prediction errors (< 5%). The field-based test also provides a more ecologically 

valid testing environment compared with laboratory testing. While power recorded from 

training and racing may provide an accurate estimation of CP (15, 36), previous research 
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and findings from Chapter Four indicate that MMP may differ on different topographies. 

The calculation of CP may be different due to the changes in road gradient. 

During uphill cycling, task demands change with the increased gradient resulting in a lower 

speed and freely chosen cadences (155), changes to muscle recruitment strategies (214-

217) and cycling biomechanics (109, 112, 153). As a result, it seems plausible that a change 

in road gradient will influence estimation of CP. For instance Nimmerichter et al. (38) have 

found that trained cyclists produce greater power outputs during a 20 min uphill (8.5% 

gradient) time trial compared with a flat time trial. Greater power outputs were 

accompanied with higher heart rates and blood lactate concentrations indicating a greater 

physiological strain during uphill time trials. Recently, Bouillod et al. (219) observed power 

output to be 11% greater during uphill compared with level ground cycling exercise in the 

field.   

Thus, the primary aim of this study was to examine if estimated CP changes when 

calculated from stages of differing topography (flat vs. semi-mountainous vs. mountainous) 

within grand tour cycling events. It was hypothesised that CP estimated from grand tour 

race data will be greater in semi-mountainous and mountainous stages, when compared 

with flat stages. The secondary aim of this study was to compare estimated CP determined 

from a field-based test performed by a professional cyclist on level ground (FLAT) and 

while cycling uphill (UPHILL). It was hypothesised that estimated CP determined from an 

UPHILL test would be greater than a FLAT test.  
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5.3 Methods  

This methodology section is broken down into two parts: Part 1 and Part 2.  

5.4 Part 1 

5.4.1 Participants  

Data from thirteen professional male road cyclists (age 29 ± 4 y, height 171 ± 0.9 cm, mass 

67 ± 8.2 kg) from two professional cycling teams were analysed. The cyclists were 

classified as level 5 based on the study by De Pauw et al. (209). The rider classification by 

team coaches included two sprinters, five domestiques, four climbers and two general 

classification riders. All participants gave their written informed consent. The study was 

approved by the Edith Cowan University Human Ethics Research Committee. 

5.4.2 Experimental design  

In total, 219 power meter files were analysed from grand tour events between 2013 and 

2016. Stage files were classified into three topography categories, including flat (n = 97), 

semi-mountainous (n = 60) and mountainous (n = 62). Categories were determined based 

upon the TEG and the average percentage gradient of each cyclist. Stage topography was 

classified using previously published research (102) as well as updating the classification 

criteria using the TEG provided by the power meter during each stage. TEG is calculated 

from elevation data measured with a barometric altimeter. The SRM power meter has been 

demonstrated to provide accurate and reliable measurement of TEG (210), however, 

weather conditions causing a reduction in barometric pressure may reduce accuracy (211). 

Specifically, the average percentage gradient of each cyclist is the calculated mean slope 

for a whole stage duration. Flat stages were defined as stages of less than 2000 m TEG and 

less than 1.2% average gradient. Semi-mountainous stages were defined as a TEG between 
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2000 and 3000 m and between a 1.2 and 1.8% average gradient. Mountainous stages were 

defined as of greater than 3000 m TEG and greater than 1.8% average gradient. These 

classification criteria resulted in 97 flat, 60 semi-mountainous and 62 mountainous stages 

being analysed.  

5.4.3 SRM measurements  

All cyclists had SRM power meter systems (SRM Trainingsystems, Schoberer Rad 

Messtechink, Julich, Germany) mounted on their bikes during each grand tour stage and 

each CP field-based test. The power meter collected power output, altitude and road slope 

(gradient) at 1 Hz. The validity and reliability of the SRM devices (45, 51) and their 

measurement of TEG (210, 211) have been previously reported. All cyclists manually 

performed the zero-offset before each race and the SRM PowerControl was also set to 

automatically perform the zero-offset. All power output data were collected as absolute 

power (W) and were reported relative to body mass (W·kg-1).   

5.4.4 Estimated CP and AWC 

MMP output over durations of 12, 7 and 3 min durations were calculated for all stages. 

MMP outputs were plotted into a linear regression curve to calculate an estimated CP and 

AWC for each stage. Specifically, CP was estimated as P = AWC*(1/t) + CP where AWC 

is the anaerobic work capacity and 1/t is power-1/time. Once CP and AWC had been 

calculated for all stages, the mean 12, 7 and 3 min MMP, CP and AWC were calculated for 

topography categories.   
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5.5 Part 2 

5.5.1 Participant 

The cyclist was a single professional male road cyclist (age 25 y, height 164 cm, mass 55.0 

kg) specialising as the general classification rider for a grand tour race. The rider was 

classified as level 5 based on the study by De Pauw et al. (209) and had previously finished 

in the top 3 of a grand tour 26 days prior to the start of data collection in this study. The 

rider also finished top 3 in the grand tour which took place in August/September 2016, 10 

days after the final data collection ride. The rider gave his written informed consent and the 

study was approved by the Edith Cowan University Human Ethics Research Committee. 

5.5.2 Experimental design   

The participant performed two field-based cycling tests, one on a flat (FLAT) section of 

road and another on an uphill (UPHILL) section of road. Thirty-two days prior to these 

trials the participant performed a familiarisation trial of an identical protocol (described 

below). The familiarisation trial was performed on a level ground section of road. The 

FLAT field-based test was conducted on a tarmac road surface at an environmental 

temperature of 18.8 ± 2.6 °C (14 - 25 °C). The mean gradient of FLAT was 0.4 ± 0.1%. 

The UPHILL field-based test was conducted on a similar tarmac road with an 

environmental temperature of 14.7 ± 1.7 °C (12 - 20 °C). The mean gradient of UPHILL 

was 6.2 ± 0.1%. Both tests were conducted at a moderate altitude with the FLAT trial at an 

altitude between 2550 and 2590 m and the UPHILL trial beginning at 2537 m and finishing 

at 2832 m (+295 m). FLAT and UPHILL tests were separated by 10 days and the final test 

was conducted ten days prior to the start of a grand tour. Training sessions were conducted 

the day before both FLAT (93 km, 3h 10 min) and UPHILL tests (124 km, 3h 20 min). The 

rider consumed the same diet (including caffeine) prior to testing.   



 

 

95 

 

5.5.3 CP field-based test protocol   

A self-selected warm up of 1 hour low-intensity cycling was conducted on a flat tarmac 

road prior to both FLAT and UPHILL field-based tests (3.0 and 3.1 W·kg-1 respectively). 

After a warm up, the participant was instructed to cycle as fast as possible for exercise 

durations in the order of 12, 7 and 3 min. The cyclist was instructed to continue low-

intensity exercise for 30 min between each effort which has been found to be adequate for 

determining a valid CP (33, 34, 220). During each effort the cyclist was free to alter their 

own gear ratio and cadence. The cyclist was also able to see their time, power output and 

cadence throughout the tests. The same road bike was used for all tests. Once obtained, 

MMP outputs were then used to estimate CP and AWC using a previously validated and 

reliable field-based test (34). The average MMP outputs for 12, 7 and 3 min efforts were 

plotted, and using linear regression, CP and AWC values were determined as described in 

Part 1. 

5.5.4 SRM, estimated CP and AWC  

See as per Part 1.  

5.5.5 Statistics  

In Part 1, a two-way ANOVA was used to compare MMP outputs 12, 7 and 3 min over 

different topography categories. In Part 2, a one-way ANOVA was used to compare the 

estimated CP and AWC across topography categories. Where significant interaction and 

effects were observed, Tukey’s post hoc test was applied. The 95% confidence intervals 

[95% CI] were also calculate for MMP, CP and AWC. To allow for a better interpretation 

of the results, effects sizes (Cohen’s d) were also calculated and presented. Values of 0.2, 

0.5, 0.8 and above 1.3 were considered small, medium, large and very large effects, 
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respectively (221). Statistical analysis was conducted using IBM SPSS Version 21. 

Statistical significance was accepted at P <0.05.   
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5.6 Results 

Part 1 

The MMP, CP and AWC for topography categories are shown in table 5.1. No differences 

(P >0.05) were observed between 12, 7 and 3 min MMP outputs across the three topography 

categories (Table 5.1). A medium effects size for 12 min MMP was observed in flat stages 

compared with semi-mountainous stages (d = 0.5). A small effects size for 12 min MMP 

was observed in flat stages compared with mountainous stages (d = 0.4) (Table 5.1). A 

small effects size for 7 min MMP was observed in flat stages compared with semi-

mountainous stages (d = 0.3) (Table 5.1). No effect (d = <0.2) was observed in any other 

MMP comparisons (Table 5.1). No differences (P >0.05) were observed in either estimated 

CP or AWC across the three topography categories (Table 5.1). A large effects size for CP 

was observed in semi-mountainous (d = 0.8) and mountainous stages (d = 0.8), compared 

with flat stages (Table 5.1). A small effects size for AWC was observed in flat stages 

compared with semi-mountainous stages (d = 0.4) (Table 5.1). No effect (d = <0.2) was 

observed in any other CP or AWC comparisons (Table 5.1).  

Part 2 

The MMP, CP and AWC from FLAT and UPHILL tests are shown in table 5.2. MMP for 

12, 7 and 3 min was 0.5 W·kg-1 (8.6%), 0.3 W·kg-1 (5.1%) and 0.1 W·kg-1 (1.4%) greater 

in UPHILL test compared with FLAT test (Table 5.2). Estimated CP for the UPHILL test 

was 0.6 W·kg-1 (11.3%) greater, compared with the FLAT test (Table 5.2). Estimated AWC 

for the FLAT test was 0.1 kJ (66.6%) greater, compared with the UPHILL test (Table 5.2).   
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Table 5.1: MMP outputs over 12, 7 and 3 min and estimated CP and AWC from flat, semi-

mountainous and mountainous grand tour stages (Part 1; n = 13). 

MMP 

Flat 

(n = 97) 

Semi-Mountainous 

(n = 60) 

Mountainous 

(n = 62) 

12 min (W·kg-1) 

Mean ± SD 5.6 ± 0.9 6.0 ± 0.8 5.9 ± 0.7 

95% CI 5.0, 6.1 5.5, 6.4 5.5, 6.3 

Effects Size 0.5a 0.1b 0.4c 

7 min (W·kg-1) 

Mean ± SD 6.4 ± 0.9 6.4 ± 0.8 6.3 ± 1.0 

95% CI 5.5, 6.6 5.9, 6.8 5.8, 6.8 

Effects Size 0.4a 0.1b 0.2c 

3 min (W·kg-1) 

Mean ± SD 6.9 ± 0.8 7.0 ± 1.0 6.8 ± 0.9 

95% CI 6.3, 7.3 6.4, 7.6 6.2, 7.3 

Effects Size 0.1a 0.2b 0.1c 

Estimated CP (W·kg-1) 

Mean ± SD 5.2 ± 0.9 6.0 ± 1.1 5.8 ± 0.6 

95% CI 4.6, 5.8 5.3, 6.6 5.3, 6.1 

Effects Size 0.8a 0.2b 0.8c 

AWC (kJ) 

Mean ± SD 0.2 ± 0.1 0.4 ± 0.8 0.3 ± 0.7 

95% CI 0.1, 0.3 0.0, 0.9 0.1, 0.7 

Effects Size 0.4a 0.1b 0.2c 

Effects size denotes: a flat, compared with semi-mountainous, b semi-mountainous-

mountainous, c flat-mountainous.  
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Table 5.2: MMP outputs for 12, 7 and 3 min, estimated CP and AWC compared between 

FLAT and UPHILL field-based tests in a single professional male road cyclist (Part 2; 

Mean). 

MMP FLAT  UPHILL 
Percentage Difference (%) 

12 min (W·kg-1) 5.5 6.0 8.6% 

7 min (W·kg-1) 5.7 6.0 5.1% 

3 min (W·kg-1) 6.7 6.8 1.4% 

Estimated CP (W·kg-1) 5.0 5.6 11.3% 

AWC (kJ) 0.2 0.1 66.6% 
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5.7 Discussion  

The primary aim (Part 1) of this study was to examine if estimated CP changes when 

calculated from stages of differing topography (flat vs. semi-mountainous vs. mountainous) 

obtained from race data during grand tours. Contrary to our hypothesis, no significant 

difference was observed in estimated CP between the three topography categories 

examined in this thesis. However, a large effect (d = 0.8) was observed for estimated CP 

between flat stages and both semi-mountainous and mountainous stages. The secondary 

aim (Part 2) of this study was to compare estimated CP determined from a field-based test 

performed by a professional cyclist on level ground (FLAT) and while cycling uphill 

(UPHILL). CP determined from the UPHILL field-based test was 0.6 W·kg-1 greater than 

the FLAT field-based test (Table  5.2).   

Within this study it was hypothesised that CP would be greater in semi-mountainous and 

mountainous stages when compared with flat stages. This hypothesis was based on finding 

of Chapter Four, Nimmerichter et al. (38) and Bouillod et al. (219) who found that power 

output was greater during uphill road cycling conditions compared with flat road cycling 

conditions. Although not statistically significant (P >0.05), large effect sizes (d = 0.8) were 

observed for differences in CP between flat and both semi-mountainous and mountainous 

(i.e. 13.4% and 9.6%, respectively; Table 5.1). With such a large difference in CP between 

topography categories, the use of a single CP value is likely to result in substantial error for 

any modelling procedure. In Chapter Four, the MMP curve for flat stages was significantly 

lower in longer durations (> 1200 s) compared with semi-mountainous and mountainous 

stages. It was concluded that this was caused by cyclists producing greater power outputs 

for longer periods of time during uphill sections of the road. Other plausible explanations 

could be due to race dynamics or that cyclists can physically produce greater power output 

in uphill sections due to changes in muscle recruitment (214-217) and biomechanical 
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position (109, 112, 153). However, the results from Part 2 indicate that a greater CP 

observed on uphill stages may not simply be because of race dynamics. Indeed, while 

topography influenced MMP and the estimation of CP based on the race data of thirteen 

professional road cyclists (Table 5.1) in Part 1, MMP calculated during maximal field-

based tests in Part 2 were also greater during UPHILL compared with FLAT. Interestingly 

this greater CP during uphill cycling was despite these tests being done at altitude. Given 

the negative effects of altitude on MMP (62) it could be expected that CP would be lower 

during UPHILL since this trial ended some 300 m above FLAT and at moderate altitude 

(222). These results of Part 2 indicate that estimations of CP from competition data need to 

have sufficient flat and uphill data to be confident of a true CP.  

In Part 1, substantial alterations were observed in estimated MMP outputs and CP between 

topography categories from 13 professional road cyclists (Table 5.1). Therefore, it may be 

beneficial to measure CP in the field on each specific topographic conditions (i.e. flat or 

uphill). In this study, Part 2 used a previously validated CP field-based test (34), comparing 

a flat-terrain (FLAT) with an uphill (UPHILL) test. The UPHILL test resulted in an 11.3% 

(0.6 W·kg-1) increase in estimated CP compared with the FLAT test (Table 5.2). While 

MMP outputs have been demonstrated to decrease at altitude during multi-stage racing 

(62), in this study, a constant 6% gradient appears to have increased MMP at 12, 7 and 3 

min (Table 5.2) resulting in a greater estimated CP. While AWC was also calculated, 

previous research using the same protocol as this study has failed to provide robust validity 

of the measurement (220). Therefore, caution should be taken when considering the AWC 

results in this study until further validation. It is also plausible that cadence may have been 

an important factor in MMP values across gradients. Future research should examine 

cadence and its relationship with varying gradients.  
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Results from Part 2 were collected from a single professional road cyclist. While this cyclist 

was professional (level 5 (191) who finished twice in the top three in a grand tour), future 

research should examine the effects of road gradient on CP and AWC in larger population 

groups. It is also highly likely that this cyclist was very well trained in uphill cycling (given 

the importance to a general classification rider). Whether such differences are observed in 

cyclists from other specialities or differing skill level is not known.  

5.8 Practical Applications  

In this study, estimated CP can be calculated using MMP field-based data. While no 

significant differences were observed between topography categories, large effects sizes 

were measured. Therefore, it is recommended that multiple calculations of CP are 

conducting in different topographic conditions (i.e. flat or uphill) and used separately.  

5.9 Conclusion  

This study demonstrates that estimated CP values may differ between topography 

categories and from two different gradient specific field-based tests. Indeed, although not 

significant in Part 1, a large effects size was observed. A large effects size was also 

observed in Part 2 using a specific gradient field-based tests. It is recommended that 

estimated CP be calculated in separate topography conditions.    
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6 CHAPTER SIX 

GRADIENT INFLUENCES CYCLING POWER OUTPUT DURING GRAND 

TOUR MOUNTAIN STAGES  
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6.1 Abstract  

Introduction: Previously, differing topographies have been demonstrated to change MMP 

values. It has been suggested that such changes may be directly due to the effect of road 

gradient on MMP and thus CP. Purpose: To investigate the influence of road gradient on 

MMP from the mountainous stages of professional male road cyclists during grand tour 

events. Methods: Power output was collected from seven professional male road cyclists. 

A total of 50 mountain grand tour stage starts were analysed between 2011 and 2016. Power 

output and the road gradient were directly measured from SRM power meters. The rolling 

average for one and five min maximal mean powers (1 and 5 MMP) were calculated.  The 

average 1MMP and 5MMP were calculated in road gradient bands (-5, -4, -3, -2, -1, 0, 1, 

2, 3, 4 and 5 %). Power output in road gradient bands were compared from lowest to next 

highest (e.g. -3% to -2%). Results: Power output from road gradient -1% was lower (P 

<0.001) in both 1 and 5 MMP compared with 0% (2.4 to 3.3 and 2.2 to 3.1 W·kg-1 

respectively). Power output from road gradient 1% was lower in both 1 (P <0.01) and 5 (P 

<0.05) MMP compared with 2% (3.6 to 4.2 and 3.4 to 4.1 W·kg-1). No difference (P >0.05) 

was observed between any other comparisons. Conclusion: Steeper road gradients resulted 

in both greater average 1 and 5 MMP in professional male road cyclist’s during 

mountainous grand tour road stages. These results are not thought to be due to one factor 

but, multiple disciplinary factors including biomechanical position, cadence, gross 

efficiency and changes in muscular recruitment patterns.  

Keywords: Uphill, Performance Analysis, Power Meter.   
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6.2 Introduction  

Grand tours are the longest cycling events in the professional road cycling season. 

Professional male road cyclists will cover around 3000 km in 21 days (146) with only 2 

days recovery in between. Within these events, semi-mountainous and mountainous stages 

are very important to the overall outcome of the race (particularly in the general 

classification and king of the mountains classification). During semi-mountainous and 

mountainous stages, several periods of time lasting between 30 to 60 min (223) are spent 

ascending and descending on different road gradients. Chapters Four and Five have 

observed that power output is greater during mountainous stages compared with flat stages 

using MMP and CP. It is plausible that greater power outputs were achieved on 

mountainous stages during the uphill sections of the stage. An MMP curve based on 

gradient is not possible due to lack of constant time spent above 300 s on steeper road 

gradients (Figure 8.2). However, quantifying power less than 300 s into road gradient bands 

is possible. It has been found that cycling uphill results in changes to biomechanical cycling 

position (112, 214, 224, 225), gross efficiency (37, 39), cadence and muscular recruitment 

patterns (217) compared with flat cycling.  

When pedalling uphill in a seated position, greater force is produced at crank angle of 45° 

crank angle compared with cycling on the flat (156). Furthermore, when pedalling uphill 

cyclists are more likely to move into a standing position, drastically influencing the task 

demands of the activity. Indeed, research has shown that cycling in a standing position is 

more physiologically demanding (225), less economical at low intensities (153, 226) and 

produces greater maximal power outputs (112, 224). Muscle activation patterns have been 

demonstrated to be influenced by varying road gradients. Sarabon et al. (217) compared 

neuromuscular patterns in the lower extremity of twelve well-trained mountain bikers at 

alternating road gradients of 0, 10 and 20%. The authors found significant EMG 
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neuromuscular pattern changes between 0 and 20% gradients concluding that these 

modifications in neuromuscular patterns would influence joint kinetics and efficiency 

during cycling exercise.  

Differences in efficiency have been observed with standing, compared with seating studies 

(153, 226). Within the studies, a direct influence of gradient on cycling efficiency appears 

to be evident (37, 39). Specifically, on a treadmill Arkestejin et al. (37) found that gross 

efficiency was lower when cycling at 8% gradient, when compared with 4% and 0% road 

gradients. Likewise, Nimmerichter et al. (39) found that gross efficiency was greater (mean 

difference 1.3%) during a flat (1.1% gradient) compared with an uphill (5.1% gradient) 

cycling exercise protocol.  

Overall, uphill cycling influences the bike position (153, 225, 226), task demands and, 

therefore, biomechanics (112, 214, 224, 225) and muscle recruitment strategies (214, 215, 

217). These changes influence multiple factors including pedal force (156), maximal power 

outputs and fatigue development (112, 224). This is particularly the case during standing 

vs. seated cycling exercise (112, 153, 224, 225). It is, therefore, plausible that the MMP 

observed in mountainous stages, when compared with flat stages (Chapters Four and Five) 

is the result of a cyclist’s ability to produce greater power output at increased road gradients. 

However, no study to date has examined power output on different gradients obtained in 

mountainous stages from professional road cyclist’s field data. Therefore, the aim of this 

study was to investigate if road gradients cause a change in MMP from professional male 

road cyclists during mountainous stages from grand tour events. We hypothesise that the 

steeper the road gradient, the greater the MMP. Specifically, one and five min MMP outputs 

will be analysed due to the lack of time spent on constant steeper road gradients.   
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6.3 Methods  

6.3.1 Participants 

Data are from seven professional male road cyclists (age 30 ± 4 y, height 169 ± 8 cm, body 

mass 69 ± 9 kg) from two professional cycling teams were analysed. In total 50 

mountainous stages were analysed in this study from grand tours between 2011 and 2016. 

The cyclists were classified as level 5 based on the study of De Pauw et al. (209). 

Furthermore, all had completed three or more grand tour cycling events. The riders gave 

their written informed consent. The study was approved by the Edith Cowan University 

Human Ethics Research Committee. 

6.3.2 Experimental design   

Mountainous stages were determined based upon the TEG (210, 211) and the average 

percentage gradient of each stage. TEG is calculated from a barometric altimeter in the 

power meter. The average TEG calculated from all race files analysed was 3837 ± 645 m. 

The cyclists each had an SRM power meter (SRM Trainingsystems, Schoberer Rad 

Messtechink, Julich, Germany) attached to their bikes during all stages of the grand tour. 

The SRM power meter has been demonstrated to provide accurate and reliable 

measurement of TEG (210), however, weather conditions causing a reduction in barometric 

pressure may reduce accuracy (211).  

6.3.3 SRM measurements and data processing 

Power output was recorded throughout each stage using mobile SRM power meters. The 

validity and reliability of the SRM devices have been previously reported (45, 51). The 

zero offset of the power meters were completed by the riders in accordance with the 

manufacturer’s instructions prior to the start of each stage. Power values were recorded at 
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a frequency of 1Hz. Power meter recordings were downloaded using SRM Training 

software (v6.42.18, Schoberer Rad Messtechnik, Germany). Power values were analysed 

using Golden Cheetah (v.3.1.0) and Microsoft Excel 2012 (Microsoft, USA). Power output 

data is presented relative to individual body weight (W·kg-1).  

Road Gradient was analysed using Golden Cheetah (v.3.1.0) software termed as ‘slope’. 

To allow for the analysis of road gradient, a spreadsheet (Excel, Microsoft, USA) calculated 

the one and five min rolling average in maximal mean powers (1MMP and 5MMP).  The 

average 1MMP and 5MMP was calculated in road gradient bands -5, -4, -3, -2, -1, 0, 1, 2, 

3, 4 and 5 %. To ensure graident was constant over each MMP duration, power output 

which was geater than 1SD was removed from analysis. Furthermore, the spreadsheet 

removed all data less than 5% and greater than 5% gradient due to lack of constant data 

above and below these gradients. In total 22342 ± 9897 data points were collected from the 

cyclists. Following data cleaning, a total of 13745 ± 8031 data points remained for 1MMP 

analysis and 4468 ± 1606 data points for 5MMP analysis. The average 1MMP and 5MMP 

was then calculated for each road gradient.  

6.3.4 Statistics 

For 1MMP and 5MMP a one-way ANOVAs were used to compare power output across 

road gradients. Where significant effect was observed, Bonferroni’s multiple comparisons 

post-hoc test was applied. The 95% confidence intervals [95% CI] were also calculated for 

the power output. To allow for a better interpretation of the results, effects sizes (Cohen’s 

d) were also calculated and presented. Values of 0.2, 0.5, 0.8 and above 1.3 were considered 

small, medium, large and very large effects, respectively (221). Statistical analysis was 

conducted using IBM SPSS Version 21. Statistical significance was accepted at P <0.05.   
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6.4 Results 

The average 1MMP and 5MMP are demonstrated in table 6.1. Road gradients were 

compared from lowest to next highest road gradient power band (e.g. -3% to -2%).  

For 1MMP, power output for road gradient -1% was lower (P <0.001) compared with 0% 

(2.4 ± 0.4 vs. 3.3 ± 0.6 W·kg-1 respectively) (Table 6.1). Power output for road gradient 

1% was lower (P <0.01) compared with 2% (3.6 ± 0.5 vs. 4.2 ± 0.2 W·kg-1 respectively) 

(Table 6.1). No other differences (P >0.05) between comparisons were observed (Table 

6.1).  

Small effect sizes were observed between -4 to -3% and -3 to -2% (d = 0.3 and 0.2 

respectively) (Table 6.1). A medium effect size was observed between 3 to 4% (d = 0.6) 

(Table 6.1). Large effect sizes were observed between -5 to -4%, -2 to -1% and 2 to 3% (d 

= 1.0, 1.0 and 1.0 respectively) (Table 6.1). Very large effect sizes were observed between 

-1 to 0% and 1 to 2% (d = 1.8 and 1.5 respectively) (Table 6.1). No effect (d = <0.2) was 

observed between 4% to 5% gradient (0) (Table 6.1).   

For 5MMP, power output for road gradient -1% was lower (P <0.001) compared with 0% 

(2.2 ± 0.7 vs. 3.1 ± 0.5 W·kg-1 respectively) (Table 6.1). Power output for road gradient 

1% was lower (P <0.05) compared with 2% (3.4 ± 0.4 vs. 4.1 ± 0.4 W·kg-1 respectively) 

(Table 6.1). No other differences (P >0.05) between comparisons were observed (Table 

6.1).  

Small effect sizes were observed between -3 to -2% and 3 to 4% (d = 0.3 and 0.2 

respectively) (Table 6.1). Medium effect sizes were observed between -4 and -3%, -2 and 

-1%, 0 and 1% and 2 and 3% (d = 0.5, 0.5, 0.6 and 0.8 respectively) (Table 6.1). Very large 

effect sizes were observed between -1 and 0% and 1 and 2% (d = 1.5 and 1.7 respectively) 

(Table 6.1).   
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Table 6.1: 1 and 5 MMP for each road gradient between -5 and 5%. 

Road Gradient 1MMP  5MMP  

-5% 

Mean ± SD (W·kg-1) 1.2 ± 0.4 - 

95 % CI [1.0, 1.5] - 

Effects Size 1.0 - 

-4% 

Mean ± SD (W·kg-1) 1.7 ± 0.6 1.4 ± 0.5 

95 % CI [1.4, 2.0] [1.0, 1.8] 

Effects Size 0.3 0.5 

-3% 

Mean ± SD (W·kg-1) 1.9 ± 0.6 1.7 ± 0.7 

95 % CI [1.6, 2.2] [1.2, 2.2] 

Effects Size 0.2 0.3 

-2% 

Mean ± SD (W·kg-1) 2.0 ± 0.4 1.9 ± 0.5 

95 % CI [1.8, 2.2] [1.6, 2.2] 

Effects Size 1.0 0.5 

-1% 

Mean ± SD (W·kg-1) 2.4 ± 0.4*** 2.2 ± 0.7*** 

95 % CI [2.2, 2.6] [1.8, 2.6] 

Effects Size 1.8 1.5 

0% 

Mean ± SD (W·kg-1) 3.3 ± 0.6 3.1 ± 0.5 

95 % CI [3.1, 3.6] [2.8, 3.4] 

Effects Size 0.5 0.6 

1% 

Mean ± SD (W·kg-1) 3.6 ± 0.5** 3.4 ± 0.4* 

95 % CI [3.4, 3.8] [3.2, 3.7] 

Effects Size 1.5 1.7 

2% 

Mean ± SD (W·kg-1) 4.2 ± 0.3 4.1 ± 0.4 

95 % CI [4.0, 4.3] [3.9, 4.4] 

Effects Size 1.0 0.8 

3% 

Mean ± SD (W·kg-1) 4.6 ± 0.5 4.5 ± 0.5 

95 % CI [4.4, 4.8] [4.2, 4.8] 

Effects Size 0.6 0.2 

4% 

Mean ± SD (W·kg-1) 4.9 ± 0.5 4.6 ± 0.3 

95 % CI [4.6, 5.1] [4.4, 4.8] 

Effects Size 0.0 - 

5% 

Mean ± SD (W·kg-1) 4.9 ± 0.5 - 

95 % CI [4.6, 5.2] - 

Effects Size - - 

* P <0.05, **P <0.01, ***P <0.001; significant difference for mean and effects sizes from 

respective value below (e.g. -5% to -4%, -4% to -3%).  
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6.5 Discussion  

The aim of this study was to investigate if road gradients cause a change in MMP from 

professional male road cyclists during grand tour mountainous stages. We hypothesised 

that the steeper the road gradient, the greater the 1 and 5 MMP. Both 1 and 5MMP showed 

an increase in power output from lower to higher road gradients (Table 6.1). Significance 

was observed between -1 to 0% and 1 to 2% for both 1 and 5 MMP (Table 6.1).  

Furthermore, effects sizes supported an increase in power output with steeper road 

gradients for both 1MMP and 5MMP (Table 6.1). Multiple interconnecting factors have 

been proposed to explain the observed changes in average power output on alternative road 

gradients including biomechanical body position (seated vs. standing) (109, 112, 153), 

cadence (154, 156), gross efficiency (37, 39), muscular recruitment patterns (214, 216) and 

tactical decisions (74).  

During uphill cycling, a change in the adopted body position on the bike shifts rider 

biomechanics. Previous research has demonstrated that when riding uphill, a more upright 

body position is adopted (109). To demonstrate this, Hansen et al. (112) compared power 

output in seated vs. standing during uphill cycling and showed that a greater power output 

could be sustained for longer (30-40 s) while standing than seated at 165% of Wmax. It is, 

therefore, plausible that the greater power output values observed in this study had occurred 

when changing the angle of the bike influencing the biomechanics and body position. 

With a change in the angle of the bike shifting biomechanics, greater hamstring activation 

occurs allowing for a more even torque distribution throughout the pedal stroke. 

Specifically, muscular recruitment is influenced by the change in body position and 

cadence during uphill cycling. Due to field-based race conditions, muscular recruitment 

could not be analysed in this study, however, based upon laboratory-based evidence (153, 
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214, 227), we can assume that muscular recruitment patterns changed during alternative 

road gradients. A change in muscle recruitment also influences the metabolic cost, resulting 

in uphill cycling being less efficient. For example, Arkestein et al. (37) observed a decrease 

in gross efficiency at both +4 and +8% compared with 0% gradient at the same work rates 

and cadence. Despite the high metabolic cost, this study found that both 1 and 5MMP are 

greater with increasing gradient. The effects of gradient on MMP appear maximal at 

gradients below -3% or above +3%. However, between-3%, 0 and +3% the effects seem 

more marked with a significant difference between -1 and 0% and 1 to 2% in both 1 and 5 

MMP (Table 6.1). It is plausible that riders have reached either a physiological or 

biomechanical point at gradients greater or less than 3%.  At which there is little can be 

done to mitigate the effects of the imposed gradient and performance is compromised.  

During 5MMP, no data could be obtained at -5% and +5% road gradients. Data could not 

be obtained as there was no period of time long enough for 5 min at these road gradients. 

This demonstrates the similar issue with developing a gradient based power curve. Instead, 

rolling averages were used for 1 and 5 MMP. Several concerns have been with the use of 

rolling averages have been recently discussed within the literature (228). Menaspà et al. 

(228) states two main limitations in this process. The author states that averages overlook 

variations within a set period of time and obscure overall patterns. In this case, small spikes 

in 1MMP will be included into the 5MMP average. Also, the author states that rolling 

averages do not consider when a given stimulus happens within a set time frame. In this 

case, we do not know when the greatest 1 and 5 MMP occur throughout the stage, Future 

research should attempt to examine when the greatest MMP values are occurring similar to 

the POpeak value analysis of Chapter Four. Furthermore, 17874 ± 8291 data points had to 

be removed when calculating 5MMP leaving 4468 ± 1606 remaining for analysis. Also, 

caution should be taken as a greater number of data points were examined during the shorter 
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1MMP compared with the longer 5MMP. The difference in data points between MMP 

values may have resulted in sample bias arising from more 1MMP values. Future research 

could look at power output on differing road gradients and controlled sample sizes in the 

laboratory. This will also provide the opportunity to investigate some of the mechanisms 

proposed from this field-based research study.   

6.6 Practical Application  

Practically, the method used in this study provides a simple way of quantifying average 

power output on alternative road gradients. The resulting output provides a power-gradient 

slope which can be used to assess the demands of mountainous stages.  

6.7 Conclusion  

In conclusion, increases in road gradient results in a greater average 1MMP and 5MMP in 

professional male road cyclists from grand tour mountainous road stages. These results are 

not thought to be due to one factor but, multiple disciplinary factors including 

biomechanical position, cadence gross efficiency and changes in muscular recruitment 

patterns.   
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7 CHAPTER SEVEN 

THE WITHIN-SEASONAL DISTRIBUTION OF EXTERNAL TRAINING AND 

RACING WORKLOAD IN PROFESSIONAL MALE ROAD CYCLISTS 

 

Metcalfe A.J, Menaspà P., Villerius V, Quod M, Peiffer J.J, Govus A.D, Abbiss C.R. The 

within seasonal periodisation of external training and racing workload in professional 

cyclists. International Journal of Sports Physiology and Performance: S2 142-146 (Impact 

factor: [2015: 3.042]) 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

115 

 

7.1 Abstract  

Introduction. Professional road cyclists use power output to monitor changes in external 

workload during a season. Purpose: To describe the within-season external workloads of 

professional male road cyclists for optimal training prescription. Methods: Training and 

racing of four international competitive professional male cyclists (age 24 ± 2 y, body mass 

77.6 ± 1.5 kg) were monitored for 12 months prior to the world team time trial 

championships. Three within-season phases leading up to the team time trial world 

championships on 20th Sept 2015 were defined as phase one (Oct - Jan), phase two (Feb - 

May) and phase three (June - Sept). Distance and time were compared between training 

and racing days and over each of the various phases. Time spent within absolute (< 100 W, 

100 to 300 W, 400 to 500 W, > 500 W) and relative (0 to 1.9 W·kg-1, 2.0 to 4.9 W·kg-1, 5.0 

to 7.9 W·kg-1, >8 W·kg-1) power zones were also compared for the whole season and 

between phases one to three. Results: Total distance (3859 ± 959 vs 10911 ± 620 km) and 

time (240.5 ± 37.5 vs 337.5 ± 26 h) was lower (P <0.01) in phase one than phase two, 

respectively. Total distance decreased (P <0.01) from phase two to phase three (10911 ± 

620 vs 8411 ± 1399 km, respectively). Mean absolute (236 ± 12.1 vs 197 ± 3 W) and 

relative (3.1 ± 0 vs 2.5 ± 0 W·kg-1) power output was higher (P <0.05) during racing 

compared with training, respectively. Conclusion: Volume and intensity differed between 

training and racing over each of three distinct within-seasonal phases.   

Keywords: Time Trial, Power Output, SRM Powermeter, Training Load. 
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7.2 Introduction  

Understanding the external workload demands of professional road cyclists is necessary to 

optimise training, reduce the risk of injury and diagnose symptoms of overtraining (4). The 

use of power meters during professional cycling races and training allows for multiple 

external load measurements to be instantaneously collected during a ride. Athletes and 

sports scientists commonly analyse these measurements to assess performance and to aid 

in their decision making processes.  

The external workload in professional male cyclists has been previously described during 

road racing (10, 15, 26, 36, 44) and training (19). While these studies add to a wealth of 

knowledge on external workload, the within-season distribution of workload during both 

training and racing is not well understood. Indeed, such research is limited to a detailed 50-

week account of a world-class female triathlete in preperation for the Olympic-distance 

triathlon event (16).Therefore, the purpose of this study was to investigate the within-

season distribution of external workload in four professional road cyclists throughout a 

cycling season and preparing for the world team time trial championships.   

7.3 Methods  

7.3.1 Participants 

The training and racing of four professional male cyclists (mean ± SD: age 24 ± 2 y, body 

mass 77.6 ± 1.5 kg, height 184.0 ± 4.3 cm) from the same professional cycling team were 

monitored for 12 months (October 2014 - September 2015) prior to the world team time 

trial championships held on 20th September 2015, Richmond, USA. The cyclists were 

classified as level 5 based on the study of De Pauw et al. (209). Furthermore, all four 

cyclists had previously won a stage at the the Giro d’Italia and two were winners of national 

ITT and road racing events. Body mass measurements were taken in July/August 2015. All 
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participants gave their written informed retrospective consent on the condition that 

individual data were reported as mean group data. The study was approved by the Edith 

Cowan University Human Ethics Research Committee. 

7.3.2 Experimental design  

In total 1124 training and racing files were retrospectively collated over the season with all 

participants competing in the team time trial at the championships. 56 files were removed 

due to error resulting in 1068 files retrospectively analysed.  For the purpose of this study, 

the cycling season was defined as October 2014 to September 2015. Within-season 

periodised macro cycles were defined by coaches/sports scientists as general base 

preperation (phase one; Oct 14  Jan 15), racing (phase two; Feb 15 - May 15) and event 

preperation (phase three; June 15 - Sept 15). All riders had planned to peak at similar times 

during the season and took part in a Giro d’Italia grand tour cycling event in May 2015. 

The world team time trial championship was a flat (240 m elevation change) (210) 38.6 km 

event with the winning team completing the course in 42 m 07 s (55.2 km·h-1).  

All training and racing data were collected using SRM (SRM Training Systems, Schoberer 

Rad Messtechnik, Jülich, Germany) power meters. All data were sampled at 1Hz. The SRM 

power meter device has been previously reported to have acceptable validity and reliability 

(45, 51). All power meter were statically calibrated at the beginning of the season 

(November/December) and re-calibrated if battery replacement occurred during the season. 

The SRM PowerControl was set to automatically perform the zero-offset for every session 

(training and racing). Following each training or racing session, race files were uploaded 

online with Training Peaks (Peaksware LLC, Lafayette, CO, USA) and later analysed using 

Microsoft Excel.  
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7.3.3 Data analysis  

The total distance, time and mean absolute (W) and relative (W·kg-1) power output were 

measured over the whole season and compared between phases one to three. Each phase 

consisted of 17 weeks. The total volume and mean absolute and relative power output were 

also separated into racing and training days and compared over the whole season. 

Furthermore, total volume and power output during training and racing for each week and 

in separate phases (one to three) were compared. Time spent within discrete, previously 

defined (9, 10) exercise intensity power zones, in absolute (< 100 W, 100 to 300 W, 300 to 

500 W and > 500 W) and relative values (0 to 1.9 W·kg-1, 2.0 to 4.9 W·kg-1, 5.0 to 7.9 

W·kg-1and > 8.0 W·kg-1) were also evaluated between phases one to three. 

7.3.4 Statistics 

Linear mixed models were used to compare differences in mean total distance, time and 

mean power output overall, between training and racing days and the percentage of exercise 

intensity spent in each phase. Models were fitted using nlme package (Version 3.1-127) 

(229) and follow up tests were conducted using the phia package in the R statistical 

program (212). All models were compared to a null model (i.e. with no explanatory 

variables) using Akaike Information Criteria. Where necessary, models were fit with 

random intercept and slope to account for variable rates of change between each athlete 

and selected as the parsimonious model when minimising the AIC value. Two-tailed 

statistical significance was accepted at P ≤0.05. Results are expressed as (Mean ± SD, [95% 

CI]). 

7.4 Results 

The total distance, time and mean power output for the whole season and during phases 

one to three are summarised in table 7.1. Total distance increased from phase one to phase 



 

 

119 

 

two (40%; P <0.05). Furthermore, total distance decreased from phase two to phase three 

(-22%; P <0.01). Absolute mean power output decreased from phase two to phase three (-

9%; P <0.01).  

Table 7.1: The weekly total distance, time and mean power output absolute and relative 

for the whole season and during each periodised phase (Mean ± SD, [95% CI]).  

 

Whole 

Season 

(n=1068) 

Phase One 

(n=309) 

Phase Two 

(n=399) 

Phase Three 

(n=360) 

Weekly 

Total 

Distance 

(km) 

508.6 ± 53.1 

[424, 593.2] 

396.4 ± 55.4* 

[308.2,484.7] 

627 ± 35.8 

[575.6,687.7] 

486.1 ± 80.8* 

[357.5,614.9] 

Weekly 

Total Time 

(h) 

16.4 ± 1.5 

[14,18.9] 

13.9 ± 2.1* 

[10.4, 17.3] 

19.4 ± 1.5 

[17, 21.9] 

16.8 ± 0.3 

[13.6,20.2] 

Absolute 

Power 

Output (W) 

208 ± 5 

[199, 218] 

216 ± 9** 

[201, 231] 

221 ± 8 

[208,234] 

201 ± 6* 

[191,211] 

Relative 

Power 

Output 

(W·kg-1) 

2.8 ± 0.3 

[2.6, 2.9] 

2.8 ± 0.3 

[2.5, 3.2] 

2.8 ± 0.3 

[2.4, 3.3] 

2.6 ± 0.3 

[2.3, 3] 

*Significantly different (P <0.05) from phase two, ** phase three. 

 

The comparison of total training and racing distance, time and mean power output for the 

whole season and during phases one to three are summarised in table 7.2. Training time 

was higher (39%) than racing (P <0.05), training absolute mean power output was lower 

(19%) than racing (P <0.05). Racing distance increased by 192% from phase one to phase 

two (P <0.01). Racing time increased by 548% from phase one to phase two (P <0.01). The 

percentage of time in each exercise intensity zone across each phase is displayed in figure 

7.1. 
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Figure 7.1: Mean time (expressed as a total percentage of A, absolute power output and B, 

relative power output) spent in exercise intensity zones during each phase. Standard 

deviations and statistical significance symbols have been omitted for the clarity of the 

figure. 

 

Total time in the absolute 300 to 500 W and relative 5.0 to 7.9 W·kg-1 zone was higher in 

phase two compared to phase one (P <0.01). Total time in the absolute 100 to 300 W and 

relative 2.0 to 4.9 W·kg-1 zone was lower in phase two compared to phase one (P <0.01).  

Total time in the absolute 300 to 500 W and relative 5.0 to 7.9 W·kg-1 zone was lower in 

phase three compared to phase two (P <0.05). Total time in the 100 to 300 W and relative 

2.0 to 4.9 W·kg-1 zone was higher in phase three compared to phase two (P <0.05). The 

total weekly differences in training and racing duration and distance are displayed in figure 

7.2. 
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Table 7.2: The overall season volume (distance and time) and mean power output absolute and relative between training and racing. Also, phase 

volume and mean power output absolute and relative between training and racing (Mean ± SD, [95% CI]).   

* Training was significantly different to racing in respective whole season and individual phases.  

# Significantly different (P <0.05) from phase one. 

 

 Whole Season (n=1068) Phase One (n=309) Phase Two (n=399) Phase Three (n=360) 

 Training (n=762) Racing (=306) 

Training 

(n=279) 

Racing (n= 30) 

Training 

(n=232) 

Racing (n=167) 

Training (n= 

251) 

Racing 

(n=109) 

Total Distance 

(km) 

14841 ± 2344 

[11111,18571] 

11457 ± 1023 

[9829,13085] 

5776 ± 1306 

[3698,7855] 

1214 ± 381 

[608,1821] 

4326 ± 1625 

[1776,6947] 

6549 ± 1580# 

[4034,9065] 

4646 ± 393 

[4021,5272] 

5140 ± 1054 

[3463,6818] 

Total Time(h) 

533 ± 58.1* 

[441.4,625.9] 

322 ± 27.8 

[277.8,366.2] 

212.3 ± 34 

[158.1,266.4] 

28.2 ± 3.8 

[22.1,34.3] 

156 ± 46.6 

[87.8,234.1] 

183.8 ± 43.5# 

[114.5,253] 

152.5 ± 19 

[122,175] 

140 ± 12 

[25.6,254] 

Absolute Power 

Output (W) 

197 ± 8* 

[185, 210] 

236 ± 12 

[217, 255] 

201 ± 6 

[191,211] 

233 ± 20 

[200,266] 

200 ± 9 

[185,214] 

242 ± 10 

[225,259] 

191 ± 9 

[176,206] 

216 ± 16 

[191,242] 

Relative Power 

Output (W·kg-1) 

2.5 ± 0.1* 

[2, 2.9] 

3.1 ± 0 

[2.9, 3.2] 

2.5 ± 0.1 

[2.2, 2.8] 

3.1 ± 0.1 

[2.8, 3.4] 

2.5 ± 0.1 

[2.1, 2.9] 

3.2 ± 0 

[3, 3.3] 

2.3 ± 0.1 

[2, 2.6] 

3 ± 0.1 

[2.7, 3.2] 
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Figure 7.2: The mean weekly total duration (A) and distance (B) for training and racing 

over the whole season. 
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7.5 Discussion  

The aim of this study was to investigate the within-season distribution of external workload 

in four professional male road cyclists racing throughout the cycling season and preparing 

for the world team time trial championships. The distribution in total volume (distance and 

time) covered was significantly lower during phase one compared to phases two and three 

(Table 7.1). Furthermore, the total racing volume (distance and time) significantly 

increased from phase one to phase two (Table 7.2).  

The off-season period for these specific professional road cyclists was during phase one, 

resulting in the observed lower total cycling distance covered as well as lower total ride 

time (Table 7.1). While no differences were observed in relative mean power output 

between phases, a lower absolute mean power output during phase three compared to 

phases one and two (Table 7.1) was observed. It is plausible that during phase one, riders 

are completing longer aerobic based training (279 training vs. 30 race days) rides (Figure 

7.2) compared to phase three (251 training vs. 109 race days), however, lower absolute and 

relative mean power output intensities were not significantly different between phases 

(Figure 7.1). It is unsurprising that phase two resulted in the highest absolute mean power 

output due to all riders inclusion in a grand tour event also resulting in the greatest amount 

of racing days during phase two (167 days). Post grand tour, riders conducted a lower 

intensity recovery period, possibly causing the lower absolute mean power output in the 

final phase. Furthermore, in preparation for the world team time trial championship, time 

was spent on time trial bikes which could cause an overall lower mean absolute power 

output.  

Differences were observed in the time spent in absolute (100 to 300 W and 300 to 500 W) 

and relative (2.0 to 4.9 W·kg-1 and 5.0 to 7.9 W·kg-1) power output intensity zones (Figure 
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7.1). Time in the 300 to 500 W zone significantly increased from phase one (19%) to phase 

two (23.4%). An increase by 4% was also seen in the relative 5.0 to 7.9 W·kg-1 zone. This 

demonstrates that riders were spending more time at a lower intensity (100 to 300 W/2.0 to 

4.9 W·kg-1) during the off-season in phase one (Table 7.2). Much of this increase in cycling 

intensity is likely to be the result of greater racing in phase two. Indeed, by examining the 

week by week variation in training distance and duration (Figure 7.2), participants 

considerably reduce training load to compensate for increased competition. Whether or not 

such training optimally prepares athletes for competition is not clear. However, results of 

the present study highlight the training and competition demands of elite-level cyclists. As 

a result of the increased time during phase two in the absolute 300 to 500 W zone, a lower 

percentage time in the 100 to 300 W zone in phase two (51.2%) compared to phase one 

(57.3%) was observed. An observation also shared in the relative power output intensity 

zones. These results are similar to previously reported adjustments (19) in the training 

intensity of elite under 23 male road cyclists between winter and spring periods. 

Interestingly, phase three showed the reverse effect with time in the absolute 300 to 500 W 

zone decreasing (19.6%), resulting in an increase in time during the 100 to 300 W zone 

(55%), similar to phase one (57.3%). This observation is also supported by the relative 

power output with a 5.3% increase between phases two and three in the time spent at 0 to 

1.9 W·kg-1. Although a decline in overall training and racing volume would be expected in 

tapering preparations (230) for the world team time trial, a considerable reduction in the 

time spent at threshold (300 to 500 W/5.0 to 7.9 W·kg-1) intensities was observed 

throughout phase three. The reduction in training volume at threshold throughout this 

phase, and not just in the taper for this event, could be due to riders spending a long period 

of time racing a grand tour event in phase two followed by short high intensity races in 

phase three (Figure 7.2).  
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A limitation of these observations in this study are that body mass was only measured at 

the end of the season (July/August). Variation in body mass during the season may have 

altered the measurement of relative power output and, therefore, influenced the 

interpretation of our data. Future research should regularly measure body mass throughout 

the season to obtain a more accurate determination of relative power output and provide 

individualised training zones. 

7.6 Conclusion  

In conclusion, this study describes the within-season distribution of external workload in 

four professional road cyclists. It was found that volume and intensity differed between 

training and racing over each of three distinct within-seasonal phases. This investigation 

provides a brief insight into within-seasonal training and racing differences in professional 

male road cyclists. 
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8 CHAPTER EIGHT 

GENERAL DISCUSSION 

8.1 Summary 

This thesis examined multiple factors (e.g. topography, road gradient and rider) which 

influence power output and thus the quantification of external workload during single and 

multi-stage professional cycling events. This thesis also examined current methods used to 

measure and analyse cycling power output and investigated multiple methods to improve 

this process. The outcomes of this research provide new insights into how various 

environmental factors may influence the assessment of external workload within male 

professional cycling. An overview of the external work demands of such competition is 

also provided.  

The primary purpose of Study One was to describe the frequency distribution of POpeak 

values from different stage topography categories (flat, semi-mountainous and 

mountainous).  It was hypothesised that a greater frequency of POpeak values would occur 

during the final section (> 80% of the total race distance) of flat stage races as exercise 

intensity increases towards the finish. Indeed, 54% of POpeak values did occur within the 

final 20% of flat stage races compared with 46% of POpeak values between 0 to 80% of 

stage race time (Figure 3.1). It was hypothesised that during semi-mountainous and 

mountainous stages, the frequency of POpeak values would be more evenly distributed 

across the stage races as fewer explosive high-intensity efforts are required/produced. 

Indeed, 75% of POpeak values in semi-mountainous stages occurred between 0 to 60% of 

race time compared with 25% between 60 to 100% of race time (Figure 3.1). Whereas in 

mountainous stages 50% of POpeak values occurred between 0 to 60% of race time with the 

other 50% of POpeak values occurring between 60 to 100% of race time (Figure 3.1). These 
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results demonstrated that differences occur in the distribution of POpeak values during 

differing stages of varying topography. It is important to understand where POpeak values 

are distributed as this will aid in understanding the stochastic nature of road cycling. It will 

also help in understanding where key points in a professional road race occur on differing 

topographies, possibly influencing tactical decisions.  

The increase in frequency of maximal effort observed towards the end of flat stages in 

Study One was likely associated with the increased likelihood of a sprint finish in flat 

stages. Research has examined the power output requirements of professional road cyclists 

leading into a sprint finish and indicates that power output is extremely stochastic and 

gradually increases prior to the sprint (144). In a simulated trial Menaspà et al. (164) used 

three arbitrary time periods (10, 5 and 1 min) to mimic the power output demands in the 10 

min prior to maximal sprint performance. A limitation of Menaspà et al. (164) is that the 

time periods were arbitrarily selected with little justification for the time periods chosen. 

Therefore, the secondary aim of Study One was to use a novel changepoint method to 

analyse the distribution of power output 600 s prior to POpeak efforts in stages of differing 

stage topography (i.e. flat, semi-mountainous and mountainous). It was hypothesised that 

during flat stages, power output 600 s prior to POpeak would progressively increase, as 

observed by Menaspà et al. (164). Furthermore, a more even distribution would be observed 

in power output prior to POpeak in semi-mountainous and mountainous stages. In flat stages, 

while power output increased from segment one to two, a decrease was observed from 

segment three to four (Table 3.1). Power output did not linearly increase in semi-

mountainous and mountainous stages prior to POpeak. Power output was significantly 

greater in flat and semi-mountainous topography categories from segment three to segment 

four (Table 3.1). This is probably due to anticipation of a sprint or breakaway occurring. 
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Future research should look into sprints and breakaways to conform this observation in 

power output.   

A benefit of the analysis used in Study One was that the four largest changes in power 

output within the 600 s prior to the POpeak were statistically determined (Figure 3.2), rather 

than arbitrarily selected as in prior research (159). This analysis provided differing 

increments in time and is thus important in the development of ecologically valid road 

cycling simulation protocols. It is important to note that the analysis conducted in this study 

is probably best used on an individualised basis rather than grouped, as grouping the data 

together may cause the loss of individual responses, which is not useful for this type of 

analysis. Changepoint analysis could be used for any time series based data sets. For 

example, MMP is typically measured at a range of time points determined by the 

experimenter and not always consistent in the literature. For instance, Quod et al. (27) 

measured MMP at 5, 15, 30, 60, 240 and 600 s whereas Pinot and Grappe (26) measured 

MMP at 30, 60, 90, 120, 150, 180, 210 and 240 s. Changepoint analysis may provide an 

alternative method for determining of the ideal exercise durations to examine, while the 

number of time points to include may still be debatable. For example, figure 8.1 shows a 

power-duration time curve of a single professional road cyclist from a single stage. Rather 

than the investigator selecting where the MMP is calculated (i.e. 5, 15, 30 s etc.), 

changepoint determined the seven largest statistical adjustments across all power values 

within the stage. The outcome is an adjusted set of segments (highlighted in red) which 

would hypothetically increase and decrease in length depending on the factors alluded to 

within this thesis including topography categories, rider specialities and fitness.  
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Figure 8.1: Example of a hypothetical changepoint analysis to develop a power-duration 

curve. Investigator based maximal power values have been removed and replaced by the 

seven biggest statistical changepoint segments using whole stage power output in a single 

professional male road cyclist.  

The POpeak values observed in Study One differed over stages of varying topography. This 

finding is not surprising since it has been demonstrated that MMP decreases during multi-

stage racing at an altitude greater than 3000 m, compared with sea level (62). However, 

within this study, the decrease in MMP observed at 3000 m is likely due to the effects of 

altitude (i.e. partial pressure of oxygen) on aerobic function and athletic performance (62). 

While MMP has been investigated during multi-stage (27, 62), grand tour (15), within-

season (25, 26, 30) and between seasons (44), only one study has directly examined MMP 

over differing topographies (15). Furthermore, only one study (26) has investigated any 

change in MMP between rider specialities. However, this study was conducted with 10 

months of data, therefore, systematic studies on MMP during a variety of multi-stage races 

and grand tours are still required in order to better understand the specific demands of these 

events. It is also important to note that cycling stages of differing topography are not only 
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influenced by altitude but also changes in road gradient, race dynamics and individual and 

team tactics, which may have varying effects on external workload demands. 

Consequently, the primary aim of Study Two was to examine if MMP differs across stages 

of various topographies and rider specialities. It was also hypothesised that MMP from 

shorter durations (~ 5 to 60 s) would be lower in domestiques compared to all other rider 

specialities due to the constant power output required to protect other rider specialities. It 

is also plausible that MMP observed over longer durations would be greater in domestiques 

compared with other rider specialities. A secondary aim of Study Two was to determine if 

the percentage of race time spent in different power output bands differs between categories 

of varying topography, gradient and rider speciality. It was hypothesised that the percentage 

of race time spent at high power outputs would be greater in mountainous compared with 

flat stages, steep (> 5%) compared with flat road gradients and in sprinters and climbers 

compared with domestiques and general classification riders.  

Study Two found that MMP differs between topography categories and rider specialities. 

Specifically, power output averaged over durations longer than 1200 s were lower in flat 

stages, when compared with semi-mountainous and mountainous stages (Figure 4.1). These 

results are of importance since power output during mountainous stages may be 

compromised due to the increased likelihood of altitude negatively affecting aerobic 

performance. Instead, we observed greater MMP outputs over durations important in 

aerobic function (> 1200 s) during mountainous stages. It was concluded that a significantly 

greater portion of race time spent on steep gradients during semi-mountainous and 

mountainous stages allowed for prolonged periods of high power output. Indeed, the race 

time spent in power zones at different gradients from Study Two provide evidence for this 

conclusion. In Study Two, significantly more race time was spent in higher power output 

bands (3.76-4.55 to > 7.5W·kg-1) on road gradients of greater than 5% compared with road 
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gradients of less than 5% (Figure 4.3C). Regardless of the causes of such differences, the 

findings indicate that it is important that researchers and coaches consider topography 

categories before analysing a cyclist’s MMP. This is especially important when coaches 

and athletes may be using MMP from racing and training data to determine fitness 

characteristics of athletes (27). Utilising data from only one topography type may not 

provide a true indication of an athlete’s performance capabilities. Furthermore, from these 

data it can be presumed that mathematical modelling which is reliant on such performance 

characteristics may be influenced by topography. Indeed, CP is commonly estimated using 

field-based MMP outputs (33, 34) and may be influenced by the topography over which 

field-based data are obtained.  

 Henceforth, the aim of Study Three was to examine if estimated CP differs when calculated 

from stages of differing topography (flat vs. semi-mountainous vs. mountainous). It was 

hypothesised that CP estimated from grand tour race data would be greater in semi-

mountainous and mountainous stages, when compared with flat stages. No significant 

difference was observed in estimated CP from semi-mountainous and mountainous stages 

compared with flat stages (5.9 ± 1.1 and 5.7 ± 0.6 vs. 5.2 ± 0.9 W·kg-1 respectively; Figure 

5.1). However, a large effect (d = 0.8) was observed in estimated CP from semi-

mountainous and mountainous stages compared with flat stages. The influence of 

topography categories was unsurprising given that Study Two had already observed 

significant differences in grand tour MMP outputs from which the estimated CP values (12, 

7 and 3 min) were derived. Consequently, both MMP outputs and estimated CP are 

influenced by topography categories. Indeed, the task demands, biomechanics, pedal force, 

economy and cycling pattern change when cycling on the flat and uphill and as such it is 

plausible that the change in MMP and consequently CP is because cyclists are able to 

produce greater power outputs at an incline. Therefore, the secondary aim of Study Three 
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was to remove race dynamics and examine the performance capabilities of a professional 

road cyclist using FLAT and UPHILL field-based tests. Based on the findings in Study 

Two it was hypothesised that estimated CP determined from an UPHILL test would be 

greater than a FLAT test. CP during the UPHILL field-based test was 0.6 W·kg-1 greater 

than with the FLAT field-based test (Table 5.2). In this case, MMP, and consequently 

estimated CP, were greater when cycling uphill compared with on the flat.  The tests were 

done at approximately 2500 m where an increased altitude should cause a decrease in power 

output (60, 231) resulting in lower aerobic function and, therefore, a lower CP. While 

previous studies have acknowledged the influence of road gradient in cycling speed and 

cadence (154), our understanding of road gradient on power output is limited. Furthermore, 

the results of Study Three have implications for research utilising CP for modelling (e.g. 

AWC) particularly when examining events where gradient may continuously change. This 

is commonly the case during semi-mountainous and mountainous stages which are often 

conducted at moderate altitudes. Indeed, AWC models do not appear to be very accurate 

when examined at altitude (202). Future AWC models may need to account for the change 

in task demands (and CP) observed as a result of changes in gradient.  

From Study Two it is unclear if the greater power output observed over long durations in 

semi-mountainous and mountainous stages was because of tactics, race dynamics, the time 

spent on climbs or if cyclists produce greater power output while riding up an incline.  

Study Four aimed to investigate the association between road gradient and MMP in 

professional male road cyclists during mountainous stages from a grand tour event. The 

MMP produced over varying gradients was determined using averages from successive 5 s 

to 3600 s time periods of the entire event (Figure 8.2). However, there were several flaws 

with this analysis. Firstly, flat and some semi-mountainous stages did not contain any road 

gradient values greater than 5%. This meant that the majority of power output values in the 
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greater than 5% power output band were only from mountainous stages. Secondly, no 

period of time of more than 600 s at gradients of greater than 5% could be found. This is 

because no time during a tour is spent longer than 600 s at a constant gradient greater than 

5%. Interestingly, decents (<0%) appear to have higher 1 to 60 MMP compared with 

accents (0 to 5% and >5%). Higher MMP when cycling downhill may be due to the short 

sharp increases in power output when accelerating out of corners. Clearly, mountainous 

stages have the greatest changes in road gradient. Study Four examined the 1 and 5 min (60 

and 300 s) MMP outputs from mountainous stages during grand tour events. It was 

hypothesised that the steeper the road gradient (-5 to +5%), the greater the average 1 and 5 

MMP.  

 

Figure 8.2: Attempted MMP curve from thirteen professional road cyclists using three 

gradient based power output bands during a grand tour. 

Study Four found that the steeper the road gradient, the greater the average power output 

for both 1 and 5 MMP (Table 6.1). The reason for these results could be due to an array of 

factors including altered tactics, changes in cycling biomechanics, muscle requirement and 
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cycling efficiency between uphill and flat cycling. A change in the biomechanics of cycling 

uphill allows for greater hamstring activation and a more even torque distribution 

throughout the pedal. The change in muscle recruitment influences the metabolic cost of 

uphill cycling causing a decrease in efficiency. With a decrease in efficiency, exercise 

capacity and, therefore, performance should be lower. Regardless of the greater metabolic 

cost, power output at both 1 and 5 MMP increased with steeper gradients (Table 6.1).  

In Study Three, the UPHILL CP test was conducted at a road gradient of 6.2 ± 1% (Figure 

5.3). Road gradients greater than 6%, similar to Study Three, were unavailable in Study 

Four because grand tours do not have sections of the race greater than 6% road gradient. 

The greatest road gradients available from grand tours in Study Four were 5% for 1MMP 

and 4% for 5MMP. Study Four provides slightly more detail on the influence of gradient 

on external workload demands during competition. The reasons the observed power output 

remained the same are multiple and mechanistic including biomechanical position, 

cadence, gross efficiency and alternative muscular recruitment patterns.  

Within the initial chapters of the thesis power output was examined over a single (Study 

One), multi-stage (Studies Two and Three) and grand tour events (Study Four). Within the 

cycling literature little is known on external workload demands over a longitudinal period. 

Therefore, Study Five aimed at describing the within-season external workloads of 

professional male road cyclists. Specifically, Study Five monitored four professional male 

road cyclists for 12 months in preparation for the world team time trial championship. The 

volume (distance and time) and exercise intensity were measured overall and between 

training and racing in three defined macro cycle phases (Table 7.2) and week-by-week 

(Figure 7.2). Study Five provides coaches, practitioners and enthusiasts with an insight into 

the external workload demands of professional road cyclist’s preparing for the world team 
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time trial. Using three coach defined macro cycle phases, external workload was found to 

dramatically shift throughout the season.  

Although not reported in Chapter Five, the changepoint analysis used in Study One 

confirms the three distinct macro cycles determined by team coaches. Indeed, the training 

and racing duration and distance data from figure 7.2 in Study Five were reproduced and 

analysed using changepoint analysis (Figure 8.3). Changepoint statistically defined the 

three largest changes in duration and distance for training and racing over the whole season. 

Figure 8.3 demonstrates that the changepoint analysis was able to resemble the three 

macros cycle phase’s as described by the coaches.  From the data it can be assumed that 

riders were accurate in achieving their specific external workload phase plans and that 

changepoint analysis can be used for the longitudinal analysis of workload in sport and 

exercise science research. 
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Figure 8.3: The duration and distance for training (A, C) and racing (B, D) analysed using 

changepoint analysis.  

The findings from Study Five indicated that volume and intensity significantly differed 

between training and racing over each of the three distinct within-season phases. In short, 

the off season (phase one) was clearly identified with a significantly lower volume and 

intensity compared with phases two and three (Table 7.1 and Figure 7.1). Also, the weekly 

volume and intensity differed between training and racing (Table 7.2 and Figure 7.2) Study 

Five provides a rare and brief insight into within-seasonal training and racing differences 

in professional male road cyclists.  While training theory and periodisation are relatively 

well understood, little data has been published reporting the actual practice and external 

workload demands of professional road cyclists. Ultimately, the lack of peer-reviewed 

studies investigating the longitudinal practices is likely due to the reluctance of professional 

male road cyclists willing to release long periods of power output data and maintaining 

regular up-to-date records. Furthermore, the majority of data describing external workload 

demands in cycling were from an era known to involve doping and as such, the findings 
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from this study provide a more recent overview of the seasonal external workload demands 

in cycling.   
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8.2 Practical Implications 

The outcomes of this thesis enhance current understanding of how to analyse external 

workload data in cycling. A new technique for data analysis has been explored using 

changepoint (Study One). Additionally, the influence of topography and road gradient on 

external workload demands during professional road racing has been extensively 

examined. While these new potential techniques are not designed to replace existing ones, 

they are intended to aid the analyser in providing accurate feedback to the rider and enhance 

understanding in professional road cycling.  

This thesis also employed conventional techniques currently used by professional road 

cycling teams and enthusiasts to analyse power output data including MMP (Study Two), 

CP (Study Three) and the percentage of power output in time bands (Study Four and Five). 

These were examined over varying topography categories and rider specialities. An 

accurate understanding of how topography categories and rider specialities influence this 

analysis should be undertaken when interpreting power meter data. Indeed, this thesis 

demonstrates that these factors are likely to influence the power output of cyclists and thus 

influence current methods used within cycling power analysis. It is recommended that 

estimated CP is measured on differing topographies (i.e. flat vs. uphill). For modelling CP, 

specific topography values are used to provide a more accurate estimation.  

Overall, the data used in this research are rare, especially in the sense that they are drawn 

from two professional male road cycling teams. This thesis provides a brief insight into the 

demands of professional male road cyclists from within a stage, across a multi-stage race, 

a grand tour or throughout a whole season. This thesis also demonstrates the importance of 

monitoring and developing procedures undertaken by professional cycling teams so that 

these can be understood and used by amateur enthusiasts.  



 

 

139 

 

8.3 Limitations 

The outcomes of this thesis have important practical and theoretical applications. However, 

some limitations apply. Firstly, the SRM power meter is a validated and reliable power 

meter (Table 2.2) for collecting field-based power output data. However, some riders 

collected their recordings and downloaded data post ride. Power meters were not always 

used during stages, specifically in Study Five and were not always working during each 

ride. Secondly, where available, data have been converted from absolute power to relative 

body mass power. Body mass data was not always available and when available, not always 

regularly measured. Finally, all studies within this thesis present field-based data. We have 

to be cautious when interpreting field-based data as multiple environmental factors 

including temperature, humidity and wind resistance will influence measurements. 

However, measurements provided in this thesis represent the real-world demands of 

professional male road cycling. Conversely, the laboratory is an indoor environment and 

fails to represent a real-world environment. 
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8.4 Directions for Future Research 

Despite the findings presented, several practical and theoretical questions related to power 

output and cycling analytics remain. Firstly, future research should investigate the 

application of time series based analysis such as changepoint as addressed in Study One 

and in the general discussion. Secondly, the influence of gradient on critical power should 

be investigated further and tested at sea-level and mechanistically within a laboratory 

environment. Thirdly, studies should investigate other external factors which could 

influence power output measurements such as altitude, heat and wind resistance. 
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8.5 Conclusion 

In summary, this thesis examined multiple factors which influence power output as a 

measurement of external workload on single and multi-stage cycling performance in 

professional male road cyclists. This thesis also examined the current methods used in 

analysing external workload data and investigated multiple methods in improving this 

process.  This thesis concludes the following:  

1) Power output is stochastic and can be modelled over time using a variety of time 

series analysis techniques such as changepoint (Study One).  

2) Caution should be taken when interpreting MMP and CP values (Studies Two 

and Three). External environmental factors including topography, road gradient 

and rider speciality appear to affect these measurements.  

3) Road gradient changed estimated CP (Study Three) as well as 1 and 5 MMP 

output during grand tour mountainous stages (Study Four).  

4) The external workload in professional male road cyclists varies during the 

season (Study Five).  
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