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Numerical modeling of virus transport through 
unsaturated porous media
Kandala Rajsekhar1, Pramod Kumar Sharma1,2* and Sanjay Kumar Shukla2

Abstract: This paper describes the movement of virus in one-dimensional unsatu-
rated porous media. The governing virus transport equations consider the inac-
tivation in liquid phase, liquid–solid interface, air–liquid interface, and sorption in 
both liquid–solid and air–liquid interfaces. Finite-volume method has been used for 
solving the advection and dispersion processes of the virus transport equation. The 
effects of transport parameters on virus concentration profiles have been investigat-
ed for virus present in liquid phase, adsorbed liquid–solid and liquid–air phases. The 
results show that the movement of viruses in three phases is affected by soil mois-
ture, inactivation rate, pore velocity, and mass transfer coefficients. It is found that 
the magnitude of virus sorption is higher at the air–liquid interface as compared 
to the liquid–solid interface. A higher value of mass transfer coefficient leads to an 
increase in the virus concentration in both liquid–solid and air–liquid interfaces.

Subjects: Hydraulic Engineering; Pollution; Water Engineering

Keywords: virus transport; numerical method; unsaturated media; virus concentration 
profiles

1. Introduction
In the past few decades, it has been noticed that the level of groundwater contamination has in-
creased due to increase in industrial and agricultural activities. The presence of viruses in drinking 
water causes human diseases and it originates from septic tanks, sewage sludge, sanitary landfills, 
and agricultural practices. The experimental studies reported in the past indicate that the virus sur-
vives for a certain period of time in unsaturated porous media before reaching into the subsurface 
water (Chu, Jin, Baumann, & Yates, 2003; Schaub & Sorber, 1977; Yates & Ouyang, 1992; Yates, Yates, 
Wagner, & Gerba, 1987). Hence, it is essential to understand the transport process of viruses through 
the unsaturated porous media to prevent further contamination of subsurface aquifer system.
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Unsaturated porous media consist of liquid, solid, and air phases and for water-wet solid surfaces, 
both liquid–solid and air–liquid interfaces exist (Freeze & Cherry, 1979). It is also known that the 
unsaturated zone plays an important role in the transport of fluids and contamination from the 
surface to the groundwater. Virus sorption within unsaturated porous media is affected by the pres-
ence of two interfaces. Viruses are sorbed onto liquid–solid interfaces via physical adsorption, chem-
ical sorption, or ion exchange (Vilker & Burge, 1980). Vilker (1981) has suggested that non-equilibrium 
kinetic sorption is appropriate for describing virus attachment to the liquid–solid interfaces and for 
viruses with size similar to the size of solutes. This sorption process represents the rate of approach 
to equilibrium between adsorbed and liquid-phase virus concentration considering virus transport to 
the outer layer of a solid particle by mass transfer. Powelson, Simpson, and Gerba (1990) have sug-
gested that the virus sorption is greater at air–liquid than liquid–solid interfaces. Virus sorption takes 
place at the liquid–solid interfaces due to electrostatic double-layer interactions and van der Waals 
forces (Teutsch, Herbold-Paschke, Tougianidou, Hahn, & Botzenhart, 1991). Tim and Mostaghimi 
(1991) developed a numerical model for water flow and virus transport in variably saturated porous 
media assuming that the virus sorption is an equilibrium process. Park, Blanford, and Huyakorn 
(1992) developed a semi-analytical model for both steady state and transient vertical virus transport 
in the unsaturated media and along the flow lines in the saturated zone considering equilibrium 
sorption and first-order inactivation. Yates and Ouyang (1992) developed a one-dimensional nu-
merical model for flow of water, viruses, and heat in unsaturated porous media considering mois-
ture-independent sorption, filtration, and temperature-dependent inactivation. Adsorption and 
inactivation are two different processes of virus removal, and viruses can get detached from the soil 
media because of the ions present in the groundwater (Bales, Li, Maguire, Yahya, & Gerba, 1993). 
Virus sorption at air–liquid interfaces is controlled by virus particle surface hydrophobicity, solution 
ionic strength, and particle charge (Wan & Wilson, 1994). Poletika, Jury, and Yates (1995) have 
showed that the viruses at an air–liquid interface may be desorbed under high interfacial shear 
stresses induced by fast interstitial fluid flow.

Virus inactivation is generally considered as a first-order irreversible sink mechanism (Sim & 
Chrysikopoulos, 1996). Recently, the mathematical models have been developed for virus transport 
in saturated porous media considering different inactivation rates for viruses in different phases (Sim 
& Chrysikopoulos, 1996, 1998, 1999). Schijven and Šimůnek (2002) have shown that the factors like 
size, attachment characteristics, and rate of inactivation affect the movement of viruses in porous 
media. Due to advection and dispersion, viruses get spread in the soil media which reduces its con-
centrations. The removal of viruses from the groundwater occurs due to the processes of adsorption 
and inactivation (Chattopadhyay, Chattopadhyay, Lyon, & Wilson, 2002; Chu, Jin, Flury, & Yates, 
2001). Various factors like temperature, moisture content, pH, hydraulic conditions affect the trans-
port of viruses below the ground surface. However, the temperature significantly affects the trans-
port of viruses and a relationship between increase in temperature and inactivation rate of virus for 
different viruses has been given by Gerba and Rose (2003), and Gerba and Smith (2005). Torkzaban, 
Hassanizadeh, Schijven, de Bruin, and de Roda Husman (2006) studied the transport of bacteria 
through saturated and unsaturated porous media and their results demonstrate that the attach-
ment to the air–water interfaces is reversible. Anders and Chrysikopoulos (2009) conducted soil col-
umn experiments under both saturated and unsaturated conditions. Their results indicate that even 
for unfavorable attachment conditions within a sand column, saturation levels can affect the virus 
transport through porous media. Further, many researchers have used the numerical method to in-
vestigate movement of viruses through saturated and unsaturated porous media and also estimat-
ed virus transport parameters considering liquid and solid phases (Joshi, Ojha, Sharma, & Surampalli, 
2013; Ratha, Prasad, & Ojha, 2009; Sharma & Srivastava, 2011). Syngouna and Chrysikopoulos (2015) 
studied the effect of colloids and water saturation level on the attenuation and transport of colloids 
and viruses in unsaturated porous media. Thus, from the past research works, it is found that the 
effects of transport parameters on viruses in three phases, i.e. liquid phase, adsorbed liquid–solid 
and liquid–air interfaces have not been studied in detail. Hence, the present study describes the fi-
nite-volume method approach to solve the governing transport equation and investigates the be-
havior of movement of viruses in three phases through unsaturated porous media.
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In this study, the numerical finite-volume method has been used to solve the governing equations 
for virus transport in one-dimensional, unsaturated porous media considering virus sorption on liq-
uid–solid and air–liquid interfaces. An attempt has been made to investigate the effects of moisture 
content, inactivation rate constant, pore velocity, and mass transfer coefficients on the variation of 
virus transport along with vertical depth.

2. Governing equations

2.1. Virus transport
The governing differential equation for virus transport in one-dimensional, homogeneous, unsatu-
rated porous media can be written as (Sim & Chrysikopoulos, 2000):
 

where C represents the virus concentrations in liquid phase (ML−3); Cs represents the adsorbed at the 
liquid–solid interface (MM−1); Ca represents the adsorbed at the air–liquid interface (ML−3); θ repre-
sents the volumetric moisture content (L3L−3); q represents the specific discharge (LT−1); �, �s, and �a 
are the inactivation rate constants of viruses in the liquid phase, adsorbed in the liquid–solid inter-
face and adsorbed in the air–liquid interfaces (T−1), respectively; and ρ is the bulk density of the soil 
media (ML−3). The hydrodynamic dispersion coefficient Dz can be expressed as (L2T−1) (Nielsen, Van 
Genuchten, & Biggar, 1986):

 

where αz is the dispersivity (L), and D0 is the molecular diffusion coefficient (L2T−1).

2.2. Virus sorption at interfaces
The expressions for the viruses adsorbed at solid–liquid and air–liquid interfaces can be written as 
(Sim & Chrysikopoulos, 1999):
 

 

where k represents the mass transfer rate of liquid to liquid–solid (T−1); ka liquid to air–liquid interface 
(T−1); and Cg is the virus concentration in liquid phase (ML−3), which is in close contact with soil solids. 
It was assumed a linear equilibrium relationship by Sim and Chrysikopoulos (1996) and it can be 
expressed as:

 

 

where Kd is the distribution coefficient (L3M−1); κ is the mass transfer coefficient for liquid to liquid–
solid interface (LT−1); and aT is the specific area of liquid–solid interface (L2L−3). It can be defined as 
the ratio of total surface area of soil particles to the bulk volume of the porous medium and it is ex-
pressed as (Fogler, 1992):

 

where rp is the average radius of soil particles (L); and θs is the water content of a saturated porous 
medium. The mass transfer rate coefficient (ka) for liquid to air–liquid interface (T−1) is given as:
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where κa is the mass transfer coefficient of liquid to air–liquid interface (LT−1); aTa is the specific area 
of air–liquid interface (L2L−3); and the expression can be given as (Cary, 1994):

 

The expression for r0, i.e. the effective pore radius can be expressed as:

 

where ζ and b are the soil constants; σ is the surface tension of water (MT−2); ρw is the density of water 
(ML−3); g is the gravitational constant (LT−2);and h0 is the air-entry value (L), which is defined as the 
pore water head where air begins to enter water-saturated pores. It can be observed from Equation 
(9) that aTa is a function of moisture content and its value decreases as the available moisture con-
tent increases and becomes zero when the available moisture content is equal to the saturated 
moisture content, i.e. θ = θsat.

2.3. Initial and boundary conditions for virus transport
Initially at time t = 0, it is assumed that there is a negligible concentration of viruses present in all 
the three phases of soil media.
 

 

 

where C0 is the source concentration of virus on the ground surface.

3. Numerical model
Numerical method admits any arbitrary boundary condition and it can be used in cases of dealing 
with complex problem for which analytical solution cannot be obtained. The numerical method can 
also be used for real-field problem such as complex geometry, partial variation of hydraulic conduc-
tivity and non-linear problem. However, analytical method has limitations in case of non-linear prob-
lem; in such cases, a numerical method works very well.

The finite-volume method has been used to get the solution of governing equations for virus 
transport. Using Equations (3) and (4), the simplified form of Equation (1) can be expressed as:

 

The advective term of Equation (12) can be given as (Putti, Yeh, & Mulder, 1990):
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The operator split approach reduces the reaction terms in Equation (12) to a coupled ordinary dif-
ferential equation which can be expressed as:

 

3.1. Procedure of numerical solution
The finite-volume method is used for solving the advective transport and is based on monotone 
upwind schemes for conservation laws (MUSCL) (Van Leer, 1977). Equation (12) has been broken into 
three parts, based on the suggestion by Putti et al. (1990), in which the explicit numerical scheme is 
used for advective transport and an implicit numerical scheme is used for dispersive transport, and 
explicit method for reaction part. The advantage of this method is to handle either advection domi-
nated or dispersion dominated for solute transport through porous media accurately. This method is 
globally high-order accurate and non-oscillatory, and the detailed procedure for solution of the ad-
vective part has been given by Ratha et al. (2009), and Sharma, Joshi, Srivastava, and Ojha (2014).

3.2. Dispersive transport equation
The resulting output concentrations of the advective transport are used as the initial condition for 
dispersive transport. A conventional fully implicit finite-difference scheme, which is unconditionally 
stable, is used to obtain the final concentration at the end of time step. The implicit finite-difference 
formulation of dispersive transport equation can be expressed as:
 

where Δz and Δt are spatial grid size and time step, respectively.

Remaining Equations (3), (4), and (15) are solved using the explicit numerical method and the 
formulation is given below:
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Figure 1. Comparison of 
numerical results with 
analytical solution for spatial 
virus concentration with two 
different values of inactivation 
rate constant (t = 240 h, 
v = 4 cm h−1, D = 15 cm2 h−1, and 
k = 0.005 h−1).
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Figure 2a. Variation of liquid-
phase virus concentration with 
depth for different values of 
moisture content.

0 10 20 30 40 50 60
0.0

0.2

0.4

0.6

0.8

1.0

1.2

v = 4.8 cm/h
λ = λ  = λ  = 0s a

At ime, t = 8 h

C
 (

g 
/ c

m
 )3

Depth (cm)

θ = 0.25
θ = 0.35
θ = 0.45

Figure 2b. Variation of adsorbed 
liquid–solid interface virus 
concentration with depth for 
different values of moisture 
content.
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Table 1. Model parameters used for simulation of virus distribution with depth
Parameters Values
C0 1 g cm−3

b 2

D0 1.542E-5 cm2 h−1

g 980 cm s−2

h0 2 cm

Kd 20 cm3 g−1

rp 0.1 cm

αz 0.5 cm

ζ 160

θsat 0.45

κ 0.006 cm h−1

ρ 1.5 g cm−3

σ 74.2 × 10−3 N m−1
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4. Verification of model
The present numerical model is verified using the analytical solution given by Sim and Chrysikopoulos 
(1995). The numerical and analytical results of spatial virus concentration in liquid phase have been 
shown in Figure 1 with two different values of inactivation rate constants. The grid size Δz = 0.2 cm 
and time step Δt = 0.025 h have been used in this simulation. It can be seen that the numerical re-
sults match very well with the analytical solution. To reduce the numerical error, the values of both 
the Peclet number and Courant number are kept less than one.

5. Results and discussion
The numerical model has been used to investigate the behavior of virus concentration profiles 
through unsaturated porous media. The input parameters used for simulation are shown in Table 1 
(Sim & Chrysikopoulos, 2000), and a continuous source of virus is injected at the ground surface. 
Figures 2a–2c show the model results for spatial variation of concentration of viruses in liquid phase, 
liquid–solid interface and air–liquid interfaces for different values of soil moisture contents. The val-
ue of constant pore velocity and negligible inactivation rate coefficients are used during simulation. 
The results of virus concentration have been predicted at transport time of 8 h. The behavior of virus 
concentration is not uniform along the depth. The magnitude of virus concentration (in three phas-
es) increases with an increase in the value of moisture content for intermediate depth of soil and the 
values remain same at end depth. As the moisture content of porous media reduces from its full 
saturation to partial saturation, there is a significant decrease in the liquid-phase virus concentra-
tion and significant increase in the virus concentration sorbed at air–liquid interface. This increase is 
due to the increase in specific air–liquid interface.

Figures 3a–3c show the variation of virus concentration along with depth for different values of 
inactivation rate constants. In this study, the inactivation rate coefficients λ, λa, and λs all are as-
sumed to be constant. However, in reality, its value depends on temperature and time (Sim & 
Chrysikopoulos, 1996). It is assumed that λa  = λ and λs  = λ/2 as suggested by Yates and Ouyang 
(1992), and Thompson, Flury, Yates, and Jury (1998). The simulation is carried out with constant pore 
velocity v = 4 cm h−1, uniform water content θ = 0.35, and saturated water content θsat = 0.45. As 
expected, with an increase in the value of inactivation rate coefficients, the concentration of viruses 
in liquid phase, liquid–solid interface and air–liquid interface decreases. The behavior of virus con-
centration is non-uniform along the depth.

Figure 2c. Variation of adsorbed 
liquid–air interface virus 
concentration with depth for 
different values of moisture 
content.
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Figure 3a. Variation of liquid-
phase virus concentration with 
depth for different values of 
inactivation rate constant.
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Figure 3b. Variation of adsorbed 
liquid–solid interface virus 
concentration with depth for 
different values of inactivation 
rate constant.
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Figure 3c. Variation of adsorbed 
liquid–air interface virus 
concentration with depth for 
different values of inactivation 
rate constant.

0 10 20 30 40 50 60
0.00

0.05

0.10

0.15

0.20

v = 4 cm/h
θ = 0.35
λ  = λa

λ  = λ/2s

At time, t = 8 h

C
   

(g
 / 

cm
 )

a
3

Depth (cm)

λ = 0.021 h-1

λ = 0.042 h-1

λ = 0.208 h-1



Page 9 of 13

Rajsekhar et al., Cogent Geoscience (2016), 2: 1220444
http://dx.doi.org/10.1080/23312041.2016.1220444

Figures 4a–4c show the effect of pore water velocity on the variation of concentration of viruses in 
liquid phase, liquid–solid interface and air–liquid interface, respectively. The simulations are carried 
out for three different pore water velocities of 1, 2, and 4 cm h−1 with negligible inactivation coeffi-
cients (i.e. λ = λs = λa = 0) and soil moisture content of θ = 0.35. As expected, with an increase in the 
value of pore water velocity, there is a considerable increase in the value of virus concentration with 

Figure 4a. Variation of liquid-
phase virus concentration with 
depth for different values of 
pore velocity.
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Figure 4b. Variation of adsorbed 
liquid–solid interface virus 
concentration with depth 
for different values of pore 
velocity.
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Figure 4c. Variation of adsorbed 
liquid–air interface virus 
concentration with depth 
for different values of pore 
velocity.
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Figure 5a. Variation of liquid-
phase virus concentration with 
depth for different values of 
mass transfer coefficients.
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Figure 5b. Variation of 
adsorbed liquid–solid-phase 
virus concentration with depth 
for different values of mass 
transfer coefficients.
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Figure 5c. Variation of 
adsorbed liquid–air-phase 
virus concentration with depth 
for different values of mass 
transfer coefficients.
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depth. The behavior of virus concentration is non-uniform for intermediate depth of soil. It means 
that the variation of virus concentration with depth is different for virus present in three phases.

Figures 5a–5c show the effect of mass transfer coefficient on the variation of concentration of vi-
ruses in the liquid phase, liquid–solid interface and air–liquid interface. The simulations are carried 
out with constant pore velocity of 4 cm h−1, considering negligible inactivation constants. It is as-
sumed that the mass transfer coefficient of liquid to air–liquid interface is five times the mass trans-
fer coefficient of liquid to liquid–solid interface as considered by Sim and Chrysikopoulos (2000). 
Three different values of liquid to liquid–solid mass transfer coefficients, i.e. κ = 0.006, 0.012, and 
0.024 cm h−1. It is seen that on increasing the value of mass transfer coefficient (κ), the concentra-
tion of viruses in liquid phase decreases and concentration of viruses in both liquid–solid interface 
and air–liquid interface increases. The magnitude of virus concentration in air–liquid interface (Ca) is 
higher in comparison to the concentration of viruses in liquid–solid interface (Cs) for the same depth. 
This has occurred due to the assumption of ka = 5 k.

6. Summary and conclusions
In this study, a finite-volume method has been used to develop a numerical model to analyze the 
virus transport in one-dimensional unsaturated porous media. The model accounts for the virus 
sorption on the liquid–solid and air–liquid interfaces as well as inactivation of viruses suspended in 
the liquid phase and virus attached to both interfaces. The effects of transport parameters on virus 
concentration profiles were investigated and the findings are listed below:

(1) � In the field, the moisture content of porous media reduces from its full saturation to partial 
saturation; there is a significant decrease in concentration of viruses in liquid phase and liq-
uid–solid interface, and an increase in concentration of viruses in air–liquid interface. This in-
crease is due to the increase in liquid to air–liquid mass transfer rate, as it depends on the 
specific air–liquid interface area, which increases with a decrease in the value of moisture 
content.

(2) � As expected, with an increase in the value of inactivation rate coefficients, the magnitude of 
virus concentration in liquid phase and both adsorbed interfaces reduce. A higher value of 
pore water velocity leads to increase in the movement of viruses in depth. It is also seen that 
the variation of virus concentration along the depth is non-uniform.

(3) � A higher value of mass transfer coefficient decreases the magnitude of virus concentration in 
liquid phase, while it increases virus concentration in both liquid–solid and air–liquid interfac-
es. Also, the magnitude of viruses in air–liquid interface is higher in comparison to concentra-
tion of virus in liquid–solid interface at the same depth. Finally, this model may be used for 
simulation of experimental data of viruses in the field.
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