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1. Abstract 

In order to reliably assess the risk of adverse systemic effects of chemicals by 

using in vitro methods, there is a need to simulate their absorption, distribution, 

metabolism, and excretion (ADME) in vivo to determine the target organ 

bioavailable concentration, and to compare this predicted internal concentration 

with an effective internal concentration. The effective concentration derived from 

in vitro toxicity studies should ideally take into account the fate of chemicals in 

the in vitro test system, since there can be significant differences between the 

applied nominal concentration and the in vitro bioavailable concentration. 

Whereas PBK models have been developed to simulate ADME properties in vivo, 

the Virtual Cell Based Assay (VCBA) has been developed to simulate in vitro 

fate. In this project, the VCBA model in R code, was applied to better interpret 

previously obtained in vitro acute toxicity data and study how they can be 

compared to results from acute toxicity in vivo.  

 

For 178 chemicals previously tested in vitro with the 3T3 BALB/c cell line using 

the Neutral Red Uptake cytotoxicity assay, physicochemical parameters were 

retrieved and curated. Of these chemicals, 83 were run in the VCBA to simulate 

a 96-well microplate set up with 5% serum supplementation, and their no effect 

concentration (NEC) and killing rate (Kr) optimized against the experimental 

data. Analyses of results of partitioning of the chemicals show a strong relation 

with their lipophilicity, expressed here as the logarithm of the octanol/water 

partitioning coefficient, with highly lipophilic chemicals binding mostly to medium 

lipid. Among the chemicals analysed, only benzene and xylene were modelled to 

evaporate by more than 10 %, and these were also the chemicals with highest 

degradation rates during the 48 hours assay. Chemical degradation is dependent 

not only on the air and water degradation rates but also on the extent of binding 

of the chemical.  

 

Due to the strong binding of some chemicals to medium lipids and proteins we 

analysed the impact of different serum supplementations (0%, 5% and 10%) on 

the chemical dissolved concentrations.  As expected, for the more lipophilic 

chemicals, different serum levels result in different dissolved concentrations, 

with lipid and protein binding reducing chemical loss by evaporation. Still the 

lack of saturation modelling might mislead the 0 % supplementation since the 

lipids coming solely from cells exudates are able to sequester chemical to a large 

extent, eg. after 48 hours, 63% (1.2E-5 M) of dimethyldioctadecylammonium 

chloride was bound to lipid from the cells. Although highly lipophilic chemicals 

have a very small bioavailable fraction, cellular uptake rate is also dependent on 

logKow, which compensates for this lack of bioavailability to some extent. 

 

Based on the relevance of lipophilicity on in vitro chemical bioavailability, we 

have developed an alert system based on logKow, creating four classes of 

chemicals for the experimental condition with 10% serum supplementation: 

logKow 5- 10 (A), logKow <5 (B), logKow <2.5 (C), and logKow <2 (D). New 
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chemicals from Classes A and B, which will in the future be tested in vitro, were 

run first on the VCBA, without considering toxicity (NEC and Kr set to 0). VCBA 

simulations indicated that these chemicals are more than 50% bound to medium 

proteins, lipids and plastic. Therefore, for chemicals with logKow falling in these 

classes, special care should be taken when extrapolating the obtained in vitro 

toxic concentrations to in vivo relevant doses.  

 

A comparison of the VCBA-predicted dissolved concentrations corresponding to 

nominal IC50 values with the available rat oral LD50 values did not improve the 

previously obtained correlations. This is probably because other in vivo kinetic 

processes play an important role but were not considered in this in vitro-in vivo 

extrapolation. 

 

The comparison of the VCBA predicted IC50 dissolved concentrations with the 

available rat oral LD50 values, did not improve the previously obtained 

correlations. Nevertheless, other in vivo kinetic processes that are not modelled 

may play an important role. They should be considered in the in vitro-in vivo 

extrapolations. 

 

A local sensitivity analysis showed the relative low impact of Molar Volume and 

Molecular Diffusion Volume on the final dissolved concentration, supporting the 

use of approximated values obtained through the herein created QSARs. The 

logkow and Henry Law Constant showed, as expected, a high impact in 

partitioning. Killing rate was shown to also have a relative low impact in the final 

chemical concentration, indicating that although its optimization is important, 

finding the Kr that leads to the absolute best correlation between experimental 

and predicted concentration-viability curves, is not imperative.  

 

The VCBA can be applied to virtually any chemical as long as the 

physicochemical data (for the fate model) and the experimental toxicity data 

(that include cell growth/death) are available. However, being such a generic 

model, several assumptions had to be made: i) no distinction of chemical classes 

(inorganic, polar organic chemicals), ii) no consideration of metabolism, iii) 

saturation kinetics and iv) external in vitro conditions. 

 

The advantages of having a generic model are that the VCBA can fit several 

experimental set ups and should be used in an exploratory manner, to help 

refinement of experimental conditions. The herein obtained VCBA results should 

be double checked experimentally the partition with a set of chemical 

compounds to better understand to what extent VCBA represents chemicals of 

different properties.  

 

In future developments, it would be important to reduce the uncertainties of the 

model such as binding-saturation and consider inclusion of other endpoints such 

as metabolic activity. 
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2. Introduction 

Global production of chemicals has increased from 1 million tonnes in 1930 to 

400 million tonnes in 2001, with some of these new chemicals constituting a 

hazard to human health and the environment. To obtain information on 

chemicals on the EU market, and to determine the risks they may pose, the 

REACH (Registration, Evaluation, Authorisation and Restriction of Chemicals) 

Regulation was implemented, under which all chemicals that are produced 1 

tonne or more per year need to be registered1. This includes the requirement for 

manufacturers and importers to gather information on the properties of their 

chemical substances. Although issues around animal experimentation have 

already been recognized for some years with Russell and Burch elaboration of 

3Rs principles (replacement, reduction and refinement) in 1959, risk assessment 

of chemicals has a long history of relying on animal models. REACH promotes 

the use of alternative tests for the generation of information on intrinsic 

properties of substances (article 13), and efforts have been made to develop and 

show the potential of alternatives to animal experimentation methods.  

In vitro models have been emerging as the main animal experimental 

alternatives, offering the possibility of using several types of animal and human 

cells. Considering that toxicological events initiate mostly at a cellular level2,3, 

these models are highly relevant as they can give further insights of toxic 

mechanisms. Nevertheless, in vitro toxicity data should not be directly compared 

to in vivo data due to the fact that complex biokinetic and toxicodynamic 

processes that occur in vivo resulting in a heterogeneous chemical distribution in 

the animal or human's body, cannot be captured as such in an in vitro system. 

 

To convert the in vitro concentration-response curve and median inhibitory 

concentration (IC50) into more relevant doses for human risk and safety 

assessment (e.g. in vivo median Lethal Dose (LD50)), in silico physiologically-

based kinetic (PBK) modelling have been created. PBK models consist in sets of 

differential equations that simulate pharmacokinetic processes such as 

absorption, distribution, metabolism, and excretion (ADME). Thus, these in silico 

models allow both the calculation from the nominal in vivo dose to the target-

organ bioavailable concentration and consequently the extrapolation from in 

vitro to in vivo (IVIVE) 4–7.  

 

In this context, several PBK models have been developed, most of which are 

compiled in Lu et al.8 The integration of in vitro toxicity data and these models 

has been indeed indicating a good correlation between the  prediction and 

experimental concentrations for animal and human toxicity 9–11. 

 

This integration of in vitro and in silico (including PBK models) was the approach 

used by Gubbels van Hal et al 12 to analyse a set of 10 compounds. This work 

showed that it was possible to decrease by 38% the number of the animals 

used. Still, one of the endpoints which showed to be more difficult to evaluate 
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without the use of animal data, was acute oral toxicity in which half of the 

compounds had their toxicity over-estimated.  

 Although integration of these modelling techniques allows accounting for the in 

vivo toxicokinetics, approximating the toxic doses obtained in the different 

models, in vitro cells are still in a different microenvironment, as it is herein 

illustrated:  

 

i) Underrepresentation of the toxicological targets, some of which require multi-

organ interactions, thus not captured in an in vitro system. 

ii) Incomplete differentiation into organ specific phenotypes, making metabolism 

and clearance, hallmarks troublesome to represent 13–15.  

iii) Although reduced, there are some pharmacokinetic processes in vitro, such as  

binding to the supplemented serum proteins and lipids 16,17, binding to plastic 
18 and evaporation, which do not occur in vivo.  

iv) Frequently the dose metric used in in vitro systems is concentration, which 

does not reflect the amount of compound per number of cells. Gulden et al, 

2001 showed that cell quantity does change the free concentration and toxic 

effects, with higher cell numbers in culture having higher IC50 values19. 

 

While solutions to the points i) and ii) pass through more sophisticated in vitro 

technologies such as body-on-a-chip, and more refined techniques of 

differentiation, the last two points are an issue of dosimetry/kinetics. 

 

Therefore, a better approximation to in vivo might be obtained if these in vitro 

biokinetic processes are modulated, determining the concentration that is 

effectively dissolved in the exposure medium and unbound (free concentration). 

This simulation might reduce the gap between the in vitro and the in vivo freely 

available plasma concentration, especially for highly volatile and/or lipophilic 

chemical compounds.  

Hence, several in vitro kinetic models have been developed as summarized in 

Table 1, which shows the different focus and design of these models. 

 

 

 

 

 

 

 

 

 



6 

 

Table 1 -List of published references which characterize the fate of a chemical in in vitro cell lines. 
Legend: Sin- Single Exposure, Rep- Repeated exposure, PHH-Primary Human Hepatocytes; PRH-
Primary Rat Hepatocytes; HepaRG- Human hepatic stem cell line; HepG2- Human hepatocellular 
carcinoma-derived cell line; RTL-W1 and Rtgill-W1- Rainbow trout cell lines; BALB 3T3- Mouse 
fibroblast cell line; HEK293- Human embryonal kidney cell line; A549- Human adenocarcinoma-
derived alveolar basal epithelial cell line; MCF-7- human breast adenocarcinoma cell line 

Model 

Cell Type Chemical(s) 

Exposure Dynamic 
endpoint: 

cell 
viability 

Ref. 

Compartments 
Kinetic 

elements 
Sin. Rep. 

Cell 
Membrane  

Medium 

Lipid and 
Protein 

HEK293T 
HEK293H 
HepG2, 
HCT116 
ME-180 

100 chemicals from 
neutral to ionogenic 

X   20 

VCBA 
Cell,  

Medium 
Headspace 

Serum lipid 
Serum 
Protein, 
Plastic,         

Water and 
Air 

Degradation, 
Dissolved 
organic 

matter (cell 
exudates) 

3T3 
HepaRG 
HepG2 
A549 

Any as long the 
respective physical-

chemical 
parameters are 

found. 

X X X 21, 51 

Cell 
 Medium 

 

ECM 
proteins; 

Metabolism 

PHH 
PRH 

HepaRG 

Ibuprofen X X 

X 

 

22 

Cells,  
Medium  

Headspace 

Plastic 

RTgill-W1 

 

Imidacloprid, 
Dimethoate, 

Carbendazim, 
Malathion, 

Cyproconazole, 
Propiconazole, 

Pentachlorophenol, 
Cypermethrin,  

1,2,3-
Trichlorobenzene, 

Naphtalene, 
Hexachlorobenzene 

X   23 

Cells/tissue 
Medium  

 Headspace 

Serum , 
Plastic,    
Water 

solubility, 
dissolved 
organic 
matter, 

Any Any x   24 

Cells  
Medium 

Plastic; 
Metabolism 

via clearance 
PRH 

HepaRG 

Chlorpromazine X X  25 

Cells,  
Medium 

Headspace 

Protein, 
Plastic 

BALB 3T3 
RTgill-W1 

Phenanthrene X  X 18 
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As an example, Heringa et al 28 showed to have obtained better correlations 

between in vivo and in vitro toxic potencies when the calculated freely available 

concentrations were used as measure of the cytotoxic potency instead of the 

nominal concentrations. The relevance of toxicokinetic modelling is further 

highlighted by the fact that the partition with other cell culture components has 

a special great impact in compounds with higher cytotoxicity potencies. The 

quantity of non-bioavailable compound can easily surpass the bioavailable one. 

In the case of less toxic compounds, the impact of serum binding may be 

negligible if the nominal toxic concentration exceeds the binding capacity of the 

serum proteins 29.  

 

Model 

Cell Type Chemical(s) 

Exposure 
Dynamic 
endpoint: 

cell 
viability 

 

Ref 

Compartments 

Kinetic 
elements 

Sin. Rep. 

Cells 
Medium 

Headspace 

Protein, 
Plastic 

RTL-W1 

RTgill-W1 

Benzo(a)pyrene, 
1,2-

dichlorobenzene, 
and 1,2,4-

trichlorobenzene 

 X X 26 

Medium, 
Cells/tissue 

Protein 
MCF-7 
cells 

Genistein, bisphenol 
A, Octylpneol 

X   27 

 Cells, 
Medium 

 HEK293 
[3H]estradiol, 
octylphenol. 

X   28 

 Cells, 
Medium  

 Culture Vessel 

 
Sperm 
cells 

Antimycin A, 
digitonin, 

thioridazine HCl, 
hexachlorophene 

4,4′-DDE, dieldrin, 
pentachlorophenol, 

methylmercury, 
chloride and xylene 

and 1-
nitronaphthalene 

X   19 

Headspace exchange 

Media Lipid 

and Protein 

binding 

Plastic 

binding 

Inter Cells exchange 

Chemical 

Figure 1. Schematic representation of the Fate and Transport model of the virtual cell based 
assay (VCBA) that simulates the kinetics of a chemical tested.  
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The Virtual Cell Based Assay (VCBA) is another of these in silico models that 

simulates the chemical fate in vitro, and was developed as part of the EU FP7 

COSMOS project (http://www.cosmostox.eu) to clarify the actual bioavailable 

concentration required to cause perturbations in cells 30,31. Briefly, this model is 

represented in Figure 1 and consists of 4 interconnected models: 

 

 [1] Fate and transport model, is based on each compound physical-

chemical properties. It describes the dynamic mass balance of compound with 

its  partition between headspace (gas exchange equations), plastic and serum 

lipid and protein 16,26 and compound degradation;  

[2] Cell partitioning model, which accounts for cells uptake/excretion 

and intracellular partition between lipid, protein and aqueous fractions which 

depends on the chemical characteristics and cell type composition; 

[3] Cell growth and division model, which is simulated through a 4-

staged (G1, S, G2 and M cell cycle phases) approach using a Leslie Matrix;  

[4] Toxicity and effects model, which merges the experimental in vitro 

obtained concentration-response curve with the cell growth and division model 

to optimize the toxicity parameters, Killing rate(Kr) and No-Effect Concentration 

(NEC); 

Additionally, the VCBA takes into account the experimental set up, which 

includes the well shape and size, the volume of media and the amount of 

supplemented serum and, thus, protein and lipid content in the media. 

The mathematical equation describing the four  interconnected models of the 

VCBA are reported in Zaldivar et al.21 To run the VCBA specific inputs 

parameters for chemicals, cell types and experimental set up are needed. Herein 

we aimed to analyse 178 compounds used in international projects and 

validation studies [NICEATM/ECVAM validation study (NIH, 2006); the PF6 EU 

project ACuteTox (http://www.acutetox.eu/; Prieto et al., 2013a); ECVAM 

validation study (Prieto et al., 2013b] where the cell line BALB/c 3T3 was used 

and cytotoxicity was measured with a Neutral Red Uptake (NRU) assay. In the 

ACuteTox project the in vitro cytotoxicity assay was complemented with specific 

target organ in vitro assays in an attempt to improve the prediction of human 

acute oral systemic toxicity. With regard to classification of compounds into 

acute oral toxicity categories according to the EU CLP Regulation (Classification, 

Labelling and Packaging of Substances and Mixture), the results showed 

difficulties in predicting the 4 toxicity categories with any of the proposed 

combinations. Nevertheless, substances belonging to the non-classified group 

(LD50 >2000mg/kg) were predicted relatively well, with a false negative rate 

lower than 5 %32. To rationalize the true/false predictions obtained, kinetic 

parameters should be considered as recommended in the EURL ECVAM strategy 

to replace, reduce and refine the use of animals in the assessment of acute 

http://www.cosmostox.eu/
http://www.acutetox.eu/
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mammalian toxicity33. With this in mind, the value of the kinetic simulations 

obtained with the VCBA model has been explored. 

The overall goal of this work was to i) clean, harmonize and evaluate the 

previous VCBA model code; ii) retrieve the physicochemical parameters of 178 

compounds, iii) optimize and run the model, obtaining the concentration of 

compounds partition in the several elements/compartments of the in vitro assay. 

iv) to analyse if the calculated dissolved and unbound IC50 correlates better with 

the in vivo LD50 than the nominal IC50, possibly explaining the misclassifications 

obtained with the 3T3 NRU cytotoxicity assay. Furthermore, we used the VCBA 

to help identifying compounds prone to have an in vitro determined toxic 

concentration, very discrepant from the in vivo one and that may offer specific 

difficulties in vitro. We also propose a simple approach, as a system based on 

LogKow, to understand chemical's fate 
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3. Methodology 

 

To run the Virtual Cell Based Assay (VCBA) selected physical-chemical 

parameters are required: molecular weight, molecular diffusion volumes 

(indicates as atomic diffusion in Zaldivar et al., in press), molar volume, Henry 

law constant and degradation rate in water and air and the logarithm of octanol-

water partition (LogKow). Although for several compounds data reported were 

obtained experimentally, for some others only predictions were available. In 

case of predictions different values were often reported, and the choice of the 

prediction method must be carefully addressed.  

The web based chemical databases Chemical Dashboard 

(https://comptox.epa.gov/dashboard) and Chemspider 

(http://www.chemspider.com/) were used for searching these parameters. While 

CompTox Dashboard has its own predictive tools, Chemspider (Royal Society of 

Chemistry) relies on the prediction tools EPI Suite™ (US Environmental 

Protection Agency's), ACD/LABS and Chemicalize. The time frame of search 

was from July to October 2016. 

 

Table 2 - Web chemicals databases/prediction tools used to retrieve each chemical parameter. 

 Chemspider Chemical Dashboard 

Parameter: Exp. Pred. Exp. Pred. 

 EPI Suite  ACD/Labs Chemicalize 

LogKow X X X X X X X 

Henry Law 

Constant 

 X X   X X 

Air and Water 

half life 

  X     

Molar Volume    X    

Molecular 

Weight 

     X 

Molecular 

Diffusion 

Volume 

Fuller Method of atomic diffusion volume increments addition 

 

For each chemical parameter, Table 2 summarizes the selected database where 

the values were retrieved; LogKow was found both on Chemspider (ACD/LABS, 

EPI Suite and/or Chemicalize) and Chemical Dashboard.  

https://comptox.epa.gov/dashboard)
http://www.acdlabs.com/products/percepta/predictors.php
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Water and air degradation rates (s-1) were calculated from the compounds' half-

life (hr) in water and air, parameters retrieved from EPIsuite, database available 

online through Chemspider. Molar Volume was retrieved from Chemspider as 

well, more specifically from ACD/Labs.   

Both experimental and predicted values of Henry law constant (HLC) were 

available in both Chemspider (EPIsuite) and Chemical Dashboard, although in 

the latter the values were removed in August 2016, being reposted only after a 

few months. Values were converted atm*m3/mol. to Pa*m3/mol. 

 

3.1. Molecular Diffusion Volumes 

Molecular diffusion volumes (dimensionless) were calculated following Fuller 

semi-empirical method which consists in the sum of the specific atomic diffusion 

volumes and discounting the volume for each aromatic/heterocyclic ring 34,35. 

Atomic and Structural Diffusion Volume increments 

 Fuller, 1966 Fuller, 1969  Fuller, 1966 Fuller, 1969 

 

C 16.5 15.9 F 8.78 14.7 

H 1.98 2.31 Cl 19.5 21.0 

O 5.48 6.11 Br 33.6 21.9 

N 5.69 4.54 I - 29.8 

Aromatic 

Ring 

-20.2 -18.3 S 17 22.9 

Heterocyclic 

Ring 

-20.2 -18.3    

 

Although, initially the atomic increments used21 were from Fuller et al, 1966, 

slightly different increments in Fuller et al, 1969 were posteriorly found. Both 

increments are shown in Table 3. In spite of being regarded36 as a precise 

method, predicting the diffusion coefficients of organic compounds with errors of 

<10%, its use is limited to molecules that are solely composed by the tabled 

atoms. Also, it is noteworthy that the method is not as precise with inorganic 

compounds, where the prediction is ±30 % of the measured values37. 

For 37 compounds among the 178 would require the additional Atom Diffusion 

Volumes increments: B, Na, Cd, Pt, P, Cu, Fe, Hg, K, Se, Tl and Zn. The 

similarity to Molecular Weight (MW) was analysed by correlating both 

Table 3 - Atomic Diffusion Volume increments based on Fuller, 1966 and 1969 



12 

 

parameters as represented in Figure 2. Simultaneously, we compared the 

molecular diffusion volumes calculated through the different two atomic 

increments. 

 

 

 

A high linear relationship was indeed found between these two parameters, and 

thus for the compounds missing the molecular diffusion volume (SVcomp), it 

was calculated through the equation:  

Fuller, 1966:  𝑆𝑉𝑐𝑜𝑚𝑝 = 1.038𝑀𝑊 − 19.86     R2=0.91 

Fuller, 1969: 𝑆𝑉𝑐𝑜𝑚𝑝 = 1.05𝑀𝑊 − 19.56      R2=0.92 

The difference between atomic increments described in Fuller, 1966 and Fuller 

1969 is that for the latter ones more experimental replicates were added refine 

the atomic increments. Indeed, SVcomp calculated through Fuller, 1969 atomic 

increments have a slightly better correlation with MW. Therefore, Fuller et al, 

1969 increments were used in this report.  

3.2. Molar Volume 

Molar Volume (MV) in cm3/mol was found for 123 compounds. To understand if 

the missing values could as the Molecular Diffusion Volume, come from the 

Molecular Weight, a scatter plot was made using the found values of Molar 

Volume (Figure 3). 

Figure 2 - Scatter plot of Molecular Weight against the respective calculated Molecular 
Diffusion Volume calculated through Fuller, 1966 (Black dots and continuous black line) and 
Fuller,1969 (grey dots and discontinuous grey line). The lines result from the regression of all 
presented data points. 
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Again, a high linear correlation (R2=0.90) was found and, therefore, the missing 

values for Molar Volume were calculated through the equation: 

𝑀𝑉 = 0.8003𝑀𝑊 + 0.5764 

3.3. LogKow 

The experimental values for 109 chemical compounds were found at least in one 

of the web chemicals databases, and when two values were available, the 

average was used. For the remaining compounds, predicted values had to be 

used. To understand the differences between predictive tools and potentially if 

one of them was more reliable, an analysis between found experimental values 

and respective predictions was made. The linear correlation between the several 

sources of logKow found was very similar, as seen in Table 4:   

 

Table 4 - Trend lines equations and correlation coefficient of experimental and predicted LogKow. 

 
ACD/Labs EPI-Suite Chemicalize 

Chemical 
Dashboard 

Eq.trendline 
Pred= 

0.9929Exp+0.0291 
Pred= 

0.9597Exp+0.0056 
Pred= 

0.9355Exp+0.0453 
Pred= 

0.9070Exp+0.1386 

R2 0.96 0.93 0.87 0.94 

 

Both prediction models from EpiSuite and from Chemical Dashboard are based 

on the same PHYSPROP data, a collection of datasets, some coming from as 

early as the late 80s. However, several errors and inaccuracies have been 

reported and Chemical Dashboard developers have addressed this issue for 

some parameters such as logKow, by developing an automated curation 

procedure. The QSAR (quantitative structure-active relationship) resulting from 

this curated datasets indeed had statistically improved predictive performance 
38. 

Figure 3 - Scatter plot of Molecular Weight against the respective Molar Volume. Black line is the 
regression line drawn through all presented data points. 
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Besides, Chemical Dashboard models comply with the OECD principles for 

QSARs39, with unambiguous algorithms, a defined global and local applicability 

domain, mechanistic interpretations of the used descriptors that are reduced to 

the most relevant minimum, and with available information on the overall model 

performance. Moreover, the model is transparent, allowing access to the training 

and test sets from its FTP site, detailed QSAR Model Reporting Format for each 

model and model details for each chemical and each endpoint. All used 

descriptors are also free and open source (PaDEL descriptors) [Dr.Anthony 

Williams USA.EPA private communication]. 

Therefore, after the experimental data, Chemical Dashboard predictions were 

the ones used preferentially for following the OECD guidelines and having 

revised database for their prediction-model development. When these 

predictions were not present, the average of the other predictive tools was used.  

3.4. Henry Law Constant 

For 57 compounds the experimental values were found. Among the 33 

compounds with experimental values found in both web databases, only 5 had 

different values. The largest difference was found with hexachlorobenzene with 

values differing 82 Pa*m3/mol between them. Hence, the average of 

experimental values was used. Again an analysis was made to decide upon the 

predictions to be used, here including different methods: Group, Bond and 

HENRYWIN™ method, which uses both Group and Bond method. Because HLC 

values were removed from Chemical Dashboard in the in middle of August 2016, 

for around 40 chemicals, HLC values were found only in Chemspider. Therefore, 

for comparison of methods/databases these 40 chemicals were excluded, and 

the remaining chemicals which experimental data was found, were introduced in 

a chart to measure the correlations between predictions and the respective 

experimental values. The chemical 1,1,1-trichloroethane was also excluded since 

its HLC is much higher than any of the other compounds and could unbalance 

the distribution.  

The plot in Figure 4 shows relevant differences between the predictions with 

HENRYWIN™ showing the weakest correlation and Group Method the highest 

correlation (Table 5). Values retrieved from Chemical Dashboard also have a 

relatively weak correlation. 
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Since the values of Henry Law Constant spread in such a wide range, Figure 4 

does not allow observation of the lower HLC values distribution. Thus, a 

separated analysis was additionally made using a HCL value of 1. The selection 

of this threshold is, nevertheless, subjective.  

 

 

Figure 5 and Table 5 show the drastic different coefficients of distribution 

between the two plots, with predicted HLCs having a better correlation with 

experimental values >1 Pam3/mol than the lower ones. Hence, predictions 

suffer a decrease of sensitivity for small HLC values, with the Bond method 

showing the highest correlation. A lower sensitivity in HLC values lower than 1 

might not have a significant impact as any of the predictions indicate that the 

compound does not evaporate. However, it is noteworthy the presence of some 

predictions, such as the ones for lindane and formaldehyde, where in spite of 

low experimental HLC values, predicted values are among ranges where 

significant evaporation might occur. This can lead to significant different results, 

ex: lindane experimental value was 4.2110-1 while all predictions except the 

Figure 4 - Scatter plot of Experimental Henry Law Constant against the respective Predictions 

obtained through Bond, Group, HENRYWINTM (EPI method) and Chemical Dashboard 

(CompTox) (Units =Pa*m3/mole). 

Figure 5 - Scatter plot of Experimental Henry Law Constant, against the respective Predictions 
obtained through Bond, Group, HENRYWINTM (EPI method) and Chemical Dashboard (CompTox) 
(Units =Pa*m3/mole). 
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Group Method would indicate values 1.28-25.9 and formaldehyde experimental 

was 3.4110-2 while all the methods except Chemical Dashboard indicated values 

6.22-53.4. 

Although Chemical Dashboard HLC predictions are here shown with a relative 

low correlation with experimental data, its predictive model, as the one for 

logKow, was based on a well curated data and follows OECD guidelines, hence 

being a trustworthy tool. Still, as this parameter was temporary removed from 

the website, EPIsuite predictions were preferably used.  

In total, at least one HLC was found for 148 chemicals. Experimental data found 

for the compounds with higher HLC, ranged from the 1740 of 1,1,1-

trichloroethane to 1.7610-7 of urea. For the compounds which experimental 

data were not found, the priorities of predictions were: Group Method which 

ranged compounds with HLC = 0.3670-2.8510-15 (N=17); Bond Method which 

ranged compounds with HLC = 66.2-2.76010-37 (N=62) and at last CompTox 

Dashboard which ranged compounds with HLC =23.41-1.88010-6(N=12).   

 

3.5. VCBA Code Refinement  

The VCBA model was initially created in Matlab30,31 and more recently translated 

to R language to be a free toll for users and to be implemented in a KNIME 

environment. The differential equations describing the mass balance resulting 

from fate, cell dynamics and toxicodynamics are solved by the DeSolve R 

package. With time several versions of the VCBA code were created, all with 

slight modifications. Therefore, before running the chemicals a revision was 

made of all the versions, verifying all equations and input parameters such as 

cell and experimental input parameters. The code was harmonized and cleaned 

of redundant/duplicated equations, with the final form presented in annex 1. 

 

Table 5 - Trend lines equations and correlation coefficient of experimental and predicted Henry 

Law Constants 

Method/ 

Database 

HLC Complete Range HLC >1 HLC <1 

Eq. trendline R2 N Eq. trendline R2 N Eq. trendline R2 N 

Bond  Y=1.28x+3.62 0.74 45 Y=1.26X+8.63 0.69 18 Y=4.94X+0.71 0.05 27 

Group Y=1.08X+8.15 0.90 35 Y=1.05X+19.56 0.88 17 Y=0.10X+0.48 < 0.001 17 

HENRYWIN™  Y=1.54X+6.40 0.57 47 Y=1.52X+14.6 0.51 18 Y=-0.73X+2.88 < 0.001 27 

Chemical 

Dashboard 

Y=0.706X+10.86 0.67 47 Y=0.65X+29.85 0.60 17 Y=-3.52X+2.57 0.02 27 
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3.5.1. Cell line parameters 

The values herein used (Table 6) were the same as in Zaldivar et al21except the 

protein intracellular concentration which was corrected from 11 mol/m3 to 4.4 

mol/m3. The value was obtained from the protein density and fraction and cell 

volume.  

In order to allow inputs of different initial cell numbers, the initial cell number 

per cell cycle phases must be in fraction/percentage, then multiplied by the 

overall initial cell number, rather than a fixed value. However, care should be 

taken with the initial cell number input as 3T3 BALB/C cells have their growth 

inhibited when confluent (50,000 cells/cm2) and, therefore, the initial cell 

number must allow growth during 48 hours without reaching this confluence. 

Higher initials cell numbers would require another type of fecundity functions.   

 

Table 6– Cell line 3T3 Balb/c defined parameters to run the VCBA model. 

3T3 Cell Parameters 

Aqueous Fraction (% weight) 0.614  

Protein Fraction 0.244 

Lipid Fraction 0.142 

Protein Concentration (mol/m3) 4.4  

Lipid Concentration (kg/m3) 170.7  

Initial Cell number (per well) 1680 

Cell Cycle phase G1 S G2 M 

Duration (H) 9.63 3.65 3.45 2.26 

Mortality (h-1) 0.005 0.005 0.04 0.04 

Volume (m3) 1.73E-15 2.4E-15 2.4E-15 2.4E-15 

Mass (g) 2.08E-9 2.4E-9 2.4E-9 2.4E-9 

Initial Cell Population (%) 50.7 19.2 18.18 11.92 

Cell Division Rate (h-1) 1.026    

 

3.5.2. Experimental set up 

Likewise to cell type descriptors, experimental parameters had to be revised and 

harmonized with the experimental protocol, such as the 48 hours of duration of 

the assay, the percentage of supplemented serum of 5 %, which consists in 

0.0234 mol/m3 (protein content) and 0.08 kg/m3 (lipid content) and the 100 µL 

of media in a 96 well-plate well. Experimental data are available for 8 

concentrations for which cells were exposed at the beginning of the 48 hours. 
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3.6. Optimization and running the VCBA 

Optimization of NEC and Kr was made with the chemicals input parameters and 

experimental concentration-response curve, consisting in 8 concentrations and a 

value linked to the control response (which is included as a response of 100% at 

0 µM).  

The code was run on R, with cell growth in hours and differential equations 

solved using a discretization in seconds as shown in Figure 6. The time run can 

be adjusted to run in minutes or other time endpoints as long as the cell growth 

rates are set to the correct time units. However independent of the time run 

because compound distribution is represented by differential equations and cell 

growth is not, the two processes are not synchronized in the model. For example 

in time run herein used for every second in one hour the distribution is 

calculated with the initial cell number in that hour. At the end of the hour, the 

model computes the cell growth/death that occurred during that hour with the 

compound distribution given in the end of the hour and not during all the 

seconds. This specific time was chosen to make optimization a faster process, as 

cell growth/death in minutes makes VCBA run more cycles slowing down the 

optimization process. 

 

Table 7 – Experimental set up according to Neutral Red 
Uptake protocol. 

Water density (g/L) 1000 

Protein density (g/L) 1350 

Lipid density (g/L) 900 

Assay time (h) 48 

% Supplemented serum 5 

Protein in Medium (mol/m3) 0.0234 

Lipid in Medium (kg/m3) 0.08 

Volume Medium (m3) 1E-7 

Headspace volume (m3) 2.68E-07 

Cell assay surface (m2) 3.31E-05 

Plastic surface (m2) 9.39E-05 

Figure 6- Representation of the VCBA model's 

differential equations and "for cycle" solving. 
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Implementation of the VCBA in KNIME for use as a web tool 

The VCBA R code was implemented as an open source tool into the KNIME 

platform. KNIME is a user-friendly graphical workbench for data analysis 

(http://www.KNIME.org/) and R is a language and environment for statistical 

computing and graphics (http://www.r-project.org/). KNIME consists of a series 

of pieces of program code called nodes that can be connected in such way that 

the input of one node is the output of the previous one. Each node has a dialog 

box that accepts the user input. 

This VCBA KNIME represented in Figure 7, can be divided in to three separate 

zones: input, core and output, this version of the VCBA is only for single 

exposure simulation.  
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Figure 7 - KNIME workflow for the current VCBA where three zones are defined: input, model (core), and output. 
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3.7.  Sensitivity analysis 

Local sensitivity analysis was made for the impact of the logKow, MV, SVcomp, Kr 

and HLC parameters on the dissolved concentration (M) for different compounds 

(caffeine, benzene, xylene, ochratoxin A and dimethyldioctadecylammonium 

chloride) with the chemical IC50 calculated from the concentration-response 

curves and NEC and Kr calculated for the initial input parameters. 

For each parameter its original value was changed to  10 %, maintaining other 

parameters constant40. The normalised sensitivity coefficient (SC) was calculated 

using the equation: 

 

𝑆𝐶 =
𝐷′ − 𝐷

𝑃′ − 𝑃
×

𝑃

𝐷
 

where D is the initial outcome of the model, which in this case is the dissolved 

concentration (M) and D is the output of the model after the 10% parameter 

change. P is the initial parameter value, and P′ is the parameter value modified 

by an increase/decrease of 10%. The sensitivity analysis was conducted for 5 % 

serum, 48 hours and the previously obtained respective IC50. 

 

3.8. Statistical analysis 

GraphPad Prism 3.0 (San Diego, CA) was used for plotting and analyzing the 

data, except for Figure 6 which was made directly in R console. 
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4. Results and discussion 

For 35 out of the initial 178 compounds, we could not find either the HLC or the 

air and water half-lives, and for other 9 compounds (di-isodecyl phthalate, 

tris(nonylphenyl)phosphite, hexachlorobenzene, 2-ethylhexyl acrylate, 1,2-

dichlorobenzene, 1,1,1-trichloroethane, aconitine, 1,2-benzenedicarboxylic acid, 

malononitrile) the concentration-response curves were considered not to be 

suitable to optimize the VCBA. It is notable that 5 of these compounds (1,1,1-

trichloroethane HLC=1740, 1,2-dichlorobenzene HLC=195, hexachlorobenzene 

HLC=131, tris(nonylphenyl)phosphite HLC=66.2, 2-ethylhexyl acrylate 43.8) are 

among the 11 compounds with the highest HLC values and, thus, a prevalence 

of evaporation might have a role in the difficulties found in the in vitro assays.  

Therefore 83 compounds were optimized and run using the VCBA. The 

optimization was done after harmonization of the VCBA code, and was 

performed by applying the available in vitro concentration response curves. The 

VCBA values that were optimized (NEC and Kr) are presented in annex II. In 

Figure 8 it is exemplified for some compounds how the VCBA with the optimized 

parameters can modulate concentrations throughout the time in culture and its 

effect on cells growth/death. 
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Hexachloropene 

CAS 70-30-4 
Benzyl Benzoate 

 CAS 120-51-4 

 

  

Acetyl Salicylic Acid 

CAS 50-78-2 

Xylene 

CAS 1330-20-7 

  

Figure 8-Plots for chemical compounds concentration and effect in cell number with the optimized 

NEC and Kr: Percentage of viability at 48 hours with the nominal concentration: black line-
prediction; red dots-experimental values; Relative number of cells, Dissolved Concentration and 
Intracellular Concentration throughout the 48 hours of the culture for at least 10 concentrations of 
each compound, represented with a gradient blue color from the lower concentrations=light color 
to higher concentrations=darker color (Hexachlorophene 510-6 to 510-5 (M), Benzyl Benzoate 

0.0012 to 0.012 (M), Acetyl Salicylic Acid : 0.0028 to 0.028 (M) and Xylene: 0.0026 to 0.026 (M)) 
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4.1. Influence of logKow and HLC in chemical partitioning 

The logKow has a high impact on description of the chemical partitioning with 

lipid, plastic, protein and cellular uptake. Therefore, is expected that the 

obtained chemical compounds partition among these several compartments has 

a strong correlation with logKow. Indeed, sorting the chemical compounds from 

the highest to the lowest logKow and plotting their partition in Figure 9 

corroborates the strong influence logKow has on the chemical fate partition. Even 

though the model requires other parameters which widely vary among the 

compounds, the lipophilicity, here represented by the logKow, seems 

determinant: for the 14 chemicals with logKow higher or equal to 4.46 

(phenantrene has logKow of 4.46) less than 10% of the chemical was dissolved in 

the medium. Still, for different logKow ranges, different compartments of the in 

vitro system will be the strongest sequesters of the chemical. Observing from 

bottom to top of Figure 9 from logKow 1.88 (triethylene glycol dimethacrylate) 

the dissolved concentration starts to decrease in detriment to protein bound 

chemical until logKow 3.83 (endosulfan) in which lipid gradually binds to more 

chemical, eventually sequestering chemical even from protein binding. Although 

there is a significant binding to plastic it is never higher than 18 % 
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As for the evaporation, the VCBA model indicates that just for the two chemical 

compounds with higher HLC, benzene (HLC= 562 Pam3/mole) and xylene 

LogK
ow

 

Figure 9- Partition in the several components of the in vitro assay for the 83 compounds 
optimized and run in the VCBA model. Represented in % to total final concentration 

-2.68 

8.39 

4.46 
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(HLC=525 Pam3/mole), the percentage of compound that evaporates is higher 

than 10 %. For 1,2,4-trichlorobenzene that has a HLC of 144 Pam3/mole, just 

1% evaporates.  

Although chemical partition has a very high impact on its free dissolved 

concentration after 48 hours, attention should also be paid to degradation 

hallmark which is considered in the VCBA model. Herein, the difference between 

total initial nominal concentration and total final concentration was considered as 

an indication of degradation of chemicals. Degradation and its descriptors are 

shown in Table 8. Comparing the final concentration with the initial one of each 

chemical, xylene stands out with the most degradation as its final concentration 

is approximately half of the initial one. Benzene follows with 30 % degradation. 

Both chemicals do not have relatively high degradation rates. But in general air 

degradation rate is higher than water, hence the higher the percentage of 

chemical in the headspace the fastest the degradation of the chemical, 

highlighting the importance of the HLC as an indicator of chemical kinetics. All 

remaining chemicals were not predicted to have more than 15 % degradation. It 

is noteworthy that overall degradation of a chemical does not depend solely of 

specific degradation rates but also on its partition. Comparing the ratio of total 

final concentration/initial concentration with air degradation there is no 

correlation while for water there is a slight trend (R2=0.37). Still, these 

degradation rates will only affect chemicals that are either in the aqueous or gas 

phase. Chemical bound to protein, lipid or plastic is not considered in the VCBA 

to be protected from degradation. Therefore, comparing the total final 

concentration/initial concentration with the percentage of chemical in headspace 

and dissolved in medium, there is a slight inverted correlation (R2=3.22). By 

analyzing all these parameters together (Table 8) with a colour scale pattern it 

can better perceived how degradation is a multifactorial event.  
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Table 8 – Fraction of chemical degraded ([Final]/[Initial] and the parameters describing it, Air 
and water degradation rate (s-1) and amount of unbound chemical, meaning chemical 
available for degradation at 48 hours. The colour coding is a gradient from the lower values 
coloured red to the highest values coloured green relative to each column/parameter. 
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4.2. Influence of the experimental set up on chemical partitioning  

With external lipid and protein playing such a relevant role in chemicals 

partition, we further explored how different percentage of supplemented serum 

could influence the partition of compounds. Sixteen compounds were selected 

and simulations run with 0, 5, and 10% of serum by changing the initial protein 

and lipid concentrations. The compounds were chosen to spread across the 

range of logKow (from dimethyldioctadecylammonium chloride with 8.392 to 

ammonium chloride with -2.68) including the two compounds with significant 

evaporation (benzene and xylene).  

Figure 10, indicates substantial differences between 0% and the other two plots. 

No chemical fraction is bound to protein under 0% serum, and although there is 

an increase in the dissolved concentration, most is halted by lipid binding. In the 

absence of serum, binding to lipids is high despite the fact that proteins and 

lipids come solely from exudes from cell death. In the absence of serum also it 

has been described the relevance of plastic binding23. Observing the equations 

that describe these partitions, the distribution of chemical in the several 

elements is easily perceived: 

Plastic partition constant: Kp=10(0.97*logkow-6.94) 

 

Protein partition constant : Ks<-10(vals-1.178) 

vals={

−1.31, 𝑖𝑓 𝑙𝑜𝑔𝐾𝑜𝑤 < 1.09
0.57 × 𝑙𝑜𝑔𝐾𝑜𝑤 + 0.69, 𝑖𝑓 1.09 ≤ 𝑙𝑜𝑔𝐾𝑜𝑤 

𝑙𝑜𝑔𝐾𝑜𝑤 − 1.3, 𝑖𝑓 𝑙𝑜𝑔𝐾𝑜𝑤 > 4.6
≤ 4.6 

 

Lipid partition constant : Kl<-10(1.25*logkow-3.70) 

LogKow has a higher impact on lipid partition than on plastic for all range of 

values while for proteins the relation logKow protein-binding partition depends on 

the logKow values. For logKow values lower than 1.09 and higher than 3.7 

proteins exhibit the highest chemical binding. Partition also depends on the 

concentration of lipids and proteins and the surface area of the plastic. It should 

be noticed that although in the absence of serum the lipids in medium after 48 

hours would be one eight of the lipid content in 5 % serum supplementation, it 

still has a high binding ability as observed in the Figure 8. Indeed, two facts 

contribute for the 0 % serum plot to be far from reality. Firstly, actually at 0 % 

serum most cell lines do not grow and thus the lipids in the medium would even 

be a smaller fraction. Secondly, saturation is herein not being included. 

Experimentally, plastic partition does seem to change with nominal 

concentration26. As for lipids, saturation is also expected although it would be a 

difficult parameter to modulate as the interactions of lipids with chemicals occurs 

more in the form of aggregates than individually41.  

 



28 

 

 

 

 

Figure 10- Partition in the several components of the in vitro assay for the 16 compounds 
optimized and run in the VCBA model with 0, 5 and 10 % of supplemented serum (FBS) for 48 
hours with the previously optimized NEC and Kr. 

 

Saturation modelling could furthermore increase the differences among the 

several percentages of serum supplementation. Although the lipid binding extent 

is something that should alert for a careful consideration of the chemical's 

kinetics, a high lipid binding ability might also indicate a mode of toxicity24 based 

on narcosis which can also occur by external cell effects, without cell uptake. 
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Although VCBA simulates for very highly lipophilic chemicals very low dissolved 

concentration, uptake and bioaccumulation also depend on lipophilicity and, 

therefore, compensates to some extent for the lack of bioavailable chemical.  

Indeed, a comparison of the intracellular concentration with the dissolved 

concentration shows lack of correlation (Figure 11). In fact, segmenting the 

chemicals between the ones with logKow lower than 2.5 and the ones higher 

(red) resulted in a much more significant correlation for the ones with lower 

logKow values.  

 

Figure 11- Comparison of the logarithms of intracellular concentration and dissolved one for the 83 

simulated chemicals with 5 % serum supplementation. Red dots correspond to the chemicals with 
logKow higher than 2.5. 

Although initially serum seems to have a major role in sequestering chemicals 

from the dissolved phase, lipids originated in cells and plastic act as the major 

sequesters in the absence of serum. Also for the two compounds for which 

evaporation was predicted by VCBA, xylene and benzene, evaporation increases 

in the absence of serum which is on agreement with Kramer N. et al 200918, 

which experimentally verified that serum retained phenantrene in solution.  

 

In the same article, Kramer et al also report a possible deficiency in the model in 

capturing evaporation, for it uses as a proxy of evaporation the HLC which is 

obtained/predicted for 20-25 C, while experiments often use higher 

temperatures such as 37 C. And HLC, being dependent of the chemical solubility 

and vapour pressure, does increase with temperature. Ten Hulscher42 reported 

that for temperatures increases from 20 to 30 C, HLC increased ~50 % for 

chlorobenzene, chlorobiphenyls and polycyclic aromatic hydrocarbons. 

Evaporation of phenantrene and 1,2,4‐trichlorobenzene was experimentally 

verified18, while our model only points to 0.01%, 1.05 % of the respective 

chemical in the headspace (at 5 % supplemented serum). 

Stadnicka-Michalak J. et al 43al also verified substantial evaporation from 1,2,3 

trichlorobenzene, naphthalene and hexachlorobenzene.  
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Similarly, several reports 44,45 have indicated that compounds with 1 Pa.m3 /mol  

may be already prone to evaporate, while with 100 Pa.m3 /mol  (which would 

include 1,2,4-Trichlorobenzene) are even considered highly volatile. Therefore, 

for the compounds 1,2,3,4-tetrachlorobenzene, pentachlorobenzene, diethyl 

phthalate, p-benzoquinone, endosulfan, phenanthrene, ethyl chloroacetate, 

acetonitrile, benzaldehyde, tetramethylthiuram monosulphide, tert-Butyl 

hydroperoxide, benz(a)anthracene, pyrene, acetophenone we should have 

obtained higher percentages in the headspace while, in fact, none was modelled 

to evaporate more than 0.2%. 

4.3. Proposal of LogKow thresholds to rank chemicals  

One of the purposes of this work was to possibly create a system that alerts for 

chemicals for which the dissolved concentration is expected to differ 

substantially from the nominal one, hindering an accurate extrapolation to in 

vivo. Moreover, indications of the chemical fates in vivo can hopefully help 

refining experiments depending of the chemical properties. Therefore, to put in 

practice this alert system, the results described in Figure 8 were used to create a 

system with 4 classes (A, B, C, D) based on logKow thresholds for conditions of 

10 % serum.  

These classes and respective thresholds are represented in Figure 12. 

Chemicals with logKow below 2 are predicted by the VCBA to be at least 90% 

dissolved, constituting class D. Class C is composed by chemicals with logKow 

between 2-2.5 which are predicted to be 80% dissolved. Compounds with a 

logKow values up to 5 (class B) have dissolved concentrations in water from 5 to 

80%, showing a very strong correlation with logKow and eventually shifting the 

main chemical partition from proteins to lipids. Finally, for a logKow value 

between 5 and 10 (class A), most of the chemicals will be bound to lipids, 

migrated to plastic or bound to proteins.  

With the alerting system created we carried out an additional exercise to 

estimate the partition of chemicals not previously analyzed here in the VCBA, 

relying only on the logKow value. The chemicals chosen are a set that will be in 

the future tested for toxicity in an in vitro test system supplemented with 10 % 

serum. Hopefully, the information herein gained will help exploring the results of 

this new project. Based on Figure 12 we collected the logKow for these additional 

35 chemicals, and we ranked them based on their logKow (Table 9).  
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This resulted into 5 chemicals being of concern, thus we further investigated 

these chemicals by means of VCBA simulations, firstly collecting the other 

physical-chemical properties for these 5 chemicals. No cytotoxicity data were 

used and, therefore, the model was run with NEC and Kr set to 0, no cell death 

occurred and the impact it has on concentrations of the chemicals was tested. 

The initial concentrations used for all these chemicals were 0.1 and 100 M. Both 

concentrations induced the same % of partition. The model was run for 24 and 

72 hours but not substantial differences were found on the outputs.  

Table 9- List of chemicals, their respective logKow and class according to alert system for 
partitioning. 

  Figure 12- Proposed classes for chemical fate, delimited by thresholds based on logKow. 
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The partition of the chemicals belonging to Class A is represented in Figure 13. 

Indeed, most of the amount of chemicals is bound to lipids, proteins and/or 

plastic. For chemicals in Class B, although dissolved fraction varied greatly it was 

always less than half of the chemical total concentration after the 48 hours 

assay  

For these compounds special care should be taken when manipulating it in 

plastic eppendorfs in the laboratory, and with supplementation that should be 

done with the exact same batch of serum. 

Possible toxic mechanisms for these chemicals should be identified to find to 

what extent the dissolved concentration is responsible for cytotoxicity or if it is 

related to their lipid binding ability, destabilizing cellular membranes.  

Furthermore, for these chemicals it is advised to use used other dosimetry than 

the nominal concentration. As indicated here, nominal concentration does not 

represent the concentration the cells are indeed exposed to. This is especially 

important in the eventuality that the results generated in vitro with these 

compounds need to be extrapolated to in vivo doses. In such as case, the 

partition data shown here should be taken into account. 

 

 

 

Figure 13- Partition of the Class A and Class B chemicals through the several in vitro components 
in medium supplemented with 10 % serum and not accounting for cell death. Results from running 
the chemical at 0.1 M for a 24 hours experiment. 
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4.4. Impact of chemical partitioning on toxicity prediction 

The chemicals used were primarily tested in BALB/c 3T3 NRU in vitro assays to 

further evaluate the predictive power of the in vitro method, by comparing them 

to the acute rat oral in vivo test (mean LD50 values). This comparison was made 

through the EU CLP system for acute oral toxicity, which is based on the cut-off 

of 2000 mg/kg to assign chemicals to the classified (mean LD50< 2000 mg/kg) 

or non-classified group (mean LD50> 2000 mg/kg). In vitro IC50 were converted 

to LD50 and its resulting classification was compared to the in vivo rat oral 

classification (also based on mean LD50). The in vitro correctly classified 

chemicals were designated True (Positive and Negative), while the incorrectly 

classified were called False Positive (i.e. LD50 predicted in vitro ≤ 2000 mg/kg 

while in vivo the observed value was > 2000 mg/kg ) or Negative (i.e. LD50 

predicted in vitro > 2000 mg/kg while in vivo the observed value was ≤ 2000 

mg/kg). With the premise that the partition results would help understanding 

these false predictions of this binary classification system, and considering the 

high impact that logKow has on partitioning, it would be expected that the 

compounds which toxic class was falsely predicted, would have logKow values 

falling onto specific ranges. 

However as shown in Figure 14 this was not observed. The distribution of values 

of logKow of the compounds predicted as false positives and false negatives is not 

significantly different from the compounds with true predictions. 

 
 

 

Figure 14- Distribution of logKow of the chemical compounds which toxicity was correctly (True 
Predictions) or not correctly classified, either because in vitro indicated toxicity only at 
concentrations > 2000 mg/kg while in vivo studies shown toxic effect at lower concentrations 
(False Negative) or the opposite (False Positive). 

 

 

 



34 

 

After converting the nominal and predicted dissolved IC50s from molar 

concentration (M) to mg/L (mg/kg), they were plotted with the in vivo LD50, 

Figure 15, to analyze which concentration would correlate best with the in vivo 

one. The following trendline equations were obtained: 

 

log 𝑁𝑜𝑚𝑖𝑛𝑎𝑙 50 = 0.7625 × 𝐿𝐷50 − 0.1983 , R2=0.31 

log 𝐷𝑖𝑠𝑠𝑜𝑙𝑣𝑒𝑑 50 = 0.8734 × 𝐿𝐷50 − 1.076 , R2=0.20 

 

 

 

Figure 15- Comparison of the in vivo LD50 (mg/kg) with the in vitro nominal and the predicted 
dissolved IC50 (mg/kg). 

 

The logarithm of the in vivo rat oral LD50 values correlated with the logarithm of 

dissolved IC50 values has a lower coefficient of determination than with the 

nominal IC50 values. The partitioning and evaporation are events that have been 

broadly described in vitro, hence using the nominal or the actual bioavailable 

concentration for in vitro-in vivo extrapolations does make a difference. 

However, besides the uncertainties of the VCBA model, the correct way of 

integrating the predicted concentrations in this extrapolation is still being 

studied, e.g. can we assume that the dissolved concentration reflects the 

bioavailable one? Furthermore, the correlations should be interpreted in the light 

of the inherent high variability of the LD50 data, as shown by Hoffmann et al 

(2010). Moreover, the in vivo dose here being used is the nominal oral dose and 

chemical kinetics in vivo comprise more hallmarks such as metabolism and 

absorption through the gastrointestinal tract, which are being ignored in these 

comparisons. The cell line used in this assays indeed has no metabolic ability so 

it will not predict correctly the compounds that might be bio-activated or more 

easily cleared/excreted through metabolism. It is noteworthy that also the 
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higher protein-binding ability of lipophilic compound includes higher affinity with 

xenobiotic-metabolism enzymes. Thus these compounds tend to be more 

metabolized than polar compounds46 which further explain the lack of trend on 

false predictions and high logKow. However, to make a more accurate comparison 

of free unbound blood plasma concentrations in vivo and dissolved in vitro 

concentrations it would require PBK modelling all the 83 compounds, a task 

which extends beyond the scope of this specific work but hopefully will be 

explored in the future.  

As part of the ACuteTox project, kinetics transformations were used to estimate 

the oral dose from the nominal concentrations obtained in vitro (IC50) using a set 

of algorithms that took into account lipophilicity, metabolic clearance and protein 

binding and intestinal permeability using Caco-2 cells 

(http://www.acutetox.eu/WP5.pdf). The calculations were only possible for a 

limited set of compounds for which the kinetic input data were obtained and not 

clear conclusions were drawn other than recommending further evaluation 

(Prieto et al., 2013a). 

Efforts are still needed to prove that the VCBA simulations are relevant to 

predict acute oral toxicity for different regulatory contexts. In this context, an 

initial step could be to check experimentally the simulations obtained with the 

VCBA using a set of compounds. Table 10 shows the proposed compounds, 

chosen to represent a wide range of physicochemical properties and acute oral 

toxicity categories estimated in vivo and predicted in vitro. 
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Table 10 –Suggested chemical compounds to be tested in vitro, with their physical-chemical 
characteristics and the result of the comparison of the toxicity EU-CLP classification derived 
from the mean in vitro predicted and in vivo LD50s.1

 

 MW logKow HLC 

Acute oral 

toxicity 

prediction 

 

Benzyl benzoate 212 3,97 2,3710-02 FN 

Isoniazid 137 -0,78 1,2310-09 FN 

Dimethyldioctadecylammo

nium chloride 
586 8,39 6,4510-03 FP 

Hexachlorobenzene 285 5,73 1,311002 FP 

Xylene 106 3,04 5,251002 FP 

Ethanol 46 -0,31 5,0710-01 FP 

Benzene 78 2,13 5,621002 TN 

Disulfoton 274 4,02 2,1910-09 TP 

Hexachlorophene 407 7,40 5,5510-08 TP 

Caffeine 194 -0,07 3,6310-06 TP 

 

 

 

 

 

                                           
1
 

mg/kg, non-classified: 
FN (False Negative) – in vitro toxicity was non-classified while in vivo it was classified. 
FP (False Positive) – in vitro toxicity was classified while in vivo it was non-classified. 
TN (True Negative) – both in vitro and in vivo were non-classified 
TP (True Positive) – both in vitro and in vivo were classified. Still among classified toxicity, categories : Category 1- 

mg/mL; Category 2- - - 
a chemical is considered TP, reflecting a correct prediction of classified toxicity, its category can be mispredicted; 
while Hexachlorophene category was correctly predicted, Caffeine was underpredicted for 1 category and Disulfuton 
for 3 categories 
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4.5. Sensitivity analysis of several input parameters  

A local sensitivity analysis was performed to determine how influential some of 

the input parameters are on the dissolved concentration. In Figure 16 shows the 

influence of parameters Kr, HLC and logKow on the output of the dissolved 

concentration.  

As expected the logKow is the parameter with higher impact in the dissolved 

concentration, having sensitivity coefficients higher than 0.1.  

The higher the LogKow , the higher the absolute value of sensitivity coefficient, 

showing a high impact on 4 chemicals (logKow =2.31-8.39) but not on Caffeine 

which has the lower logKow (-0.07). 

 A negative sensitivity coefficient indicates inversed relation with the output, 

which indeed is true for logKow as the higher lipophilicity, the less bioavailable 

the chemical is, e.g. for the dimethyldioctadecylammonium chloride a variation 

of 10 % on logKow value induces a change of one decimal unit in the dissolved 

concentration. Likewise for HLC, the higher its value the more the chemical 

evaporates, hence less chemical is bioavailable.   

 

 

HLC has impact on the output on the dissolved concentration of the compounds 

herein previously shown to evaporate, benzene and xylene. This supports the 

claim that under a certain threshold of HLC, in which the chemical does not 

evaporate significantly, it makes no difference how low the value is.  

A variation of 10% in the parameters of SVcomp and MV has no/very little 

impact on chemicals dissolved concentration, adding more confidence to the 

extrapolation method used to obtain these parameters from the Molecular 

Weight. Both these parameters are used in the equations of gas-liquid diffusion 
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Figure 16- Normalized Sensitivity Coefficient of the dissolved concentration upon 10 % 
increase in input parameters: Kr, HLC and logKow for 5 chemicals. 
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which describes evaporation, hence theoretically these values will only have 

impact once HLC is high enough. However, this sensitivity analysis indicates that 

even in the case of compound with high evaporation, these parameters have 

very low or negligible impact on the output.  

Killing rate has a detectable impact on the output but still it is quite low. This 

shows that although the optimization step is important, obtaining an absolute 

minimum is not essential as long as the value is closed to it. This is noteworthy 

as an analysis on the optimization process, which resulted in a 3D graph with 

the minimum error for several values of Kr and NEC, showed that in general 

VCBA minimum “lays in a very flat area” meaning that for a relative wide range 

of NEC and Kr the minimum error does not change significantly making it quite 

difficult to find the absolute minimum and thus the optimized Kr (graph not 

shown). 

4.6. Assumptions and uncertainties  

The VCBA is a model that allows analysis of any chemical as long as the 

physicochemical characteristics are obtained, additionally allowing incorporation 

of toxicological data (concentration-response curve). However, to be such a 

generic model, it was built based on several assumptions and for some groups of 

chemical compounds the uncertainty on the output may increase substantially. 

Firstly, the QSARs used in VCBA to predict partition coefficients for lipid, serum, 

and plastic, were based mostly on logKow, not including other physico-chemical 

properties important for the substance fate, such as if the chemical is a H-

donor/acceptor47. Besides, as shown below, these QSARs were derived from 

specific sets of chemicals.  

For plastic, Kramer et al26 analyzed 7 polycyclic aromatic hydrocarbons (PAHs) 

chemicals with logKow ranging 3.33 to 6.13 (and HLC from 0.034 to 45 Pa m3 

mol‐1), measuring the binding constants at 1 % maximum water solubility while 

Jonker et al 48 analyzed 13 PAHs with logKow ranging approximately 4.5 to 7. 

Solely for the protein partition’s QSAR, other chemicals than just PAHs were 

considered, as it was based on a 6 independent studies, including 36 chemicals 

with logKow ranging -1.3 to 5.1. PAHs are a family of neutral non-polar 

chemicals, hence it is not clear to what extent can we rely on VCBA outputs for 

chemicals with different characteristics. As an example, we considered protein 

binding as a non-specific interaction which is not necessarily true for polar, 

charged and more lipophobic chemicals 29. For metallorganic and inorganic 

chemicals this uncertainty further increases. Similarly, to the QSARs included in 

the VCBA, some of predictive tools/methods for the physical-chemical input 

parameters, such as the ones in EPIsuite and the Fuller method for calculation of 

molecular diffusion volume, are based on organic chemicals.  

The cell uptake in the VCBA model is based on passive diffusion and active 

transport is presently not being considered. This cell uptake rate is based on the 

specific cell surface and the permeability equation49: 
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Log permeability = −1.1711+0.98 logKow −0.0011MW 

This equation considers the molecular size and the lipophilicity (logKow) of the 

chemical molecule, parameters essential for this hallmark description, such that 

they constitute two of the five rules of the Lipinski50. However other chemicals 

characteristics such as Van der Walls surface areas also influence the cell uptake 

but as these calculations require powerful computational methods, for the sake 

of a more throughput model they were not considered 49. 

Moreover, these QSARs are not considering saturation, thus VCBA estimations 

are representative of the maximum concentration which will partition to other 

elements than aqueous. To eventually include saturation into these models 

additional experimental measurements would have to be performed such as 

determination of the maximum number of binding sites on serum protein or 

maximum concentration that can be bound to plastic26. 

HLC, as previously indicated, is a parameter measured/predicted at 

temperatures of 25 C, but it increases with higher temperatures.  Since in vitro 

experiments were obtained at 37 C, the use of this constant at 25 C, might 

cause the VCBA to under-predict this endpoint, as observed by comparing with 

literature indications of volatile chemicals.  

As for metabolism, 3T3BALB/c cells are not metabolically competent, therefore, 

in the VCBA code the rate of metabolism was set equal to 0.  

Finally, although the VCBA is run set to the same conditions of the experimental 

in vitro set up, contamination or other (e.g. cell handling) factors which could 

influence in a negative way the cell culture, are not taken into account. 
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5. Conclusions 

 From the simulations carried out with the VCBA model and the analyses 

presented in this report the following could be concluded: 

Modelling chemical fate in the in vitro set up showed how much the dissolved 

concentration can deviate from the nominal concentration for several chemicals, 

emphasising the importance of using this kind of kinetic data in the 

interpretation of in vitro studies and in in vivo-in vitro extrapolations.  

The sensitivity analysis performed showed that HLC and logKow are the most 

critical parameters. 

It is very likely that the used HLC is not representative of the most common 

temperature used in in vitro experiments (i.e. 37C). In the future, a possible 

HLC “temperature correction factor” could be developed by analysing/studying 

how HLC of several chemicals change across temperatures.  

A higher uncertainty is in the applicability of the QSAR equation describing lipid, 

protein and plastic binding. By being based on experiments made mostly with 

neutral organic compounds, such as PAH, it is not clear how will these equations 

describe chemicals prone to other types of interactions. Besides, saturation 

which is also not considered in the model, can make the model drift from reality. 

Hence, in the future, some of the obtained partitions should be tested in vitro 

using compounds spreading across a wide range of logKow and HLC.  

The low (none) impact of the 10 % variation MV and SVcomp parameters in the 

dissolved concentration output, supports the use of extrapolations of the MW, 

hence increasing the number of chemicals that can be used. Moreover, even if 

this QSAR is not totally applicable for inorganic and metallo-organic chemicals, it 

is unlikely that the difference between the predicted and the real value would 

have a high impact on the VCBA ouput.  

Using the VCBA through the development of logKow-based alert classes and in 

the future also on HLC-based classes, is promising in refinement of experimental 

designs and possibly will allow a deeper interpretation of possible problems in 

the in vitro set up, such as reproducibility. It can give chemical-specific 

indications on whether different percentages of supplementation, different time 

endpoint or microplates wells geometry will have a strong impact on the in vitro 

bioavailable concentrations and hence if some in vitro experiments are directly 

comparable or not.  

Although in vitro toxicokinetics plays a role in the discrepancy between in vivo 

data and in vitro predictions (e.g. acute oral toxicity prediction), so do the in 

vivo kinetics, and both should be considered. Therefore, the discrepancies found 

in acute oral toxicity classification between in vivo and in vitro experiments could 

be reduced and /or solved by applying PBK models.  

In order to promote the use of the VCBA model by the scientific community and 

its future application in regulatory context, it would be necessary to build 

confidence on the simulations made by checking them, to some extent, 
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experimentally. Based on the results presented in this report, a set of 10 

chemicals is proposed to start up such verification. 

In this work the dissolved concentration after 24-48 hours is assumed to be the 

“toxic dose”. However, other dosimetrics such Cmax (maximum concentration) 

and the area under the curve (AUC) of chemical concentration have been used in 

dose-response studies4 especially in repeated long-term exposure mode, which 

can be modelled by VCBA. Which dosimetric would be the most appropriate for 

in vivo models toxicity comparison, is an issue that should be further evaluated 

in the future.  
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7. List of abbreviations and definitions 

 

ADMET - absorption, distribution, metabolism, excretion and toxicity  

VCBA - Virtual Cell Based Assay 

NEC –No-effect Concentration 

Kr – killing rate 

AUC - area under the curve  

SVcomp-Molecular Diffusion Volume 

HLC- Henry Law Constant 

MV – Molar Volume 

MW – Molecular Weight 

logKow – Logarithm of the partition octanol/water 

PAH – Policyclic aromatic hydrocarbons 

TP- True Positive 

TN - True Negative 

FP - False Positive 

FN - False Negative 

LD50 – Half maximal lethal dose  

IC50 – Half maximal inhibitory concentration 

NRU – Neutral Red Uptake 

EU CLP - Classification, Labelling and Packaging of Substances and Mixtures 

QSARs – Quantitative Structure-Activity Relationships 
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Figure 1 - Schematic representation of the Fate and Transport model of the virtual cell 

based assay (VCBA) that simulates the kinetics of a chemical tested.  

Figure 2 - Scatter plot of Molecular Weight against the respective calculated Molecular 

Diffusion Volume calculated through Fuller, 1966 and Fuller. 

Figure 3 - Scatter plot of Molecular Weight against the respective Molar Volume. Black 

line is the regression line drawn through all presented data points 

Figure 4 - Scatter plot of Experimental Henry Law Constant against the respective 

Predictions obtained through Bond, Group, HENRYWINTM (EPI method) and Chemical 

Dashboard (CompTox). 

Figure 5 - Scatter plot of Experimental Henry Law Constant A) higher than 1 and B) 

lower than 1,  against the respective Predictions obtained through Bond, Group, 

HENRYWINTM (EPI method) and Chemical Dashboard (CompTox). 

Figure 6 - Representation of the VCBA model's differential equations and "for cycle" 

solving. 

Figure 7 - KNIME workflow for the current VCBA where three zones are defined: input, 

model (core), and output. 

Figure 8 - Plots for chemical compounds concentration and effect in cell number with 

the optimized NEC and Kr: Percentage of viability at 48 hours with the nominal 

concentration: black line-prediction; red dots-experimental values; Relative number of 

cells, Dissolved Concentration and Intracellular Concentration throughout the 48 hours of 

the culture for at least 10 concentrations of each compound, represented with a gradient 

blue color from the lower concentrations=light color to higher concentrations=darker 

color (Hexachlorophene 510-6 to 510-5 (M), Benzyl Benzoate 0.0012 to 0.012 (M), 

Acetyl Salicylic Acid : 0.0028 to 0.028 (M) and Xylene: 0.0026 to 0.026 (M)) 

Figure 9 - Partition in the several components of the in vitro assay for the 83 

compounds optimized and run in the VCBA model. Represented in % to total final 

concentration 

Figure 10 - Partition in the several components of the in vitro assay for the 16 

compounds optimized and run in the VCBA model with 0, 5 and 10 % of supplemented 

serum (FBS) for 48 hours with the previously optimized NEC and Kr. 

Figure 11 - Comparison of the logarithms of intracellular concentration and dissolved 

one for the 83 simulated chemicals with 5 % serum supplementation. Red dots 

correspond to the chemicals with logKow higher than 2.5. 

 Figure 12 - Proposed classes for chemical fate, delimited by thresholds based on 

logKow. 

Figure 13 - Partition of the Class A and Class B chemicals through the several in vitro 

components in medium supplemented with 10 % serum and not accounting for cell 

death. Results from running the chemical at 0.1 M for a 24 hours experiment. 

Figure 14 - Distribution of logKow of the chemical compounds which toxicity was 

correctly (True Predictions) or not correctly classified, either because in vitro indicated 

toxicity only at concentrations > 2000 mg/kg while in vivo studies shown toxic effect at 

lower concentrations (False Negative) or the opposite (False Positive). 
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Figure 15 - Comparison of the in vivo LD50 (mg/kg) with the in vitro nominal and the 

predicted dissolved IC50 (mg/kg). 

Figure 16 - Normalized Sensitivity Coefficient of the dissolved concentration upon 10 % 

increase in input parameters: Kr, HLC and logKow for 5 chemicals. 
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Caffeine, Benzene, Xylene, Ochratoxin A, Dimethyldioctadecylammonium chloride. 
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10. Annexes 

Table 11 – Sensitivity Coefficient for parameters logKow, HLC, Svcomp, MV and Kr in Caffeine, 
Benzene, Xylene, Ochratoxin A, Dimethyldioctadecylammonium chloride. 

 

Chemicals 
Parameters 

Variation 
logKow HLC Svcomp MV Kr 

Caffeine 
2.1E-04 -2.0E-04 0 -2.0E-04 -2.3E-04 -10% 

-1.8E-04 2.0E-04 0 2.0E-04 1.7E-04 +10% 

Benzene 
-0.304 -0.370 0 0 -2.1E-04 -10% 

-0.410 -0.345 0 0 -1.9E-04 +10% 

Xylene 
-0.608 -0.607 1.6E-05 0 -3.6E-04 -10% 

-1.015 -0.548 1.0E-05 0 -2.4E-04 +10% 

Ochratoxin A 
-19.375 0 0 0 -0.007 -10% 

-7.087 0 0 0 -0.007 +10% 

Dimethyldioctadecylammonium 
chloride 

-99.831 0 0 0 0.003 -10% 

-9.068 0 0 0 0.006 +10% 
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