

JRC TECHNICAL REPORTS

Evaluation of the Laboratory Comparison Exercise for SO₂, CO, O₃, NO and NO₂ 13-16 June 2016, Ispra

European Commission harmonisation programme for Air Quality Measurements

Lagler F., Barbiere M., Borowiak A.

2017

This publication is a Technical report by the Joint Research Centre (JRC), the European Commission's science and knowledge service. It aims to provide evidence-based scientific support to the European policymaking process. The scientific output expressed does not imply a policy position of the European Commission. Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use that might be made of this publication.

Contact information

Name: Friedrich LAGLER

Address: European Commission, Joint Research Centre, Via E. Fermi 2749, 21027 Ispra (VA), Italy

Email: Friedrich.lagler@ec.europa.eu

Tel.: +39 0332 789990

JRC Science Hub

https://ec.europa.eu/jrc

JRC106069

EUR 28610 EN

Print	ISBN 978-92-79-68876-8	ISSN 1018-5593	doi:10.2760/335841
PDF	ISBN 978-92-79-68875-1	ISSN 1831-9424	doi:10.2760/214326

Luxembourg: Publications Office of the European Union, 2017

© European Union, 2017

The reuse of the document is authorised, provided the source is acknowledged and the original meaning or message of the texts are not distorted. The European Commission shall not be held liable for any consequences stemming from the reuse.

How to cite this report: Friedrich Lagler, Maurizio Barbiere, Annette Borowiak; *Evaluation of the Laboratory Comparison Exercise for SO2, CO, O3, NO and NO2 13-16 June 2016*, EUR 28610 EN, doi:10.2760/214326.

All images © European Union 2017

Evaluation of the Laboratory Comparison Exercise for SO2, CO, O3, NO and NO2 13-16 June 2016, Ispra

Eight Laboratories of AQUILA (Network of European Air Quality Reference Laboratories) met for a laboratory comparison exercise in Ispra (IT) to evaluate their proficiency in the analysis of inorganic gaseous air pollutants (NO, NO_2 , SO_2 , CO and O_3). On the basis of agreed criteria, 79.3% of the results reported by AQUILA laboratories were good both in terms of measured values and reported uncertainties. The rest of the results (21.1%) had good measured values, but the reported uncertainties were either too high (17.8%) or too small (2.9%).

Acknowledgements

In collaboration with:

Patricia Abad Valle, Anastasios Adamopoulos, Jan Adams, Georgios Bakaloudis, Peter Boudengen, Lin Delaney, Tomasz Fraczkowski, Mario Gabrysch, Kaisa Lusa, Pilar Morillo, Andrzej Pindel, Michael Reisenhofer, Cathal Ruane, Karri Saarnio, Manfred Stummer, Andreas Wolf.

	NAME	VERSION	DATE
AUTHOR	A. BOROWIAK / F. LAGLER	DRAFT 1	14/09/2016
	M. BARBIERE		
REVIEW	N. JENSEN	DRAFT 2	26/09/2016
APPROVAL	E. VIGNATI	1.0	07/04/2017

Contents

119	T OF F	IGURES	5
LIS	ST OF F	GURES	6
ΑB	BREVA	TIONS	7
M	ATHEM	ATICAL SYMBOLS	7
ΑB	STRAC	Т	8
1.	INT	RODUCTION	g
2.		ER-LABORATORY ORGANIZATION	
	2.1.	Participants	11
	2.2.	PREPARATION OF TEST MIXTURES	13
3.	THE	EVALUATION OF LABORATORY'S MEASUREMENT PROFICIENCY	14
	3.1.	z' – score	14
	3.2.	E _N - SCORE	18
4.	PER	FORMANCE CHARACTERISTICS OF INDIVIDUAL LABORATORIES	24
	4.1.	CONVERTER EFFICIENCIES OF NO ₂ -TO-NO FOR NO _X ANALYZERS	24
5.	DIS	CUSSION	26
6.	COI	NCLUSIONS	28
7.	REF	ERENCES	30
	Anı	nex A. Assigned values	33
	Anı	nex B. The results of the IE	
	Anı	nex C. The precision of standardized measurement methods	
		nex D. The scrutiny of results for consistency and outlier test	
	Anı	nex E. Accreditation certificate	62
			62

List of figures

Table 1: List of participating organizations.	11
TABLE 2: LIST OF PARTICIPATION ORGANIZATIONS	
TABLE 3: SEQUENCE PROGRAM OF GENERATED TEST GASES WITH INDICATIVE POLLUTANT CONCENTRATIONS	
Table 4: Standard deviation for proficiency assessment (σ _P)	
TABLE 5: UNSATISFACTORY RESULTS ACCORDING TO E _N -SCORE.	
TABLE 6: EFFICIENCY OF NO2-TO-NO CONVERTERS	
TABLE 7: GENERAL ASSESSMENT OF PROFICIENCY RESULTS	
TABLE 8: FLAGS SUMMARY	
TABLE 9: Z'-SCORE SUMMARY	
TABLE 10: VALIDATION OF ASSIGNED VALUES (X)	
TABLE 11: REPORTED VALUES FOR SO ₂ RUN 0.	
TABLE 12: REPORTED VALUES FOR SO ₂ RUN 0.	
TABLE 12: REPORTED VALUES FOR SO ₂ RUN 1.	
TABLE 13: REPORTED VALUES FOR SO2 RUN 2.	
TABLE 15: REPORTED VALUES FOR SO ₂ RUN 4	
Table 17: Reported values for CO run 0.	
Table 18: Reported values for CO run 1.	
Table 19: Reported values for CO run 2.	
TABLE 20: REPORTED VALUES FOR CO RUN 3.	
Table 21: Reported values for CO run 4.	
TABLE 22: REPORTED VALUES FOR CO RUN 5.	
TABLE 23: REPORTED VALUES FOR O ₃ RUN 0.	
TABLE 24: REPORTED VALUES FOR O ₃ RUN 1	
TABLE 25: REPORTED VALUES FOR O ₃ RUN 2	
TABLE 26: REPORTED VALUES FOR O ₃ RUN 3	
TABLE 27: REPORTED VALUES FOR O ₃ RUN 4.	
TABLE 28: REPORTED VALUES FOR O ₃ RUN 5.	
TABLE 29: REPORTED VALUES FOR NO RUN 0	
TABLE 30: REPORTED VALUES FOR NO RUN 1	
TABLE 31: REPORTED VALUES FOR NO RUN 2	
TABLE 32: REPORTED VALUES FOR NO RUN 3	
TABLE 33: REPORTED VALUES FOR NO RUN 4	
TABLE 34: REPORTED VALUES FOR NO RUN 5	
TABLE 35: REPORTED VALUES FOR NO RUN 6	
TABLE 36: REPORTED VALUES FOR NO RUN 7	
TABLE 37: REPORTED VALUES FOR NO RUN 8	
TABLE 38: REPORTED VALUES FOR NO RUN 9	
TABLE 39: REPORTED VALUES FOR NO RUN 10.	51
TABLE 40: REPORTED VALUES FOR NO ₂ RUN 0.	52
TABLE 41: REPORTED VALUES FOR NO ₂ RUN 2.	52
TABLE 42: REPORTED VALUES FOR NO ₂ RUN 4.	53
TABLE 43: REPORTED VALUES FOR NO ₂ RUN 6.	53
TABLE 44: REPORTED VALUES FOR NO ₂ RUN 8.	54
TABLE 45: REPORTED VALUES FOR NO ₂ RUN 10.	54
TABLE 46: CRITICAL VALUES OF T USED IN THE REPEATABILITY (R) AND REPRODUCIBILITY (R) EVALUATION.	
Table 47: The R and r of SO ₂ standard measurement method	56
Table 48: The R and r of CO standard measurement method	57
Table 49: The R and R of O_3 standard measurement method	58
Table 50: The R and r of NO standard measurement method	59
Table 51: The R and R of NO_2 standard measurement method	60
Table 52: "Genuine" statistical outliers according to Grubb's one outlying observation test	61
TABLE 53: STRAGGLERS ACCORDING TO GRUBB'S ONE OBSERVATION TEST	61

List of figures

Figure 1: Z'-score evaluations of SO ₂ measurements	15
FIGURE 2: Z'-SCORE EVALUATIONS OF CO MEASUREMENTS	16
FIGURE 3: Z'-SCORE EVALUATIONS OF O₃ MEASUREMENTS	16
Figure 4: Z'-score evaluations of NO measurements	17
Figure 5: Z'-score evaluations of NO ₂ measurements	17
FIGURE 6: BIAS OF PARTICIPANT'S SO ₂ MEASUREMENT RESULTS	19
FIGURE 7: BIAS OF PARTICIPANT'S CO MEASUREMENT RESULTS	20
FIGURE 8: BIAS OF PARTICIPANT'S O3 MEASUREMENT RESULTS	21
FIGURE 9: BIAS OF PARTICIPANT'S NO MEASUREMENT RESULTS	22
FIGURE 10: BIAS OF PARTICIPANT'S NO ₂ MEASUREMENT RESULTS	
FIGURE 11: BIAS OF PARTICIPANT'S NO ₂ MEASUREMENTS WITH ERROR BARS REPRESENTING EXPANDED UNCERTAINTY FOR RUN NUMBERS	1,
3, 5, 7 and 9. Within these test gas mixtures there is no gas phase titration to produce NO2 (see Table 3). For each	
EVALUATION THE RUN NUMBER TOGETHER WITH THE PARTICIPANTS ROUNDED RUN AVERAGE (NMOL/MOL) IS GIVEN.	24
FIGURE 12: DECISION DIAGRAM FOR GENERAL ASSESSMENT OF PROFICIENCY RESULTS.	26
Figure 13: Reported values for SO ₂ run 0	36
Figure 14: Reported values for SO ₂ run 1	37
Figure 15: Reported values for SO ₂ run 2	37
Figure 16: Reported values for SO ₂ run 3	38
Figure 17: Reported values for SO ₂ run 4	38
Figure 18: Reported values for SO ₂ run 5	39
Figure 19: Reported values for CO run 0	
Figure 20: Reported values for CO run 1	40
Figure 21: Reported values for CO run 2	41
Figure 22: Reported values for CO run 3	41
Figure 23: Reported values for CO run 4	42
Figure 24: Reported values for CO run 5	42
Figure 25: Reported values for O ₃ run 0.	43
Figure 26: Reported values for O ₃ run 1.	43
Figure 27: Reported values for O ₃ run 2.	44
Figure 28: Reported values for O ₃ run 3.	
Figure 29: Reported values for O ₃ run 4.	
Figure 30: Reported values for O ₃ run 5.	
Figure 31: Reported values for NO run 0.	
Figure 32: Reported values for NO run 1.	
Figure 33: Reported values for NO run 2.	47
Figure 34: Reported values for NO run 3.	
Figure 35: Reported values for NO run 4.	48
Figure 36: Reported values for NO run 5.	48
Figure 37: Reported values for NO run 6.	49
Figure 38: Reported values for NO run 7.	49
Figure 39: Reported values for NO run 8.	50
Figure 40: Reported values for NO run 9.	50
Figure 41: Reported values for NO run 10.	51
Figure 42: Reported values for NO ₂ run 0.	52
Figure 43: Reported values for NO ₂ run 2	52
Figure 44: Reported values for NO ₂ run 4	53
Figure 45: Reported values for NO ₂ run 6.	
Figure 46: Reported values for NO ₂ run 8.	
Figure 47: Reported values for NO ₂ run 10.	
Figure 48: The R and r of SO_2 standard measurement method as a function of concentration	56
Figure 49: The R and r of CO standard measurement method as a function of concentration.	
Figure 50: The R and r of O₃ standard measurement method as a function of concentration	
FIGURE 51: THE R AND R OF NO STANDARD MEASUREMENT METHOD AS A FUNCTION OF CONCENTRATION	
Figure 52: The R and r of NO₂ standard measurement method as a function of concentration	60

Abbrevations

AQUILA Network of National Reference Laboratories for Air Quality CEN European Committee for Standardization CO Carbon monoxide Certified Reference Material **CRM** DQO Data Quality Objective **ERLAP** European Reference Laboratory of Air Pollution **European Commission** EC **GPT** Gas Phase Titration Inter-laboratory Comparison Exercise ΙE ISO International Organization for Standardization **JRC** Joint Research Centre NO Nitrogen monoxide Nitrogen dioxide NO_2 The oxides of nitrogen, the sum of NO and NO₂ NO_X National Reference Laboratory NRL Ozone O_3 SO_2 Sulphur dioxide Verein Deutscher Ingenieure VDI WHO-CC World Health Organization Collaborating Centre for Air Quality

Management and Air Pollution Control, Berlin

Mathematical Symbols

symbol	explanation
α	converter efficiency (EN 14211)
En	E _n – score statistic (ISO 13528)
r	repeatability limit (ISO 5725)
R	reproducibility limit (ISO 5725)
σ_{p}	standard deviation for proficiency assessment (ISO 13528)
x *	robust average (Annex C ISO 13528)
s*	robust standard deviation (Annex C ISO 13528)
Sr	repeatability standard deviation (ISO 5725)
S R	reproducibility standard deviation (ISO 5725)
$U_{X'}$	expanded uncertainty of the assigned/reference value (ISO 13528)
U_{xi}	expanded uncertainty of the participant's value
$u_{X'}$	standard uncertainty of the assigned/reference value (ISO 13528)
X	assigned/reference value (ISO 13528)
Xi	average of three values reported by the participant <i>i</i> (for particular
	parameter and concentration level) (ISO 5725)
$X_{i,j}$	j-the reported value of participant i (for particular parameter and
	concentration level) (ISO 5725)
z'	z'-score statistic (ISO 13528)

Abstract

Within the harmonisation programme of Air Quality monitoring in Europe the European Reference Laboratory of Air Pollution (ERLAP) is organizing Inter-Laboratory Comparison Exercises (IE). From the 13th to the 16th of June 2016, eight Laboratories of AQUILA (Network of European Air Quality Reference Laboratories) met for a laboratory comparison exercise in Ispra (IT) to evaluate their proficiency in the analysis of inorganic gaseous air pollutants (NO, NO_2 , SO_2 , CO and O_3) covered by the European Air Quality Directive 2008/50 EC [1] and its recent amendments 2015/1480/EC [42].

The proficiency evaluation, where each participant's bias was compared to two criteria, provides information on the current situation and capabilities to the European Commission and can be used by participants in their quality control system.

On the basis of adopted criteria, 79.3% of the results reported by AQUILA laboratories were good both in terms of measured values and reported uncertainties. The rest of the results (21.1%) had good measured values, but the reported uncertainties were either too high (17.8%) or too small (2.9%). Comparability of results among AQUILA participants at the highest generated concentration levels is satisfactory for measurements of all pollutants.

1. Introduction

The Directive 2008/50/EC [1] on ambient air quality and cleaner air for Europe sets a framework for a harmonised air quality assessment in Europe.

One important objective of the Directive [1] is that the ambient air quality shall be assessed on the basis of common methods and criteria. It deals with the air pollutants sulphur dioxide (SO_2) , nitrogen dioxide (NO_2) and monoxide (NO), particulate matter, lead, benzene, carbon monoxide (CO) and ozone (O_3) . Among others it specifies the reference methods for measurements and Data Quality Objectives (DQOs) for the accuracy of measurements.

The European Commission (EC) has supported the development and publication of reference measurement methods for CO [2], SO_2 [3], $NO-NO_2$ [4] and O_3 [5] as European standards. Appropriate calibration methods [6], [7] and [8] have been standardised by the International Organization for Standardization (ISO).

As foreseen in the Air Quality Directive, the European Reference Laboratory of Air Pollution (ERLAP) of the Directorate for Energy, Transport and Climate at the Joint Research Centre (JRC) organises inter-laboratory comparison exercises (IE) to assess and improve the status of comparability of measurements of National Reference Laboratories (NRL) of the Member States of the European Union.

The World Health Organization Collaborating Centre for Air Quality Management and Air Pollution Control, Berlin (WHO CC) is carrying out similar activities since 1994 [9] [10], [24], [31], [33], [35] and [38] but with a view to obtaining harmonised air quality data for health related studies. Their programme integrates within the WHO EURO region, which includes public health institutes and other national institutes - especially from the Central Eastern Europe, Caucasus and countries from Central Asia.

Starting in 2004, it has been decided to bring together the efforts of both the JRC-ERLAP and WHO CC and to coordinate activities as far as possible, with a view to optimize resources and have better international harmonisation.

The following report deals with the IE that took place from 13^{th} to the 16^{th} of June 2016 in Ispra (IT).

Since 1990 ERLAP organizes IEs aiming at evaluating the comparability of measurements carried out by NRLs and promoting information exchange among the expert laboratories. Currently, a more systematic approach has been adopted, in accordance with the Network of National Reference Laboratories for Air Quality (AQUILA) [11], aiming both at providing an alert mechanism for the purposes of the EC legislation and at supporting the implementation of quality schemes by NRLs.

The methodology for the organisation of IEs was developed by ERLAP in collaboration with AQUILA and is described in a paper on the organisation of laboratory comparison exercises for gaseous air pollutants [12].

This evaluation scheme was adopted by AQUILA in December 2008 and is applied to all IEs since then. It contains common criteria to alert the EC on possible performance failures which do not rely solely on the uncertainty claimed by participants. The evaluation scheme implements the z'-score method [13] with the uncertainty requirements for calibration gases stated in the European standards [2], [3], [4] and [5], which are consistent with the DOOs of European Directives.

According to the above mentioned document, NRLs with an overall unsatisfactory performance in the z'-score evaluation (one unsatisfactory or two questionable results per parameter) ought to repeat their participation in the following IE in order to demonstrate remediation measures [12]. In addition, considering that the evaluation scheme should be useful to participants for accreditation according to ISO 17025, they are requested to include their measurement uncertainty. Hence, participants' results

EC harmonisation programme for Air Quality Measurements Evaluation of the Laboratory Comparison Exercise for SO₂, CO, O₃, NO and NO₂, 13th-16th of June 2016 Ispra, Italy

(measurement values and uncertainties) are compared to the assigned values applying the E_n – score method [13].

Beside the proficiency of participating laboratories, the repeatability and reproducibility of standardised measurement methods [14], [15] and [16] are evaluated as well. These group evaluations are useful indicators of trends in measurement quality over different IEs.

2. Inter-laboratory organization

The IE was announced in February 2016 to the members of the AQUILA network and the WHO CC representative. Registration was opened in April 2016 and closed at the beginning of June 2016.

The participants were required to bring their own measurement instruments, data acquisition equipment and travelling standards (to be used for calibrations or checks during the IE).

The participants were invited to arrive on Monday, 13^{th} of June 2016, for the installation of their equipment. The calibration of NO_x and O_3 analysers was carried out on Tuesday morning and the generation of NO_x and O_3 gas mixtures started at 11:00.

The calibration of SO_2 and CO analysers was carried out on Wednesday afternoon and the generation of CO and SO_2 gas mixtures started at 20:00.

The test gases generation and measurements finished on Thursday at 9:00.

2.1. Participants

All participants were organisations dealing with the routine ambient air monitoring or institutions involved in environmental or public health protection. The national representatives came from Austria, Belgium, Finland, Greece, Ireland, Poland and Spain.

Country	Laboratory	Code
Spain	Instituto De Salud Carlos III (ISCIII)	Α
Belgium	Flemish Environmental Agency (VMM)	В
Poland	Chief Inspectorate of Environmental Protection (GIOS)	С
Finland	Finnish Meteorological Institute (FMI)	D
Ireland	Environmental Protection Agency (EPA)	Е
Austria	Upper Austria Regional Government (OOE)	F
European Commission	European Reference Laboratory for Air Pollution (ERLAP)	G
Austria	Environment Agency Austria (EAA)	Н
Greece	Ministry of Environment and Energy	I

Table 1: List of participating organizations.

Table 2 reports the manufacturer and model of the instrumentation used by every participant during the inter-laboratory comparison exercise including those used in the calculation of the assigned values.

The instrumentation used to analyse all parameters was manufactured by three different companies.

The list contains the information reported by participants and cannot be considered as an implicit or explicit endorsement by the organisers of any specific instrumentation.

Gas	Lab Code	Instrument
SO ₂	A B C D E F G H I	Thermo 43i, 2008 Thermo 43i, 2010 Thermo 43C, 2004 Thermo 43iTLE, 2012 Teledyne API, T-100, 2016 Thermo 43i, 2013 Thermo 43iTLE, 2009 Thermo 43CTL, 1999 Teledyne API, T-100
NO _X	A B C D E F G H I	Thermo, TE42i, 2008 Thermo, TE42i, 2011 Thermo, TE42C, 2004 Horiba APNA 360, 2003 Teledyne API T200, 2016 Horiba, APNA 370, 2009 Thermo, TE42i, 2014 Horiba, APNA 370, 2010 Teledyne API, T-200
СО	A B C D E F G H I	Thermo, TE48i, 2008 Teledyne API T300, 2012 Teledyne API T300, 2011 Horiba, APMA-360, 1999 Teledyne API T300, 2014 Horiba, APMA 370, 2009 Horiba, APMA-370, 2010 Horiba APMA-360, 1997 Teledyne API, T-300
O ₃	A B C D E F G H I	Teledyne API 400E, 2009 Thermo, TE49i, 2009 Thermo, TE49C, 2004 Thermo, TE49i, 2012 Teledyne API T400, 2015 Thermo, TE49i, 2005 Thermo, 49-iPS, 2015 Thermo, TE49i, 2013 Teledyne API T400

Table 2: List of instruments used by participants.

2.2. Preparation of test mixtures

The ERLAP IE facility has been described in several reports [17], [18]. During this IE, gas mixtures were prepared for SO₂, CO, O₃, NO and NO₂ at concentration levels around limit values, critical levels and assessment thresholds set by the European Air Quality Directive [1].

The test mixtures were prepared by the dilution of gases from cylinders containing high concentrations of NO, SO_2 or CO using thermal mass flow controllers [8]. O_3 was added using an ozone generator and NO_2 was produced applying the gas phase titration method [19] in a condition of NO excess.

The participants were required to report three half-hour-mean measurements for each concentration level (run) in order to evaluate the repeatability of standardised measurement methods. Zero concentration levels were generated for one hour and one half-hour-mean measurement was reported. The sequence programme of generated test gases is given in Table 3.

day	start time	duration	parameter	installation	calibration	Zero Air	NO	NO ₂	O ₃	со	SO ₂
		h				nmol/mol	nmol/mol	nmol/mol	nmol/mol	mmol/mol	nmol/mol
1st	9:00	5	/	Х							
2nd	8:00	3	/		X						
2nd	11:00	1	NO-NO ₂ -O ₃			0					
2nd	12:00	2	NO-NO ₂				280				
2nd	14:00	2	NO-NO ₂				160	120			
2nd	16:00	2	O_3						125		
2nd	18:00	2	NO-NO ₂				55				
2nd	20:00	2	NO-NO ₂				33	22			
2nd	22:00	2	O_3						25		
3rd	0:00	2	NO-NO ₂				480				
3rd	2:00	2	NO-NO ₂				390	90			
3rd	4:00	2	O ₃						90		
3rd	6:00	2	NO-NO ₂				25				
3rd	8:00	2	NO-NO ₂				13	12			
3rd	10:00	2	O ₃						12		
3rd	12:00	2	NO-NO ₂				130				
3rd	14:00	2	NO-NO ₂				70	60			
3rd	16:00	2	O ₃						60		
3rd	< 18:00	2	calibration		X						
3rd	20:00	1	CO-SO ₂			0					
3rd	21:00	2	CO-SO ₂							8	60
3rd	23:00	2	CO-SO ₂							3.5	125
4th	1:00	1	CO-SO ₂	Zero A	ir not rep	orted				0	0
4th	2:00	2	CO-SO ₂							2	25
4th	4:00	2	CO-SO ₂							5	4
4th	6:00	2	CO-SO ₂							0.8	12
4th	8:00	1				0					
4th	9:00	END									

Table 3: Sequence program of generated test gases with indicative pollutant concentrations

3. The evaluation of laboratory's measurement proficiency

To evaluate the participant's measurement proficiency, the methodology described in ISO 13528 [13] was applied. It has been agreed among the AQUILA members to take the measurement results of ERLAP as the assigned/reference values for the whole IE [12].

The traceability of ERLAP's measurement results and the method applied to validate them are presented in Annex A. In the following proficiency evaluations, the uncertainty of test gas homogeneity (Annex A) was added to the uncertainties of ERLAP's measurement results.

All data reported by participating laboratories are presented in Annex B.

As it is described in the position paper [12], the proficiency of the participants was assessed by calculating two performance indicators.

The first performance indicator (z'-score) tests whether the difference between the participants measured value and the assigned/reference value remains within the limits of a common criterion.

The second performance indicator (E_n -score) tests if the difference between the participants measured values and assigned/reference value remains within the limits of a criterion, that is calculated individually for each participant, from the uncertainty of the participants measurement result and the uncertainty of the assigned/reference value.

3.1. z' – score

The z'- score statistic is calculated according to ISO 13528 [13] as:

$$z' = \frac{x_i - X}{\sqrt{\sigma_p^2 + u_X^2}} = \frac{x_i - X}{\sqrt{(a \cdot X + b)^2 + u_X^2}}$$
 Equation 1

where $`x_i'$ is a participant's average value for each run, `X' is the assigned/reference value, $`\sigma_p`$ is the 'standard deviation for proficiency assessment' and $`u_{X'}$ ' is the standard uncertainty of the assigned value. For 'a' and 'b' see Table 4.

In the European standards [2], [3], [4] and [5] the uncertainties for calibration gases used in ongoing quality control are prescribed. In fact, it is stated that the maximum permitted expanded uncertainty for calibration gases is 5% and that 'zero gas' shall not give instrument reading higher than the detection limit. As one of the tasks of NRLs is to supply calibration gas mixtures, the 'standard deviation for proficiency assessment' (σ_p) [13] is calculated in fitness-for-purpose manner from requirements given in European standards.

Over the whole measurement range σ_p is calculated by linear interpolation between 2.5% at the calibration point (75% of calibration range) and the limit of detection at zero concentration level. The limits of detection of studied measurement methods were evaluated from the data of previous IEs. The linear function parameters of σ_p are given in Table 4:

	σ _p =a·c+b			
Gas	а	b		
		nmol/mol		
SO ₂	0.022	1		
CO	0.024	100		
O_3	0.020	1		
NO	0.024	1		
NO ₂	0.020	1		

Table 4: Standard deviation for proficiency assessment (σ_p) .

 σ_p is a linear function of concentration (c) with parameters: slope (a) and intercept (b).

The assessment of results in the z'-score evaluation is made according to the following criteria:

- |z'| ≤ 2 are considered satisfactory.
- $2 < |z'| \le 3$ are considered questionable.
- |z'| > 3 are considered unsatisfactory. Scores falling in this range are very unusual and are taken as evidence that an anomaly has occurred that should be investigated and corrected.

The results of z'-score evaluation are presented in bar plots (Figure 1 to Figure 5) in which the z'-scores of each participant are grouped together, and assessment criteria are presented as $z'=\pm 2$ and $z'=\pm 3$ lines.

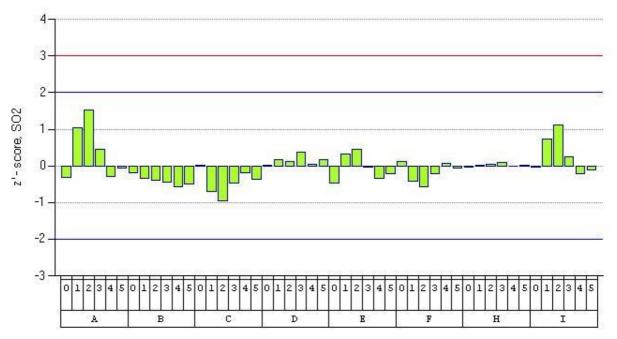


Figure 1: Z'-score evaluations of SO2 measurements

Scores are given for each participant and each tested concentration level (run). Run number order (with nominal concentration) is: 0 (0 nmol/mol), 1 (60 nmol/mol), 2 (125 nmol/mol), 3 (25 nmol/mol), 4 (4 nmol/mol), 5 (12 nmol/mol). The assessment criteria are presented as $z'=\pm 2$ (blue line) and $z'=\pm 3$ (red line). They represent the limits for the questionable and unsatisfactory results.

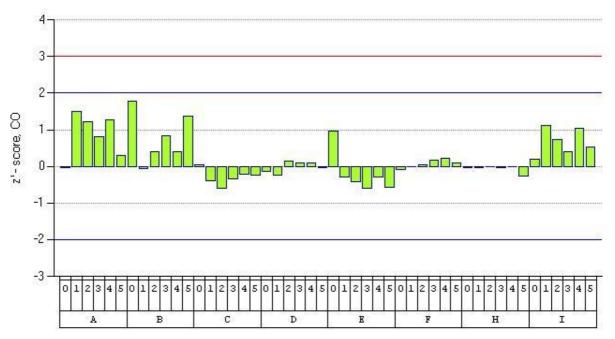


Figure 2: Z'-score evaluations of CO measurements

Scores are given for each participant and each tested concentration level (run). Run number order (with nominal concentration) is: 0 (0 μ mol/mol), 1 (8 μ mol/mol), 2 (3.5 μ mol/mol), 3 (2 μ mol/mol), 4 (5 μ mol/mol), 5 (0.8 μ mol/mol). The assessment criteria are presented as $z'=\pm 2$ (blue line) and $z'=\pm 3$ (red line). They represent the limits for the questionable and unsatisfactory results.

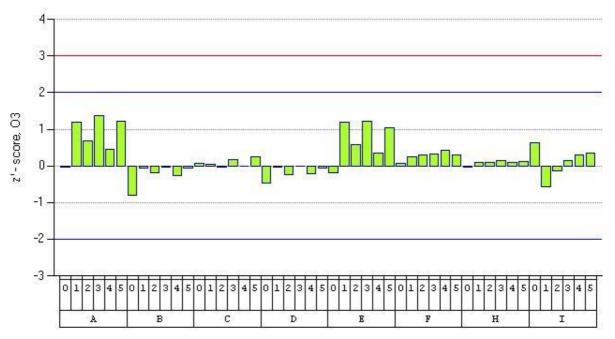


Figure 3: Z'-score evaluations of O₃ measurements

Scores are given for each participant and each concentration level (run). Run number order (with nominal concentration) is: 0 (0 nmol/mol), 1 (125 nmol/mol), 2 (25 nmol/mol), 3 (90 nmol/mol), 4 (12 nmol/mol), 5 (60 nmol/mol). The assessment criteria are presented as $z'=\pm 2$ (blue line) and $z'=\pm 3$ (red line). They represent the limits for the questionable and unsatisfactory results.

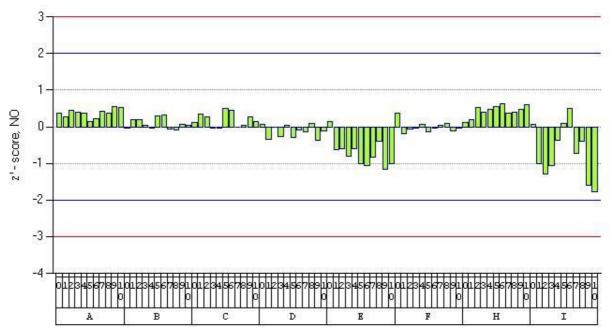


Figure 4: Z'-score evaluations of NO measurements

Scores are given for each participant and each tested concentration level (run). Run number order (with nominal concentration) is: 0 (0 nmol/mol), 1 (280 nmol/mol), 2 (160 nmol/mol), 3 (55 nmol/mol), 4 (33 nmol/mol), 5 (480 nmol/mol), 6 (390 nmol/mol), 7 (25 nmol/mol), 8 (13 nmol/mol), 9 (130 nmol/mol), 10 (70 nmol/mol). The assessment criteria are presented as $z'=\pm 2$ (blue line) and $z'=\pm 3$ (red line). They represent the limits for the questionable and unsatisfactory results.

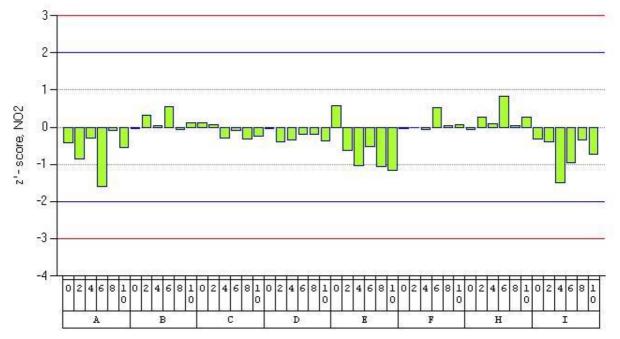


Figure 5: Z'-score evaluations of NO₂ measurements

Scores are given for each participant and each concentration level (run). Run number order (with nominal concentration) is: 0 (0 nmol/mol), 1 (150 nmol/mol), 2 (110 nmol/mol), 3 (60 nmol/mol), 4 (90 nmol/mol), 5 (20 nmol/mol). The assessment criteria are presented as $z'=\pm 2$ (blue line) and $z'=\pm 3$ (red line). They represent the limits for the questionable and unsatisfactory results.

3.2. E_n - score

The normalised deviations [13] (E_n) were calculated according to:

$$E_n = \frac{x_i - X}{\sqrt{U_{x_i}^2 + U_X^2}}$$
 Equation 2

where 'X' is the assigned/reference value with an expanded uncertainty 'U_{X'}' and 'x_i' is the participant's average value with an expanded uncertainty 'U_{Xi}'. Satisfactory results are the ones for which $|E_n| \le 1$.

In Figure 6 to Figure 10 the bias of each participant (x_i-X) is plotted and error bars are used to show the value of denominator of equation $2\left(\sqrt{U_{x_i}^2+U_x^2}\right)$. These plots represent also the E_n-score evaluations where, considering the E_n criterion $(|E_n| \le 1)$, all results with error bars touching or crossing the x-axis are satisfactory. Reported standard uncertainties (Annex B) that are larger than the "standard deviation for proficiency assessments" (σ_p , Table 4) are considered not fit-for-purpose and are denoted with "*" in the x-axis of each figure. The E_n evaluation showed few unsatisfactory results for different parameters and concentrations, as reported in table 5.

Parameter	Lab Code	Value	Run	En	En evaluation
SO ₂	А	134.9	SO2 _2	1.2	unsatisfactory
СО	Α	8.511	CO_1	1.1	unsatisfactory
СО	А	3.788	CO_2	1.3	unsatisfactory
СО	Α	2.161	CO_3	1.1	unsatisfactory
СО	Α	5.346	CO_4	1.1	unsatisfactory
СО	В	0.184	CO_0	1.4	unsatisfactory
СО	В	1.003	CO_5	1.3	unsatisfactory
СО	Е	0.1	CO_0	3.3	unsatisfactory

Table 5: Unsatisfactory results according to E_n - score.

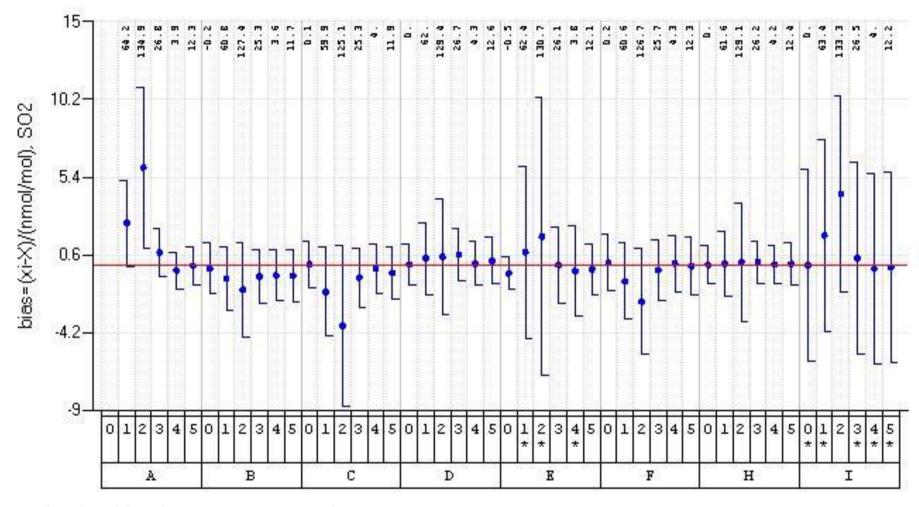


Figure 6: Bias of participant's SO_2 measurement results

Expanded uncertainty of bias for each run is presented as error bar. The results with error bars touching or crossing the x-axis are satisfactory. For each evaluation the run number (numbers 0 to 5) together with the participants rounded run average (nmol/mol) is given. The '*' mark indicates reported standard uncertainties bigger than σ_p . Participant A did not report uncertainty for run number 0.

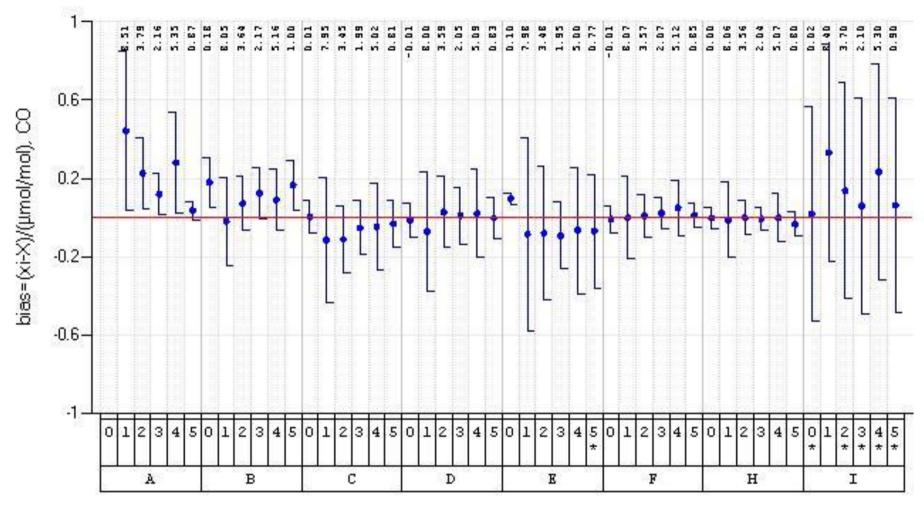


Figure 7: Bias of participant's CO measurement results

Expanded uncertainty of bias for each run is presented as error bar. Results with error bars touching or crossing the x-axis are satisfactory. For each evaluation the run number (numbers 0 to 5) together with the participants rounded run average (μ mol/mol) is given. The '*' mark indicates reported standard uncertainties bigger than σ_p . Participant A did not report uncertainty for run number 0.

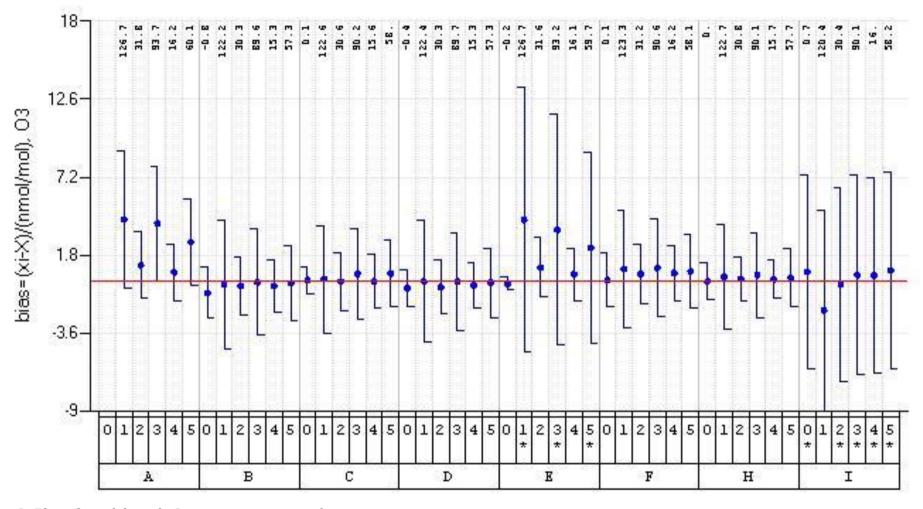


Figure 8: Bias of participant's O_3 measurement results

Expanded uncertainty of bias for each run is presented as error bar. Results with error bars touching or crossing the x-axis are satisfactory. For each evaluation the run number (numbers 0 to 5) together with the participants rounded run average (nmol/mol) is given. The '*' mark indicates reported standard uncertainties bigger than σ_p . Participant A did not report uncertainty for run number 0.

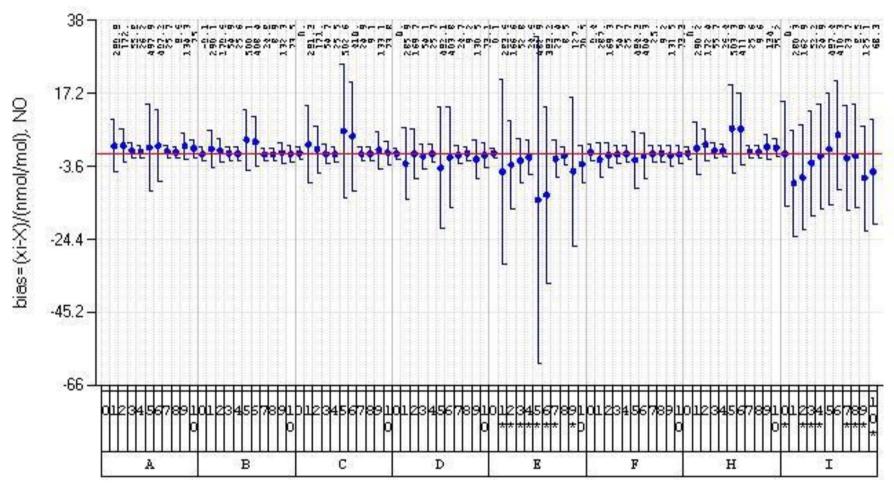


Figure 9: Bias of participant's NO measurement results

Expanded uncertainty of bias for each run is presented as error bar. Results with error bars touching or crossing the x-axis are satisfactory. For each evaluation the run number (numbers 0 to 10) together with the participants rounded run average (nmol/mol) is given. The '*' mark indicates reported standard uncertainties bigger than σ_D . Participant A did not report uncertainty for run number 0.

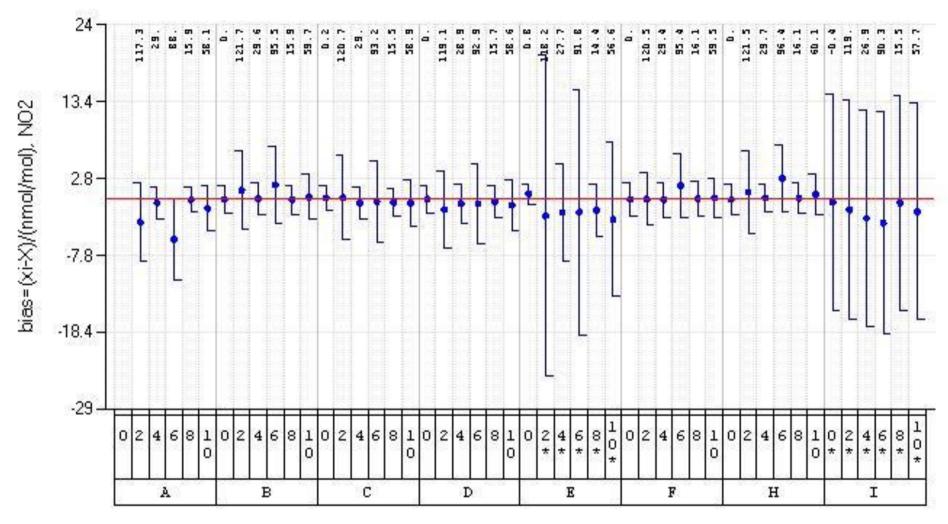


Figure 10: Bias of participant's NO_2 measurement results

Expanded uncertainty of bias is presented as error bar for NO_2 run numbers 0, 2, 4, 6, 8 and 10 (see Table 3). Results with error bars touching or crossing the x-axis are satisfactory. For each evaluation the run number together with the participants rounded run average (nmol/mol) is given. The '*' mark indicates reported standard uncertainties bigger than σ_p . Participant A did not report uncertainty for run number 0.

4. Performance characteristics of individual laboratories

Individual participants' biases were evaluated and are presented in chapter 3.2 (Figure 6 - 10). Since the results of NO_2 runs 1, 3, 5, 7 and 9 were not treated in proficiency evaluation the bias of these runs are presented in Figure 11.

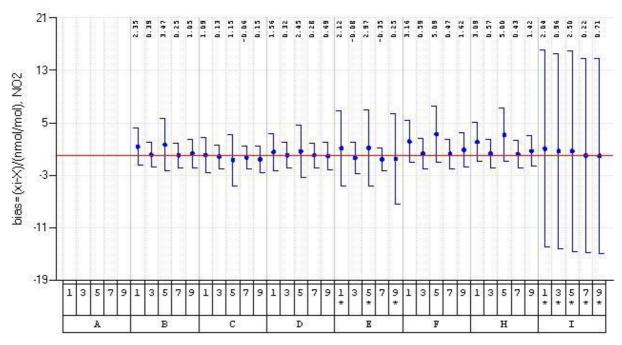


Figure 11: Bias of participant's NO_2 measurements with error bars representing expanded uncertainty for run numbers 1, 3, 5, 7 and 9. Within these test gas mixtures there is no gas phase titration to produce NO_2 (see Table 3). For each evaluation the run number together with the participants rounded run average (nmol/mol) is given. Participant A did not express uncertainties.

4.1. Converter efficiencies of NO₂-to-NO for NO_X analyzers

Since NO and NO₂ test gases were produced by gas phase titration it is possible to evaluate the efficiency of the NO₂-to-NO converter of each participant's NO_X analyser. The evaluation takes each participant's NO and NO₂ measurements before and after oxidation by O₃. However, possible minor instabilities in the preparation of the test gas mixtures were not taken into account. The converter efficiency (α) is calculated using Equation 3 [4]:

$$\alpha = \frac{[NO2]_i - [NO2]_{i-1}}{[NO]_{i-1} - [NO]_i} \cdot 100\%$$
 Equation 3

Ideal value for α is 100%.

The evaluation of equation 3 for each participant at different concentration levels are given in Table 6.

Lab code	NO ₂ (nmol/mol)	α (%)
A	120	99.9
A	22	98.9
A	90	100.4
A	12	99.6
A	60	99.3
В	120	99.4
В	22	99.0
В	90	100.0
В	12	98.2
В	60	99.3
С	120	99.0
C	22	98.5
C	90	99.0
C	12	97.7
C	60	98.7
D	120	100.5
D	22	100.1
D	90	101.8
D	12	99.5
D	60	100.6
E	120	98.8
E	22	97.4
E	90	98.4
E	12	97.5
E	60	99.6
F	120	99.5
F	22	98.9
F	90	99.9
F	12	98.1
F	60	99.2
G	120	100.1
G	22	99.9
G	90	100.2
G	12	99.2
G	60	99.9
Н	120	100.0
Н	22	98.7
Н	90	99.6
Н	12	97.3
Н	60	99.3
l	120	99.2
I	22	93.0
1	90	98.2
<u> </u>	12	98.2
<u> </u>	60	99.5

Table 6: Efficiency of NO₂-to-NO converters

5. Discussion

For a general assessment of the quality of each result a decision diagram was developed (Figure 12) that results in seven categories (1 to 7). The general comments for each category are:

- ➤ **1**: measurement result is completely satisfactory
- **2**: measurement result is satisfactory (z'-score satisfactory and En-score ok) but the reported uncertainty is too high
- **3**: measured value is satisfactory (z'-score satisfactory) but the reported uncertainty is underestimated (En-score not ok)
- **4**: measurement result is questionable (z'-score questionable) but due to a high reported uncertainty can be considered valid (En-score ok)
- > **5**: measurement result is questionable (z'-score questionable and En-score not ok)
- **6**: measurement result is unsatisfactory (z'-score unsatisfactory) but due to a high reported uncertainty can be considered valid (En-score ok)
- > 7: measurement result is unsatisfactory (z'-score unsatisfactory and Enscore not ok)

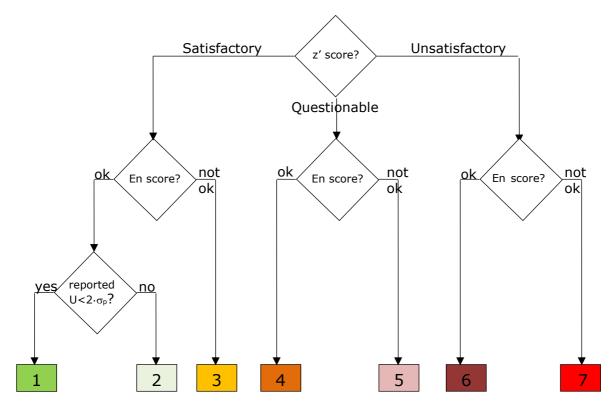


Figure 12: Decision diagram for general assessment of proficiency results.

The results of the IE were assigned to categories according to the diagram given in Figure 12 and are presented in the following Table 7.

	run	Ref.	IE code							
	num	conc.	A B C D E F H							
CO (µmol/mol)	0	0,003	nd	3	1	1	3	1	1	2
	1	8,069	3	1	1	1	1	1	1	1
1 등	2	3,562	3	1	1	1	1	1	1	2
 		2,042	3	1	1	1	1	1	1	2
18	3	5,066	3	1	1	1	1	1	1	2
ŭ	5	0,837	1	3	1	1	2	1	1	2
	0	-0,11	nd	1	1	1	1	1	1	2
	1	288,61	1	1	1	1	2	1	1	1
	2	169,66	1	1	1	1	2	1	1	2
1 🗟	3	54,79	,	1	1	1	2	1	1	2
NO (nmol/mol)	4	25,59	1	1	1	1	2	1	1	2
1 8	5	496,05	1	1	1	1	2	1	1	1
] 5	6	404,86	1	1	1	1	2	1	1	1
] 우	7	24,91	-	1	1	1	2	1	1	2
	8	9,08	1	1	1	1	1	1	1	2
	9	131,99	1	1	1	1	2	1	1	2
	10	73,46	1	1	1	1	1	1	1	2
<u> </u>	0	0,04	nd	1	1	1	1	1	1	2
NO ₂ (nmol/mol)	2	120,51	1	1	1	1	2	1	1	2
<u>ا</u> ۾	4	29,52	1	1	1	1	2	1	1	2
, Ē	6	93,56	1	1	1	1	2	1	1	2
0	8	16,01	1	1	1	1	2	1	1	2
Z	10	59,40	1	1	1	1	2	1	1	2
	0	0,03	nd	1	1	1	1	1	1	2
l G	1	122,43	1	1	1	1	2	1	1	1
O ₃ (nmol/n	2	30,66	1	1	1	1	1	1	1	2
<u>E</u>	3	89,67 15,60	1	1	1	1	2	1	1	2
3 (15,60	1	1	1	1	1	1	1	2
	5	57,43	1	1	1	1	2	1	1	2
l 🛜	0	0,03	nd	1	1	1		1	1	2
<u>E</u>	1	61,61	1	1	1	1	2	1	1	2
뒫	2	128,92	3	1	1	1	2	1	1	1
įį	3	26,06	1	1	1	1		1	1	2
SO ₂ (nmol/mol)	4	4,23	1	1	1	1	2	1	1	2
S	5	12,37	1	1	1	1	1	1	1	2

[&]quot;nd" is referring to values not reported

Table 7: General assessment of proficiency results.

6. Conclusions

The proficiency evaluation scheme has provided an assessment of the participants measured values and their evaluated uncertainties.

In terms of the criteria imposed by the European Directive (σ_p) 79.3% of the results reported during this IE (see Table 8) by AQUILA laboratories fall into category '1' and are satisfactory both in terms of measured values and evaluated uncertainties. Among the remaining results the majority presented satisfactory measured values, but the evaluated uncertainties were either too high, category '2' (17.8 %), or too small, category '3' (2.9%).

TE	Sito	Categories %							
IE	Site	1	2	3	4	5	6	7	
Apr-08	Ispra (IT)	68.4	18.1	7.3	1.0	1.0	2.6	1.6	
Oct-08 (I)	Ispra (IT)	37.9	40.8	14.2	0.6	3.6	1.0	1.9	
Oct-08 (II)	Ispra (IT)	34.3	38.9	23.7	1.0	2.0	0.0	0.0	
Sep-09	Langen (DE)	60.8	29.9	3.1	4.1	1.0	1.0	0.0	
Oct-09	Ispra (IT)	85.0	5.7	7.5	0.4	1.4	0.0	0.0	
Jun-10	Ispra (IT)	84.6	8.1	4.4	0.7	2.3	0.0	0.0	
Sep-11	Ispra (IT)	86.1	7.9	5.4	0.0	0.3	0.0	0.3	
Oct-11 (I)	Ispra (IT)	78.6	12.5	7.6	0.0	1.3	0.0	0.0	
Oct-11 (II)	Langen (DE)	59.4	39.9	0.0	0.7	0.0	0.0	0.0	
Jun-12	Ispra (IT)	92.2	0.5	7.3	0.0	0.0	0.0	0.0	
Sep-13	Langen (DE)	75.7	20.9	2.0	0.0	1.4	0.0	0.0	
Sep-13	Ispra (IT)	89.4	7.3	3.3	0.0	0.0	0.0	0.0	
Oct-13	Ispra (IT)	86.8	8.9	3.6	0.4	0.4	0.0	0.0	
May-14	Ispra (IT)	81.8	15.2	1.1	0.0	0.7	0.0	1.1	
Oct-15	Langen (DE)	73.2	23.9	0.7	1.4	0.0	0.7	0.0	
Oct-15 (I)	Ispra (IT)	90.2	7.6	1.6	0.3	0.3	0.0	0.0	
Oct-15 (II)	Ispra (IT)	75.6	10.8	7.3	0.6	3.5	0.0	2.2	
Jun-16	Ispra (IT)	79.3	17.8	2.9	0.0	0.0	0.0	0.0	

Table 8: Flags summary

As in previous IEs, the adopted criteria for high concentrations were the standard deviations for proficiency assessment, deriving from the European Standards' uncertainty requirements.

The reproducibility standard deviation obtained at this (Annex C) and previous IEs [20], [21], [22], [23], [24], [25], [33], [34], [35], [36], [37], [38], [39], [40], [41], [43] and [44] is comparable to the mentioned criteria. On the other hand, the uncertainty criteria for zero levels were those set in AQUILA's position paper [12].

In this exercise 100% of the results in the z'-score evaluations were satisfactory.

IE Site		Satisfactory (%)	Questionable (%)	Unsatisfactory (%)
June/05	June/05 Ispra (IT)		2.3	3.0
June/07	June/07 Ispra (IT)		1.9	0.3
October/07	Essen (DE)	93.2	4.6	2.2
April/08	Ispra (IT)	93.8	2.1	4.1
October/08_1	Ispra (IT)	92.9	4.2	2.9
October/08_2	Ispra (IT)	97.0	3.0	0.0
September/09	Langen (DE)	94.3	4.7	0.9
October/09	Ispra (IT)	98.2	1.8	0.0
June/10	Ispra (IT)	97.0	3.0	0.0
September/11	Ispra (IT)	99.4	0.3	0.3
October/11	October/11 Ispra (IT)		1.3	0.0
October/11	October/11 Langen (DE)		0.7	0.0
June/12	Ispra (IT)	100.0	0.0	0.0
September/13	Langen (DE)	98.6	1.4	0.0
September/13	Ispra (IT)	100.0	0.0	0.0
October/13	Ispra (IT)	99.3	0.7	0.0
May/14	Ispra (IT)	98.1	0.7	1.1
October/15	Langen (DE)	97.9	1.4	0.7
October/15_1	Ispra (IT)	99.4	0.6	0.0
October/15_2	Ispra (IT)	93.7	4.1	2.2
June/16	Ispra (IT)	100	0.0	0.0

Table 9: Z'-score summary

Comparability of results among AQUILA participants at the highest concentration level is acceptable for all pollutant measurements.

The relative reproducibility limits, at the highest studied concentration levels, are 7.8% for SO₂, 7.9% for CO, 5.6% for O₃, for NO 4.1% and for NO₂ 4.2% all within the objective derived from criteria imposed by the European Commission (σ_D see Table 4).

During this IE the performance of all NRL was generally satisfactory. Only one outlier was identified: At level 8 for NO_2 (Table 52), but without any unsatisfactory consequence for neither z'-score nor E_n -score.

7. References

- [1] EC Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe, L 152, 11.06.2008
- [2] CEN, EN 14626:2012, Ambient air quality Standard method for the measurement of the concentration of carbon monoxide by non-dispersive infrared spectroscopy
- [3] CEN, EN 14212:2012, Ambient air quality Standard method for the measurement of the concentration of sulphur dioxide by ultraviolet fluorescence
- [4] CEN, EN 14211:2012, Ambient air quality Standard method for the measurement of the concentration of nitrogen dioxide and nitrogen monoxide by chemiluminescence
- [5] CEN, EN 14625:2012, Ambient air quality Standard method for the measurement of the concentration of ozone by ultraviolet photometry
- [6] ISO 6143:2001, Gas analysis Comparison methods for determining and checking the composition of calibration gas mixtures
- [7] ISO 6144:2003, Gas analysis Preparation of calibration gas mixtures Static volumetric method
- [8] ISO 6145-7:2001, Gas analysis Preparation of calibration gas mixtures using dynamic volumetric methods Part 7: Thermal mass-flow controllers
- [9] Mücke H.-G., Air quality management in the WHO European Region Results of a quality assurance and control programme on air quality monitoring (1994-2004), Environment International, EI-01718. 2008
- [10] Mücke H.-G. et al., European Intercomparison workshop on air quality monitoring vol.4 Measuring NO, NO_2 , O_3 and SO_2 Air Hygiene Report 13, WHO Collaboration Centre for Air Quality Management and Air Pollution Control, ISSN 0938 9822. 2000
- [11] Aquila [online]: Available: https://ec.europa.eu/jrc/en/aquila?search
- [12] AQUILA POSITION PAPER N. 37, Protocol for intercomparison exercise. Organisation of intercomparison exercises for gaseous air pollution for EU national air quality reference laboratories and laboratories of the WHO EURO region, 2008 Available: https://ec.europa.eu/jrc/sites/jrcsh/files/aquila-n_37-intercomparison-exercise%20protocol%202008.pdf
- [13] ISO 13528:2015, Statistical methods for use in proficiency testing by interlaboratory comparisons
- [14] ISO 5725-1:1994, Accuracy (trueness and precision) of measurement methods and results Part 1: General principles and definitions
- [15] ISO 5725-2:1994, Accuracy (trueness and precision) of measurement methods and results Part 2: Basic method for the determination of repeatability and reproducibility of a standard measurement method
- [16] ISO 5725-6:1994, Accuracy (trueness and precision) of measurement methods and results Part 6: Use in practice of accuracy values
- [17] De Saeger E. et al., Harmonisation of Directive 92/72/EEC on air pollution by ozone, EUR 17662, 1997
- [18] De Saeger E. et al., European comparison of Nitrogen Dioxide calibration methods, EUR 17661, 1997

- [19] ISO 15337:2009, Ambient air Gas phase titration Calibration of analysers for ozone
- [20] Kapus M. et al. The evaluation of the Intercomparison Exercise for SO_2 , CO, O_3 , NO and NO_2 carried out in June 2007 in Ispra. JRC scientific and technical reports. EUR 23804. 2009
- [21] Kapus M. et al. The evaluation of the Intercomparison Exercise for SO_2 , CO, O_3 , NO and NO_2 April 2008. JRC scientific and technical reports. EUR 23805. 2009
- [22] Kapus M. et al. The evaluation of the Intercomparison Exercise for SO_2 , CO, O_3 , NO and NO_2 6-9 October 2008. JRC scientific and technical reports. EUR 23806. 2009
- [23] Kapus M. et al. The evaluation of the Intercomparison Exercise for SO_2 , CO, O_3 , NO and NO_2 13-16 October 2008. JRC scientific and technical reports. EUR 23807. 2009
- [24] Belis C. A. et al. The evaluation of the Interlaboratory comparison Exercise for SO_2 , CO, O_3 , NO and NO_2 Langen 20-25 September 2009. EUR 24376. 2010
- [25] Belis C. A. et al. The evaluation of the Interlaboratory comparison Exercise for SO_2 , CO, O_3 , NO and NO_2 19-22 October 2009. EUR 24476. 2010
- [26] Viallon J. et al. *Final report, on-going key comparison BIPM.QM-K1: Ozone at ambient level, comparison with JRC, 2008.* Metrologia 46 08017, 2009. doi: 10.1088/0026-1394/46/1A/08017
- [27] Viallon, J., et al. *International comparison CCQM-P28: Ozone at ambient level*, Metrologia 43, Tech. Suppl., 08010, 2006. doi:10.1088/0026-1394/43/1A/08010
- [28] Tanimoto, H., et al. *Intercomparison of ultraviolet photometry and gas-phase titration techniques for ozone reference standards at ambient levels*, Journal of Geophysical Research, vol. 111, D16313, 2006. doi:10.1029/2005JD006983
- [29] ISO, Guide to the expression of uncertainty in measurements, Geneva, 1995, ISBN 92-67-10188-9
- [30] VDI 2449 Part3: 2001, Measurement methods test criteria- General method for the determination of the uncertainty of calibratable measurement methods.
- [31] Mücke H-G, et al. European Intercomparison Workshops on Air Quality Monitoring. Vol. 2 Measuring of CO, NO, NO₂ and O₃ Air Hygiene Report 9. Berlin, Germany: WHO Collaborating Centre for Air Quality Management and Air Pollution Control; 1996. ISSN 0938-9822.
- [32] ISO 17043:2010, Conformity assessment General requirements for proficiency testing
- [33] Barbiere M. et al. The evaluation of the Interlaboratory Comparison Exercise for SO_2 , CO, O_3 , NO and NO_2 Ispra 14-17 June 2010. EUR 24943. 2011
- [34] Barbiere M. et al. Evaluation of the Laboratory Comparison Exercise for SO_2 , CO_3 , NO and NO_2 , 11^{th} - 14^{th} June 2012 Ispra. EUR 25536. 2012
- [35] Barbiere M. et al. Evaluation of the Laboratory Comparison Exercise for SO_2 , CO_3 , NO and NO_2 , Langen 23^{rd} - 28^{th} October 2011. EUR 25387. 2012

- [36] Barbiere M. et al. Evaluation of the Laboratory Comparison Exercise for SO_2 , CO_3 , NO and NO_2 , O_3^{rd} - O_2^{th} October 2011 Ispra. EUR 25386. 2012
- [37] Barbiere M. et al. Evaluation of the Laboratory Comparison Exercise for SO_2 , CO_3 , NO and NO_2 , 26^{th} - 29^{th} September 2011 Ispra. EUR 25385. 2012
- [38] Barbiere M., Lagler F., Mücke H.G., Wirtz K. and Stummer V. Evaluation of the Laboratory Comparison Exercise for NO, NO₂, SO₂, CO, and O₃ Langen (D) 1st-6th September 2013. EUR 26578. 2014
- [39] Barbiere M., Lagler F., Evaluation of the Laboratory Comparison Exercise for SO_2 , CO, O_3 , NO and NO_2 30^{st} September- 3^{rd} October 2013 Ispra. EUR 26604. 2014
- [40] Barbiere M., Lagler F., Evaluation of the Laboratory Comparison Exercise for SO_2 , CO, O_3 , NO and NO_2 7^{st} - 10^{th} October 2013 Ispra. EUR 26639. 2014
- [41] Barbiere M., Lagler F., Evaluation of the Laboratory Comparison Exercise for SO_2 , CO, O_3 , NO and NO_2 19^{th} - 22^{nd} May 2014 Ispra. EUR 27199. 2014
- [42] EC COMMISSION DIRECTIVE (EU) 2015/1480 of 28 August 2015 (L226/4) amending several annexes to Directives 2004/107/EC and 2008/50/EC of the European Parliament and of the Council laying down the rules concerning reference methods, data validation and location of sampling points for the assessment of ambient air quality
- [43] Lagler F., Barbiere M., Borowiak A. *Evaluation of the Laboratory Comparison Exercise for SO2, CO, O3, NO and NO2 12th-15th October 2015 Ispra.* EUR 28097. 2016
- [44] Barbiere M., Lagler F., Borowiak A. *Evaluation of the Laboratory Comparison Exercise for SO2, CO, O3, NO and NO2 19th-23rd October 2015 Ispra.* EUR 28047. 2016

Annex A. Assigned values

The assigned values of tested concentration levels (run) were derived from ERLAP's measurements which are calibrated against the certified reference values of CRMs and are traceable to international standards. In this perspective the assigned values are reference values as defined in the ISO 13528 [13].

To foster its reference function ERLAP is participating regularly to key comparisons of the Gas Analysis Working Group within the framework of BIPM's CCQM.

During this IE ERLAP's SO₂, CO and NO analysers were calibrated according to the methodology described in the ISO 6143 [6]. Reference gas mixtures were produced from the primary reference materials (produced and certified by NMi Van Swinden Laboratorium) by dynamic dilution method using mass flow controllers [8]. All flows were measured with a certified molbloc/molbox1 system. For O₃ measurements, the analysers were calibrated using the JRC SRP42 primary standard (constructed by NIST) which has been compared to BIPM primary standard [26]. The photometer absorption cross section uncertainty (1.06%) was included in the uncertainty budget [27], [28].

The reference gas mixture and the calibration experiment evaluation were carried out using two computer applications, the "GUM WORKBENCH" [29] and "B-least" [30] respectively. For extending calibration from the NO to NO_2 channel of NO_X analyser the GPT test was performed to establish the efficiency of NO_2 -converter.

ERLAP's measurement results were validated by comparison to the group statistics (x^* and s^*) for every parameter and concentration level of the IE. These statistics are calculated from participants, applying the robust method described in the Annex C of the ISO 13528 [13]. The validation is taking into account ERLAP's measurement result (X) and its standard uncertainty (u_x) as given in Equation 4 [13]:

$$\frac{\left|x^* - X\right|}{\sqrt{\frac{\left(1,25 \cdot s^*\right)^2}{p} + u_X^2}} < 2$$
 Equation 4

Where x^* and s^* represent robust average and robust standard deviation respectively and r is the number of participants.

Table 100 all inputs for Equation 4 are given and all ERLAP's measurement results are confirmed to be valid.

As a group evaluation robust average (x^*) and robust standard deviation (s^*) were calculated (applying the procedure described in Annex C of ISO 13528) for each run, and are presented in the following tables.

run	unit	Х	uX'	х*	s*	р	val.
NO_0	nmol/mol	-0.11	0.72	0.02	0.09	9	ОК
NO_1	nmol/mol	288.61	1.68	287.89	3.45	9	ОК
NO_2	nmol/mol	169.66	1.17	169.77	2.35	9	ОК
NO_3	nmol/mol	54.79	0.78	54.60	1.00	9	ОК
NO_4	nmol/mol	25.59	0.73	25.60	0.19	9	ОК
NO _5	nmol/mol	496.05	2.69	497.14	4.98	9	ОК
NO_6	nmol/mol	404.86	2.24	406.82	4.14	9	ОК
NO_7	nmol/mol	24.91	0.73	24.87	0.47	9	ОК
NO_8	nmol/mol	9.08	0.72	9.11	0.31	9	ОК
NO_9	nmol/mol	131.99	1.01	131.67	2.39	9	ОК
NO _10	nmol/mol	73.46	0.82	73.45	0.69	9	ОК
NO2_0	nmol/mol	0.04	0.72	0.00	0.09	9	ОК
NO2_1	nmol/mol	1.00	1.28	1.84	1.13	9	ОК
NO2_2	nmol/mol	120.51	1.41	119.89	1.60	9	ОК
NO2_3	nmol/mol	0.28	0.76	0.32	0.39	9	ОК
NO2_4	nmol/mol	29.52	0.77	28.97	0.79	9	ОК
NO2_5	nmol/mol	1.81	1.90	2.67	1.66	9	ОК
NO2_6	nmol/mol	93.56	1.95	93.10	2.83	9	ОК
NO2_7	nmol/mol	0.22	0.73	0.15	0.30	9	OK
NO2_8	nmol/mol	16.01	0.73	15.80	0.28	9	OK
NO2_9	nmol/mol	0.74	0.88	0.70	0.70	9	OK
NO2_10	nmol/mol	59.40	0.92	58.78	1.11	9	OK
CO _0	µmol/mol	0.00	0.01	0.01	0.02	9	OK
CO _1	µmol/mol	8.07	0.03	8.06	0.09	9	ОК
CO _2	µmol/mol	3.56	0.02	3.59	0.10	9	ОК
CO _3	µmol/mol	2.04	0.01	2.06	0.08	9	ОК
CO _4	µmol/mol	5.07	0.02	5.11	0.10	9	ОК
CO _5	µmol/mol	0.84	0.01	0.84	0.05	9	OK
03_0	nmol/mol	0.03	0.22	-0.01	0.16	9	OK
03_1	nmol/mol	122.43	0.92	122.68	0.65	9	ОК
03_2	nmol/mol	30.66	0.28	30.78	0.49	9	ОК
03_3	nmol/mol	89.67	0.83	90.22	0.63	9	ОК
03_4	nmol/mol	15.60	0.22	15.77	0.41	9	OK
03_5	nmol/mol	57.43	0.44	58.02	0.80	9	OK
SO2_0	nmol/mol	0.03	0.51	0.01	0.05	9	ОК
SO2_1	nmol/mol	61.61	0.62	61.77	1.41	9	ОК
SO2_2	nmol/mol	128.92	0.81	129.23	2.94	9	ОК
SO2_3	nmol/mol	26.06	0.55	26.07	0.62	9	ОК
SO2_4	nmol/mol	4.23	0.51	4.04	0.27	9	ОК
SO2_5	nmol/mol	12.37	0.52	12.25	0.21	9	OK

Table 10: Validation of assigned values (X)

By comparison to the robust averages (x^*) with taking into account the standard uncertainties of assigned values (uX'), and robust standard deviations (s^*) as denoted by Equation 4.

The homogeneity of test gas was evaluated from measurements at the beginning and end of the distribution line. From the relative differences between beginning and end

measurements, average and standard deviation were calculated, and the uncertainty of test gas due to lack of homogeneity was calculated as the sum of squares of these average and standard deviation.

$$u_{X'}^2 = u_X^2 + (X \cdot u_{\text{hom}ogeneity})^2$$
 Equation 5

The upper and lower limits of bias due to homogeneity were evaluated to be smaller than 0.5% which constitutes the relative standard uncertainty of 0.3% of each concentration level. The standard uncertainties of assigned/reference values ($u_{X'}$) were calculated with Equation 5 and used in the proficiency evaluations of chapter 3.

Annex B. The results of the IE

In this annex are reported participant's results, presented both in tables and graphs. For all mixture concentration generated (run), participants were asked to report 3 results representing 30 minutes measurement each (x_{ij}) .

In this annex are presented the reported data and their uncertainty $u(x_i)$ and $U(x_i)$ expressed in mol/mol units.

For all the runs except concentration levels 0, also average (x_i) and standard deviation (s_i) of each participant are presented.

The assigned value is indicated on the graphs with the red line and the individual laboratories expanded uncertainties (Ux_i) are indicated with error bars.

Reported values for SO₂

	laboratories								
values	A	В	С	D	E	F	G	Н	I
хі, 1	-0.32	-0.20	0.05	0.04	-0.50	0.16	0.03	0.02	0.00
u(xi)		0.59	0.50	0.40	0.00	0.69	0.51	0.30	2.90
U(xi)		1.17	1.00	0.80	-0.01	1.38	1.02	0.60	5.80

Table 11: Reported values for SO₂ run 0.

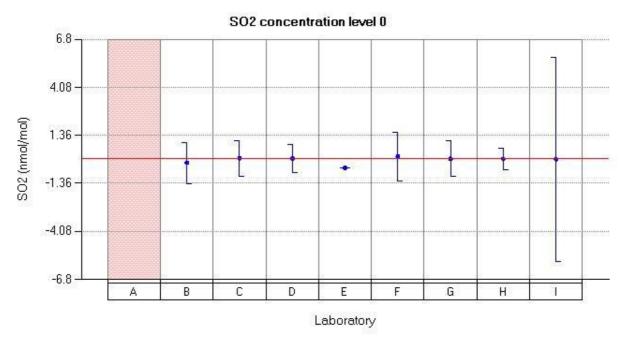


Figure 13: Reported values for SO_2 run 0. Participant A did not report uncertainty for level 0.

		laboratories										
values	Д	В	С	D	E	F	G	Н	1			
xi, 1	63.88	60.49	59.88	61.79	62.25	60.30	61.44	61.32	63.30			
хі, 2	64.27	60.78	59.86	62.03	62.40	60.76	61.66	61.70	63.46			
хі, 3	64.36	60.97	60.05	62.16	62.50	60.66	61.72	61.89	63.47			
хi	64.17	60.74	59.93	61.99	62.38	60.57	61.60	61.63	63.41			
si	0.25	0.24	0.10	0.18	0.12	0.24	0.14	0.29	0.09			
u(xi)	1.18	0.77	1.23	0.92	2.59	1.00	0.62	0.80	2.90			
U(xi)	2.36	1.55	2.45	1.83	5.18	2.00	1.24	1.60	5.80			

Table 12: Reported values for SO₂ run 1.

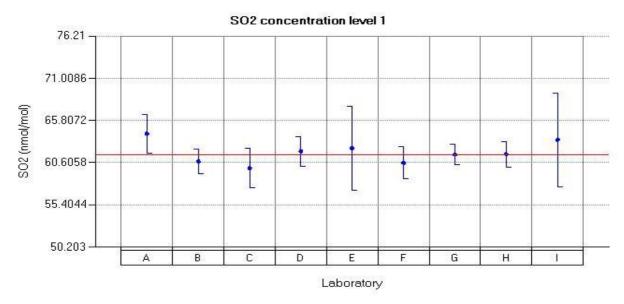


Figure 14: Reported values for SO₂ run 1.

		laboratories									
values	А	В	С	D	E	F	G	Н	1		
xi, 1	134.79	127.27	125.22	129.36	130.60	126.67	128.81	128.99	133.19		
хі, 2	134.80	127.47	125.20	129.40	130.60	126.63	128.97	129.03	133.25		
хі, 3	135.10	127.40	125.00	129.43	130.75	126.65	128.98	129.20	133.40		
хi	134.89	127.38	125.14	129.39	130.65	126.65	128.92	129.07	133.28		
si	0.17	0.10	0.12	0.03	0.08	0.02	0.09	0.11	0.10		
u(xi)	2.36	1.22	2.33	1.59	4.21	1.40	0.81	1.64	2.90		
U(xi)	4.72	2.44	4.66	3.18	8.43	2.80	1.62	3.28	5.80		

Table 13: Reported values for SO₂ run 2.

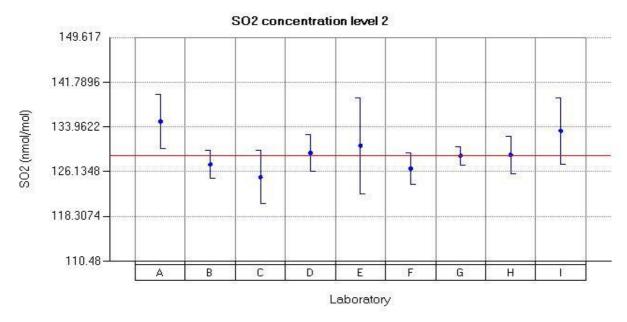


Figure 15: Reported values for SO₂ run 2.

		laboratories									
values	А	В	С	D	E	F	G	Н	T .		
xi, 1	26.84	25.31	25.23	26.60	26.00	25.70	26.03	26.22	26.51		
хі, 2	26.67	25.33	25.21	26.73	26.00	25.77	26.11	26.22	26.52		
хі, 3	26.92	25.36	25.35	26.72	26.15	25.67	26.05	26.25	26.36		
хі	26.81	25.33	25.26	26.68	26.05	25.71	26.06	26.23	26.46		
si	0.12	0.02	0.07	0.07	0.08	0.05	0.04	0.01	0.09		
u(xi)	0.53	0.62	0.74	0.60	1.04	0.78	0.55	0.35	2.90		
U(xi)	1.06	1.25	1.47	1.21	2.08	1.56	1.09	0.70	5.80		

Table 14: Reported values for SO₂ run 3.

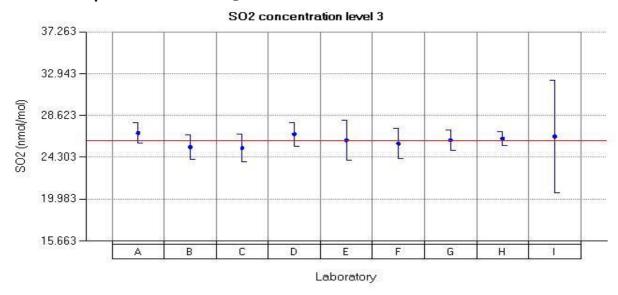


Figure 16: Reported values for SO₂ run 3.

		laboratories								
values	А	В	С	D	E	F	G	Н	1	
xi, 1	3.91	3.52	4.05	4.30	3.80	4.28	4.22	4.25	3.82	
хі, 2	3.89	3.56	3.94	4.26	3.85	4.33	4.22	4.23	4.16	
хі, 3	3.81	3.60	3.97	4.30	3.80	4.31	4.25	4.22	3.92	
хі	3.87	3.56	3.98	4.28	3.81	4.30	4.23	4.23	3.96	
si	0.05	0.04	0.05	0.02	0.02	0.02	0.01	0.01	0.17	
u(xi)	0.23	0.59	0.58	0.44	1.30	0.71	0.51	0.30	2.90	
U(xi)	0.46	1.17	1.16	0.87	2.60	1.42	1.02	0.60	5.80	

Table 15: Reported values for SO₂ run 4.

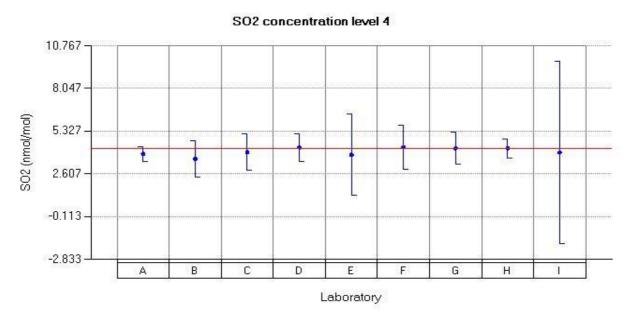


Figure 17: Reported values for SO₂ run 4.

		laboratories										
values	А	В	С	D	E	F	G	Н	- I			
xi, 1	12.29	11.74	11.92	12.65	12.10	12.32	12.34	12.39	12.14			
хі, 2	12.25	11.66	11.92	12.59	12.05	12.21	12.39	12.37	12.21			
хі, 3	12.36	11.66	11.73	12.61	12.10	12.32	12.39	12.45	12.30			
хi	12.30	11.68	11.85	12.61	12.08	12.28	12.37	12.40	12.21			
si	0.05	0.04	0.11	0.03	0.02	0.06	0.02	0.04	0.08			
u(xi)	0.30	0.59	0.62	0.49	0.57	0.74	0.52	0.40	2.90			
U(xi)	0.60	1.19	1.24	0.98	1.15	1.48	1.04	0.80	5.80			

Table 16: Reported values for SO₂ run 5.

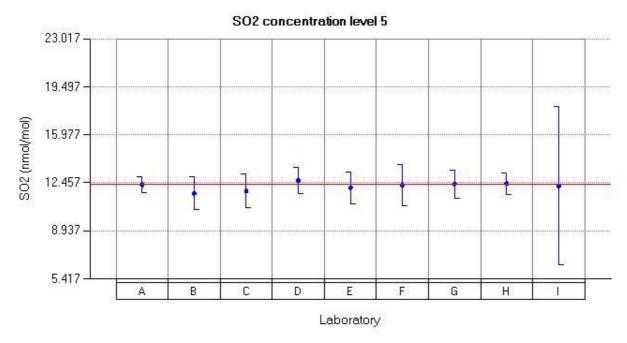


Figure 18: Reported values for SO₂ run 5.

Reported values for CO

		laboratories										
values	А	A B C D E F G H I										
хі, 1	-0.001	0.184	0.006	-0.012	0.100	-0.006	0.003	0.001	0.022			
u(xi)		0.062	0.040	0.040	0.002	0.031	0.014	0.023	0.275			
U(xi)		0.125	0.080	0.080	0.004	0.062	0.029	0.046	0.550			

Table 17: Reported values for CO run 0.

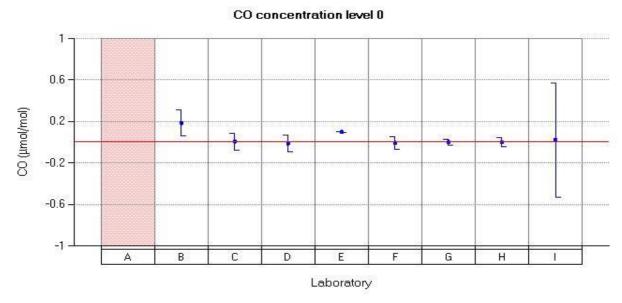


Figure 19: Reported values for CO run 0. Participant A did not report uncertainty for level 0.

		laboratories										
values	А	В	С	D	E	F	G	Н	T I			
xi, 1	8.496	8.043	7.988	7.990	7.950	8.054	8.058	8.039	8.400			
хі, 2	8.513	8.052	7.944	8.002	8.000	8.070	8.071	8.059	8.400			
хі, 3	8.523	8.053	7.927	8.001	8.000	8.081	8.077	8.073	8.400			
хі	8.511	8.049	7.953	7.998	7.983	8.068	8.069	8.057	8.400			
si	0.014	0.006	0.031	0.007	0.029	0.014	0.010	0.017	0.000			
u(xi)	0.200	0.108	0.155	0.149	0.245	0.100	0.032	0.091	0.275			
U(xi)	0.400	0.217	0.310	0.298	0.489	0.200	0.064	0.182	0.550			

Table 18: Reported values for CO run 1.

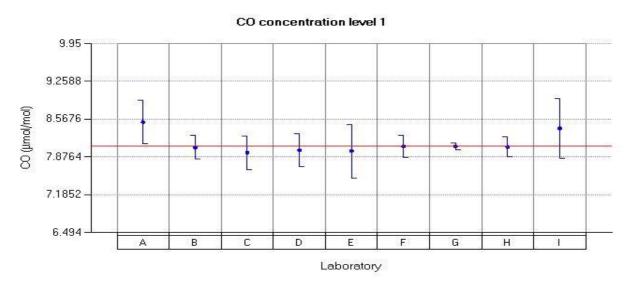


Figure 20: Reported values for CO run 1.

		laboratories									
values	А	В	С	D	E	F	G	Н	T I		
xi, 1	3.788	3.635	3.441	3.585	3.500	3.570	3.561	3.557	3.700		
хі, 2	3.790	3.633	3.459	3.590	3.450	3.570	3.562	3.566	3.700		
хі, 3	3.786	3.637	3.453	3.596	3.500	3.573	3.563	3.563	3.700		
xi	3.788	3.635	3.451	3.590	3.483	3.571	3.562	3.562	3.700		
si	0.002	0.002	0.009	0.006	0.029	0.002	0.001	0.005	0.000		
u(xi)	0.089	0.068	0.085	0.090	0.169	0.051	0.016	0.042	0.275		
U(xi)	0.178	0.137	0.170	0.180	0.338	0.102	0.031	0.083	0.550		

Table 19: Reported values for CO run 2.

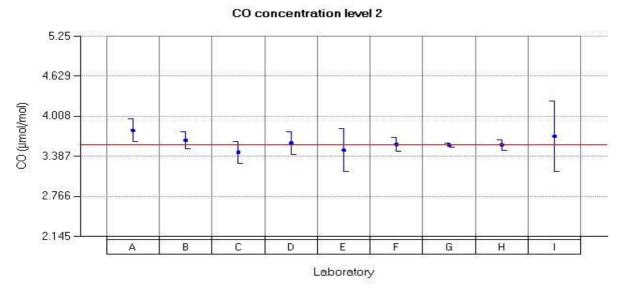


Figure 21: Reported values for CO run 2.

		laboratories									
values	А	В	С	D	E	F	G	Н	1		
xi, 1	2.167	2.166	1.985	2.053	2.000	2.063	2.042	2.037	2.100		
хі, 2	2.160	2.172	1.994	2.052	1.900	2.066	2.042	2.039	2.100		
хі, 3	2.157	2.162	1.989	2.055	1.950	2.065	2.041	2.030	2.100		
хi	2.161	2.167	1.989	2.053	1.950	2.065	2.042	2.035	2.100		
si	0.005	0.005	0.005	0.002	0.050	0.002	0.001	0.005	0.000		
u(xi)	0.051	0.065	0.068	0.071	0.085	0.038	0.011	0.026	0.275		
U(xi)	0.102	0.130	0.136	0.143	0.169	0.076	0.022	0.052	0.550		

Table 20: Reported values for CO run 3.

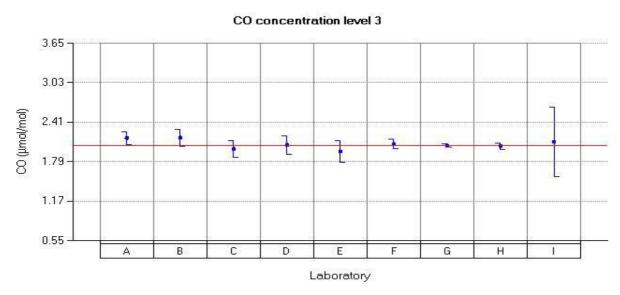


Figure 22: Reported values for CO run 3.

		laboratories									
values	А	В	С	D	E	F	G	Н	T I		
xi, 1	5.336	5.153	5.022	5.082	5.000	5.113	5.067	5.064	5.300		
хі, 2	5.357	5.156	5.010	5.089	5.000	5.113	5.067	5.066	5.300		
хі, 3	5.345	5.159	5.026	5.090	5.000	5.122	5.064	5.066	5.300		
хi	5.346	5.156	5.019	5.087	5.000	5.116	5.066	5.065	5.300		
si	0.011	0.003	0.008	0.004	0.000	0.005	0.002	0.001	0.000		
u(xi)	0.126	0.075	0.108	0.110	0.160	0.067	0.021	0.058	0.275		
U(xi)	0.252	0.149	0.215	0.220	0.320	0.134	0.042	0.116	0.550		

Table 21: Reported values for CO run 4.

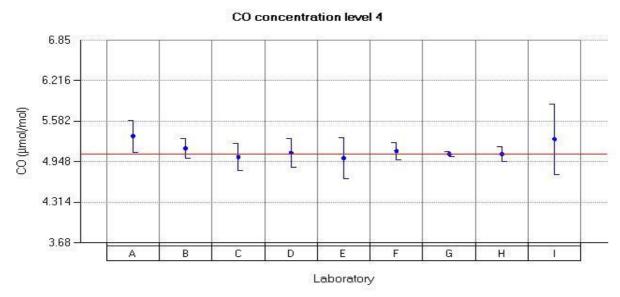


Figure 23: Reported values for CO run 4.

		laboratories										
values	А	В	С	D	E	F	G	Н	1			
xi, 1	0.876	1.006	0.804	0.835	0.800	0.849	0.837	0.807	0.900			
хі, 2	0.874	1.004	0.806	0.834	0.750	0.848	0.836	0.804	0.900			
хі, 3	0.867	1.000	0.809	0.834	0.750	0.850	0.837	0.801	0.900			
хi	0.872	1.003	0.806	0.834	0.767	0.849	0.837	0.804	0.900			
si	0.005	0.003	0.003	0.001	0.029	0.001	0.001	0.003	0.000			
u(xi)	0.022	0.063	0.060	0.050	0.146	0.031	0.009	0.030	0.275			
U(xi)	0.044	0.126	0.120	0.100	0.291	0.062	0.019	0.060	0.550			

Table 22: Reported values for CO run 5.

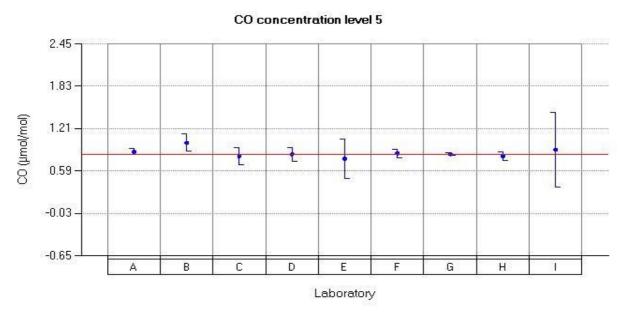


Figure 24: Reported values for CO run 5.

Reported values for O₃

		laboratories									
values	А	В	С	D	E	F	G	Н	- 1		
xi, 1	0.00	-0.79	0.10	-0.44	-0.15	0.10	0.03	0.01	0.67		
u(xi)		0.85	0.40	0.60	0.00	0.91	0.22	0.59	3.38		
U(xi)		1.71	0.80	1.20	0.00	1.82	0.45	1.18	6.72		

Table 23: Reported values for O₃ run O.

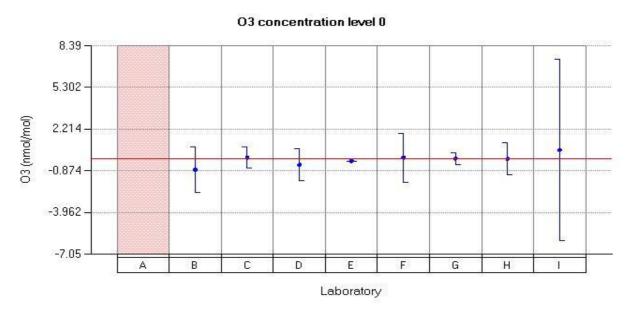


Figure 25: Reported values for O_3 run 0. Participant A did not report uncertainty for level 0.

		laboratories										
values	А	В	С	D	E	F	G	н	1			
xi, 1	125.77	121.86	122.20	122.07	126.05	123.07	122.14	122.40	120.15			
хі, 2	126.87	122.25	122.60	122.51	126.85	123.41	122.49	122.84	120.10			
хі, 3	127.47	122.49	122.90	122.65	127.15	123.36	122.66	122.99	120.98			
хi	126.70	122.20	122.56	122.41	126.68	123.28	122.43	122.74	120.41			
si	0.86	0.31	0.35	0.30	0.56	0.18	0.26	0.30	0.49			
u(xi)	2.18	2.05	1.62	1.90	4.50	1.82	0.92	1.58	3.38			
U(xi)	4.36	4.10	3.24	3.81	9.00	3.64	1.83	3.15	6.72			

Table 24: Reported values for O₃ run 1

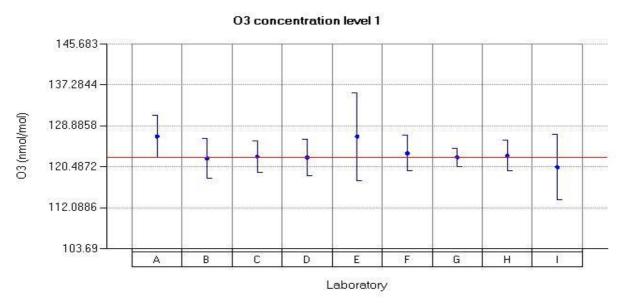


Figure 26: Reported values for O₃ run 1.

					laboratories				
values	А	В	С	D	E	F	G	н	1
xi, 1	31.63	30.24	30.58	30.19	31.50	31.11	30.62	30.74	30.28
хі, 2	31.77	30.37	30.65	30.25	31.65	31.15	30.66	30.83	30.47
хі, 3	31.84	30.39	30.66	30.31	31.65	31.25	30.69	30.86	30.54
хі	31.74	30.33	30.63	30.25	31.60	31.17	30.65	30.81	30.43
si	0.10	0.08	0.04	0.06	0.08	0.07	0.03	0.06	0.13
u(xi)	1.12	0.97	0.96	0.88	0.99	1.00	0.28	0.69	3.38
U(xi)	2.24	1.94	1.91	1.76	1.98	2.00	0.55	1.39	6.72

Table 25: Reported values for O₃ run 2.

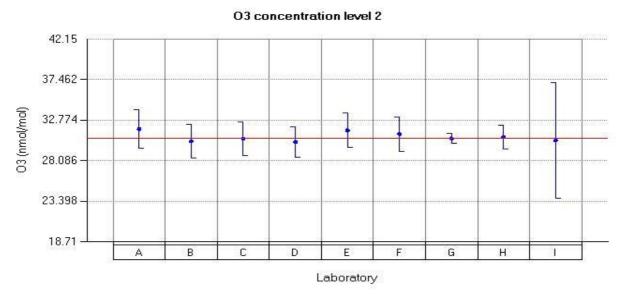


Figure 27: Reported values for O₃ run 2.

		laboratories									
values	А	В	С	D	E	F	G	Н	T .		
xi, 1	93.35	89.40	89.93	89.45	92.95	90.39	89.53	89.86	89.64		
хі, 2	93.68	89.67	90.22	89.72	93.30	90.71	89.81	90.17	90.15		
хі, 3	93.97	89.77	90.38	89.82	93.45	90.67	89.66	90.24	90.47		
хі	93.66	89.61	90.17	89.66	93.23	90.59	89.66	90.09	90.08		
si	0.31	0.19	0.22	0.19	0.25	0.17	0.14	0.20	0.41		
u(xi)	1.80	1.65	1.34	1.48	3.91	1.48	0.83	1.22	3.38		
U(xi)	3.60	3.31	2.68	2.96	7.82	2.96	1.65	2.45	6.72		

Table 26: Reported values for O₃ run 3.

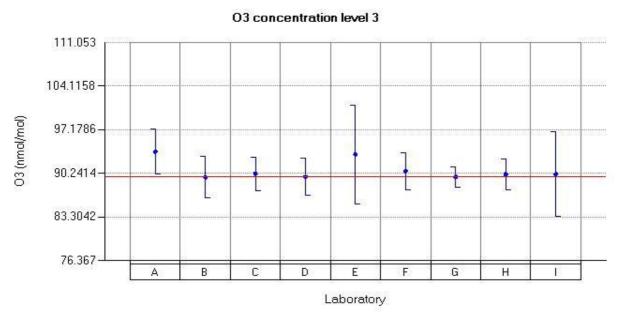


Figure 28: Reported values for O₃ run 3.

		laboratories									
values	А	В	С	D	E	F	G	Н	1		
хі, 1	16.19	15.23	15.58	15.29	15.90	16.14	15.58	15.71	15.99		
хі, 2	16.21	15.30	15.60	15.30	16.05	16.17	15.61	15.68	15.96		
хі, 3	16.25	15.25	15.63	15.35	16.25	16.16	15.62	15.76	16.11		
хi	16.21	15.26	15.60	15.31	16.06	16.15	15.60	15.71	16.02		
si	0.03	0.03	0.02	0.03	0.17	0.01	0.02	0.04	0.07		
u(xi)	0.96	0.88	0.91	0.74	0.86	0.93	0.22	0.62	3.38		
U(xi)	1.92	1.77	1.82	1.48	1.73	1.86	0.45	1.24	6.72		

Table 27: Reported values for O₃ run 4.

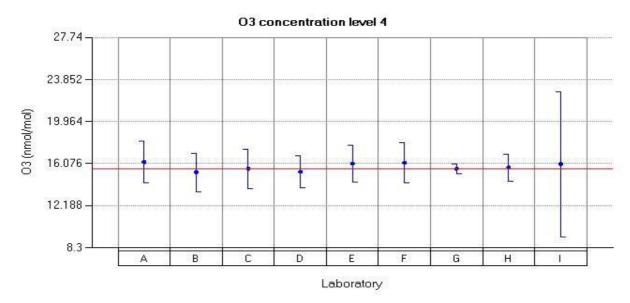


Figure 29: Reported values for O₃ run 4.

		laboratories									
values	А	В	С	D	E	F	G	н	1		
хі, 1	60.05	57.18	57.75	57.29	59.60	57.90	57.33	57.56	58.01		
хі, 2	60.15	57.37	57.85	57.37	59.75	58.24	57.46	57.69	58.18		
хі, 3	60.20	57.29	58.26	57.29	59.85	58.18	57.49	57.75	58.31		
хi	60.13	57.28	57.95	57.31	59.73	58.10	57.42	57.66	58.16		
si	0.07	0.09	0.27	0.04	0.12	0.18	0.08	0.09	0.15		
u(xi)	1.43	1.22	1.10	1.12	3.25	1.19	0.44	0.90	3.38		
U(xi)	2.86	2.44	2.10	2.24	6.51	2.38	0.89	1.81	6.72		

Table 28: Reported values for O₃ run 5.

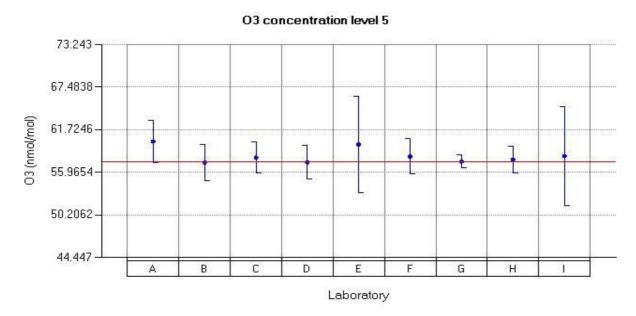


Figure 30: Reported values for O_3 run 5.

Reported values for NO

		laboratories								
values	А	В	С	D	E	F	G	Н	l I	
хі, 1	0.36	-0.14	0.04	-0.02	0.05	0.36	-0.11	0.02	-0.03	
u(xi)		0.58	0.50	0.40	0.00	0.87	0.72	0.55	7.40	
U(xi)		1.16	1.00	0.80	0.00	1.74	1.43	1.10	14.80	

Table 29: Reported values for NO run 0.

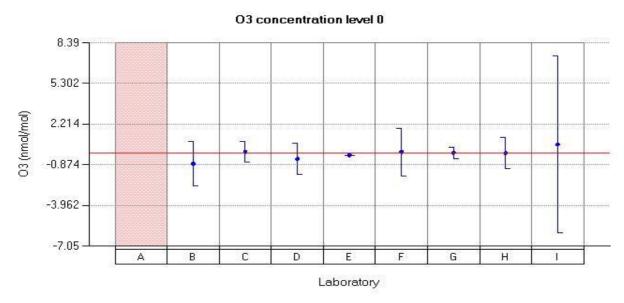


Figure 31: Reported values for NO run 0. Participant A did not report uncertainty for level 0.

	laboratories										
values	А	В	С	D	E	F	G	Н	1		
xi, 1	290.67	289.68	291.16	285.72	283.10	286.80	288.69	289.70	280.12		
хі, 2	290.83	290.18	291.20	285.81	283.80	287.06	288.53	290.25	280.35		
хі, 3	291.14	290.42	291.62	286.02	283.75	287.01	288.60	290.54	280.52		
хi	290.88	290.09	291.32	285.85	283.55	286.95	288.60	290.16	280.33		
si	0.23	0.37	0.25	0.15	0.39	0.13	0.08	0.42	0.20		
u(xi)	3.29	2.02	5.29	4.86	13.11	1.84	1.68	3.26	7.40		
U(xi)	6.58	4.05	10.58	9.72	26.21	3.68	3.36	6.52	14.80		

Table 30: Reported values for NO run 1.

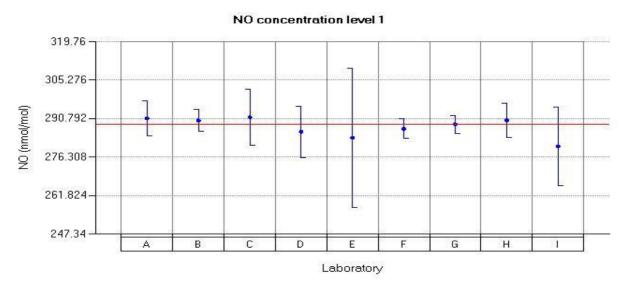


Figure 32: Reported values for NO run 1.

	laboratories										
values	А	В	С	D	E	F	G	н	1		
xi, 1	172.37	170.97	171.32	170.25	166.90	169.64	170.05	172.60	163.07		
хі, 2	171.80	170.55	170.97	169.59	166.50	169.16	169.59	172.34	163.15		
хі, 3	171.93	170.30	170.79	169.14	166.30	169.11	169.34	172.21	162.61		
хi	172.03	170.60	171.02	169.66	166.56	169.30	169.66	172.38	162.94		
si	0.29	0.33	0.27	0.55	0.30	0.29	0.36	0.19	0.29		
u(xi)	2.01	1.28	3.14	3.35	6.24	1.32	1.17	1.96	7.40		
U(xi)	4.02	2.55	6.28	6.70	12.48	2.64	2.33	3.92	14.80		

Table 31: Reported values for NO run 2.

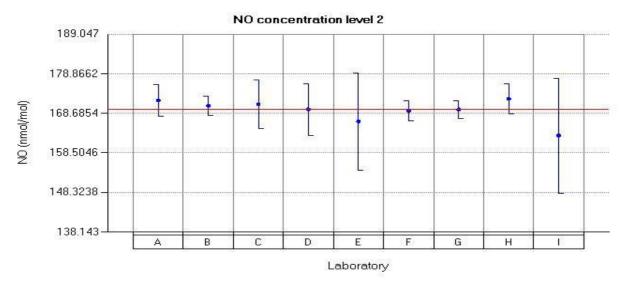


Figure 33: Reported values for NO run 2.

		laboratories									
values	А	В	С	D	E	F	G	Н	1		
хі, 1	55.74	54.84	54.66	54.03	52.80	54.67	54.77	55.68	52.43		
хі, 2	55.76	54.90	54.75	54.15	52.85	54.59	54.83	55.81	52.20		
хі, З	55.86	54.97	54.75	54.14	52.85	54.78	54.76	55.72	51.88		
хі	55.78	54.90	54.72	54.10	52.83	54.68	54.78	55.73	52.17		
si	0.06	0.06	0.05	0.06	0.02	0.09	0.03	0.06	0.27		
u(xi)	0.70	0.69	1.14	1.62	3.00	0.93	0.78	0.68	7.40		
U(xi)	1.40	1.37	2.28	3.25	5.99	1.86	1.56	1.35	14.80		

Table 32: Reported values for NO run 3.

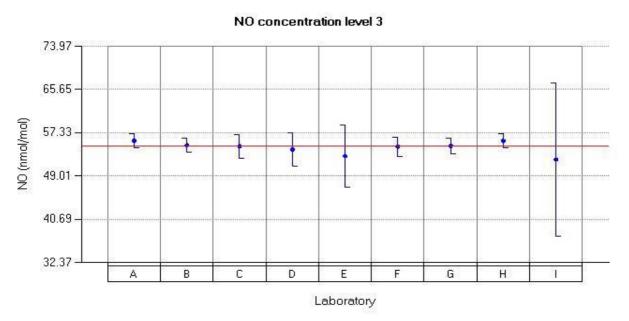


Figure 34: Reported values for NO run 3.

		laboratories									
values	А	В	С	D	E	F	G	Н	1		
хі, 1	26.32	25.62	25.52	25.70	24.75	25.70	25.64	26.59	25.23		
хі, 2	26.18	25.58	25.55	25.73	24.55	25.75	25.59	26.38	25.01		
хі, З	26.21	25.49	25.45	25.58	24.35	25.63	25.54	26.32	24.55		
хi	26.23	25.56	25.50	25.67	24.55	25.69	25.59	26.43	24.93		
si	0.07	0.06	0.05	0.07	0.20	0.06	0.05	0.14	0.34		
u(xi)	0.44	0.60	0.74	1.04	2.32	0.91	0.73	0.50	7.40		
U(xi)	0.88	1.20	1.48	2.08	4.64	1.82	1.46	1.00	14.80		

Table 33: Reported values for NO run 4.

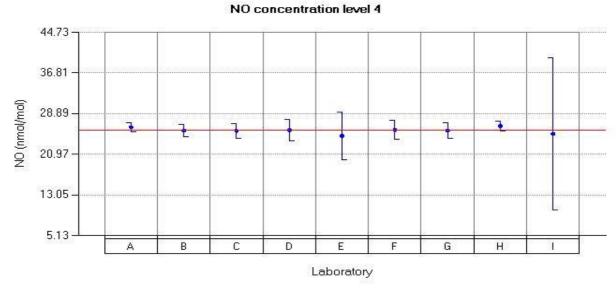


Figure 35: Reported values for NO run 4.

		laboratories									
values	А	В	С	D	E	F	G	н	- I		
xi, 1	497.77	499.84	502.33	492.15	482.55	494.12	495.87	503.05	498.29		
хі, 2	497.76	500.20	502.74	492.23	482.85	494.39	496.04	503.26	497.72		
хі, 3	498.01	500.15	502.72	491.93	483.35	494.48	496.25	503.47	496.28		
xi	497.84	500.06	502.59	492.10	482.91	494.33	496.05	503.26	497.43		
si	0.14	0.19	0.23	0.15	0.40	0.18	0.19	0.21	1.03		
u(xi)	5.58	3.39	9.08	8.20	23.14	2.88	2.69	5.63	7.40		
U(xi)	11.16	6.79	18.16	16.41	46.27	5.76	5.38	11.27	14.80		

Table 34: Reported values for NO run 5.

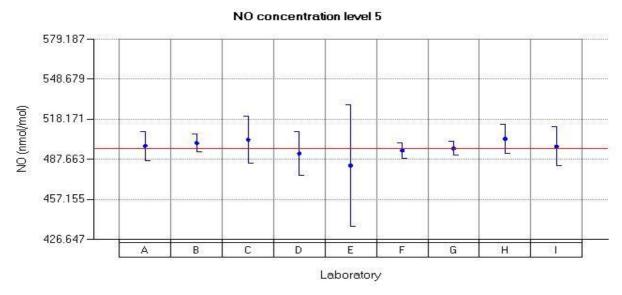


Figure 36: Reported values for NO run 5.

		laboratories									
values	А	В	С	D	E	F	G	н	- 1		
xi, 1	406.97	408.50	410.13	404.27	393.30	404.53	405.10	412.37	411.38		
хі, 2	407.61	408.38	409.77	403.74	393.15	404.25	404.80	411.67	410.51		
хі, З	407.04	408.17	409.96	403.36	393.20	404.10	404.68	411.67	408.87		
хі	407.20	408.35	409.95	403.79	393.21	404.29	404.86	411.90	410.25		
si	0.35	0.16	0.18	0.45	0.07	0.21	0.21	0.40	1.27		
u(xi)	4.59	2.79	7.42	6.83	12.36	2.41	2.24	4.62	7.40		
U(xi)	9.18	5.58	14.84	13.66	24.72	4.82	4.48	9.23	14.80		

Table 35: Reported values for NO run 6.

Figure 37: Reported values for NO run 6.

	laboratories										
values	А	В	С	D	E	F	G	Н	1		
хі, 1	25.57	24.75	24.85	24.65	23.30	24.87	24.91	25.52	24.03		
хі, 2	25.70	24.79	24.98	24.61	23.40	24.99	24.89	25.52	23.42		
хі, 3	25.68	24.81	24.89	24.69	23.60	25.02	24.92	25.63	23.50		
хi	25.65	24.78	24.90	24.65	23.43	24.96	24.90	25.55	23.65		
si	0.07	0.03	0.06	0.04	0.15	0.07	0.01	0.06	0.33		
u(xi)	0.43	0.60	0.73	1.01	2.56	0.88	0.73	0.50	7.40		
U(xi)	0.86	1.20	1.46	2.03	5.12	1.76	1.46	1.00	14.80		

Table 36: Reported values for NO run 7.

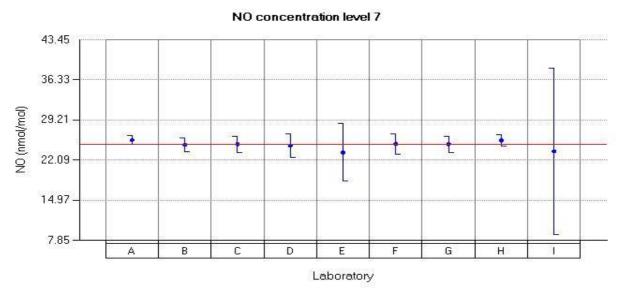


Figure 38: Reported values for NO run 7.

	laboratories										
values	А	В	С	D	E	F	G	Н	T .		
хі, 1	9.69	9.02	9.16	9.22	8.60	9.25	9.15	9.71	8.63		
хі, 2	9.57	8.94	9.15	9.19	8.55	9.29	9.10	9.63	8.48		
хі, 3	9.52	8.87	9.02	9.18	8.45	9.12	9.00	9.55	8.49		
хi	9.59	8.94	9.11	9.19	8.53	9.22	9.08	9.63	8.53		
si	0.08	0.07	0.07	0.02	0.07	0.08	0.07	0.08	0.08		
u(xi)	0.31	0.58	0.60	0.71	1.14	0.92	0.72	0.60	7.40		
U(xi)	0.62	1.16	1.20	1.41	2.29	1.84	1.43	1.20	14.80		

Table 37: Reported values for NO run 8.

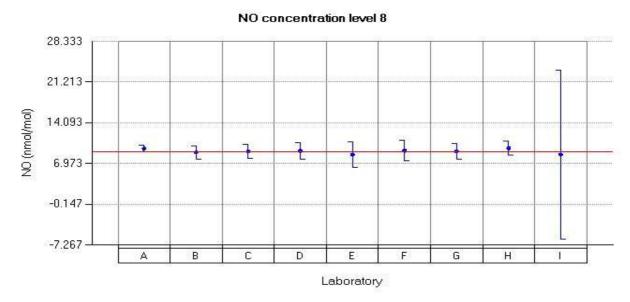


Figure 39: Reported values for NO run 8.

	laboratories									
values	А	В	С	D	E	F	G	Н	I I	
xi, 1	134.27	132.13	133.01	130.39	127.00	131.40	131.89	133.99	125.37	
хі, 2	134.38	132.36	133.16	130.54	127.00	131.61	132.10	134.01	125.12	
хі, 3	134.29	132.39	133.22	130.48	127.00	131.61	131.99	134.10	124.85	
хі	134.31	132.29	133.13	130.47	127.00	131.54	131.99	134.03	125.11	
si	0.05	0.14	0.10	0.07	0.00	0.12	0.10	0.05	0.26	
u(xi)	1.58	1.06	2.47	2.65	10.56	1.14	1.01	1.53	7.40	
U(xi)	3.16	2.11	4.94	5.31	21.12	2.28	2.01	3.06	14.80	

Table 38: Reported values for NO run 9.

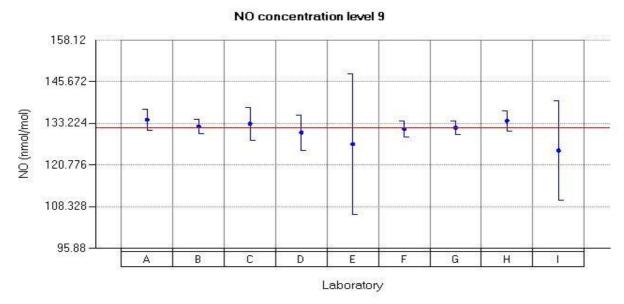


Figure 40: Reported values for NO run 9.

	laboratories									
values	А	В	С	D	E	F	G	Н	- I	
xi, 1	75.10	73.65	73.83	73.21	70.60	73.46	73.55	75.35	68.48	
хі, 2	74.95	73.48	73.87	73.08	70.40	73.28	73.46	75.19	68.38	
хі, 3	74.85	73.33	73.77	73.00	70.60	73.22	73.36	75.04	68.11	
хi	74.96	73.48	73.82	73.09	70.53	73.32	73.45	75.19	68.32	
si	0.12	0.16	0.05	0.10	0.11	0.12	0.09	0.15	0.19	
u(xi)	0.94	0.76	1.45	1.67	2.51	0.98	0.82	1.00	7.40	
U(xi)	1.88	1.52	2.90	3.34	5.02	1.96	1.64	2.00	14.80	

Table 39: Reported values for NO run 10.

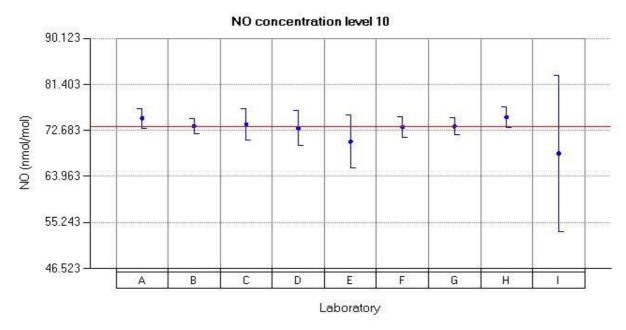


Figure 41: Reported values for NO run 10.

Reported values for NO₂

	laboratories									
values	А	В	С	D	E	F	G	Н	l l	
хі, 1	-0.48	-0.01	0.19	0.03	0.75	-0.02	0.04	-0.03	-0.37	
u(xi)		0.59	0.50	0.60	0.01	0.87	0.72	0.75	7.40	
U(xi)		1.19	1.00	1.20	0.01	1.74	1.43	1.51	14.80	

Table 40: Reported values for NO2 run 0.

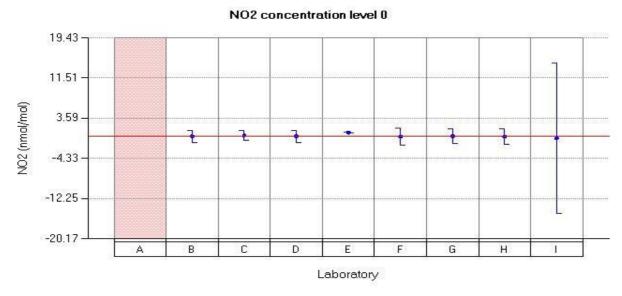


Figure 42: Reported values for NO_2 run 0. Participant A did not report uncertainty for level 0.

	laboratories									
values	А	В	С	D	E	F	G	Н	- I	
xi, 1	116.72	121.35	120.31	118.58	117.85	120.19	120.09	120.93	119.21	
хі, 2	117.55	121.75	120.88	119.21	118.20	120.54	120.63	121.57	119.02	
хі, 3	117.68	122.07	120.94	119.41	118.60	120.80	120.80	121.88	118.85	
хi	117.31	121.72	120.71	119.06	118.21	120.51	120.50	121.46	119.02	
si	0.52	0.36	0.34	0.43	0.37	0.30	0.37	0.48	0.18	
u(xi)	2.30	2.32	2.56	2.21	11.00	1.16	1.41	2.50	7.40	
U(xi)	4.60	4.64	5.11	4.43	21.99	2.32	2.82	5.00	14.80	

Table 41: Reported values for NO₂ run 2.

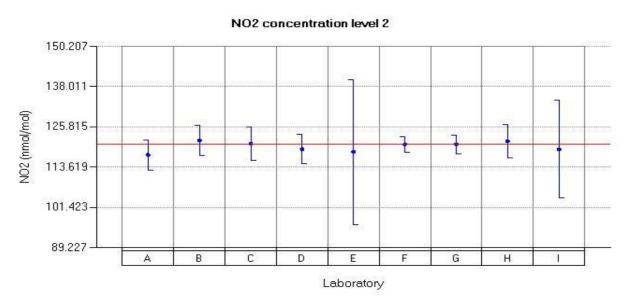


Figure 43: Reported values for NO₂ run 2.

	laboratories										
values	Α	В	С	D	E	F	G	Н	I I		
хі, 1	28.95	29.55	28.95	28.87	27.55	29.40	29.46	29.45	27.00		
хі, 2	29.08	29.53	28.90	28.95	27.90	29.37	29.55	29.71	26.88		
хі, З	28.93	29.61	29.15	28.98	27.60	29.49	29.56	29.84	26.78		
хi	28.98	29.56	29.00	28.93	27.68	29.42	29.52	29.66	26.88		
si	0.08	0.04	0.13	0.05	0.18	0.06	0.05	0.19	0.11		
u(xi)	0.73	0.81	0.83	1.09	3.24	0.90	0.77	0.60	7.40		
U(xi)	1.46	1.62	1.66	2.19	6.47	1.80	1.54	1.20	14.80		

Table 42: Reported values for NO2 run 4.

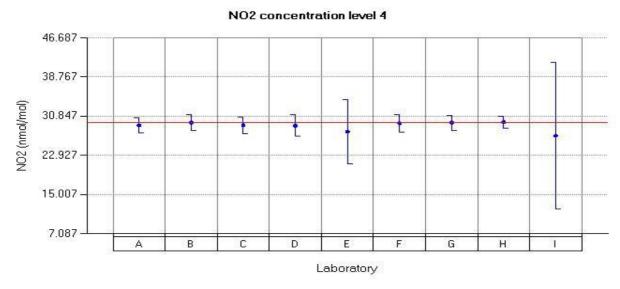


Figure 44: Reported values for NO₂ run 4.

	laboratories										
values	А	В	С	D	E	F	G	Н	1		
xi, 1	87.64	95.15	92.91	92.55	92.00	95.14	93.29	96.10	90.71		
хі, 2	88.57	95.69	93.48	92.74	91.65	95.46	93.61	96.45	90.12		
хі, 3	87.85	95.62	93.28	93.49	91.65	95.52	93.79	96.66	90.01		
хi	88.02	95.48	93.22	92.92	91.76	95.37	93.56	96.40	90.28		
si	0.48	0.29	0.28	0.49	0.20	0.20	0.25	0.28	0.37		
u(xi)	1.97	1.85	2.01	1.97	8.21	1.06	1.95	1.23	7.40		
U(xi)	3.94	3.69	4.02	3.95	16.42	2.12	3.90	2.46	14.80		

Table 43: Reported values for NO₂ run 6.

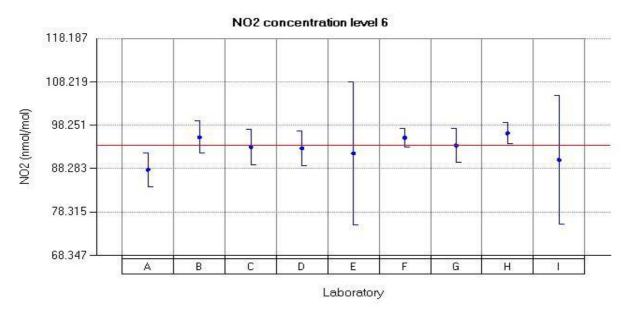


Figure 45: Reported values for NO₂ run 6.

	laboratories									
values	А	В	С	D	E	F	G	Н	1	
xi, 1	15.93	15.88	15.54	15.69	14.40	16.09	15.98	16.02	15.54	
хі, 2	15.89	15.88	15.50	15.66	14.35	16.00	16.00	16.08	15.50	
хі, 3	15.84	15.93	15.54	15.80	14.50	16.12	16.05	16.16	15.43	
хі	15.88	15.89	15.52	15.71	14.41	16.07	16.01	16.08	15.49	
si	0.04	0.02	0.02	0.07	0.07	0.06	0.03	0.07	0.05	
u(xi)	0.44	0.66	0.66	0.81	1.68	0.89	0.73	0.75	7.40	
U(xi)	0.88	1.33	1.32	1.63	3.36	1.88	1.46	1.50	14.80	

Table 44: Reported values for NO₂ run 8.

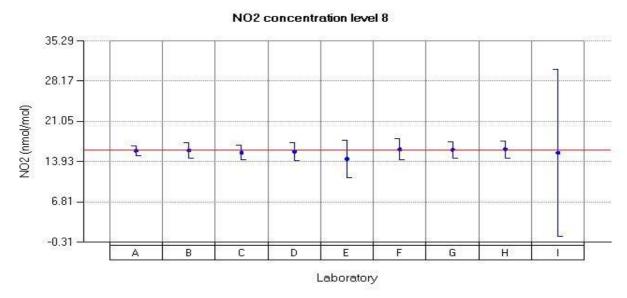


Figure 46: Reported values for NO₂ run 8.

	laboratories										
values	А	В	С	D	E	F	G	Н	I I		
хі, 1	57.86	59.59	58.80	58.45	56.60	59.47	59.26	60.04	57.68		
хі, 2	58.05	59.78	58.76	58.64	56.55	59.56	59.42	60.11	57.68		
хі, 3	58.38	59.68	58.99	58.56	56.75	59.56	59.51	60.01	57.67		
хі	58.09	59.68	58.85	58.55	56.63	59.53	59.39	60.05	57.67		
si	0.26	0.09	0.12	0.09	0.10	0.05	0.12	0.05	0.00		
u(xi)	1.23	1.25	1.34	1.49	5.19	0.98	0.92	1.10	7.40		
U(xi)	2.46	2.51	2.69	2.97	10.39	1.96	1.85	2.20	14.80		

Table 45: Reported values for NO₂ run 10.

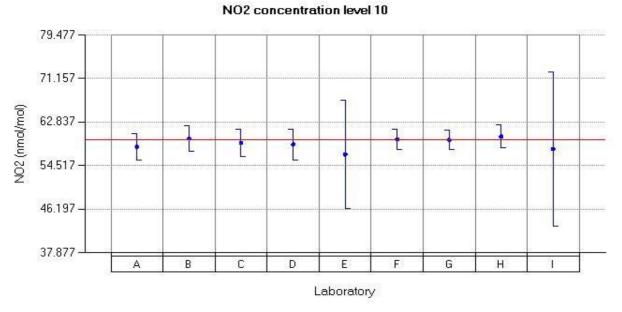


Figure 47: Reported values for NO₂ run 10.

Annex C. The precision of standardized measurement methods

For the main purpose of monitoring trends between different IEs undertaken by ERLAP, the precision of standardized SO_2 , CO, O_3 and NO_X measurement methods [2], [3], [4] and [5] as implemented by NRLs, was evaluated.

Applied methodology is described in ISO 5725-1, 5725-2 and 5725-6 [14], [15] and [16]. The precision experiment has involved a total of nine laboratories, the actual number of labs (p_j) is reported in Table 46. Six concentration levels (for run 0 only one value is requested so repeatability cannot be evaluated) were tested for O_3 , CO, SO_2 and NO_2 , and eleven for NO. Outlier tests were performed and results are reported in Annex D.

The repeatability standard deviation (s_r) was calculated in accordance with ISO 5725-6 as the square root of average within-laboratory variance. The repeatability limit (r) is calculated using Equation 6 [16]. It represents the biggest difference between two test results found on an identical test gas by one laboratory using the same apparatus within the shortest feasible time interval that should not be exceeded on average more than once in 20 cases in the normal and correct operation of method.

$$r = t_{95\%, v} \cdot \sqrt{2} \cdot s_r$$
 Equation 6

The reproducibility standard deviation (s_R) was calculated in accordance with ISO 5725-6 as the square root of sum of repeatability and between-laboratory variance. The reproducibility limit (R) is calculated using Equation 7 [16]. It represents the biggest difference between two measurements on an identical test gas reported by two laboratories, which should not occur on average more than once in 20 cases in the normal and correct operation of method.

$$R = t_{\text{QSQG}, V} \cdot \sqrt{2} \cdot S_R$$
 Equation 7

The repeatability standard deviation was evaluated with $(p_j*(3-1))$ degrees of freedom (v) and reproducibility standard deviation with (p_j-1) degrees of freedom. The corresponding critical range student factors $(t_{\alpha,v})$ are reported in Table 46.

parameter	run	$\mathbf{p_j}$	t critical value 95% for r	t critical value 95% for R
СО	1,2,3,4,5	9	2.101	2.306
NO	1,2,3,4,5,6,7,8,9,10	9	2.101	2.306
NO_2	2,4,6,8,10	9	2.101	2.306
O_3	1,2,3,4,5	9	2.101	2.306
SO_2	1,2,3,4,5	9	2.101	2.306

Table 46: Critical values of t used in the repeatability (r) and reproducibility (R) evaluation.

The repeatability (r) and reproducibility (R) limits of measurement methods are presented from Table 477 to Table 51 and from Figure 48 to Figure 52. Also reported is the 'reproducibility from common criteria (R (from σ_p))' calculated by substituting s_R in Equation 7 with a 'standard deviation for proficiency assessment' (see Table 4). Comparison between R and R (from σ_p) serves to indicate that σ_p is realistic ([13] under 6.3.1) or from the other point of view, that the general methodology implemented by NRLs is appropriate for σ_p .

		ata (nmol/mol) out outliers							
group repeatability reproducibility reproducibility									
average	limit : r	limit : R	limit (relative)						
-0.1		0.7							
4.0	0.2	0.9							
12.2	0.2	0.9							
26.1	0.2	1.8							
61.8	0.6	4.5							
129.5	0.3	10.1	7.8%						

Table 47: The R and r of SO₂ standard measurement method.

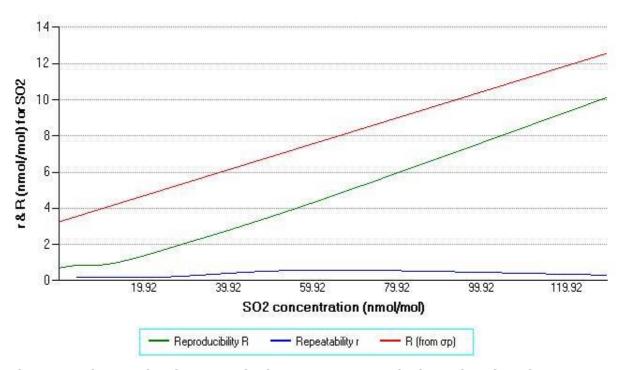


Figure 48: The R and r of SO_2 standard measurement method as a function of concentration.

CO data (µmol/mol) without outliers				
group	repeatability	reproducibility		
average	limit: r	limit: R	limit (relative)	
0.033		0.215		
0.853	0.03	0.226		
2.063	0.051	0.239		
3.594	0.031	0.339		
5.128	0.016	0.393		
8.121 0.052		0.641	7.9%	

Table 48: The R and r of CO standard measurement method.

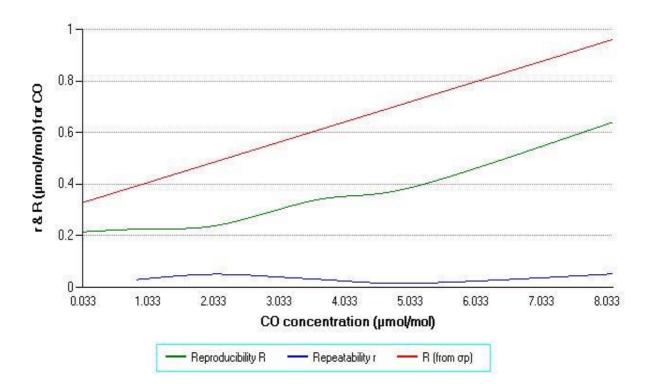


Figure 49: The R and r of CO standard measurement method as a function of concentration.

O ₃ data (nmol/mol)					
	without outliers				
group	repeatability	reproducibility			
average	verage limit: r limit: R		limit (relative)		
-0.1		1.3			
15.8	0.2	1.2			
30.8	0.2	1.8			
58.2	0.4	3.4			
90.8	0.7	5.1			
123.3 1.3		6.9	5.6%		

Table 49: The R and r of O_3 standard measurement method.

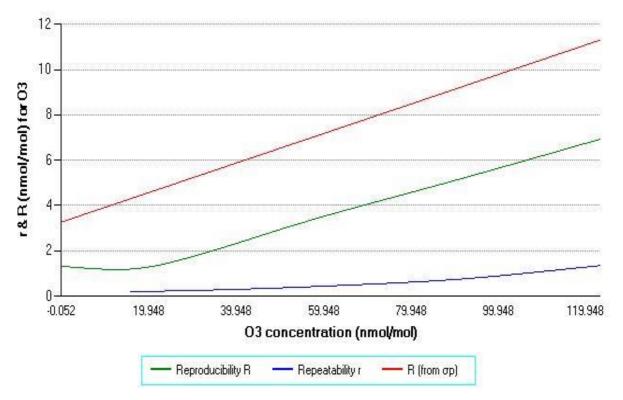


Figure 50: The R and r of O_3 standard measurement method as a function of concentration.

NO data (nmol/mol) without outliers				
group	repeatability	reproducibility		
average	limit: r	limit: R	limit (relative)	
0.1		0.6		
9.1	0.2	1.3		
24.7	0.4	2.5		
25.6	0.4	1.9		
54.4	0.3	4.0		
72.9	0.4	7.1		
131.1	0.4	10.2		
169.4	1.0	9.7		
287.5	0.8	12.2		
406.0	1.5	18.2		
496.3	1.2	20.2	4.1%	

Table 50: The R and r of NO standard measurement method.

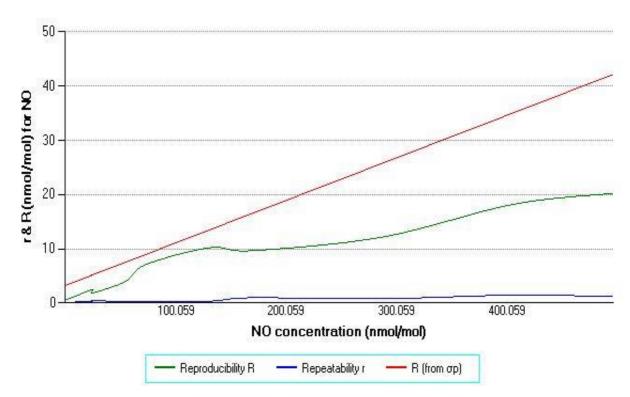


Figure 51: The R and $\bf r$ of NO standard measurement method as a function of concentration.

NO ₂ data (nmol/mol)						
	without outliers					
group	pup repeatability reproducibility reproducibility					
average	limit: r limit: R		limit (relative)			
0.0		1.1				
15.8	0.2	0.8				
28.9	0.3	3.1				
58.7	0.4	3.6				
93.0	1.0	8.8				
119.8	1.2	5.0	4.2%			

Table 51: The R and r of NO_2 standard measurement method.

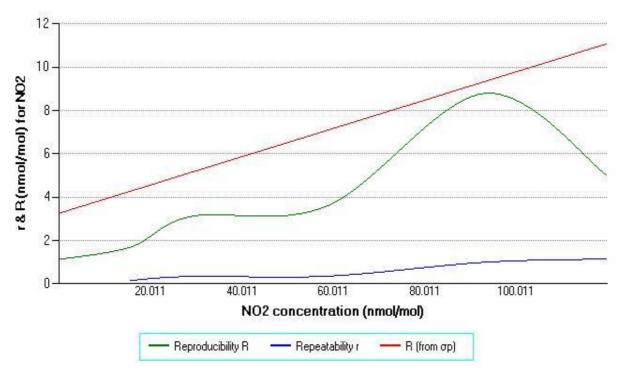


Figure 52: The R and r of NO_2 standard measurement method as a function of concentration.

Annex D.The scrutiny of results for consistency and outlier test

The precision evaluation (Annex C) focuses on data that are as much as possible the reflection of every day work of NRLs and thus represents the comparability of participant's standard operating procedures.

For that reason, a procedure for the detection of exceptional errors (error during typing, slip in performing the measurement or the calculation, wrong averaging interval, malfunction of instrumentation, etc.) was applied. In this procedure were carried out tests for data consistency and statistical outliers as described in ISO 5725-2.

Laboratories showing some form of statistical inconsistency were requested to investigate the cause of discrepancies.

Laboratories were allowed to correct their results in case of identification of exceptional errors. Subsequently, data were considered definitive and "Grubb's one outlying observation test" was performed.

For runs where outliers were detected, outliers were removed and "Grubb's one outlying observation test" was repeated until no more outliers were observed. Statistical outliers obtained at this stage are not considered as extraordinary errors but due to significant difference in participant's standard operating procedure.

During this IE, only one statistical outlier, presented in the table below, was identified related to a NO₂ level:

parameter	run	laboratory	measured value	failing test	confidence level
NO ₂	8	Е	14.417	G1 minimum	1%, 5%

Table 52: "Genuine" statistical outliers according to Grubb's one outlying observation test.

The precision of standardised measurement methods reported in Annex C are calculated using the database without outliers.

According to Grubb's test, results between a confidence level of 1 and 5% are considered stragglers and they deserve a specific check.

In order to give useful information to the participants for judging their performance also the stragglers are reported in the following table:

Labo	ratory	parameter	run	value	Gmin_5%	Gmax_5%
	В	CO	0	0.184	OK	Straggler
	E	NO	6	393.217	Straggler	OK

Table 53: Stragglers according to Grubb's one observation test.

Annex E. Accreditation certificate

CERTIFICATO DI ACCREDITAMENTO

Accreditation Certificate

Accreditamento nº Accreditation nº

1362

Rev. 0

Si dichiara che We declare that

European Reference Laboratory for Air Pollution (ERLAP) Air and Climate Unit - Institute for Environment and Sustainability - Joint Research

Centre - European Commission

Via E. Fermi 2749 - 21027 Ispra VA

è conforme ai requisiti della norma

UNI CEI EN ISO/IEC 17025:2005 "Requisiti generali per la competenza dei

Laboratori di prova e taratura"

meets the reqirements of the standard

EN ISO/IEC 17025:2005 "General Requirements for the Competence of Testing

and Calibration Laboratories" standard

quale

Laboratorio di Prova

Testing Laboratory as

L'accreditamento attesta la competenza tecnica del Laboratorio relativamente allo scopo riportato nelle schede allegate al presente certificato. Le schede possono variare nel tempo. I requisiti gestionali della ISO/IEC 17025:2005 (sezione 4) sono scritti in un linguaggio idoneo all'attività dei Laboratori di Prova, sono

conformi ai principi della ISO 9001:2008 ed allineati con i suoi requisiti applicabili.

Il presente certificato non è da ritenersi valido se non accompagnato dalle schede allegate e può essere sospeso o revocato in qualsiasi momento nel caso di inadempienza accertata da parte di ACCREDIA.

La vigenza dell'accreditamento può essere verificata sul sito WEB (www.accredia.it) o richiesta direttamente ai singoli Dipartimenti .

The accreditation certifies the technical competence of the laboratory limited to the scope detailed in the attached Enclosure. The scope may vary in the time. The management system requirements in ISO/IEC 17025:2005 (Section 4) are written in a language relevant to Testing Laboratories operations and meet the principles of ISO 9001:2008 and are aligned with its pertinent requirements. The present certificate is valid only if associated to the annexed schedule, and can be suspended or withdrawn at any time in the event of non fulfilment as ascertained by ACCREDIA.

The in force status of the accreditation may be checked in the WEB site (www.accredia.it) or on direct requires the appointed Department.

request to appointed Department.

Data di 1ª emissione 1st issue date 2013-06-19

Data di modifica Modification date 2013-06-19

Data di scadenza Expiring date 2017-06-18

Direttore Generale The General Director (Dr. Filippo Trifiletti)

Bian Il Direttore di Dipartimento Department Director (Dr. Paolo Bianco)

II Presidente The President (Cav. del Lav. Federico Grazioli)

European Reference Laboratory for Air Pollution (ERLAP)
Air and Climate Unit - Institute for Environment and
Sustainability - Joint Research Centre - European
Commission

Via E. Fermi 2749
21027 Isora VA

Numero di accreditamento: 1362 Sede A
Revisione: 0 Data: 22/07/2013

Scheda 1 di 1 PA1779AR0.pdf

ELENCO PROVE ACCREDITATE - CATEGORIA: 0

Synthetic mixture gas Metodo di prova Denominazione della prova / Campi di prova Metodo di prova carbon monoxide (0-86 mmol/mol) EN 14626:2012 nitrogen oxides (NO: 0-962 nmol/mol; NO2: 0-261 nmol/mol) EN 14211:2012 ozone (0-250 nmol/mol) EN 14625:2012 sulphur dioxide (0-376 nmol/mol) EN 14212:2012

Legenda En= norma europea

> ACCREDIA Il Direttore del Dipartimento (Dr. Paolo Bianco)

Bianco Paolo Firmato digitalmente da Bianco Paolo ND: c-IT, o-ACCREDIA/10566361001, cn-Bianco Paolo, serialNumber=IT:BNCPLASZM231219N, givenName=Baolo, sn-Bianco, dinQualifier=11004771, title=Direttore Dipartimento Laboratori di gra

Europe Direct is a service to help you find answers to your questions about the European Union.

Freephone number (*): **00 800 6 7 8 9 10 11**

(*) The information given is free, as are most calls (though some operators, phone boxes or hotels may charge you).

More information on the European Union is available on the internet (http://europa.eu).

HOW TO OBTAIN EU PUBLICATIONS

Free publications:

- one copy:
 - via EU Bookshop (http://bookshop.europa.eu);
- more than one copy or posters/maps: from the European Union's representations (http://ec.europa.eu/represent_en.htm); from the delegations in non-EU countries (http://eeas.europa.eu/delegations/index_en.htm); by contacting the Europe Direct service (http://europa.eu/europedirect/index_en.htm) or calling 00 800 6 7 8 9 10 11 (freephone number from anywhere in the EU) (*).
 - (*) The information given is free, as are most calls (though some operators, phone boxes or hotels may charge you).

Priced publications:

• via EU Bookshop (http://bookshop.europa.eu).

JRC Mission

As the science and knowledge service of the European Commission, the Joint Research Centre's mission is to support EU policies with independent evidence throughout the whole policy cycle.

EU Science Hub

ec.europa.eu/jrc

doi:10.2760/214326

ISBN: 978-92-79-68875-1