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This thesis covers three applications of Bose-Einstein condensates and related

phenomena, with the theme of pair creation and pair annihilation.

First, Bose-Einstein condensates (BEC) are viewed as a candidate to imple-

ment a sonic black hole. This can lead to the observation of analog Hawking ra-

diation, resulting from phonon pair creation at a black-hole horizon. Such imple-

mentation has been achieved in a resent experiment by J. Steinhauer, in which a

black-hole/white-hole pair have been produced. He also reported the observation

of self-amplifying Hawking radiation, via a lasing mechanism operating between

the black and white hole horizons. Through simulations using the Gross-Pitaevskii

equation, we find that the experimental observations should be attributed not to the

black hole laser effect, but rather to a growing zero-frequency bow wave, generated

at the white-hole horizon. The relative motion of the black-hole and white-hole hori-

zons produces a Doppler shift of the bow wave at the black hole, where it stimulates

the emission of monochromatic Hawking radiation. This mechanism is confirmed



using temporal and spatial windowed Fourier spectra of the condensate. We also

find that shot-to-shot atom number variations, of the type normally realized in

ultracold-atom experiments, and quantum fluctuations of condensates, computed in

the Truncated Wigner approximation, give density-density correlations consistent

with those reported in the experiments. In particular, atom number variations can

produce a spurious correlation signal.

Secondly, a sonic black hole/white hole pair and phonon pair creation can also

be realized using a ring-shaped condensate. Here we focus on the phonon spec-

troscopy of a ring-shaped condensate with the presence of a potential barrier. This

is the configuration for an atomtronic superconducting interference device (SQUID).

We probe the phonon excitation spectrum by applying a harmonically driven barrier

to a 23Na Bose-Einstein condensate in a ring-shaped trap. When excited resonantly,

these wavepackets display a regular periodic structure. The resonant frequencies de-

pend upon the particular configuration of the barrier, and are commensurate with

the orbital frequency of a Bogoliubov sound wave traveling around the ring. En-

ergy transfer to the condensate over many cycles of the periodic wavepacket motion

causes enhanced atom loss from the trap at resonant frequencies. Solutions of the

time-dependent Gross-Pitaevskii equation exhibit quantitative agreement with the

experimental data.

Thirdly, positronium BECs are of experimental and theoretical interest due

to their potential application as the gain medium of a gamma-ray laser. Ps BECs

are intrinsically spinor due to the presence of ortho-positronium (o-Ps) and para-

positronium (p-Ps), whose annihilation lifetimes differ by three orders of magnitude.



We study the spinor dynamics and annihilation processes in the p-Ps/o-Ps system

using both solutions of the time-dependent Gross-Pitaevskii equations and a semi-

classical rate-equation approach. The spinor interactions have an O(4) symmetry

which is broken to SO(3) by an internal energy difference between o-Ps and p-Ps.

For an initially unpolarized condensate, there is a threshold density of ≈ 1019 cm−3

at which spin mixing between o-Ps and p-Ps occurs. Beyond this threshold, there

are unstable spatial modes accompanied by spin mixing. To ensure a high produc-

tion yield above the critical density, a careful choice of external field must be made

to avoid the spin mixing instability.
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Chapter 1: Introduction

Bose Einstein condensation was first predicted by Einstein in 1925. He con-

sidered that a gas of non-interacting bosons at a given temperature would undergo

a phase transition, characterized by a critical phase-space density, above which the

excess density would consist of particles all occupying the lowest energy state [3].

At this critical density, the de Broglie wavelength of the gas becomes comparable

to the mean distance between atoms, and particles behave like waves, overlapping

with each other. In particular, concerning the macroscopic fraction of bosons in

the lowest energy state, they behave collectively as a single matter wave. This is a

Bose-Einstein condensate (BEC).

The first BEC was produced in 1995 in a laboratory using a dilute gas of 87Rb,

trapped and laser-cooled to the temperature on the order of 10−8 K [4]. Later in the

same year, BEC was also attained in ultracold gases of 7Li and 23Na atoms [5, 6].

This was made possible by advances in atom trapping and cooling techniques [7].

The method of lasing cooling was developed in the 1980s to lower the temperature

of a gas to the order of microkelvin [7]. Furthermore, a gas of trapped atoms can be

further cooled down to the order of nanokelvins by releasing energetic “hot” atoms

through the lowering of the trap depth. This is a technique called evaporative
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cooling [8], which can cool a gas of alkali atoms below the critical temperature (on

the order of tens of nanokelvin), and lead to the formation of a BEC.

A trapped BEC has a finite size, determined by the scale of its trapping poten-

tial, the number of atoms, and repulsive interaction between atoms. It can contain

atoms in the range of N = 103 − 107, and the length of a condensate can be up to

the order of millimeters [9], which is considered “macroscopic”, compared to objects

in the atomic scale. Regarding the macroscopic and coherence properties of a BEC,

quantum phenomena, expected in the single atom regime, can be enhanced and

observed in laboratories. For instance, two expanding BEC clouds can overlap, and

result in an interference pattern measurable in the lab [9]. This creates opportuni-

ties to investigate the quantum nature of matter, and furthermore, to control and

engineer quantum many-body systems [10].

On the theory side, using the mean field approximation for weakly interacting

Bose gases, a BEC can be described by a macroscopic wavefunction, satisfying a

nonlinear different equation called Gross-Pitaevskii (GP) equation [11,12]. The GP

equation has been proved successful in predicting many behaviors of BECs observed

in experiments, such as stationary configuration, interference, formation of vortices,

etc. Beyond the GPE, excitations can be treated by the Bogoliubov approximation

[13]. In this approximation, the excitations are viewed as quasiparticle operators,

whose amplitudes satisfy the Bogoliubov-de Gennes (BdG) equations. With the

BdG theory, one can estimate quantum depletion in a BEC, and predict properties

for the noncondensate fraction, like excitation spectrum, speed of sound, etc.
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1.1 In this thesis

In this thesis, with the GPE and BdG equations as the basic theoretical tools,

we investigate three different applications of BECs and related phenomena, in the

theme of the creation and annihilation of a particle-antiparticle pair.

1.1.1 Analog black hole and Hawking radiation in BECs

The first application focuses on the ideas of analog black hole and Hawking

radiation in BECs. Quasiparticle pair creation can occur at the event horizon of

an analog black hole formed in a BEC, emitting analog Hawking radiation and its

partner [14, 15]. In the context of analog systems, a phonon propagating in a hy-

drodynamic flow is analogous to a light trajectory in a curved spacetime, where

the speed of sound plays the role as the speed of light [16]. In BECs, low energy

excitations behave as phonons, propagating at the speed of sound on a condensate

flow. Critical behaviors of phonons occur at a point where the flow velocity transi-

tions from subsonic to supersonic. This critical point is the black-hole event horizon

(BH), at which the flow speed is equal to the speed of sound. Behind the horizon

is an analog black hole, where no phonon can escape from the supersonic flow to

the upstream region. One exception is the pair creation occurring at the horizon,

emitting a phonon to the upstream, and its partner to the downstream. The phonon

escaping from the black hole is viewed as the analog Hawking radiation (HR).

In recent years, a series of groundbreaking experiments have been performed

at Technion [1, 17, 18]. A sonic black-hole horizon was created in an elongated
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BEC using a “waterfall-like” potential [17]. Later, using a similar experimental

procedure [1], the observation of self-amplifying Hawking radiation was reported.

The latest achievement is the correlated signal of spontaneous pair creation from a

black-hole horizon [18].

In the first part of this thesis (Chapters 3 and 4), we study the experiment

in [1]. In this experiment, the BEC contains a supersonic cavity, a region of super-

sonic flow bounded by a black-hole and a white-hole horizon (where the supersonic

flow transitions back to subsonic). Treating this supersonic region as a lasing cavity,

it was suggested in [1] that HR and its partner are created from the vacuum state

at the black-hole horizon, and then self-amplify through a “black-hole laser” [19].

Observation of a growing standing wave inside the cavity was associated with the

HR partner mode, and was treated as evidence of self-amplification of HR. With

thorough analysis and simulations, we find a standing wave pattern similar to that

in the experiment, and a signal of Hawking radiation, but attribute the observations

to a mechanism different from the lasing interpretation. We find that the standing

wave is due to an instability at the white-hole horizon, which grows with the in-

creasing background density. As the standing wave reaches the black-hole horizon,

it stimulates the pair creation.

In Chapter 3, we present our simulated results and the mechanism of stimu-

lated Hawking effect. The experimental procedure is simulated using the GP equa-

tion, followed by a spectral analysis of the excitation modes. We also identify dif-

ferent regimes of experimental parameters, from which a sharper signal of Hawking

radiation can be obtained. Chapter 4 takes into account quantum fluctuation, with
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a method using Truncated-Wigner approximation (TWA) [20]. This allows us to

calculate the density-density correlation function reported in [1]. We also consider

the shot-to-shot variation in the condensate atom number. With the presence of

both types of fluctuations, we reproduce a checkerboard pattern in the simulated

correlation, similar to the experimental observation. This pattern has the same ori-

gin as the standing wave, which is brought to the correlation through the variation

of atom number, and the long-wavelength components in the quantum fluctuation.

1.1.2 Ring-shaped BECs and phonon wavepackets

The second application focuses on a ring-shaped condensate and the behavior

of phonon wavepackets. A toroidal-shaped BEC has been realized in a laboratory

using a gas of 23Na, confined in a optical dipole trap [21, 22]. It is used in the

laboratory to develop the atom analog of a superconducting quantum interference

device (SQUID). Applying a repulsive potential barrier on the BEC can create a

constricted, low-density region, which can be viewed as a weak link. By rotating

the weak link at various rates, quantized circulations have been observed, associated

with a drastic phase change in the weak link region. This generates a current-

phase relation analogous to that of Josephson-like Junction in a superconducting

SQUID [22].

Another potential application for a ring BEC is to implement an analog black-

hole. A ring-shaped configuration with a pair of black-hole and white-hole horizons

has been considered theoretically for the observation of Hawking phenomenon [15,
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23, 24]. With a prepared persistent current in the ring, the two horizons can be

created with constrictions, such as a weak link of the SQUID, upon which the

flow velocity may change. The flow velocity can be modulated to create a region

of supersonic flow, bounded by two horizons, similar to that of black-hole laser.

Under such configuration, instability of certain phonon modes was predicted. This

is associated with the amplification of black-hole radiation [23,24].

In Chapter 5, we study the phonon excitations on a ring-shaped condensate,

in collaboration with experimentalists. We apply a potential barrier, modulating

the position and amplitude sinusoidally to create phonon wavepackets with vari-

ous frequencies. At resonant frequencies, the wavepackets display distinct periodic

structures, depending on the modulating schemes. We study the behaviors of the

phonon wavepackets using the GP equation, and find a good agreement with the

experimental results. This study exhibits the spectrum of phonon excitations of

a ring-shaped condensate. It can be useful for the investigation of phonon pair

creation with a sonic horizon created in the ring condensate.

1.1.3 Positronium BECs, self-annihilation, and γ-ray laser

The last topic focuses on a condensate made of positronium atoms. Positro-

nium (Ps) is the simplest atom composed of a particle and its anti-particle, an

electron and a positron. Both electron and position are spin-1/2 fermions, so a Ps

atom in the electronic ground state can have total spin S = 0, 1. Regarding the

matter-antimatter constituents, a Ps atom has the tendency to self-annihilate and
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decay into γ-rays. For a spin-0 Ps (para-positronium or p-Ps), the lifetime is ∼ 0.1

ns, and a spin-1 Ps (ortho-positronium or o-Ps) has a longer lifetime, which is about

∼ 0.1 µs [25].

In 1994, Platzman and Mills proposed a scheme of making a condensate of

o-Ps atoms, by impinging a positron pulse on a cavity made of silicon materials [26].

When a positron passes through the silicon wall, it can capture an electron from

the material and turn into a positronium, trapped inside the cavity. After collecting

enough Ps atoms, and cooling the cavity below the critical temperature (Tc = 15 K

for Ps density n = 1018 cm−3), a Ps condensate can form [27]. Recent experiments in

Ps research have achieved a gas of spin-polarized Ps atoms with density about two

orders of magnitude smaller than the condensation requirement [28], which makes

the formation of Ps BECs more likely in future laboratories [28–30].

One important aspect of Ps condensates is the implementation of a γ-ray

laser [27,31]. A Ps condensate can be viewed as a source which can coherently self-

annihilate, and generate a beam of high-coherence γ-rays. This can be achieved by

applying a rf pulse to convert a o-Ps condensate to the short-lived p-Ps [31]. Once

a γ photon is created from a self-annihilating p-Ps, it would further stimulate the

annihilation process of other p-Ps atoms in the condensate, generating coherent γ

rays. This can be viewed as the lasing action of a γ-ray laser.

In Chapter 6, we derive a theoretical formalism for a spinor condensate of

positronium, as a coherent mixture of o-Ps and p-Ps. We find a critical density,

beyond which spin-mixing can occur through inelastic collision between atoms and

destroy the coherence of the condensate. We also propose two schemes of applying
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the rf pulse to convert o-Ps to p-Ps, such that the coherence of the system would

be preserved during the annihilation/lasing process.

1.1.4 Overview

The structure of this thesis is as follows.

Chapter 2 introduces the background theoretical tool, a basic formalism in

the mean-field theory, describing a Bose-Einstein condensate and its elementary

excitations.

Chapters 3 and 4 are based on the work done with Ted Jacobson, Mark Ed-

wards, and Charles Clark. In the two chapters, we study an analog black hole and

its Hawking radiation in a laboratory condensate. Chapter 3 focuses on the simu-

lation using the 1D GPE, followed by a spectral analysis using windowed Fourier

transforms. Chapter 4 takes into effects of quantum fluctuation and atom number

variation to reproduce an important checkerboard pattern observed in the experi-

mental density-density correlation function.

Chapter 5 is a project in collaboration with Ryan Wilson, Mark Edwards,

Charles Clark, and the ring-BEC laboratory led by Dr. Gretchen Campbell. We

present a study of a ring-shaped condensate and its phonon spectroscopy.

In Chapter 6, we develop a theoretical model for a spinor condensate of positro-

nium, which gives rise of a condition to the occurrence of spin-mixing. Based on

this condition, we propose a scheme to suppress the spin mixing, and maintain the

condensate coherence for the implementation of a γ-ray laser. This work was done
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with Brandon Anderson and Charles Clark.

Appendix A gives the detailed simulation procedures for Chapter 3. It also

introduces the details of the windowed Fourier Transform used in the same chapter.

Appendix B introduces the numerical procedures for Chapter 4.

Related research papers in this thesis:

• Chapter 3

Mechanism of stimulated Hawking radiation in a laboratory Bose-Einstein con-

densate, Yi-Hsieh Wang, Ted Jacobson, Mark Edwards, and Charles W. Clark,

arXiv: 1605.01027 (2016).

• Chapter 4

Atom number variations and density correlations in sonic black hole conden-

sates, Yi-Hsieh Wang, Ted Jacobson, Mark Edwards, and Charles W. Clark (to be

submitted).

• Chapter 5

Resonant wavepackets and shock waves in an atomtronic SQUID, Yi-Hsieh

Wang, A. Kumar, F. Jendrzejewski, Ryan M. Wilson, Mark Edwards, S. Eckel, G.

K. Campbell, and Charles W. Clark, New J. Phys. 17, 125012 (2015).

• Chapter 6

Spinor Bose-Einstein condensates of positronium, Yi-Hsieh Wang, Brandon

M. Anderson, and Charles W. Clark, Phys. Rev. A 89, 043624 (2014).
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Chapter 2: Theoretical methods for BECs and elementary excita-

tions

In this thesis, we are interested in the several phenomena associated with both

the condensates mode and the elementary excitations. The behaviors of a condensate

can be modeled by the Gross-Pitaevskii theory, and the excitations can be analyzed

by Bogoliubov-de Gennes theory. Here we introduce these basic theoretical tools

which are used extensively in the thesis.

In a many-body system, where a single-particle state is macroscopically occu-

pied, the field operator of the system, Ψ̂, can be expressed as a mean field of the

single-particle state plus a quantum field of fluctuations. That is,

Ψ̂ = Ψ0 + δΨ̂ (2.1)

where Ψ0 denotes the mean field, i.e. the wavefunction of the BEC, and δΨ̂ is the

field operator of the quantum fluctuations. The equation of motion for the conden-

sate wavefunction is the time-dependent Gross-Pitaevskii equation (TDGPE),

i~
∂

∂t
Ψ0(r, t) =

[
− ~2

2M
∇2 + V (r) + g |Ψ0(r)|2

]
Ψ0(r). (2.2)

where V is the external potential, and g is a coefficient describing the mean-field

interaction between atoms, and M is the atomic mass. The interaction coefficient
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is given by g = 4π~2a/m, where a is the scattering length associated with binary

atomic collisions. The stationary solution of the GP equation can be expressed as

Ψ0(r, t) =
√
n(r)e−iµt/~ (2.3)

where n(r) is the condensate density, and µ the chemical potential.

The elementary excitations of the system can be viewed as the deviation from

the mean field, and can be described by the operator δΨ̂, which satisfies the equation

of motion

i~
∂

∂t
δΨ̂(r, t) =

[
− ~2

2m
∇2 + V (r) + 2gn(r)− µ

]
δΨ̂(r, t) + gΨ2

0δΨ̂
† (2.4)

We treat δΨ̂ to first order in atomic number fluctuations,

δΨ̂ =
∑
i

(
uie
−iωitai + v∗i e

iωita†i

)
, (2.5)

to obtain the Bogoliubov-de Gennes (BdG) equations:

[
~ωi +

~2

2M
∇2 − V (r)− 2gn(r) + µ

]
ui(r) = gn(r)vi(r)[

−~ωi +
~2

2M
∇2 − V (r)− 2gn(r) + µ

]
vi(r) = gn(r)ui(r). (2.6)

If the system is homogeneous in space (V (r) = 0), we have the plane-wave solution

for Eq. 2.6 [32], uk(r) = uke
ik·r and vk(r) = vke

ik·r, where k = kk̂ denotes the wave

vector. This leads to the dispersion relation

ω(k) = ±
√
ξ2
k − (gn)2. (2.7)

where ξk = ~2k2/2M + gn. For small k, the frequency ω(k) is linear in k, i.e.

ωk ∼ ±(
√
gn/M)k. Since this dispersion relation is the same as that for a sound
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wave, ω = ck, the quasiparticles in this regime can be viewed as phonons, and the

proportionality constant determines the speed of sound, c =
√
gn/M .

The Bogoliubov theory of excitations is extensively used in this thesis. In

Chapter 3, we use the BdG theory to identify the modes created at the sonic hori-

zons and determine the associated mechanism. We observe a zero-frequency BdG

mode created at the white hole horizon, which later reaches the black-hole horizon

to stimulate a Hawking mode and its partner. The frequencies and the wavevectors

of the observed modes are consistent with the prediction from the BdG dispersion

relations and our proposed mechanism. In Chapter 4, we use the Truncated Wigner

method, incorporating the Bogoliubov modes of excitations, to simulate quantum

fluctuations in the condensate. This allows us to evaluate the density-density corre-

lation for regions inside/outside the analog black hole. In Chapter 5, we numerically

solve the BdG spectrum of a 3D ring-shaped condensate, and use it to identify the

speed of sound for the phonon wavepackets generated in the ring system. In Chap-

ter 6, we examine the dynamical instability of a spinor condensate by analyzing the

complex frequency modes from the BdG equations. The details of these applications

are given in each chapter.
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Chapter 3: Analog black hole and Hawking radiation in a laboratory

Bose-Einstein condensates

In this chapter, we study the effects of an analog black hole and Hawking

radiation in a laboratory condensate [1]. As introduced in Chapter 1, elementary

excitations in a BEC are quasiparticles that satisfy the Bogoliubov-de Gennes (BdG)

equations, with low energy eigenmodes that behave like phonons, propagating with

the speed of sound. This black hole analogy holds for a BEC since the BdG equations

can be expressed in the form of the relativistic wave equation, and the behavior of

quasiparticles in the condensate flow can be viewed as an analog of light traveling

in the flow of curved spacetime [15,33].
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Figure 3.1: Potential-step structure at the start of its sweep through the BEC with
number density n(x), chemical potential µ and confining potential U(x).
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Recently, a black-hole/white-hole pair has been achieved experimentally by J.

Steinhauer, using an elongated, quasi-1D condensate of 87Rb [1]. In this experiment,

the BEC is swept by a negative step potential of depth Us at uniform speed vs, as

illustrated in Fig. 3.1 (Us is on the order of 10−9 K, and vs is 0.21 mm/s). Atoms

are accelerated in the direction opposite to the step motion due to the precipitous

drop in the potential. This creates a left-moving, supersonic flow behind the step,

and a black-hole horizon (BH) is formed at the step edge, xBH. The accelerated

atoms gradually slow as they recede from the step, due to the rising potential. This

causes the flow to become subsonic at a critical distance L behind the step, forming

a white-hole horizon (WH), xWH. The flow structure is shown in Fig. 3.5(b), where

a BH and a WH enclose a region of supersonic flow, which can be viewed as a

supersonic cavity. The velocity profile of the background flow is denoted by −v(x);

the profile of the speed of sound is denoted by c(x). With a flow moving to the left,

the BH is formed at the point where −v(x) = c(x), when the flow goes from subsonic

to supersonic. Similarly, the WH is the point that also satisfies −v(x) = c(x), but

the flow transitions from supersonic to subsonic.

Figure 3.2(a) shows an experimental density profile at a time after the sweep.

A low-density region can be seen in the interior of the BEC, and identified as a

supersonic cavity, bounded by BH and WH horizons. At later times, there is a

standing wave developed inside the cavity, as shown Fig. 3.2(b). The growth of the

standing wave amplitude is measured through a density-density correlation function,

G(2)(x, x′), shown in Fig. 3.2(c). This G(2) function displays correlations between

points within the cavity, as well as between a point in the cavity and a point outside
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the BH. Specifically, in the cavity region (−25 < x < 0), a checkerboard pattern

can be seen, and associated with the standing wave pattern.
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Figure 3.2: Experimental observations taken from [1]. Panel (a) density profile of
an elongated condensate at the early stage of the sweep; the region of low density
corresponds to a supersonic cavity, bounded by a BH on the right and a WH on
the left. Note that the origin is shifted to match the position of the step. Panel
(b) density profile at later time, with a standing wave inside the cavity. Panel (c)
density-density correlation function, G(2)(x, x′).

In this chapter, we will focus on the simulation and the mechanism of the

standing wave pattern, using the Gross-Pitaevskii (GP) equation and windowed

Fourier transforms (WFTs). The correlation function will be discussed in the next

chapter, where we incorporate the effects of quantum fluctuations and atom-number

variation in our simulations. This work was done in collaboration with Ted Jacobson,

Mark Edwards and Charles Clark, which can be found in [34].

In the original paper [1], the growing standing wave in Fig. 3.2 was interpreted

as resulting from a self-amplifying Hawking radiation from a ‘black-hole laser’, a

theoretical construct proposed by Jacobson and Corley in 1999 [19]. This black-

hole laser is based on the presence of a supersonic ‘lasing’ cavity, bounded by a BH

and a WH, which is similar to the flow structure shown in Fig. 3.5(b). The laser

generates a self-amplifying HR, and makes the detection of the HR signal possible
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in the analog-black-hole systems.

The scheme of a black-hole laser is illustrated in Fig. 3.3(a). Four BdG modes

are present in the laser: a Hawking radiation (HR, labelled by ψHR), HR partner (p-

mode, ψp) are generated at the BH; two opposite-energy modes (ψ±) are generated

at the WH. When the opposite-energy modes (ψ±) impinge the BH from the cavity, a

positive-energy HR (ψHR) is emitted to the exterior, with its negative-energy partner

(ψp) back to the cavity. The p-mode then propagates to the left, impinges the WH,

and bounces back in the form of opposite-energy modes (ψ±). They travel back to

the BH to emit a second HR, leaving more negative energy inside the cavity, with

the p-mode amplified. The repetition of this process leads to exponential growth of

the negative energy mode and the associated Hawking emission. This is called the

black hole laser mechanism [14,19]. In Ref. [1], J. Steinhauer reported an exponential

growth of the oscillatory density pattern in the BH-WH cavity. He suggested that

the growth is resulting from from the black-hole-laser effect, and interpreted the

standing wave as the interference of the counter-propagating modes (ψp and ψ±) in

the cavity.

Our simulation exhibits a similar growth of the standing wave, but leads to

a different mechanism, as illustrated in 3.3(b). We find that the standing wave

in the cavity emerges upon the formation of the WH, with its wavefront parallel

to the WH, and is a form of instability at the WH [35]. This wave can also be

identified as the Bogoliubov–Čerenkov radiation (BCR) [36], similar to a ship’s

bow wave on water. We examine the growth of the standing wave, and find that

it is due to the increasing density towards the center of the atom trap during the
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sweep. Its amplitude satisfies a specific growth relation with the background density,

consistent with the BCR mechanism. In addition, regarding the inhomogeneity of

the condensate, the cavity size L increases slightly as it approaches the center center,

giving rise to a receding WH as indicated in 3.3(b). We find that this receding WH

causes a Doppler shift on the standing wave frequency as it reaches the BH. At the

shifted frequency, the BCR mode stimulates a pair creation of HR and p-mode. We

argue that the black-hole lasing effect would be suppressed by the WH recession.

Overall, the black hole laser mechanism plays no role in our simulation.
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Figure 3.3: Black-hole-laser mechanism vs. BCR-stimulated Hawking radiation
(HR). Panel (a): scattering scheme of quasiparticle modes in a black-hole laser. At
the BH, ψ± modes scatter into a positive-energy HR and its negative-energy partner
(p-mode) under energy conservation. The p-mode propagates to the WH, at which
it is reflected back into the ψ± modes. Panel (b): mechanism of stimulated HR pair
by a BCR mode (ψBCR) generated at the WH as a standing wave.
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3.1 Simple model of Bogoliubov modes at sonic horizons

The wavefunction in the GP equation, Ψ(x, t), can be factored into a con-

densate component and a deviation in the form of linearized modes, representing

quasiparticle excitations:

Ψ(x, t) = Ψbf(x, t) +
∑
j

ψj(x, t), (3.1)

where Ψbf indicates the background confensate component, and ψj is an excited

mode which satisfies the Bogoliubov-de Gennes (BdG) equation [32]. As indicated

in Fig. 3.3(b), There are three modes observed in our simulation: the BCR mode,

the HR mode, and the HR partner (labeled by j = BCR, HR, and p, respectively).

In the following, we will explain the role of each mode in the presence of a sonic

horizon, based on the BdG theory of linearized modes [32]. Here we introduce the

BdG theory of linearized modes, and consider two scenarios, as shown in Fig. 3.4(a-

b), regarding certain excited modes in the presence of sonic horizons, which are

crucial in the system we investigate.

For a homogeneous flow of constant density nbf , the background component

can be described by Ψbf(x, t) =
√
nbfe

−iωbf t+ikbfx, where ωbf and kbf represent the

frequency and wavevector of the flow. This component determines the flow velocity,

vbf = ~kbf/m, and the speed of sound, c =
√
gnbf/m, where m is the atomic mass

and g is the mean-field interaction coefficient. And it gives rise to an excitation

mode ψj which takes the form

ψj =
(
uje
−i∆ωjt+i∆kjx + v∗j e

+i∆ωjt−i∆kjx
)
e−iωbf t+ikbfx. (3.2)
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Figure 3.4: Bogoliubov modes at sonic horizons. (a) Illustration of BCR (ψBCR)
at the WH and its dispersion; (b) creation of HR (ψHR) and its partner (ψp) by an
incoming mode (ψin) at the BH.

Each BdG mode is composed of two components (uj, vj), with opposite frequency

and wavevector, ±(∆ωj,∆kj), relative to those of the background flow, (ωbf , kbf).

Solving the BdG equation determines the dispersion relation

∆ω =
√

(~∆k2/2m)2 + c2∆k2 + v∆k, (3.3)

where v is the velocity of the condensate with respect to the “observer” frame in

which the frequency is defined; in the lab frame where Eq. 3.2 is defined, v = vbf . The

square root term gives the frequency in the rest(comoving) frame of the condensate,

∆ωcm. And the amplitudes of two components of ψj are

(uj, vj) =
1

2π

√∣∣∣∣d∆k

d∆ω

∣∣∣∣ ( 1√
1−D2

,
D√

1−D2

)
, (3.4)

where D = [~∆ωcm − ~2∆k2/2m−mc2]/mc2 [14]. Note that uj corresponds to the

branch of the dispersion with ∆k > 0, and v∗j the branch with ∆k < 0.

In the regime of low energy excitations (∆ωcm ∼ c∆k), quasiparticles are
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phonons, propagating with the group velocity, c+v. Suppose the flow is left-moving,

with negative v. When |v|/c > 1, the flow is supersonic; when |v|/c < 1, the flow is

subsonic. A sonic horizon is defined at the critical position between the regions of

subsonic/supersonic flow, where c = −v.

Now we consider two scenarios of mode mixing occurring at a sonic horizon

as shown in Fig. 3.4(a-b). Here we suppose the horizon has a step-like structure,

in which the flow is uniform on either side of the horizon, one side being supersonic

(v > c), the other being subsonic (v < c).

The first case is the Čerenkov effect at a stationary WH, as illustrated in

Fig. 3.4(a). It involves a zero-frequency WH undulation in the supersonic region.

In Ref. [35], it was reported that a perturbation which disturbs the flow at the

WH from the stationary condition can cause such undulation. This instability can

also be viewed as the Bogoliubov–Čerenkov radiation (BCR), ψBCR, as indicated

in the dispersion curve in the lower panel of Fig. 3.4(a). It corresponds to a zero-

frequency mode in the dispersion relation, coupled with the supersonic flow through

a perturbation [36]. Especially, as the |v/c| ratio becomes large, the point at which

∆ω = 0 will move toward the single-particle regime (i.e. ∆ωcm ∼ ~∆k2/2m),

such that ∆kBCR ∼ −2kbf , and the overall wavevector of ψBCR in Eq. 3.2 becomes

kbf + ∆kBCR ∼ −kbf . This feature is observed in our simulation, which will be

discussed later.

The second scenario in Fig. 3.4(b) illustrates a pair creation process at a sta-

tionary BH, stimulated by an incident mode on the left, ψin, with nonzero frequency,

∆ωin. The right-propagating, incident mode produces a Hawking radiation, ψHR, on
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the supersonic side, and its partner mode, ψp, on the subsonic side, all at the same

frequency. The lower panel of Fig. 3.4(b) shows the dispersion in the supersonic re-

gion (red curve) and that in the subsonic region (blue curve). Given the dispersion

relations and the incident mode frequency (denoted by the horizontal dashed line),

the HR and p modes are determined. The HR is the right-propagating mode on

the subsonic dispersion curve, and its partner is the left-propagating mode on the

supersonic one. Matching the modes at the BH (for the components with ∆ω < 0)

gives

uine
−i∆ωintei∆kinx|BH = αupe

−i∆ωptei∆kpx|BH + βv∗HRe
i∆ωHRte−i∆kHRx|BH, (3.5)

where α and β are the coefficients for the p-mode and the HR, respectively. Like

a scattering process, this mode relation implies that the HR pair should have the

same frequency as the incoming mode, ∆ωp = −∆ωHR = ∆ωin. This is indicated

by the dashed horizontal line in the lower panel of Fig. 3.4(b).

When the background flow is smooth in the transonic region, a similar mode

relation can be derived [37], and the ratio of coefficients α and β can be estimated

using the thermal prediction, |β/α| = exp(~∆ωin/2kTH). The Hawking termper-

ature TH is related to the surface gravity κ by TH = ~κ/2πk, and in the sonic

analog, the surface gravity is given by the slope of the velocity profile at the hori-

zon, κ = d(v + c)/dx [16]. A more detailed mode analysis regarding the Hawking

effect can be found in [37].

In our simulations, we study a system which involves both the BH and the

WH, forming a supersonic cavity in an inhomogeneous, elongated condensate, as
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shown in Fig. 3.5(b). Both scenarios are encountered in our simulations. In fact, we

will argue that the BCR from the WH plays the role of the incident mode ψin, whose

frequency is Doppler-shifted as it propagates at the BH, as illustrated in Fig. 3.3(b).

Note that, although the system is inhomogeneous, when the background flow varies

slowly compared to the BdG modes, the description in Eqs. 3.2,3.3 can be used to

understand the local behavior of the modes.

3.2 Methods

We model the step-sweeping experiment in [1] by solving the time–dependent

one-dimensional GP equation, using parameters similar to those in the experiment

(details in Appendix A.1.1). For comparison, we perform a 3D simulation using

the GPE in cylindrical coordinates (imposing symmetry in azimuthal direction, φ),

which is given in Appendix A.1.2.

As pointed out by Eq. 3.1, the GP wavefunction Ψ in our simulation is com-

posed of a background condensate flow Ψbf and its excitations ψj. In regions where

the flow is slowly varying, each component in Eq. 3.1 behaves locally as a WKB

plane wave with a characteristic frequency and wavevector. In this chapter, we im-

plement two techniques to resolve locally individual components and their spectral

properties.
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3.2.1 Windowed Fourier transform

A windowed Fourier transform (WFT) [38] is a method that brings out the

“local” spectral elements of a function in the neighborhood of a given position or

time. It differs from the normal Fourier transform by including a Gaussian function

certered at the position (x) or time (t) of interest. The spatial WFT F (k, x) of a

function f(x) is defined as:

F (k, x) =

∫ ∞
−∞

dy f(y)w(y − x;D)e−iky, (3.6)

where w(y − x;D) = exp(−(y − x)2/D2)/ (
√
πD) is a Gaussian window function

of width D. With the filtering of the window, the transformed function F (k, x)

constitutes a local Fourier transform of f(x), capturing features that vary on length

scales much smaller than D. For instance, given a function, f(x) = fq(x) exp(iqx),

with wavevector q and slowly varying amplitude fq(x), the transformed function is

F (k, x) ≈ fq(x) exp(−(k − q)2(D/2)2) : a Gaussian in k-space, centered at k = q

with width 2/D, and the peak height is the local amplitude, fq(x).

The WFT is able to resolve locally (at a given x or t) the Fourier components

in Eq. 3.1 as peaks in the resulting wavevector (or frequency) spectrum, in which

peak position and height indicate the wavevector and amplitude of each component.

Specifically, for a background condensate flow, Ψbf ∼ |Ψbf(x)|eikbf(x)x, its spatial

WFT exhibits the local wavevector kbf(x) for each x, which determines the local

flow velocity in the lab frame, ~kbf(x)/m. This is shown as the main streak in

Fig. 3.5(a). Similarly, the spatial WFT of the density, n(x) = |Ψ(x)|2, can separate
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Figure 3.5: The velocity profile, the speed of sound, and the windowed wavevector
spectrum. Panel (a) windowed wavevector spectrum of a BEC during the sweep,
showing an accelerated flow generated by the moving step, edge at x = 0; the peak
location is denoted by kbf(x); panel (b) flow speed in the step frame −v(x) and
speed of sound c(x), which (in a globally stationary flow) are equal at the horizons,
WH and BH.

the background condensate density nbf(x) (k = 0) from a superimposed spatial

oscillations (with nonzero k). An example is shown in Fig. 3.8(b), which is the

spatial WFT of density profile in Fig. 3.6(g), evaluated at the center of the oscillatory

region. The spectrum has a central peak nbf as the background density, and two

side peaks nk, indicating the oscillatory component.

3.2.2 Moving average of the GP wavefunction

To separate fast-oscillating components in Eq. 3.1 from the slowly-varying

parts, we implement a smoothing procedure on the GP wavefunction. The procedure

is equivalent to calculating the moving average of a discrete data set, which smooths

out short-range fluctuations. Here the moving average of wavefunction Ψ(x) is
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defined as

Ψ̄(x) =
1

2Ds

∫ x+Ds

x−Ds
dyΨ(y), (3.7)

where the integral serves as a square window of width 2Ds centered at x, over which

Ψ(x) is being averaged. For components in Ψ(x) with wavelength shorter than Ds

(i.e. Ds > π/k), the integral would give rise to an average of zero, leaving those that

are slowly varying in space (i.e. π/k > Ds) in Ψ̄(x), and the difference δΨ ≡ Ψ− Ψ̄

characterizes the part of Ψ composed roughly of wavevectors k & π/Ds. Later

in Sec. 3.4.2, we use the above procedure at each time and exhibit a spacetime

diagram of |δΨ(x, t)|, in which the slowly-varying part of the background flow (Ψbf

with k ∼ 0) is removed to bring out ψHR.

3.3 Simulation for the experimental regime

3.3.1 Formation of the BH-WH cavity

Earlier in the introduction, we exhibit a simulated flow structure, shown in

Fig. 3.5(b), which is produced following the step-sweeping procedure descriped in

[1]. To determine such flow structure, we implement the spatial WFT described

in Sec. 3.2.1. Figure 3.5(a) is a local wavevector spectrum |Ψ(k, x)|2 with D = 5

µm, defined in the lab frame at a moment during the sweep (Fig. 3.6(e)). There is

a dominant streak, indicating the background condensate flow, Ψbf , for which the

peak position at each x defines the background wavevector, kbf(x). The regions

with zero wavevector, kbf ∼ 0, correspond to the non-accelerated, subsonic BEC;
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the region behind the step with kbf ∼ −1.4 µm−1 corresponds to the accelerated,

supersonic flow. The blue curve in Fig. 3.5(b) is the flow speed in the rest frame

of the step, −v(x) = vs − vbf(x), where vbf(x) = ~kbf(x)/m is the background flow

velocity. The green curve is the local speed of sound c(x) =
√
gnbf(x)/m, where

nbf(x) is the local density of the background flow, which we identify here using a

WFT of the density n(x).

3.3.2 Density profile and the cavity standing wave

Figures 3.6 show comparisons of the simulated density profile with experiment.

Panels (a-g) show the BEC density for Us = k× 6 nK after the launch of a sweep at

20 ms intervals, where k is the Boltzmann constant. Panel (h) corresponds to the

density profile at t = 120 ms for Us = k× 3 nK. The coordinate origin in each panel

has been displaced to coincide with xBH. In this section, we report the results of
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Figure 3.6: Evolution of the 1D condensate and a growing standing wave. Panel
(a-g) Density vs. time of a swept BEC at 20 ms intervals with step Us/k = 6 nK,
scaled by a common factor to match experiment, and viewed in the moving frame
where x = 0 defines the step edge; panel (h): Us/k = 3 nK at 120 ms. Blue:
experiment [1]; Red: present simulation.
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1DGPE based on the procedure and parameter reported in the experiment [1].

The density exhibits a standing-wave pattern behind the step, with amplitude

growing in time. Considering that the experimental observations involve an aver-

age over any quantities that fluctuate from one run to another, the GP simulation

qualitatively matches the overall evolution seen in the experiment. In particular,

the growth, wavelength, and phase of the wave pattern are similar to each other.

3.4 BCR mechanism and Stimulated Hawking radiation

We find that the growing standing wave observed in our simulation should

be attributed to the BCR effect from the WH, as illustrated in Fig. 3.7(a). In the

WFT spectrum in Fig. 3.5(a), we observe in the cavity region an excitation mode at

k ∼ 1.4 µm−1 coming from the WH, which is roughly the reflection of the supersonic

flow Ψbf with k ∼ −1.4 µm−1. The interference of the two results in the standing

wave in the density profile shown in Fig. 3.6(e) , which has a wavevector with twice

the above value, k ∼ 3 µm−1. This pattern is consistent with the observation in [36]

for the case of large v/c ratio, as discussed in Sec. 3.1, and the excited mode should

be identified as ψBCR.

In the following, we will show additional evidence from various approaches

to support this BCR mechanism, its growth due to increasing BEC density, and

the HR pair it stimulates at the BH. First, we analyze the growth relation of the

standing wave in comparison with that of the background flow density. Second, we

present a spacetime portrait for the evolving BEC, showing that the standing wave is
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generated from the WH, and that its frequency is Doppler-shifted in the step frame

due to the fact the WH recedes from the BH as the system evolves. This Doppler

effect is verified quantitatively through a windowed frequency spectrum evaluated

inside the cavity. Lastly, we find a signal of Hawking radiation from the spacetime

portrait, which is stimulated by the BCR as it propagates at the BH.

3.4.1 Growth of the standing wave
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Figure 3.7: Bogoliubov-Čerenkov mechanism. (a) Illustration of a standing wave
(BCR) against an obstacle (subsonic BEC) near the WH; (b) growth of the standing
wave amplitude (nk) resulting from the increase of background density (nbf) and
obstacle strength (Vo).

Reference [1] reported exponential growth of the oscillatory density pattern in

the BH-WH cavity, and suggested that it results from the black hole laser effect.

Our simulations exhibit similar growth, but lead us to attribute it to a different

mechanism. Fig. 3.8 displays the growths of the background flow density nbf and

of a standing wave, nk, that is defined by the peaks of the WFT of the density at
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nk(t)/nk(0), for which ln[n̄k(120)] ∼ 4.4. Dashed black: the square of back-
ground density, n̄bf(t), scaled to match the final standing-wave amplitude, n̄2

bf(t) =
n2

bf(t)[n̄k(120)/n2
bf(120)]. The growth of nbf and nk is determined from a spatial

WFT of n(x) at x = −12 µm with window width D = 6.5 µm. Inset (b) shows the
windowed wavevector spectrum at t=120 ms.

xBH − 12µm, as shown in the inset. Over 120 ms the standing wave density grows

by ∼ exp(4.4).

Regarding the mechanism, note that the step moves toward the region of higher

BEC density (see Fig. 3.1), so the background density nbf also grows. Fig. 3.8(a)

shows that nk grows in proportion to n2
bf . This relation can be explained as resulting

from the Čerenkov effect. As illustrated in Fig.3.7(a), an obstacle in a stationary

supersonic flow produces an upstream, Bogoliubov-Čerenkov standing wave [36,39],

analogous to a bow wave on water [40]. It was observed in Ref. [35] that such a

standing wave is generated at a WH, triggered by an incident wavepacket on the

stationary flow. In our case, the subsonic component on the LHS of the WH serves
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as an obstacle in the supersonic flow, generating a Bogoliubov-Čerenkov wave whose

amplitude (nk) should be proportional to the strength of the obstacle (Vob) times the

density of the background flow (nbf) [32, 36] (see Fig.3.7(b)). Since the “obstacle”

itself has a strength proportional to the BEC density to the left of the WH, which

grows similarly to that on the right, the saturated wave amplitude nk grows as n2
bf .

The very close agreement between the standing wave amplitude and the back-

ground density is a strong evidence for the BCR mechanism. This is in contrast

with the interpretation in [1] that quantum fluctuations in the BEC get amplified

through the laser mechanism, resulting in the standing wave and its growth.

In addition, the growing standing wave is also associated with a checkerboard

pattern the density-density correlation function shown in Fig. 3.2(c), regarding

that the two show very similar periodic features. The growth of the checkerboard

is numerically measured through the Fourier spectrum of the correlation, which

grows by ∼ exp(3.3). In Chapter 4, we will present the calculation of the corre-

lation function, by introducing quantum fluctuation and atom-number fluctuation.

Incorporating these fluctuations produces a correlaiton function with very similar

checkerboard features as in [1]. There we will show that the checkerboard is simply

the result of the standing wave, which grows as the standing wave grows.

3.4.2 Spacetime portrait of BCR and stimulated Hawking pair

In the following, we focus on the stimulated mechanism of the HR pair due to

the standing wave, BCR. Fig. 3.9 shows the stimulated mechanism, which is viewed
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in the lab frame where the BH moves at the step velocity, v0
BH = vs, and the WH

with a slightly smaller velocity, v0
WH = vs −∆v, as indicated by the red dashed line

and triangle. The BCR (or the standing wave) has zero phase velocity with respect

to the WH, which correspond to zero frequency in the WH frame. Since the WH

velocity is less than the BH velocity (as shown in Fig.3.10(a)), this gives rise to a

nonzero frequency in the BH frame. As the BCR mode propagates to the BH, it

will stimulate the emission of HR and the p-mode at the latter frequency, with the

associated wavevectors determined by the Bogoliubov-de Gennes (BdG) spectrum.
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Figure 3.9: Pair production, stimulated by a Doppler-shifted BCR mode. Space-
time portrait of HR (ψHR) and its partner (ψp) created at the BH by right-
propagating BCR (ψBCR) generated at the WH as a standing wave. Due to the
recession of WH, indicated by the dashed red line and angle θ, the BCR (which
has zero frequency in the WH frame) stimulates the Hawking pair at a nonzero
frequency, ∆ωpair ∼ ∆v∆kBCR, where ∆v is the velocity difference between the two
horizons, as indicated by the red triangle.

The mechanism illustrated in Fig. 3.9 can be seen in the simulated spacetime

portrait for the experiment, Fig. 3.10(a), in which |δΨ| = |Ψ − Ψ̄| is calculated

at each t using the procedure described in Sec. 3.2.2. To resolve the HR outside

the cavity, we subtract the moving average Ψ̄, which approximates the dominant,
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Figure 3.10: The spacetime portrait and the windowed frequency spectrum. Panels
(a): time evolution of |δΨ(x, t)| in the experimental regime [1], multiplied by 10 for
x > xBH, where xBH is shown by the solid orange lines. The Doppler shift is outlined
by the dash red line (parallel to WH) and solid red line (parallel to BH). Note that
the spacetime portrait is viewed in the lab frame, where x = 0 at the center of the
original trap. Note the p-mode/HR pair creation event at t ∼ 100 ms. Panel (b):
windowed frequency spectrum evaluated along the solid red line in (a); panel (c) is
the cut-through of the spectrum at t= 100 ms.

slowly-varying background (with k ∼ 0 as in Fig. 3.5(a)), from GP wavefunction Ψ.

We choose the smoothing window Ds = 5.4 µm, such that it is large enough so that

Ψ̄ ≈ 0 between the horizons, yet small enough to capture the slow variations of the

background outside the horizon.

The portrait displays an interference pattern between the background super-

sonic flow and excited modes of δΨ. The evolution of the BH is indicated by the

orange diagonal line. To clearly display HR upstream of the horizon, we have multi-

plied |δΨ| there by a factor of ten. At the beginning of the evolution, as the conden-

sate spills over the step, a left-moving flow develops, indicated by the growing light

gray area. When this flow reaches the WH, at t ≈ 10 ms, a standing wave (BCR)

is generated, and grows independently before reaching the BH. In Fig. 3.10(a), it

is clear by inspection of the dashed red line and solid red line (which is parallel to
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orange line) that the standing wave has zero frequency in the WH rest frame, but

nonzero frequency in the BH rest frame.

Another crucial feature in the spacetime portrait is the stimulated HR. The

BCR first reaches the BH at t ≈ 50 ms, stimulating emission of HR with the BCR

frequency in the rest frame of the BH. The left–moving partner radiation (p-mode)

resulting from the “pair creation” forms a “V”-shape with the HR, and makes an

interference pattern with the BCR. Note that in Fig. 3.10(a) the standing wave has

grown substantially prior to the pair creation. Moreover, the p-mode that is created

at the BH at t ∼ 50 ms (Fig. 3.10(a)) only reaches the WH late in the evolution, at

t ∼ 90 ms, so there is insufficient time for multiple lasing cycles (round trip bounces)

to account for the standing wave in our simulation.

3.4.3 Windowed frequency spectrum and the Doppler effect

The Doppler effect due to the receding WH can be estimated by the veloc-

ity difference between the two horizons, ∆v, as illustrated by the red triangle in

Fig. 3.9(a). The shifted frequency is the product of ∆v and the BCR wavevector,

∆kBCR.

In Fig. 3.10(b-c), we show the windowed frequency spectrum in the experi-

mental regime in the supersonic region (along the red line in Fig. 3.10(a)). The

long streak, which starts from the beginning of the evolution, correspond to the

background flow, Ψbf . The short streak, which is separated from the long streak by

∆ω ∼ 0.11(3) rad/ms, corresponds to the BCR (and the p-mode).
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We can estimate this frequency shift independently using Eq. 3.2 and the BCR

wavevector observed in 3.5(a)

∆ω = ±∆kBCR(vBH − vWH) = ±0.09 rad/ms, (3.8)

where vBH and vWH are the flow velocities measured in the BH and WH reference

frames, respectively; the difference of the two is equivalent to ∆v. Although the

relative velocity between the BH and WH is small, ∆kBCR is nevertheless large

enough that the BCR has a definite nonzero frequency in the BH frame, as is also

evident by inspection of Fig. 3.10(a). We find that the WFT frequency agrees with

the prediction using Eq. 3.2 to within the uncertainty. The quantitative agreement

of the Doppler-shifted frequency supports the stimulated mechanism proposed here.

3.5 Enhanced parameter regime

To enhance the signal of stimulated HR, we vary the parameters of the external

potential given in [1]: axial trap frequency ωx, step strength Us, and step speed vs.

We find parameter regimes in which clear feature of stimulated pair production can

be observed. This investigation can help understand the stimulated Hawking effect

in a trapped condensate, and detect it in laboratories.

In the experimental regime in Sec. 3.3, the signal of HR is weak to be di-

rectly observed from the density profile in Fig.3.6. With the spacetime portrait in

Fig. 3.10(a), we capture signal from the BH that resembles the HR but with irregu-

lar wavelength. This irregularity may be due to the long wavelength of the p-mode,

λp, relative to the cavity size, L, as shown in Fig. 3.10(a). Since λp ∼ L, the p-mode
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does not behave as a WKB mode on a slowly-varying background, and may cause

the irregular emission of the HR mode. Taking this into account, we lower the λp/L

ratio by modifying the parameters of the trapping potential (axial trap frequency

ωx) and the step potentials (Us , vs). Fig. 3.11(a) show the density profile in one

such modified regime (case M2), from which sharper signals of HR and p-mode have

been observed, with suppresed λp/L ratio. In this case, the BEC is twice as long

as in the experiment of [1], the step size is halved, and the step speed is about

the same. The details of the investigation of parameter regimes are summarized in

Appendix 3.

The spacetime portrait of the modified regime is shown in Fig. 3.11(b). The

BCR-stimulated pair production illustrated in Fig. 3.9 can be seen very clearly

with more distinct features than the experiment regime (Fig. 3.10(a)): (i) the BCR

parallel to the WH, which grows substantially prior to the pair creation, (ii) the “V”-

shaped HR pair, stimulated by the BCR. The frequency of |δΨ| appears doubled

outside the BH compared to that inside. This is because δΨ contains very little

background flow component with which to interfere outside the BH, so the visible

interference is between the positive and negative frequency parts of the HR.

Furthermore, since the HR and the p-mode have enhanced signals and sharper

wavelengths here, we can can capture their spectral properties using WFT, and

analyze them using the models in Sec. 3.1.
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Figure 3.11: Stimulated pair production in the enhanced regime, M2. Panel (a):
density n(x) at t = 650 ms, along the green line in (b); panel (b): spacetime portrait.
The red and blue lines indicate the paths on which the windowed frequency spectra
of Fig. 3.13(a) are calculated. The wavevector spectrum along the green line is
shown in Fig. 3.13(b). The magenta dot and cyan dot correspond to a correlated
Hawking pair, for which the thermal prediction is being tested.

3.5.1 BdG mode analysis

The BdG theory of linearized modes [32] (Sec. 3.1) can be used to predict

the temporal and spatial WFT spectra of the BEC, starting from only one input

assumption: that the standing wave has zero frequency in the WH frame. This

will further verify the mechanism we have proposed for the excitations of the BEC.

In addition, it will demonstrate the remarkable accuracy of BdG analysis when

combined with WFT in an inhomogeneous setting.

In the enhanced regime, the dispersion relations evaluated inside and outside

the BH at t = 650 ms are shown in Fig. 3.12. The red and blue solid curves indicate

the dispersion relation in the BH frame (v = vBH), at xI = xBH−26 µm and xO =
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Figure 3.12: Dispersion relations of Ψ(x, t) (δΨ(x, t) for x > xBH) along the lines
indicated in Fig. 3.11(b). Dispersion relations at xI in the WH (dashed red) and
BH (solid red) reference frames, and at xO in the BH reference frame (solid blue),
evaluated at t = 650 ms. ∆ω and ∆k are the frequency and wavevector relative to
those of the background flow.

xBH+26 µm, respectively. The dashed red curve also indicates the dispersion relation

at xI, but referred to the WH frame (v = vWH). We use the numerically measured

values of the local flow velocity and sound speed, determined from the background

flow Ψbf , which can be identified by a spatial WFT (despite the appearance of

additional excitations). The WH velocity is approximated by the speed of the left

edge of |δΨ(x, t)| (see Fig. 3.11), while the BH velocity is that of the step.

According to the mechanism illustrated in Fig. 3.9, the BCR has zero frequency

in the WH frame, and the HR and the partner share its frequency in the BH frame.

The BCR wavevector in the WH frame should therefore satisfy ∆ω(∆kBCR) = 0.

This is indicated graphically by the intersection of the dashed red curve in Fig. 3.12

with the ∆k axis, showing that ∆kBCR ∼ 2.5µm−1. Due to the recession of WH

relative to the BH, the frequency of BCR in the BH frame corresponds to ∆ω =
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Figure 3.13: WFTs of Ψ(x, t) (δΨ(x, t) for x > xBH) along the lines indicated in
Fig. 3.11(b). (a) frequency spectrum along the diagonal red (xI) and blue lines (xO);
(b) wavevector spectrum along the horizontal green line (t = 650 ms).

±∆kBCR∆v = ±0.2rad/ms, which is indicated by the horizontal, dashed black lines,

which intersect the solid red curve at the vertical lines, ±∆kBCR. If the HR and

partner modes are indeed stimulated by the BCR, they should fall on the intersection

of these zero WH frequency lines with the solid blue and red curves respectively. The

modes are labeled by “u” or “v∗”, according to the corresponding component of the

BdG mode. Modes whose u-component has negative (positive) relative frequency in

the step frame have negative (positive) energy relative to the condensate [37]. The

BCR and partner modes thus have negative energy, while the Hawking mode has

positive energy.

3.5.2 Spectral comparison with BdG prediction

To capture the spectral properties of the modes observed in Fig. 3.11, and

compare with the prediction in Fig. 3.12, we apply the spatial and temporal WFTs

on Ψ(x, t) and δΨ(x, t). On the LHS of the BH (x < xBH), we calculate the
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WFTs of Ψ(x, t); on the RHS of the BH (x > xBH), we take δΨ(x, t) and mul-

tiply it by 10 to subtract the background and bring out the HR. The left panel of

Fig. 3.13(a) shows the windowed frequency spectra of Ψ(xI(t), t) (ω = 0-0.5 rad/ms)

and δΨ(xO(t), t) (ω = 0.5-0.7 rad/ms), in the BH frame, along the red and blue lines

in Fig. 3.11(b) with Gaussian width T = 55 ms. The streak in the center corre-

sponds to the background flow Ψbf , and indicates the frequency ωbf ∼ 0.36 rad/ms.

The two other streaks located symmetrically about the center correspond to HR

(ω ∼ 0.56 rad/ms), and the BCR and the p-mode (ω ∼ 0.15 rad/ms). The full

frequency spectra at t = 650 ms for xI(red) and xO(blue) are shown on the right

panel.

The left panel of Fig. 3.13(b) shows the windowed wavevector spectrum as a

function of position, in the laboratory frame. It is defined by WFTs of Ψ(x, t0)

(x < xBH) and δΨ(x, t0) (x > xBH) at t0 = 650 ms, along the green line in

Fig. 3.11(b), with width D = 21 µm for Ψ, and 12 µm for δΨ. The background

flow spectrum between the horizons is centered on a large negative wavevector at

each x, and extends from the BH to the WH. Similar to the wavevector spectrum

for the experimental regime 3.5(a), the BCR spectrum is roughly the reflection of

the background flow, Ψbf . The HR and p-mode spectra extend outward and inward

from the BH, with positive and negative wavevectors, respectively. The wavevec-

tor spectra at xI(red) and xO(blue) are shown on the right panel, with the modes

labelled (except for v∗BCR) in the figure.

We compare the WFT spectra (Fig. 3.13(a-b)) with the BdG dispersion re-

lations (Fig. 3.12) at xI and xO, corresponding to the intersections of the red and
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blue lines with the green line in Fig. 3.11(b). The numerical values of ∆ω and ∆k

obtained from the WFT spectra of the GP solution are displayed in Table 3.1, along

with those predicted from the BdG dispersion relations. The inputs to the BdG

prediction are just (i) the assumption of zero frequency in the WH frame, and (ii)

the velocity of the BH frame relative to the WH frame. The GP spectra and BdG

predictions agree to within 5%. Note that the flow is not perfectly stationary, so

that the zero frequency of the initial BCR is not perfectly conserved. Also, the

speed of the WH changes slightly over time, which gives rise to the uncertainty in

∆ωBdG and ∆kBdG.

Table 3.1: Numerical values of relative mode frequency ∆ω(rad/ms) and wavevector
∆k(µm−1) from the GP Fourier spectra (FT) and from the WH-zero-frequency BdG
dispersion relation (BdG). The uncertainty for the former is estimated by the widths
of the Gaussians fitting the spectral peaks in Fig. 3.13(a-b), and the uncertainty for
the latter is due to the variation of the speed of WH.

Modes ∆ωFT ∆ωBdG ∆kFT ∆kBdG

uBCR -0.21(3) -0.20±0.01 2.42(8) 2.45±0.02
up -0.21(3) -0.20±0.01 0.26(8) 0.26±0.01
uHR 0.20(3) 0.20±0.01 0.65(12) 0.65±0.02

3.5.3 Hawking temperature

Regarding the amplitudes of the BdG modes, we can apply the thermal pre-

diction to determine individual coefficients for the mode-mixing process at the

BH [41, 42]. For the opposite-norm coefficients in Eq. 3.5, the thermal prediction

for a mode of frequency ∆ω is |β/α| = exp(−π∆ω/κ). In terms of the amplitudes

extracted from the GP wavefunction, the ratio becomes |β/α| = |VHR/vHR|/|Up/up|,

where (U, V ) are the full mode amplitudes which can be captured from the WFT
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spectra, and (u, v) are the normalized BdG amplitudes defined in Eq. 3.4.

To test the thermal prediction we evaluate the mode amplitudes at a pair of

points xp and xHR with a common retarded time, defined by phase velocity, at the

BH. These points are denoted by the magenta and cyan dots on the horizontal green

line in Fig. 3.11(b). The common retarded time on the horizon is t = 588 ms, for

which we find the surface gravity κ ∼ 350 s−1 (using v and c computed directly

from the GP wavefunction, see Appendix 2). The thermal prediction for ω = 200

rad/s is |β/α| = 0.17+.05
−.04, allowing for a 5% uncertainty in ω and a 10% uncertainty

in κ. This agrees reasonably well with the ratio 0.21 computed directly from the

amplitudes according to the thermal prediction. The Hawking temperature for the

case M2 depicted in Fig. 3.11 is TH = 0.43 nK. The temperature equivalent of the

chemical potential, µ, in that case is µ/k = 2.5 nK.

3.6 Conclusion

To conclude, we summarize the evidence that the black hole laser effect plays

no role in our GP simulations. First, we observe a growing standing wave in our

simulaion similar to the observation in [1], and identifies is resulting from an in-

stability at the WH, also called BCR. We resolve the spectral content of the GP

wavefunction using the WFT procedure, and find that the standing wave pattern

is an interference between the background condensate and a mode originated from

the WH. We also find a growth relation between the amplitude of this mode and

the background density. Both observations are consistent with the BCR effect.
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Second, we present a space-time portrait, which shows (i) an independent

growth of the standing wave (i.e. BCR), (ii) the signal of Hawking radiation, and (iii)

a receding WH. Due to this recession, the frequency of the BCR mode is Doppler-

shifted as it reaches the BH. Due to the large BCR wavevector, this frequency shift is

visible, and is captured in a local frequency spectrum, which implies the suppression

of black-hole lasing effect.

Lastly, we investigate over various regimes of experimental parameters, and

find a regime where a sharper signal of HR can be obtained. This can be useful for

investigating and observing stimulated HR in the future.
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Chapter 4: Atom number variations and density correlations in sonic

black hole condensates

In Chapter 3, we present the simulated results for the experiment [1], using a

1DGPE without introducing any fluctuations. In this chapter, we focus on the roles

of quantum fluctuation and atom-number fluctuation and the resulting effects. With

the presence of fluctuations in a simulated condensate of density n(x), we calculate

a density-density correlation, defined as 〈δn(x)δn(x′)〉, where δn(x) = n(x)−〈n(x)〉

is the deviation from the mean value. This chapter is based on an unpublished paper

in collaboration with Ted Jacobson, Mark Edwards and Charles Clark.

Quantum fluctuation is presumably present in a BEC. However, in practice,

the measured correlation function is not merely the quantum expectation value,

because it inevitably includes an average over other aspects of an experiment that

vary, such as the number of atoms in the system. In the following, we will show that

this variation of atom number can have important consequences for the correlation

function, affecting its physical interpretation.

In [1], a density-density correlation function is reported (see Fig. 3.2(c)). It

was evaluated by repeating the measurement 80 times, with the condensate prepared

under the same conditions each time. Based on the interpretation in [1], quantum
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fluctuations can grow exponentially under a flow structure with a black-hole hori-

zon (BH) and a white-hole horizon (WH), viewed as a “black-hole laser”. This

interpretation is associated with the growth of a checkerboard in the experimental

correlation function, which is treated as evidence of black-hole lasing.

Earlier, we present the growth of a standing-wave mode in the density pro-

file without incorporating quantum fluctuation, and attribute it as the BCR effect

occurring at the WH. To clarify the underlying mechanism, we take into account

quantum fluctuations as an initial spatial noise in the GP simulations, and test if

any mode in the noise can grow significantly over the timescale of the experiment,

generating a pattern similar to the checkerboard. On the other hand, we consider

the possibility that a large standing wave may appear in the correlation and form the

checkerboard. While the trap and step potentials are controlled with high precision,

in typical BEC experiments the number of atoms in the trap varies from one sample

to another. Such variation can modulate the background standing-wave present in

all realizations, bring it out to the correlation in the form of a checkerboard.

Here we present the results with these two types of fluctuations. We show

that much better agreement with the experimentally measured correlation function

is achieved when variations in the atom number are included. In fact, the cor-

relation function is quite well matched when the only variations are due to atom

number. This somewhat surprising result is a consequence of the presence of the

large standing wave, and the fact that the amplitude and phase of the standing

wave are sensitive to the number of atoms, as explained in detail below. We also

investigate the effect of quantum fluctuations, using the truncated Wigner (TW)
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method [20,40,43–45]. With atom number variations included, the correlation func-

tion is in good qualitative agreement with the observed one in all respects. This

result further verifies the stimulated mechanism proposed in Chapter 3.

4.1 Methods

The condensate in this chapter is simulated by the one dimensional Gross-

Pitaevskii equation (1DGPE) as in Chapter 3. In order to optimize the fit to the

experiment, we modify the experimental parameters for the trapping potential and

the sweeping step. Details are given in Appendix B.1.

To simulate the variation of atom number N from shot to shot under experi-

mental conditions, we calculate the condensate properties using a normal distribu-

tion of N with mean N̄ = 6000, and standard deviation ∆N . We consider three

different values, ∆N = (0.05, 0.1, 0.15)N̄ . For each value of ∆N , we ran 200 sim-

ulations of the experiment reported in [1], each with a random choice of N , and

computed the average density and the density correlation function at one particular

time.

To simulate the effects of quantum fluctuations in the condensate, we use

the truncated Wigner approximation (TWA) [20, 40, 43–45]. In this method, the

linearized perturbations of the GP wave function for the initial, stationary con-

densate, i.e. the Bogoliubov-de Gennes (BdG) modes, are populated with random

phases, and with amplitudes according to the probability distribution defined by

their quantum state. Because of the adiabatic theorem, the modes with frequencies
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much higher than those that are dynamically relevant in the system should not affect

the evolution. In our system, the dynamics of interest are: (i) the black hole lasing

effect, which is bounded by the maximal frequency ωmax in the dispersion relation of

the supersonic flow, as mentioned in [1], (ii) the background standing wave, which

has nonzero frequency in the BH frame but much smaller than ωmax [34]. We select

the number of BdG modes to K = 200, so that the frequency of the last mode is

much greater than ωmax. We also test the simulation by increasing the number of

modes, and the main features in the resulting correlation does not change.

When investigating the effect of the quantum fluctuations alone, we adjust the

amplitude of the unperturbed part of the GP wave function for each realization so

that the total N , after including the fluctuations, is the same for all realizations.

Details are given in the following subsection.

4.1.1 Truncated-Wigner method

In the TWA method [43, 45] adopted in the simulation, one includes a fluc-

tuation term in the GP field, δψ(x), which models small excitations on a given

stationary condensate, Ψ0(x):

δψ(x, t) =
∑
j

e−iµt
(
βjuj(x)e−iωjt + β∗j v

∗
j (x)eiωjt

)
. (4.1)

Here the functions uj and vj satisfy the coupled BdG mode equations, and are

normalized by
∫
dx (|uj(x)|2 − |vj(x)|2) = 1, and βj is a complex random number

which at zero temperature is given by the probability distribution

P (βj) =
2

π
exp(−2|βj|2). (4.2)
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We solve the BdG equation numerically, at time t = 0 before the step potential

is swept, for the first 200 modes. The modes above this cutoff do not have an

important dynamical effect on the condensate, and are omitted. This gives rise to

the total number of excited atoms

Nex =
∑
j

(|βj|2 − 1
2
)

∫
dx
(
|uj(x)|2 + |vj(x)|2

)
+

∑
j

∫
dx|vj(x)|2. (4.3)

Keeping the total atom number N fixed, the population in the condensate is given by

Nc = N −Nex. Since Nex fluctuates over individual realizations, Nc also fluctuates.

The resulting stochastic wavefunction at time t = 0 is given by

Ψ(x) =
√
NcΨ0(x) +

∑
j

(
βjuj(x) + β∗j v

∗
j (x)

)
. (4.4)

The expectation value implied by (4.2) is 〈|βj|2〉 = 1/2, so 〈Nex〉 is just the last

term in (4.3), the quantum depletion of the condensate. The integral in the last

term goes to zero as the wavelength drops below the healing length; here we find

that it goes to zero for j > 60, and the quantum depletion converges to ≈ 34. In the

TWA simulation, the mean value of the excited atom number is 〈Nex〉 ≈ 33, which

is consistent with the quantum depletion, and its standard deviation is ∆Nex ≈ 13.

4.2 Results

4.2.1 Experimental density-density correlation

In the experiment of [1], a BH/WH cavity was generated by sweeping a step

potential through an initially stationary condensate, and the density-density corre-
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Figure 4.1: GP simulation and its wavevector spectrum. (a) density plot n(x); (b)
density-density plot, n(x)n(x′); (c) wavevector spectrum for n(x) inside the cavity.
Note that all the plots are based on the length unit ξ of the system, ξ = 2 µm.

lation function at a given time was measured by repeating the experiment 80 runs

for each time. The correlation function discussed here is defined as

G(2)(x, x′) = 〈n(x)n(x′)〉 − 〈n(x)〉〈n(x′)〉 (4.5)

= 〈δn(x)δn(x′)〉, (4.6)

where n(x) is the condensate density, the brackets correspond to the ensemble av-

erage over individual realizations, and δn(x) = n(x) − 〈n(x)〉. (The correlation

function defined in Ref. [1] included the subtraction of a term 〈n(x)〉δ(x− x′). We

do not know whether this term was included in the spectrum presented in Ref. [2].)

Fig 4.2(h) [1] shows the experimentally measured ensemble average of the

individual density profiles, featuring a standing wave behind the BH horizon (at

x = 0), and Fig 4.2(d) [1] is the corresponding correlation function, which features a

square array pattern in the upper right quadrant. This was called a “checkerboard”

pattern in [1]. Figure 4.3(d) [2] shows the 2D wavevector spectrum, computed by

Fourier transform with a square window, for this checkerboard. The top panel is

the cut-through at k′ξ = 5, which exhibits three peaks, at kξ = 0,±5 (ξ denotes the
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healing length in the cavity region estimated in the experiment [1], ξ = 2 µm). The

periodic features of the correlation match those of the density profile very well, as

indicated by the magenta lines, suggesting that the two features may have the same

origin. In the following, we investigate the roles of atom-number variations and

quantum fluctuations in producing the correlation, and analyze how the standing

wave is related to the observed correlation function.

4.2.2 Simulations with atom number fluctuations and quantum fluc-

tuations

Fig. 4.1(a) displays the result of a single GP simulation, with a fix atom

number and no quantum noise. A standing wave is seen inside the supersonic

cavity, extending from the BH horizon at x = 0 to the WH horizon at x ∼ −10ξ

. The Fourier transform of n(x) over a square window behind the BH horizon

(−5.5ξ < x < −0.5ξ) gives rise to the wavevector spectrum shown in Fig. 4.1(c),

with two side peaks corresponding to the standing wave, nk, and a central peak

coming from the background flow, nbf . The correlation function vanishes identically

for a single deterministic simulation, but we show in Fig. 4.1(b) the density-density

function n(x)n(x′), for the purpose of comparison with what is to come.

Figure 4.2 shows the results of simulations incorporating atom-number fluctu-

ations (NF), quantum fluctuations (QF), and both types of fluctuations, as well as

the experimental results. The bottom panels show the correlation functions. The

top panels show the ensemble average of density 〈n(x)〉 (black curve) and, in (e-g),
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a single random realization of the simulations, ni(x) (red curve). Fig. 4.3 shows

2D wavevector spectra of the correlation functions in Fig. 4.2, performed over the

quadrant −5.5ξ < x, x′ < −0.5ξ in (a-c), and the top panels show the cut-through

at k′ξ = −6. Panel (d) shows the experimental wavevector spectrum as given in [2].		
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Figure 4.2: The density-density correlations by (a) number fluctuations, (b) quan-
tum fluctuations, and (c) both. (d) experimental density-density correlation taken
from [1]. Note that for panels (a) and (c), the number of condensate atoms fluc-
tuates about ∆N/N̄ = 0.05. Top panels (e-g) are the profiles of the averaged
density 〈n(x)〉 (black) and that of one realization in the corresponding ensemble ,
ni(x) (red). Panel (h) is the ensemble average of experimental density, 〈nexp〉, taken
from [1].

4.2.2.1 Atom number fluctuations

Figures 4.2(a,e) correspond to the case of fluctuating atom number N (N̄ =

6000, ∆N = 0.05N̄), without quantum fluctuations. The correlation function con-
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Figure 4.3: 2D wavevector spectra for the correlations by (a) number fluctuations,
(b) quantum fluctuations, and (c) both. Bottom: 2D wavevector spectrum; top:
cut-through of the 2D spectrum at k′ξ = 6 (note different scales on the plots).
Panel (d): 2D wavevector spectrum of the experimental correlation taken from [2];
upper panel is its cut-through along P1 and P2. Note that for panels (a) and (c),
the number of condensate atoms fluctuates about ∆N/N̄ = 0.05.

tains a checkerboard similar to that in the experimental plot. Also, near the WH

horizon, the pattern is partially smeared out into lines parallel to the diagonal. Fig-

ure 4.3(a) shows the 2D wavevector spectrum of Fig. 4.2(a) and its cut-through at

k′ξ = 6. The peaks at kξ = ±6 are consistent with the spacing of the squares in the

checkerboard (∼ 1ξ). The peak at k = 0 indicates a non-oscillatory component. The

2D Fourier transform is quite similar to that in the experimental plot, Fig. 4.2(d),

the principal differences being that in the simulation the peaks are somewhat more

sharply defined and do not vary as much in intensity.
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4.2.2.2 Quantum fluctuations

Figures 4.2(b,f) show the result of including quantum fluctuations using TWA

simulations at zero temperature, with a fixed total atom number. In each run, these

fluctuations correspond to “noise” added at the beginning of the evolution, which

evolves with the condensate, and whose effect on a random realization is shown in

the red curve of the top panel. The correlation function also contains a checkerboard

in the cavity region, but not so distinct as in the NF case near the BH horizon. The

bright diagonal line is a feature resulting from the quantum noise, which adds up

constructively at x = x′ [44]. The 2D Fourier spectrum for Fig. 4.2(b) and its cut-

through are shown in Fig. 4.3(b). As in the previous case, we find peaks at kξ ∼ ±6

corresponding to the checkerboard. In addition, there is an off-diagonal line, that

arises from the diagonal line in the correlation function (since the Fourier transform

of δ(x − x′) is δ(k + k′)). The off-diagonal peak is thus enhanced relative to the

other peaks. The intensity of all peaks is less than in the NF case.

4.2.2.3 Atom number and quantum fluctuations

Fig. 4.2(c,g) shows the result of incorporating both types of fluctuations to-

gether into the simulation. For each realization, we randomly select a total atom

number Ni to determine the initial condensate, then introduce quantum fluctuations

on top of this, and finally rescale the initial condensate wavefunction so that the

total atom number, including the fluctuations, is Ni, before proceeding with the

simulation. The checkerboard near the BH is consistent with the pure NF case, and
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the presence of the diagonal line is due to the quantum fluctuations. The correla-

tion function closely resembles the experimental one, Fig. 4.2(d,h), regarding the

checkerboard near the BH, the diagonal line, and the parallel lines near the WH.

The corresponding 2D wavevector spectrum is shown in Fig. 4.3(c). It combines fea-

tures of panels (a) and (b). In particular, the peaks are broadened by the quantum

fluctuations, and the off-diagonal peak is enhanced. This is qualitatively similar

to the experimental spectrum Fig. 4.3(d), but the relative differences of the three

peaks are greater in the simulation.

4.2.2.4 Comparison of different atom number variances

Figures 4.4(a-c) display the results incorporating both quantum fluctuation

and number fluctuation, with three different values for the standard deviation,

∆N = (0.05, 0.1, 0.15)N̄ . The top panels (e-g) show the ensemble average of den-

sity, 〈n(x)〉, given by the black curve, and that of a single, random realization,

ni(x), given by the red curve. Figs. 4.5(a-c) show the 2D wavevector spectra of

Figs. 4.4(a-c). For comparison, we show the experimental results on the rightmost

panel of Figs. 4.4, 4.5.

For all three number variances, the structure of the density variations near

the BH horizon, the checkerboard patterns in the right half of the cavity, and their

spectra in simulation and experiment agree fairly well with the experiment. The

discrepancy, as discussed in the previous subsection, concerns the relative sizes of the

peaks. The smeared lines parallel to the diagonal in the correlation function match
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the experiment better in the ∆N/N̄ = 0.1, 0.15 cases. The overall experimental

density profile n(x) decreases sharply from the BH horizon to the WH horizon, a

behavior that is best matched for ∆N = 0.15N̄ .		
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Figure 4.4: The density-density correlations by both number and quantum fluc-
tuations. For panels (a-c), the number of condensate atoms fluctuates about
∆N/N̄ = 0.05, 0.1, 0.15, respectively. Panel (d): experimental density-density corre-
lation taken from [1]. Top panels (e-g) are the profiles of the averaged density 〈n(x)〉
(black) and that of one realization in the corresponding ensemble , ni(x) (red). Panel
(h) is the ensemble average of experimental density, 〈nexp〉, taken from [1].

4.2.3 Influence of atom number and quantum fluctuations on stand-

ing wave and correlation

In this subsection we suggest some mechanisms for the effect of number and

quantum fluctuations on the standing wave and correlation function, and we briefly

54



		

-5 0 5
k 

5

0

-5

k' 

0

5

10

-5 0 5
k 

-5

0

5

k' 

0
2
4
6

-5 0 5
k 

-5

0

5

k' 

0

10

20

-5 0 5
k 

-5

0

5

k' 

NF QF QF+NF exp

(d)(c)(b)(a)

-5 0 5
k 

5

0

-5

k' 

0

10

20

-5 0 5
k 

-5

0

5

k' 

0
10
20

-5 0 5
k 

-5

0

5

k' 

0
10
20
30

-5 0 5
k 

-5

0

5

k' 

(a)

 N=0.05

(b)

 N=0.1

(c)

 N=0.15

(d)

exp

		

-5 0 5
k 

5

0

-5

k' 

0

5

10

-5 0 5
k 

-5

0

5

k' 

0
2
4
6

-5 0 5
k 

-5

0

5

k' 

0

10

20

-5 0 5
k 

-5

0

5

k' 

NF QF QF+NF exp

(d)(c)(b)(a)

-5 0 5
k 

5

0

-5

k' 

0

10

20

-5 0 5
k 

-5

0

5

k' 

0
10
20

-5 0 5
k 

-5

0

5

k' 

0
10
20
30

-5 0 5
k 

-5

0

5

k' 
(a)

 N=0.05

(b)

 N=0.1

(c)

 N=0.15

(d)

exp

Figure 4.5: 2D wavevector spectra for the correlations in Figs. 4.4. Panels (a-c):
∆N/N̄ = 0.05, 0.1, 0.15, respectively. Bottom: 2D wavevector spectrum; top: cut-
through of the 2D spectrum at k′ξ = 6. Panel (d): 2D wavevector spectrum of the
experimental correlation taken from [2]; upper panel is its cut-through along P1 and
P2.

consider also some other simulations described in the literature. As a preliminary

comment, we found that very small modifications of the strength of the trap potential

can have a relatively large effect on certain details in the evolution of the condensate.

This sensitivity to the potential is demonstrated in Appendix B.1, where it is shown

that a 3% variation in the overall coefficient of the (one-dimensional) trap leads to

measurable differences.

Atom number fluctuations influence both the amplitude of the background

flow, and the amplitude and phase of the cavity standing wave. Fig. 4.6(a) shows

the density variation, δn = n − 〈n〉 (where 〈n〉 is the average density for the en-
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semble with standard deviation ∆N = 0.05N̄) as a function of position and atom

number variation δN . The correlation function is the product of the density vari-

ations δn(x)δn(x′), averaged over the different number values in the normal dis-

tribution, with 68% weight from |δN |/N̄ < 0.05, and another 27% weight from

0.05 < |δN |/N̄ < 0.1, and only 5% from outside the region of the plot. The phase

varies with N more in the left half of the cavity, closer to the WH, but also varies

on the right half. However in the right half of the cavity, near the BH, the response

to number fluctuations is markedly weaker, and asymmetric, being stronger for neg-

ative fluctuations than for positive ones. Therefore in that region the correlation

function is more influenced by negative number fluctuations.

The plot in Fig. 4.6(b) shows the average density (dashed black curve, 〈n〉)

together with two realizations from the ensemble: one with δN = 0.075N̄ (red

curve, nmax), and one with δN = −0.075N̄ (blue curve, nmin). Compared to 〈n〉,

the amplitudes of nmax and nmin are above and below, respectively, and for nmax

the left edge of the cavity shifts towards the right, while for nmin it shifts towards

the left. The density variation δn = nmin − 〈n〉 is shown in Fig. 4.6(c). It has a

wavelength similar to that of the density itself, and its wavevector spectrum, shown

in Fig. 4.6(d), has peaks close to those of the average density spectrum shown

in Fig. 4.1(c). The contribution from zero wavenumber corresponds to the overall

modulation of the total number of atoms, which can be seen in the single realizations

in position space shown in Fig. 4.6(b). The variation δN thus modulates the overall

condensate density, and it also changes the location of the WH horizon, and thus

modulates the phase of the standing wave at a given location.
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Figure 4.6: Effects of atom-number variation on the standing wave. (a) density
variation, δn = n−〈n〉, as a function of position, for atom number N = N̄+δN . (b)
dashed black: averaged density over atom-number fluctuation, ∆N/N̄ = 0.05; solid
red: density of a realization with atom number N = N̄ + 0.075N̄ , nmax; solid blue:
one with atom number N = N̄ − 0.075N̄ , nmin. (c) difference between the density
with Nmin and the averaged density, δn = nmin − 〈n〉 . (d) wavevector spectrum for
δn(x) in a region near the BH, −11µm < x < −1µm.

Atom number fluctuations therefore result in a fluctuating δn, with a char-

acteristic wavenumber equal to that of the standing wave, as well as a background

(k = 0) component, and hence a nonzero correlation function 〈δn(x)δn(x′)〉 with

that same wavenumber. The pattern that emerges is different in the right and left

halves of the cavity, because of the differences in the intensity of the variation and

the shifting of the phase of the oscillation. On the left half of the cavity, the phase

fluctuates more, hence the correlation function is smeared out to be relatively con-

stant on diagonal lines of constant x′ − x, as seen in the correlation function with
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number fluctuations, Fig. 4.2(a), and observed in the experiment Fig. 4.2(d). On

the right half, there is little density variation except for the larger negative num-

ber variations, so a fairly constant phase contributes, and the resulting correlation

function is therefore similar to the plot of n(x)n(x′) shown in Fig. 4.1(b), which is

similar to the checkerboard pattern seen in the figures just mentioned. Note that

this “checkerboard” differs from an ordinary checkerboard pattern, in that there

are wide dark nodes, rather than an alternating pattern of adjacent light and dark

squares. The k = 0 component of δn is essential for the occurrence of these dark

nodes. Without it, the correlation function would be something like cos kx cos kx′,

whereas with it the correlation function is more like (A+cos kx)(A+cos kx′), where

A is a constant.

Quantum fluctuations alone also produce a correlation function. Fig. 4.2(f)

shows the background standing wave in the cavity, with the addition of fluctuat-

ing spatial noise. The standing-wave amplitude for each run varies slightly from

the average profile, while the phase is less affected than for number fluctuations,

since the zero-point field does not change the overall flow structure. Such variation

results in a faint checkerboard, seen in Fig. 4.2(b), and its wavevector spectrum

in Fig. 4.3(b) shows peaks at the same values as produced by number fluctua-

tions but weaker, and with off-diagonal (k′ = −k) contribution much larger than

the other contributions. The checkerboard feature of this correlation function, in-

cluding the dark nodal lines, might arise as follows: the GP wavefunction has the

form Ψ(x, t) = Ψ0(x, t) + δψ(x, t), where Ψ0(x, t) is the wavefunction without the

quantum noise having been added at t = 0. The dominant contribution to the
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density-density correlation function will come from the cross terms in the density

n(x) = Ψ†(x)Ψ(x) between Ψ0 and δψ. The components of δψ with wavelength

long compared with that of the standing wave thus modulate the amplitude of the

background and standing wave in Ψ0, in a spatially correlated fashion. We check

this interpretation by simulating the quantum noise from only the short wavelength

modes, and the resulting correlation does not have the checkerboard pattern.

4.2.3.1 Comparison with other simulated results

Correlation functions similar to Fig. 4.2 are simulated and reported in Refs.

[2, 46]. These simulations include some sort of noise as a proxy for the effect of

quantum fluctuations (local Gaussian noise in the case of [46], and noise induced

by a short pulse Bragg technique in the case of [2]). The effect of fluctuations in

the WH horizon location induced by fluctuations in the step potential were also

explored in [46].

Fig. 5(a) of Ref. [46] and Fig. 4(c) of Ref. [2] show a similar checkerboard

pattern, which alternates between black and white in the region near the BH.

This is somewhat consistent with our TWA simulation, regarding the black-white-

alternating feature; however, for our QF simulations, the dark nodes (discussed

above in this subsection), while not so distinct as in the NF case, are more evident.

This difference is also manifested in the Fourier transform, which has more power

at k = 0 in our simulation.

Fig. 5(b) of Ref. [46] shows the correlation function for the ensemble with fluc-
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tuations in the step potential, and therefore fluctuations in the position of the WH

horizon. This correlation function displays diagonal streaks, consistent with what

one expects when the phase of the standing wave is fluctuating within the ensemble,

across the entire cavity between the WH and BH horizons. This is similar to the

pattern we have seen induced by number fluctuations on the WH side of the cavity,

but not on the BH side. It should also be noted that the step potential fluctuations

introduced in [46] were more than two orders of magnitude larger than in the exper-

iment [2], whereas the number fluctuations we have introduced are comparable to

those encountered in BEC experiments. Ref. [46] also mentions finding that atom

number fluctuations have no significant effect on observables, and in particular do

not change the position of the WH horizon. As discussed in Appendix B.1, we found

that the condensate is more affected by number fluctuations for a shallower trap.

This might explain why Ref. [46] found no significant effect of number fluctuations,

as the trap potential shown in their Fig. 1 appears to be steeper than the one we

used.

In sum, while the noise added in the simulations of Refs. [2,46] does have the

effect of eliciting correlation functions that reflect the structure of the background

standing wave, the correlation function we obtain combining number fluctuations

and quantum fluctuations via the TWA is significantly closer to the experimentally

observed one.
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4.3 Conclusion

We have found that atom number fluctuations play a dominant role in giving

rise to density-density correlations in a BEC with a background density wave struc-

ture. This, together with a similar contribution from quantum fluctuations, appear

to account for all features of the checkerboard correlation pattern observed in the

BH/WH cavity in the experiment of [1].

In Ref. [34] we modeled this experiment using the GP equation without any

fluctuations, and found that the standing wave is zero frequency Bogoliubov-Čerenkov

radiation (BCR), originating at the WH horizon where the flow transitions from su-

personic to subsonic. This frequency is Doppler shifted to a nonzero value in the

reference frame of the BH horizon (because the WH horizon is receding from the

BH horizon), where it stimulates Hawking radiation at that frequency. We found

no sign of the black hole laser instability [14, 19] that can in principle take place

in this configuration, and inferred that the observed phenomena are driven by the

BCR alone. However, since our previous analysis did not include any fluctuations, it

was unable to produce the observed correlation function, and was unable to demon-

strate explicitly that the addition of quantum fluctuations does not trigger the laser

instability (although the condensate in the cavity is sufficiently inhomogeneous and

time-dependent to expect that if the instability could occur on the timescale of the

experiment, it would have manifested in our previous GP simulations).

The present chapter demonstrates that the correlation function, too, can be

explained based on nothing more than the BCR and fluctuations, and that the quan-
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tum fluctuations do not seed a laser instability on the time scale of the experiment.

Although the details depend on the types of fluctuations, and small variations of

trap and step potentials, the main checkerboard pattern is a robust feature, with a

spectrum consistent with that of the background BCR. That is, quantum fluctua-

tions, and number fluctuations only modify a pattern that is already established by

the BCR standing wave.

Finally, the possibility that the correlation function observed in other BEC

experiments may be strongly affected by number fluctuations deserves to be inves-

tigated. In the future, for an experiment where it is important to suppress atom

number fluctuations, they might be reduced below the 1/
√
N shot noise level using

recently developed experimental techniques [47].
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Chapter 5: Resonant phonon wavepackets on a ring-shaped Bose-

Einstein condensate

In this chapter, we study the excitations in a ring BEC, driven harmonically

by a potential barrier localized in a small region of the ring. The content of this

chapter is taken from a published work [48], in collaboration with A. Kumar, F.

Jendrzejewski, Ryan M. Wilson, Mark Edwards, S. Eckel, G. K. Campbell, and

Charles W. Clark.

As introduced in Chapter 1, phonon wavepackets can be created by applying

the potential barrier in the ring condensate. Modulating periodically the ampli-

tude and position of the barrier, we find a number of resonant frequencies at which

the driven condensate exhibits recurrent wavepacket trains traveling at the speed

of sound. The resonant frequencies are multiples of the orbital frequencies of the

wavepackets, which are easily calculated from the speed of sound and the symmetry

of the driving potential. We construct a simple model of the resonant wavepack-

ets that seems to have wide applicability. The resonant wavepackets persist over

many cycles of the driven oscillation. For sufficiently long excitation times, atoms

eventually acquire enough energy to escape from the trap. We find that atom loss

from the trap is strongly enhanced at the resonant frequencies, and that it is well
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described by solutions of the time-dependent GPE. This suggests that our atom loss

is dominated by the effects of mode-coupling that are known to exist in the strongly

driven GPE [49–52]. For strong conditions of excitation, we observe wavepackets

that move faster than the speed of sound. These resemble the shock waves that have

been seen in previous studies [53,54]. In this system we also observe the collision of

two shock waves.

This chapter is organized as follows. Sec. 5.1 presents an intuitive picture of

the dynamics of harmonically driven ring BECs in terms of phonon wavepackets.

Sec. 5.2 describes the details of our experimental setup. In Sec. 5.3, we model the

condensate dynamics with the GPE and the condensate’s elementary excitations

with the Bogoliubov-de Gennes equations. Sec. 5.4 shows that appropriate mod-

ulations of the potential barrier can be used for controlled excitation of resonant

wavepackets. We present evidence for the generation of supersonic shock waves and

collisions of two shock wavepackets in Sec. 5.5.

5.1 A simple model of resonant wavepacket generation by an oscil-

lating weak link

In a Bose-Einstein condensate, phonon wavepackets can be constructed by

forming a superposition of low-lying Bogoliubov excitations (see Sec. 5.3 for details).

If a localized weak perturbation with a typical length scale w is suddenly applied to

the condensate [55], it will generate a wavepacket consisting of phonon modes with

wavelengths less than w. These wavepackets will travel away from the perturbation
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at the speed of sound without dispersion. Stronger perturbations can generate a

variety of nonlinear wave motions [56], including supersonic shock waves that are

discussed in Sec. 5.5.

In a ring condensate, one can create wavepackets that travel around the ring.

The orbital period, T , of a single wavepacket establishes a characteristic frequency,

ν = 1/T = c/(2πR), where c is the speed of sound in the BEC and R is the radius

of the ring. If the localized weak perturbation is modulated periodically, resonances

may occur when the perturbation consistently adds energy to the wavepacket over

each cycle of its motion, as is the case in cyclotron and synchrotron particle ac-

celerators [57]. Two classes of such resonances, associated with amplitude- and

position-modulation of a weak link, have been seen in our experiment. This section

presents a simple model for understanding them.

Consider first the case where the perturbation is a symmetric potential barrier

at a fixed location in the ring, with the barrier height driven sinusoidally around a

positive value. This amplitude-modulation case is shown schematically in Fig. 5.1.

Here, the widths of the gray-shaded regions at φ = 0 and 2π denote the height of

the barrier as a function of time. As the height increases, the barrier displaces the

BEC, generating a symmetric pair of wavepackets. Traveling in opposite directions

around the ring, the wavepackets return to the barrier at time T . If the barrier is

rising when they return, energy will be added to the wavepackets as they begin their

next journey around the ring. The resonance condition in this case corresponds to

the frequency of the barrier oscillation being an integer multiple of ν, i.e., νq = qν,

where q is an integer. Panels (c) and (d) of Fig. 5.1 depict this resonant case with

65



q = 1 and 2, respectively. On the other hand, if the barrier is falling when the

wavepackets arrive, they will lose energy. This non-resonant case corresponds to

νq = qν, where q is now a half-integer. Panels (a) and (b) of Fig. 5.1 show this

non-resonant case with q = 1/2 and 3/2, respectively.

When the counterpropagating wavepackets overlap, they create a localized

region of high density. The alternation of regions of high and low densities follows

a pattern analogous to a standing wave, which is shown by the dashed and solid

blue curves to the right of each panel. For panels (c) and (d), this standing density

wave propagates like cos(qφ) sin(2πνqt). Since their wavefunctions resemble the

eigenfunctions of a particle on a ring, we denote these modes as ‘ring modes’. For

the nonresonant conditions shown in panels (a) and (b), the density wave propagates

like sin(qφ) sin(2πνqt). Given their similarity to the eigenfunctions of a particle in a

box potential, we denote them as ‘box modes’. For amplitude-modulation excitation,

the ring modes are resonant and the box modes are nonresonant.

We now consider position-modulation excitation, in which the shape of the

barrier remains constant, but its azimuthal position in the ring oscillates in time. In

this case, a wavepacket is created by the barrier pushing atoms in front of it during

the fastest part of its motion. The wavepacket then orbits the ring with period T . On

its return, if the wavepacket encounters the barrier moving opposite to its direction

of travel, it will be reflected from the barrier with a momentum kick. Therefore, the

resonance condition in the position-modulation case corresponds to the frequency of

wavepacket oscillation being a half-integer multiple of ν, i.e. νq = qν with q = 1/2,

3/2, etc. Fig. 5.2 shows the wavepacket propagation for position-modulation, in
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Figure 5.1: Trajectories of wavepackets in a ring driven by a barrier whose height
oscillates with frequency νq = qν: (a) q = 1/2; (b) q = 3/2; (c) q = 1; (d) q = 2.
The grey shaded areas represent the barrier height as a function of time, t, and the
solid (green) and dashed (black) lines indicate the ring azimuthal coordinates, φ, of
the centers of the wavepackets. The blue lines show the standing-wave-like density
modulation created by the overlapping wavepackets.

a manner similar to Fig. 5.1. Panels (a-d) correspond to q = 1/2, 1, 3/2, and

2, respectively. The corresponding standing waves are shown on the right of each

panel. For position-modulation excitation, the box modes are resonant and the ring

modes are nonresonant.

The above argument for the resonance condition of a position-modulated bar-

rier is valid only if the wavepacket is predominantly reflected from the barrier. If, on

the other hand, the wavepacket were predominantly transmitted, the barrier would

only add energy to the wavepacket if it were traveling in the same direction as the

wavepacket. In this case, the resonance condition would again correspond to the

oscillation frequency being an integer multiple of ν. (In this case, the ring modes

would be again resonant.) Whether the wavepacket is transmitted or reflected de-
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Figure 5.2: Trajectories of wavepackets in a ring driven by a barrier whose position
oscillates with frequency νq = qν: (a) q = 1/2; (b) q = 3/2; (c) q = 1; (d) q = 2.
The grey shaded areas represent the barrier position as a function of time, t, and
the solid (green) and dashed (black) lines indicate the azimuthal coordinate, φ, of
the centers of the wavepackets. The blue lines show the standing-wave-like density
modulation created by the overlapping wavepackets.

pends on the change in the speed of sound in the barrier region. If the barrier is

strong compared to the chemical potential, the density will be depleted, and the

speed of sound would be reduced. In analogy to optics, the change in the index of

refraction going from the ring to the barrier would be large, consequently causing a

large reflectivity. If the barrier is weak compared to the chemical potential, the index

of refraction change would be small, minimizing the amount of reflection. Thus, one

should expect a change in the resonance condition for a position-modulated barrier:

as the strength of the barrier potential is increased, the resonance should shift from

integer to half-integer values of q.
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5.2 Experimental Parameters

The BEC is formed in a crossed optical dipole trap with the same procedures as

in Ref. [58]. The trap is created by two laser beams: a red-detuned laser beam shaped

like a sheet for the vertical confinement and a blue-detuned laser beam transmitting

through an intensity mask [59]. The intensity mask is imaged onto the atoms,

providing in-plane confinement. Laser-cooled 23Na atoms in the |F = 1,MF = −1〉

state are condensed into the trap after forced evaporation.

The intensity mask forms a “target”-shaped trap [58], which has both a

toroidal (ring) and a concentric disc trap. The resulting condensate in the ring has a

mean radius of 22(1) µm and a Thomas-Fermi full-width of ≈ 8 µm. (All uncertain-

ties are the uncorrelated combination of 1σ statistical and systematic uncertainties

unless stated otherwise.) The disc-shaped condensate, which is left unperturbed

during the experiment, serves as a reference to check atom number stability. The

vertical trapping frequency is ωz/2π = 542(13) Hz while the radial trapping fre-

quency of the ring is ωρ/2π = 400(20) Hz. The average number of atoms in the

target trap is ≈ 7 × 105, with ≈ 80 % of atoms in the toroid and ≈ 20 % in the

central disk. On any individual repetition of the experiment, the atom number can

fluctuate from its mean by up to 10 % (2σ). We measure the atomic density using

in-situ partial transfer absorption imaging [60].

We create the weak link potential by using a focused, blue-detuned Gaussian

beam. The 1/e2 full-width of the Gaussian is ≈ 5 µm. This beam generates a

repulsive potential that depletes the condensate density locally in the region of the
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beam. An acousto-optic deflector (AOD) controls the position of the beam. By

changing the power applied to the AOD, we can control the intensity of the beam.

To create a radially-elongated weak link, the AOD scans the beam rapidly in the

radial direction at 2 kHz. The resulting time-averaged potential is a wide, flat

potential barrier with an effective width of ≈ 15 µm.

For the experiments here, we manipulate the weak link in a variety of differ-

ent ways. For the experiments described in Sec.5.4, the weak link is first applied

adiabatically to the BEC, so as to not generate excitations. The weak link beam’s

intensity is ramped on linearly over 300 ms. During this linear ramp, the azimuthal

position of the weak link is fixed. After the intensity reaches its final value, the weak

link position is oscillated in the azimuthal direction, or its intensity is modulated as

a function of time. For the experiments described in Sec. 5.5, the weak link beam

is turned on suddenly while it remains in a fixed azimuthal position. The response

time of the AOD and the servo that controls the intensity of the beam limits the

rise time of the weak link to approximately 100 µs.

5.3 BdG description of elementary excitations of a BEC

Dilute Bose-Einstein condensates, like the one we study here, are often [32,61]

described by a mean-field theory with an order parameter Ψ0 = 〈Ψ̂〉, where Ψ̂ is the

quantum field operator, which can be expanded as

Ψ̂ = Ψ0 + δΨ̂. (5.1)
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Here, δΨ̂ denotes the field operator for the non-condensate atoms: it describes the

elementary excitations of the condensate in the linear-response regime. The order

parameter Ψ0 can be interpreted physically as the condensate wave function, which

is macroscopically occupied. The dynamics of the condensate wave function are

described by the time-dependent Gross-Pitaevskii equation (TDGPE),

i~
∂

∂t
Ψ0(r, t) =

[
− ~2

2M
∇2 + V (r) + g |Ψ0(r)|2

]
Ψ0(r), (5.2)

where V (r) is the external potential, M is the atomic mass, and g quantifies the

interaction strength between the atoms, and is given by g = 4π~2a/M , where a is the

s-wave scattering length associated with binary atomic collisions. The stationary,

ground state solution of the GPE can be expressed as

Ψ0(r, t) =
√
n(r)e−iµt/~ (5.3)

where n(r) is the condensate density, and µ is the chemical potential of the system.

Elementary excitations are those for which the number of excited atoms is

much smaller than the number of atoms in the BEC. The field operator for the

excited atoms then satisfies the linearized equation of motion,

i~
∂

∂t
δΨ̂(r, t) =

[
− ~2

2M
∇2 + V (r) + 2gn(r)− µ

]
δΨ̂(r, t) + gΨ2

0δΨ̂
†. (5.4)

We solve this equation in a Bogoliubov-de Gennes framework [32, 61], and expand

δΨ̂ in the Bogoliubov operators ai and a†i ,

δΨ̂ =
∑
i

(
uie
−iωitai + v∗i e

iωita†i

)
, (5.5)

where ωi are the elementary excitation frequencies and ui, vi are the Bogoliubov

amplitudes of the ith excitation. These amplitudes satisfy the Bogoliubov-de Gennes
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(BdG) equations:[
~ωi +

~2

2M
∇2 − V (r)− 2gn(r) + µ

]
ui(r) = gn(r)vi(r)[

−~ωi +
~2

2M
∇2 − V (r)− 2gn(r) + µ

]
vi(r) = gn(r)ui(r). (5.6)

We numerically diagonalize Eqs. 5.6 to find the spectrum of elementary excitations

for the condensate, as shown in Fig. 5.3.

In a spatially uniform condensate (V (r) = 0), Eq. (5.6) has plane-wave solu-

tions [32], uk(r) = uke
ik·r and vk(r) = vke

ik·r, where k denotes the wave vector, and

a continuous spectrum of elementary excitations,

~ωk =
√
ε2k + 2εkgn, (5.7)

where εk = ~2k2/2M is the kinetic energy of a free quantum particle of mass M . For

small k, the frequencies ωk are linear in k, i.e. ωk ≈ k
√
gn/M . Since this dispersion

relation is the same as that for a sound wave, ω = ck, these excitations, or quasi-

particles, can be viewed as phonons, and the proportionality constant determines

the speed of sound, c =
√
gn/M .

In our experiments, we do not deal with a homogeneous BEC, but one confined

to a ring trap. The trap’s potential has the form

V (r) =
1

2
Mω2

zz
2 + VG

(
1− e−2(ρ−R)2/w2

ρ

)
, (5.8)

where the first term is a harmonic potential in the axial (z) direction with frequency

νz = 542 Hz, and the second term represents the ring potential, with: depth VG =

266nK× k, where k is the Boltzmann constant; ring radius R = 22.4 µm; and 1/e2

half-width wρ = 5.5 µm. (These parameter values best reproduce the experiment
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as described in Sec. 5.2.) In this trap, the low-momentum quasiparticles obey a

quantized dispersion relation analogous to that of the homogeneous system given by

Eq. 5.7. We now describe this correspondence.

In the absence of a weak link, the potential and the ground state of the BEC

have cylindrical symmetry about the z axis. The Bogoliubov quasi-particle ampli-

tudes thus have sharp values of the projection of the angular momentum operator

l̂z = x̂p̂y − ŷp̂x, and thus have the azimuthal dependence of the form ∼ eimφ, where

φ = arctan(y/x) is the conventional azimuthal angle of a two-dimensional coordi-

nate system and m is an integer. Our lowest energy solutions to Eqs. (5.6) scale like

ωm ∼ m
√
gn̄/MR2, where n̄ is the mean condensate density and R is the radius of

the ring [62]. These solutions form a manifold of discrete phonon-like modes that

propagate azimuthally with the characteristic speed of sound of the ring condensate,

c =
√
gn̄/M. (5.9)

Fig. 5.3 shows the calculated the energy spectrum of elementary excitations

by solving the BdG equations. For small m, the modes for the lowest branch are

nodeless in the radial and axial (z) directions [63]. The linear dependence at small

m is clear. Using the experimental parameters of Sec. 5.2, our linear fit at small

m provides an orbital frequency for sound of ν = 37.9(2) Hz. Note the avoided

crossing between the lowest two branches around m = 17, which is due to the near

degeneracy of angular and radial excitation there. In a manner characteristic of

two-level crossing systems [64], the predominantly angular modes continue on the

second branch for m > 20, where they show roughly the same linear dispersion
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Figure 5.3: The BdG spectrum for the elementary excitations of a ring condensate.
The blue (red) curves correspond to the excitation modes that are even (odd) in the
axial (z) direction. The lowest branch represents the excitations in the azimuthal
direction, the frequency of which is linear at small m (denoted by the black line).
The slope determines the orbital frequency of sound ν = 37.9(2) Hz.

We theoretically model the procedure described in Sec. 5.1 by propagating

Eq. (5.2) in imaginary time to find the ground state condensate wave function Ψ0(r),

then propagating in real time to model the dynamics. We implement the split-step

Crank-Nicholson algorithm as in [65] on a Cartesian grid of dimensions x× y× z =

(100× 100× 10) µm. To generate various wavepacket trajectories, we generalize to

a time-dependent potential V (r, t). This potential includes both the static potential

(Eq. 5.8) and a potential for the weak link. This latter potential is repulsive and

includes a Gaussian of 1/e2 half-width wL = 5 µm along the azimuthal direction,

and a rectangle of width L = 15 µm along the radial direction (see the supplemental

material of Ref. [66]).

During the simulation, atoms can gain sufficient energy to escape from the

trap. Such atoms are nonetheless bounded in the box, and can reflect at the bound-
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aries and subsequently return to the ring trap. To eliminate this numerical ef-

fect, we implement absorbing layers at the edges of the xy-plane of the gridded

box, by adding a damping term Hdamp = iΓ(x, y) in the Hamiltonian. We adopt

the damping term that follows the form in [67], in which Γ(x, y) slowly increases

as x or y approach the box boundaries. In the x direction (equivalently for y),

Γ = Vd/ cosh2(|x − xd|/Ld), where the damping constant Vd is taken to be 0.01 µ,

the absorbing layer width Ld = 10 µm, and |x− xd| is the distance of a point in the

absorbing layers from the nearest box boundary, xd.

5.4 Driving and Probing the Excitations

Knowing the orbital frequency ν = 37.9 Hz (Sec. 5.3), we now proceed to

oscillate the barrier to find the resonant frequencies for wavepacket propagation

(Sec. 5.1). This oscillation can take on two different forms. The first, shown schemat-

ically in Fig. 5.1, is the amplitude-modulation case discussed in Sec. 5.1. The barrier

height is given by Vb(t) = V0 + Va sin(2πvqt), where V0/µ = 0.54(5) is the average

amplitude of the barrier, Va = 0.95V0 is the amplitude of modulation, and νq = qν

is the drive frequency. (The uncertainty in V0 applies only to the experimental

value.) The barrier is ramped up to V0 in 10 ms at the beginning of each evolution.

Fig. 5.4 shows the resulting time evolution of the condensate density for both the

experiment (e) and the GPE simulations (a)-(d). At each time t, we integrate the

condensate density along the radial and vertical directions to obtain an integrated

1D density n1D(θ) along the azimuthal direction. The normalized density shown in
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Fig. 5.4 is then obtained by dividing n1D(θ) by n1D,0(θ), the 1D density measured in

a unperturbed ring without a weak link. In the experiment, the condensate density

is not clearly periodic until several cycles of the oscillation have elapsed; therefore,

we show data for later times t ≈ 15.5T to t ≈ 19T . At these later times, atoms have

already left the trap causing the measured normalized densities to tend to be less

than unity. (For clarity, we scale the theoretical predictions to have the same range

of normalized densities as the experiment.) Because the wavepackets in the q = 1

and q = 2 cases collide with the accelerating barrier, each oscillation cycle increases

the energy of the wavepacket. Therefore, these ring modes are on resonance, as

predicted in Sec. 5.1. The experimental data (Fig. 5.4e) shows the resonant q = 1

mode, which is consistent with the GPE simulation (Fig. 5.4c).
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Figure 5.4: Time evolution of wavepackets generated through amplitude mod-
ulation of the barrier (see Fig. 5.1). The normalized 1D density (colorbar) shows
wavepackets, or localized regions of high density, moving around the ring (azimuthal
coordinate φ) with time t. The density also shows the barrier oscillating at φ = 0
with frequency νq = qν. Modes with q = 1/2 (a) and q = 3/2 (b) are nonresonant;
modes with q = 1 (c and e) and q = 2 (d) are resonant.

The second oscillation scheme, shown schematically in Fig. 5.2, is the position-
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Figure 5.5: Time evolution of wavepackets generated though position modulation of
the barrier (see Fig. 5.2). The normalized 1D density (colorbar) shows wavepackets,
or localized regions of high density, moving around the ring (azimuthal coordinate
φ) with time t. The density also shows the barrier oscillating about φ = 0 with
frequency νq = qν. Modes with q = 1/2 (a and e) and q = 3/2 (b) are resonant;
modes with q = 1 (c) and q = 2 (d) are nonresonant.

modulation case discussed in Sec. 5.1. Here, the position of the barrier is given by

φb(t) = φ0 + φa sin(2πνqt), where φ0 = 0 is the average position of the maximum

height of the barrier, φa is the amplitude of modulation, and νq = qν is the drive

frequency. The amplitude satisfies νqφa = 80 rad/s, which ensures the maximum

velocity of the barrier is independent of νq. Fig. 5.5 shows the resulting time evo-

lution of the density for both the GPE simulations (a-d) and the experiment (e).

Here, the barrier, with height V0/µ = 0.65(7), appears to be mostly reflective. As

predicted in Sec. 5.1, the cases q = 1/2 and q = 3/2 (box modes) are on resonance.

In particular, the wavepacket trajectories are synchronized with the barrier motion:

a wavepacket generated by the barrier propagates around the ring and collides with

the barrier while the barrier is moving in the direction opposite the wavepacket. By

contrast, the cases q = 1 and q = 2 (ring modes) are off resonance: the wavepackets
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collide with the barrier at a point in its oscillation when it is moving in the same

direction.

Because the oscillating barrier can continually add energy to the condensate,

atoms can acquire sufficient energy to escape the trap. If the oscillation is resonant,

efficient energy transfer from the barrier will result in atom loss. Atom loss measured

as a function of driving frequency will therefore show clear peaks at the resonant

frequencies, νq. For both the experiment and the GPE simulation, we extract this

atom-loss spectrum by oscillating the barrier for 2 s and then counting the remaining

atoms in the trap, NR. The fraction of atoms that remain is given by NR/N , where

N is the number of atoms measured when there is no oscillation.
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Figure 5.6: Simulated (left) and experimental (right) atom-loss spectra for an
amplitude-modulated barrier with frequency νd and average heights V0/µ = 0.30(2)
(blue triangles) and V0/µ = 0.50(4) (red circles). Here, NR/N is the fraction of
atoms that remain in the trap after 2 s of excitation. The vertical black (red) lines
correspond to the resonant frequencies of the box (ring) modes. The dashed lines
are a guide to the eye. The error bars in the experimental spectra correspond to the
1σ statistical uncertainty.

Fig. 5.6 shows the resulting atom-loss spectra obtained by amplitude modula-

tion for two different barrier heights V0/µ = 0.30(2) and 0.50(4). (Here, as before,
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Figure 5.7: Simulated (left) and experimental (right) atom-loss spectra for a
position-modulated barrier with frequency νd and heights V0/µ = 0.15(1) (green
diamonds), V0/µ = 0.30(2) (blue triangles), and V0/µ = 0.60(4) (red circles). Here,
NR/N is the fraction of atoms that remain in the trap after 2 s of excitation. The
vertical black (red) lines correspond to the resonant frequencies of the box (ring)
modes. The dashed lines are a guide to the eye. The error bars in the experimental
spectra correspond to the 1σ statistical uncertainty.

the uncertainty applies only to the experiment.) In both cases, the oscillation am-

plitude is given by Va = 0.5V0. Both the experimental and simulated spectra show

resonance peaks at drive frequencies corresponding to q = 1 and q = 2. As expected,

these are the resonant frequencies of the ring modes (Fig. 5.1c-d and Fig. 5.4c-d).

The location of the peaks in the experiment indicates ν ≈ 41 Hz, slightly larger

than that predicted by theory. This small discrepancy may be due to uncertainty

in atom number, trapping frequencies, or other experimental parameters.

Fig. 5.7 shows the atom loss spectra for position-modulation with barrier

heights V0/µ = 0.15(1), 0.3(2), 0.6(4). The displacement amplitude of the posi-

tion modulation obeys νφa = 60 rad/s. As V0 is increased, both the experiment

and the simulation show initial peaks at q = 1 and q = 2 that shift to q = 1/2 and

q = 3/2. This corresponds to a transition from the ring modes being resonant to
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the box modes being resonant. For small barrier heights, wavepackets are predomi-

nantly transmitted through the barrier. In this case, the ring modes are resonant, as

these wavepackets receive more energy when they collide with a co-moving barrier

(Fig. 5.2c and d). As the barrier height increases, wavepackets are more likely to

be reflected. In this case, the box modes are on resonance, as these wavepackets

receive more energy when they impinge on an oppositely moving barrier (Fig. 5.2a

and b). This crossover from box-mode resonant behavior to ring-mode resonant

behavior appears to occur near V0/µ ≈ 0.3, as seen in Fig. 5.7. We note that in

addition to the discrepancy in ν, the simulated spectra show more atom loss than

the experiment.

The simulated spectrum with V0/µ = 0.6 also shows some possible broadening,

as seen by the additional atom loss at nonresonant frequencies νd ≈ 47 Hz and 85 Hz.

As atoms are lost from the condensate, the speed of sound and ν decrease, causing

the broadening. As such, the broadening becomes evident only after t ≈ 1 s of

oscillation. Broadening in the opposite direction (toward larger ν) could also be

present. In particular, driving the condensate with sufficient strength can generate

supersonic shock waves rather than sound waves. In the next section, we directly

create such dispersive shock waves and study their behavior.

5.5 Generation of supersonic shock waves

Theoretical analyses of the GPE predicted the existence of supersonic shock

waves in BECs subject to large-amplitude disturbances [68–70]. Observations of such
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Figure 5.8: Supersonic flow in a shocked BEC. A condensate in our standard
configuration is struck with an amplitude pulse that rises to its peak strength during
an interval of 100 µs. Normalized density is shown vs. time. Left: solution of the
time-dependent GPE; right: experiment.

waves in 87Rb condensates were later reported in Refs. [53] and [54]. There is a sub-

stantial theoretical literature on supersonic phenomena in BECs (see refs. [56,71–78]

and references therein), and a recent experiment reports the experimental observa-

tion of analogue Hawking radiation in a BEC [1]. We have also found evidence for

supersonic shock waves, and our ring geometry makes it possible to observe collisions

between them.

The left frame of Fig. 5.8 shows the solution of the TDGPE for our standard

BEC configuration, subject to a sudden raising of the barrier during 100 µs. (Be-

cause there is no atom loss, we do not rescale the theoretical simulation in Fig. 5.8

as we did in Figs. 5.4 and 5.5.) This results in two counterpropagating high-density

pulses - the left side of a red “X” - with orbital frequencies of ν ≈ 50 Hz, which is

about 25 % greater than the orbital frequency of sound. These pulses collide near

φ = π, resulting in secondary excitations. However, the original shock pulses retain
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much of their mass after the collision and continue to travel at the same speed.

The shock waves generated in the experiment, which are shown in the right frame,

exhibit significantly greater dispersion after the collision.

Also visible in the left frame of Fig. 5.8 are some secondary striations at

densities n ≈ 1, which all propagate with speeds corresponding to orbital frequencies

ν ≈ 34 Hz. These features are consistent with sound waves. There are other

structures at densities around n ≈ 0.6, with orbital frequencies ν ≈ 29 Hz. Note

that their speeds decrease during collisions with the shock waves, but are restored

after the collision, a behavior characteristic of gray solitons. Both sound waves and

solitons were reported in early experiments on large-amplitude excitations of Na

and Rb condensates [79–81]. However, we do not see definitive signatures of them

in the experimental data, which is shown in the right frame of Fig. 5.8.

5.6 Conclusion

We have investigated the excitations of a ring-shaped condensate with oscil-

latory amplitude- and position-modulated perturbations. This perturbation, in the

form of a weak link, generates phonon wavepackets that travel around the ring at the

speed of sound and therefore have an orbital angular frequency ν = c/(2πR). We

find that the wavepackets are resonant with an amplitude-modulated perturbation

if the perturbation’s frequency is an integer multiple of ν. For position-modulation,

the wavepackets are in resonance if the frequency of the perturbation is a half-

integer multiple of ν. The difference in these cases corresponds to the symmetry
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of the drive: an amplitude modulation creates two oppositely moving wavepack-

ets at the same time, whereas position modulation creates two oppositely moving

wavepackets at points in its motion that are out of phase by π. By looking at atom

loss as a function of drive frequency, we verify these resonance conditions.
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Chapter 6: Spinor Bose-Einstein condensates of Positronium

In this chapter, we study a spinor condensate of positronium and its self-

annihilation. This chapter is based on a published work [82], in collaboration with

Brandon Anderson and Charles Clark.

Positronium (Ps) is an element composed of one electron and one positron.

Classically, it can be viewed as a pair of identical-mass particles, binding together

with opposite charges, and orbiting about the center of mass, as shown in Fig. 6.1(a).

A Ps atom undergoes self-annihilation and emits γ photons. This can be understood

by a quantum picture shown in Fig. 6.1(b), where we show the probability distri-

bution of Ps in its electronic ground state, similar to that of a hydrogen atom. The

cusp at the center indicates the point of maximal probability, at which an electron

and a positron meet and annihilate.

The Ps ground state has no orbital angular momentum, and has 1S (para-

positronium, para- or p-Ps) and 3S (ortho-positronium, ortho- or o-Ps) components

that are separated by an energy ε = 1.351 × 10−22 J [25, 83]. The p-Ps state can

decay by emitting two γ rays, and has a lifetime of τp = 0.125 ns; the o-Ps state

must emit at least three γ rays, and has a lifetime of τo = 0.142 µs (see Fig. 6.1(c)).

The ideas of making a Ps BEC and its application in making a γ-ray laser are
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Figure 6.1: Illustrations of positronium (Ps) and its annihilation. Panel (a) classical
picture of a Ps atom; panel (b) probability distribution of Ps in its ground state,
|Ψ(r)|2 ∼ e−2r/ap , where the ground-state radius ap is twice the Bohr radius, ∼ 0.1
nm; (c) top: p-Ps, decaying into 2 γ photons; bottom: o-Ps, decaying into 3 γ
photons.

illustrated in Fig. 6.2, based on the proposal by Platzman and Mills [26, 27, 31]. In

Fig. 6.2(a), it is shown that Ps atoms can be created and collected by impinging

a dense, polarized positron pulse into a cavity within a piece of silicon. A fraction

of the positrons will capture an electron in the silicon to yield Ps. The Ps atoms in

the singlet state will quick decay due to its short lifespan, and a remaining portion

of o-Ps will be collected and condensed in the cavity. It is estimated that at a

temperature of 15 K, a BEC of o-Ps will be formed if the Ps density exceeds 1018

cm−3 [27]. By converting the long-lived o-Ps condensate to a p-Ps condensate with a

magnetic field, strong γ-ray emission can be generated as the outcome of annihilation

of p-Ps (see Fig. 6.2(b)).

There are some differences between Ps BEC and the BECs of alkali atoms.

The mass of a Ps atom (m = 2me) is much less than the mass of ordinary atoms,

and thus Ps can be brought to Bose-Einstein condensation at much higher number
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Figure 6.2: The schemes of making a Ps BEC, and then a γ-ray laser. (a) formation
of a polarized o-Ps BEC inside a silicon cavity; (b) coherent γ rays emitted from a
self-annihilating p-Ps condensate.

densities, n, and/or temperatures, T , than are required for laser cooled atoms [32].

Ps also has a small scattering length a ∼ 0.1 nm, so that a Ps condensate remains

a weakly interacting dilute Bose gas in the higher density regime, i.e., (na3 � 1).

Second, a Ps BEC has a short metastable lifetime τ ∼ τo due to spontaneous

annihilation into γ rays. Despite its short life, a Ps BEC can be observed though

gamma-ray emission signatures [31]. As will be discussed later, an appropriately

prepared condensate can be used as the gain medium for γ ray laser, which can be

observed through the coherent emission of γ rays.

In the preparation of dense Ps, it has been shown [28, 84] that ortho-to-para

spin exchange is one of the main mechanisms for quenching the o-Ps population. To

avoid this population loss, a polarized positron beam should be used to generate a

nonzero fraction of polarized o-Ps that is long-lived. During the condensation pro-

cess spin-mixing collisions convert the unpolarized fraction of o-Ps to p-Ps, which

quickly annihilates, and the remaining o-Ps is polarized. A standard design of a
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Figure 6.3: Competition between the ortho-para energy difference, ∆E = ε, and
the spin-mixing interaction, Hint .

γ-ray laser based on a Ps BEC uses polarized o-Ps as a storage medium, which is

quickly converted to p-Ps by a magnetic field switch that triggers stimulated an-

nihilation [27]. After applying the field, the system again obtains an unpolarized

fraction that may undergo spin mixing and reduce the final γ-ray yield. In this

chapter, we study the time evolution of o-Ps and p-Ps mixtures in order to under-

stand the interplay of spin-mixing collision rates and γ-annihilation rates. We study

spin mixing and Ps self-annihilation effects using two approaches: the solution of

the time-dependent Gross-Pitaevskii (GP) equations that described a mixture of o-

and p-Ps BECs, and a semi-classical rate-equation method. We also consider how

to avoid para- to ortho- conversion during laser action.

To understand the physical properties of a Ps BEC, especially the interplay of

spin mixing and Ps annihilation, we start with the GP formalism that consists of

both para- and ortho- states. The formalism has the structure of a mixture of spin-1

and spin-0 BECs, and the full spin-mixing interactions have an O(4) symmetry [85].
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The internal energy splitting breaks this symmetry to a SO(3) symmetry among

the triplet states.

As illustrated in Fig. 6.3, there is a competition between the internal energy

splitting and spin-mixing terms in the second-quantized Hamiltonian, which deter-

mines the ground state phase, the spin-mixing dynamics, and the stability of the

system. At low density, the ground state phase consists of pure p-Ps. There is a

critical density above which spin mixing becomes significant and the ground state

acquires a non-zero o-Ps fraction. This criticality also plays an important role in

determining the dynamics and the stability of a spinor BEC, beyond which strong

spin-mixing will occur and breakdown the coherence of the condensate, which fur-

ther inhibits the production of coherent γ rays.

This chapter is organized as follows. Sec. 6.1 starts with a formalism based

on the Ps second-quantized Hamiltonian which is used to derive the time-dependent

GP equations. In Sec. 6.1.2 we study the symmetry properties of the Ps system

that are invariant under spin rotation. In Sec. 6.1.3, we show that there is a phase

transition in the ground state composition at a critical density nc. Spin mixing and

dynamic instability effects become significant for densities greater than nc. In Sec.

6.1.4, we study the spin-mixing dynamics of a mixed homogeneous BEC numerically

and analytically at densities above and below nc. Sec. 6.2 considers the annihilation

of Ps under the influence of spin mixing. We propose a scheme that optimizes the

γ-ray laser from a polarized o-Ps BEC. The rate equation approach is first used to

model the dynamics for an incoherent mixture. Then, we apply the time-dependent

GP equations to simulate the time evolutions of a Ps condensate with decay. At the
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same time, dynamic stability is taken into account through the Bogoliubov equations

and tested numerically through the GP equations with spatial random noises. The

last section summarizes our results.

6.1 Gross-Pitaevskii Theory for Positronium condensates

There are many previous studies of the interactions of two Ps atoms, including

their fusion into the diatomic Ps molecule [86–88]. We use results of some of this

previous work to determine the scattering lengths for low-energy Ps collisions that

are relevant to describing a BEC of Ps within the conventional mean-field theoretical

framework, the time-dependent Gross-Pitaevskii (GP) equation. In particular, we

use the Gross-Pitaevskii theory to study physical properties of a mixture of o-Ps

and p-Ps condensates, such as symmetry under spin rotation operations, stationary

structure, and dynamics. The treatment here ignores the effects of electron-positron

annihilation. These are included in subsequent sections.

There are four spin states of Ps which we designate by |p〉, |1〉, |0〉, | − 1〉,

where |p〉 is the p-Ps state, and |M〉 is the o-Ps state with spin projection of M~

upon the ẑ-axis for M = 1, 0,−1.

6.1.1 Interaction Hamiltonian of spinor Ps condensates

We now derive the many-body interaction Hamiltonian for a dilute Ps gas.

For a sufficiently cold and dilute gas, two Ps atoms can only interact through an

overall s-wave interaction. Expressing their interaction in a basis of e− and e+ pairs,
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we have

U(r, r′) = δ(r− r′)

×
s+=s−∑
s+m+

s−m−

Us|s+m+; s−m−〉〈s+m+; s−m−|,

(6.1)

where

Us =
4π~2as
m

(6.2)

is the effective interaction expressed in terms of the scattering lengths a0 = 4.468×

10−10m and a1 = 1.586 × 10−10 m [87, 88], and s+m+ (s−m−) denote the spin

quantum numbers of the positron(electron) pair. The s-wave scattering constraint

requires that that s+ = s− ≡ s = 0 or 1. It is convenient to express the sum in Eq.

6.1 as

∑
m+,m−

U1

∣∣1m+; 1m−〉〈1m+; 1m−
∣∣+ U0 |00; 00〉〈00; 00|

= U1I + (U0 − U1) |00; 00〉〈00; 00| , (6.3)

where I is the identity operator in the basis of s-wave scattering states. Next, we

expand the lepton-pair ket |00; 00〉 = 1/2 (| ↑↓〉 − | ↓↑〉)e−⊗(| ↑↓〉 − | ↓↑〉)e+ in terms
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of o-Ps and p-Ps states. It follows that

(| ↑↓〉 − | ↓↑〉)e− ⊗ (| ↑↓〉 − | ↓↑〉)e+

= | ↑↑〉Ps1 ⊗ | ↓↓〉Ps2 + | ↓↓〉Ps1 ⊗ | ↑↑〉Ps2

−1/2 (| ↑↓〉+ | ↓↑〉)Ps1
⊗ (| ↑↓〉+ | ↓↑〉)Ps2

+1/2 (| ↑↓〉 − | ↓↑〉)Ps1
⊗ (| ↑↓〉 − | ↓↑〉)Ps2

= |1〉| − 1〉+ | − 1〉|1〉 − |0〉|0〉+ |p〉|p〉

≡ |Ψs〉. (6.4)

Substituting |Ψs〉 into Eq. 6.1, we obtain the effective interaction represented in the

basis of Ps scattering states

U(r, r′) = δ(r− r′) (g0I + g1 |Ψs〉〈Ψs|) . (6.5)

where g0 = U1 and g1 = (U0 − U1)/4.

To construct the many-body interaction Hamiltonian, we follow the standard

procedure and replace the two-body interaction with a sum over field operators

Hint =

∫
d3rd3r′

[
Ψ†i (r)Ψ

†
j(r
′)Uijkl(r, r

′)Ψk(r
′)Ψl(r)

]
.

(6.6)

Performing the delta function integral, and re-arranging terms, the second-quantized
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interaction Hamiltonian can take the following form:

Hint =
g0

2

∑
i,j=

0,±1,p

∫
d3rΨ†iΨ

†
jΨiΨj

+
g1

2

∫
d3r


2Ψ1Ψ−1

−Ψ0Ψ0

ΨpΨp



†
1 1 1

1 1 1

1 1 1




2Ψ1Ψ−1

−Ψ0Ψ0

ΨpΨp

 ,

(6.7)

where Ψi(r)
(

Ψ†i (r)
)

annihilates(creates) a particle of spin state |i〉 at point r, and

g0 and g1 are pseudo-potential constants with values g0/~ = 1.154 × 10−7 cm3/s

and g1/~ = 5.240 × 10−8 cm3/s. The full many-body Hamiltonian, including the

single-particle contribution, is

H =

∫
d3r

∑
i=0,±1,p

Ψ†i

(
p2

2m
+ Vext + εi

)
Ψi +Hint

(6.8)

where p is the momentum operator, m is the mass of Ps, Vext is the external po-

tential, and εi is the internal energy of spin state i. Throughout this chapter,

ε1 = ε0 = ε−1 ≡ εo.

Now we go to the mean field limit by replacing each field operator Ψi by

the corresponding mean field value ψi = 〈Ψi〉 [32]. The interaction term can be

expressed as

Hint =
1

2

∫
d3r

(
g0n

2 + g1

∣∣2ψ1ψ−1 − ψ2
0 + ψ2

p

∣∣2) (6.9)

where n =
∑

i=0,±1,p |ψi|2 denotes the total number density. The equations of motion
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can be found by taking the functional derivative of the mean-field Hamiltonian

i ~ψ̇i =
δH
δψ∗i

. (6.10)

This yields the time-dependent GP equations:

i ~ψ̇1 =
(
H0 + εo + 2g1|ψ−1|2

)
ψ1 + g1ψ

∗
−1(ψ2

p − ψ2
0)

i ~ψ̇0 =
(
H0 + εo + g1|ψ0|2

)
ψ0 − g1ψ

∗
0(2ψ1ψ−1 + ψ2

p)

i ~ψ̇−1 =
(
H0 + εo + 2g1|ψ1|2

)
ψ−1 + g1ψ

∗
1(ψ2

p − ψ2
0)

i ~ψ̇p =
(
H0 + εp + g1|ψp|2

)
ψp + g1ψ

∗
p(2ψ1ψ−1 − ψ2

0)

(6.11)

where

H0 =
p2

2m
+ Vext + g0n. (6.12)

The g1 terms in the second half of the RHS of Eq. 6.11 are responsible for the

population exchange among spin states. For the remainder of this section, we take

εo = ε and εp = 0, which amounts to ignoring the spontaneous annihilation process.

6.1.2 Symmetry under spin rotations, the O(4) group

We now consider the symmetry of the system including interactions. We can

express Hint in terms of the ortho–para- spinor ψT = (ψ1, ψ0, ψ−1, ψp)

Hint =
1

2

∫
dr3

(
g0n

2 + g1

∣∣ψTQψ∣∣2) , (6.13)
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where

Q =



0 0 1 0

0 −1 0 0

1 0 0 0

0 0 0 1


. (6.14)

In this basis, the components of the spin operator S = Saêa, with a = 1, 2, 3, are

expressed as

S1 =
1√
2



0 1 0 0

1 0 1 0

0 1 0 0

0 0 0 0


,

S2 =
1√
2



0 −i 0 0

i 0 −i 0

0 i 0 0

0 0 0 0


, S3 =



1 0 0 0

0 0 0 0

0 0 −1 0

0 0 0 0


. (6.15)

It is straightforward to show that [Sa, Q] = 0 for all a.

In the limit that ψp = 0, the interaction Hamiltonian is identical to that for a

normal spin-1 spinor condensate [89,90]. That is

Hint =
1

2

∫
d3r

(
g0n

2 + g1n
2 (1− 〈S〉 · 〈S〉)

)
(6.16)

where 〈Sa〉 = ψ†Saψ/n with a = 1, 2, 3 is the average spin per atom, so that 0 ≤

〈S〉·〈S〉 ≤ 1. Since g1 > 0, the ground state will have 〈S〉·〈S〉 = 1 in the limit ψp = 0.
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Thus, in this limit, the ortho- sector is a ferromagnetic condensate. However, when

ψp 6= 0, the ground state has 〈S〉 = 0, as will be shown in the next section. As

we shall see, in parameter regimes of current experimental interest, Eq. (6.13) can

induce significant interconversion between o-Ps and p-Ps.

To specify the symmetry of the system, we can use S as the generator of

rotations Dn̂(α) = e−iαn̂·S among the spin-1 states, where α, n̂ denote the angle and

axis of the rotation. Since ψTQψ is invariant under ψ → eiαSaψ, we see that Hint is

also invariant under arbitrary spin rotations in the ortho- sector, and 〈Sa〉 for each

a is a conserved quantity of the system. This implies that from a given solution to

Eq. (6.11), we can obtain a manifold of equivalent solutions related by rotations of

the form Dn̂(α). In particular, this implies that there is a continuous degeneracy of

the many-body ground state.

Rotations between the ortho- sector and the para- sector e−iαn̂·R can be gen-

erated by operators R = Raêa with a = 1, 2, 3, and

R1 =
1√
2



0 0 0 1

0 0 0 0

0 0 0 −1

1 0 −1 0


,

R2 =
1√
2



0 0 0 −i

0 0 0 0

0 0 0 −i

i 0 i 0


, R3 =



0 0 0 0

0 0 0 −1

0 0 0 0

0 −1 0 0


. (6.17)
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It can be shown that Hint is also invariant under rotations ψ → eiαRaψ. The

commutation relations among Sa and Rb are those of the O(4) group [85]

[Sa, Sb] = iεabcSc, (6.18)

[Ra, Rb] = iεabcSc, (6.19)

[Sa, Rb] = iεabcRc. (6.20)

An arbitrary group element is represented by

Dn̂1,n̂2(α1, α2) = e−iα1n̂1·S−iα2n̂2·R, (6.21)

where the parameters α1, n̂1 represent the rotation angle and rotation axis for the

ortho-sector, and α2, n̂2 correspond to rotations between the ortho- and para- sec-

tors. The group of elements spanned by α2 = 0, form a subgroup equivalent to

SO(3) and corresponds to physical spin rotations in the ortho- sector. Including

the internal energy splitting between the ortho- and para- sectors, the symmetry of

the full system is reduced from a full O(4) symmetry to this SO(3) subgroup. This

symmetry is broken in the full Hamiltonian due to the one-body internal energy dif-

ference between ortho- and para- Ps. The only global symmetry is that generated

by the operators Sa [89].

6.1.3 Ground State of a Ps BEC

We now consider the ground state of a Ps BEC in the zero temperature limit.

Suppose there exists a stationary state ψi(r, t) =
√
ni(r)e

iφi(r)e−iµt/~, where ni and

φi are the number density and phase for the component i, and µ is the chemical
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potential. Substituting this ansatz into Eq. 6.11, we can calculate the equilibrium

composition of the ground state. In proposed implementations of Ps BEC, [26, 31]

Ps is collected in a cavity of volume ∼ 10−13 cm3 with a range of densities between

1018 cm−3 and 1021 cm−3. Given the minimal required densities for condensation,

the largest attainable values of the healing length, ξ = ~/
√

2mµ, are about ξ ∼

10−6 cm. This is much smaller than the characteristic cavity dimension ∼ 10−4 cm.

For this reason, we will neglect the contribution of the kinetic energy operator p2/2m

for the remainder of this section so that the condensate is uniform in space.

To understand the ortho-/para- balance of the condensate, we consider the

competition between the g1 interaction and the energy separation ε, which is mani-

fested in the energy as

E =

∫
d3r

(
εno +

g1

2

∣∣2ψ1ψ−1 − ψ2
0 + ψ2

p

∣∣2) , (6.22)

where no = n1 + n0 + n−1. We rewrite the term that is quartic in ψi as

g1

2

∣∣2√n1n−1e
i(φ1+φ−1) − n0e

2iφ0 + npe
2iφp
∣∣2 . (6.23)

The effect of ε > 0 is to suppress no in the ground state. The quartic term

on the other hand is minimized at nonzero no. In the limit of ε � g1n, we obtain

a pure p-Ps BEC, no → 0. In the other limit, ε � g1n, the ground state energy is

dominated by the quartic interaction, which vanishes when

npe
2iφp = n0e

2iφ0 − 2
√
n1n−1e

i(φ1+φ−1). (6.24)

Since εp < εo, the ground state has the largest value of np consistent with Eq.

6.24 and the fixed value of n = no + np. It can be seen from Eq. 6.24 that np is
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Figure 6.4: Panel (a): relative population fraction of ortho-/para- sectors as a
function of density. The solid lines correspond to Eq. 6.28, and the circled dots are
obtained by using an imaginary-time approach for the GP equation. The critical
density nc ≈ 1.2 × 1019cm−3 corresponds to a nonzero occupation of the ortho-
sector in the ground state. Below the critical density, the ground state is a pure
p-Ps condensate. In the high density limit, n � nc, the ratio of np/no → 1. Panel
(b): |ψi(r)| for the ground state of Ps BEC at n = 1020 cm−3 confined in a spherical
cavity of volume 4πR3/3 = 10−13 cm3. These results, obtained from integration
of Eq. 6.11 in imaginary time, demonstrate the uniformity and miscibility of the
mixed condensates and the equality |ψ1| = |ψ−1|. The density variation is confined
to a boundary layer with thickness about 1% of the cavity radius R. Starting from
random initial conditions, the numerical calculation converges on a solution that
has the phase relationship indicated in Eq. 6.26.

maximized when φp + qπ = φ0 = [φ1 + φ−1 + (2r + 1)π]/2 for integers q, r, and

thus np = n0 + 2
√
n1n−1. To see whether there exists a number imbalance between

n1 and n−1, we let n1 = n̄ + m and n−1 = n̄ −m, where n̄ represents the average

density of the two species, and m denotes the number imbalance. Keeping n1 +n−1

a constant while varying m, we find that
√
n1n−1 =

√
n̄2 −m2 has the largest value

if the imbalance m = 0. Therefore, we obtain the maximal p-Ps density

np = n0 + 2n̄ = no, (6.25)

so ortho- and para- populations become equal in the high-density limit. The ortho-

sector is equivalent to the polar state of a spin-1 condensate with 〈S〉 = 0 [89, 91],

for which there exists a degree of freedom to distribute the population between n0

98



and n̄. Adapting the parametrization given by Ho [89], which has since become

standard [91, 92], we find the general expression for the ground state to be, up to

an overall phase,

ψ =
√
no



− 1√
2
e−iα cos(β)

sin(β)

1√
2
eiα cos(β)

0


+
√
np



0

0

0

±1


(6.26)

where α, β are arbitrary real numbers. To fully specify the ground state of the

system, we now identify the relationship between no and np.

When the effects associated with ε and the quartic term in Eq. 6.22 are

comparable, np will lie in the range n/2 < np < n. To determine np, we write

np = no + δn and adopt the phases and densities described in our derivation of Eq.

6.26, then Eq. 6.22 takes the form

E =

∫
d3r

(
εno +

g1

2
δn2
)
. (6.27)

Using no = (n − δn)/2, we find np by minimizing Eq. 6.27 with respect to δn, for

fixed n. We obtain

np/n = 1
2
(1 + nc

n
) if n > nc

np/n = 1 if n ≤ nc

(6.28)

where the critical density,

nc =
ε

2g1

, (6.29)
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is that at which the para- fraction starts to depart from 1. For Ps, ε is known

experimentally and theoretically [25] and g1 is calculated from Eq. 6.5. With these

values, we find nc ≈ 1.2× 1019 cm−3.

We have verified this simple model by exact numerical calculation of the ground

state of a Ps BEC as a function of density by integration of the GP equations, Eq.

6.11, in imaginary time. As shown in Fig. 6.4(a), the results are consistent with

Eq. 6.28.

The results of this section are based on the premise that individual conden-

sates are uniform and miscible throughout the cavity. To verify the validity of this

picture for Ps confined in a cavity, we impose a hard-wall boundary condition on

Eq. 6.11 and calculate the ground state by integrating in imaginary time. For an

isotropic cavity of volume 10−13 cm3 and total density n = 1020 cm−3, we obtain

the ground-state solution of a mixed condensate given in Fig. 6.4(b). We see that

the assumption holds nicely in the figure with very small boundary effect. The

individual condensates are miscible and uniform throughout the bulk region, and

the spatial variation around the boundary is only about 0.01 of the cavity radius.

In addition, the stationary populations obtained here coincide with those shown in

Fig. 6.4(a).

6.1.4 Spin-mixing dynamics

If a Ps BEC is prepared in a non-stationary state, the interaction Hamilto-

nian Hint can lead to spin-mixing dynamics [91–93]. To understand the basics of
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spin-mixing dynamics and its dependence on the critical density nc, we neglect the

contribution of the kinetic energy operator and treat the condensate as uniform.

GP calculations of nonuniform condensates are included in the next section, where

we find pronounced effects of inhomogeneity for n > nc.

It is convenient to reformulate the coupled GP equations in terms of the frac-

tional populations of individual spin states and the relative phases. For the simplified

case involving only the wavefunctions ψp =
√
nρeiφp and ψ0 =

√
n(1− ρ)eiφ0 , the

equations of motion can be recast as

dρ

dτ
= νρ(1− ρ) sin 2φ,

dφ

dτ
=

ν

2
(1− 2ρ)(1 + cos 2φ) + 1, (6.30)

where φ = φp − φ0 is the relative phase between the two components, ρ is the

population fraction in the para- component, τ = εt/~, and ν = n/nc (from Eq. 6.29).

As in the Josephson effect [94], the phase and density differences drive population

oscillations between the two species. Using a method from Ref. [95], Eq. 6.30 can

be solved by recognizing that ρ and φ are conjugate variables of a functional,

E =
ν

2
ρ(1− ρ)(1 + cos 2φ) + ρ, (6.31)

which is a constant of motion determined by the initial values ρ(τ0) and φ(τ0) at an

arbitrary value of the scaled time τ = τ0. Combining Eq. 6.31 and Eq. 6.30, we

obtain

(
dρ

dτ

)2

= 4ν (ρ− E) (ρ− ρ+)(ρ− ρ−) (6.32)
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where

ρ± =
1

2ν

(
1 + ν ±

√
(1 + ν)2 − 4Eν

)
. (6.33)

As shown in [95,96], this differential equation can be solved by the Jacobi elliptic [97,

98] function sn (or cn) as

ρ = ρ3 + (ρ2 − ρ3)sn2
(√

ν(ρ1 − ρ3) τ, k1

)
(6.34)

where k1 is the elliptic modulus given by

k2
1 =

ρ2 − ρ3

ρ1 − ρ3

(6.35)

and ρi are the three zeros of Eq. 6.32, (ρi = E , ρ±), ordered so that ρ1 > ρ2 > ρ3.

Eq. 6.34 is strictly periodic in variable τ , in the limit k1 → 0 it becomes sinusoidal.

The period of the solution, T, can be calculated in terms of the elliptic integral of

the first kind F (φ, k) [97, 98] as

T =
2√

ν (ρ1 − ρ3)
F
(π

2
, k1

)
. (6.36)

We have chosen the origin τ = 0, so that ρ(0) = ρ3, the minimum value of para-

population fraction. The population oscillates between ρ3 and ρ2.

The internal energy difference ε between ortho- and para- states gives rise to a

barrier for the conversion from p-Ps to o-Ps. This interconversion happens when the

interaction that exchanges populations is sufficiently strong to overcome the energy

barrier. Thus, we again encounter the competition between the ε and the g1 terms

(i.e. spin-mixing interaction) of Eq. 6.22. As discussed above, this competition is
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Figure 6.5: Time evolution of the population fractions ρi for a system prepared with
ρi(t = 0) = 1/4 at densities (a) n = 1018 cm−3 (b) n = 1020 cm−3. In the former case,
nc > n and the spin mixing between the ortho- and para- sectors is minimal; for the
latter case, nc < n and a more substantial spin-mixing is observed. In general, spin
mixing between ortho- and para- states is significant only for n > nc as predicted
in Eq. 6.34. Note that Ps annihilation is not included in the calculations.

expressed in the comparison of the condensate density n with the critical value nc,

which corresponds to when the interaction energy is comparable to ε. Using the

ratio ν = n/nc = 2g1n/ε as a parameter, we estimate the limiting behaviors of the

solution Eq. 6.34, for which the amplitude of population variation is determined

by ρ2 − ρ3. When ν � 1, ρ2 − ρ3 ≈ ν(1 − ρ(τ0))ρ(τ0), which is of order ν. Thus,

regardless of what the initial conditions are, ρ is limited by this quantity, and the

p-Ps fraction will not deviate significantly from ρ ≈ ρ3. On the contrary, when

ν � 1, we have ρ2 − ρ3 ≈ |1 − 2ρ(τ0)| for cos 2φ(τ0) = 1 and ρ2 − ρ3 ≈ ρ(τ0) for

cos 2φ(τ0) = −1, which are both of order 1. The solution ρ can take any value

between 0 and 1. From this analysis, we can see the spin mixing occurs when the

condensate density is greater than the critical value nc.

Taking all four states into consideration, we use Eq. 6.11 to compute numer-

ically the time evolution of populational fractions ρi for i = 0,±1, p. The total
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population is conserved in this evolution,
∑

i
ρi = 1. Fig. 6.5(a) shows the propa-

gation of the four components at density 1018 cm−3, in a case for which the initial

populations are all equal. The three ortho- states continuously exchange popula-

tions and exhibit sinusoidal time evolution. On the other hand, the para- component

has very small oscillations, corresponding to the smallness of the para-ortho- inter-

conversion. Since here we have n/nc = ν = 0.08, this result is consistent with the

solution of the two-component system. In addition, it also implies that although the

unpolarized ortho- fraction diminishes very quickly in many experimental scenar-

ios [28], it would be stable in the condensed phase if n < nc. Considering the case

with n > nc, we set n = 1020 cm−3 and use the same initial conditions. The time

evolutions are shown in Fig. 6.5(b). Here we can clearly see a more substantial os-

cillatory pattern for the para- fraction and some additional small-scale fluctuations

on the ortho- sector, which reveals a stronger para-ortho- spin-mixing occurring at

the high density. Both cases agree very well with our former estimate regarding the

critical density.

6.2 Positronium annihilation and γ-ray laser

Proposals for a γ-ray laser [26, 27, 31] call for preparing a BEC of polarized

o-Ps. This is used as a storage medium which can subsequently be changed to a

gain medium by ortho-para conversion. The p-Ps atoms can then participate in

stimulated emission of the γ-rays produced in p-Ps annihilation. As we have shown

above, there are complex effects of spin mixing when the Ps density exceeds the
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critical density nc. We now investigate how these effects modify the population

distribution within a Ps BEC that is also subject to the processes of spontaneous

annihilation. We find that spin mixing can significantly modify the optimal strategy

for producing a γ-ray laser.

We consider two approaches. The first is a semi-classical rate-equation ap-

proach appropriate for an incoherent mixture of Ps atoms. The second is the full

solution of time-dependent GP equations, taking spontaneous annihilation into ac-

count. On the microscopic level, the GP equations exhibit behavior much different

from the classical rate equations, but when spatial averaging is included, the two

approaches give similar results for n > nc.

6.2.1 The rate equation approach

In this section we use a simple rate equation approach to model Ps anni-

hilation in arbitrary mixtures of o-Ps and p-Ps subject to spin-mixing collisions.

This approach should be valid for incoherent Ps mixtures which can be modeled as

weakly-interacting classical gases [32]. It provides a reference point for understand-

ing the dynamics of nondegenerate gases of Ps, and for comparison with the mixed

Ps BECs that need to be described by the GP equations.

Referring to the notation introduced above, the possible spin-mixing collisions
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can be described schematically by [88]

|0〉 |0〉
k′1
�
k1
|p〉 |p〉

|+−〉
k′2
�
k2
|p〉 |p〉 (6.37)

|0〉 |0〉
k′3
�
k3
|+−〉

where kα and k′α denote the rate constants for the left-to-right and inverse pro-

cesses respectively, and | + −〉 = (|1〉| − 1〉 + | − 1〉|1〉)/
√

2. The first two of these

processes describe direct ortho-para- interconversion. The third is associated with

redistribution of ortho- state populations. Treating the inelastic scattering events

as individual reactions among particles of classical gases, we can calculate the rate

equations [32] by summing the products of rate constants, k, and reactant popu-

lation fractions, ρi. Adding the decay terms representing Ps annihilation, the rate

equations can be expressed as

ρ̇1 = k3ρ
2
0 + k′2ρ

2
p − (k2 + k′3)ρ1ρ−1 − ρ1/τo

ρ̇0 = k′3ρ1ρ−1 + k′1ρ
2
p − (k1 + k3)ρ2

0 − ρ0/τo

ρ̇−1 = k3ρ
2
0 + k′2ρ

2
p − (k2 + k′3)ρ1ρ−1 − ρ−1/τo

ρ̇p = k1ρ
2
0 + k2ρ1ρ−1 − (k′1 + k′2)ρ2

p − ρp/τp

(6.38)

where ρ0, ρ±1, and ρp are the fractions of the four spin states. Since the total

population decays in time, we define the population fractions as ρi (t) = ni (t) /nini,

where nini = n (t = 0). We can calculate the rate constants as kα = nini〈vσα〉, where

〈〉 stands for the thermal average over the relative velocity v, and the cross-sections
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can be calculated from first-principles quantum mechanics [88].

Here we use the same basis transformation procedure given in Eq.6.4 to calcu-

late the cross-sections. We find that the effective scattering lengths aij,kl at which

two Ps atoms in states i, j are scattered to states k, l are

aij,kl = a1δikδjl +
a0 − a1

4
〈kl|Ψs〉 〈Ψs|ij〉 . (6.39)

In the low-energy limit, the corresponding cross-section is given by σij,kl = 8πa2
ij,kl.

The indices should be specified regarding the three spin-mixing processes, Eq. 6.37,

which gives rise to σ1 = 0.130× 10−14 cm2 and σ2 = σ3 = 0.261× 10−14 cm2. These

results are consistent with an equivalent procedure found in Ref. [87, 88]. It should

be noted that o-Ps and p-Ps have different internal energies, so that the thermal

averages of the corresponding kα and k′α will also be different.

There are two main mechanisms in the rate equations. Spin mixing has the

effect of distributing populations of the four states into an equilibrium, while Ps

annihilation depletes populations. For the timescale of interest (1 ns), the system

mainly decays through the para- state. As an example, we consider a thermal gas of

Ps at temperature T = 15K and density nini = 1018 cm−3. For these conditions, the

magnitudes of the various rate constants are between 109 s−1 and 1010 s−1, which is

comparable to the p-Ps decay rate. We propagate the rate equations in Eq. 6.38

with initial condition ρp(t = 0) = 1, ρo(t = 0) = 0 and plot the resulting time

evolution in Fig. 6.6(a). Initially a small portion of p-Ps is converted to o-Ps. After

p-Ps decays below a threshold k1,2ρp . 1/τp further conversion from para- to ortho-

becomes small and the ortho- population begins to decay away. When the para-
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state is mostly depleted, the dominant decay process comes from conversion from

ortho- to para- followed by para- self-annihilation. At this point, the ortho-to-para

spin-mixing rate is slower than the p-Ps decay rate, which creates a bottleneck that

slows down the decay process. Thus, at t = 1 ns, we can still see a fraction of the

total population remains in the ortho- sector.
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Figure 6.6: Evolution of the population fractions calculated with the rate equations
(Eq. 6.38) at densities (a) nini = 1018 cm−3 and (b) nini = 1020 cm−3. In both
cases the initial population is pure p-Ps. In the low density case, the spin mixing
is not sufficiently strong to reach a quasi-equilibrium. At long times, the para-
population is significantly depleted and the ortho- population slowly decays away
through spin-mixing with the para- sector. In the high density case, the relative
populations quickly reach a quasi-equilibrium and collectively decay with an effective
time constant τeff ≈ 4τp.

At a density of nini = 1020 cm−3, all the rate constants are increased by two

orders of magnitude. The same initial conditions give rise to a qualitatively different

evolution as shown in Fig. 6.6(b). Since the spin mixing rates are much stronger

than the p-Ps decay rate, we expect rapid population redistribution on a timescale

shorter than τp. Thus the relative populations remain in quasi-equilibrium at all

times during the decay process. As shown in Fig. 6.6(b), all components decay

with an effective lifetime τeff ≈ 4 τp during this quasi-equilibrium redistribution.

For the same reason, regardless of the initial state of the system, it quickly acquires

108



some mixture of the para- state and decays, so that the system loses its population

more rapidly than for the lower density case. By t = 1 ns, a substantial fraction of

initial Ps has decayed; at longer times, the population decays more slowly due to

the bottleneck effect discussed above.

6.2.2 The Gross-Pitaevskii equations

In this section, we follow the GP formulation provided in Sec. 6.1 and take

into account the effect of Ps annihilation. To incorporate the Ps decay into the

formulation, we use an effective Hamiltonian which modifies the internal energies of

individual species with an imaginary component

εo = ε− i ~
2τo

,

εp = −i ~
2τp

. (6.40)

Using the internal energies in Eq. 6.40 and neglecting the spatial dependence in

Eq. 6.11, we calculate the time evolution of a condensate prepared in the para-

state at various densities. As discussed in Sec. 6.1, when nini > nc, the initial

p-Ps condensate is no longer a ground state and the system will undergo strong

spin-mixing.

We demonstrate this by considering a system prepared in a predominantly

para- state, with a small admixture of ortho-. In particular, our initial state consists

of equal populations of the three ortho- states, each with population fraction ∼ 10−7.

The phases were determined using imaginary time evolution to find the lowest energy

state consistent with this population distribution. We then numerically integrate
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Eqs. 6.11 starting with this initial state.

Figs. 6.7 (a) and (b) show the time evolution of a condensate at nini = 1020

cm−3 at different time scales. Figure (a), which depicts a shorter timescale, reveals

a quasi-periodic oscillation pattern caused by the spin-mixing. As time progresses,

the amplitude of the oscillations decreases due to the decay term introduced in the

GP equation. As t becomes comparable to τp, both the para- population and its

population exchange with the ortho- state begin to disappear. However, the total

population does not simply decay away through the para- state. It evolves into a

pure o-Ps state that is decoupled from the para- annihilation process. About one

third of the population is trapped in the ortho- sector as t > 1 ns. This behavior

is qualitatively different from that observed in the rate-equation approach, where

there is no phase coherence of population amplitudes. In contrast to the classical

rate equations, in the GP equation, the spin-mixing interactions depend on both the

reactant and product densities, and ortho–para conversion is suppressed if either

density is small [99].

In the calculations discussed above, we assumed all components of the conden-

sate occupy the same homogeneous spatial profile. We now discuss more realistic

cases, in which this assumption is not made. First we consider a one-dimensional

quasi-homogeneous condensate, in which each wavefunction is modulated at t = 0

with random spatial noises.

In particular, we assume the transverse directions are tightly confined in a

box smaller than the healing length, ξ. We then define a new 1D pseudo-potential

constant such that the interaction energy per particle is the same as a 3D system
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Figure 6.7: Population evolution of a mixed Ps condensate undergoing both spin
mixing and Ps annihilation over timescales of (a) 0.02 ns and (b) 1 ns. The system
is prepared in |p〉 at a density of nini = 1020 cm−3. The short-scale evolution shows
rapid oscillations due to spin mixing. The long-time evolution reveals a prominent
decay behavior, but with about one third of the total population trapped in the
ortho- sector.

with density nini after integrating over the transverse directions. We prepare an

initial state that corresponds to the state chosen above, defined on a uniform grid

of 1000 points. Then, at each grid point m we multiply the wave function of each

component i by a factor of 1 + ηm,i, where ηm,i is a complex Gaussian random

number with 〈η∗m,iηm′,i′〉 = 2σ2δm,m′δi,i′ , 〈ηm,iηm′,i′〉 = 〈ηm,i〉 = 0, and σ = 0.01. We

emphasize that this propagation is not intended to simulate the effects of dissipation

beyond that associated with electron-positron annihilation. It amounts to applying

a small relative change to the populations of the initial state discussed above, in

order to test the sensitivity of time evolution to initial conditions.

We find that when nini > nc, the initial spatial noise grows rapidly in time

into a regime of highly irregular evolution. For example, we consider the evolution

of a condensate as prepared above, at a density of nini = 1020cm−3, as shown in

Fig. 6.8. All species decay with about the same time constant τ ≈ 4τp, and there is

no persistence of a trapped o-Ps population that occurs in the absence of noise. In
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this regime, spin structures of size comparable to the healing length rapidly collide

and inter-convert. In Fig. 6.9, we can see the noise grows substantially during

one cycle of spin mixing oscillation, giving rise to irregular spatial structure. This

irregular spatial evolution guarantees that there are always regions where o-Ps can

be converted to p-Ps, and then decay. As suggested by Fig. 6.8, the evolution of

the relative populations is qualitatively similar to that found in the rate equation

approach. The overall density also decays on a timescale set by ∼ 4τp instead of τp.

This is because the irregular spatial variation plays a role similar to that of phase

averaging in an incoherent mixture.
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Figure 6.8: Time evolution of a mixed condensate of initial density nini = 1020 cm−3

prepared in the para- state with random spatial noise. At short times, spin-mixing
drives the populations toward the equilibrium distribution. Then, all species decay
exponentially at the same rate, given approximately by 4τp, subject to background
fluctuations. Due to the presence of noise, no population is trapped in the ortho-
sector. The population evolution is qualitatively similar to that obtained from the
rate equations (see Fig. 6.6 (b)) with fitted decay lifetimes equal to τeff/τp = 4.3,
4.3, 4.3, 3.7 for states i = 1, 0,−1, p, respectively.
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Figure 6.9: The wavefunction amplitudes |ψi(x)| recorded at (a) t = 0 ns, (b)
t = 0.002 ns and (c) t = 0.004 ns for the evolution in Fig. 6.8. The system size L
is selected such that L ∼ 200ξ. The noise grows significantly within one cycle of
spin-mixing oscillation. At t = 0 ns, we introduce small random noises to each of the
initial wavefunctions ψi(x). At t = 0.002 ns, |ψi(x)| follows the evolution pattern
of Fig. 6.7 and is about uniform with small spatial fluctuations. At t = 0.004
ns, the background fluctuations begin to dominate and destroy the uniform spatial
structures. By this time, the irregular spin structures have formed such that the
system undergoes local spin mixing.

6.2.3 Stability analysis using the Bogoliubov-de Gennes equations

The short-time amplification of the noise in the GP evolution can be under-

stood by solving the Bogoliubov-de Gennes (BdG) equations [92], which are derived

as follows. We start by introducing small variations δψ to the spinor wavefunction

ψj (r, t) =
(
ψ0
j (r) + δψj (r, t)

)
e−iµt/~, (6.41)
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where j is the conventional spin index used in this chapter, and ψ0
j corresponds to

a reference spinor state. The variation δψj can take the form

δψj (r, t) = uj (r) e−iεt/~ + v∗j (r) eiεt/~. (6.42)

When the system size is much greater than the healing length, we can assume

plane wave solutions of the type uj (r) ≡ uj (k) e−ik·r and vj (r) ≡ vj (k) e−ik·r, and

ε ≡ ε (k), where k is the characteristic wavevector of the plane wave. To calculate

the fluctuations u, v we substitute Eq. 6.41 into the coupled GP equations (Eq.

6.11), linearize to first order in δψ, and then collect terms whose phases rotate as

e−iεt/~. We obtain the Bogoliubov-de Gennes equations for uj and vj

Hjiu
(λ)
i (k) +H

′

jiv
(λ)
i (k) = ε(λ) (k)u

(λ)
j (k)

H
′∗
jiu

(λ)
i (k) +H∗jiv

(λ)
i (k) = −ε(λ) (k) v

(λ)
j (k)

(6.43)

where j, i = 1, 0, −1 and p are the indices for spin states, and λ is a band index

whose meaning will presently become clear. The matrices in Eq. 6.43 are given by

Hji =

(
~2k2

2m
− µ

)
δji + g0ψjψ

∗
i (1 + δji) +

∂2F

∂ψ∗j∂ψi
,

H
′

ji = g0ψjψi +
∂2F

∂ψ∗j∂ψ
∗
i

,

(6.44)

where

F ≡ g1

2

∣∣2ψ1ψ−1 − ψ2
0 + ψ2

p

∣∣2 , (6.45)

and in Eqs. 6.44, 6.45 only, we drop the superscript 0 in ψ0
j .
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For each given value of k, Eq. 6.43 is an eight-dimensional generalized eigen-

value problem. This is because the four spin indices are replicated in the four-

dimensional matrices Hji and H ′ji. Thus for a given value k, Eq. 6.43 has eight

eigenvalues ε(λ) (k) where λ is an eight-fold index. It can be shown that the eigen-

values occur in pairs such that if ε is an eigenvalue, then so is −ε. The eigenvalues ε

may in general be complex numbers, but only real eigenvalues correspond to stable

fluctuations about the reference state ψ0. A complex eigenvalue indicates an insta-

bility of the GP equations. At short times the amplitude of the instability grows

exponentially with time constant given by ~/Im[ε].

We find that when n > nc, a condensate initially in the para- state has complex

BdG eigenvalues, ε = εR+iεI. If εI 6= 0, the mode amplitude will grow exponentially

until the nonlinear terms in the GP equations dominate. This regime is characterized

by significant spatial irregularity on a short length scale. The condensate therefore

is composed of many spatial modes, and correspondingly has a wide distribution

in momentum space. This may reduce the γ-ray yield, as studied in [27]. We

characterize the instability of a condensate by the largest value of εI of any of its

BdG modes, εmax
I . Fig. 6.10 shows the dependence of εmax

I as a function of kinetic

energy and p-Ps density. It shows that the unstable modes appear when nini > nc,

which is the same condition for the occurrence of spin mixing. Thus, when spin

mixing is most pronounced, there is also a propensity for spatial inhomogeneity of

the system.
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Figure 6.10: Imaginary part of the energy, εI, of the most unstable BdG mode
as a function of condensate density nini and kinetic energy Ek. We express these
variables in dimensionless form as indicated by the axis labels. For nini < nc, all
BdG modes are stable, i.e. the imaginary part vanishes. When nini increases above
nc, the low energy (long wavelength) modes become unstable. For any value of
nini > nc, there is an energy band of instability, whose width is about four orders of
magnitudes greater than the natural γ-ray linewidth (∆E ∼ 104~/τp).

6.2.4 Optimizing γ-ray yield

It has been shown that [100] the formation of a Ps BEC corresponds to large p-

Ps stimulated annihilation cross-section. For zero temperature BECs, a macroscopic

number of Ps atoms occupy the zero-momentum mode. This results in a small

energy uncertainty and a narrow γ-ray line-width determined by the natural lifetime:

∆E ∼ ~/τp = (1/2) α5mec
2, where α is the fine structure constant [27]. As the

population of states in p 6= 0 modes increases, both the energy uncertainty and

the γ-ray line-width will increase. This will decrease the resulting coherent γ-ray

yield. As discussed in the previous section, the instability associated with the spin

mixing would lead to a broad uncertainty in kinetic energies that is about four
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orders of magnitude greater than the natural γ-ray linewidth (see Fig. 6.10). The

corresponding γ-ray yield would be greatly reduced. To avoid this effect, it is crucial

to conduct the experiment such that the condensate is composed primarily of the

zero momentum mode.

Original proposals suggested that lasing can be initiated by converting an

ortho- condensate into a para- condensate by application of a radio frequency pulse

[31]. For dense condensates, this procedure could result in a spread of momentum

states due to the spatial instability demonstrated above. However, if the para-

fraction is kept sufficiently small by properly manipulating the duration and strength

of external pulses, this instability can be avoided, and the γ-ray yield maximized.

In the following, we model a polarized Ps BEC subject to external magnetic fields.

We provide two ideal schemes for ortho- to para- conversion, and subsequent γ-

ray emission, without exciting spin-mixing instabilities. To calculate the final gain

of a γ-ray laser, it is necessary to consider the actual construction of a laser, the

geometry structure of the cavity, and how the stimulated annihilation is initiated

with respect to that structure. Future simulations can be made with the inclusion

of these factors.

We now consider the effect of an external magnetic field B = (Bx, By, Bz)

applied to a Ps atom. Using the same basis as Eq. 6.11, the atom-field interaction
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is given by

Hext = −µe



0 0 0 −Bx+iBy√
2

0 0 0 Bz

0 0 0 Bx+iBy√
2

−Bx−iBy√
2

Bz
Bx−iBy√

2
0


,

(6.46)

where µe is the magnetic moment of the electron [101]. This matrix shows that

a field in either the x̂ or ŷ direction couples the | ± 1〉 states with |p〉 with equal

probability. A field in the ẑ direction induces coupling only between |0〉 and |p〉. In

order to couple the state |±1〉 to the state |p〉, we can use circularly polarized light.

We assume an rf pulse where Bx = B cos(ω0t), By = ±B sin(ω0t), and Bz = 0, where

ω0 is the frequency of the rf field and +(−) denotes right(left)-hand polarization. If

~ω0 ∼ ε, we can invoke the rotating wave approximation, and eliminate the counter

rotating terms. In this approximation, left(right)-handed polarization will couple

only the state |1〉 (| − 1〉) to the state |p〉. Note that if linear polarization were

used, i.e., Bx = B cos(ω0t) and By = Bz = 0, then half of the population would

be trapped in a “dark state” of the coupling Hamiltonian, and at most half of the

ortho- states would be converted to para-.

Below the critical density, a strong γ-ray beam can be created by converting

the entire population from |1〉 to |p〉 with a single strong circularly polarized pulse.

However, for nini > nc, care must be taken to avoid the spin-mixing instabilities

discussed in the previous section. An instability can occur if a sufficiently large

population is converted to the para- state. Therefore, it is necessary to design a

118



pulse sequence that keeps the para- fraction small.

To do this, note that for sufficiently small para- population, spin-mixing effects

are frozen out and the spin evolution will be dominated by the Rabi oscillations

induced by the rf pulse. To choose an appropriate pulse sequence, we consider a

homogeneous two state model, consisting of only |1〉 and |p〉, and the density-density

terms. The effective GP equation in the rotating frame is then

i∂t

ψ1

ψp

 =

0 Ω

Ω −iγ + δ + g1np/~


ψ1

ψp

 (6.47)

where Ω = −µeB/~, γ = 1/2τp, ~δ = ε − ~ω0 and we have neglected the finite

ortho- lifetime since it will not be relevant on the timescales of the system. In what

follows, we assume that we are on rf resonance, i.e., δ = 0, unless otherwise stated.
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Figure 6.11: Time evolution of a polarized Ps condensate of density 1020cm−3 (a)
under a single circularly-polarized rf pulse of frequency ω = ε/~ and field strength
B = 1/~µeτp (b) under a series of circularly-polarized rf pulses of the same frequency
but with field strength B = 0.1 T. In both cases, Ps atoms are transferred from
|1〉 to |p〉 using B fields that are chosen to restrict the maximal np to be less than
nc ≈ 0.12nini. Since np < nc, spin-mixing and the corresponding instability do not
appear throughout the process.

We first ignore the effects of interactions by setting g1 = 0, and express

Eq. 6.47 as an eigenvalue problem by assuming time dependence of the form
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ψ ∼ e−iω±tχ±. The solution is characterized by two eigenmodes χ± with eigenvalues

ω± = ±ω − iγ/2, where ω =
√

Ω2 − (γ/2)2. The real part of ω± is responsible for

the oscillatory behavior of the modes, and the imaginary part contributes to the

exponential decay. Solving for the initial conditions ψ1(0) =
√
nini and ψp(0) = 0,

the para- population is given by

np(t) = ninie
−γt sin2 (ωt) Ω2/ω2. (6.48)

The evolution is characterized by two regimes. In the under-damped regime, where

Ω > γ/2 and ω is real, population can oscillate between |1〉 to |p〉 with frequency ω

and an overall decay rate γ.

In the overdamped regime where Ω < γ/2, ω becomes imaginary and Eq.

6.48 can be equivalently expressed as np(t) = ninie
−γt sinh2 (|ω|t) Ω2/|ω|2. The para-

fraction rises to a maximum value of np = nini exp[−γ/|ω| cosh−1(γ/2Ω)] before

decaying away exponentially with slower decay rate given approximately by γ −

2Im[ω].

If nonlinear interactions are included, i.e., g1 6= 0, we find small oscillations in

either regime. These can be understood by replacing the interaction term g1np with

an effective detuning δeff = g1n̄p/~, where n̄p is the para- density time averaged over

the short oscillations. With this replacement, the eigenvalues gain a real component

which allows the corresponding modes to oscillate. At longer times, this mode

damps out and the long-time behavior is well approximated by the non-interacting

model. Note that these oscillations can be reduced by choosing the detuning such

that δ ≈ −δeff .
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To test the efficacy of this pulse sequence, we perform a simulation using the

previously described quasi-1D method applied to a condensate initially prepared in

|1〉 at a density of nini = 1020 cm−3. The circularly polarized rf field is added accord-

ing to Eq. 6.46, without invoking the rotating wave approximation. A small random

noise is added as in the previous section. Two pulse forms are considered. In Fig.

6.11(a), a continuous rf pulse is applied such that the maximum para- population is

set at about nc. In this case the solution of Eq. 6.47 is in the under-damped regime,

in which the para- fraction grows, and then decays as described above. Rapid oscil-

lations are present at short times before quickly decaying away. In Fig. 6.11(b), a

series of short pulses are applied to pump the para- population. Between every two

pulses is a period of no rf fields during which the system undergoes coherent decay.

The field strength is 0.1 T as suggested in [31] and the pulse durations are selected

such that np does not exceed nc. In both pulse sequences, the absolute density of the

para- condensate is kept below the critical density, and no spin-mixing instabilities

form. This comes at the cost of a longer overall decay time.

6.3 Conclusions

In summary, we have considered the effects of interactions in a BEC of positro-

nium atoms. We first derived the many-body interaction Hamiltonian describing

the interactions of the ortho- (triplet) and para- (singlet) sectors. We found that

the interaction Hamiltonian has an O(4) symmetry. The ortho-para- energy dif-

ference breaks this symmetry to SO(3), that of the triplet sector. We calculate
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the ground state for a uniform, homogeneous system. Below the critical density

nc = ε/2g1 ≈ 1.2 × 1019 cm−3, the ground state is entirely polarized in the para-

state. Above the critical density, the ground state contains a non-zero fraction of

the ortho- state. We then consider the effects of interactions on spin dynamics for a

uniform system prepared in a non-stationary state. We find that the critical density

again characterizes the density for which spin mixing between the ortho- and para-

sectors becomes significant.

We then consider how the effects of spin mixing will affect the use of a Ps BEC

as a γ-ray laser. We develop a rate equation approach to describe an incoherent

thermal mixture, including the effects of spontaneous electron-positron annihila-

tion. When the spin mixing is strong the entire system decays with a lifetime

approximately four times the lifetime of the para- state. We then model a coherent

condensate using a 1D GP equation, and find that there are significant spin-mixing

effects above the critical density. This spin mixing induces high frequency spatial

modulations, which have the effect of averaging over populations in a way that re-

sembles phase averaging in an incoherent system. The evolution and decay of the

populations is qualitatively similar to the rate equation approach. Furthermore, the

large spread of kinetic energies of the cloud will reduce the yield of a γ-ray laser.

This suggests that a straightforward preparation of a high density para- condensate

will not result in an optimal γ-ray yield.

Finally, we consider an experimentally relevant setup where an initially spin-

polarized beam of positrons is used to prepare a Ps BEC that is initially spin po-

larized in the |1〉 state. We consider the effect of an external rf field used to convert
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the initial state to the para- state for the production of coherent γ rays. For a

circularly polarized field with frequency that is nearly resonant with the internal

energy splitting of the ortho- and para- states, the ortho- condensate can be fully

converted to the para- condensate. If the initial density is above nc, a modified pulse

sequence can be used to avoid significant para- population, at the cost of a longer

overall timescale. This suggests that for large densities, the γ-ray yield is optimized

by transferring population more slowly. This comes at the cost of a lower γ-ray peak

amplitude, but spread over a longer time.
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Chapter 7: Summary and Future Outlook

We extensively study a laboratory BEC that implements a sonic black hole

in Chapter 3. We propose that the observed features in the laboratory condensate

is due to a Bogoliubov-Čerenkov mode generated at the white-hole horizon (WH),

which stimulates the creation of a Hawking pair at the black-hole horizon (BH).

Based on this mechanism, we modify the experimental parameters, and find a regime

where sharper signal of Hawking radiation can be obtained. We observe a clear

signal of pair creation which agrees with the prediction based on the stimulated

mechanism, and the BdG theory of linearized modes. This modified parameter

regime, along with the stimulated Hawking mechanism, may be useful in detecting

Hawking radiation in future laboratories.

A more recent experiment at Technion reported the observation of correlated

Hawking pair from a density-density correlation function [18]. This experiment

took a very similar step-sweeping procedure as in the previous experiment [1]. The

difference is that the correlated pair was detected at an earlier timeframe at which

a WH may just form. We are currently in a preliminary stage of simulating this

experiment. We are investigating the roles of shot-to-shot variations in the atom

number, which may be relevant in interpreting the observed correlated features as
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in the case of Chapter 4.

Furthermore, it is also likely to realize the analog Hawking effect in a ring-

shaped condensate [23, 24]. In Chapter 5, we create phonon wavepackets by modu-

lating a potential barrier in the ring. If a transonic flow is formed in the ring, we can

develop similar schemes to launching phonon wavepackets to the transonic region,

and trigger stimulated pair creation at the BH. This can be an alternative approach

for the observation of stimulated Hawking radiation.

Lastly, in the chapter of spinor Ps condensates, we find a critical density for

the p-Ps fraction beyond which strong spin mixing between o-Ps and p-Ps would

occur, and suppress the coherent emission of γ rays. We propose a scheme of ap-

plying an external field to control the p-Ps density and the yield of coherent γ ray.

However, some aspects of the system are simplified: (i) the system is considered as

homogeneous (before introducing the spatial noise) and one dimensional; (ii) the Ps

annihilation is treated phenomenologically in the GP equation. In the future, we

would like to take into account more realistic aspects of the system, such as the role

of the silicon cavity and its geometry, and develop a model that can more accurately

describe the stimulated annihilation process, and the emission of coherent γ ray.
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Appendix A: Numerical procedures for Chapter 3

A.1 Characterization of the experimental condensates and descrip-

tion of simulation procedures

In this appendix, we introduce the basic procedures to simulate the experi-

ment. We use the time–dependent Gross–Pitaevskii (GP) equation to determine the

condensate wavefunction Ψ(r, t),

i~
∂Ψ(r, t)

∂t
=

(
T (r) + U(r) + g3DN |Ψ|2

)
Ψ(r, t), (A.1)

where T (r) and U(r) are the kinetic and potential energy operators, N is the number

of condensate atoms, g3D = 4π~2a/m where a is the s–wave scattering length, and m

is the mass of a condensate atom. For a cylindrically symmetric system, the potential

depends only on radial coordinate ρ and axial coordinate x, U(r) = U(ρ, x); and

T (r) can be expressed as

T (r) = − ~2

2m

(
∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

∂2

∂x2
+

∂2

∂φ2

)
. (A.2)

Regarding the ground state of the BEC, the azimuthal coordinate φ in the wave-

function can be suppressed, such that Ψ(r, t) = Ψ(ρ, x, t).

For the experiment of interest [1], the trap potential is formed by a Gaussian
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laser beam:

U(ρ, x) = U0

[
1−

(
w0

w (x)

)2

exp

(
−2ρ2

w2 (x)

)]
. (A.3)

where U0 is the trap strength proportional to the peak laser intensity and

w(x) = w0

√
1 +

(
x

x0

)2

, x0 =
πw2

0

λ
. (A.4)

where λ and w0 denote the wavelength and the waist of the laser beam, respectively.

According to [1], λ = 812 nm, w0 = 5 mm, and the radial frequency is ωρ = 123 Hz.

This corresponds to a trap tightly confined in the radial direction ρ, and elongated

along the axial direction x. Expanding the trap at x = ρ = 0 to second order, we

obtain an approximate harmonic potential:

U(ρ, x) ≈
(

2U0

w2
0

)
ρ2 +

(
U0

x2
0

)
x2 ≡ 1

2
mω2

ρρ
2 +

1

2
mω2

xx
2. (A.5)

from which the trap strength can be estimated by U0 = (1/4)mω2
ρw

2
0 ≈ 39 k nK,

where k is the Boltzmann constant.

When the system is tightly-confined in the radial direction, such that the

integrated density n(x) in the axial direction satisfies an � 1, it can be viewed as

quasi-one-dimensional [102]. Were the potential cylindrically symmetric, one could

approximate the wavefunction in the radial direction by the solution of a harmonic

oscillator, such that

Ψ(r, t) ≈ Φ(ρ)Ψ1D(x, t), (A.6)

where the radial wavefunction is Φ(ρ) = exp [−ρ2/ (2d2)] /(d
√
π), d =

√
~/ (mωρ),

and Ψ1D(x, t) is the axial wavefunction. Integrating the GP equation in Eq. A.1
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over ρ would then yield a 1D GP equation for Ψ1D(x, t), with an effective interaction

coefficient g1D = g3Dmωρ/h:

i~
∂Ψ1D(x, t)

∂t
=

(
− ~2

2m

∂2

∂x2
+ U1D(x) + ~ωρ

)
Ψ1D(x, t)

+ g1DN |Ψ1D(x, t)|2 Ψ1D(x, t). (A.7)

where U1D(x) is the axial trap.

A.1.1 Solution of the time–dependent 1D GP equation

The time-dependent 1D GP equation is solved by using the split-step Crank-

Nicholson algorithm [103] on a 1D spatial grid of 320 µm with 4800 points, first

propagating in imaginary time to obtain the initial stationary condensate, then

propagating in real time with the given initial state to simulate the dynamics. To

simulate the step-sweeping experiment [1], we use a step potential Ustep(x, t), which

takes the form

Ustep(x, t) = −UsΘ(xs(t)− x), (A.8)

where Θ is Heaviside’s step function; Us is the step strength, which takes the values

of Us/k = 3 nK and 6 nK; xs(t) represents the step location, moving at a constant

speed, vs = 0.21 mm/s.

A.1.2 Growing standing wave, spacetime portrait, and frequency

spectrum from a 3D simulation

To test our findings from the 1D simulation, we simulate the same step-

sweeping experiment using the 3D GP equation, with the potential Eq. A.3, as-
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Figure A.1: 3D GP simulation of the condensate. (a-g) Evolution of integrated
density from a 3D simulation at 20 ms intervals with step Us/k = 5 nK, scaled
by a common factor to match experiment, and viewed in the moving frame where
x = 0 defines the step edge. (h) Simulated growth of the standing-wave pattern in
the supersonic region for Us/k = 5 nK. Green: normalized standing-wave amplitude
n̄k(t), n̄k(t) = nk(t)/nk(0), for which ln[n̄k(120)] ∼ 4.8. Dashed black: the square
of background density, n̄bf(t), scaled to match the final standing-wave amplitude,
n̄2

bf(t) = n2
bf(t)[n̄k(120)/n2

bf(120)]. The growths of nbf and nk are determined from
a spatial WFT of n(x) at x = −12.5 µm.
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Figure A.2: Spacetime diagram and WFT frequency spectrum for the 3D simula-
tion. Panel (a): time evolution of |δΨ(x, t)|. Panel (b): windowed Fourier spectrum
evaluated along the red line in (b); panel (c) is the cut-through of the spectrum at
t = 100 ms. Note that the Doppler-shifted frequency ∆ωpair ∼ 0.23 rad/ms, which
is about twice the value from the 1D GPE.

suming the condensate shares the axial symmetry of the potential..

Figs. A.1(a-g) shows the integrated density profiles with a potential step,

Us/k = 5 nK, which is adjusted slightly to match the cavity size with the experi-

ment. The growth of the standing wave amplitude, n̄k, and that of the background

density, n̄bf , are shown in Fig. A.1(h). The standing wave grows by ∼ exp(4.8),
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which is greater than the 1D simulation ( ∼ exp(4.4)), but the growth relation,

n̄k ∝ n̄2
bf , are preserved in the 3D simulation.

Similarly, we calculate the spacetime portrait and the local frequency spectrum

using the GP wavefunction at the center of the radial trap, ρ = 0. The spacetime

portrait in Fig A.2(a) shows very similar features as those in the 1D simulation,

including the standing wave parallel to the WH, and the stimulated Hawking pair.

The WH recession can also be seen in the portrait, which gives rise to a Doppler-

shifted BCR frequency in the WFT spectrum in Fig A.2(b-c), ∆ω ∼ 0.23 rad/ms.

Although there are some quantitative differences with the 1D simulation, all

the qualitative features found in the 1D GPE are preserved here: (i) the growth

relation between the standing wave and the background density, (ii) the stimulated

HR pair by the BCR, and (iii) the Doppler shift due to the WH recession.

A.2 Windowed Fourier transform

Here we summarize the basic ideas of the windowed Fourier transform (WFT),

and explain our use of it. In A.2.1, we give the definition of WFT used here, and

provide a few basic examples to show how it can resolve spectral information on non-

stationary phenomena. In A.2.2, we describe the the application of the WFT to the

determination of flow and sound speeds, v(x) and c(x), in inhomogeneous media.

In A.2.3, we discuss calculations of the wavevector and frequency spectra displayed

in Fig. 3.13(a-b), and the additional spectra that distinguish the partner and BCR

modes. In A.2.4, we show the windowed frequency spectrum for the experimental
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regime, and a comparison with the dispersion relation.

A.2.1 Definition and examples

A windowed Fourier transform [38] f(k, x) of a function f(x) is defined as:

f(k, x) =

∫ ∞
−∞

dy f(y)w(y − x;D)e−iky, (A.9)

where w(y − x;D) = exp(−(y − x)2/D2)/ (
√
πD) is a Gaussian window function

of width D. With the filtering of the window, the transformed function f(k, x)

constitutes a local Fourier transform of f(x), capturing features that vary on length

scales much smaller than D. For a plane wave with wavevector q and amplitude fq

, f(x) = fq exp(iqx), the transformed function is f(k, x) = fq exp(−(k− q)2(D/2)2)

: a Gaussian in k-space, centered at k = q with width 2/D and peak amplitude fq.

Suppose now that f(x) = fq(x) exp(iqx), where fq(x) has weak dependence

on x, and can be adequately approximated near a point x0 by

fq(x) = fq(x0) + f ′q(x0)(x− x0). (A.10)

Then for sufficiently small values of D, the WFT of f(x) near x = x0 is approxi-

mately

f(k, x0) ≈ fq(x0)e−(k−q)2(D/2)2

+ f ′q(x0) i
k − q

2
D2 e−(k−q)2(D/2)2 . (A.11)

Note that the second term vanishes at the peak position k = q, so that f(q, x0) ≈

fq(x0).
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Finally, let f(x) be composed of a number of such slowly–varying modes,

f(x) =
∑
n

fqn(x)eiqnx, (A.12)

so that Eq. A.11 becomes

f(k, x0) ≈
∑
n

[
fqn(x0) + f ′qn(x0)

(
i
k − qn

2
D2

)]
× e−(k−qn)2(D/2)2 . (A.13)

In k–space, each mode presents a Gaussian distribution centered on its respective

qn, whose peak value of f(qn, x0) defines the local mode amplitude. This is how

we make quantitative determinations of the mode amplitudes that are discussed in

Chapter 3.

A.2.2 Determination of the profiles of flow speed and the speed of

sound

As shown in the Chapter 3, during the sweep of the step, the time-dependent

GP wavefunction Ψ(x, t) exhibits excitation modes on top of the background con-

densate. To calculate the speed of sound c(x) and flow speed v(x), we resolve the

background condensate flow by applying a WFT.

First, the amplitude of the background flow at a given time t0 can be calculated

by applying a spatial WFT on the GP density |Ψ(x, t0)|2 = n(x) , where t0 is

suppressed for brevity.

n(k, x) =

∫ ∞
−∞

dy n(y)w(y − x;D)e−iky. (A.14)
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Fig. A.3(a) shows the result of a spatial WFT of density n(x) (which corresponds

to Fig. 3.5(a)) with width D = 5 µm. The central streak at k ∼ 0 corresponds

to the background flow, whose peak value gives rise to the background density

nbf(x) = |n(k ∼ 0, x)|, as shown in Fig. A.3(b). The local speed of sound can then

be expressed as by c(x) =
√
gnbf(x)/m. In Fig. A.3(b), we see that WFT works

quite well in the slowly varying regions away from the two horizons: in the exterior

region, nbf(x) matches the GP density n(x); in the interior region, nbf(x) is at about

the center of spatial oscillations. Near the event horizons, the background density

changes rather quickly, such that WFT fails to estimate the correct local amplitude,

and the resulting nbf(x) is smoothed out nearby these regions.

Second, the flow velocity can be calculated by a WFT of the GP wavefunction

Ψ(k, x) =

∫ ∞
−∞

dyΨ(y)w(y − x;D)e−iky, (A.15)

where again t0 is suppressed for brevity. Fig. A.3(c) shows the windowed wavevec-

tor spectrum |Ψ(k, x)|2 with width D = 5 µm. The dominant streak is the back-

ground flow, whose peak location kbf(x) gives rise to the flow velocity in the rest

frame of the step, −v(x) = ~kbf(x)/m − vs, as shown in Fig. A.3(d); the peak

value of the streak also corresponds to the background density nbf(x) = |Ψ(kbf , x)|2.

In addition, we calculate the velocity profile by using the full GP wavefunction,

vGP(x) = ~/(mn(x)) Im [Ψ∗(x)dΨ(x)/dx] − vs. We can see that WFT works well

in regions apart from the event horizons, and effectively projects out the spatial

oscillation present in vGP(x).

Fig. A.3(e-f) compares v(x) and c(x) from the windowed spectra (panel (e))
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Figure A.3: Determination of flow speed v(x) and the speed of sound c(x). (a)
windowed wavevector spectrum of density n(x) at t0 = 80 ms (Fig. 3.5(b)); (b)
black: local speed of sound cGP from total density n(x); green: speed of sound
cFT from the background flow density nbf(x), filtered with the Fourier spectrum;
(c) windowed wavevector spectrum of GP wavefunction Ψ(x); (d) red: windowed
flow speed, vGP, from a direct calculation on Ψ(x); blue: flow speed vFT from the
background flow wavevector kbf(x); panels (e-f): flow structure determined by the
Fourier spectra (e) and that directly obtained from the GP wavefunction (f).

with those obtained from the full GP wavefuntion (panel (f)). In short, near the

event horizon, the approach of directly adopting the GP wavefunction gives more

accurate speed profiles, with the correct horizon locations and the respective surface

gravity; yet away from the horizons, the WFT effectively removes excitations from

the background flow, and hence gives a more suitable definition for v(x) and c(x).
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A.2.3 Spectral analysis with windowed Fourier transform

The spectral properties of excitation modes can be obtained by performing

spatial and temporal WFTs on the condensate wavefunction. Given a GP wavefunc-

tion, Ψ(x, t), we calculate its local wavevector spectrum and frequency spectrum by

applying the WFTs. To obtain a local wavevector spectrum, we perform a spatial

WFT on the wavefunction Ψ(x, t0) using Eq. A.15 at a time t0 in which excitation

modes are present. The result is presented in Fig. 3.13(a), in which the excitation

modes are resolved in addition to the background flow. Note that for the region

on the RHS of the step, we perform the WFTs on the variation function δΨ(x, t)

rather than Ψ(x, t), in order to subtract the background component and bring out

the excitation mode in that region.

For a local frequency spectrum, we apply a temporal WFT at position x0(t)

moving at constant speed vs with the potential step:

Ψ(ω, t) =

∫ ∞
−∞

dτ Ψ(x0(τ), τ)w(τ − t;T )eiωτ , (A.16)

where w(τ − t;T ) represents a Gaussian window function of width T , w(τ − t;T ) =

e−(τ−t)2/T 2
/
√
πT ; x0 is selected to be both inside (xI) and outside the BH cavity (xO),

which is indicated by the red and blue lines in Fig. 3.11(b). The result is presented

in Fig. 3.13(a). In the figure, there are two modes (ψp and ψBCR) overlapped in the

frequency spectrum (ω ∼ 0.15 µm) evaluated at position xI(t). To resolve the two

modes, we perform a spatial WFT evaluated at xI(t) for various times

Ψ(k, t) =

∫ ∞
−∞

dyΨ(y, t)w(y − xI(t);D)e−iky. (A.17)
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The result is presented in Fig. A.4(a), from which ψBCR and ψp are separated at

different k values, kBCR (solid red line) and kp (dashed red line). Furthermore,

by performing a temporal WFT on Ψ(k, t) at the two wavevectors, we resolve the

overlapped streaks in the initial frequency spectrum at ω ∼ 0.15 rad/ms, as shown

in Fig. A.4(b-c).
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Figure A.4: Distinguishing the BCR mode (ψBCR) and the partner mode (ψp). (a)
Local wavevector spectrum evaluated at xI(t) for various times, in which the BdG
modes (ψBCR and ψp) of the same frequency are separated at different k values; (b)
the frequency spectrum of Ψ(kBCR, t), where kBCR is indicated by the solid red line
in (a); (c) the frequency spectrum of Ψ(kp, t), with kp indicated by the dashed red
line in (a).

A.2.4 Windowed frequency spectrum for the experimental regime

In Chapter 3, we presented a full spectral analysis for the modified regime,

which agrees with the prediction from the dispersion relations. Here we present the

dispersion relation and the frequency spectrum for the experimental regime. This

shows that no black hole laser effect is apparent in our simulation of the experiment

of Ref. [1].

We apply the temporal WFT on Ψ(x, t) at a position about the center of the

cavity, xI = xBH − 12 µm, indicated by the red line in Fig. 3.10(a). The resulting
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frequency spectrum is given in Fig. A.5. The streak that appears from early times

shows the frequency of the background flow wavefunction Ψbf . The lower streak

corresponds to the superposition of the BCR and the partner mode. The cut-

through at t = 100 ms is shown in panel (b), from which the relative frequency (of

the u-components) ∆ω ∼ -0.11(3) rad/ms.

We also predict this relative frequency using the dispersion relation. The

assumption that the BCR is the zero-frequency mode in the WH frame determines

∆kBCR = 2.9 µm−1. Taking into account the velocity difference between the WH

and the BH, vBH−vWH ∼ 0.032 mm/s, the relative frequency of BCR (and p-mode)

in the BH frame is given by ∆ω = ±∆kBCR(vBH − vWH) ∼ ±0.09 rad/ms, which is

indicated by the dashed black lines in panel (c). This predicted frequency agrees

with the measured value from the WFT to within the uncertainty.
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Figure A.5: Windowed frequency spectrum and dispersion relation for the ex-
perimental regime. (a) frequency spectrum evaluated at x = xBH − 12 µm. (b)
cut-through along the red line in (a). (c) dispersion relations in the WH (dashed
red) and BH (solid red) reference frames, evaluated at t = 100 ms. The dashed black
lines show the frequencies of the BCR mode in the BH frame, which stimulates the
first HR pair. The dashed blue line indicates the frequency of a positive-norm mode
ψ+ in the BH frame, which stimulates the second HR pair. Note that u+ represents

the u-component of ψ+ (Eq. 5.5); up and u
(2)
p denote the u-components of the first

and the second p-modes, respectively.

The wavelength of the partner mode predicted using the dispersion relation
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is λp ∼ 57 µm, which is greater than the width of the supersonic cavity L ∼ 25

µm. Therefore the partner cannot be treated in the WKB approximation, and the

discrete spectrum of cavity modes modifies the emission, unlike in the M2 regime

where the ratio λp/L is smaller. This may explain the irregular wavelength of the

HR in the experimental regime seen in Fig. 3.10(a).

In addition, we find that the laser amplification will not take place in the

experimental regime, where the WH recedes from the BH. When the p-mode scatters

at the WH, it creates a pair of positive-norm (ψ+) and negative-norm (ψ−) modes [1]

(here we only show the former, u+ in panel (c)), whose frequency is the same as that

of the partner in the WH frame. Due to relative velocity between BH and WH, u+

has a shifted frequency in the BH frame (the dashed blue line in Fig. A.5(c)), lower

than the frequency of the first p-mode, and it stimulates the second p-mode (u
(2)
p )

at that shifted frequency. The repetitive scatterings at the horizons do not occur at

a single frequency to causing lasing. Therefore, self-amplification will not occur.

A.3 BEC parameter regimes in which Hawking radiation has greater

visibility

To find a more distinctive signature of HR, we study the GP evolution in

different parameter regimes where the frequency of the trapping potential, ωx, and

the depth, Us, and speed, vs, of the potential step are varied away from the values

(ω0
x, U

0
s , v0

s ) reported in Ref. [1], which are recorded in Sec. A.1. We find that by

choosing an appropriate set of experimental parameters, the HR can be observed
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with well-resolved wavelengths and frequencies.

Fig. A.6 shows four representative cases for our investigation. Regimes E1

and E2 use the same trapping frequency as the experimental value ω0
x, but adopt

a greater step speed vs = 1.5v0
s ; case E1 uses the step strength, Us/k = 6 nK; case

E2 has a greater step strength, Us/k = 9 nK. Note that ω0
x and v0

s are the reference

values taken from [1], ω0
x = (2π)× 4.5 Hz, and v0

s = 0.21 mm/s.
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Figure A.6: Time evolution for modified parameter regimes, characterized by mod-
ified trapping frequency ωx = γω0

x, step speed vs = 1.5γ1/3v0
s , and step strength Us.

Note that ω0
x and v0

s are the reference values taken from [1], ω0
x = (2π) × 4.5 Hz,

and v0
s = 0.21 mm/s. Modified regimes: (E1) γ = 1, Us/k = 6 nK and vs = 1.5v0

s ;
(E2) γ = 1, Us/k = 9 nK, and vs = 1.5v0

s ; (M1) γ = 1/4, Us/k = γ2/3 × 6 nK, vs =
1.5γ1/3v0

s ; (M2) γ = 1/4, Us/k = γ2/3 × 9 nK, vs = 1.5γ1/3v0
s . Bottom: time evolu-

tion of |δΨ(x, t)|; top: density profile n(x) at times indicated by the horizontal red
(green) line in the lower panel. Note that |δΨ(x, t)| is multiplied by 10 for x > xBH,
where xBH is indicated by the solid orange lines.

Regimes M1 and M2 are the cases equivalent to E1 and E2 with a modified
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trapping frequency, ωx = (1/4)ω0
x. Here we use some scaling relations to determine

the step speed vs and depth Us that give rise to an equivalent flow structure with the

modified trapping frequency. We know that modifying ωx changes the speed of sound

c (due to the change of n(x)) and the chemical potential µ, and subsequently changes

the flow structure shown in Fig. A.3. Using the Thomas-Fermi approximation [32]

for a 1D condensate in a harmonic trap, we find that µ ∝ ω
2/3
x , and the maximal

density nmax ∝ ω
2/3
x (i.e. cmax ∝ ω

1/3
x ). By keeping ratios Us/µ and vs/cmax fixed,

we can construct an equivalent flow structure under a different trapping frequency.

We define the scaling factor γ = ωx/ω
0
x, and incorporate γ into the ratios. This

gives rise to the scaling relations, Us = γ2/3U0
s and vs = γ1/3v0

s . Regime M1 is the

modified case for E1, such that Us/k = γ2/3 × 6 nK, vs = 1.5γ1/3v0
s ; likewise, M2 is

the modified case for E2, so Us/k = γ2/3 × 9 nK, vs = 1.5γ1/3v0
s .

Our investigation shows that a clear mode structure occurs in regimes where

the background flow is sufficiently homogeneous. Then the BdG modes can be

described as WKB modes with well-characterized frequency and wavevector, as in

Ref. [14]. In the experimental regime (Fig. 3.10(a)), ψp has the longest wavelength,

and is comparable to the width of the BH cavity, L (the distance between the BH and

WH). We find that the mode structure is improved when reducing the wavelength

of the partner mode ψp, relative to L.

To control the wavelength of ψp, one can refer to the BCR mechanism and the

stimulated Hawking effect, and use the dispersion relation shown in Fig. 3.12(a).

Overall, the wavelength of the p-mode decreases with increasing step speed, vs.

According to the dispersion relation, the BCR is the zero frequency mode in the
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WH frame, ∆ω(∆kBCR) = 0. Increasing vs increases the flow speed inside the

supersonic cavity, which lowers (raises) the positive-k (negative-k) branch of the

dispersion curve ∆ω(∆k), and displaces the intersection ∆ω(∆k) = 0 to a larger

∆k value. This further increases the frequency |∆ω| of the Hawking pair, which is

proportional to kBCR, and displaces the root of the dispersion curves for ψHR and

ψp to greater |∆k| (see Fig. 3.12). In regime E1, we increase vs by 50% over the

experimental value. This decreases the p-mode wavelength relative to the cavity

length, L, and the corresponding HR appears more periodic. We further extend L,

by increasing step depth, Us. Regime E2 in Fig. A.6 corresponds to the case with a

greater step depth, in which the number of oscillations of ψp doubles.

Regimes M1 and M2 adopt a smaller trapping frequency, ωx = (1/4)ω0
x. Re-

ducing ωx increases the size of a BEC, and extends the flow structure, by which

excitation modes can be more easily observed and resolved in the laboratory. We

can see that cases M1 and M2 have clear mode structures as in E1 and E2, with

approximately twice the cavity length. Note that regime M2 is reported in Chapter

3, along with a mode analysis using the spatial and temporal WFTs.
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Appendix B: Numerical procedures for Chapter 4

B.1 GP simulation and optimizing experimental parameters

The GP simulation in Chapter 4 is similar to that in Chapter 3. In Chapter 4,

we further modify the parameters for the trapping and the step potentials, to better

model the experiment. Here we provide the details of such modification.
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Figure B.1: The evolution of a condensate. The density profile is plotted at 20
ms intervals with moving potential step Us = 0.75µ, scaled by a common factor to
match experiment, and viewed in the moving frame where x = 0 defines the step
edge. Black: experiment [1]; blue: present simulation.

First, for the trapping potential U1D(x), we use the Gaussian-beam potential

(A.3) evaluated at ρ = 0, i.e. U1D(x) = U0x
2/(x2 +x2

0). We adjust the parameter U0

from the estimate in Eq. A.5, to optimize the consistency of the simulation with the

experimental observations [1]. Using this potential and 1DGPE, we simulate the

step-sweeping experiment [1, 34]. We introduce a step potential Ustep(x, t), which
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takes the form

Ustep(x, t) = −Us(tanh((xs(t)− x)/Ds)− 1)/2. (B.1)

Here Us is the step strength, Us = 0.75µ, with µ the chemical potential, xs(t) is

the step position, moving at speed, vs = 0.21 mm/s, and Ds is the step width,

Ds = 0.5µm.

Figure B.1 shows the evolution of the condensate density profile with U0 =

33.2 k nK. The single evolution of the 1D condensate agrees qualitatively well with

the average density measured in the experiment, regarding the shape of the back-

ground condensate, the cavity size, and the wavelength and phase of the standing

wave near the BH. As discussed in the text, the addition of atom number fluctua-

tions to the simulated ensemble suppresses the oscillation amplitude on the left half

of the cavity, and so improves the agreement.

We noticed that certain features of the condensate evolution can be very sen-

sitive to parameters in the potential. To illustrate this here, we vary the trap

coefficient slightly, by 3%, U ′0 = (1 ± 0.03)U0, which is illustrated in Fig. B.2(a).

The resulting density profiles at t = 120 ms are shown in Fig. B.2(b). The cavity

size in the density profiles is similar, however there is a change in the standing wave

patterns, and the density to the right of the cavity (where the Hawking radiation

is emitted), as shown in Fig. B.2(b). We also found that this phase shift modifies

the checkerboard pattern in the correlation functions. The checkerboard is present

in all cases, but the variation δn(x) is more sensitive to the change of atom num-

ber with a lower trap. This produces stronger features of the lines parallel to the
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Figure B.2: Simulations with various trap coefficients, U ′0 = (1 ± 0.03)U0. Panel
(a): effective axial potential, U1D(x). Solid blue: U ′0/U0 = 1; dashed-dotted black:
U ′0/U0 = 0.97; dashed red U ′0/U0 = 1.03. Note that the minimum of U(x) is shifted
to zero. Panel (b): density profiles using the corrected potentials with parameter
U ′0/U0 = 0.97, 1, 1.03.

diagonal near the WH, and the dark nodal lines near the BH in the checkerboard.

We conjecture that this hypersensitivity to the potential strength is related to the

Čerenkov instability that produces the standing wave, since small differences in the

condensate and flow early in the evolution may be amplified by the onset of the

instability.

144



Bibliography

[1] Jeff Steinhauer. Observation of self-amplifying Hawking radiation in an ana-
logue black-hole laser. Nature Physics, 10(11):864–869, 2014.

[2] Jeff Steinhauer and Juan Ramón Muñoz de Nova. Self-amplifying Hawking
radiation and its background: A numerical study. Phys. Rev. A, 95:033604,
Mar 2017.

[3] A. Einstein. Quantentheorie des einatomigen idealen gases. Sitzungsbericht
der Preussischein Akademie der Wissenschaften, page 3, 1925.

[4] MH Anderson, JR Ensher, MR Matthews, CE Wieman, and EA Cornell.
Observation of Bose-Einstein condensation in a dilute atomic vapor. Science,
75:198, 1995.

[5] K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee,
D. M. Kurn, and W. Ketterle. Bose-Einstein condensation in a gas of sodium
atoms. Phys. Rev. Lett., 75:3969–3973, Nov 1995.

[6] C. C. Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hulet. Evidence of Bose-
Einstein condensation in an atomic gas with attractive interactions. Phys.
Rev. Lett., 75:1687–1690, Aug 1995.

[7] William D. Phillips. Nobel lecture: Laser cooling and trapping of neutral
atoms. Rev. Mod. Phys., 70:721–741, Jul 1998.

[8] Wolfgang Ketterle and N.J. Van Druten. Evaporative cooling of trapped
atoms. volume 37 of Advances In Atomic, Molecular, and Optical Physics,
pages 181 – 236. Academic Press, 1996.

[9] Franco Dalfovo, Stefano Giorgini, Lev P. Pitaevskii, and Sandro Stringari.
Theory of Bose-Einstein condensation in trapped gases. Rev. Mod. Phys.,
71:463–512, Apr 1999.

145



[10] Immanuel Bloch, Jean Dalibard, and Wilhelm Zwerger. Many-body physics
with ultracold gases. Rev. Mod. Phys., 80:885–964, Jul 2008.

[11] E. P. Gross. Structure of a quantized vortex in boson systems. Nuovo
Cimiento, 20:454, 1961.

[12] L. P. Pitaevskii. Vortex lines in an Imperfect Bose gas. Sov. Phys. JETP,
13:451, 1961.

[13] N. N. Bogoliubov. On the theory of superfluidity. J. Phys. (USSR), 11:23,
1947.

[14] S Finazzi and R Parentani. Black hole lasers in Bose-Einstein condensates.
New J. Phys., 12(9):095015, 2010.

[15] L. J. Garay, J. R. Anglin, J. I. Cirac, and P. Zoller. Sonic analog of gravi-
tational black holes in Bose-Einstein condensates. Phys. Rev. Lett., 85:4643–
4647, Nov 2000.

[16] W. G. Unruh. Experimental black-hole evaporation? Phys. Rev. Lett.,
46:1351–1353, May 1981.

[17] Oren Lahav, Amir Itah, Alex Blumkin, Carmit Gordon, Shahar Rinott, Alona
Zayats, and Jeff Steinhauer. Realization of a sonic black hole analog in a Bose-
Einstein condensate. Phys. Rev. Lett., 105:240401, Dec 2010.

[18] Jeff Steinhauer. Observation of quantum Hawking radiation and its entangle-
ment in an analogue black hole. Nature Physics, 12(10):959–965, 2016.

[19] Steven Corley and Ted Jacobson. Black hole lasers. Phys. Rev. D, 59:124011,
May 1999.

[20] Alice Sinatra, Carlos Lobo, and Yvan Castin. The truncated Wigner method
for Bose-condensed gases: limits of validity and applications. Journal of
Physics B: Atomic, Molecular and Optical Physics, 35(17):3599, 2002.

[21] A. Ramanathan, K. C. Wright, S. R. Muniz, M. Zelan, W. T. Hill, C. J. Lobb,
K. Helmerson, W. D. Phillips, and G. K. Campbell. Superflow in a Toroidal
Bose-Einstein condensate: an atom circuit with a tunable weak link. Phys.
Rev. Lett., 106(13):130401, March 2011.

[22] K. Wright, R. Blakestad, C. Lobb, W. Phillips, and G. Campbell. Driving
phase slips in a superfluid atom circuit with a rotating weak link. Phys. Rev.
Lett., 110(2):25302, January 2013.

[23] L. J. Garay, J. R. Anglin, J. I. Cirac, and P. Zoller. Sonic black holes in dilute
Bose-Einstein condensates. Phys. Rev. A, 63:023611, Jan 2001.

146



[24] P. Jain, A. S. Bradley, and C. W. Gardiner. Quantum de Laval nozzle: Sta-
bility and quantum dynamics of sonic horizons in a toroidally trapped Bose
gas containing a superflow. Phys. Rev. A, 76:023617, Aug 2007.

[25] Arthur Rich. Recent experimental advances in positronium research. Rev.
Mod. Phys., 53:127–165, Jan 1981.

[26] P. M. Platzman and A. P. Mills. Possibilities for Bose condensation of positro-
nium. Phys. Rev. B, 49:454–458, Jan 1994.

[27] A. P. Mills, D. B. Cassidy, and R. G. Greeves. Materials Science Forum,
445-446:424, 2004.

[28] D. B. Cassidy, V. E. Meligne, and A. P. Mills. Production of a fully spin-
polarized ensemble of positronium atoms. Phys. Rev. Lett., 104:173401, Apr
2010.

[29] D. B. Cassidy, S. H. M. Deng, and A. P. Mills. Evidence for positronium
molecule formation at a metal surface. Phys. Rev. A, 76:062511, Dec 2007.

[30] D. B. Cassidy and A. P. Mills. Interactions between positronium atoms in
porous silica. Phys. Rev. Lett., 100:013401, Jan 2008.

[31] Allen Paine Mills. Positronium molecule formation, Bose–Einstein conden-
sation and stimulated annihilation. Nuclear Instruments and Methods in
Physics Research Section B: Beam Interactions with Materials and Atoms,
192(1–2):107 – 116, 2002.

[32] C.J. Pethick and H. Smith. Bose-Einstein condensation in dilute gases. Cam-
bridge University Press, second edition, 2008.

[33] Scott J Robertson. The theory of Hawking radiation in laboratory analogues.
J. Phys. B: At. Mol. Opt. Phys., 45(16):163001, 2012.

[34] Yi-Hsieh Wang, Ted Jacobson, M. Edwards, and C. W. Clark. Mechanism
of stimulated Hawking radiation in a laboratory Bose-Einstein condensate.
arXiv:1605.01027, 2016.

[35] Carlos Mayoral, Alessio Recati, Alessandro Fabbri, Renaud Parentani,
Roberto Balbinot, and Iacopo Carusotto. Acoustic white holes in flowing
atomic BoseEinstein condensates. New J. Phys., 13(2):025007, 2011.

[36] I. Carusotto, S. X. Hu, L. A. Collins, and A. Smerzi. Bogoliubov-Čerenkov
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