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Estimation of under-canopy radiation is crucial for characterizing vegetation–

energy interactions and for a better understanding of its implications for ecosystem 

studies and forestry applications. Under-canopy radiation regimes are difficult to 

model due to the complex interaction of light with vegetation structure. Also, 

measuring radiation under the canopy over large areas is challenging using traditional 

field-based procedures. In this context, LiDAR remote sensing shows great potential 

for radiation estimation because it directly measures the three-dimensional canopy 

structure. The primary aim of this dissertation is to improve the understanding of 

under-canopy light regime using discrete return LiDAR and estimate solar radiation 

in forests with different structural characteristics. Based on the availability of LiDAR 

data, research sites were chosen in the coniferous forests of Sierra National Forest 



  

(SNF), California, and a chronosequence of mixed deciduous forest plots located in 

the Smithsonian Environmental Research Center (SERC), Maryland. First, LiDAR-

derived digital surface models with and without vegetation canopy were used to 

assess the first-order effect of vegetation on solar radiation in SNF. The results 

showed a significant difference (p value < 0.001) in insolation values between the two 

surface models, with the mean solar irradiation over the bare surface almost three 

times higher than vegetation canopy surface. Next, a ray-tracing method was used to 

estimate beam radiation using  LiDAR point clouds, and estimates were compared 

with in situ pyranometer measurements across three forest plots in SERC and were 

found to be in good agreement (RMSE = 13.94 W/m2). Lastly, LiDAR-derived 

vertical light transmittance values were compared with measurements from field-

based PAR sensors, across five forest plots in SERC and were found to be in good 

agreement (R2 = 0.84). These results suggest that LiDAR remote sensing can provide 

reliable fine-scale estimates of beam radiation and vertical transmittance values under 

the vegetation canopy without the need for extensive ground measurements. This 

information provides a better understanding of radiation variability under the canopy 

and can help potentially improve the estimates from a range of land surface models 

such as snowmelt and hydrological models, and possibly help downscale general 

circulation model (GCM) predictions. 
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Chapter 1 Introduction 

 

1.1 Motivation and Background 

Solar radiation is the primary source of energy that drives all biological 

and physical processes on earth. It plays a critical role in plant growth, succession, 

hydrological processes (e.g., snowmelt and evaporation), and surface energy 

balance. Understanding the distribution and variability of solar radiation is key to 

understanding plant growth, habitats the hydrological cycle and global climate 

(Murphy, Freas, & Weiss, 1990; Rich & Weiss, 1991; Weiss, Rich, Murphy, 

Calvert, & Ehrlich, 1991). Solar radiation also controls the canopy structure, soil 

temperature, evaporation, understory species composition and microclimate 

conditions at the stand level (Gutschick, 1991; Parker, Lefsky, & Harding, 2001). 

The three-dimensional canopy structure is key to forest function because canopy 

elements determine the quantity, quality, and spatiotemporal distribution of 

under-canopy light conditions. The amount of light passing through a forest 

canopy is regulated by tree species, size and location, the amount of canopy 

elements, their organization and spectral characteristics, and the angle of solar 

incidence (Colbert et al., 1990; Pukkala, Becker, Kuuluvainen, & Oker-Blom, 

1991; Jennings, Brown , & Sheil, 1999; MacFarlane et al., 2003). Studies have 

examined the interaction of vegetation structure and availability of under-canopy 

light, and its effect on plant growth and yield forecasting (Naesset, 1997; 
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Battaglia et al., 2002; Hardy et al., 2004), on energy exchange patterns above and 

below the canopy (Ni, 1997), for biodiversity estimation (Hyde et al., 2006), and 

for understanding hydrological and ecological processes in forest ecosystems 

(e.g., Pomeroy & Dion, 1996; Hardy et al., 2004; Essery et al., 2008). 

Under-canopy radiation regimes determine a range of ecological and 

biological processes and components in forest ecosystems, such as species 

diversity, species distribution, community structure, and succession processes 

(MacArthur, 1964; Martens, Breshears, & Meyer, 2000; Svenning, 2002; Frelich, 

Machado, & Reich, 2003; von Arx, Dobbertin, & Rebetez, 2012). Understory 

light environment also influences growth and competition, net primary 

production, and vegetation types (Sakai & Akiyama, 2005; von Arx et al., 2012). 

Understanding under-canopy radiation profiles and regulating under-canopy light 

levels are often essential for agroforestry systems, commercial plantations, and for 

conservation purposes (Bellow & Nair, 2003; Frelich et al., 2003; Jennings et al., 

1999). Canopy radiation schemes are also important to consider in dynamic global 

vegetation models (Loew et al., 2014).  

The presence of vegetation affects radiation, energy balance, and 

snowmelt under the canopy. Interaction of vegetation with radiation impacts 

under-canopy snow processes by influencing the timing, quantity, and duration of 

snowmelt. Predicting snow accumulation and snowmelt in forested areas is 

complex because most snow models are not sensitive to canopy properties 

(Storck, Lettenmaier, & Bolton, 2002). Snow models’ performance is also 
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inconsistent at forest sites in comparison with open sites because of the complex 

interactions among snow, energy transfer, and trees (Rutter et al., 2009). In most 

hydrological studies, estimation of solar energy over vegetation areas is either 

neglected or oversimplified by considering vegetation as a turbid medium or 

using leaf area index (LAI) as a proxy for the amount of vegetation (Mahat & 

Tarboton, 2012). Incorporating the three-dimensional effect of vegetation 

structure, canopy geometry and their spatial distribution, and accurate 

characterization of the under-canopy radiation regime is necessary for validation 

of hydrological cycle and snowmelt models, and will lead to better estimation of 

soil moisture, hydrological flow, and snowmelt (Fu & Rich, 2002; Hardy et al., 

2004; Varhola, Coops, Weiler, & Moore, 2010; Mahat & Tarboton, 2012).  

Measuring under-canopy light is essential for forest management and 

silvicultural practices. Forest managers alter the forest canopy through thinnings 

to modify the canopy transmittance, and thereby the under-canopy light levels 

(Messier, 1996), to achieve specific objectives such as habitat management or 

seedling growth (Hale, Edwards, Mason, Price, & Peace, 2009). Knowledge of 

under-canopy light distribution on the forest floor may potentially be useful for 

mapping and monitoring disturbances to forest ecosystems, such as diseases, 

invasive species, or logging (Rosam, 2015). 

1.2 Deriving Canopy Structure and Estimating Under-Canopy Radiation 

Most physical models that estimate solar radiation reaching the earth’s 

surface tend to simplify the process by focusing primarily on the effect of terrain, 
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atmosphere, and solar geometry (Peng, Zhao, & Xu, 2014). Therefore, in 

comparison with atmosphere and topography, the effects of which have been 

widely studied, there are fewer studies on the association between vegetation 

structure and radiation regime (Dozier, 1980; Dubayah, 1994; Kumar, Skidmore, 

& Knowles, 1997; Reuter, Kersebaum, & Wendroth, 2005). Lack of canopy 

structure information at the stand level makes such studies difficult (Parker, 

Lefsky, & Harding, 2001). Vegetation effect is either simplified, assuming it to be 

a homogenous medium (Verseghy, McFarlane, & Lazare, 1993), or based on 

actual field data from forest (e.g., Parker et al., 2001; Stadt et al., 2005). Deriving 

three-dimensional vegetation structure using information gathered from forest 

survey is a tedious process. Traditional optical remote sensing was of limited use 

because of its inability to derive vertical canopy structure. Estimating under-

canopy solar irradiance is another challenging process, which traditionally uses 

pyranometers, quantum sensors hemispherical photographs, and 

photosynthetically active range (PAR) sensors (e.g., Rich, 1990; Parker et al., 

2001; Hardy et al., 2004).  

In the last decade, light detection and ranging (LiDAR) remote sensing has 

been useful in providing vital and detailed information about the three-

dimensional structure of vegetation (Lim, Treitz, Wulder, St-Onge, & Flood, 

2003). Discrete return LiDAR is widely used in ecosystem studies and for 

resource management because of its availability and natural capacity to represent 

complex vegetation structures and ground features with accuracy (Lefsky, Cohen, 
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Parker, & Harding, 2002; Lim et al., 2003; Evans et al. 2009). Studies have begun 

to incorporate LiDAR-derived information on vertical canopy structure for 

biodiversity research and applications (e.g., Goetz et al. 2007; Turner et al. 2003). 

Using LiDAR as an active sensor not only provides information about canopy 

structure and forest biophysical parameters (Lefsky, Harding, Cohen, Parker, & 

Shugart, 1999; Morsdorf, Kötz, Meier, Itten, & Allgöwer, 2006; Korhonen, 

Korpela, Heiskanen, & Maltamo, 2011), but also helps us understand how light 

behaves as it travels through the vegetation canopy (Parker et al., 2001; Essery et 

al., 2008; Varhola et al., 2010). This information is vital for understanding the 

interplay of light and vegetation and can be further used to estimate the under-

canopy solar radiation.  

Therefore studying the spatio-temporal aspects of under-canopy light 

distribution is crucial for a sound understanding ecological processes and 

ecosystem functions within forests. However, characterization of forest canopies 

is challenging because of its structural complexity. 

1.3 Dissertation Outline 

The primary goal of this doctoral research was to improve characterization 

of under-canopy light regime in forest stands using discrete return LiDAR data.  

This dissertation will address the following specific objectives: 
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• Assess the first order effect of vegetation canopy on solar radiation using 

digital surface models (DSM) derived from small footprint discrete 

LiDAR. 

• Estimate and inter-compare under-canopy beam radiation using three-

dimensional vegetation structure derived from LiDAR data across forest 

plots at different stages of succession. 

• Estimate, inter-compare, and validate vertical light transmittance, LAI, 

and LAD derived from LiDAR across forest plots at different stages of 

succession.  

The research sites are in the Teakettle Experimental Watershed in Sierra 

National Forest (SNF) in California (CA) and the Smithsonian Environmental 

Research Center (SERC) in Maryland. The SNF site has complex topography and 

mixed conifer forests. The SERC had relatively simple topography and mixed 

deciduous forest at different stages of succession. High-resolution discrete LiDAR 

data, the primary data source for this research, are available for these two sites 

along with the field data for model validation. These factors make the two sites 

suitable for studying under-canopy solar radiation using LiDAR.  

The next sections give a brief overview of the dissertation. 
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1.4 Overview 

This dissertation is divided into five chapters that includes an introduction 

(Chapter 1), followed by Chapters 2, 3, and 4, which present the main 

contributions of this dissertation and are formatted as articles. The fifth chapter 

concludes this dissertation. 

 In Chapter 2, the first-order effect of vegetation on solar radiation is 

assessed using DSM and digital elevation models (DEM) derived from small 

footprint discrete LiDAR. The data were acquired at the Teakettle Watershed in 

SNF in 2008. Solar radiation at both above and under tree canopies was then 

simulated to highlight the effect of trees on the underlying surface.  

Chapter 3 estimates and compares the under-canopy direct beam radiation 

for forest plots at successional stages of growth—young (31 years old), 

intermediate (56 years old), and mature (116 years old) forest with different 

canopy characteristics. This involved characterization of three-dimensional 

vegetation structure from LiDAR data. A LiDAR-based custom ray-tracing model 

was then used to estimate under-canopy beam radiation. The validation of the 

model estimates was carried out using in situ measurements from above- and 

under-canopy pyranometers located at the SERC site. Finally, the estimates of 

under-canopy direct beam radiation at chronosequence were compared. 

In Chapter 4, the light transmittance pattern and the vertical foliage profile 

were compared across forest plots at four successional stages of growth (old, 

mature, intermediate, and young), and at one plot with disturbance (logging). 
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Discrete LiDAR data were used to derive both vertical transmittance in the forest 

plots (canopy gap) and vertical foliage profiles. For validation, the PAR 

measurements collected by the quantum sensor were compared with the LiDAR-

derived vertical transmittance values across three plots for which in situ PAR data 

were available. 

Chapter 5 is the final chapter that summarizes the results, discusses the 

limitations, and provides insight into future research directions.  

The overall goal of this research was to improve the characterization of 

under-canopy radiation regime and quantify radiation using discrete LiDAR 

remote sensing. The research is expected to improve the representation of 

radiation transmission through forest canopies and add to the knowledge on the 

impact of vegetation structure on under-canopy radiation. This knowledge gained 

here open new avenues for studying radiation using LiDAR, which may have a 

broad range of applications from forest management and timber resource 

planning, ecological modeling, energy balance studies to snowmelt, and 

hydrological simulations. 
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Chapter 2 Spatial Variability of Solar Insolation under a 
Mixed Coniferous Forest—A LiDAR-Based Study 
 

 

2.1 Introduction 

Spatiotemporal distribution of radiation beneath the vegetation canopy is a 

major component of surface energy balance and is of particular interest to forest 

managers, wildlife biologists, and hydrologists because it helps elucidate the 

biophysical processes operating at the landscape level. It determines the rate of 

snowmelt, the rate of under-canopy photosynthesis, and the suitability of 

microclimate for animal habitats (Murphy et al., 1990; Rich & Weiss, 1991; 

Weiss et al., 1991) at the community, landscape, and ecosystem level (Murphy & 

Weiss, 1992; Rich, Weiss, Debinski, & McLoughlin, 1992). 

The effect of stand-level vegetation structure on the variability of solar 

radiation is crucial because the small-scale variability of solar radiation influences 

the surface energy balance considerably, and also contributes greatly to the 

mosaic patterns in melting snow cover and the timing and amount of melt-water 

release (Pomeroy et al., 2008). The effects of the two other important factors in 

solar irradiance variability—atmosphere and topography—have been studied 

widely (Dozier, 1980; Dubayah, 1994; Kumar et al., 1997; Reuter et al., 2005). 

However, most studies which incorporate vegetation effects on solar radiation 

using conventional satellite remote-sensing-derived parameters are conducted at 
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the landscape level and do not incorporate the effects of stand-level vegetation 

structure on the spatiotemporal variability of solar radiation (Peng et al., 2014). 

Influence of stand-level vegetation structure is overlooked because accessing 

solar radiation at stand scale is challenging because of extremely high spatial and 

temporal variability (Parker et al., 2001). 

With the availability of LiDAR data, highly accurate vegetation structure 

and surface parameters can be derived at tree-level resolution and used to study 

the variability of solar radiation (Lai, Chou, & Lin, 2010). These fine-scale 

vegetation and topographic metrics are crucial for accurate characterization of 

canopy light transmittance (Nilson, 1971; Pukkala et al., 1991). Discrete return, as 

well as full waveform LiDAR sensors, has been used to study under-canopy 

radiation regime (Essery et al., 2008; Lee, Slatton, Roth, & Cropper, 2009; Ni-

Meister, Yang, & Kiang, 2010; Tang et al., 2012, 2014, 2016). The major 

difference between both these LiDAR sensors is the way return signal is collected 

(Lim et al., 2003). Of the two, discrete return LiDAR has a better horizontal 

resolution, whereas full waveform LiDAR provides better information on the 

vertical distribution of canopy elements because of its high sampling rate 

(typically 1–5 ns). A waveform LiDAR records reflected energy above a noise 

threshold at predetermined time intervals. As a result, even a small change in the 

vegetation structure can influence the shape of the waveform (Means et al., 1999). 

Regarding data availability, discrete return LiDAR data are more readily available 

compared with the waveform LiDAR data. 
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Most studies using LiDAR data to examine radiation regime beneath 

forest canopy use models based on either radiative transfer or geometric-optical 

principles or a combination of the two (Ni, Li, Woodcock, Roujean, & Davis, 

1997; Essery et al., 2008). Most of these models need high computational 

capacities (Musselman, Molotch, Margulis, Kirchner, & Bales, 2012; Peng et al., 

2014) which limit their use for larger areas.  

In the recent decades, studies on solar insolation using LiDAR products 

have utilized LiDAR-derived DEMs, and few studies have made direct use of 

point clouds. From a remote-sensing perspective, the main difference between 

LiDAR and solar radiation is that while the LiDAR is near the nadir, the sun 

could be at any solar angle (Hopkinson, Chasmer, Lim, Treitz, & Creed, 2006; 

Essery et al., 2008; Musselman et al., 2012). Based on the assumption of opaque 

leaves, Hopkinson and Chasmer (2007) demonstrated the use of the LiDAR cloud 

point and radiative transfer principle to derive the first-order information on solar 

radiation. However, this method is not viable for practical purposes because of its 

high computation demand and expertise needed to run the radiative transfer 

model. This limitation can be addressed by using a LiDAR-derived canopy height 

model (CHM) for studying the first-order effect of tree canopies. This quick and 

user-friendly technique can be easily integrated with current Geographic 

Information System (GIS) platforms. Today, nearly all commonly used GIS 

platforms have an integrated solar module, for example, Solar analyst, r.sun, and 

Sextante (Dozier, 1980; Dubayah, 1994; Dubayah & Rich, 1995; Kumar et al., 
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1997; Šúri & Hofierka, 2004).These tools estimate solar shortwave energy, which 

is also the most crucial part of radiation, because solar shortwave energy adds the 

greatest amount to the energy balance, and directly or indirectly other parts are 

contingent on it (Kumar et al., 1997). These tools are increasingly used for 

ecological modeling (Austin & Van Niel, 2011) and potential solar energy 

estimation (Clifton & Boruff, 2010). Additionally, LiDAR-derived high-

resolution terrain models have made it easier to model solar radiation at a finer 

scale. 

Two types of solar radiation models are currently available to estimate 

spatial distribution of solar radiation over the earth’s surface: (i) Vector based 

data models (Teller & Azar, 2001,Steemers, 1990), and (ii) Raster-based models 

(Frew & Dozier, 1986; Frew, 1991, Dubayah & Rich, 1995; Rich, Hetrick, & 

Saving, 1995; Fu & Rich, 2002, Kumar et al., 1997, Hofierka & Suri 1997). 

Raster-based models have been successfully used to study terrain effects on solar 

radiation at landscape levels, whereas the application of vector-based models is 

limited to vector data and urban studies (Yu, Liu , Wu, & Lin, 2009).  

The primary objective of this study was to assess the first-order effect of 

vegetation on solar radiation using DSM derived from small footprint discrete 

LiDAR. This was accomplished through two main steps: First, forest structure 

and bare surface topography of the landscape were derived using LiDAR. Then, 

insolation with and without tree cover was modeled, and the difference between 

the two was analyzed. In the first step, we derive the surface and canopy structure 
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from LiDAR data by converting the point cloud into the DSM and DEM. We then 

derived the CHM by subtracting the DEM from DSM. In the second step, we used 

the LiDAR-derived elevation models as primary inputs to r.sun—a raster-based 

solar insolation model—to calculate both diurnal and seasonal insolation with and 

without tree cover. We then used conventional and spatial statistics to describe 

and compare the spatial and temporal variability of solar insolation. 

 In the next section, we describe the study site and methods followed by a 

section on the results. The discussion considers the potential implication of this 

study for remote sensing and ecological applications, as well as the limitations of 

this study. 

2.2 Methods 

2.2.1 Study area 

Teakettle Watershed located in Sierra National Forest (SNF) is about 

80 km east of Fresno, CA north fork of the Kings River drainage basin between 

Yosemite and King's Canyon National Parks 

(http://www.fs.fed.us/psw/ef/teakettle/). Elevation ranges from 1,980 m to 

2,590 m with an average of 2,249 m (Figure 2.1). Teakettle is 1,300 ha of old-

growth forest of which approximately two-thirds are mixed conifers. Mixed-

conifer forests usually have characteristic patches with tree clusters with closed-

canopy , persistent gaps, and shrub groves (North et al., 2002). They typically 

consists of a fine-scale assortment of four patch categories: patches with closed 
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canopy, patches primarily of mountain whitethorn, areas with rocks and very thin 

soils and open gaps. Within the mixed-conifer type, Jeffrey pine is prevalent on 

shallow soil conditions, whereas altitudes above 2,300 m are dominated by red fir 

while humid sites are occupied by lodgepole pine. The last disturbance was a 

widespread fire in 1865 (http://teakettle.ucdavis.edu). The heterogeneous spatial 

structure at Teakettle offers distinct microclimate and habitats possibly linked 

with high biodiversity consisting of diverse group of under canopy plants,  

invertebrates species and several types of fungi (North et al., 2002). The presence 

of complex topography and forest types made this area suitable for our study. 

  

Figure 2.1 Location of Teakettle Watershed, Sierra National Forest, CA (inset). 

The main image shows canopy height model for the study area. Lighter color 

patches indicate rocky bare areas and darker patches indicate high vegetation 

areas. 
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2.2.2 Data 

The primary source of data for this study is point clouds from discrete 

return LiDAR acquired for the Teakettle Watershed in Sierra National Forest, CA 

in summer 2008. The average point density of the LiDAR data is ~13 points/m2 

(Figure 2.2). 

 

 

Figure 2.2 A subset of the classified LiDAR point clouds in nadir (left), oblique 

(right) perspectives. Data points, sampled with the intensity of approximately 

13 points/m2, were classified by height into two classes—vegetation (green) and 

ground (violet). 

 
The LiDAR point cloud data was classified by the provider as per Society 

for Photogrammetry and Remote Sensing (ASPRS) standards and made available 

in LAS v1.1 format (http://www.lasformat.org). We used classes 1–6 for our 

analysis. Class 2, the ground return, was the most relevant for our study. 

Information about elevation, intensity, return number, flight-line, and scan angle 

for each return was also already available with the data. 
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2.2.3 Derivation of canopy structure from LiDAR point cloud 

Surface and tree structure characteristics were derived from LiDAR data 

by converting the point cloud into a digital surface model (DSM) and a digital 

elevation model (DEM) at a grid resolution of 1 m. The DSM, which may include 

trees, buildings, and other such features, was created using the first return. The 

DEM, which represents the bare earth or ground surface, was created using the 

last return of the point cloud. This task was simplified by the availability of 

ground and non-ground classification of the point cloud and lack of any built 

features since the study area was located in a national forest. The Canopy Height 

Model (CHM) was derived by subtracting the DEM from DSM. We also 

classified the surface with and without trees based on the CHM. A 0.2 m height 

threshold was used to generate a tree/no-tree mask to accommodate minor surface 

model errors. 

2.2.4 Solar insolation estimation 

A raster-based potential solar insolation model, r.sun, was used for this 

study. It is a spatially explicit model and can use LiDAR-based elevation models 

as a primary input. The choice of this particular model was based on its usability; 

it needs a fewer number of parameters. It calculates potential direct, diffuse, and 

total incoming solar radiation for any period together with the solar illumination 

duration (Figure 2.3). It accounts for location, elevation, aspect, slope, shadow 
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effects of the surrounding topography, effects of the atmosphere, and diurnal and 

seasonal changes of the solar angle. 

 

Figure 2.3 Total, direct, and diffuse radiation output from a solar radiation 

model. The panel on the left shows the radiation output for the bare surface, the 

right panel shows radiation output for the same site with trees. The average 

surface radiation values are always higher for the bare surface when compared 
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with the surface that includes trees. However, the radiation output shows higher 

variability when the surface includes trees.  

 
Using the model, we calculated the total potential incoming shortwave 

radiation for the study area. The derived DEM and DSM were primary inputs to 

the model. The model simulates the solar insolation in watts hour per square 

meter (kWh/m2), or mega joules per square meter (MJ/ m2), given the time 

duration in Julian days, time step in minutes, the atmospheric transmittance and 

the number of sky directions for calculation of sky view factor. 

Since solar radiation calculation takes a lot of computational time, we used 

multiple processors to run r.sun model, which was able to distribute the task to 

multiple processers. This reduced the computation cost by a factor of 10. This 

time difference was an important consideration when calculating solar radiation 

for longer time periods. We also calculated the total solar radiation for summer 

solstice, winter solstice, and equinox. Furthermore, we estimated the diurnal 

hourly radiation for summer solstice to study the effect of hourly radiation 

change. 

 

2.2.5 Statistical analysis of solar insolation 

We used both standard statistics as well as spatial statistics to describe and 

compare the spatial and temporal variability of solar insolation. Statistical 

difference between the radiation values for bare and canopy surface was 

investigated using the Wilcoxon signed-rank test, a non-parametric equivalent of 
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paired t-test with the null hypothesis that the paired data do not have significantly 

different means. 

Local index of spatial association (LISA) methods—Geary’s C and 

Moran’s I—were used for spatial association in insolation values. Moran’s I and 

Geary’s C are two common measures used to study spatial autocorrelation. Higher 

Moran’s I values indicate positive spatial autocorrelation. Clusters of high value 

are known as hot spots and low value are known as cold spots. The major 

limitation of Moran’s I is that it is based on global averages and therefore can be 

easily biased by outliers. Geary’s C deals with this restriction better because the 

interaction is not the cross-product of deviations from the mean like Moran’s I, 

but rather of the deviations in intensities of each observation location with one 

another. The interpretation of both Moran’s I and Geary’s C is different. Unlike 

Moran’s I, a low Geary’s C value indicates high spatial correlation. Therefore, 

they both show inverse relation. Since Global LISA does not provide a detailed 

aspect, we also used correlograms to study the correlation at varying lag distances 

(Isaaks & Srivastava, 1989). 

2.3 Results 

2.3.1 Site topography and canopy surface characteristics 

The Teakettle study site has a complex topography with mixed conifers 

typical of mid-elevation sites in the SNF (Figure 2.1). The surface models 

derived from LiDAR point cloud showed that the site was mostly covered with 
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trees except for a few prominent bare patches. These bare patches were the 

canopy gaps in rocky areas not suitable for vegetation growth (Figure 2.2). 

 

Figure 2.4 LiDAR-derived DSM and DEM, with and without trees. The upper panel 

shows two-dimensional images of the surface model derived from LiDAR. The 

lower panel shows the DSM, which includes tree (left) and the one without tree 

canopies (right).  

 
The surface models derived from LiDAR point cloud showed that the site 

was mostly covered with trees except for a few prominent bare patches. These 

bare patches were the rocky areas unsuitable for vegetation growth (Figure 2.4). 

The two surface models created using LiDAR point cloud revealed different 

surface characteristics. The average elevation of the site with vegetation was 

2,282.190 m, whereas the site without vegetation was 2,273.93 m. This difference 

in average height of the canopy surface compared with the bare surface can be 
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attributed to the presence of trees. Descriptive statistics comparing the two surface 

models showed the height difference due to the presence of trees (Table 2.1). 

 

Table 2.1 The topographic characteristics of the canopy surface (DSM), bare surface 

(DEM), and canopy height model (CHM) for the Teakettle Watershed 

 
 Min 1st Q Median Mean SD 3rd Q Max 
DSM (m) 1,842.8

8 
2,169.744 2,282.190 2,257.52 129.46 2,364.141 2,492.61  

DEM (m) 1,828.0
9 

2,162.036 2,273.931 2,249.07 129.60 2,355.996  2,462.76 

CHM (m) 0.20 3.39 12.18 14.39 12.07 22.8 60.00 
 

The CHM created from surface models of the Teakettle Watershed (Figure 

2.1) showed a lot of variability in the spatial distribution of canopy height. The 

canopy height ranged from 0.2 m to 60 m, with an average height of 14.39 m and 

a standard deviation (SD) of 12 m (Table 2.1). The northwest section had 

relatively shorter trees compared to the rest of the study area. 

2.3.2 Spatial and temporal pattern of solar insolation  

To investigate how insolation patterns varied throughout the day and 

seasons, we simulated both hourly as well as daily total insolation (sum of direct 

and diffuse) at both above and beneath the tree canopy. Direct and diffuse 

radiation were also estimated however we only report the results based on 

analysis of total radiation.  

Diurnal radiation pattern 
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Mean solar irradiation flux over the canopy surface model was 10.2 W/m2 

at 6 a.m. and 9.1 W/m2 at 6 p.m.; with a value of 363.1 W/m2, it was maximum at 

noon. For the bare surface, the mean insolation values were 30 W/m2 at 6 a.m. 

and 29 W/m2 at 6 p.m. The average value at noon was 959 W/m2.  

Compared to the canopy surface model, the bare surface model estimated 

higher irradiance flux (Figure 2.5). 

 

Figure 2.5 Diurnal distribution of solar insolation with tree (left) and bare surface 

(right). The data for all time steps show a cyclical pattern. Mean values of 

irradiation for the DEMs are much higher when compared with the DSM; 

however, the DSM shows higher variability. 

 
The coefficient of variation (CV) for the canopy surface showed uniform 

pattern with the canopy surface showing more variance throughout the day. The 

CV for the bare surface model was close to 125 at 6 a.m. and 6 p.m. At noon, the 

CV was 13, the lowest during the day. The canopy surface CV was 255 at 6 a.m. 
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and 244 at 6 p.m. The CV was at a minimum 113 for the bare area around 12 

noon (Figure 2.6). 

 

Figure 2.6 Comparisons of hourly mean (left) and coefficient of variation (right) 

for the surface with tree canopy, and bare surface insolation. The red dotted line 

represents bare surface, and the green line represents insolation value for the 

surface with trees. The bare surface hourly mean insolation values are always 

higher than the mean insolation of the surface with trees. The CV shows an 

opposite pattern. The CV for the insolation value is always higher for the surface 

with trees. The CV for both the surface model peaks during the dusk and dawn. 

 
Solstice and equinox 

The canopy surface model estimated a mean insolation of 3.76 kWh/m2 

during summer solstice, 2.4 kWh/m2 during equinox, and 1.25 kWh/m2 during 

winter solstice (see Supplementary Table 2). The mean insolation showed a 

decreasing trend from summer solstice to winter solstice, dropping almost three 

times from summer solstice to winter solstice. Radiation statistics showed a 
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similar pattern where insolation reduced from summer solstice to winter solstice. 

Bare surface insolation showed a similar trend. However, the insolation values 

were much higher than the canopy surface model (Figures 2.7 and 2.8). The mean 

insolation received by the surface without trees was 9.37 kWh/m2 during summer 

solstice, 6.7 kWh/m2 during equinox, and 3.43 kWh/m2 during the winter solstice 

(see Supplementary Table 2). The SD of solar insolation for the canopy surface 

model was 2.34 kWh/m2 during summer solstice, 1.68.41 kWh/m2 during the 

equinox, and 0.89 kWh/m2 during the winter solstice. It was less for the bare 

surface model with a SD of 0.42 kWh/m2 during summer solstice, 0.74 kWh/m2 

during the equinox, and 0.77 kWh/m2 during the winter solstice (see 

Supplementary Table 2). 
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Figure 2.7 Map of insolation during summer solstice, equinox, and winter 

solstice, with and without trees. The shades of blue show high insolation values 

and the shades of red show low insolation values. The insolation on the surface 

with tree canopy is more heterogeneous compared to the bare surface 

insolation. The bare surface has higher insolation values for all the 3 days. 
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Overall three main observations were made by comparing the bare surface 

insolation to the insolation over the surface with tree canopy: 

• The canopy surface insolation showed much more variability in solar 

insolation values. During the summer solstice, the coefficient of variability 

for the canopy surface was 66% and only 4% for the bare surface.  

• The canopy surface insolation showed lower average insolation values. 

• The distribution of insolation followed a normal or near normal 

distribution on the bare surface. However, it did not demonstrate a similar 

distribution on the canopy surface model. 

Overall the heterogeneity of insolation was important during all times of 

the year, but most pronounced during the winter solstice. 

 

Figure 2.8 Solar insolation distribution across the summer solstice, equinox, and 

winter solstice. The boxplot shows that the insolation values for the bare surface 
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are higher than the surface with tree canopies for all the three days. The surface 

with tree canopy has more variability as depicted by larger inter quartile range. 

 
We also compared the isolation for open areas where there are no trees in 

both the models. The isolation values progressively decreased from summer 

solstice to winter solstice. The DSM, which contained the canopy surface, showed 

much more variability, which may be attributed to the heterogeneity of the canopy 

surface model. 

Statistical difference 

Statistical significance of the difference between the insolation values for 

bare and canopy surfaces was investigated using the Wilcoxon signed-rank test 

with 5,000 randomly selected locations. The test showed that the insolation 

significantly differed between the canopy and bare-earth surface models (p 

value < 0.001). The pseudo-median was 3,583.22 kWh/m2 for the summer 

solstice, 2,942.17 kWh/m2 for the equinox, and 1,272.93 kWh/m2 for the winter 

solstice (see Supplementary Table 1). Results showed that the solar insolation for 

the bare and canopy surfaces varied significantly by season.  

Spatial correlation 

Spatial autocorrelation analysis was based on local and global parameters, 

which emphasize the spatial correlation between the insolation values (see 

Supplementary Table 3). Moran’s I value for the canopy surface insolation 

showed a decreasing trend with 0.84 during summer solstice to 0.79 during 

equinox and finally decreasing to 0.64 during the winter solstice (Figure 2.9). This 
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trend was not pronounced on the bare surface, which instead showed a minor 

decrease in the Moran’s I value across the seasons. For the bare surface, the 

spatial autocorrelation did not vary much across the seasons. For canopy 

insolation, maximum autocorrelation was in the summer months during the solar 

solstice and minimum during the winter solstice. Geary’s C also showed a similar 

pattern, indicating that the autocorrelation between levels of bare surface 

insolation do not vary with the seasons, whereas the canopy surface insolation 

showed a decreasing trend through the seasons (see Supplementary Table 3). 

 

Figure 2.9 Comparison of Moran’s I and Geary’s C for the canopy insolation value 

of the surface with tree canopy (green line) and the bare surface (brown dotted 

line). Both measurements of spatial-autocorrelation show that the bare surface 

insolation values are more auto-correlated.  
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2.4 Discussion 

In this chapter, we assessed the first-order effect of vegetation on solar 

radiation using DSM and DEM derived from small footprint discrete LiDAR. 

The first part of this study shows how LiDAR point clouds can be used to 

better characterize site topography and canopy surface characteristics (Figure 2.4). 

The two surface models created using LiDAR data illustrated the different surface 

features of the study area with and without vegetation. Our approach is useful for 

radiation studies that have traditionally relied on coarser surface topographic 

models such as Shuttle Radar Topography Mission (SRTM) and satellite-derived 

vegetation metrics (Varhola & Coops, 2013). LiDAR-derived high-resolution 

surface models enable better studies of forest stand-level microclimate. While we 

choose to apply our method to coniferous forests, this approach can be utilized for 

other forest types. This approach is also useful for studying microclimatic patterns 

at the forest edge and forest gaps (Galo et al., 1992), in treefall gaps (Canham et 

al., 1990), and for hydrological modeling, snowmelt, and microclimate studies.  

Next, we examined how insolation patterns varied throughout the day and 

seasons by simulating both hourly as well as daily total insolation at both above 

and beneath the tree canopy. We found that solar irradiation follows a cyclic 

diurnal pattern. Irradiation values were lowest at sunrise and sunset, and highest at 

noon. The diurnal pattern in solar radiation suggests solar geometry drives 

irradiation (Figure 2.5). Insolation both above and beneath canopy showed this 
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cyclic pattern. However, they differed in the intensity and variability of insolation 

values (Figure 2.6). The bare surface showed less variance and higher average 

values of solar insolation, whereas surfaces with trees showed lower values of 

mean insolation and larger variability. Mean solar irradiation flux over the surface 

with tree canopy is three times less in the morning (10 W/m2 vs. 30 W/m2) and 

2.6 times at noon when compared to the bare surface radiation values. Although 

these values may seem to indicate that there is far less solar energy on the surface 

with trees, the total amount of solar energy in the system remains same. For the 

surface with trees, the “missing” energy actually absorbed and reflected that 

drives various biogeochemical processes, such as photosynthesis, 

evapotranspiration, and maintaining soil and atmospheric temperature. 

The CV is highest during morning and evening. Dubayah, Dozier, and 

Davis (1990) explained that optical depth of the atmosphere controls these 

observed peaks, and the magnitude of this is controlled by the average slope of 

the area. 

Over the seasons, the total insolation followed a cyclic pattern and showed 

a decreasing trend from summer solstice, to equinox, to winter solstice in that 

order (Figure 2.7). Solar geometry influences this cyclic pattern of radiation in 

both the surface models. During summer, there is high insolation as the sun’s 

angle is small; and towards winter, the sun angle becomes oblique, thereby 

resulting in less radiation. So, by examining how insolation patterns vary spatially 
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and temporally, we show the effect of canopy structure in the heterogeneity of 

radiation distribution. This variability is related to the interaction of solar 

radiation with the canopy structure. Open canopies allow sunlight to illuminate 

the ground without major modifications and therefore show less variability. 

Closed heterogeneous canopy structure modifies the incoming light, creating 

strong spatial and temporal variations when compared to bare surface or above 

canopy (Lundquist, Dickerson-Lange, Luz, & Cristea, 2013). Heterogeneous 

canopies have a more variable microclimate. Therefore, LiDAR-derived canopy 

structure models can help us to estimate better the spatiotemporal distribution of 

microclimates corresponding with the diurnal and seasonal changes in solar angle. 

Our last step was to see if the solar radiation values for each of the two 

surfaces were spatially auto correlated. We found that the canopy radiation levels 

were less auto correlated with each other between the seasons compared to the 

bare surface radiation levels (Figure 2.9). Moran’s I value for the canopy surface 

insolation for the summer solstice was 0.84 compared to 0.96 for the bare surface. 

The Moran’s I values for both the surfaces decreased over the equinox and winter 

solstice. However, the bare surface radiation values were consistently more auto 

correlated when compared with the surface with tree canopy (Figure 2.9), which 

suggests that canopy surface was more heterogeneous compared to the bare 

surface. 
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There is much scope for improving solar radiation models. Our work only 

took into consideration the effect of shadows and the canopy gaps. However, the 

real canopy structure is much more complex due to the different optical properties 

of other canopy elements such as leaves and branches. Canopy representation can 

be improved with the use of LiDAR point clouds with tree geometry. Solar 

radiation can further be modeled using LiDAR-derived gap probability, defined as 

the probability of a photon to make it through a point within the canopy (Ni et al., 

1997). Radiative transfer models can also be used to model the multiplicative 

scattering of light by the canopy elements. In the next chapter, we introduce more 

canopy complexities by using a radiative transfer model and ray tracing to study 

how radiation interacts with vegetation structure. 

2.5 Conclusion 

Our approach of modeling canopy surface and estimating solar insolation 

provides a spatially explicit model relevant for studying many important 

ecological patterns and processes. First, it illustrates a basic model that can be 

integrated into GIS and used for ecological research. Second, it shows the central 

role that canopy structure plays on solar insolation and its effect on the variability 

of solar insolation and thus forging a path for integrating local effects to forest 

stand and landscape scales. Third, our approach demonstrates how high-resolution 

LiDAR data can be used to derive canopy structure and has the potential for 

applications to understand the link between ecological and microclimatic patterns 

and processes. Finally, this work improves our understanding of the direct 
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mechanistic link between canopy structure, variability of solar insolation, and 

heterogeneity in under-canopy microclimates. Understanding these linkages is 

central to the basic ecological processes and has the potential to improve 

hydrological models and snowmelt assessments.   
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Chapter 3 Impact of Forest Structure and Age on Under-

Canopy Light Regime in a Temperate Deciduous Forest 
 

 

3.1 Introduction 

The three-dimensional canopy structure of the forest primarily determines 

the quantity, quality, and spatiotemporal distribution of under-canopy light 

conditions. The influx of radiation into a forest canopy is regulated by the amount 

and organization of canopy elements, their spectral properties, together with the 

illumination geometry (Pukkala et al., 1991; Jennings et al., 1999). In contrast, 

above-canopy solar radiation is affected principally by the position of sun and 

topography. Thus, under-canopy solar radiation regime is complex and variable 

when compared to the top of the canopy solar radiation. 

Understanding under-canopy light conditions is crucial because it 

influences a broad range of biophysical components in forest ecosystems 

including: plant growth, net primary production, demography and population 

dynamics of individual species, community structure, competition, and succession 

(Latham, Zuuring, & Coble, 1998; Svenning, 2000; Frelich et al., 2003; Bellow & 

Nair, 2003). Under-canopy light conditions also determine the surface energy 

budget, which has significant implications on the hydrology and snowmelt in 

forested ecosystems. Several theoretical studies have proposed a strong link 

between forest structure, canopy elements and light attenuation (Campbell & 

Norman, 1989; Kuuluvainen & Pukkala, 1989). However, many other studies 
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demonstrate that understory light distribution pattern are much more complex and 

do not always show a clear relationship with the forest structure (Ross, Flanagan, 

& Roi, 1986;  Brown & Parker, 1994; Denslow & Guzman, 2000). Therefore, 

mapping the forest understory light conditions is of interest to foresters, 

hydrologists, and ecologists (Jennings et al., 1999; Musselman, Margulis, & 

Molotch, 2013; Peng et al., 2014). 

Light plays a fundamental role in driving forest succession (Oliver, 1980; 

Guariguata & Ostertag, 2001). The general presumption is that the amount of light 

reaching the forest floor decreases as a succession progresses, but empirical 

studies do not point to a single trend. Across a moist tropical chronosequence, 

Denslow and Guzman (2000) found no relationship between mean plot light 

levels or CV of light levels among forests with a different structure. Similarly, 

another study by Brown and Parker (1994) observed that allometric measurements 

of tree structure were not able to explain the variability in near canopy surface 

light availability in temperate deciduous forests at various levels of succession. 

They envisioned foliage density, LAI and other crown based measurements to be 

more representative and informative in understanding the relation between forest 

structure and light pattern. Another study by Kabakoff & Chazdon (1996) points 

out that the canopy structure may indirectly affect the light availability inside the 

forest canopy through impacts on under-canopy vegetation. 

However, empirical studies have suggested that variation in light 

transmittance can be better explained by the structural parameters of forest 
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canopies (Küppers, 1989; Brown & Parker, 1994). Conducting an empirical study 

in lowland Costa Rica in select old-growth and second-growth forests, 

Montgomery and Chazdon (2001) challenged the belief that, canopy and under-

canopy vegetation within a forest have a direct bearing on light attenuation near 

the floor . While comparing light transmittance and heterogeneity to forest 

structure, they concluded that forest structure might be a major predictor of 

availability of light only at large spatial scales. They also found that structure was 

not  suitable for predicting the availability of light within plots, or across plots 

that are similar in their overall physical configuration. At finer scales such as at 

the plot level, less obvious parameters such as individual tree structure, species 

types and composition, and vertical distribution of foliage may be more crucial. In 

another study, in old-growth plots at La Selva in Costa Rica, Clark, Clark, Rich, 

Weiss, and Oberbauer (1996) found significant canopy height autocorrelation at 

2.5-m intervals. However, the correlations between canopy height and under-

canopy light availability were not strong even at that fine scale. 

Variability of radiation under forest canopies has been studied using the 

either direct, diffuse, or photosynthetically active radiation components, or a 

combination of these elements. However, as diffuse radiation has a rather 

predictable diurnal pattern, direct radiation accounts for the most of the 

differences in incoming radiation. Hutchison and Matt (1977) observed that the 

horizontal variability of radiation in a temperate broadleaf forest was largely due 

to the attenuation pattern of direct beam radiation. Pukkala et al. (1991) 
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considered direct radiation suitable for comparing under-canopy radiation regimes 

of different forest plots (Brown & Parker, 1994; Lee et al., 2009; Musselman et 

al., 2013; Peng et al., 2014). Musselman et al. (2013) evaluated the utility of 

airborne LiDAR data and ray-tracing model to estimate the transmittance of the 

direct solar beam in a complex terrain with conifers. They were able to 

demonstrate the utility of the ray trace models to illustrate the effect of complex 

canopy structure on direct solar radiation transmissivity. 

Estimation of radiation regime within a forest canopy needs a detailed 

description of the position, density, and angular distribution of various canopy 

elements (Oker-Blom, Pukkala, & Kuuluvainen, 1989). Traditionally, under-

canopy solar radiation has been estimated using pyranometers, hemispherical 

photographs, and PAR sensors, but these have small spatial footprints and cannot 

capture the variability even at short distances. Recently, both ground and airborne 

LiDAR have frequently been used to estimate canopy parameters and study the 

interaction of solar radiation with canopy structure. Using airborne LiDAR for 

radiation studies has two main advantages: LiDAR data can provide spatially 

explicit estimates of forest biophysical variables such as canopy cover, canopy 

height, and LAI (Lefsky et al., 1999; Morsdorf et al., 2006; Korhonen et al., 2011; 

Tang et al., 2012). It can also provide estimates of light transmittance (Parker et 

al., 2001; Essery et al., 2008; Varhola et al., 2010). The main difference between 

the illumination geometry of solar radiation and LiDAR is that, while LiDAR is 

usually incident at nadir, solar illumination geometry has a diurnal and seasonal 
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cycle of variation (Chasmer & Hopkinson, 2007). LiDAR data are also used for 

directly estimating canopy transmittance.  

Several studies have used LiDAR for characterization of canopy structure 

and estimation of solar radiation under the forest canopy. Parker et al. (2004) 

demonstrated the novelty of using a portable LiDAR systems, for rapid 

measurement of small-scale forest structure. Essery et al. (2008) used LiDAR data 

and a ray-tracing model for elliptical canopies. In another study Lee et al. (2009)  

used LiDAR data to simulate solar radiation on the forest floor. They defined a 

field of view function between a point on the forest floor and the sun. In a similar 

effort with LiDAR data, Kobayashi et al. (2012) modelled the radiation 

environment in an oak woodland using a spatially explicit LiDAR-based three-

dimensional radiative transfer model. Musselman et al. (2013) also used LiDAR 

data and a three-dimensional model based on ray-tracing principles to estimate 

direct solar beam attenuation in a forest with structural complexity and compared 

those outputs to the estimates from a Beer's Law-type transmittance model. 

Recently, Peng et al. (2014) used LiDAR and a ray-tracing model to estimate the 

spatiotemporal distribution of under-canopy light on the forest floor as well as a 

vertical gradient of the forest stand. Frazer, Magnussen, Wulder, and Niemann 

(2011) provided a general description of how spatially explicit forest parameters 

could be obtained from LiDAR and ground-based measurements. In this paper, 

we evaluate the impact of canopy structure as well as age on the under-canopy 
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distribution of light on the forest floor using a chronosequence of temperate 

deciduous forest. 

The objective of this study was to estimate and inter-compare under-

canopy beam radiation using three-dimensional vegetation structure derived from 

LiDAR data across three forest plots at different stages of succession. Canopy 

structure information derived from LiDAR data and a custom geometric canopy 

radiative transfer model was used for this comparison. As discussed by Pickett 

(1989), we assumed that many sites at different stages of succession can represent 

the development of a single site through time and can be used to evaluate the 

impact of age on light under-canopy regime. 

3.2 Methods 

Our study began with the characterization of three-dimensional vegetation 

structure from LiDAR data. We then used a LiDAR-based ray-tracing model to 

estimate under-canopy beam radiation. The validation of the model estimates was 

carried out using in situ measurements recorded by above- and under-canopy 

pyranometers at the Smithsonian Environmental Research Center (SERC), 

Maryland. Finally, we compared the estimates of under-canopy direct beam 

radiation at chronosequence. 

3.2.1 Study area 

The study area is located within the Smithsonian Environmental Research 

Center (SERC) in Edgewater, Maryland, USA (38°53′N, 76°33′W) (Figure 3.1), 
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on the estuary of Rhode River (http://www.serc.si.edu/). The area is generally 

composed of two forest types: upland forests of “tulip poplar,” a common upland 

forest type in the mid-Atlantic coastal plain and piedmont (Brush, Lenk, & Smith, 

1980), and floodplain forests of “river birch-sycamore.” SERC has several mixed-

species deciduous forest plots at different successional stages. Agriculture or 

logging was practiced in the past with few areas that do not have any record of 

historical disturbance (Filley et al., 2008) but the SERC forests, for at least the 

last 120 years have been relatively undisturbed (Duncanson et al., 2014) . 

The chronosequence forest plots referred in this study are mixed hardwood 

types consisting of tulip poplar forest associations (Parker, O’Neill, & Higman, 

1989; Pukkala et al., 1991; Brown & Parker, 1994; Parker and Russ, 2004). The 

forest plots are young (31 years old), intermediate (56 years old), and mature (116 

years old) with distinct canopy characteristics. Successional age is defined as the 

number of years since a forest was cut or abandoned after agricultural use, SERC 

uses aerial photographs and reviews the environmental history of local land use to 

determine the successional age of these forest plots (Brown & Parker, 1994).  

Tulip poplar, beech, sweetgum, and red maple species are the most 

common in the young plot; in mature forests, the main species are oaks, hickories, 

beech with a variety of mid- and sub-canopy species, and the old forests are 

primarily tulip poplar, beech, and several oak and hickory species (Brown & 

Parker, 1994; Filley et al., 2008).  
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Figure 3.1 Map shows chronosequence sites at Smithsonian Environmental 

Research Center (SERC), Maryland. These vegetation chronosequences represent 

young, intermediate, and mature growth forest plots. The rectangular boxes 

represent the plot size 200 × 200 m used for the analysis. (c) The inset maps 

shows the location of the two pyranometer sensors, the first one located on an 

experimental tower and the second one is located under forest canopy. 
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3.2.2 LiDAR data and acquisition 

The LiDAR data used for this study were acquired by the G-LiHT 

airborne scanning LiDAR (VQ-480, Riegl Laser) system on October 5, 2011, with 

an average point density of 50 m2 during leaf-on and clear sky conditions. G-

LIHT LiDAR data products are distributed as classified point cloud data and 

digital terrain and CHM together with other forest matrixes (Cook et al., 2013) 

available through G-LIHT webpage 

(http://gliht.gsfc.nasa.gov/ext/maps/index.html). 

3.2.3 Pyranometer data  

The solar radiation data were measured using Eppley model PSP precision 

spectral pyranometers at two sites in the Smithsonian Environmental Research 

Center (SERC) (Figure 3.1): (a) Meteorological tower site and (b) under canopy. 

The tower is 36.5 m, located at 38.89 N 76.56 W (NAD27); in the intermediate 

plot adjacent to the Mathias Laboratory and provides a stable platform and open 

sky view (https://serc.si.edu/). The under-canopy data were collected around 

150 m west of the tower site in the same forest plot.  

The Eppley model pyranometer measures radiation from 285 to 2,800 nm. 

It is a thermopile-type instrument that produces an electrical signal directly 

proportional to the solar radiation reaching the sensor. The instrument at SERC is 

connected to a data logger by weather proof copper wires. The data reported at the 

1-min interval are the average of six readings each 10 s apart (https://serc.si.edu/). 

http://gliht.gsfc.nasa.gov/ext/maps/index.html
https://serc.si.edu/
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Data from the tower site acquired on 5th October and coinciding with the 

date of LiDAR data acquisition were used as model input. Data from the under-

canopy pyranometer were used for validation of the model. 

3.2.4 Vegetation structure data for chronosequence plots 

 LiDAR returns within the canopy have been used for estimation of 

vegetation structure and composition (Hopkinson et al., 2006; Morsdorf et al., 

2006; Hopkinson & Chasmer, 2007). We used a LiDAR-derived CHM, fractional 

vegetation cover, and rugosity as the measure of vegetation structure, and the R 

software package to analyze these vegetation metrics. We derived CHM by 

subtracting the surface elevation from the terrain model derived from classified 

LiDAR point cloud. The process involved filtering of spurious point clouds before 

grounds points were interpolated as terrain and the non-ground points as the 

surface model (Lim et al., 2003). Fractional vegetation cover is an important 

indicator reflecting the extent of horizontal coverage of vegetation. Fractional 

vegetation cover is calculated from LiDAR returns by dividing the number of 

returns above a standard height by the total number of returns within a specific 

radius (Korhonen et al., 2011). Rugosity, a measure of surface roughness, is the 

SD of canopy height (Parker & Russ, 2004). Increase in a forest's rugosity, in 

general, is related with increasing age and is correlated with various forest 

functions (Parker & Russ, 2004). These simple metrics were used to distinguish 

the vegetation structure of the three eastern mixed species deciduous plots at 
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chronosequence and the impact of age on the influx of direct beam radiation in the 

under canopy of these plots. 

3.2.5 Estimating solar radiation on the forest floor  

Solar radiation on the forest floor was estimated using a reverse ray-

tracing model based on Mussleman (2013). In this model, a reverse ray tracing 

method is used i.e. the ray traced from the ground towards the sun to identify the 

LiDARs which fall along the ray direction (Groot, 2004; Musselman et al., 2013). 

Ray-tracing models can help precisely characterize the canopy light environment 

as a function of height within forest environment. Data from the pyranometer 

based on the meteorological tower was used as model input. 

The procedure for estimation of the under-canopy direct beam radiation as 

adapted from Mussleman (2013) involved the following steps: 

1. Voxel transformation of the point intermediate clouds at a grid 

resolution (1 × 1 × 1 m). Rays were traced from each grid cell on the ground 

towards the sun. 

2. Rays were traced from each grid cell on the ground towards the 

sun (reverse). Solar angle was obtained from the Python routine “solarpy,” which 

given time, location, and time zone provided the solar altitude and azimuth. 

3. The intersection of the ray with the voxels identifies the path of 

solar ray. LiDAR points for all those voxels were included to extract the total 

number of LiDAR points. Transmittance is proportional to the radiation of canopy 

versus total LiDAR point intermediates. 
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4. The process was repeated for multiple time step. 

This ray-tracing model was then validated against the under-canopy 

pyranometer data as described in the next section. 

3.2.6 Solar radiation model validation 

The LiDAR solar radiation model estimates were evaluated against 

measurement from the under-canopy pyranometer located in the intermediate plot. 

We used uncertainty metrics based on average differences between the ray-tracing 

model and the under-canopy pyranometer data quantified by mean bias error 

(MBE), mean absolute error (MAE), and root-mean-squared error (RMSE). The 

RMSE error was split into systematic (RMSEs) and non-systematic (RMSEu) 

errors (Willmott, 1982). 

3.2.7 Comparison of solar radiation data for different vegetation structure 

Forest solar radiation estimated using the ray-tracing model was compared 

across the forest plots at young, intermediate, and old stages of growth. The forest 

structure for these plots was derived using LiDAR point cloud as described in 

Section 2.4. Diurnal variability in light transmission mainly results from 

variations in the altitudinal and azimuthal position of the sun. During the selected 

day, the direct beam radiation reaching the forest floor was estimated for three 

scenarios—hourly, noon, and total. Hourly direct beam solar radiation indicates 

the diurnal variation of radiation (in relation with solar angle), whereas beam 

radiation at noon is helpful in identifying peak radiation when the sun is at its 
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highest angle. Daily total direct beam radiation gives an estimate of the total 

energy accumulated over the day for a particular site, and unlike in hourly data, 

there was no variability. 

The total daily solar radiation for these three plot types were compared 

using the Kruskal–Wallis (KW) rank sum test (Kruskal & Wallis, 1952). The 

KW, a nonparametric statistical test, was used to assess the differences in 

radiation values among the three plots. The null hypothesis is that the radiation 

values in all the three forest plots have the same average (median). The alternative 

hypothesis is that at least one forest plot is a distribution with a different average 

(median).  

While KW was used to test the differences between the plots, it did not 

provide any specific post hoc pairwise comparisons between the plots. The Dunn 

test uses a Bonferroni-adjusted multiple t-tests to analyze the differences between 

the pre-treatment and post-treatment means within each treatment group (Dunn, 

1964; Howell, 2012).It involves summing up jointly ranked data. These two tests 

were performed using the statistical software R using  DescTools package.  

3.2.8 Vegetation structure and solar radiation 

The Random Forest (RF) method was used to understand the correlation 

between the structural parameters of vegetation and solar radiation. It is an useful 

nonparametric data mining method that can deal with both non-linear and 

multiplicative interactions. It was developed as an extension of classification tree 

and regression tree (CART) to improve the model prediction. A RF is a collection 
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of a large number of CART that uses two levels of randomization for creating 

each classification and regression tree (Breiman, 2001). In the RF model, a 

random subset of the original data is used to construct each CART using a 

bootstrap sample with spare or a random sample. Out-of-bag data (oob), which 

refers to the portion of data not used to create the tree, are used to assess the 

model’s predictability. Therefore, in RF, each tree offers an algorithm for data 

classification, and an estimate of predictive capability.  

Additionally, at each split within each tree, a random subset of the 

available predictor variables is used to partition the data set into two groups with 

minimal heterogeneity until homogeneity of the data in each terminal node is 

maximum and cannot be increased by subdivision. Because of these two 

processes, the RF model prediction is better than the CART model, and there is no 

overfitting (Breiman, 2001). 

Besides the predictive capability, RF can also be used to estimate the 

significance of variables. This is done by determining the mean decrease in 

prediction accuracy before and after permuting a variable. RF has been used 

widely in remote sensing science (Belgiu & Drăguţ, 2016) and in forest ecology 

(Cutler et al., 2007; Grossmann, Ohmann, Kagan, May, & Gregory, 2010) to 

identify the variable importance. The two most important measures of variable 

importance used in the study were the mean decrease in accuracy, and the mean 

decrease in node impurity. The first measure, the mean decrease in accuracy, is 

calculated from permuting the data. After permuting each predictor variable, the 
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prediction error and the mean standard error (MSE) on the (oob) portion of the 

data are recorded for each tree. The difference between the prediction error and 

MSE is then averaged and normalized by the SD of the differences over all trees. 

This average is the second measure of variable importance stands for the total 

decrease in node impurities from splitting on the variable (Liaw & Wiener, 2002). 

Apart from the vegetation structure matrix derived from LiDAR, we included age 

as a categorical variable to see if the stand type affects the variable importance of 

the model. The RF variable importance analysis was done in the R package RF 

(Liaw & Wiener, 2002; https://cran.r-roject.org). 

3.3 Results 

3.3.1 Vegetation structure from LiDAR data 

The chronosequence plots showed distinct variation in their vegetation structure 

corresponding to developmental trends. The young stand was the shortest with a 

mean CHM of 11.34 m, followed by the intermediate (29.31 m) and the mature 

plot (30.34 m). Under ideal growing conditions, old-growth tulip poplar trees may 

be nearly 61 m high, but more often they are from 30.5 to 45.7 m at maturity 

(www.na.fs.fed.us). The maximum CHM of the young plot was 29.15 m, the 

intermediate plot was 42.99 m, and the mature plot was 44.1 m (Figure 3.2). 

Height variation in terms of SD was about 2 m for the young plot and 6 m for 

both the intermediate and mature plots. Canopy rugosity followed a similar 

pattern with 1.48 m (young plot), to 3.89 m (intermediate), to 3.71 m (mature). 

https://cran.r-roject.org/web/packages/randomForest/randomForest.pdf
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The mean value of rugosity for the young plot was 1.5 m, 3.9 m for the 

intermediate, and 3.7 m for the mature plot. However, the mean fractional 

vegetation cover varied by only 3% amongst the plots with the young plot having 

least at 96% and the mature plot having 99%.  

The median CHM for the young forest plot was less than half of the median CHM 

for the mature forest plot with a much less interquartile range (Figure 3.2). The 

median rugosity and interquartile range for the young forest plot were the least 

and highest for the intermediate plot (Figure 3.2). 
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Figure 3.2 Spatial representation of canopy height model, rugosity, and 

vegetation fractional cover derived from LiDAR measurements in the three sites. 

The mature and intermediate forest plots have higher canopy height and 

fractional vegetation cover compared to the young plot. The canopy height and 

rugosity are more evenly distributed in the young plot. The rightmost panel 

shows satellite (RGB) images for all the sites. Each plot is 200 × 200 m in size. 
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3.3.2 Solar radiation on the forest floor 

The hourly mean under-canopy radiation in the young plot differed 

significantly from the intermediate and mature plots. It had a Gaussian diurnal 

pattern with high canopy penetration at noon and low at dawn and dusk. In 

comparison, the intermediate and mature plots had significantly lower radiation 

penetration and did not follow a pure Gaussian pattern (Figure 3.3). Amongst the 

three plots, mean under-canopy radiation was lowest in the mature plot. All forest 

plots showed highest radiation peak at solar noon (Figure 3.3). Daily total under-

canopy direct beam radiation showed a similar pattern (Figure 3.4). The median 

total daily beam radiation was 1.17 kWh/m2 for the young plot, 0.27 kWh/m2 for 

the intermediate plot, and 0.16 kWh/m2 for the mature plot (Figure 3.4). The floor 

of the young forest plot received the highest mean total direct beam radiation 

(1.2 kWh/m2), followed by the intermediate (0.35 kWh/m2) and mature 

(0.21 kWh/m2) plots. The variability also showed a similar pattern, with a SD of 

0.38 kWh/m2 for the young, 0.30 kWh/m2 for the intermediate, 0.17 kWh/m2 for 

the mature plot. 
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Figure 3.3 Hourly mean solar radiation flux for the three forest plots on October 

5, 2011 shows differences in hourly mean solar beam radiation among young, 

intermediate, and mature forest plots. Mean solar radiation is comparatively 

higher for the young plot (1.17 kWh/m2) when compared with the intermediate 

(0.27 kWh/m2) and mature plots (0.16 kWh/m2).  

 

The Kruskal-Wallis rank sum test for the three forest plots showed that the 

median daily radiation values differed significantly (p value < 0). The results of 

the post hoc Dunn’s test showed that mean rank sum difference was highest 
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between the mature and young forest (−16,694.526; p value < 0) plots, followed 

by the intermediate and young (−12,268.768; p value < 0) plots (see 

Supplementary Table 5). These inferential tests showed a significant difference in 

the beam radiation estimates between the three forest plots. 

 

Figure 3.4 (Top) Box-plot of total daily beam radiation on October 5, 2011 

differed significantly amongst different plot types. (Below) Total daily solar 



 

 54 
 

radiation on October 5, 2011. Higher values are shown in darker shades of red; 

blue color represents lower radiation values.  

3.3.3 Validation of under-canopy solar radiation model 

The under-canopy solar radiation model was validated by comparing the 

model estimates to the in situ pyranometer measurements taken at the 

intermediate plot (Figure 3.1). The general pattern of diurnal variation in light 

transmittance was captured similarly by both the radiation model and the 

pyranometer. Canopy penetration peaked around 9 a.m. and 2 p.m., and was low 

at dawn and dusk. RMSE between the two was 13.94 W/m2 with a MAE of 

8.59 W/m2 and a MBE of 5.40 W/m2 (Figure 3.5) on October 5, 2011. The RMSE 

was equally partitioned between systematic (inaccuracy) and unsystematic 

(imprecision) components, with RMSEs of 9.19 W/m2 and RMSEu equaling 

10.48 W/m2. The overall linear relationship between LiDAR estimates and 

pyranometers measurements was R2 = 0.5. 
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Figure 3.5 Ray-tracing model versus pyranometer data modeled at minute 

interval on October 5, 2011, coinciding with the date of LiDAR data acquisition. 

The green line shows top of the canopy solar radiation; blue line shows model 

estimate and in situ pyranometer data are shown in red color. There is a fair 

agreement between the radiation model and the pyranometer. Both the 

estimates show that canopy penetration peaked around 9 a.m. and 2 p.m., and 

was low at dawn and dusk. Notably there is a minor lag between the model-

estimated and pyranometer values, improving which could lead to a better 

agreement between the two (R2 = 0.5, MBE = 5.40 W/m2).  
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3.3.4 Vegetation structure and solar radiation 

Before running the RF model, it was made sure that the independent 

variables are not highly correlated. The results from the RF analysis showed that 

CHM was the most important variable and led to a 51.4% increase in MSE, and 

increase in nodal purity by 122, followed by the fractional cover which accounted 

for a 28% increase in MSE. In the alternate model, where we considered the plot 

age, our findings suggest that the age of the forest plot was the most significant 

variable accounting for a 39% increase in MSE, and an increase of 97 in nodal 

purity.  

3.4 Discussion 

In this chapter, we estimated and inter-compared under-canopy beam 

radiation across three deciduous forest plots—young (31 years old), intermediate 

(56 years old), and mature (116 years old) at SERC. We first characterized the 

three-dimensional vegetation structure from LiDAR data and then estimated the 

under-canopy beam radiation using a custom ray-tracing model. We validated the 

model estimates using in situ measurements from above- and under-canopy 

pyranometers located at the intermediate forest plot. We finally compared the 

estimates of under-canopy direct beam radiation across the three plots. 

Earlier studies have established high correlation between field and LiDAR 

metrics and have supported the use of LiDAR measurements in different forest 

types such as deciduous and coniferous, to directly derive an understanding of 
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structural complexity and deduce age-related successional stage (Harding, Lefsky, 

Parker, & Blair, 2001; Parker & Russ, 2004; Lefsky, Hudak, Cohen, & Acker, 

2005; Kane et al., 2010). As expected, the three plots exhibited variations in their 

vegetation structure through the mean CHM, rugosity, and fractional cover 

values. The young stand had the shortest (mean CHM of 11.34 m), whereas the 

mature plot had the highest (30.34 m). Canopy rugosity followed a similar pattern 

with 1.48 m (young plot), to 3.89 m (intermediate), and to 3.71 m (mature). 

However, the mean fractional vegetation cover varied by only 3% amongst the 

plots with the young plot having least at 96% and the mature plot having 99%.  

The under-canopy radiation regimes between the young, and the 

intermediate and the mature forest plots (Figure 3.3) showed significant 

differences in values. Maximum radiation received at noon was around 107 W/m2 

for the young plot, 28 W/m2 for intermediate plot, and 18 W/m2 for mature plot, 

which is 14%, 4%, and 2.5 % of the top of the canopy radiation. Higher maximum 

transmittance in the young plot (14 %) suggests more gaps in the foliage. In 

deciduous forests, during the leaf-on season, only 1%–2% of incident light 

reaches the forest floor in comparison with 30%–40% in the leafless season 

(Parker, 1995, pp 88). Compared with the young plot, less direct beam radiation 

reached the forest floor in the intermediate (4%) and mature plots (2.5%). This 

was likely caused by the closed canopy of the intermediate and mature plots 

during the leaf-on season and a “bottom-heavy” structure. The forest plots at the 

SERC are primarily tulip poplar associations; for this forest type, the peak rates of 
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growth and mortality are reached by 30 years of age and their crown canopies are 

closed (Duncanson et al., 2014). We found that the mean rugosity value of the 

young plot (1.48) is almost half of the rugosity values of both the intermediate 

(3.89) and mature plots (3.71). A small rugosity value indicates that the canopy 

can be occupied with vegetation material at any level; however, high rugosity 

implies height restrictions at many spatial locations. After 50 years of growth, 

there is a likelihood of a distinct under-canopy growth that produces a bimodal 

foliage distribution (Parker et al., 1997). In later stages of succession, more shade-

tolerant dominants develop and reach the mid-canopy, creating a ‘‘bottom-

heavy’’ structure. The “bottom-heavy” structure and the appearance of canopy 

gaps of different ages produce a vegetation profile more vertically uniform in the 

old growth forest (Parker, 1997; Parker & Russ, 2004). 

For assessing the validity of the LiDAR-based model estimates, validation 

data for all the three plots do not exist, we only could use pyranometer 

measurements from the intermediate plot coinciding with the date of LiDAR data 

acquisition. We found an overall close match between the LiDAR-derived model 

estimates of under-canopy direct beam radiation and the pyranometer 

measurements at the intermediate plot (R2 = 0.5). Despite the differences between 

the two methods for estimating solar radiation, the validation results were 

positive. Both the radiation model and the pyranometer captured the general 

pattern of diurnal variation in light transmittance in a similar manner showing 

peak canopy penetration around 9 a.m. and 2 p.m., and low at dawn and dusk. 
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RMSE between the two was 13.94 W/m2 with a Mean Absolute Error of 

8.59 W/m2 and a Mean Bias Error of 5.40 W/m2 (Figure 3.5) on October 5, 2011. 

However, we observed some shift in radiation peaks, which may be have been 

caused by GPS location error due to attenuation of the GPS signal by the forest 

canopy. 

The result from the RF analysis highlights two important points. First, 

when the categorical age is not considered, the CHM or the canopy height is the 

greatest determinant of solar radiation on the forest floor followed by canopy 

cover. However, when the chronosequence age is considered, canopy cover 

becomes the most significant determinant of solar radiation. This highlights the 

complexity of factors influencing the amount of solar radiation that moves 

through the canopy. Previous studies have suggested that neither canopy height, 

canopy and sub-canopy vegetation nor even age fully explains the light 

transmittance on the forest floor (Clark et al., 1996; Denslow & Guzman, 2000; 

Montgomery & Chazdon, 2001). A study in the old-growth forests of Costa Rica 

found that canopy and sub-canopy vegetation was a weak predictor of under-

canopy light availability (Montgomery & Chazdon, 2001). Thus, it is important 

that we consider the complex interactions of canopy light with other vegetation 

structural parameters, species types, distribution of leaves, and leaf optical 

properties across multiple forest types (Küppers, 1989; Parker, 1995; 

Montgomery & Chazdon, 2001). 
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Our study focused only on the direct beam component of the under-

canopy radiation, and the model estimates of under-canopy direct beam radiation 

closely matched the in situ pyranometer measurements. Validation results 

suggest, that at least in part, differences in under-canopy radiation are caused by 

the direct beam component, while diffuse radiation component has a rather 

uniform directional distribution (Pukkala et al., 1991). Hutchison and Matt (1977) 

observed that direct beam radiation had the greatest attenuation and largely 

controlled the variability of radiation in the horizontal, in a deciduous forest 

composed predominantly of tulip poplar forest. Pukkala et al. (1991) also 

supported the suitability of direct beam radiation for predicting the spatial 

distribution of light regime below simulated forest canopies at different latitudes. 

We have shown the use of a spatially explicit model for estimating the influx of 

direct beam radiation under the forest canopy at chronosequence using high-

resolution LiDAR data. Our method demonstrates a means to study an under-

canopy light environment in heterogeneous canopies characterized by high spatial 

variability. 

3.5 Conclusion 

Comparison of estimated under-canopy beam radiation across the 

deciduous forest plots suggests that age and structure of forest cause significant 

changes to the under-canopy beam radiation regime. The under-canopy radiation 

varied significantly between the chronosequence plots (p value < 0) explained by 

the differences in three-dimensional vegetation structure characterized by CHM, 
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fractional cover, and rugosity measures. We also demonstrated how LiDAR data 

in conjunction with a spatially explicit radiative transfer model could be utilized 

to capture this variation directly for large heterogeneous areas. Our study 

primarily focused on direct beam radiation for a horizontal surface. Future work 

could look at the spatiotemporal variation of diffused and PAR components, and 

transmittance along the vertical gradient. . Direct beam transmittance can also be 

estimated during different seasons to understand the impact of seasonal variability 

on the interaction of light and three-dimensional vegetation structure. More 

canopy structural measurements such as biomass and LAI in each plot can be 

included to understand the complexity of the canopy structure and its relationship 

with light transmittance. 

In the next chapter, we look at transmittance along the vertical gradient 

and the PAR components for a better understanding of canopy light environments. 
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Chapter 4 Comparing Vertical Light Transmittance and 

Vertical Forest Structure in Forest Succession 

4.1 Introduction 

Canopy and canopy structure is key to forest function. The knowledge of 

light transmittance in canopies is crucial for understanding forest function because 

the radiation–vegetation interactions above, within, and below the forest canopy 

play a determining role in energy balance, leaf and soil temperature, 

evapotranspiration, stand microclimate and growth potential (Field & Mooney, 

1986; Gutschick, 1991; Parker, 1995) and other important biophysical and 

ecological processes. The movement of light in a plant canopy is influenced by 

many factors, including solar position, distribution of light, biomass distribution, 

canopy structure and elements, and their optical properties (e.g., reflectance and 

transmittance). 

 Under-canopy radiation regime determines a range of ecological and 

biological processes and components in forest ecosystems, such as species 

diversity, species distribution, community structure, and succession processes 

(McArthur, 1964; Martens et al., 2000; Svenning, 2002; Frelich et al., 2003; von 

Arx et al., 2012). Under-canopy light environment also influences growth and 

competition, net primary production, and vegetation types (Sakai & Akiyama, 

2005; von Arx et al., 2012). Understanding under-canopy radiation profiles and 

influencing below-canopy light levels is often essential to maintain agroforestry 
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systems or commercial plantations or for forest conservation purposes (Jennings 

et al., 1999; Bellow & Nair, 2003; Frelich et al., 2003). Radiation regimes within 

canopies are important for understanding the under-canopy microenvironment as 

well as processes such as photosynthesis, transpiration, and carbon sequestration. 

For instance, careful parameterization of the radiation regime in the ecosystem—

quantifying the exchange of water vapor, gases, and heat between the biosphere 

and atmosphere—is essential. Canopy structure affects the radiative and 

convective exchanges within vegetation canopies and primarily determines the 

proportion of incident PAR absorbed within a canopy (Russell et al., 1989). 

Factors that influence the intercepted PAR also include age of vegetation, 

disturbances, and radiation climate (Kucharik et al., 1999). Studies that model 

vegetation and radiation interactions, water and heat regimes, and vegetation 

productivity also require adequate definition of canopy architecture and canopy 

radiation regime therefore becomes important for modelling both vegetation 

growth and functions (van Leeuwen et al., 2013).  

The concept of canopy has several meanings. Carroll (1980) described the 

canopy as a region as well as collection of objects, whereas other definitions offer 

a much restricted meaning of referring to only the uppermost layers of the forest. 

Parker (1995) suggests height, species, leaves, branches, and position, size, and 

orientation of each canopy element all constitute the canopy. Researchers use 

simple descriptors of canopy structure such as height and cover of the canopy 

surface as well as more detailed metrics such as foliage-height profiles and light 



 

 64 
 

gaps (Watt 1947; MacArthur & Horn, 1969; Aber, 1979; Canham et al., 1990; 

Spies, Franklin, & Klopsch, 1990). Empirical studies suggest that the structural 

parameters of forest canopies provide a better explanation of the variation in light 

transmittance (Küppers, 1989; Brown & Parker, 1994). 

Techniques for modeling canopy architecture fall into three broad 

categories: direct measurement methods, allometric methods, and indirect 

measurement methods. LiDAR is an indirect method increasingly used to model 

radiation vegetation interactions because small footprint LiDAR has become more 

accessible for use in vegetation studies.  

A complete description of the canopy at all scales of organization of canopy 

elements remains a complex and impractical endeavor. It is challenging to 

estimate light conditions within a canopy because of accessibility issues and the 

influence of terrain and solar position. Researchers have undertaken the task by 

ground-based sampling from individual trees; aerial measurements from masts, 

towers, balloons, and cranes (Yoda 1974; Ellsworth & Reich, 1993; Vose, 

Sullivan, Clinton, & Bolstad, 1995; Parker et al., 1996); and digital and 

hemispherical (fisheye) canopy photography (Rich, 1990; Frazer et al., 2011). 

Increasingly models are used to simulate the movement of light through canopies 

using statistically derived matrices such as the LAI, leaf area density (LAD) as 

well as the spatial arrangement of canopy elements. 

Monsi and Saeki (1953) were the first to use canopy gap probability to 

describe beam penetration. Gap fraction or probability is the standard parameter 
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for studying radiation extinction through vegetation canopies (Ross, 1981). It 

refers to the probability that a ray will pass through randomly distributed canopy 

element and hits a reference point, usually the ground level, or the quantity of the 

integrated value of the gap frequency over a given area or volume that can be 

estimated. Therefore, measuring gap fraction is equivalent to measuring 

transmittance at ground level, at wavelengths for which the assumption of black 

vegetative elements is valid (Weiss et al., 2004). 

The vertical profile of the foliage is characterized by the LAD. LAD is 

defined as the leaf area per unit volume (m2/m3) and is one of the most important 

variables for scaling up many biophysical processes from the leaf to the 

ecosystem level (Jarvis & McNaughton, 1986). Measurement of LAD is 

challenging in large and complex forest types (Bréda, 2003). Conventional 

methods for measuring LAD include direct measurement using plumb line and 

tripod (MacArthur & Horn, 1969), destructive sampling, and optical point 

quadrats (Parker, 1989); all are cumbersome and not spatially explicit. 

Studies have examined the relationship between light transmittance and forest 

age. Examining the observed values of PAR transmittance with stand age and 

measures of canopy structure, Parker and Brown (1994) found that light 

transmittance varied as the three-dimensional canopy structures changed with 

time, and that transmittance was not significantly correlated with simple measures 

of forest structure such as height, above ground biomass, and LAI.  
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LiDAR data have made it possible to derive three-dimensional structural 

information to improve the characterization of under-canopy light regimes. 

Previous research has shown the uses of LiDAR-derived three-dimensional 

canopy architecture, including estimating timber yield and forest volume 

(Naesset, 1997; Means et al., 1999), wildfire management (Morsdorf et al., 2004), 

characterizing and identifying habitat (Hofton et al. 2006), and estimating forest 

carbon stocks (Stephens, 2007; Saatchi et al., 2011).  

The objective of this study was to estimate, inter-compare, and validate 

vertical light transmittance, LAI, and LAD derived from LiDAR across forest 

plots at different successional stages of growth and at a plot with disturbance 

(logging). 

4.2 Methods 

Comparison of light transmittance across the forest plots at different 

successional stages of growth, and one with disturbance (logging) was a three-

step process. The first involved derivation of vertical gap transmittance as a 

function of height from LiDAR. The second involved characterization of 

vegetation structure by deriving vertical foliage profile based on vertical gap as a 

function of height. The third, the validation step, involved evaluating LiDAR-

derived vertical gap transmittance against measurement from the PAR sensor data 

across three plots where data was available.  
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4.2.1 Study area 

The study area is located within the Smithsonian Environmental Research 

Center (SERC), Edgewater, Maryland, USA (38°53′N, 76°33′W) (Figure 4.1), on 

the Rhode River estuary (http: //www.serc.si.edu/). The area is generally 

composed of two forest types: upland forests of “tulip poplar,” a common upland 

forest type in the mid-Atlantic coastal plain and piedmont (Brush et al., 1980), 

and floodplain forests of “river birch-sycamore.” SERC has several mixed-species 

deciduous forest plots at various successional stages. Agriculture or logging was 

practiced in the past with few areas that have no record of ever being cleared 

(Filley et al., 2008) but the SERC forests, for at least the last 120 years have been 

relatively undisturbed (Duncanson et al., 2014) . 

The five plots used in this study are old (200+ years), mature (116 years), 

intermediate (56 years), young (31 years old), and logged, consisting primarily of 

tulip poplar forest associations (Parker et al., 1989; Pukkala et al., 1991; Brown & 

Parker, 1994; Parker & Russ, 2004). Successional age, defined as the number of 

years since a forest was cutover or abandoned following agriculture—was 

determined at SERC using aerial photographs and by consulting environmental 

history of local land use (Brown & Parker, 1994).  

The young forests are dominated by tulip poplar, red maple, sweetgum, 

and beech; in the mature stages, the forest plot consists composed of oaks, 

hickories, beech with a diverse mid- and sub-canopy species; and the old forests 
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are mostly populated by tulip poplar, beech, and several oak and hickory species 

(Brown & Parker, 1994; Filley et al., 2008).  

 

 

Figure 4.1 Map shows CHM for the chronosequence sites at Smithsonian 

Environmental Research Center (SERC), Maryland. These vegetation 

chronosequence represents old, mature, intermediate, young, and logged forest 

plots. The rectangular boxes represent the plot size 200 × 200 m used for the 

analysis. 
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4.2.2 LiDAR data and field data acquisition 

The LiDAR data used for this study were acquired by the G-LiHT 

airborne laser scanner on October 5, 2011 and downloaded from the G-LIHT 

interactive webpage (http://gliht.gsfc.nasa.gov/ext/maps/index.html). The data 

products were available in a classified point cloud format with digital terrain 

(Figure 4.2) CHM, and other forest matrixes (Cook et al., 2013). 

 

Figure 4.2 Subsets of the classified LiDAR point clouds (a) old plot, (b) 

intermediate, (c) young, and (d) logged representing different stages of forest 

growth. Data points, which were sampled with the intensity of approximately 

50 points/m2, are classified by height into two classes—vegetation and ground. 
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In situ PAR data acquisition 

In all the chronosequence sites, vertical measurement of quantum flux 

were taken using a LiCor quantum sensor (LI 190; Li-Cor, Lincoln, NE) at 

several uniformly sampled points. The sensor records the light energy in the PAR 

of 400–700 nm. The sensor was mounted on a vertical pole and data were 

collected at a uniform height interval. Each measurement was cosine-corrected to 

take sun angle into account. 

4.2.3 Derivation of canopy structure from LiDAR point cloud  

Surface and tree structure characteristics were derived from LiDAR data 

by converting the point cloud into a DSM and a DEM at a grid resolution of 1 m. 

The DSM, which may include trees, buildings, and other such features, was 

created using the first return. The DEM, which represents the bare earth or ground 

surface, was created using the last return of the point cloud. The availability of 

ground and non-ground classification of the point cloud and the lack of any built 

features within the national forest made this task simple. The CHM was derived 

by subtracting the DEM from DSM. We also classified the surface with and 

without trees based on the CHM. A 0.2 m height threshold was used to generate a 

tree/no-tree mask to accommodate minor surface model errors. 
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4.2.4 Estimating vertical transmittance in the forest plots 

Numerous studies have demonstrated success in retrieval of gap fraction 

using LiDAR, both ground and aerial (Ni-Meister et al., 2001; Chasmer & 

Hopkinson, 2007; Zhao et al., 2011). In recent years, researchers have used both 

discrete return and waveform LiDAR data to derive canopy gap (Ni-Meister et al., 

2001; Morsdorf, et al., 2006; Essery et al., 2008; Hopkinson & Chasmer, 2009). A 

number of studies have studied the utility of LiDAR for estimating gap fraction 

(e.g., Parker et al., 2001; Todd et al., 2003; Morsdorf et al., 2006; Thomas et al., 

2006; Hopkinson & Chasmer, 2007). Essery et al. (2008) modified Nilson’s 

(1971) equation to calculate gap probability. Canopy gap, p, and LAI from 

LiDAR data are often derived assuming that gap fraction is corresponds to canopy 

transmittance. For this study, p was estimated as the ratio of the sum of all ground 

return intensities divided by the sum of all return intensities. The ground level was 

changed to height increments of 1 m to obtain the gap fraction at specific height 

intervals. The ground was assumed to be at 1 m above the LiDAR-detected 

ground to avoid any interference from vegetation on the forest floor. 

4.2.5 Estimating of vertical foliage profile of the forest plots 

Lefsky et al. (1999) pointed out that LiDAR has greater potential for deriving 

the foliage profile than other methods due to its ability to characterize canopy 

three-dimensional structure. Several studies have demonstrated LiDAR’s utility 

for characterizing three-dimensional canopy structure for estimating under-

canopy light conditions. For example, studies have used terrestrial LiDAR (Parker 
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& Russ, 2004), waveform LiDAR (Lefsky et al., 1999), and airborne discrete 

return LiDAR (Alexander, Moeslund, Bøcher, Arge, & Svenning, 2013), to 

characterize the vertical foliage profile. Tang et al. (2016) demonstrated the utility 

of spaceborne waveform LiDAR data to derive and validate the LAI and vertical 

foliage profiles product over the contiguous United States.  

Following Nilson (1971), we considered probability that a beam will pass 

through the canopy without interception based on the following relationship 

between canopy gap (p) and LAD: 

𝑝𝑝𝑡𝑡= 𝑒𝑒−𝐺𝐺(𝜃𝜃)∑𝜆𝜆𝑙𝑙𝑡𝑡  

 

Here, G is the foliage area orientation function,  𝜆𝜆  is the effective foliage area 

volume density, and the summation includes all crown that the beam intersects. 

Assuming random orientations the G = 0.5. Using p values derived in the previous 

step (Section 4.2.4), we estimated the LAD.  

To exclude the under-canopy vegetation, we considered the height at 1 m 

above the surface identified by the height of last return of LiDAR point. We 

derived LAI by cumulating the LAD values, as previous studies have done (Tang 

et al., 2012). 
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4.2.6 Comparison of foliage profile and vertical gap transmission 

LiDAR-derived foliage profile and vertical gap transmittance were 

compared by plot type using two nonparametric inferential statistical tests to 

compare the foliage distribution and the vertical transmission in the forest plot. 

The first, the Kruskal–Wallis (1952) rank sum test (KW) assesses the differences 

among three or more independently sampled groups on a single, non-normally 

distributed continuous variable. The null hypothesis is that the transmittance 

values in all of the forest plots have the same median. The alternative hypothesis 

is that at least one forest plot type has a different average (median). 

KW was useful only to identify the differences between the plots, but the 

Dunn (1964) test analyses differences between the pre-treatment(control) and 

post-treatment means within each treatment group using Bonferroni adjusted 

multiple t-tests (Howell, 2012). It involves summing up jointly ranked data. We 

used it for post hoc pair wise comparisons between the plots. KW and the Dunn 

test were performed using the statistical software R using the DescTools package. 

Following Parker (2001), we used several matrices based on each plot’s 

potential functional importance to characterize its transmittance profile. The 

height at which the transmittance value reaches 98% (h98) was considered the top 

of the canopy “radiation-effective” height. This will avoid errors due to signal 

noise and to indicate that light has been level presumably intercepted. The bin-to-

bin difference in mean transmittance was calculated to derive the vertical profile 

of the transmittance slope. Then we leveled this out using a moving window of 
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six vertical bins. Here lumicline refers to the maximum slope of the profile and 

lumicline height (Hlum) is its height in the canopy (following Parker, 1997). “

max
varH ” is the height of the maximum variance in transmittance and the half-

height (h50) is the height where transmittance falls to half the outside value. The 

height where transmittance is at 25% (h25) was also considered for 

characterization. Tbulk, the transmittance at the ground level, is generally 

considered at 0 m, but we considered it at 1 m to avoid interference from 

understory vegetation. The vertical foliage profile was compared across the forest 

plots using LiDAR-derived summary statistics of LAD. Inferential statistics were 

used to test if the vertical foliage profile varied significantly amongst successional 

stages of forest growth. Thereafter, the effective LAD was compared for each of 

the forest stand.  

4.2.7 Validation of LiDAR-derived and field-based measurement of 

vertical transmittance 

The estimates of the PAR transmittance collected from the quantum sensor 

were compared with the LiDAR-derived vertical transmittance across the three 

plots for which data were available. The uncertainty metric used here was based 

on average differences between the ray-tracing model and the under-canopy 

pyranometer data quantified by MBE, MAE, and RMSE. The RMSE error was 

further split into RMSEs and RMSEu errors (Willmott, 1982). 
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4.3 Results 

4.3.1 Comparison of LiDAR-derived canopy height across plots 

The cumulative distribution of the canopy height suggests that the forest 

plots exhibit distinctive forest structural characteristics. Parker and Russ (2004) 

suggest that calibrated hypsography can be used to characterize the developmental 

stage and the surface complexity of forest stands by illustrating outer canopy 

shape. The youngest plot showed the most uniform shape, with hundred percent 

of the canopy within 20 m and 50% of the trees within 10 m; the curve varied 

from intermediate to mature and to the old (Figure 4.3).  

 

Figure 4.3 Comparison of canopy height hypsograph for the chronosequence 

forest plots (200 × 200 m) derived from airborne LiDAR. The forest plots are 

distinguished by individual color and line type. The old, mature, and intermediate 

plots show a concave curve, often associated with ageing plots, whereas the 
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young plot is characterized by a convex curve, which represents forest undergoing 

active growth.  

The logged plot showed a unique curve, with more than half of the canopy 

height within 20 m. The tail end of the curve shows the percentage of canopy gap 

within the forest plot, which was maximum in the logged plot (Figure 4.3).The 

mean and maximum height, the slope of the curve, and the proportion of height 

close to the ground usually changes with age. The mean heights of the old (30 m), 

young (11 m), and logged plots (18 m) exhibited this trend. The logged plot had 

the largest canopy height deviation at 13 m, followed by the old growth plot at 

9.4 m. The young plot had the smallest height deviation, at 2 m. The maximum 

height of the canopy was within the range of 42–46 m for the old, mature, 

intermediate, and logged plots, and 29 m for the young plot. 

4.3.2 Comparison of vertical transmission for different vegetation 

structure 

The vertical distribution of transmittance was asymmetrical in all the 

plots. The vertical distribution of canopy transmittance for different plots varied 

by the maximum height and successional stage of growth. For example, at 30 m, 

the old plot showed less transmittance compared with the younger and logged 

plots. Even though the average height for the old, mature, and intermediate plots 

were similar, we see a distinct pattern of transmittance at different height level, 

illustrated by the spatial distribution of transmittance (Figure 4.5). The frequency 

distribution of mean gap transmittance varied by plot age. The mean gap 
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transmittance differed significantly (p value < 0.001) across the forest plots. The 

post hoc Dunn’s test revealed no significant difference (p < 0.001) in gap 

transmittance value between the old, mature, and intermediate plots. All the plots 

showed high transmittance in the upper part of their canopies and displayed a 

decreasing trend in transmittance closer to the ground (Figure 4.4).The skewness 

was negative in the upper part of canopy, but as canopy height decreased, the 

skewness became positive, indicating high transmittance in the upper part of the 

canopy and low transmittance closer to the forest floor (Figure 4.4). Each plot 

displayed distinct transmittance curves. The old, mature, and intermediate plots 

showed similar transmittance curves, whereas the transmittance curves of the 

young and the logged plots had steep slopes (Figure 4.6). The CV displayed an 

increasing trend with decreasing height (Figure 4.4). Overall, the old plot had the 

largest CV, followed by the intermediate and mature plots, which had very similar 

CV patterns across all heights. The logged and young plots displayed the least CV 

at all heights.  
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Figure 4.4 Comparison of vertical transmittance profiles of the five forest plots. 

The forest plots are distinguished by colored lines. The left panel present the 

mean, the center panel shows the coefficient of variation (CV), and the right 

panel shows skewness of vertical gap transmittance distribution as a function of 

height. All the plots show high transmittance in the upper part and a decreasing 

trend in transmittance closer to the ground. The coefficient of variation (CV) 

displays an increasing trend with decreasing height. The skewness is negative in 

the upper canopy, indicating high transmittance in the upper part of the canopy. 

 

The maximum rate of change in transmittance values as a function of 

height (slope) was between 0.02 and 0.07 in all the plots (Table 4.1). The young 

and logged plot showed the maximum slope, whereas the old and intermediate 

plots showed the minimum. The height of maximum slope (Hlum) was between 29 

and 31 m for the old, mature, and intermediate plots, 11 m for the young plot, and 

3 m for the logged plot. 
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Figure 4.5 Three-dimensional transmittance for the chronosequence plots. 

Darker shades of green indicate low transmittance values, whereas the lighter 

shades of green and brown, and the white represent higher transmittance 

values. Transmittance values are stacked at vertical interval of 10 m. Histogram 

equalization was applied to all the stacked images to emphasize the shades. 

The horizontal variation in gap transmittance for different heights showed 

that the height of the greatest variability ( max
varH ) for the old, mature, and 

intermediate plots was around 26 m, whereas it was at 10 m for the young plot 

and 7 m for the logged plot (Table 4.1). Heights of median transmittance, h50, 

were within the range of 23–25 m for the old, mature, and intermediate plots; 

heights of median transmittance was 9 m for the young plot and 6 m for the 

logged plot. The radiation-effective height, at which the transmittance drops by 

2% (h98), was 41 m for the old plot, 37 m for both the mature and intermediate 

plots, and 38 m for the logged plot, whereas it was 15 m for the young plot. The 

h25 for the old, mature, and young plots was within the range of 12–15.5 m but 
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was almost half for the young (6.5 m) and logged (1.5 m) plots. Tbulk, the bulk 

canopy transmittances, differed across the plots. In the old plot, it was 11%, 10% 

in the intermediate plot, and only 7% in the mature plot. At 20%, Tbulk was 

maximum in the logged plot, followed by the young plot.  

 

Table 4.1 Important Vertical Transmittance Characteristics Based on LiDAR-

Derived Estimates 

 

 
Old Mature Intermediate Young Logged 

Maximum slope 0.02 0.03 0.02 0.07 0.05 
Hlum (m) 31.0 30.0 29.0 11.0 3.0 

max
varH  (m) 26.0 26.0 25.5 10.0 7.0 

h98 (m) 41.0 37.0 37.0 15.0 38.0 
h50 (m) 25.0 25.0 23.0 9.0 6.0 
h25 (m) 12.0 15.5 12.5 6.5 1.5 
Tbulk @1 m (%) 0.11 0.07 0.10 0.16 0.20 
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Figure 4.6 Vertical gap transmittance slope across forest plots. The images show 

slope of transmittance as a function of height for each plot in the 

chronosequence and the disturbed plot. Higher values signify higher rate of 

change. The old, mature, and the intermediate plots show similar transmittance 

curves, whereas the transmittance curves of the young and the logged plots 

have steeper slopes at a lower height. 

4.3.3 Comparison of vertical foliage profiles 

 

The mean LAD value varied across the forest plots. The old and mature plots 

had a mean LAD value of 0.12 m2 m−3, the intermediate plot had a mean LAD 

value of 0.10 m2 m−3, whereas the young forest plot had the highest mean LAD 

value of 0.37 m2 m−3. The logged plot had the lowest LAD value of 0.08 m2 m−3. 

The logged plot also had the largest variation of mean LAD value, and the old 

forest plot had the least. The maximum value of LAD was 0.73 m2 m−3 for the 

logged plot. The young plot’s LAD value was 0.60 m2 m−3, the old plot’s LAD 

value was 0.38 m2 m−3, the mature plot’s value was 0.26 m2 m−3, and intermediate 

were at 0.24 m2 m−3 (Table 4.2). The height of maximum LAD value was 2 m for 

old, intermediate, and logged plots, and 4 m for the mature plot. The young plot 

had the highest maximum LAD value at 9 m (Figure 4.7).  

Table 4.2 Summary of LAD Statistics across the Chronosequence Forest Plots. 

LAD Values were Derived using LiDAR Data 
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 Old Mature Intermediate Young Logged 

Mean LAD 
(m2 m−3), CV 

0.12 (63%) 0.12 
(70%) 

0.10 (69 %) 0.37 
(87%) 

0.08 (158%) 

Max LAD 
(m2 m−3) 

0.38 0.26 0.24 0.60 0.73 

LAD (height 
max (m) 

2 4 2 9 2 

 

The effective LAI, the cumulative LAD, also varied across the successional 

forest plots (KW test, p < 0.001). The post hoc Dunn’s test revealed that the old–

mature pair did not display a significant difference. The mean LAI was highest for 

the old plot at 2.5 m, followed by the mature at 2.4 m and intermediate at 2.1 m 

(Figure 4.8). The young and the logged plots have the lowest mean LAI 

(1.5 m2 m−2). 

 

Figure 4.7 Vertical distribution of foliage area in the canopies of the successional 

forest plots based on airborne LiDAR estimates. The foliage area has been 

calculated at 1 m height interval. The graphs represent mean value of foliage 

area of the successional plots (200 × 200 m). Old, mature, and intermediate plots 
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have similar foliage distribution when compared with the young and logged 

plots.  

 

 

Figure 4.8 Comparison of LAI across forest plots shows a decreasing trend from 

old to the young stages of growth. The right most boxplot shows LAI for logged 

(disturbed) plot. The logged plot has a higher variability in LAI values when 

compared with the other plots. The LAI values are aggregated over 200 × 200 m 

plots. Red dot shows the mean LAI value for each forest plot. 
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The maximum value of LAI ranged from 4.5 m2 m−2 in the mature plot to 

6.07 m2 m−2 in the logged plot. In terms of variability of LAI values, the logged 

forest plot displayed the maximum variability, followed by the old plot (Figures 

4.8 and 4.9). 

 

Figure 4.9 Comparison of Leaf Area Index (LAI) across forest plots at different 

stages of growth. The upper panel shows the LAI distribution, the lower plots 

show the satellite (RGB) images of the plots. Higher values of LAI are shown in 

shades of green and the lower values are shown in red. Lower values of LAI are 

associated with the areas of low vegetation density, water bodies, and canopy 

gaps. Built-up areas have zero LAI. 

4.2.4 Comparison of LiDAR-derived and field-based measurement of 

vertical transmittance 

LiDAR-derived vertical transmittance was compared with in situ data 

from PAR sensor for the three plots—young, intermediate, and old—for which 

data were available (Figure 4.10). 



 

 85 
 

Within a particular plot, the PAR- and LiDAR-estimated transmittance 

curve showed notable similarities for all the three chronosequence plots. The 

shapes were similar but the intensity varied by plot. For the young plot, the PAR 

transmittance remained high up to 5 m and then the values dropped below the 

LiDAR estimates. Similarly, for the intermediate plot, the value of PAR 

transmittance values was higher than the LiDAR estimates up to 27 m. For the old 

plot, the PAR transmittance values were always lower than the LiDAR 

transmittance values (Figure 4.10).  

 

 

Figure 4.10 Comparison of field, PAR (red) and LiDAR (blue) estimates of 

transmittance for young, intermediate, and old chronosequence plots (Left to 

Right). The difference between the PAR and LiDAR transmittance can be 

attributed to multiple factors such as the difference in wavelength, sampling 

design. The LiDAR data show smooth line, whereas the coarse in situ line can be 

attributed to sampling pattern and effect of sunflecks. 
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Results indicate that the RMSE between the two data sets is 17%, with a 

MAE of 11% and MBE of −10%. The RMSE was equally partitioned between 

systematic (inaccuracy) and unsystematic (imprecision) components, with a 

RMSEs of 13% and RMSEu equaling 11%. The overall linear relationship 

between LiDAR vertical transmittance estimates and vertical PAR transmittance 

measurements is R2 = 0.84. The coefficient of linear model is 0.76 with an 

intercept of 0.18 (Figure 4.11). 

 
 
Figure 4.11 Scatterplots of estimated versus LiDAR-derived vertical 

transmittance. Points and dashed regression lines are identified with sites by 

color, the overall (across-site) regression is depicted by black dotted line, and the 

1:1 line is solid black. The shaded area around the overall regression line shows 

95% confidence interval. The site-specific regression lines show consistent 
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pattern in the slope, which increases with the successional stage. Overall the in 

situ and LiDAR-based estimates are in good agreement (R2 = 0.84, MBE = 10%). 

4.4 Discussion 

The results demonstrate the utility of LiDAR data for estimating vertical 

light transmission across forest canopies in chronosequence and with disturbance 

in a temperate broadleaf forest type.  

Vertical light transmittance varied across the forest plots. We observed 

similarities in light transmittance of old, mature, and intermediate plots (Figure 

4.4), whereas the transmittance curves of the young and the logged plots showed a 

steep slope (Figure 4.6). This variation suggest that the vertical organization of 

vegetation in the young and the logged forest plots differed from the old, mature, 

and intermediate plots. Vertical gap transmittance was likely influenced by 

canopy structural parameters, and in the older undisturbed forest plots (Figure 

4.3), light was intercepted gradually by their closed complex canopies than the 

younger and logged plots. In a tropical rainforest, Yamada, Yoshioka, Hashim, 

Liang, and Okuda (2014) compared forest light environments between a primary 

forest and a forest that was selectively logged. They found the former had more 

open canopies and a less heterogeneous light environment compared to primary 

forests. The steep transmittance profile of the selectively logged plot in 

comparison to the undisturbed forest plots, therefore, is likely due to its more 

open canopy.   
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The skewness was negative in the upper part of canopy, indicating high light 

transmittance, but positive at lower heights (<10 m) indicating less transmittance 

(Figure 4.4). The height of the greatest variability ( max
varH ) was the same for the 

old, mature, and intermediate plots (Table 4.2), suggesting variability in radiation 

interception was similar in these plots while max
varH  was at a much lower height for 

the young plot (10 m) and the logged plots (7 m), a likely influence of shorter 

canopy height and difference in distribution of canopy material.  
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Figure 4.12 Comparison of vertical transmittance at the forest floor. 

Transmittance values were estimated 1 m above the ground surface to avoid the 

effect of understory vegetation and litter. 

 

The results show that the transmittance at the ground level (1 m) was 

maximum for the logged plot (20%) and minimum for the mature plot (7%), 

suggesting light reached the forest more efficiently because of gaps in the canopy 
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due to selective logging (Figure 4.12). The results show that most radiation was 

intercepted in the upper parts of the canopy of the old, intermediate, and mature 

plots and less light penetrated deeply into the canopy of these three plots (Figure 

4.5).  

The mean LAD value was lowest for the logged plot (0.08 m2 m−3) and 

highest for the young plot (0.3 m2 m−3). The LAI displayed an inverse trend, with 

the youngest plot having the least LAI and older plots having increasing value 

(Figure 4.8). These findings are consistent with earlier documented ground-based 

in-canopy measurements and can be explained by patterns of forest development 

typical to the forest type in the study area (Parker & Russ, 2004). The effective 

LAI, which is the cumulative of the LAD, also varied across the successional 

forest plots (KW test, p < 0.001). The post hoc Dunn’s test showed no significant 

difference between the old and mature plots. The mean LAI was maximum for the 

old plot (2.5) followed by the mature (2.4) and intermediate (2.1) plots (Figure 

4.8). The young and the logged plots showed the lowest mean LAI (1.5 m2 m−2). 

This suggests that although vertical distribution of leaf material might be different 

across forest plots, cumulative LAI derived from satellite data might not be a 

suitable indicator for vertical transmittance of light, which is required to 

accurately understand the patterns of photosynthetic pathways and canopy growth 

(Ellsworth & Reich, 1993; Drewry et al., 2010).  
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When compared with the in situ data from the PAR sensor, LiDAR-

derived vertical transmittance data agree with the field-based measurements. We 

observed that the LiDAR estimates were smoother, whereas the PAR data 

fluctuates at different height intervals, sometimes even exceeding the values at a 

lower height. This anomaly can be attributed to the effect of sun fleck or the other 

canopy opening at time of data acquisition. The LiDAR model overestimates the 

transmittance in the intermediate and old plots, whereas underestimates 

transmittance in the young plot (Figure 4.10). Disagreement between the LiDAR 

estimates and in situ data was likely due to a slight negative bias (MBE 10%) of 

the PAR data relative to LiDAR values. Overall a low systematic error (RMSE) of 

13% suggests that LiDAR data can be used to derive vertical transmittance and 

the estimates can be further calibrated using in situ data. Inter-plot difference in 

the in situ and LiDAR measured vertical transmittance was likely due to 

difference in LiDAR return from different canopies. In very dense canopies, it is 

likely that few or none of the LiDAR points can reach the ground surface (Lefsky 

et al., 2002; Clark, Clark, & Roberts, 2004; Takahashi, Yamamoto, Miyachi, 

Senda, & Tsuzuku, 2006). We also observed that the line of best fit between the in 

situ and LiDAR-based transmittance follows a consistent pattern corresponding 

with the age of the plot. For example, the transmittance in the mature plot was 

under predicted followed by the intermediate plot, which was closer to the 1:1 

line. In the young plot, LiDAR overestimates the transmittance when compared to 

the in situ data (Figure 4.11). 
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The difference between the PAR and LiDAR transmittance could be 

attributed to multiple factors. The PAR sensor operates at a different wavelength 

compared to the LiDAR, which operates in monochromatic wavelength. The 

sampling design of the PAR data collected spread grid sample, whereas the 

LiDAR information is based on much dense sample. Our results are consistent 

with the other studies (Lefsky, 1999 et al; Parker, 2001). 

Our results demonstrate the utility of discrete return LiDAR to characterize 

canopy metrics and study the impact of canopy structure on vertical light 

transmittance. Given the way canopy functions are related to the spatiotemporal 

variability of light, this application of LiDAR has significance for broader 

applications for generating knowledge on habitat and forest functions. For 

example, vertical variability of light is one of the important parameters 

influencing photosynthesis at different height levels. Knaepen, Janssens, and 

Verryckt (2016) concluded that vertical profiles of photosynthesis should be taken 

into account when estimating carbon uptake by a tropical forest ecosystem. 

Therefore, the ability to measure vertical light transmittance also has implications 

for measuring carbon uptake by forests. 

Our study also has implications on canopy stand management. Light travels 

through forest canopies, and therefore the light levels below the canopy can be 

influenced by manipulating canopy elements. Techniques such as thinning and 

positioning are used often by forest managers(Messier, 1996). The ability to 

estimate below canopy light levels at different vertical gradients along with the 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjOo67WqdbPAhVJgx4KHdbtC8YQFgghMAA&url=http%3A%2F%2Fdenali.gsfc.nasa.gov%2Ficesat%2Fpapers%2F2001_rem_sens_envi_PARKER(HARDING).pdf&usg=AFQjCNHcdPcrNlJG3FlQh62mn7U45vTl1w&sig2=y5ZMTFyOSClkc0_ptShwkA%20
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knowledge of species or vegetation specific light requirements can guide the 

amount and frequency of canopy manipulation required to achieve specific 

objectives such as habitat management or seedling growth (Hale et al., 2009). The 

method illustrated here could be used to understand transmittance and foliage 

profiles at larger spatial scales and in different forest types. 

4.5 Conclusion 

This study demonstrated a non-tedious and simplistic use of airborne discrete 

return LiDAR to study the vertical light transmittance of forest canopies at 

different stages of growth without requiring extensive ground data collection. The 

light transmittance varied among the forest plots at chronosequence. However, the 

difference was noticeable between stands with dissimilar canopy characteristics 

such as stand age and canopy complexity. Several other studies have used large 

footprint waveform LiDAR data to derive vertical LAI profile estimates in 

tropical rain forests, demonstrating LiDAR data’s explanatory power for the light 

transmittance within forest canopies (Tang et al., 2012, 2014, and 2016). 

 Our study focused on vertical transmittance. However, with three-

dimensional modeling of LiDAR point clouds, future work can look at the 

transmittance at an oblique angle for better understanding of canopy light 

transmittance. More canopy structural metrics, such as canopy relief ratio and leaf 

angle distribution, can be included to understand the complexity of the canopy 

structure and its relationship with vertical light transmittance (Montgomery & 

Chazdon, 2001). The current study focused on mixed deciduous forest plots; 

http://forestry.oxfordjournals.org/content/82/5/503.full
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future research might apply the methodology to other forest types to obtain a 

broader understanding of radiation patterns under successional forest growth 

stages. 
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Chapter 5 Conclusion 
 

This dissertation aimed to better characterize the under-canopy radiation 

regime using three-dimensional vegetation structure derived from LiDAR remote 

sensing in forest plots with different canopy characteristics. Overall, this research 

demonstrated the utility of small foot print LiDAR to illustrate vegetation 

structure and to provide reliable estimates of radiation and transmittance values 

under the canopy. The methods developed in this dissertation can be useful for 

characterizing forest successional stage using LiDAR-based vegetation metrics 

where field measurements are not available. It can also be useful for ecologists, 

foresters, and other conservation scientists interested in estimation of radiation at 

finer scales interested in snowmelt and hydrological simulations for forest 

ecosystems monitoring and management. 

The main findings of this dissertation that were presented in the earlier 

chapters have been compiled into specific themes and presented as follows. First, 

this research demonstrated a way to estimate under-canopy solar radiation and 

vertical light transmittance values from discrete return LiDAR data without the 

need for labor-intensive field work, field sensors, and passive remote sensing. 

This study therefore adds to previous efforts to estimate radiation values from 

LiDAR rather than through traditional instrument-based empirical methods. In 

Chapter 2, I applied a spatially explicit model to assess the first-order effect of 

vegetation on solar radiation using LiDAR-derived surfaces with and without 

vegetation. I found that the presence of vegetation impacted both the magnitude 
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and variability of solar radiation, and showed how bare surfaces received almost 

three times the mean solar irradiance at noon and morning, compared to surfaces 

with vegetation cover. I also estimated the direct beam radiation on the forest 

floor using a ray-tracing model in Chapter 3 and estimated the vertical light 

transmittance values in Chapter 4 using LiDAR data.  

Second, LiDAR-based estimates of solar radiation and canopy vertical light 

transmittance were in good agreement with different field-based radiation 

measurements. By comparing the modeled results with commonly used field-

based measurements from pyranometer and PAR sensors, I showed that LiDAR 

can provide good estimates of direct beam radiation (RMSE = 13.94 W/m2), and 

vertical light transmittance values (R2 = 0.84) in mixed deciduous forests at 

different stages of succession, as shown in Chapters 3 and 4. These applications 

suggested that LiDAR data alone can provide accurate fine-scale measurements of 

both under-canopy beam radiation and vertical light transmittance in forest plots 

with different structural characteristics. 

In addition, I found few differences between the PAR- and LiDAR-estimated 

transmittance values. In Chapter 4, I observed that the LiDAR estimates were 

smoother, whereas the PAR measurements fluctuated at different height intervals, 

with a magnitude exceeding the values at a lower height occasionally. This 

anomaly could be possibly explained by the impact of sun fleck or other canopy 

openings at time of data acquisition (Zavitkovski, 1981). I also found that when 

compared to the PAR data, the LiDAR model overestimated the transmittance in 
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the intermediate and old plots, but underestimated in the young plot (Figure 4.10). 

This could be due to the sensor type and sampling design. The PAR sensor was 

operated at a different wavelength compared to the LiDAR (visible vs. near-

infrared bands). Also the sampling design of the PAR was based on a sampling 

grid, whereas the LiDAR information was acquired at a much higher spatial 

resolution. However, it was not possible to address these factors using current 

techniques. One possible solution could be to use multiband LiDAR system 

(Morsdorf et al., 2009). The consistency of acquisition spectrum should provide 

higher agreement and more realistic observations of PAR. 

Third, LiDAR-derived metrics can well characterize the vegetation structure 

across forest types and help understand its effect on the under-canopy light 

regime. In Chapter 3, I found how the amount of radiation on the forest floor 

changed with the age of the forest plots. For example, I estimated that the amount 

of direct beam radiation at noon reaching the floor of the young plot was 14% of 

the top of the canopy radiation, compared to only 2.5% in the mature plot. In 

Chapter 4, I found how vertical light transmittance varied among the forest plots 

corresponding to differences in the vertical organization of canopy material 

determined by age, structure, and disturbance history. I found that vertical 

transmittance at the effective ground level (1 m above the surface) in the young 

plot was more than twice compared to the mature plot (16% vs. 7%), suggesting 

more light was intercepted within the mature plot. The relative difference between 

the intermediate and the old plot was only 1%, which can be attributed to large 
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gaps within the old plot created by the mortality of older trees. These findings 

suggest that to better model the solar regime and quantify radiation amounts under 

the canopy, we need the three-dimensional vegetation structure that can be 

reliably derived from LiDAR data. 

Lastly, the RF analysis highlighted the complexity of factors influencing the 

amount of solar radiation that moves through the canopy. In Chapter 3, I found 

that when the categorical age was not considered, the CHM or the canopy height 

was the greatest determinant of solar radiation on the forest floor followed by 

canopy cover. However, when the chronosequence age was considered, canopy 

cover becomes the most significant determinant of solar radiation. This finding is 

in accordance with what previous studies have suggested, that neither canopy 

height, canopy and sub-canopy vegetation, or age can fully explain the sub 

canopy light regimes (Clark et al., 1996; Denslow & Guzman, 2000; Montgomery 

& Chazdon, 2001; Brown & Parker, 2004) and therefore, highlights the 

importance of integrating other vegetation structural parameters, optical 

properties, species types, and distribution of canopy elements, and their 

interaction with light.  

Despite demonstrating the overall utility of LiDAR to provide detailed 

information on vegetation structure, and radiation values under the canopy, 

limitations of this study still remain and need to be addressed through future 

work. First, I considered only the direct beam component in the ray-tracing model 

in Chapter 3. I did not consider the diffuse radiation component to keep the model 
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simple, and also because previous studies and in situ measurements at the study 

site had indicated that the differences in understory radiation were mainly caused 

by the direct component of light (Hutchison & Matt, 1977; Pukkala et al., 1991). 

Second, I did not consider the multiple scattering and spectral properties of 

various canopy elements such as leaves and branches because it would have 

required site-specific field measurements. Future work could integrate these 

properties for better characterization of radiation regimes. Third, the ray-tracing 

model used in this study captured a high level of variability at a fine spatial scale, 

which is necessary to estimate stand-scale solar irradiance, which may potentially 

improve models such as snowmelt, hydrological, and energy balance models. This 

increased accuracy comes with high computational costs inhibiting its application 

at larger spatial scales. However, with increasing computational power and 

algorithm efficiency, ray-tracing models have potential for widespread use in near 

future. 

The method elaborated and the findings presented in this research have the 

potential to improve a range of land surface model estimations. For example, 

current snow models use LAI as a proxy for vegetation and use Beer–Lambert’s 

law to model exponential light extinction assuming a randomly distributed 

canopy. LAI has two major limitations—it does not capture canopy heterogeneity 

at finer scales, and LAI values derived from passive remote sensing are prone to 

saturation (Tang et al., 2014). Heterogeneous canopy with non-random 

distribution increases the uncertainty of these models (Pinty et al., 2004). Gray 
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and Male (1981) have pointed that the Beer's law-based approach may have 

limited utility for snowmelt processes when the assumption of a homogeneous 

and non-random canopy distribution is not satisfied. These issues have been 

mostly addressed using data from in situ pyranometers or hemispherical 

photographs (Musselman et al., 2012). However, unavailability of such ground-

based measurements for larger areas limits their usage. 

Solar radiation can be derived using ray-tracing or hybrid models that use 3D 

vegetation structure derived from LiDAR as the primary input. The methods 

illustrated in this research based on LiDAR-derived three-dimensional canopy 

structure were able to capture fine-scale variability in solar radiation at stand 

level. Through utilization of these methods there is a potential to incorporate, 

heterogeneous, non-random canopies, with smaller gaps, forest clearing and 

clumping within canopies, making it a good choice for modeling snowmelt and 

other hydrological processes.  

Similarly, application of this work can possibly improve the characterization 

of vegetation–radiation interactions in land surface models such as Ecosystem 

Demography (ED) and Dynamic Vegetation Models (DVMs), which are widely 

coupled with Global Climate Models (GCM) (Quillet et al., 2010). These models 

are useful for modelling ecosystem structure, below-ground biomass, vegetation 

height and basal area, soil carbon stocks along with ecosystem fluxes. Like most 

of the current snow models, these models too use two stream approximation that 

rely on LAI and does not account for canopy structural parameters such as canopy 
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height, tree density, and crown parameters. The methods developed in this study 

can therefore fill these existing gaps in better representing the canopy–energy 

interactions and help in downscaling the GCM predictions. 
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Appendices 
 

Supplementary Table 1: Wilcox-Rank Sum Test for Radiation Differences 

Season 95% confidence interval (Pseudo)median  Significance level 

Summer 
solstice 

3,558.104–3,608.264  3,583.223  99% 

Equinox 2,923.147–2,961.247  2,942.179  99% 

Winter solstice  1,266.292–1,279.551  1,272.937  99% 

 

Supplementary Table 2: Data Summary of the DSM and DEM Radiation 
(kWh/m2)  

  
 Min 1st Q Median Mean SD 3rd Q Max 

Summer solstice 

DSM 
(tree) 

0.56 1.79 3.3 3.76 2.34 5.31 9.83 

DEM 
(no 
trees) 

0.03 9.25 9.47 9.37 0.42 9.61 9.83 

Equinox 

DSM 
(tree) 

0.49 0.94 1.93 2.4 1.68 3.5 8.10 

DEM 
(no 
trees) 

0.5 6.39 6.91 6.7 0.74 7.28 8.07 

Winter solstice 

DSM 
(tree) 

0.45 0.62 0.95 1.25 0.89 1.46 5.95 

DEM 
(no 
trees) 

0.45  2.97 3.53 3.43 0.77 3.9 5.8 
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Supplementary Table 3: Spatial Autocorrelation 

 Moran’ I (DSM) Moran’ I 
(DEM) 

Geary’ C 
(DSM) 

Geary’ C (DEM) 

Solar solstice  0.84 0.96 0.15 0.05 

Equinox 0.79 0.96 0.20 0.03 

Winter solstice  0.64 0.94 0.35 0.03 
 
 
 
 
 
Supplementary Table 4: Descriptive Statistics of the SERC plots 
 
 Stand Type Min 1st Q Median Mean 3rd Q SD Max 
CHM Young 0 10.25 11.29 11.34 12.36 2.02 29.15 

Intermediate 0 26.42 30.03 29.31 33.22 6.18 42.99 
Mature 0 28.19 31.29 30.34 33.75 5.73 44.1 

Fractional 
cover 

Young 0.74 0.95 0.97 0.96 0.98 0.03 0.99 
Intermediate 0.56 0.98 0.99 0.98 0.99 0.04 0.99 
Mature 0.85 0.99 0.99 0.99 0.99 0.02 1 

Rugosity Young 0.63 1.13 1.33 1.48 1.54 0.89 9.72 
Intermediate 0.781 2.56 3.48 3.89 4.6 1.91 13.1 
Mature 0.58 2.17 3.03 3.71 4.42 2.30 14.87 

 
 
 
 
 
 
 
Supplementary Table 5: Dunn's test of multiple comparisons using rank sums(holm): 
Pairwise Comparison 
 
Plots mean.rank.diff pval 

Intermediate–young −12,268.768 <2e−16*** 

Mature–young −16,694.526 <2e−16*** 

Mature–
intermediate 

−4,425.759 <2e−16*** 
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