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Operational and environmental variance can skew reliability metrics and increase 
uncertainty around lifetime estimates. For this reason, fleet-wide analysis is often too 
general for accurate predictions on heterogeneous populations. Also, modern sensor 
based reliability and maintainability field and test data provide a higher level of 
specialization and disaggregation to relevant integrity metrics (e.g., amount of 
damage, remaining useful life). Modern advances, like Dynamic Bayesian Networks, 
reduce uncertainty on a unit-by-unit basis to apply condition-based maintenance. This 
thesis presents a methodology for leveraging covariate information to identify sub-
populations. This population segmentation based methodology reduces fleet 
uncertainty for more practical resource allocation and scheduled maintenance. First, 
the author proposes, validates, and demonstrates a clustering based methodology. 
Afterwards, the author proposes the application of the Student-T Mixture Model 
(SMM) within the methodology as a versatile tool for modeling fleets with unclear 
sub-population boundaries. SMM’s fully Bayesian formulation, which is 
approximated with Variational Bayes (VB), is motivated and discussed. The scope of 
this research includes a new modeling approach, a proposed algorithm, and example 
applications.  
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Foreword 
 

The following Master’s Thesis is composed of an introduction and conclusion that 
links two modified journal papers. The first journal paper has been submitted and is 
under review at Quality and Reliability Engineering International. The second chapter 
of this thesis corresponds to this first paper. The second journal paper is still in the 
pre-submission drafting process. The third chapter of this thesis corresponds to the 
second journal paper. The introduction and conclusion weave together these two 
papers into a single body of work.  
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Chapter 1: Introduction 

Many modern reliability and maintainability techniques reduce uncertainty around 

system life and integrity measurements. Particle Filtering (PF) and Bayesian 

Networks (BN) are two common Prognostic and Health Management (PHM) 

approaches for reducing unit uncertainty [1-3]. PF can be employed for on line 

physical system tracking given relevant sensor-based system health data. PF is a 

generalization of Kalman Filtering that uses particles to approximate the probability 

density of a relevant system health metric [1]. Static Bayesian Networks and the 

recursive Dynamic Bayesian Networks can account for numerous operational and 

environmental conditions that may affect relevant system health variables [4-5]. 

These techniques provide prognostics that can be leveraged for CBM. 

 

These techniques all rely on the same assumption: reliability metrics extrapolated 

from an entire fleet (a full population of units) are too imprecise for application to any 

particular unit. Varying operational loads, environmental stressors, or other 

unforeseen factors produce inter-fleet variance and heterogeneity. Modern data-

driven modeling methods often account for this uncertainty on a unit-by-unit basis. 

By accounting for uncertainty on a unit-by-unit basis, an analyst can institute cost 

saving condition-based maintenance (CBM) [6].  

 

CBM is a valuable cost-saving objective, but it should not be considered the primary 

purpose of uncertainty reduction. Optimizing scheduled maintenance (SM) is still 

necessary to maximize system life. In some cases CBM is not practical. Existing 
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techniques often identify damage when 80-90% of system life has already been 

expended [6-7]. The fleet may be too large to conduct analyses on each unit. For 

example, consider an oil pipeline network and its metallic pipes. Certain parts of the 

network are likely to see larger cyclic loads and different environmental stressors. 

These heterogeneous stressors could cause some metallic pipes to fail before others, 

but the sheer size of the system prevents rapid condition based maintenance. 

Adjusting schedules could improve maintenance scheduling for pipes that are more 

likely to fail and prevent wasteful maintenance on more reliable pipes. Also, CBM 

provides limited information for optimal resource allocation. Precise and variant 

warranty schedules could systematically save organizations significant costs.  

  

This thesis proposes discrete population segmentation to identify sub-populations 

within a fleet. By identifying sub-populations within the fleet, a reliability practitioner 

can reduce uncertainty by factoring larger operational and environmental trends into 

the analysis. Because identifying underlying patterns, this methodology can improve 

SM, warranty schedules, and other resource allocation. The methodology can also be 

used in conjunction with other data-driven techniques to improve SM and CBM 

planning. Much like BN and PF, this methodology leverages sensor-based covariates 

to reduce this uncertainty. The proposed methodology employs unsupervised 

clustering algorithms to segment the population by its covariates. By training a 

supervised classification model with the sub-population assignments, the 

methodology can segment still unsold, unused, or healthy units. This thesis explores 
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the advantages of this approach in depth and considers alternative scenarios where 

sensor data is unavailable.  

 

1.2  Relevant Background and Discussion 

Fleets are often subject to different environmental and operational conditions. 

Moreover, systematic sensor measurement error, reporting inaccuracy, and 

production process variations often create uncertainty around individual units within a 

fleet [8]. A probabilistic time-to-failure prediction applied to an entire fleet may over 

generalize the failure probability of a unit with a different magnitude of stress. By 

accounting for heterogeneity, it is possible to improve the precision and accuracy of 

reliability predictions and prognostic health management (PHM). 

 

Past literature has addressed fleet uncertainty in several ways. Kaplan employed a 

two-step Bayesian procedure to develop a generic prior that specializes predictions 

with data related to a particular sub-population [9]. Droguett & Mosleh condensed 

Kaplan’s two-step Bayesian procedure by evaluating hierarchical uncertainty around 

the distribution of a hidden variable’s parameters [10]. Liu & Zio trained a unit 

correction model on a fleet-wide degradation path regression [11].  

 

These approaches only correct for uncertainty in a particular analysis, but the 

proposed methodology addresses fleet wide heterogeneity. In particular, this thesis 

recommends a clustering based framework to handle uncertain fleet-wide operational 

and environmental conditions. Cluster analysis segments data by the similarity or 



 

 4 
 

dissimilarity of the observations. An observation assigned to a cluster would be most 

similar to other observations assigned to the same cluster [9]. This metric of similarity 

can be any feature or collection of features. In reliability analysis, each cluster would 

correspond to a sub-population. 

 

Clustering has appeared in the reliability literature previously. Tian (2002) showed 

that clustering the failure intensities could improve reliability analysis [12]. Similarly, 

Dindarloo and Siami-Irdemoosa (2016) clustered mining shovel data based on time to 

failure and repair [13]. Arunajadai et. al clustered the attributes of a product design to 

identify potential failure modes [14].  

 

One of the more commonly used approaches to counter heterogeneity in reliability is 

a clustering technique known as mixture modeling (MM). MM assumes the data is 

produced from some finite number of distributions and each data point is produced by 

one of the predicted distributions with some probability. Equation 1.1 displays the 

mathematical representation of mixture modeling, which represents a number of 

distributions (𝐹! 𝑡 )  with a particular mixing proportion (𝑝!) [9]. 

 

𝐹 𝑡 = 𝑝!𝐹! 𝑡!
!!!                                                                                                    1.1                                             

 

Mixture modeling is a robust tool for time-to-failure analysis as each component 

distribution can represent a separate sub-population [16]. If there is sufficient 
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heterogeneity within a fleet, a single distribution may not effectively fit the time-to-

failure data. A mixture model directly accounts for the heterogeneity of failure events.    

 

Unlike clustering applications in reliability, the proposed methodology capitalizes on 

the popularization of sensor technology to increase the precision and accuracy of 

reliability diagnostics and prognostics by segmenting the fleet into sub-populations. 

The proposed methodology leverages sensor data to systemically inform and reduce 

fleet uncertainty. Not only can this benefit reliability management, but it also 

provides a holistic perspective of the fleet’s heterogeneity. By clustering covariates 

directly, a reliability practitioner can assign labels for analysis on unsold, unused, or 

healthy units.  

1.3  Research Objectives 

The authors primary objective is to propose a clustering based methodology that 

reduces fleets uncertainty by identifying sub-populations with sensor-based 

covariates. The proposed methodology aims to segment the most similar units into 

sub-populations and separate dissimilar units. Post-methodology time-to-failure 

analysis should then outperform time-to-failure analysis on an entire fleet. The 

methodology should introduce a mechanism to classify additional units to a sub-

population. Finally, the methodology should achieve objectives despite noise and 

outliers. In the real world, sub-populations boundaries are not clear. The methodology 

should obtain the stated objectives despite these possible pitfalls. 
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1.4  Research Contributions 

The research contributions of this thesis are: 

• Introduce a methodology for fleet uncertainty reduction that accurately 

identifies sub-populations, improves time-to-failure distribution fit, and 

increases precision of reliability metrics. 

• Motivate Student-T Mixture Models to identify sub-populations despite real 

world noise, outliers, and unclear sub-population boundaries.  

• Adapt Variational Inference to quickly and efficiently approximate Student-T 

Mixture Models.  

• Discuss Variational Bayes applications in Reliability Engineering.  

1.5  Thesis Organization 

Chapter 2 introduces, validates, and demonstrates a clustering methodology with the 

DBSCAN algorithm. Chapter	  3	  employs	  SMM	  as	  an	  effective	  algorithm	  for	  

applications	  to	  cases	  where	  the	  sub-‐population	  boundaries	  are	  blurred	  or	  

covariates	  are	  unavailable.	  VB	  is	  motivated	  for	  reliability	  contexts.	  Chapter	  4	  

concludes	  by	  summarizing	  academic	  contributions	  and	  recommending	  future	  

work.	  The	  appendix	  include	  additional	  mathematical	  derivations	  and	  

experiments	  that	  were	  not	  included	  in	  the	  main	  text.	  	  
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Chapter 2: A Novel Clustering Based Methodology for 
Overcoming Heterogeneous Populations for Reliability 
Prediction 
 
The reliability field is in the process of a transformative change with the advent and 

popularization of sensor technology to process extra covariate information on a 

particular system. The ever-increasing amount of information provides an opportunity 

for the adaption of machine learning to not just improve, but revolutionize, the fit, 

accuracy, and sheer volume of reliability diagnostics and prognostics [17]. A 

reliability data set of failure events may now include numerous time series of 

attributes leading up to and at a conclusive failure event.  

 

The proposed methodology clusters sensor based covariate data for the identification 

of possible sub-populations for specialized reliability prediction. Applied to a data set 

with messy, heterogeneous, data, the methodology segments the data set into 

homogenous sub-fleets. Homogeneity, in this context, can be defined by subgroups 

with similar reliability characteristics, like failure probability or hazard rate. In these 

smaller sub-populations, more accurate and precise reliability models (i.e., 

distributions) can be derived. 

 

This chapter proceeds as follows: section 2.2 reviews the complete methodology and 

discusses practical concerns for the clustering algorithm. Section 2.3 validates the 

proposed methodology with simulated data. Section 2.4 demonstrates the 

methodology on a real power plant data set and discusses results.  
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2.2 Proposed Methodology 

Given a data set that includes failure times and the covariate measures of the 

respective units, the first step is to cluster the covariate information. After clustering 

the data into its relevant subgroup, separate reliability metrics are calculated from 

smaller, more homogenous, sub-populations. Now any unused, unsold, or healthy unit 

within the same population can be assigned to a subgroup for more accurate and 

precise prognostics. Thus, in the aforementioned oil pipeline example, uncertainty 

around reliability predictions for newly installed pipes can be immediately reduced. 

 

In order for the methodology to assess additional units, the cluster assignments should 

be used as class labels and a supervised learning model (e.g., Logistic Regression) 

trained. The supervised learning model should be subject to regularization, validation, 

and testing. The process is graphically displayed in Figure 2-1. 
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Figure 2-1: Proposed Clustering Methodology 

 

2.2.2 Intricacies of Clustering Covariate Information in Reliability 

As displayed in Figure 2-1, the first step of the methodology clusters the data based 

on covariate information to segment the data into more similar, smaller, subgroups. 

However, it is important to produce clusters that best represent sub-populations 

within a larger population. The best representation would group the most similar units 

into a sub-population and avoid the inclusion of dissimilar units.  A number of 

practical concerns, like class imbalance, are considered in this section. 

 

Collect Sensor-Based 
Covariates 

Cluster Fleet by 
Sensor Reading 

Conduct Reliability 
Analysis on Sub-

populations 

Classify New Units to 
a Sub-Population 
before Analysis 
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First, the clustering algorithm should effectively handle class imbalance. If a data set 

has a large group that contains 95% of the observations and three smaller groups that 

compose the other 5%, the approach should be able to identify the four 

heterogeneously sized clusters.  

 

Second, the approach should be scalable. For example, subspace-clustering 

algorithms, which map higher dimensional data to lower-dimensional representations, 

may be robust for non-convex data, but require the construction of a similarity matrix 

[31]. As the number of observations (N) increases, the similarity matrix becomes too 

large. However, there are a number of approaches that can handle large-scale sub-

space clustering through sparsity and sampling, like Scalable Sparse Subspace 

Clustering (SSSC) and Large-scale Subspace Clustering using Sketching and 

Validation (SkeVa-SC) [32-33].  

 

Third, similar units should be grouped together and dissimilar units segmented. The 

similarity measure poses a unique challenge. Similarity or dissimilarity is a critical 

aspect of many machine-learning algorithms. Observations or data points must be 

compared to each other by some measure. In the context of this methodology, the 

approach compares each unit’s similarity to another unit by its covariates.  

 

The selected similarity measure is often dependent upon the type of data. If it were a 

continuous data set, then the simplest choice would be a geometric measure like 

Euclidean distance. However, for ordinal, binary, categorical, or mixed data sets, the 
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decision becomes more challenging. For ordinal, binary, or categorical data, the 

dissimilarity could be a function of how many variables the observations have in 

common. For mixed data set, one possibility is to simply transform continuous data to 

categorical or ordinal data and employ the Hamming Distance (2.1) [20] or the Gower 

Similarity Coefficient (2.2) [38].  

 

𝑑!"#(𝑖, 𝑗) =    𝑦!,! ≠ 𝑦!,!!!!
!!!                                  (2.1)  

𝑆!,! =   
𝜔!"#𝑆!"#!

!

𝜔!"#!
!

                                                                                            (2.2) 

 

Hamming Distance assesses whether each feature of two different data observations 

is identical (𝑦!,! = 𝑦!,!) or not (𝑦!,! ≠ 𝑦!,!). The similarity metric increases, or 

inversely dissimilarity decreases, for each feature the two observations have in 

common. Hamming Distance has obvious flaws in its application to continuous or 

mixed data types. The Gower Similarity Coefficient is very effective in its application 

to mixed data sets. It uses an additional parameter 𝜔!"# to control for invalid 

comparisons. So, a continuous variable will never be compared to a binary or 

categorical variable. However, when the two variable types match, the variable 𝑆!"# 

uses an appropriate similarity metric (i.e., Hamming with binary or categorical 

variables and Euclidian with continuous variables).  

 

Neither Gower Similarity Coefficient nor Hamming Distance is universally 

applicable. Many clustering algorithms, like k-Means or Mixture Models (MM) [4], 
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cannot cluster mixed data types since they require continuous parameters to 

iteratively update. Alternatives to traditional algorithms, like k-Prototypes [35], have 

been proposed to handle this problem. Density Based Spatial Clustering of 

Applications with Noise (DBSCAN) [36] can, also, operate on various similarity 

matrices efficiently and accurately. Although the experimental data sets are only 

composed of continuous variables, DBSCAN is used in upcoming experiments. 

Euclidean Distance is chosen as the similarity metric. 

 

2.2.3 DBSCAN 

The DBSCAN algorithm is useful in reliability contexts because it can handle data of 

arbitrary shapes and sizes, requires minimal inputs, and is efficient on big databases. 

DBSCAN also assumes no distribution, which allows it to handle non-convex 

subsets. 

 

The density-based notion of clusters is rooted in a few definitions. The first is an Eps-

neighborhood (𝑁!"#)  of a point where is an additional observation [36]: 

 

𝑁!"#(𝑝)   =    {𝑞 ∈ 𝐷|𝑑𝑖𝑠𝑡(𝑝, 𝑞) ≤ 𝐸𝑝𝑠}                               (2.3) 

 

Two observations (𝑝) and (𝑞) lie within the same neighborhood if their similarity, 

per the selected measure, is within a specified epsilon hyperparameter. 

 

The second is direct density-reachability: 
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𝑝 ∈ 𝑁!"#(𝑞)                                                                                                                  (2.4) 

𝑁!"#(𝑞)   ≥ 𝑀𝑖𝑛𝑃𝑡𝑠                                                                                                       (2.5) 

 

Direct density reachability implies two points within the same neighborhood. The 

neighborhood must be greater than a specified minimum points (MinPts) parameter. 

[20] MinPts determines the least amount of points required to form a cluster [36]. 

 

Density Reachability is defined as a group of points  𝑝!…𝑝!, 𝑝! = 𝑞,  𝑝! = 𝑝 such 

that 𝑝!!! is directly density-reachable from 𝑝! with respect to (wrt) Eps and MinPts. 

[36] Density reachability is the transitive direct density-reachability. Now, points can 

be indirectly connected but belong to the same neighborhood. Observations p and q 

are density-connected if they are both density-reachable from a third point o wrt Eps 

and MinPts [36].  

 

A cluster is then defined as a non-empty subset of the data that meets the following 

two criteria: 

 

1.∀𝑝, 𝑞: if 𝑝 ∈ 𝐶 and q is density-reachable from p wrt Eps and MinPts, then 

𝑞 ∈ 𝐶  [36] 

2. ∀𝑝, 𝑞 ∈ 𝐶 : p is density-connected to q wrt. Eps and MinPts [36]  
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Finally, an analyst can define all points that are not assigned to a particular cluster, 

from lack of density reachability or connectability, as noise points.  

 

These definitions are integral to DBSCAN’s two-step iterative procedure for 

clustering. First, an arbitrary point is selected and the core point condition is 

evaluated. The core point condition requires that the units’ neighborhood 𝑁!!"(𝑞) 

contain more than MinPts observations. If the observation is designated a core point, 

this selected observation is considered a seed. Then, all points density-reachable or 

density-connected from this seed form a cluster.  Each cluster is evaluated against the 

Eps hyperparameter to determine whether a cluster should be combined or separated. 

The algorithm is run until convergence [36].  

 

Hyperparameter optimization is a critical task in machine learning. For DBSCAN, the 

optimal Eps and MinPts parameters produce the most homogenous sub-populations. 

Manual search, grid search, and randomized search are three conventional approaches 

to optimizing hyperparameter. However, identifying the “thinnest”, or least dense, 

clusters’ Eps parameter is an applicable heuristic for optimizing the selection.  Since 

Eps in DBSCAN is the minimum criteria for the formation of a cluster, the “thinnest” 

clusters’ Eps can be selected as a global parameter because it specifies the lowest 

possible density that would not be considered noise [36].  

 

In order to assess this value, a function k-dist is defined as each point’s distance 

metric to its k-th nearest neighbor. Sorting points and the corresponding distance 
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metric based on descending k-dist values produces a k-dist graph. This k-dist graph 

can be used to reveal a threshold point that provides the Eps value of the thinnest 

cluster. In the k-dist graph, the large value before the curve’s knee will reveal the 

value of this parameter for a particular k [36]. This k value is the MinPts parameter. 

The selection of the optimal MinPts can be optimized or selected based on 

engineering rationale. At what size is it no longer reasonable to consider something a 

sub-population? This decision can also be made from the size of the data and 

engineering or statistical intuition. One concern for an analyst should be over fitting. 

If the model is over fit to the data, it may not effectively represent additional 

experiments or field data. 

 

After DBSCAN is applied and cluster assignments are obtained, the population can 

be segmented into smaller, more homogenous, sub-groups. Now, a reliability 

engineer can derive separate predictions on each sub-population. 

 

2.3  Validation of Proposed Methodology on Synthetic Data 

In this section, the author validates the proposed methodology on a synthetic data set. 

The data was synthesized from four separate Weibull distributions with five 

covariates. The covariates were heterogeneous; each sub-population of covariates was 

sampled from four separate Gaussian distributions. Moreover, the simulated sub-

populations were heterogeneously sized with one of the groups accounting for 43.5% 

of the full data set and another accounting for 13%. The total data set amassed 1150 

observations and the covariate matrix used for clustering was five dimensions. 
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A scatterplot matrix of the synthetic data set is shown in Figure 2-2. The scatterplot 

matrix displays the data across two dimensions for every possible combination of 

dimensions. Moreover, across the diagonal, it shows a histogram of the synthetic data 

within each dimension. 

 

In this simulated case, the covariate information is synthetic. Labeled covariate 

information is not necessary for segmenting the data of homogenous sub groupings. 

However, in practice, each collected covariate would represent a variable relevant to 

failures like humidity, temperature, or air pressure. 

 

 

Figure 2-2: Scatter Plot Matrix of Noisy Synthetic Data. Covariates are produced by 
four different Gaussian distributions, failure times by four different Weibulls 

 

The author tested DBSCAN on covariate data to examine its ability to segment a 

population. In short, could DBSCAN effectively cluster heterogeneous data? Since 
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the data set was quite small (N=1150), the dimensionality was chosen as the 

parameter value MinPts (MinPts = 5) and the Eps value (Eps = 0.11) was calculated 

with the KNN-dist graph. 

                  

After implementing DBSCAN on covariates, the failure times were segmented by 

cluster assignment. As visualized in Figure 2-3, the algorithm effectively segmented 

the population. All but 14 out of 1150 data points were classified to the correct sub-

population, resulting in 98.7% accuracy. 

 

 

Figure 2-3: DBSCAN Cluster Assignments of Failure Times for Synthetic Data 
 

DBSCAN discovered homogenous subgroups, which indicates the clustering step of 

the methodology can identify and segment heterogeneous populations. The extent to 
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which clustering improves reliability analysis has yet to be validated. In order to 

assess the second step of the methodology (Figure 2-1), each identified sub-

population’s failure times were fit with a Weibull distribution. These sub-population 

lifetime distributions were compared to a lifetime distribution fit to the full data. 

 

Figure 2-4 shows a fit to the full synthetic data set and Figure 2-5 shows a fit to the 

largest sub-population. The results provide evidence that clustering the data can 

improve fit and robustness of prediction. This improvement can be quantified by 

comparing the log likelihood scores for the aggregate population, random samples 

from the aggregate population that are the same sample size as each sub-population, 

and each sub-population. The results are shown in Table 2-1. 

 

 

Figure 2-4: Weibull Fit – Full Synthetic Data 

 



 

 19 
 

 

Figure 2-5: Weibull Fit, Largest Sub-Population (n=500) 

 

Table 2-1: Model Comparison 
 # Of 

Data 
Points 

(N) 

Log-
Likelihood 

Random Sample 
Log-Likelihood* 

AIC Random 
Sample 
AIC* 

Full 
Population 

1150 -4030  8065  

Sub-
Population 
1 

500 -1349 -1756 2702 3517 

Sub-
Population 
2 

187 -412 -652 827 1309 

Sub-
Population 
3 

300 -796 -1050 1595 2104 

Sub-
Population 
4 

149 -401 -517 806 1039 

*In this case the same number of random points are sampled from the full population to 
evaluate the effect of clustering keeping the number of data points constant. 
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Likelihood based scores, like the log-likelihood and the AIC, automatically increase 

with larger samples. Thus, it is important to provide metrics that can hold the sample 

size constant. The author took random samples from the full data of equal size to each 

sub-population and compared the results to the clustering methodology. The 

distributions generated from the methodology were more likely than the random 

samples. Table 2-1 also includes AIC scores, which is an information criterion for 

choosing the best possible model that penalizes additional parameters [31]. The 

methodology avoids additional parameters, so it is not penalized despite the 

additional step.  

 

Parameters predicted by the methodology, as displayed in Table 2-2, are quite 

accurate. The simulated distributions resemble the newly estimated distributions.  

 

Table 2-2: Parameter Estimates 
Weibull 
Parameters 

Sub-
Population 

Synthetic Parameter 
Value 

Methodological 
Parameter Estimates 

β	  
(Shape)	  

1 4 3.93 
2 1 1.07 
3 8 6.49 
4 12 8.32 

α	  	  
(Scale)	  

1 14 13.90 
2 8 8.38 
3 20 20.24 
4 27 27.61 

 
 

The fourth cluster’s shape parameter is estimated incorrectly. This could be the result 

of the small sample Monte Carlo simulation. The randomness from a small sample 
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size may have altered the most descriptive shape parameter. Regardless, DBSCAN 

accurately identified 99.3% of the data points in this sub-population. 

 

Results on synthetic data verified and validated the proposed methodology. In the 

following section, the clustering methodology is applied to a real data set. 

 

2.4  Application of Methodology to Power Plant Failures 

The PHM Data Challenge Competition 2015 (PHM 2015) was a competition to 

predict failure events in complex power plant systems from unlabeled sensor-based 

covariates [37]. PHM Society provided a large database of unlabeled, time series 

sensor measurements for a set of control components within various plant zones. The 

data set included sensor measurements for non-failure times and a categorical 

variable defining the variable type, but this information was not used in the presented 

analysis. 

 

In total, the data set included 16,274 failure events and 30 different covariates. Unlike 

the synthetic data set, it is too high dimensional to visualize and no longer a mixture 

of known distributions. The sub-population boundaries are noisier and there are no 

labels. Figure 2-6 visualizes fleet-wide predictions by fitting a Gaussian distribution 

to all failure times and demonstrates that a fleet-wide assessment would over or 

under-estimate failure probability. 
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The authors applied the proposed methodology to the data collected from this 

complex power plant system. Per the first step of methodology (Figure 2-1), the 

population is clustered based on collected covariate data.  

 

Figure 2-6: Gaussian Fit to PHM Data. Data (X-axis) represents a particular failure 
time and Density (Y-axis) represents the quantity of failure events at a particular time 

 

 

Figure 2-7: Clustering by Covariate  
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As shown in Figure 2-7, the clustered data has segmented the population into seven 

sub-populations. Different parametric distributions may best represent each sub-

population. Some sub-populations include tails, but acting on these smaller subsets is 

still far more advantageous and robust than the large, heterogeneous, full data set.  

 

Indeed, Figure 2-8 displays an attempted cumulative distribution function (CDF) fit to 

a full, heterogeneous data set. The Gaussian distribution was chosen because it 

provided the best fit of any basic parametric distribution. The Gaussian distribution 

over and underestimates the probability of failure at various intervals. This would 

overgeneralize and generate inaccurate predictions. 

 

After clustering the data, an analyst can apply reliability assessments to the sub-

population. The CDF fit to the largest sub-population, as displayed in Figure 2-9, has 

notably improved the fit and, thus, predictive capabilities of the model.  

 

Figure 2-8: Attempted Normal CDF (Best) Fit to Full Data (n=16,274) 
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Figure 2-9: Normal CDF (Best) Fit to Largest Sub-Population (N= 6,718) 

 
Table 2-3: Model Selection for PHM 2015 Data 

 # Of 
Data 

Points 
(N) 

Distribution 
(Best Fit) 

Log-
Likelihood 

Random 
Sample Log-
Likelihood* 

AIC Random 
Sample 
AIC* 

Full Population 16274 Normal -115302  230608  
Sub-Population 1 731 Normal -1520 -5201 3045 10405 
Sub-Population 2 1120 Weibull -4260 -7944 8525 15892 
Sub-Population 3** 2140 Normal -5787 -15213 11578 30431 

Sub-Population 4 569 Normal -1700 -4043 3405 8091 

Sub-Population 5 6718 Normal -31952 -47543 63907 95090 

Sub-Population 6 2980 Normal -14825 -21137 29651 42277 
Sub-Population 7 301 Normal -866 -5201 1735 10405 

*Consult Table 1 for details. 
**Sub-Population clustered a consecutive time. 
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Table 2-4: Relevant Reliability Metrics 
 MTTF 

(Days)* 
Conditional 
Reliability 

at Full 
Population 

MTTF  
(656 Days) 

B(10) 
Life* 

B(90) 
Life* 

Full 
Population 

656 50% 286 1,026 

Sub-
Population 1 

86 0% 82 91 

Sub-
Population 2 

220 0% 203 234 

Sub-
Population 3 

359 0% 344 374 

Sub-
Population 4 

423 0% 412 434 

Sub-
Population 5 

701 91% 656 745 

Sub-
Population 6 

1,038 100% 993 1,083 

Sub-
Population 7 

1,110 100% 1,105 1,116 

 

 

As Table 2-3 shows, the log-likelihood and AIC scores of the clustered data 

outperform random samples of the same size from the full data set. The fit of the 

clustered data outperforms that of a random sample by as much as a factor of six.  

 

Table 4 shows that the B(10) and B(90) life, or the time that 10% and 90% of the 

population has failed, and the Mean-Time-to-Failure (MTTF) may vary dramatically 

between sub-populations. For example, the reliability at the MTTF of the full 
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population (656 days) varies by sub-population. This behavior can be considered a 

sign of high fleet uncertainty. For many units, the application of the methodology 

changes the MTTF. By leveraging various MTTF estimates for each sub-population, 

an analyst improves accuracy. Also, the reduced range between the B(10) and B(90) 

life signals more precision. 

 

An analyst can now assign unsold, unused, or healthy units to a sub-population. The 

analyst could simply re-cluster the entire data set including the additional point or 

treat cluster assignments as class labels. A supervised classification algorithm could 

be trained to predict the cluster assignment of additional observations by covariate. 

[9] This additional step is demonstrated in Chapter 3. 

 

2.5  Chapter Summary 

In this chapter, the author showed the potential of a fleet segmentation methodology. 

By clustering sensor-based covariates, fleet uncertainty is reduced into discrete sub-

populations. The proposed methodology improved reliability life estimates by 

accounting for uncertainty directly. Now, a reliability analyst can vary resource 

allocation and warranty schedules by sub-population. DBSCAN was employed as the 

clustering algorithm. 

 

The author found a serious limitation in the methodology. DBSCAN removed noise 

points from the segmentation. A number of points were left unassigned. In the real 

world, sub-population boundaries are unclear and can overlap. For the methodology 
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to be applicable in real world cases, the algorithm should assign these points to a sub-

population. For example, components within a pipeline system are not likely to suffer 

from dramatically different operational and environmental conditions. It is important 

to account for the uncertain boundaries between two pipeline sub-populations and not 

ignore these observations when modeling a fleet. In Chapter 3, the author explores the 

Variational Bayesian Student-T Mixture Model (VBSMM). VBSMM is a heavy 

tailed mixture of distributions that can account for real world noise and outliers when 

segmenting a fleet. 
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Chapter	  3:	  Fleet	  Uncertainty	  and	  the	  Variational	  Bayesian	  

Mixture	  of	  Student-‐T	  Distributions 

Thus far, this thesis has argued that clustering relevant covariates with DBSCAN 

could improve the precision and accuracy of fleet reliability analysis. A reliability 

practitioner can leverage inter-fleet covariate variance to tackle heterogeneity. 

However, this data-driven approach assumes sensors will collect information directly 

relevant to predominant failure mechanisms. There are also circumstances in which 

sensor installation is impractical. For example, sensor installation can be logistically 

difficult or cost-ineffective if creep or corrosion is a fleet’s leading failure 

mechanism. Moreover, sub-population boundaries are often blurred. Each unit is not 

subject to extreme conditions. This extra real-world noise may disrupt the fit of 

mixture models for many distributions. Unless a distribution has large tails, the mean 

and variance could be unnecessarily skewed. These blurred lines may force some 

mixture models to produce an undesirable fit.   

 

In this chapter, the author proposes fleet segmentation with Variational Bayesian 

Student-T Mixture Models (VBSMM) to counter those real world practical concerns. 

The Student-T distribution uses a degrees of freedom (𝜐) parameter to model the size 

of its tail. As 𝜐   →   ∞, the Student-T distribution will converge to a normal 

distribution. SMM are a robust approach to handling real-world noise and inter-fleet 

ambiguity that negatively impacts other distributions [40]. VBSMM offers a novel 

method in reliability and PHM settings.  
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In this chapter, the author discusses the Expectation-Maximization (EM) and 

Variational Bayesian Expectation-Maximization (VB-EM) formulation of SMM. The 

two methods are quite similar, but the Variational Bayesian (VB) formulation 

introduces prior distributions that can regularize predictions. By regularizing, 

reliability practitioners can use expert opinion or data from related experiments to 

improve estimates. VB can be an attractive alternative to Markov Chain Monte-Carlo 

(MCMC) techniques for approximating intractable Bayesian inference problems. 

MCMC approaches are computationally expensive in certain circumstances and have 

difficult to assess convergence properties.  

 

Several previous reliability analysis papers have employed Variational Inference on 

hierarchical hybrid Bayesian Networks with applications in gas turbine engine 

prognostics and large-scale integrated circuits [71-73]. VB has been leveraged to 

approximate Non-Homogenous Poisson Process (NHPP) software reliability 

modeling [74]. None of these VB reliability applications solve mixture models or 

address fleet uncertainty. 

 

Since SMM is a parametric distribution that can be integrated to produce a reliability 

function, it can model failure events directly from time-to-failure data or from sensor-

based covariates. A reliability analyst can leverage failure related covariates to 

segment units to sub-populations with more similar time-to-failure events or 

degradation paths. An analyst can improve his analysis by assigning unused, unsold, 

or operational units to a sub-population with relevant covariates. 
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In section 3.2, the author introduces the proposed methodology, motivates VB, and 

derives VBSMM. In section 3.3, the author validates the robustness of SMM in 

handling outliers by comparing it to Gaussian Mixture Models (GMM) on a synthetic 

signal data set. The author then demonstrates how SMM can segment a population 

with time-to-failure data or sensor based covariates on real power plant data.  

 

3.2 Proposed Approach 

There are two possible approaches to reliability assessments with SMM. SMM could 

be directly applied to time to failure data or to relevant covariate sensor information. 

In this case, the analyst can use SMM as the clustering algorithm in the Figure 2-1 

methodology or ignore it entirely. As previously mentioned, the clustering 

methodology is more robust for predictions on additional units. In this chapter, both 

possibilities are examined. 

 

Equation 3.1 displays the probability density function (PDF) of a multivariate 

Student-T distribution where Γ is the gamma function, 𝑑 is the dimensionality of the 

data, 𝑣 is degrees of freedom parameter, 𝜇 is the mean parameter vector, and 𝚺 is the 

variance. 

 

𝑆(𝑥|𝜇,𝜎, 𝑣)   =   
Γ(𝑣 + 𝑑2 )

Γ(𝑣2)𝑣
!
!𝜋

!
! 𝚺

!
!
1+

1
𝑣 (𝒙− 𝝁)

!𝚺!𝟏(𝒙− 𝝁)
!!!!!

            (3.1) 
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In order to segment a population with Student-T, the author evokes a finite mixture of 

Student-T distributions. This clustering procedure, commonly known as SMM, 

follows the canonical form displayed in Equation 1.1. The hierarchical structure of 

SMM involves the calculation of a hidden variable (𝑧). In this case, the hidden 

variable is the probability of a single observation belonging to each particular 

distribution. The distribution with the highest probability can then be considered the 

cluster assignment. 

 

Bayesian methods are probabilistic techniques that evoke prior and incoming 

information to produce distributions that describe some random variable. In this case, 

Bayesian methods are employed to estimate the parameters of the SMM. Bayes 

theorem is presented in Equation 3.2. 

 

        𝑝(𝜃|𝑋) =
𝑝(𝑋|𝜃)𝑝(𝜃)

𝑝(𝑋) ∝ 𝑝(𝑋|𝜃)𝑝(𝜃)                                                                  (3.2) 

 

Bayesian methods can be evoked to build distributions around the parameters (𝜃) that 

describe the random variable of interest. In Equation 3.2,  𝑝(𝑋|𝜃) is the likelihood of 

the evidence 𝑋 and 𝑝(𝜃) represents the prior distribution of  𝜃. Thus, the parameter 

itself is a random variable. To understand the value of this information, consider the 

case of a Gaussian distribution that describes a set of failure times with a mean 

parameter (𝜇). This mean parameter applied to time-to-failure data could describe the 

reliability metric mean time to failure (MTTF). With this hierarchical procedure, a 
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reliability practitioner can regularize this important metric with prior information 

before it is derived.  

 

In these cases, the likelihood term 𝑝(𝐷|𝜃) integrates out parameter 𝜃, since only the 

prior parameters describing the random variable 𝜃 are relevant to the ultimate 

calculation. Marginal likelihoods are critical to the construction of complicated 

distributions like SMM. Equation 3.3 displays a marginal likelihood. 

 

𝑝(𝐷|  𝛼)   =    𝑝(𝐷|𝜃)𝑝(𝜃|𝛼)  𝑑𝛼                                                                                             (3.3) 

 

Calculating the marginal likelihood is often intractable. The integral can become 

complicated and multidimensional. Thus, the hierarchical formulation of a SMM 

cannot be solved analytically. In order to produce parameter estimates, an analyst 

must approximate the parameters.  

 

3.2.2 Approximation Selection 

The previous section has shown how VB can be used to approximate intractable 

Bayesian problems. However, why use this approximation as opposed to the 

frequentist Expectation Maximization or MCMC?  

 

The EM algorithm (Algorithm 3-1) is essentially identical to the VB-EM algorithm 

(Algorithm 3-2). Although the VB-EM algorithm optimizes the KLD, they both 

essentially maximize the log-likelihood. However, fully Bayesian approaches provide 
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a major benefit that is unavailable in the maximum likelihood formulation. Prior 

distributions allow reliability practitioners to flexibly fuse other information. By 

setting informative priors, the distribution is effectively regularized. Thus, a 

practitioner can account for expert opinion or other data sources. The EM algorithm 

may provide more accurate results on training data, because it is not regularized by 

prior information. However, EM is not as well equipped as VBEM to accurately 

model new units that may vary from the training data.  

 

Algorithm 3-1. Expectation-Maximization: 
 Expectation Step: 

• 𝑞!
(!!!)(𝑧)   =   𝑝(𝑧|𝑋,𝜃(!)) 

• 𝑄(𝜃)   =    𝑙𝑛  𝑝(𝑋, 𝑧,𝜃) !!
(!!!)(!) 

            Maximization Step: 
• 𝜃(!!!) =   𝑎𝑟𝑔  max! 𝑄(𝜃)  

Convergence 
• ln𝑝(𝑿,𝒁,𝛉|𝐊)(!!!)   −    ln𝑝(𝑿,𝒁,𝛉|𝐊)(!)     ≤   𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

 
 
 
Algorithm 3-2. Variational Bayesian Expectation-Maximization: 
 Expectation Step: 

• 𝑞!
(!!!)(𝑧)   =   𝑝(𝑧|𝑋,𝜑(!)) 

• 𝑄(𝜃)   =    𝑙𝑛  𝑝(𝑋, 𝑧,𝜃) !!
(!!!)(!) 

            Maximization Step: 
• 𝑞!

(!!!)(𝜃)   =   𝑒𝑥𝑝 𝑄(𝜃)  
Convergence 

• 𝐿(!!!)   −   𝐿(!)     ≤   𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

 

Using expert opinion and historical databases as priors can prevent new evidence 

from dramatically altering uncertainty quantification and important reliability metrics. 

It is possible that new incoming evidence is an outlier that does not represent true 
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statistical properties. Maybe an experiment was poorly conducted, poorly reported, or 

corrupted. A prior regularizes these predictions to prevent inaccuracies.  

 

For Bayesian methods, one of the more popular approaches for approximating 

posterior distributions is MCMC [59, 60]. MCMC algorithms like Metropolis 

Hastings and Gibbs Sampling select candidate parameters from a posterior and 

evaluate the likelihood [60]. As the random walk progresses, successive parameter 

draws are correlated and eventually the value should converge to the posterior 

distribution.  

 

There are various advantages to using VB instead of MCMC. High dimensional 

interdependent models, like mixture models, become impractical to employ [63]. VB 

is deterministic and easy to identify convergence [61]. Convergence of MCMC, in 

these cases, can be notoriously difficult to monitor, but with VB it is easy to 

determine the updating values of the lower bound [62]. Moreover, MCMC’s 

computational cost rises dramatically in these cases [62]. For highly dimensional data 

sets or hierarchical models, VB is valuable for its simplicity and efficiency.  

 

VB is not without its flaws. First, VB tends to underestimate the uncertainty of the 

true posterior [65]. This clearly clashes with the typical conservatism of reliability 

predictions. This bias implies that predictions may not represent the true posterior as 

well as another approximation. Second, VB is arduous to derive and implement. 
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Finally, VB is sensitive to its priors. As such, it is important to be cautious of this 

selection.  

 

Nonetheless, VB is an active area of research and numerous approaches have been 

proposed to improve its simplicity and accuracy [57, 59]. Neither MCMC nor VB are 

inherently scalable for big data applications. However, Stochastic Variational 

inference employs stochastic optimization by updating parameters on subsamples or 

batches of the data. An iteratively dependent step-size hyperparameter reduces the 

volatility of parameter updates [64]. Finally, Black Box Variational Inference (BBVI) 

reduces the complexity of deriving Variational Inference algorithms. BBVI optimizes 

a single MCMC approximated gradient with stochastic gradient descent to infer the 

Variational posterior [66].  

 

3.2.3 Variational Bayes 

Variational Bayesian techniques approximate intractable integrals to solve difficult 

Bayesian inference problems. Unlike Markov Chain Monte Carlo, VB is a 

deterministic approximation [52]. Given the same prior distribution and data, VB will 

always converge to the same posterior distribution. 

 

VB minimizes the Kullback-Leibler Divergence (KLD) between the proposed 

approximation and the analytic posterior. KLD is a metric for the divergence between 

two different density functions. Thus, the proposed approximation converges as close 

as possible to the posterior.  
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ln𝑝(𝑋)   =   𝐿(𝑞)   +   𝐾𝐿(𝑞||𝑝)                                                                                        (3.4) 

𝐿(𝑞)   =    𝑞(𝑧,𝜃) ln
𝑝(𝑋, 𝑧,𝜃)
𝑞(𝑧,𝜃) 𝑑𝑧𝑑𝜃                                                                    (3.5) 

𝐾𝐿(𝑞||𝑝) = − 𝑞(𝑧,𝜃) ln
𝑝(𝑧,𝜃|𝑋)
𝑞(𝑧,𝜃)   𝑑𝑧𝑑𝜃                                                      (3.6) 

 

In the equations above, 𝑋 represents the data, 𝑧 is a set of hidden variables relevant to 

the data, and 𝜃 are random variables that describe X and z. In Equation 3.4, the log 

marginal probability of our data is decomposed to produce a lower bound 

approximation 𝐿(𝑞)  and the KLD of the proposed and actual distribution [52]. 

Equation 3.5 involves the complete data posterior 𝑝(𝑋,𝜃) and a proposed distribution 

over parameters of interest q(𝑧,𝜃). Equation 3.6 displays the KLD between the 

proposed posterior 𝑞(𝑧,𝜃) and analytic posterior 𝑝(𝑧,𝜃|𝑋).  

 

𝐾𝐿(𝑞||𝑝)   ≥   0                                                                                                                  (3.7) 

ln𝑝(𝑥) ≥ 𝐿(𝑞)                                                                                                                  (3.8) 

 

As Equation 3.7 shows, the KLD must always be positive. Thus, Equation 3.8 must 

hold and 𝐿(𝑞) acts as a lower bound on ln𝑝(𝑥). The minimization of the KLD or the 

maximization of the lower bound function would produce a scenario where 

𝑞(𝑧,𝜃)   =   𝑝(𝑧,𝜃|𝑋). As such, the proposed distribution (𝑞) would converge to the 

analytic posterior (𝑝). In practice, a convergence threshold should be set to some very 

small number.  
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It is important to note that in VB only 𝑞 is updated. How can an easily solvable q be 

defined? For simplicity, a factorized approximation is introduced. 

 

𝑞(𝑥,𝜃)   =   𝑞(𝑥)𝑞(𝜃)                                                                                        (3.9) 

 

This approximation defines the algorithmic aspect of VB. The factorized distributions 

switch off updating while the other distribution remains constant. This procedure is 

commonly known as the Variational Bayesian Expectation-Maximization algorithm 

(VB-EM) described in Algorithm 3-1. 

 

Algorithm 1 displays the steps in VB-EM. It is important to note that 𝜑(!) refers to 

the expected natural parameters. In many of these cases, the introduction of 

exponential family conjugate priors makes computations easier. Most popular 

distributions in reliability tend to be a part of the exponential family. Family members 

include the Poisson distribution, Gaussian distribution, and exponential distribution. 

The canonical form of the exponential family is displayed in Equation 3.10 and (𝜂) 

represents the vector of natural parameters.  

 

𝑓(𝑥|𝜃) = ℎ(𝑥)𝑒𝑥𝑝(𝜂! ∙ 𝑇(𝑥)   −   𝐴(𝜃))                                                                      (3.10) 
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3.2.4 Variational Bayesian Student-T Mixture Models 

Student-T Mixture Models create a mixture of numerous Student-T distributions. EM 

or VB-EM assigns each data point to the most representative or likely distribution. 

The algorithm iteratively updates the distribution assignments and the prior 

parameters of each distribution. Finally, the prior parameters will stop updating and 

this will correspond to a maximized lower bound. The general form of a mixture 

model is given in Equation 3.11. 

 

𝑝(𝑥|𝑎,𝜃, 𝑘) =    𝑎!𝑝!(𝑥!|𝜃)  
!

!!!

                                                                              (3.11) 

 

In equation 3.11, the mixture is the sum of 𝑘 weighted distributions. Each distribution 

has some mixing proportion 𝑎! that governs the proportion of assigned observations. 

 

For simplicity, a   𝑐! variable can be introduced to model distribution assignment for 

each observation 𝑛. The value  𝑐! now becomes a discrete distribution around the 

class assignment. By manipulating a joint distribution over 𝑥! and   𝑐!, 

transformations can be made to Equation 3.11. The result is the likelihood function in 

Equation 3.12 [55, 78-79]. Please see the appendix for further derivation. 

 

𝑃(𝑋, 𝑐|𝑎,𝜃, 𝑘)   =    𝑝(𝑐! = 𝑘)𝑝(𝑥!|𝜃!)                                                        (3.12)
!

!!!

!

!!!
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                                =    𝑎!𝑝(𝑥!|𝜃!)                                                                                    (3.13)
!

!!!

!

!!!

 

 

The Bayesian formulation to solve for these parameters would allow for prior 

distributions to regularize predictions. As such, expert opinion, field data, or 

experimental data could affect the output. The maximum a posteriori (MAP) 

optimization equation derives point estimates of the parameters from the mode of the 

posterior distribution. The MAP for SMM is as follows [55]: 

 

(𝑎,𝜃) = arg  max
(!,!)

𝑝(𝑋, 𝑐|𝑎,𝜃, 𝑘)𝑝(𝑎|𝑘)𝑝(𝜃|𝑘)                                                          (3.14) 

 

Variational Bayes can then be leveraged to optimize Equation 3.14. 

 

Priors are set over the relevant parameters governing the hidden and observed random 

variables. 𝑘 is a hyper parameter for the number of sub-populations. Setting this 𝑘 

value is a model selection problem. Grid search, random search, and manual search 

are all possible techniques to solve this problem [56]. In this paper, the author solved 

for 𝑘 with a grid search optimization procedure over the Bayesian Information 

Criterion (BIC) [52]. Grid search simply explores a regularly spaced grid of values 

over some range to discover the optimal solution. 

 

The directed acyclic graph (Figure 3-1) displays the structure of the hierarchical 

Bayesian Student-T Mixture Model. 
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Figure 3-1: Variational Bayesian Student-T Mixture Model 

 

The first step is to re-represent the Student-T PDF into its infinite Gaussian scaled 

model form [55, 57, 77-79].  

 

𝑆(𝑥|𝝁,𝚺, 𝑣) = 𝑁(𝑥|𝝁, 𝑧!!
!

!
𝚺)G(z|

𝑣
2 ,
𝑣
2)                                                      (3.15) 

 

The Student-T is now represented as a marginal distribution composed of a 

Multivariate Gaussian and Gamma distributions. In this case, the simplified Gamma 

distribution only uses one parameter 𝑣 for both the shape and scale. Using Equations 

3.11-3.13, the marginal likelihood can be written as: 

 

𝑝(𝑿, 𝒄,𝒁,𝚯|K) = 𝑎!N(x!|𝝁𝒌, 𝑧!,!!!𝚺𝒌)G(z!,!|
𝑣!
2 ,

𝑣!
2 )𝑝(𝜽!)            (3.16)𝒌𝒏

 

 

where 𝚯 is a vector of parameters for all distributions and 𝜽! is the vector for each 

component distribution [56]. Finally, the posterior distribution can be written as: 
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𝑝!(𝒄,𝒁,𝚯|𝐗)   =   
𝑝(𝑿, 𝒄,𝒁,𝚯|𝐊)

𝑝(𝑿)                                                                           (3.17) 

 

In order to implement a VB approximation for this otherwise intractable problem, it is 

necessary to factorize the posterior [56].  

 

𝑞(𝒄,𝒁,𝚯) = 𝑞(𝒄,𝒁)𝑞(𝚯)                                                                                        (3.18) 

= [𝑞(𝑐! = 𝑘|𝑧!,!)𝑞(𝑧!,!)]
!!

[𝑞(𝑣!)𝑞(𝝁𝒌|𝚺𝒌)𝑞(𝚺𝒌)]
!

q(𝐚)                    (3.19) 

 

In this factorized form the VB-EM procedure can be applied. First, the expected 

values of each distribution’s parameters are taken. The distribution assignments are 

updated. This corresponds to the expectation step. Next, the maximization step 

updates all other parameters while holding the distribution assignments constant. VB 

iteratively updates all parameters of interest until the lower bound is maximized. 

 

Since Equation 3.5 is essentially the expectation taken with respect to a function, the 

following equalities hold: 

 

𝐿(𝑞(𝒄,𝒁,𝚯))   =    ln𝑝(𝑿, 𝒄,𝒁,𝚯|𝐊) !(𝒄,𝒁,𝚯)                                                    (3.20)   

=    ln𝑝(𝒙𝒏, 𝑐!, 𝑧!" ,𝜽𝒌) !(!!!!|!!)!(!!")                                                                                    !
  

!

+    ln𝑝(𝒙𝒏, 𝑐!, 𝑧!" ,𝜽𝒌) !(𝜽𝒌)
!

                                                                                                                                                                  (3.21) 
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Thus, maximizing the lower bound is equivalent to assessing whether the factorized 

distributions have converged. At this point, the KLD is minimized and the lower 

bound is maximized [52, 56]. This procedure essentially maximizes the log-likelihood 

ln𝑝(𝑿, 𝒄,𝒁,𝚯|𝐊) with respect to the simplified function 𝑞(𝒄,𝒁,𝚯). 

 

In practice, deriving the optimization procedure can be quite arduous. As such, it is 

advantageous for a reliability analyst to introduce exponential family conjugate priors 

to easily update posterior parameters. The following priors were introduced in the 

author’s experiments: (The header (  ) signifies a hyperparameter) 

 

𝑞(𝒂)   =   𝐷(𝒂|𝒌)                                                                                                            (3.22) 

𝑞(𝑧!) =   𝐺(𝑧!|𝑣! , 𝑣!)                                                                                          (3.23) 

𝑞(𝝁𝒌|𝚺𝒌)   =   𝑁(𝝁𝒌|𝝁, 𝜂!!𝚺𝒌)                                                                              (3.24) 

𝑞(𝚺𝒌)   =   𝐼𝑊(𝚺𝒌|𝛾, 𝛾Σ)                                                                                        (3.25) 

 

With conjugate priors, updating the parameters becomes a far easier task. For 

example, the Dirichlet prior can evoke a categorical likelihood function to update 𝒌𝒌 

with the following equation: 

 

𝒌   =   𝒌   +   𝑛!                                                                                                             (3.26) 

 



 

 43 
 

Since the amount of observations assigned to a distribution can change, the priors will 

update accordingly. Finding all the conjugate pairs and expectations is a largely 

trivial task that can be found in Probability Distributions Used in Reliability 

Engineering [58].  

 

3.3 Approach Validation 

The author previously validated the effectiveness of clustering failure times or related 

covariates for reliability predictions. Many of these approaches struggle to cluster real 

world noise. SMM, on the other hand, can cluster data sets with uncertain boundaries 

and outliers. To validate the proposed SMM based approach, the author examined 

whether a GMM could effectively serve as a proxy for SMM.  

 

The author synthesized a simple two-dimensional data set of five clusters with 133 

observations in each cluster. The data was Student-T distributed and each distribution 

used the identity matrix as its covariance parameter. In the context of the proposed 

methodology in Figure 2-1, the data could correspond to two covariates. Figure 3-1 

displays the scatter plot of the synthetic data. 
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Figure 3-2: Scatter Plot of Synthetic Student-T Distributed Data 

 

In this case, there is no need to conduct a hyper parameter search over the amount of 

clusters. The author assessed the accuracy and likelihood of the models by comparing 

the cluster assignment with the distribution from which the data was synthesized. The 

results displayed in Table 3-1 show that SMM is notably more accurate than GMM 

on this data set. Table 3-2 compares the predicted parameters to actual parameters.  

 

SMM is more accurate and produces better parameter estimates. Thus, SMM is better 

able to find the true sub-populations. The visualizations in Figures 3-2 and 3-3 shed 

light on the reason. 

Table 3-1: Mixture Model Accuracy 
 

 VB EM 
GMM 61.5% 72.5% 
SMM 97.7% 98.4% 
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Table 3-2: Mixture Model Parameter Estimates 

 𝜋: Mixing 
Proportion 

𝑣: Degrees of 
Freedom 

Σ: Covariance Matrix 𝜇: Mean 

Actual Cluster 1: 0.20 
Cluster 2: 0.20 
Cluster 3: 0.20 
Cluster 4: 0.20 
Cluster 5: 0.20 

Cluster 1: 2 
Cluster 2: 4 
Cluster 3: 5 
Cluster 4: 3 
Cluster 5: 6 

All Clusters:  

  

Cluster 1: [0, 0] 
Cluster 2: [6, 6] 
Cluster 3: [-6,-6] 
Cluster 4: [-8,4] 
Cluster 5: [8,-4] 

Estimated - 
GMM EM 

Cluster 1: 0.16 
 
Cluster 2: 0.20 
 
Cluster 3: 0.13 
 
Cluster 4: 0.18  
 
Cluster 5: 0.32 

(N/A) 
Cluster 1:   

Cluster 2:  

Cluster 3:  

Cluster 4:  

Cluster 5:  

Cluster 1: [1.4, .6] 
 
Cluster 2: [6.1, 6.2] 
 
Cluster 3: [-6.2, -6.1] 
 
Cluster 4: [-5.2, 2.4] 
 
Cluster 5: [8.1, -4.1] 

Estimated -  
GMM VB 

Cluster 1: 0.20 
 
Cluster 2: 0.20 
 
Cluster 3: 0.21 
 
Cluster 4: 0.36 
 
Cluster 5: 0.03 

(N/A) 
Cluster 1:  

Cluster 2:  

Cluster 3:  

Cluster 4:  

Cluster 5:  
 

Cluster 1: [0, -0.5] 
 
Cluster 2: [6.1, 6.0] 
 
Cluster 3: [-6.2, -6.1] 
 
Cluster 4: [-2.1, 0.9] 
 
Cluster 5: [1.2, -0.7] 

Estimated - 
SMM EM 

Cluster 1: 0.20 
 
Cluster 2: 0.20 
 
Cluster 3: 0.20 
 
Cluster 4: 0.20 
 
Cluster 5: 0.20 

Cluster 1: 2.8 
 
Cluster 2: 3.8 
 
Cluster 3: 3.6 
 
Cluster 4: 5.8 
 
Cluster 5: 6.1 

Cluster 1:  

Cluster 2:  

Cluster 3:  

Cluster 4:  

Cluster 5:  

Cluster 1: [0,-0.1] 
 
Cluster 2: [6.0, 6.1] 
 
Cluster 3: [-6.1, -6.1] 
 
Cluster 4: [-8.2, 3.9] 
 
Cluster 5: [8.1, -4.0] 

Estimated - 
SMM VB 

Cluster 1: 0.19 
Cluster 2: 0.20 
Cluster 3: 0.20 
Cluster 4: 0.20 
Cluster 5: 0.21 

Cluster 1: 127.0 
Cluster 2: 140.8 
Cluster 3: 140.8 
Cluster 4: 140.0 
Cluster 5: 141.5 

All Clusters: 
*** 

 

Cluster 1: [-0.1, -0.1] 
Cluster 2: [6.0, 6.0] 
Cluster 3: [-6.0, -6.0] 
Cluster 4: [-8.0, 3.8] 
Cluster 5: [8.0, -3.9] 

*** Covariance round to 0, where it is compensated by a large 𝑣. 
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Figure 3-3: VB-EM Gaussian Mixture Model. Contours represent Covariance. 

 
 

 
Figure 3-4: VB-EM Student-T Mixture Model. Contours represent Covariance. 

 

The level of outliers begins to cause some observations across clusters to intersect. 

Without the degrees of freedom parameter to increase the size of the tails, a GMM 
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attempts to overcompensate by increasing the size of the covariance. A single 

components’ covariance then intrudes onto other components, which will produce 

uncertainties in cluster assignments and reduce accuracy. This phenomenon is 

visualized by the large contours in Figure 3-4. 

 

For this experiment, the EM algorithm is more accurate than VB-EM. However, the 

EM algorithm is more sensitive to training data. The prior regularization for VB-EM 

reduces its sensitivity to training data. VB-EM’s reduced bias is an advantage in the 

long run. Additional units from this hypothetical fleet may not resemble the training 

data. If data from additional experiments vary from the training set, VB-EM could 

more accurately identify sub-populations than EM. 

 

Table 3-3: VB-EM Information Criterion and Likelihood Scores 
EM Performance AIC BIC Log-Likelihood 

GMM 7040 7170 -3491 

SMM 6740 6776 -3362 

 

 

According to Table 3-3, SMM outperforms the GMM in Akaike Information 

Criterion (AIC) and Bayesian Information Criterion (BIC) scores. The information 

criterion scores control for over fitting from the additional 𝑣 parameter by introducing 

a penalty. 
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This synthetic experiment provides evidence that SMM has higher accuracy than 

GMM when covariate observations overlap. Many real world applications have this 

property. An example application on a real data set is discussed in the following 

section. 

 

3.4 Application to Power Plant Failures 

In this section, the methodology is applied to a real data set. The PHM Data 

Challenge Competition 2015 (PHM 2015) is the same data set used in Chapter 2.3.1.	  

 

First, the author evaluated SMM performance against the baseline GMM by applying 

the model directly on failure events. This corresponds to cases where covariate 

information is inaccessible or irrelevant. The author used a grid search over the 

Kullback-Leibler Divergence or AIC to identify the optimal quantity of component 

distributions before evaluating the performance of each algorithm [56].  

 

It is important to note that the presented problem is an unlabeled and unsupervised 

pattern recognition problem, thus it is difficult to use accuracy as a validation and 

testing metric to evaluate the performance. After fitting each distribution, the author 

used the mean Silhouette Coefficient to compare the quality of the clustering. The 

Silhouette Coefficient is a validation metric that evaluates the similarity of objects 

within a cluster [75]. Since the PHM data is unlabeled; the Silhouette Coefficient can 

serve as a proxy for the self-consistency of the clustering. The Silhouette Coefficient 

is displayed in equation 3.27. 



 

 49 
 

 

𝑠(𝑖)   =   
𝑏(𝑖)− 𝑎(𝑖)

𝑚𝑎𝑥 𝑎(𝑖), 𝑏(𝑖)                                                                                                       (3.27) 

 

The numerator 𝑏(𝑖)− 𝑎(𝑖) represents the difference between an observations’ mean 

intra-cluster distance and nearest non-assigned cluster distance. Figure 3-4 displays a 

fitted single Gaussian distribution to the entire data. The denominator 

𝑚𝑎𝑥 𝑎(𝑖), 𝑏(𝑖)  regularizes this difference, such that a Silhouette Coefficient score 

close to 1 indicates self-consistent clustering. Conversely, a Silhouette Coefficient 

score close to -1 indicates incongruous clustering. The large over and under-

estimation of various failure intervals provides evidence for the value of mixture 

modeling. Recall that in some circumstances sensor-based covariates are unavailable. 

GMM and SMM can be applied directly to time-to-failure data. GMM and SMM 

clustered failure times are displayed graphically in Figures 3-5 and 3-6. The mean 

Silhouette Coefficient is tabulated in Table 3-4.  

 

Figure 3-5: Gaussian Fit to all Failure Times 
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Figure 3-6: Histogram of Failure Times (Days) Segmented with VBGMM. Only Six 

Distributions Visualized, 10 Distributions (k) Total. 
 

 
Figure 3-7: Histogram of Failure Times (Days) Segmented with VBSMM. All Four 

Distributions (k) Visualized. 
 
 

Table 3-4: Mean Silhouette Coefficient for GMM and SMM Applied to Failure Time 
 VB EM 

GMM .2370 .5531 
SMM .9090 .9159 

 
Table 3-5: Log-Likelihood, AIC, and BIC Scores 

Distribution Log-Likelihood AIC BIC 
Gaussian -115,302 230,608 230,633 
EMGMM -78,757 157,574 157,804 
EMSMM -76,033 152,090 152,182 
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The results provide evidence that SMM finds more self-consistent & distinct clusters 

than GMM in real world cases. The Silhouette Coefficient score shows that SMM 

assigned clusters are more similar numerically than GMM assigned clusters. Also, 

GMM uses more distributions to model the same population, which could result in 

over fitting.  

 

Table 3-5 shows that clustering can improve the likelihood and relative quality of a 

distribution fit to heterogeneous data. It also provides evidence that SMM performs 

better than GMM in this scenario. 

 

In Figure 3-7, the GMM struggles to segment sub-population 4. This heavy tailed 

data produces uncertainty in the observations’ cluster assignment and the results are 

undesirable. 

 

The author maps clusters of covariates to failure events to explore the application of 

SMM on the methodology proposed in Figure 2-1. This allows an analyst to assign 

labels that can be used to train a classification algorithm, so inference can be made on 

units that have not failed.  

 

The covariates in the PHM data are numerous and this high dimensionality prevents 

direct analysis on the covariates. In particular, high dimensionality renders the metric 

distance of each observation to be essentially equal. Thus, similarity related analysis 
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become difficult. Sparse PCA (Equation 3.28) was implemented to decompose the 

data to only a single dimension [76]. The author conducted a manual model search of 

dimensionality reduction algorithms, but Sparse PCA produced the best results for 

both GMM and SMM. 

 

(𝑈∗,𝑉∗) = 𝑎𝑟𝑔min
!,!

1
2 𝑋 − 𝑈𝑉 !

! + 𝛼 𝑉 !                                                                          (3.28) 

 

The covariates are clustered with GMM or SMM and assignments mapped onto the 

failure times. GMM performs better than when applied directly to failures times, 

which may signal smaller tails in the covariate data. Nonetheless, SMM continues to 

outperform GMM. The author used output parameters of the EM predictions as priors 

for VB.  

 
Table 3-6: Mean Silhouette Coefficient for GMM and SMM Applied to Covariates 

 VB EM 
GMM .8595 .7422 
SMM .8654 .8812 

 

Table 3-5 provides evidence that SMM on average groups more similar data than 

GMM. Although VBGMM performs only slightly worse than VBSMM, it uses more 

than twice as many free parameters. For GMM, the optimal quantity of distributions 

(k) was 8. Figures 3-7 and 3-8 visualize the two VB models’ histograms.   
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Figure 3-8: Histogram of Clustering Methodology with VBGMM. Only seven largest 
distributions (n>100) visualized, 8 distributions (k) total.  

 

 

Figure 3-9: Histogram of Clustering Methodology with VBSMM. All four 
distributions (k) Visualized.  
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If SMM is applied directly to the failure times, it is possible to conduct a holistic 

failure estimate for the population. However, the presented methodology clustered 

covariates and not failures to assign class labels. So, the distributions 

parameterization is not directly relevant to the failure events. Nonetheless, a separate 

analysis can be conducted on each sub-population. By analyzing each sub-population 

separately, an analyst has reduced fleet uncertainty. Variation in manufacturing, 

operational, and environmental conditions is theoretically less within the sub-

population. The author refits each sub-population with a Student-T Distribution and 

evaluated traditional reliability metrics in Table 3-7.  

 

Table 3-7: Table of Various Relevant Reliability Measures from VBSMM  
 

 MTTF 
(Days) 

Reliability at the 
Full Population 

MTTF  
(656 Days) 

Full 
Population 

656 50% 

Sub-
Population 
1 

146 ~0% 

Sub-
Population 
2 

345 ~0% 

Sub-
Population 
3 

679 71% 

Sub-
Population 
4 

1022 ~100% 

 
 
Table 3-7 shows dramatic variability in reliability metrics across the entire 

population. The fleet-wide uncertainty would over or underestimate the MTTF of 
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each sub-population. Thus, the presented methodology improves the predictive 

capabilities of heterogeneous fleets. 

 

Last, the advantage of using SMM on covariates is to assign units that have not failed 

to a sub-population. A reliability analyst can leverage the cluster assignments made 

by the SMM to train a supervised classification algorithm to conduct this task. As an 

example, the author trained a non-parametric Decision Tree (DT) classifier on the 

VBSMM cluster assignments [77]. A grid search and 5-fold cross validation 

optimized the tree length hyperparameter. The DT obtained a validation and test 

accuracy of 100% with only 5 branches. 

 

3.5 Chapter Summary 

In Chapter 2, the author recommended segmenting a fleet into sub-fleets as a practical 

approach for efficient resource allocation and maintenance scheduling. However, in 

real world data, the lines between sub-populations are blurred. In these cases, 

Gaussian Mixture Models can overestimate the covariance and produce unwanted 

results. Student-T Mixture Modeling is an attractive heavy-tailed alternative for these 

real world cases. 

 

In this chapter, the author explored the Variational Bayesian formulation of Student-T 

Mixture Models, which has several practical advantages over MCMC and EM in 

solving highly dimensional hierarchical Bayesian inference problems. Recent 

advances in VB have improved its scalability and accuracy. Finally, the VBEM 
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algorithm, rather than the EM formulation, allows an analyst to use historical 

databases or expert opinion as a prior to regularize predictions. This regularization is 

particularly valuable if the new evidence is small in quantity or consists of outliers. 

 

The author validated SMM on both synthetic data and real world power plant failures. 

In both cases, SMM outperformed the predictive capabilities of a single Gaussian 

distribution and GMM.  
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Chapter 4: Conclusion 

Fleet uncertainty is a big challenge facing reliability practitioners. Predictions on 

entire fleets can over or underestimate relevant probabilities for a particular unit. 

Many data driven PHM approaches reduce uncertainty in a case-by-case basis. 

Despite these advantages, it is impractical for large fleets and difficult to interpret for 

resource allocation. This thesis addresses this challenge by identifying similar sub-

populations within a fleet and conducting independent analyses on these groups. 

 

In Chapter 2, the author introduced a methodology for clustering fleets to identify and 

leverage sub-populations for improved reliability and integrity measures. The 

methodology clusters sensor-based covariate data and derives predictive analytics on 

each sub-population. Additional units can be assigned to a sub-population by training 

a supervised classification algorithm with the cluster assignments as labels. The 

author demonstrated this methodology with DBSCAN clustering. The methodology 

improved reliability predictions and reduced uncertainty around important integrity 

metrics (i.e. MTTF, B10 life). However, the methodology struggled to segment units 

that were outliers or could belong to two separate sub-populations. This real world 

noise limited the predictive capabilities of the methodology. 

 

In Chapter 3, the author introduced Student-T Mixture Models to segment fleets 

despite real world noise. Using parameterized tails, SMM can more accurately model 

inter-cluster boundary points without increasing its variance. The author motivated a 

fully Bayesian formulation of SMM, which allows for the inclusion of prior 
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information like expert opinion or a reliability database. Variational Bayes is an 

efficient and reliable approximation for solving complicated hierarchical Bayesian 

problems like the SMM. The author demonstrated the application of SMM to 

synthetic data and power plant failures. SMM produced a more accurate model with 

self-consistent sub-populations. 

 

4.2  Research Contributions 

The research contributions of this thesis are: 

• Introduce a methodology for fleet uncertainty reduction that accurately 

identifies sub-populations, improves time-to-failure distribution fit, and 

increases precision of reliability metrics. 

• Motivate Student-T Mixture Models to identify sub-populations despite real 

world noise, outliers, and unclear sub-population boundaries.  

• Adapt Variational Inference to quickly and efficiently approximate Student-T 

Mixture Models.  

• Discuss Variational Bayes applications in Reliability Engineering.  

 

4.3  Suggested Future Research 
 
Although the methodology accomplished all its stated goals, there are still notable 

limitations. First, the author did not explore how other unit-by-unit uncertainty 

reduction methods, like Particle Filtering, work on segmented fleets. Second, 

Variational Bayesian approximation infers parameters by reanalyzing all the data 
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iteratively. This limits the applications of the methodology to large quickly streaming 

sensor data. Third, the collected covariates are arbitrary. Informing covariate 

selection with physics of failure could improve the effectiveness of this methodology. 

Fourth, SMM may not be the most representative distribution of a fleet’s time-to-

failure data. For example Student-t is a symmetric distribution, which may not be 

representative of population’s failure times. If there were no available covariates, 

Variational Bayesian Mixtures of other standard reliability distributions would be 

worth exploring. 

 

Fifth, the methodology proposed in this thesis could be generalized and applied to 

domains other than pipeline and power plant failure events. However, fleet 

uncertainty modeling may be less effective if a fleet is composed of only a few units. 

The lack of data may produce unrepresentative or over fit sub-populations. In these 

cases, the information provided by the prior distribution becomes critical to the 

clustering performance. 

 

Finally, there is a worthy philosophical discussion surrounding the importance of tails 

to model sub-populations that should be addressed. SMM encompasses extreme 

events within its tails to prevent unnecessarily increasing the covariance matrices. For 

the purposes of this paper, leveraging learnable parameters that model these extreme 

events was practical. However, outliers are often excluded as the possible product of 

experimental or rare event error. Could the inclusion of outliers within a sub-
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population reduce the quality of fleet modeling? This is an important discussion that 

should be accompanied by experimentation.  

 

To address limitations, the author has suggested future research: 

 
1) Advance the Methodology 

a) The proposed methodology is not intended to replace data driven unit-by-unit 

techniques like Particle Filtering or Dynamic Bayesian Networks. Rather, it 

should work in conjunction with these techniques. Employing these 

techniques in the contexts of the methodology could improve scheduled 

maintenance and condition based maintenance by reducing fleet-wide 

uncertainty and unit-by-unit uncertainty.  

b) Currently, the proposed methodology is not scalable for online application. 

Streaming sensor data can produce large vectors of information. Stochastic 

Black Box Variational Inference overcomes this challenge by updating 

variational parameters with only a subsample of the data. [80-81] It also 

reduces the manual workload of an analyst by eliminating the need to derive 

update equations. 

c) Collected covariates may not be related to degradation or failure rate 

uncertainty within a fleet. The methodology should leverage Physics of 

Failure (PoF) research to identify features that are most likely to contribute to 

fleet uncertainty. A more relevant set of covariates could improve sub-

population identification. Collecting relative humidity and temperature, for 
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example, could improve the population segmentation and subsequent 

predictions of corrosion related failures in oil pipelines. 

2) Variational Bayesian Mixture Models 

a) The presented variational formulation of the Student-T Mixture Model did not 

introduce prior parameters over the degrees of freedom (𝑣) parameter. By 

introducing a prior over 𝑣, an analyst can regularize this estimate with 

reliability field data or expert opinion. 

b) Sensor based covariates are not always available. In this case, other 

Variational Bayesian mixtures could perform better for time-to-failure 

analysis. One example is a Variational Bayesian formulation of Weibull 

Mixture Models. 

3) Bayesian Approximation 

a) Both VB and MCMC approximation are limited. VB is biased and MCMC 

can be slow. Various other approximations to intractable Bayesian inference 

problems exist. There may be particular circumstances in reliability analysis 

that these other approximations are more practical, accurate, or efficient. 

Laplace Approximation and Expectation Propagation are two examples of 

other approximations. [82-83] 
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Appendix 

Additional Derivation of Equation 3.12: 

By introducing 𝑐! = 𝑘 as a binary variable that identifies assigned distribution, the 
likelihoods can be segmented into separate likelihoods for each distribution. 

𝑝(𝒄!)   =    𝑎𝒌
𝒄𝒏𝒌

𝑲

𝒌!𝟏

                                                                                  (𝐴1) 

  𝒑(𝒙𝒏)   =    𝑵(𝒙𝒏|𝝁𝒌, 𝒛𝒏𝒌!𝟏𝜮𝒌)𝒄𝒏𝒌𝑲
𝒌!𝟏                                                          (𝑨𝟐)  

From here, it is easy to see Equation 3.12. 

Experiment on Synthetic Signals: 

5D PCA of Signal Data (N=1026, D=545 -> 5, K=3,𝒂𝟏,𝟐,𝟑= 0.333).  

 
Figure A1: Variational Bayesian Gaussian Mixture Models on Signal Data 
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Figure A2: Variational Bayesian Student-T Mixture Models on Signal Data 

 
Table A1: Variational Bayesian Mixture Models Accuracy on Signal Data 

 VB EM 
GMM 1.000 0.691 
SMM 1.000 1.000 

 
Table A2: Actual and Estimated Parameters for Signal Data 

 
𝑎: Mixing 
Proportion 

𝑣: Degrees of 
Freedom 𝜇: Mean 

Actual 
Cluster 1: 0.33 
Cluster 2: 0.33 
Cluster 3: 0.33 

N/A N/A 

Estimated - 
GMM EM 

Cluster 1: 0.28 
Cluster 2: 0.39 
Cluster 3: 0.33 

(N/A) 
Cluster 1: [27.52, 19.36, 15.50, 15.61, -25.86] 
Cluster 2: [28.05, 18.37, 19.57, -9.5, 18.21] 
Cluster 3: [36.88, -27.79, -26.95, .10, -.91] 

Estimated - 
GMM VB 

Cluster 1: 0.33 
Cluster 2: 0.33 
Cluster 3: 0.33 

(N/A) 
Cluster 1: [36.85, -27.65, -26.82, 0.14, -.99] 
Cluster 2: [27.69, 44.76, -9.01, -0.26, -0.53] 
Cluster 3: [27.97, -7.2, 44.8, 1.95, 0.624] 

Estimated - 
SMM EM 

Cluster 1: 0.33 
Cluster 2: 0.33 
Cluster 3: 0.33 

Cluster 1: 3.2 
Cluster 2: 17.4 
Cluster 3: 3.4 

Cluster 1: [27.58, -6.76, 45.75, 2.86, .66] 
Cluster 2: [27.68, 44.60, -8.85, .55, -.38] 
Cluster 3: [36.75, -27.78, -26.95, 1.17, 1.51] 

Estimated - 
SMM VB 

Cluster 1: 0.33 
Cluster 2: 0.33 
Cluster 3: 0.33 

Cluster 1: 359.1 
Cluster 2: 359.6 
Cluster 3: 359.4 

Cluster 1: [22.36, -5.33, 37.04, 5.42, -0.02] 
Cluster 2: [22.54, 36.13, -7.0, .69, -.95] 
Cluster 3: [29.94, -22.58, -21.95, 1.05, 0.27] 
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