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A central question in motor neuroscience is how the Central Nervous System (CNS)

would handle flexibility at the effector level, that is, how the brain would solve the

problem coined by Nikolai Bernstein as the “degrees of freedom problem”, or the

task of controlling a much larger number of degrees of freedom (dofs) that is often

needed to produce behavior. Flexibility is a bless and a curse: while it enables the

same body to engage in a virtually infinite number of behaviors, the CNS is left

with the job of figuring out the right subset of dofs to use and how to control and

coordinate these degrees. Similarly, at the level of perception, the CNS seeks to

obtain information pertaining to the action and actors involved based on perceived

motion of other people’s dofs.



This problem is believed to be solved with a particular dimensionality reduc-

tion strategy, where action production would consist of tuning only a few parameters

that control and coordinate a small number of motor primitives, and action percep-

tion would take place by applying grouping processes that would solve the inverse

problem, that is to identify the motor primitives and the corresponding tuning pa-

rameters used by an actor. These parameters can encode not only information

on the action per se, but also higher-order cognitive cues like body language or

emotion. This compositional view of action representation has an obvious parallel

with language: we can think of primitives as words and cognitive systems (motor,

perceptual) as different languages.

Little is known, however, about how words/primitives would be formed from

low-level signals measured at each dof. Here we introduce the SB-ST method, a

bottom-up approach to find full-body postural primitives as a set of key postures,

that is, vectors corresponding to key relationships among dofs (such as joint rota-

tions) which we call spatial basis (SB) and second, we impose a parametric model

to the spatio-temporal (ST) profiles of each SB vector. We showcase the method

by applying SB vectors and ST parameters to study vertical jumps of young adults

(YAD) typically developing (TD) children and children with Developmental Coor-

dination Disorder (DCD) obtained with motion capture. We also go over a number

of other topics related with compositionality: we introduce a top-down system of

tool-use primitives based on kinematic events between body parts and objects. The

kinematic basis of these events is inspired by the hand-to-object velocity signature

reported by movement psychologists in the 1980’s. We discuss the need for custom-



made movement measurement strategies to study action primitives on some target

populations, for example infants. Having the right tools to record infant movement

would be of help, for example, to research in Autism Spectrum Disorder (ASD)

where early sensorimotor abnormalities were shown to be linked to future diagnoses

of ASD and the development of the typical social traits ASD is mostly known for.

We continue the discussion on infant movement measurement where we present an

alternative way of processing movement data by using textual descriptions as re-

placements to the actual movement signals observed in infant behavioral trials. We

explore the fact that these clinical descriptions are freely available as a byproduct of

the diagnosis process itself. A typical/atypical classification experiment shows that,

at the level of sentences, traditionally used text features in Natural Language Pro-

cessing such as term frequencies and TF-IDF computed from unigrams and bigrams

can be potentially helpful.

In the end, we sketch a conceptual, compositional model of action generation

based on exploratory results on the jump data, according to which the presence of

disorders would be related not to differences in key postures, but in how they are

controlled throughout execution. We next discuss the nature of action and actor

information representation by analyzing a second dataset with arm-only data (bi-

manual coordination and object manipulations) with more target populations than

in the jump dataset: TD and DCD children, YAD and seniors with and without

Parkinson’s Disease (PD). Multiple group analyses on dofs coupled with explained

variances at SB representations suggest that the cost of representing a task as per-

formed by an actor may be equivalent to the cost of representing the task alone.



Plus, group discriminating information appears to be more compressed than task-

only discriminating information, and because this compression happens at the top

spatial bases, we conjecture that groups may be recognized faster than tasks.
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Chapter 1: Introduction

1.1 Action primitives

In the context of movement generation, the term action primitives denotes a hypo-

thetical set of pre-existing modules of effector activation that would be controlled

and co-ordinated by the central nervous system (CNS) to produce action. Many

believe this is the way the brain cuts down dimensionality when dealing with multi-

ple degrees of freedom in space and time, the so called “Degrees of freedom (DOF)

problem” and it came out of the first round of investigations of Bernstein’s work

in control and co-ordination, as once posed by Turvey [3]. This problem has been

recently revisited by Latash et al. [4, 5] who discuss the related “principle of abun-

dance”, referring to the fact that a task demands less degrees of freedom than what

is available to be controlled. See Flash et al. [6] for a summary of findings around

the nature of motor primitives at behavioral, muscle, neural, and computational

levels.

Previous electrophysiological experiments in spinalized animals triggered great

excitement when they presented strong evidence supporting the existence of basic

modules of movement – also referred to as motor synergies – that would be ad-

ditively combined to produce behavior [7]. As a result, many linear models were
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proposed on different levels of representations in the motor space and used to repro-

duce and analyze experimental data from vertebrate and invertebrate data, namely:

spinal force-fields [8, 9], time-varying muscle forces [10–12], or joint-angle configu-

rations [13].

In particular, compact representations of movement have also been pursued by

vision psychologists while trying to computationally model the visual phenomenon

referred to as biological motion perception – a term coined to express the ability of

humans to perceive moving dots from point-light displays as coherent articulated

rigid bodies that give rise to the perception of classes of activities [14–19]. Of

particular relevance, Troje [20] has offered a computational method that produces

walking patterns and it is able to discriminate between male and female walks from

point-light displays coming from 3-D motion capture positional data. He modeled

the temporal occurrences of 4 walking eigenpostures with a family of sine functions,

for each he determined the a single fundamental frequency and relative phases.

It is not surprising that some of the mathematical models used to find primi-

tives from motor and visual signals are very similar: in [3], Turvey brought up the

issue of “simultaneous organization of afferentiation and efferentiation”, sugesting

that we should perhaps think of action primitives to lie somewhere between vision

and movement. Also supporting this view, in [21], Jeannerod argues in favor of

a simulation hypothesis to explain action representations, based on several results

in motor psychology and neurophysiology in the last 20-30 years. According to

his account [22], perceived actions would be slight variations1 of executed ones, in

1During simulation, activations of most motor areas are weaker, motor output is inhibited and
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they would share the same temporal, programmatic and biomechanic constraints

but would be suppressed: “If motor cognition is based on the simulation of our own

actions (...) then we can develop the idea that perceiving and producing actions are

the two faces of the same process”.

This thinking is in line with the so-called direct matching hypothesis, a product

of a number of findings in experimental neuroscience that described areas in the brain

that would link visual stimuli to purposive movement. For instance, in [23] authors

commented on previous findings of certain neurons in F5 (ventral pre-motor cortex)

of macaque monkeys that would fire to visual stimuli of hand-object interactions, and

spoke of visuomotor transformations mediated by these neurons. According to their

account, when understanding a manipulation, properties of the object should be

extracted (size, orientation, graspability) and motor schemas (sensorimotor control

plans) supposedly encoded in F5 would be retrieved. Stronger evidence to direct

matching came later on, when a subset of neurons recorded in the same area F5 was

also found to be connected to goal-directed movements, but these would fire both

when the primates experienced and when they performed actions involving a food

object, and the usage of hands with various grip types, or the mouth, the reason

why they were called mirror neurons. More specifically, 92 of the 532 units recorded

presented such properties, out of which 29 were found to be “strictly congruent”,

that is, they would fire only when the action observed/performed in the exact same

manner (grip). Authors discussed striking similarities of these units with neurons

in the superior temporal sulcus (STS) and, among other things, speculated that

there is lack sensory reafferences.
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F5 and STS could belong to independent but complementary roles, as if “... the

superior temporal sulcus is the semantic representation of hand-object interactions,

while F5 is the pragmatic one”, in-line with the Goodale and Milner’s former view of

separate pathways of perception and action [24] (recently reviewed in [25]). Authors

also acknowledged the possibility of F5 carrying some sort of “motor vocabulary”

and being part of a visuomotor matching process, as earlier suggested.

According to the FARS model [26], in the context of tool use, these visuo-

motor transformations would be mostly centered in parsing object attachments or

affordances. Neural networks of the anterior intra-parietal area (AIP) in the parietal

cortex were hypothesized to extract the attachment regions out of the shape, size

and orientation cues that come from the visual cortex. Properties of attachments are

further converted into potential grasp plans, which are forwarded to the pre-motor

cortex, where F5 neurons select the most appropriate motor programs and connects

to the primary motor cortex (F1) that will recruit the proper motor synergies to

produce an overt grasp movement. This view that pictorial representation of object

parts would translate into primitive or canonical movements served as inspiration

to a number of systems in the fields of Robotics and Computer Vision [27–31].

From a psychophysical perspective, Flanagan and Johansson [32] have also

provided evidence of the visuomotor nature of action representation: first, they had

a set of subjects to both stack up 3 blocks from one side to another of a horizontal

work surface and to watch it being done by others. Then, additional subjects went

through the same experiment, but with no visual feedback of the actor’s hands

when observing the action. From the first round, they have noticed that actors

4



and observers tend to fixate at the same spatial locations while performing and

observing the same task being performed, respectively, and these locations are most

often the contact zones rather than the hands and the blocks. Moreover, both their

gaze seemed “proactive”, in the sense that their eyes would land at those zones

before the hand would, and this trend was shown to increase with trial duration.

In contrast, subjects of the second round, deprived of hand feedback, relied on

tracking the objects to follow the task, resulting in a reactive behavior instead of

an anticipatory one. To give an idea, in round 1, the eyes would exit contact sites

on average 72 ms ahead of the hand, while in round 2 they would leave these sites

about 200 ms after the hand had left. According to the authors, the focus on the

contact zones rather than hands and blocks, the increasing predictive behavior and

the fact that the observer’s oculomotor system seems to tightly reflect the actor’s

would all support a direct matching view of action, with the mirror system working

as a living vocabulary of primitives.

The direct matching and the mirror system hypotheses have been believed

to be the basis of imitation, a basic social feature of primate behavior. However,

imitation, in the sense of what Jeannerod calls “true imitation”, as opposed to bare

mimicry (observed in humans as early as 42 minutes after their birth [33]), is a very

complex behavior that mingles perception, action and memory. Indeed, imitation

demands the individual to (1) properly grasp the goal of an action, (2) judge the

used form, (3) eventually figure the actor’s intention, and also to (4) reenact it with

whatever degrees-of-freedom it has available. This becomes even more complex

when we note that these processes can take place both on-line and off-line (with
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the use of memory but no visual cues). It is therefore unlikely that direct matching

alone would be able to explain such sophisticated cognition, with so many levels of

“analogy”.

The quest for action primitives poses a series of scientific challenges. First,

there is the question of what is the right domain of investigation: should one focus

on full-body or manipulation tasks? Either way, would the dimensionality reduction

principles that give rise to full-body primitives be the same as the one who results in

tool use primitives? The second (and related) difficulty is to choose the proper raw

data to work with: the studies described in the previous section went from single

neuron spike rates to EMG and 2D and 3D joint angle rotations. Should tool/object

data be included? Alternatively, what is the right level to probe: neurons (brain cells,

brain tissue, blood oxygenation levels), muscles, joints, gaze, objects? Next, should

we hypothesize and test a certain set of primitives (top-down) or should we “mine

it out of the data” (bottom-up)? Plus, what are the right computational techniques

that should be used to group these high-dimensional action data? How much do

tasks share primitives? To what extent do neurotypicals and atypicals differ in terms

of how they recruit, control and coordinate action primitives?

This research tried to address a subset of these challenges through a number

of case studies: in Chapter 2 we discuss a bottom-up approach to find full-body

postural primitives as a set of key postures, that is, vectors corresponding to key

relationships among degrees of freedom (like angles between body parts) which we

call spatial basis (SB) and second, we impose a parametric model to the spatio-

temporal (ST) profiles of each SB vector. These two steps constitute the SB-ST
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decomposition of an action: SB vectors represent the key postures, their ST pro-

files represent trajectories of these postures and ST parameters express how these

postures are being controlled and coordinated. SB-ST shares elements in common

with computational models of motor synergies and biological motion perception,

and it relates to human manifold models that are popular in machine learning. We

showcase the method by applying SB vectors and ST parameters to study vertical

jumps of adults, typically developing children and children with Developmental Co-

ordination Disorder obtained with motion capture. We will come back to SB-ST

in Chapter 6 where we sketch an action generation model based on SB and ST

estimated parameters, and on the insights obtained from the jump experiment. In

that chapter, we also look at how spatial bases seem to be encoding information

needed to recognize populations and tasks, this time using data from tasks involv-

ing bimanual coordination and object manipulation. In Chapter 3, we introduce

a top-down system of tool-use primitives based on kinematic events between body

parts and objects. The kinematic basis of these events is inspired by the velocity

signature of hand-to-object transportation curves.

1.2 Measuring and analyzing primitives: the study of neurodevelop-

mental disorders

The discussion in the first two chapters assume the existence of the proper means to

obtain raw movement data. However, some populations might require custom-made

measurement strategies; we support this view by exposing the problem of motion
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capture of infants. Our interest in infant populations arise from the fact that these

individuals are minimally affected by cultural background and display the fastest

rates of evolving cognition and physique, opening possibilities to longitudinal but

relatively short-term research. Having the right tools to record infant movement

would be of help, for example, to research in Autism Spectrum Disorder (ASD)

where early sensorimotor abnormalities were shown to be linked to a future diagno-

sis of ASD and the development of the typical social traits ASD is mostly known for.

That said, in Chapter 4 we provide evidence that, as opposed to the current practice,

studies on infant behavior would demand non-invasive instrumentation to measure

movement, so the right paradigm to obtain the data will most likely depend on com-

puter vision based pose estimation. We propose the use of canonical postures as an

implementation of the principle of stability noted by developmental psychologists,

and exemplify how these postures and age-related data could be used to potentially

improve existing pose estimation systems. We also show preliminary results sug-

gesting that canonical postures may be recognized using global, low-level contour

features augmented by mid-level features like elongatedeness; these results are con-

sistent with previous work in infant pose estimation using pressure-based sensors.

We continue the discussion on infant movement measurement in Chapter 5 where

we present an alternative way of processing movement by using textual descriptions

as replacements to the actual movement signals observed in infant behavioral trials,

by noting that these descriptions are freely available as a byproduct of the diag-

nosis process itself. A typical/atypical classification experiment shows that, at the

level of sentences, traditionally used text features in Natural Language Processing
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such as term frequencies and TF-IDF computed from unigrams and bigrams can be

potentially helpful.
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Chapter 2: The SB-ST Decomposition in the Study of Developmen-

tal Coordination Disorder

2.1 Introduction

The means to obtain movement data are getting cheaper, more diverse and achieving

higher throughput. These data are high-dimensional and highly redundant, both at

the level of degrees of freedom (or dofs, for example, angles between body parts)

and in terms of how often spatial arrangements of these dofs (postures) are recruited

in the timeline of the action. It is thus very hard to analyze raw movement data,

and in practice movement analysts will discard dofs, look at a single dof at a time,

or assume the existence of a single external variable (an unknown direct or indirect

function of dofs) being controlled during the action. A typical approach is uncon-

trolled manifold analysis (UCM) [4, 5], a framework designed to investigate whether

a certain performance variable is being controlled during movement by factoring the

variance (or covariance) of one (or more) elemental variables (or dofs) at different

instants of a task performance into two manifolds: one that is tangent to the trajec-

tory (VUCM) and another that is orthogonal to it (VORT ). When most of the variance

projects onto VUCM , the performance variable is expected to change little in face of
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flexible configurations of the considered dofs. For example, when studying vertical

jumps, one could use the center of mass trajectory as the performance variable and,

within the UCM framework, verify how stable or relatively invariant that variable

is when typically (TD) or atypically (ATD) developing children perform, given a

number of jumps obtained from both populations.

Despite being a great tool to study the stability of performance variables,

UCM was not designed to identify ensembles of dofs and/or parametrize its relative

timings, plus it will often rely on multiple trials to calculate manifolds. With that

in mind we propose an alternative representation obtained by decomposing a single

trial action matrix Y T×J (T = time instants, J = dofs) in two decoupled steps:

first, we discover a set of vectors spanning the J space of Y , which we call spatial

basis (SB) because they are supposed to represent key relationships between dofs,

or key postures. Second, we impose a parametric model to the spatio-temporal

(ST) profiles of each SB vector. Spatio-temporal profiles of SB vectors are 1-D

signals expressing their temporal correlation with Y ; a high correlation of a vector

at time t indicates strong recruitment or activation of the vector at that time. These

two steps constitute the SB-ST decomposition of an action: SB vectors represent

the key postures, their ST profiles represent trajectories of these postures, and ST

parameters express how much (control) and when (coordination) these postures are

being recruited in each case. Going back to the jump example, we can now use

SB-ST to compare jumps of TD and ATD children simultaneously in terms of dof

recruitment, trajectories, control and coordination.

Dimensionality reduction of movement data has been studied in the context

11



Proj. VARPRO

Figure 2.1: SB-ST action decomposition. In this example, J-dimensional spatial basis vector
vi encodes a linear combination of joint angles θ1, θ2 and θ3 computed with SVD, as shown by
the leftmost figure. The projection zi = Y vi of action matrix Y T×J onto vi results into an
often smooth temporal series of correlations that represents the activity of that particular spatial
arrangement (posture) along the timeline of the action (center figure). We use VARPRO to produce
a compact parametric representation for this temporal behavior by fitting a mixture of z̃i = Φτici
to zi (right figure) which results in parameter vectors τ i = {τi,1, τi,2, τi,3} and ci = {ci,1, ci,2, ci,3}.
An action matrix is therefore fully characterized by each spatial basis vector vi and corresponding
set of spatio-temporal parameter vectors τ i and ci.

of different disciplines: for example, in motor neuroscience, the time-varying muscle

synergy (TVMS) model was originally designed to study laboratory data from frog

jumps [12] and walking data from humans [34]. In psychology of vision, the loco-

motory model of Troje [20] was used to characterize point-light displays1 of walkers,

and for the synthesis of new walking displays. In machine learning, human manifold

models like the GPLVM family [35, 36] were shown to perform very well in tasks

such as tracking and pose estimation. Like SB-ST, the first two approaches produce

representations that decouple space and time. The latter reduces dimensionality in

both spaces simultaneously.

Our contributions are threefold: (1) we present a very unique application of

dimensionality reduction: the analysis of motion capture data of vertical jumps

performed by adults, TD children and children with Developmental Coordination

Disorder (DCD); there is an increasing demand for this kind of study, in response

1A typical point-light display is a video with an actor dressed up with dark clothes and white
spherical markers in a way that only the markers are visible. The result is a moving point cloud.
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Figure 2.2: Generating postures with SB-ST. A posture Y (t) results of a linear combination of
spatial basis vectors v1,v2 . . . vk (dashed lines), as in Equation 2.3. Coefficients z̃i(t) of each
vector vi are the product of the t-th time row of its spatio-temporal matrix Φτi and respective
linear parameter vector ci (solid lines).

to recent scientific findings correlating movement abnormalities in childhood and the

later development of neuro-developmental disorders [37]. Using the jump data we:

(2) introduce a framework to study actions and actors based on SB vectors and

ST parameters and present evidence that the major differences between TD and

DCD jumps are more likely to reside in the spatio-temporal facet of the behavior,

plus (3) evaluate and compare SB-ST with alternative techniques. For example, as

opposed to SB-ST, TVMS does not work well on individual trials, and both Troje’s

method and GPLVM miss local temporal features that are crucial to the study of

behavior [34].

This paper is organized as follows: we begin by introducing SB-ST (Sec. 2.2)

followed by previous work (Sec. 2.3), to facilitate comparing the proposed method

with alternative techniques by having presented its structure first. Next, we discuss

our experiments and conclusions.

2.2 The SB-ST action decomposition

SB-ST is computed in 2 major steps: (1) given an input action matrix, we first we

extract spatial basis (SB) vectors and compute their spatio-temporal (ST) profiles,
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and (2) we fit a parametric model to the ST profiles of each vector, as follows. See

Fig. 2.1 for an overview of the method.

2.2.1 Spatial basis SB and spatio-temporal profiles

Let Y T×J be a multi-dimensional action signal, for example, a T -length sequence of

J degrees of freedom (dofs). The k-th order approximation of that signal by SVD,

in matrix notation is:

Ŷ T×J = z1v
>
1 + z2v

>
2 + . . .+ zkv

>
k , (2.1)

where vi is one of the top k right singular vectors of Y , therefore spanning the

column space of that matrix, and projection zi = Y vi corresponds to the spatio-

temporal profile of vi, that is a one-dimensional time series that expresses the corre-

lations of the particular spatial configuration represented by vi along the timeline of

the action2. For each i, let {Φ(τi,j, t) : j = 1 . . . Ni} be a family of Ni Gaussians with

fixed standard deviations and Φτi to be the corresponding T ×Ni matrix such that

each function is evaluated at T instants and it becomes a column of that matrix.

We will parametrize zi by fitting a linear combination of the columns of Φτi with

linear parameters ci = {ci,1, ci,2 . . . ci,Ni}:

Ỹ T×J = (Φτ1c1)︸ ︷︷ ︸
z̃1

v>1 + (Φτ2c2)︸ ︷︷ ︸
z̃2

v>2 + . . .+ (Φτk
ck)︸ ︷︷ ︸

z̃k

v>k , (2.2)

2Note that, for right singular vector vi, zi = Y vi = σiui, with σi being the i-th singular value
and ui the i-th left singular vector. We chose to use Y vi rather than ui just to emphasize that
vector zi expresses a time series of correlations between the data matrix Y and the particular vi.
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Algorithm 1: SB ST(Y , k, [N1...k])
Compute [U,Σ,V] = SVD of Y
for i = 1 to the first k columns vi of V do

Form zi = Y vi
Form approximation z̃i by:
1. running NLLS solver that calls [τ i, c̃i, r, J ] = VARPRO loop(τ i, zi, [N1...k]) w/random initial
τ i (solver minim. r2 using Jacob. J),
2. recalculating Φτi from optimal τ i and fixed stds,
3. making z̃i = Φτici using optimal ci
Update approximation Ỹ T×J ← Ỹ T×J + z̃iv

>
i

end for
Return vi, ci, τ i (i = 1 . . . k) and Ỹ

and we have z̃i = Φτici. Equivalently, the posture produced by the model at time

t is:

Ỹ (t) = z̃1(t)v>1 + z̃2(t)v>2 + . . .+ z̃k(t)v
>
k , (2.3)

where:

z̃i(t) = ci,1Φ(τi,1, t) + ci,2Φ(τi,2, t) + . . .+ ci,NiΦ(τi,Ni , t). (2.4)

See Fig. 2.2 for a schematic view. Vector vi corresponds to the i-th spatial basis

(SB) vector of Y or SB-i. Each vi expresses relationships between dofs (principal

postures). Basis functions Φ(τi,j, t) (and, equivalently, its matrix version Φτi) to-

gether with the mean vector τ i and the linear parameter vector ci constitute what

we call the i-th spatio-temporal representation (ST) of Y or ST-i. These parameters

map local temporal patterns and describe how a spatial vector vi is controlled and

coordinated.

2.2.2 Spatio-temporal representations ST

Because we made Φ(τi,j, t) a family of single-parameter Gaussians, this problem

turns out to be a separable least-squares regression problem, which allows us to
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Algorithm 2: VARPRO loop(τ i, zi, [N1...k])
Compute matrix Φτi from τ i and fixed stds
Compute [U,Σ,V] = SVD of Φτi
Make c̃i = V Σ̃−1U>zi
Compute current z̃i = Φτi c̃i and residual r = zi − z̃i
for j = 1 to Ni Gaussians of Φτi do

Form matrix with partial derivatives Dj =
∂Φ(τi,j ,t)

∂τi,j

Make aj = Dj c̃i −U(U>(Dj c̃i)) and bj = U(Σ−1(V >(D>j r)))
Add aj and bj and form the j-th column of J as in Eqs. 2.9 to 2.11

end for
Return τ i, c̃i, r, J

solve for τ i and ci using variable projection (VARPRO) [38]. The method exploits

the linear substructure of this particular case of nonlinear least squares (NLLS)

regression: if you fix the set of non-linear parameters τ i, the problem turns out to

be linear in ci and can be solved for the latter using linear least squares (LLS). In

other words, parameter ci becomes a function of parameters τ i and so, instead of

solving:

min
τ i,ci
||zi − z̃i(τ i, ci)||, (2.5)

we solve a less parametrized problem:

min
τ i
||zi − z̃i(ci(τ i))||. (2.6)

In the LLS stage, the pseudo-inverse solution for ci is:

c̃i = [Φτi ]
†zi. (2.7)
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where z̃i is VARPRO’s approximation to zi = Y vi. The solution can be expressed

in terms of the SVD of Φτi :

c̃i = V Σ̃−1U>zi. (2.8)

The LLS solution is then directly embedded in the calculation of the Jacobian of

z̃i(ci(τ i)) for the NLLS part of the optimization. The Jacobian can be expressed

as a sum of two matrices [39]:

J = −(A+B), (2.9)

where each of their Ni columns are:

aj = Dj c̃i −U(U>(Dj c̃i)), (2.10)

bj = U(Σ−1(V >(D>j r))). (2.11)

where Dj has zeros at all columns but j, which will have the partial derivatives of

the j-th Gaussian Φ(τi,j, t) (or the j-th column of matrix Φτi) with respect to τi,j,

evaluated at all t. U , Σ̃−1 and V are the SVD factors of Φτi (Eq. 2.8), and r is

the residual zi − z̃i. Operations were grouped so that only matrix-vector products

are required. The full SB-ST decomposition is summarized in Algorithms 1 and 2.
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2.3 Related Work

2.3.1 Motor synergies

In the field of motor neuroscience, many agree that the central nervous system

(CNS) organizes behavior by solving a dimensionality reduction problem known as

Bernstein’s degrees of freedom (dofs) problem [3] or how to manage multiple dofs

in space and time. One hypothesis is that the CNS controls dofs synergistically

as opposed to individually, and that a small number of such motor synergies is

sufficient [6, 9, 12, 13, 40]. There are various theories around the nature of motor

synergies; SB-ST has more aspects in common with computational models involv-

ing matrix factorizations, in particular the time-varying muscle synergies model

(TVMS). Like SB-ST, TVMS also approximates the temporal evolution of a multi-

dimensional action vector with k components, which according to our notation would

be:

Ỹ (t) = z1v1(t− τ1)> + z2v2(t− τ2)> + . . .+ zkvk(t− τk)>, (2.12)

where the synergy vectors vi(t − τi) are columns of synergy matrices like the V i’s

of Fig.2.3a. These matrices correspond to short-length sequences of postures that

are time-shifted by τi and scaled by a fixed value zi (Fig.2.3b). In contrast, SB

vectors vi correspond to individual postures with time-varying scaling magnitudes

zi(t) (compare with Eq. 2.3).

Both methods have in common the use of explicit local parametrization for

spatio-temporal profiles; the importance of this choice can be illustrated by the
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studies of Ivanenko et al. who use EMG data of human locomotion to look for com-

positional differences between walking alone and walking combined with voluntary

behaviors, such as kicking a ball or overcoming an obstacle [34, 41]. Their results

showed that all behaviors agreed upon the same five first profiles – which happened

to be very similar to walking – but not upon the sixth, whose synergy activation

times varied across behaviors. They proposed an additive model tailored to their

observations, where each profile was parametrized by a single Gaussian with stan-

dard deviation fixed at 6% of the walking cycle duration. SB-ST, on the other hand,

represents these profiles with mixtures and thus allows for more than one activation

in the timeline of the action.

There are various theories around the nature of motor synergies, making it an

active research topic across many different communities, namely cognitive and hu-

manoid robotics, kinesiology and movement psychology. Models and theories around

the nature of synergies have been proposed in terms of spinal force-fields [7–9], time-

varying synergies of muscle forces (TVMS) [10–12], joint-angle configurations [13],

uncontrolled manifolds [4, 5, 42], nonlinear dynamical systems [43] among others.

2.3.2 Biological motion perception

The perception of movement is also believed to be founded on compact representa-

tions. In the pioneer experiment of Gunnar Johansson [14] point-light displays1(pld)

of moving actors were presented to completely näıve observers who all reported see-

ing a walking human, despite the lack of form information in the visual stimuli. He
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then proposed vector analysis (VA) as a model to explain the phenomenon, in in

which a body part is modeled as a pendulum fixed at the body part it attaches to,

and the whole stimuli results in a hierarchy of moving pendulums perceived as a

single gestalt unit. This study is considered to have started the biological motion

perception research framework, and the same pld setting has been used to study

more complex classes of activities [18]. Of particular interest, Troje [20] proposed a

computational method to create and manipulate synthetic plds of walking data. His

eigenpostures, or the 4 first principal components of a single-walker data matrix, are

equivalent to the SB described in the previous section3. He modeled the temporal

occurrences of the eigenpostures with a family of sine functions. His sine functions

are thus a special case of our spatio-temporal representation, because it will only

pick up patterns that are global to the whole timeline of the action, and will miss

local events that can reveal control and coordination differences across populations.

2.3.3 Human manifold models

SB-ST parametrizes trajectories projected on a low-dimensional space, so it also

relates to human manifold models. Especially, Gaussian process latent variable

models (GPLVM) are a family of models that map low-dimensional latent points

XT×Ĵ to observed data Y T×J by maximizing the likelihood of Y givenX [44], where

Ĵ is the number of latent dimensions. GPLVM extends principal component analysis

(PCA) and probabilistic PCA in it allows for non-linear mappings by kernelizing the

3Although we have used SVD to create our SB vectors, other factorizations that are not PCA-
like could have been used, i. e. eigenpostures are just one possible set of SB vectors.
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process covariance function. Faster extensions to GPVLM were shown to improve

sparsification in the latent space [35] and to model time-dependency in X, like

Gaussian Process Dynamic Models (GPDM) [36]. Conceptually, the columns of X

produced by GPLVM and the like are analogous to SB-ST’s spatio-temporal profiles

zi = Y vi obtained with SVD (note the similarity of x1 and z1 in Fig. 2.5(top-I)).

Regarding GPDM, although it models dynamics, it still produces the same one-to-

one X → Y kind of mapping as GPLVM, because the model marginalizes out the

basis functions f(·) that relate one latent posture to its preceding ones and g(·)

that models how latent variables relate to observed postures (Eqs. 1, 2 in [44]). In

the end, the method creates a representation that merges space and time within

the same manifold, and although this unifying approach has proven adequate for

various human movement tasks [45–47], explicit local parametrization of dynamics –

in contrast, present in SB-ST – is key to uncover aspects of control and coordination

that are not otherwise accessible (see Motor synergies, Sec. 2.3).

2.4 Experiments and Results

The first goal of our experiments was to examine data reconstruction performance

of SB-ST alone and in comparison with (1) methods that, as SB-ST, decouple space

and time (Troje and TVMS) and (2) a method that does not (GPLVM). Our second

goal was to illustrate how SB-ST can used to provide insights to both actions and

actors involved.

Although any kind of action could have been chosen, we looked at vertical
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jumps, a non-trivial behavior that requires strength, coordination and balance. Our

39 participants were first setup with 34 infrared markers and next told4 to jump

as high as possible and try to reach for a visual target, while being recorded by an

Optitrack (NaturalPoint Inc.) motion capture system with ten V100 and V100:R2

Flex cameras. The Arena software (included) was used to export its proprietary

data format to BVH (Biovision Hierarchy). BVH data were later processed by

code5 written in MATLAB® (versions R2010b and R2011a).

We were able to collect a total of 358 jumps: 9 typically developing female

children (TD-F, 98) 6 adult females (AD-F, 61) 10 TD male children (TD-M, 88) 5

adult males (AD-M, 52) and 7 children diagnosed with Developmental Coordination

Disorder (DCD, 59) [48]. DCD data were collapsed across gender to make the sample

bigger. Children were in the broad age range of 5.1 to 14 years old. Adults (AD)

were in their early 20’s.TD and DCD groups were both assessed with the MABC

(Movement Assessment Battery for Children) test [49], with scores < 5th percentile

and > 29th percentile, respectively.

All jump trials were decomposed into a spatial basis of 3 vectors SB-1, SB-2

and SB-3. Regarding ST basis functions, standard deviations were fixed to σi =

{1/(2 ·1), 1/(2 ·2) . . . 1/(2 ·N)}×T , with T ≈ 80 rows (about .8 seconds) and J = 6

columns: left and right hips, knees and ankles. We only used the flexion/extension

intersegmental joint angles. Each individual trial was manually segmented by an

expert in the vertical jump movement, so that they span the same postural range:

4Written informed consent was obtained from all subjects/parents/legal representatives.
5Most of the code we used to parse the BVH files is part of Prof. Neil Lawrence’s motion

capture toolbox, which can be downloaded for free by registering at the author’s website. The
toolbox is currently hosted at: http://staffwww.dcs.shef.ac.uk/people/N.Lawrence/mocap/.
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Figure 2.3: Single-trial TVMS (N = 3 synergies of length Q = 60 time units, stopped at 100
iterations or R2 ≥ 10−5). (a) V = [V 1|V 2|V 3] is the synergy matrix. (b) H (not to scale)
shifts and scales all V i by τi and zi, respectively. (c) Arrow shows zeroed part of signal after
reconstruction. (d) As a result, mean and std R2’s for different values of N and Q appear off the
usual [0, 1] range.

all poses captured within the initial and final peak knee flexions. Prior to parameter

estimation, each zi was normalized into a unit vector. When using VARPRO, τ i

was constrained to [0, 1], and no constraints were applied to ci.

Overall, SB-ST achieved an average reconstruction accuracy of R2 ≥ 0.95 for

all N tried, where R2 is the coefficient of determination (Fig. 2.4 (top)). We will

next discuss how SB-ST performed against competing models.

2.4.1 Reconstruction: comparing with TVMS

From TVMS results, it appears that a single synergy matrix V 2, with hips-ankles as

agonists and knees as antagonists would explain most of the jump trial (V 1 and V 3

are mostly all zeros in Fig.2.3). However, we were often unable to get satisfactory

reconstruction of our data using TVMS, as shown in Fig. 2.3c: a significant part of
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the signal is not covered by the resulting synergies, resulting in a very low R2. To

rule out the cause of the problem to be the poor selections of N,Q, we ran TVMS

on the whole data using different combinations of these quantities, but the low R2

still persisted, as illustrated by the statistics of R2 shown in Fig. 2.3d. As a result,

we discontinued the analysis based on that method. We then conjecture that the

reconstruction problems of TVMS on our data should result from not using more

than a single trial to compute synergies and other parameters. TVMS was designed

under the assumption that there exists latent repertoires of synergies/control and

coordination parameters that span both multiple behaviors [11] and others that are

behavior-dependent [12] and thus constrained their optimization to obtain factors

that are faithful to these assumptions; synergies and parameters are supposed to be

obtained from minimizing reconstruction errors across several trials. Because SB-ST

operates on a per-trial basis, to be able to properly compare the two methods, we

had to run TVMS on a single-trial basis.

2.4.2 Reconstruction: comparing with Troje-inspired

Fig. 2.4 (top) shows the performances of SB-ST against a Troje-inspired decompo-

sition. To clarify: Troje [20] fits the time series of his eigenpostures with a single

fundamental harmonic, which he finds sufficient to model locomotion. A natural ex-

tension to non-periodic actions like jumps is to select as many harmonics as needed

to obtain good approximations. This is what we call a Troje-inspired decomposi-

tion. For a certain N , the decomposition consisted in selecting the top-N responding
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Figure 2.4: Quantitative comparison. (Top) R2 versus N for Troje-inspired and SB-ST. Each
point = mean R2 ± std. and the R2 of a trial = average of the per-joint R2’s. SB-ST tops
Troje when N ≤ 7. (Bottom) corresponding R2 of GPLVM for latent vectors Ĵ = {1 . . . J = 6 =
number of joints}. The number of active points was set to the length of the trial. SB-ST’s lowest
performance (top, N = 4, 42 parameters) tops the best GPLVM (Ĵ = 1, 83 parameters).

Fourier harmonics via FFT of zi and using only these harmonics to reconstruct the

original zi via IFFT. Note that, for a certain N , the number of parameters needed to

reconstruct zi is the same in both cases making these methods comparable: SB-ST

fits a mixture of N Gaussians of fixed scales, therefore resulting in N pairs τi, ci (ST-

i parameters) while Troje uses N pairs of Fourier harmonics along with respective

responses. Our results show that SB-ST outperformed Troje-inspired approximation

of zi when 4 ≤ N ≤ 7, which could be considered the range with the best trade-off

between number of parameters and reconstruction error (note the change of slope

in both methods when N moves from 3 to 4, as well as the dramatic decrease in

R2 variances). Fig. 2.5(top-I) also shows superior qualitative performance: for the

same N = 8, SB-ST fits the local details of zi better than its competitor.
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Figure 2.5: Qualitative comparison. (Top-I) Fits to z1, z2 and z3 by Troje-inspired and VARPRO
for one trial. (Top-II) Corresponding x1, x2 and x3 produced by GPLVM. (Bottom) Comparative
reconstruction of joint signals with R2.

2.4.3 Reconstruction: comparing with GPLVM

To evaluate a GPLVM computed for an action matrix Y , we used two steps. (1)

With the resulting set of latent vectors X (see Sec. 2.4.3) we pseudo-inverted the
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5th Equation of [44] to get the approximation Ỹ :

Ỹ = Ĵ ·X(Y >K−1
X
X)>, (2.13)

where, KX is the kernelized covariance matrix, and Ĵ is the number of columns of

X used in the approximation. (2) We computed R2 from Ỹ and Y .

Fig. 2.4 (bottom) shows statistics of R2 on the full jump data: from left to

right, more parameters are being used to to compute Ỹ , that is, the larger Ĵ the more

columns of X are being used to compute Ỹ . Note that the best result R2 = 0.92 is

still lower than any of the SB-ST scores in Fig. 2.4 (top). Moreover, we note that

a GPLVM setup with Ĵ = 1 will result in Ĵ · T̄ + 3 = 83 parameters (T̄ = 80 is

approximately the average length of X obtained from our jumps) while an SB-ST

configuration with N = 4 scoring R2 > 0.95 has exactly k(J +2N) = 42 parameters

(k is the number of SB vectors and 2N is the number of pairs of ST parameters): with

half as many parameters, SB-ST performs better than GPLVM, which is also visible

from the qualitative example of Fig. 2.4 (bottom) where a SB-ST configuration with

k = 3 and N = 10 (78 parameters) fits the local details of the joint signals better

than its competing one-latent vector GPLVM (154 parameters).

But more interesting than the R2 differences between the two methods is that

the best GPLVM configuration (other than the full-dimensional, Ĵ = J = 6) is the

one with a single latent vector (Ĵ = 1) and that increasing Ĵ from 2 to 5 (except for

Ĵ = 3) makes R2 decrease, which we found somewhat counterintuitive. A possible

explanation would be that one major GPLVM latent variable is enough to represent
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Figure 2.6: Mean ± std of SB-1, SB-2 and SB-3 and mean ± std of explained variances per SB
vector. Scales were set to accommodate the biggest variances.

the major features of the jumps as seen with synergy matrix V 2 of TVMS and as

will be seen next with SB-1.

2.4.4 Data exploration: looking at jumps and jumpers based on the

SB-ST parameters

In our second experiment, we used SB-ST to explore our jump data. As in Fig. 2.6,

SB-1 coefficient statistics demonstrate that over 50% of the explained variances in

the vertical jump come from 2 main groups of rotations: hips-ankles and knees. SB-1

thus works by clustering leg joints into groups of agonist and antagonist motions, and

these distributions seem to generalize across all populations, given the tight clusters.

Fig. 2.6 also reveals that both SB-2 and SB-3 coefficients are almost zero-centered

and have high variances, meaning they provide no clear interpretation of the action,

so the remaining of the analysis focus on spatio-temporal aspects of SB-1 alone, that

is, the statistics of ST-1’s τ 1 = {τ1,1 . . . τ1,N} and c1 = {c1,1 . . . c1,N}. We may
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Figure 2.7: ST-1 statistics for TD, DCD and AD. Each row displays distributions of τ 1 and c1

for the 2nd to 4th Gaussians (left, N = 4) or 2nd to 5th Gaussians (right, N = 5). Tables point
out if populations agree (A), partially agree (PA) or disagree (D) based on the overlap of their
curves. Distributions were approximated with MATLAB® ksdensity() function, which was
set to sample the data range at 50 points and to use a Gaussian kernel for smoothing. Bandwidths
were automatically computed by that function, and varied across parameter distributions. The
orange selection shows a scenario where all τ1,4 peak at about the same time for all populations,
while c1,4 do not (see text for details).

also call τ 1 and c1 coordination and control parameters respectively, because the

former “places” each of the Gaussians along the timeline, so they match the local

features of the spatio-temporal profile of SB-1, while the latter scales these Gaus-

sians in accordance to the intensities of SB-1 activation. We ran VARPRO with

two settings (N = 4, 5) just to illustrate how the choice of N can affect parameter

distributions. After smoothing all distributions, we looked at how jumpers at dif-

ferent developmental stages agreed on ST-1. Data were collapsed across gender to

increase the number of subjects per population of interest.

To be considered to agree, two distributions must have similar shape and/or

about the same peak abscissa. We judged that, for the present purposes, visual

inspection was enough to assess agreement. As seen from Fig. 2.7, frequent agree-

ments between adults (AD) and typically developing children (TD) plus partial
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and full disagreements with DCD children suggest that the 3 populations may be

controlling and coordinating SB-1 distinctly: for example, when N = 5, all popula-

tions seem to be recruiting the fourth Gaussian early in the timeline, since all τ1,4

peak at about the same time but c1,4 do not (orange selection, Fig. 2.7) so we can

hypothesize that (1) there may be inter-population discrepancies related to spatial

configuration SB-1 taking place somewhat early in the jump and that (2) the more

you move to the right on c1,4, the less mature the jump is, since the sequence of peaks

is AD→TD→DCD. The movement analyst could then manipulate c1,4, reconstruct

the jumps and inspect the effects near τ1,4.

2.5 Conclusions and future work

This paper describes the SB-ST decomposition and how it factors action matrices.

Conceptually speaking, SB-ST can be seen as a synergy model of single postures

with time-varying scaling magnitudes, and it generalizes spatio-temporal profiles

proposed to explain locomotory data in motor neuroscience [34] and psychology

of vision [20]. Local parametrization of spatio-temporal profiles, although proven

critical in the study of actions [34, 41], is not present in human manifold models like

GPLVM and GPDM, but it is a feature of SB-ST.

Comparative reconstruction of vertical jumps suggested that: (1) SB-ST can

be more adequate than TVMS to factor single-trials, (2) SB-ST can outperform

Troje-inspired at the best the trade-off between number of basis functions and R2,

(3) it do as well or better than GPLVM with half the representation size. In a second
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experiment, we showed that SB-ST can be a good tool to study actions and actors,

and results revealed that (1) despite conceptual differences, TVMS, GPLVM and SB-

ST all agreed that jumps are mostly loading on a single factor. (2) SB-1 coefficients

were consistent among all populations, suggesting jumpers are recruiting the same

major synergy regardless of jump maturity (age, presence of disorder) or gender.

By inspecting ST-1 statistics, we saw that (3) one of the Gaussians is consistently

coordinated by all populations to be at the beginning of the trial, but it is controlled

differently. We note that to discern what exactly these differences mean as well as

their significance would require a more thorough analysis and rigorous statistical

testing, which surpasses the scope of this discussion (but see Chapter 6).

In ST parameter estimation, we use a family of N Gaussians with fixed stan-

dard deviations (stds) to facilitate the comparison among populations, because we

could establish correspondences between Gaussians based on corresponding stds (as

we did in Sec. 2.4.4 when we fixed the fourth Gaussian and looked at differences in

c1,4 and τ1,4). Therefore, reconstruction results could improve further if we also op-

timized for stds; a future development would be to add std optimization, discretize

these stds into bins and correspond Gaussians based on the bins. Another interest-

ing future experiment would be to compare the performance of our VARPRO-based

ST representation with an ST learned with the dynamic primitives proposed by

Ijspeert et al. [43].
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Chapter 3: Alternative representations of action primitives:

the traveler-target framework

3.1 Introduction

The SB-ST decomposition and related synergy models presented in the previous

chapter try to discover primitives from the data with no supervision. Although the

methods produce high compression of movement signals, they rely on optimizing

criteria that do not express explicit knowledge of actions or actors. This means

the assumptions in these models are weakly connected to scientific findings and

hypotheses on action primitives, except perhaps for dimensionality reduction (see

Chapter 1 for details). For instance, there is no explicit differentiation between body

parts and objects; if one wanted to include objected, he or she would have to add

extra columns to the action matrix, so objects will be semantically equivalent to

any other degree of freedom. To explore a different direction, in the next section, we

introduce a top-down system of primitives that incorporates some of the described

scientific evidence and tries to design more semantically relevant primitives. As it

will be shown, it is founded on special kinematic events between entities of interest,

that is, body parts and objects. These events reflect relative motions between these
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entities, so that primitives will encode (1) target entities, (2) travelers that move

with respect to these targets and (3) a description of the motion between the two.

The proposed system is consistent with the evidence surrounding motor syner-

gies: instead of factoring x, y and z time series into linear combinations of all body

parts (and objects) at once, it will select a few pairs of dofs that are meaningful

in the context of certain cognitive tasks such as tool use, although linearity in the

way dofs are combined is not assumed. The very fact that it works by pairing face,

hands, objects (that can be later grouped into pairs of sets) rather than represent-

ing each of these individually obviously contributes with dimensionality reduction

as well. In fact, the system is based on a grammar that defines which entities can

be travelers and targets, and which cannot, and what types of motion events are

considered relevant. This grammar supports the belief of an existing vocabulary

in F5/pre-motor cortex of macaques and in the mirror neuron system of humans.

Note that working with pairs and their interaction rather than each dof alone is also

consistent with the fact that mirror neurons were observed not to fire for mimicry or

objects alone, but for both manual and oral grasps. Although the proposed system

is discussed in the context of object manipulations and tool use, we believe it can

be extended to support full-body actions.
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3.2 Velocity-based transportation events and the traveler-target frame-

work

In the previous section, we mentioned that the system introduced in this chapter

will be “based on special kinematics events”, and that these events arise from pro-

cessing relative velocities between entities. We note, though, that not all relative

velocities are of interest; we are particularly interested in the ones that can inform

something on the purpose of the action, in special, manipulations. Conveniently,

purposive manual motions will have a signature, as observed by Marc Jeannerod in

1984, when studying velocity-based transportation curves involved in reach-to-grasp

velocities [50]. From 7 testing subjects, he saw that the time of peak velocity cor-

related with the initial distance from the hand to the object, as well as with the

amplitude of the movement, rather than its duration. He also reported the onset

of the low-velocity phase (a re-acceleration typical when the hand is close to grasp

the target) to be highly correlated (in fact, almost equivalent) to the time of the

maximum grip aperture.

We have verified qualitatively that the shape of such transportation curves

can also vary significantly with the level of planning during action execution. For

example, in one of our recordings, a test subject pretended to drink from a mug

3 times in a row. Let us consider the relative velocities between left and right

hands. In the first trial, he was not immediately sure of whether he should use

the left hand as a “helper hand” to carry the mug, and when he decided to do so,
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he quickly moved the left hand towards the right hand to catch up with it, and

together both hands brought the mug first to the subject’s mouth and next back

to the table. This “unsure/unplanned” behavior produced an asymmetric profile

consistent with Jeannerod’s reported curve1 but much sharper than, for example,

the curve resulting from moving the right hand towards the head, that was clearly

planned out well before the action took place (compare Fig. 3.1, bottom, #1 and

Fig. 3.3, “towards”). In the second trial, he began moving the left hand to help,

had a quick moment of doubt and withdrew the hand, causing a weak and jittery

velocity pattern (Fig. 3.1, bottom, #2). In the third trial, he brought up the left

hand almost as a reflex and pulled it back, resulting in a sharp, low-amplitude

velocity profile resembling a short burst (Fig. 3.1, bottom, #3). We would expect

that, in a fourth trial, he would not move his left hand at all.

Founded on such observations, one hypothesis is that transportation events

could form a visuomotor basis for partially understanding intentional behavior and

as a consequence should guide the choice for action primitives. There is plenty of

evidence that these relative kinematic cues are being extracted from visual images

of moving body parts and objects during action interpretation, as we saw with

the proactive attention shifts reported by Flanagan and Johansson [32]. These are

signals that somewhat reflect the state-of-mind of the actor (an “honest signal”,

like termed by Pentland [51]), and the experience of one such curve clearly evokes

the notion of a traveler and a target within the visual field of the observer, being

therefore essential in describing the action. Next, we describe the traveler-target

1But without the low-velocity phase, since there was no grasping.
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Figure 3.1: Top: two overlaid frames. We compute traveler-target velocities by (1) projecting
the traveler’s displacement vector (blue arrows) from frame t to frame t+1 onto the vector that
separates the two at t (green line), (2) computing the norm of the displacement and (3) dividing
it by the number of seconds ∆t. Note that this quantity is asymmetric: in the given example, the
subject brings the mug towards the left hand faster than the other way around, which can be seen
by the different sized projections (blue lines on top of green line). Bottom: data from another
subject. The left hand moves towards the right three times, but only once with intention to help
the other hand (black arrow 1 versus black arrows 2, 3). See text for details.

framework as a computational approach to extract action primitives, and sketch a

testbed that could be used to inspect how plausible these primitives are.
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3.2.1 Extracting action primitives from manipulation data

Here, the raw data will be the trajectories of a number of relevant entities (time

series of its 3-D pivot coordinates) as well as a front-to-parallel registered video,

such as the actor’s head, the hands, tools involved, to-be-manipulated objects and

distractors. These data are acquired with an optical motion capture system with

a point cloud tracking software and custom-designed trackers. Figure 3.1 shows an

example of one frame of our data and illustrates the subject and objects’ setup.

The resulting time series will be processed off-line, so our algorithms will only have

access to the full data of an activity after it is completed. Moreover, we will know

which time series correspond to certain body parts and objects, meaning that video,

although collected, will only be important in later stages of our work, when more

sophisticated vision-based object recognition can be applied to keep track of the

identities of entities during the course of an action trial.

To extract primitives, we process the time series of all body parts and objects,

find out which targets and travelers are available at each instant and produce a

description of what their relative motions look like, according to the following steps.

1. By knowing what entities are objects and what entities are body parts, form

sets of candidate travelers and targets by respecting the following rules:

• Travelers: hands ‖ hands with objects.

• Targets: hands ‖ head ‖ hands and objects ‖ head and object ‖ just

object ‖ a site of interest
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Figure 3.2: We fit a composite logistics model to the relative velocity trajectories. On the
left, a typical fit for a true transportation curve (towards). On the right, the fit for an inverse
transportation (away from). The red piece corresponds to the first logistics component and explains
transportation up to peak velocity. The blue curve explains the piece of the action up to reaching
the target, and may include grasping.

2. Compute relative velocity time series between candidate traveler entity e1

and candidate target e2 in the data (like those in Figure 3.1, bottom and

Figure 3.3).

3. For each velocity time series, test the hypothesis that e2 is the target of e1 at

every instant t0 (i. e. search all transportation events). We do that by first

locally fitting a composite logistic model y = a+ (c− a)/(1 + exp k(t− tθ)) to

the data (Figure 3.2) and classifying the optimal parameters as belonging to

a true transportation event (e1 moves towards e2), an inverse transportation

event (e1 moves away from e2, in which case e2 behaves as an anti-target) or

any other type of event. One logistic models the trajectory anterior to t0, that

is, t < 0 and k < 0 while the second models the posterior section, in that case

t > 0 and k > 0. They are fit independently to allow for large asymmetry

before and after t0, and the process produces two sets of optimal parameters. A

classifier can then be trained with examples of true transportations and other
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motions manually extracted from a few trials. This step turns the velocity

profiles into events that flag true and inverse transportations (towards and

away from motions, respectively) or no relevant motion per instant.

4. Apply simple rules (or even classify) combined occurrences towards and away

from into finer motor descriptions, by looking for temporal and spatial regu-

larities, for example:

• e1 moves back and forth w.r.t. e2: when multiple towards and away from

events between e1 and e2 are signaled within a time window.

• e1 moves in circles near e2: when multiple back and forth events spanning

the same 2-D plane and within a certain time window and range.

Note that the model leaves room for creating other types of behaviors, and this

could go as fine-detail as desired. Computer vision could also be used to supply

information about the appearance of hands and objects. Adding the direction

of motion should also enrich these descriptions, e. g. e1 moves back and forth,

up-down near e2. The result of this step is a number of traveler-target pairs

per instant of the trial, and the type of motion.

5. For all instants, group travelers that go to the same target (Figure 3.3). A

new traveler that resulted from the union of e1 and e3 will then be referred to

as e1 with e3. This should be analogous to perceptual grouping by common

fate.

As a result of the previous processing steps, and with the addition of the
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Figure 3.3: The right hand (top plot) and the mug (bottom plot) travel in-phase w.r.t. head
(see red circles), first towards than away from (dashed lines).This will make right hand and mug
to merge into a single traveler (at the marked times) to represent the fact that they have common
fate (head).

proper language constituents, every instant of a trial can be expressed as a set

of sentences relating travelers and targets, such as:

(t) {Left hand moves towards mug , Right hand moves away from left

hand}

(t+ ∆t) {Left hand and mug move towards head}

(t+ ∆t) {Left hand and mug move away from head ,

Right hand moves towards pitcher}

...

(t+ k ·∆t) {Left hand moves away from mug}

From now on, we will talk about primitives in terms of these sentences.

6. Apply two simple rules to reduce the number of sentences:
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• The traveler-unity constraint : at time t, if two entities were once detected

as a combined traveler, they cannot be traveler or target of each other.

For example, if right hand and mug are a traveler of some target (say, the

head) then the sentence Right hand moves towards mug is forbidden at

time t, since right hand and mug are grouped, and will then be discarded.

• The target-unity constraint : At time t, if two travelers move in the same

way towards different targets, these targets are grouped into a single

target w.r.t. those travelers. The rationale behind this constraint is that,

since the transportation curve reflects a position in space, it is likely that

travelers going to different targets are in fact going to a single system of

targets close together, and we want to reflect that in the representation.

For example, sentences: Left hand moves towards right hand and Left

hand moves towards mug are replaced by Left hand moves towards right

hand and mug .

This concludes the extraction of action primitives according to the traveler-

target framework: in short, we produce sets of sentences, each describing a time slice

of the action from the viewpoint of two meaningful entities involved and their spatio-

temporal relationship. Alternatively, one could see this whole process as processing

each time sample of an action data through a grammar like the one in Figure 3.4,

where the occurrences of motor-related terminal symbols depend on detecting and

processing transportation events, and the object-related ones would rely on visual

tracking of entities (body parts and objects). The framework can be extended to

41



S ⇒ TRAVELER moves IN A CERTAIN WAY TARGET ‖ ε

TRAVELER ⇒ ACTING BODY PART ‖ ACTING BODY PART with OB-
JECT

IN A CERTAIN WAY ⇒ DIRECTION towards ‖ DIRECTION away from

‖ back and forth, CYCLIC DIRECTION near ‖ in circles near

DIRECTION ⇒ down to ‖ up to ‖ ε

CYCLIC DIRECTION ⇒ up-down ‖ along-across ‖ in-out

ACTING BODY PART ⇒ left hand ‖ right hand

OBJECT ⇒ object 1 ‖ · · · ‖ object o

SITE ⇒ relevant location 1 ‖ · · · ‖ relevant location r

TARGET ⇒ BODY PART ACTED UPON ‖ OBJECT ‖ SITE ‖
BODY PART ACTED UPON and OBJECT

BODY PART ACTED UPON ⇒ left hand ‖ right hand ‖ head

Figure 3.4: The main production rule S will parse the action data at every instant, and output
a sentence describing an action or an empty string. Note that all symbols have clear meanings:
nouns refer to objects, body parts or relevant locations. Symbols towards, away from, back and
forth, in circles together with some direction modifiers express the manner of the motion, and are
based on the occurrences of transportation events. The with symbol expresses common fate, that
is, redundancy in the traveler space. Finally, the and symbol reflects redundancies in the target
space.

accommodate different entities and type of motions.

3.3 Discussion

Previous attempts of designing vocabularies of action primitives concentrated on

forming symbols based on absolute kinematics (i. e. different than the traveler-

target idea) hand-to-tool events or sub-actions like hand motion to one side or an

arm reaching out. These may be useful to ad-hoc tasks but will lack generality,

simply because they do not absorb enough semantics. See, for instance, the repre-
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sentative work of Inamura et al. [52]: their proto-symbols are instances of continuous

Hidden Markov Models that produce sequences of low-level based motion elements

based on joint-angles (although their model would accommodate other physical de-

scriptions). These proto-symbols are very sophisticated and are able to learn and

generate motion patterns, but lack clear semantic meaning: they cannot convey

intentions or describe an action just like the sentences that we described in the

previous section. This ability to express the action on linguistic grounds is crucial

because language is exactly what links the motor and visual facets of the action.

We are rather looking for a system of primitives that could convey purpo-

siveness or intentionality, along the lines discussed by Justine Cassel [53], but in

the realm of day-to-day activities rather than gesture understanding. As she says,

“in order for (...) gestures to be accounted for in a theory of lexical choice, the

semantics must be of a form that allows knowledge of the world”, that is, in the

context of manipulations, the code has to reflect not just the kinematics of effectors,

but to transform these kinematics into something that helps expressing the actor’s

intentions while carrying out the action. In a later effort, Cassel et al. [54] pro-

posed an encoding scheme that made use of hand shape, orientation and location

within pre-established zones in the actor’s workspace (see the Appendix of McNeill

et al. [55], pp. 378 for more details). Their goal was to assess the use of gestures

when communicating directions, and they did merge hand kinematics with seman-

tics (e.g. hand pointing to building) at utterance generation level, but in the end,

the code itself was only based on absolute hand features. The semantic event chain

(SEC) proposed by Aksoy et al. [56] shares some ideas with the system of primitives
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proposed here, because it encodes the relationship between parts, objects and even

object states (liquid moved from one container to another) but without expressing

these primitives as language constructs.
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Chapter 4: Actor-aware measurement of movement:

the case of infant motion capture and Autism Spectrum

Disorder

4.1 Introduction

The previous two chapters assumed movement data to be readily available for the

discovery and analysis of action primitives. Although this is true when recording

from various animals and most adult humans, it is not always the case. In this

chapter we will then switch to a discussion on the importance of making these

measurement systems aware of the nature of the subject being measured. Our focus

will be typically and atypically developing human infants, for reasons that will soon

become clear.

From preventive healthcare to developmental robotics, many are the disciplines

that can profit from automatic means of acquiring infant movement data. Here

we are particularly interested in aspects of Autism Spectrum Disorder (ASD), a

neurodevelopmental disorder whose most characterizing traits have been shown to be

tightly connected to many of the aspects that make humans different than any other

species, such as creativity, language, social engagement and even thinking [57, 58].
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As Peter Hobson puts it in The cradle of thought [59], p.183:

“If we are interested in uncovering the foundations of interpersonal re-

lations and creative, flexible symbolic thinking, autism is a good place

to start – precisely because it is in autism that we find a unique com-

bination of abnormalities in these two domains of mental functioning.

Autism promises to disclose the conditions that make symbolic thinking

possible for those of us who are not autistic”.

In the context of actions, the recently discovered link between certain early-age

movements and later development of typical ASD traits makes it reasonable to

consider the use of behavioral assessment tasks empowered by pattern recognition

tools as adequate means to the pursuit of the relationship between complex later-

in-life obsessive traits, or even social impairments and motor abnormalities that are

commonly displayed by infants at high-risk for ASD [37]. An objective, quantitative

answer to one such question could perhaps open way for science to trace back to

the neural processes involved in these kinds of abnormal motor developments, or

even the underpinning genetics. Naturally, these studies will thus depend on the

availability of movement data. Although the natural choice of marker-based motion

capture technology will appear adequate at first glance, given it has been successfully

used to collect data from older children and adults ([60–62] and see Section 2.4

in Chapter 2) it should be expected to fail on infant subjects. For example, in

Sec. 4.2 we go over a preliminary experiment we co-mentored in partnership with the

Center for Autism and Related Disorders at the Kennedy-Krieger Institute, which
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gave us a practical notion of the difficulties and consequences of subjecting infants

to standard marker-based motion capture [63]: markers are usually relatively big,

bulky and distracting, which can make the capture sessions very uncomfortable for

the infants or even contaminate the data and mislead interpretations. Henceforth,

the markerless paradigm is not just desirable, but the right way to go about it.

More precisely, by markerless motion capture of infants or markerless infant

mocap, we refer to the problem of obtaining full-body movement data from children

within the age of 0 to 12 months with the use of movement sensors that track the

child within a pre-defined volume without depending on any physical markers (or

trackers) or wires or special suits to be placed on the child’s body. A careful litera-

ture review reveals that approaches to the problem split into two main paradigms,

depending on if it is pressure-based or optical-based. Digital pressure sensors were

first reported as being part of a markerless infant mocap system in the late 1990’s,

but are still in use [64, 65]. Typical setups will include one or more lattices of

multiple sensors placed under the cushion of a crib station, and these sensors pro-

duce maps of simultaneous activities of body parts from time to time. Meanwhile,

optical-based setups comprise standard, single-view video acquisition.

Regarding applications, markerless infant mocap architectures have been de-

signed to support infant psychology research and to handle tasks like baby posture

and activity recognition, biometrics, general child monitoring, Sudden Infant Death

Syndrome (SIDS) prevention, seizure diagnosis and automatic computation of be-

havioral markers for the early study of neurodevelopmental disorders such as Cere-

bral Palsy and Autism Spectrum Disorder (ASD) itself. These studies are further
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summarized in Sec. 4.3.

In terms of previous achievements and state-of-the art, pressure-based solu-

tions rely on tracking blocks in images that, under very strong assumptions and a

lot of luck, will match body parts [1]. In all cases infants will remain in the crib,

which limits the number of behaviors that could be recorded and makes it too con-

straining. However, a major conceptual outcome of studies based on pressure-based

architectures was that holistic representations of infant motions may be sufficient

to allow for the inference of certain (canonical) postures that are often seen in in-

fant behavior [1]; this is an important result that could even be explored by future

computer vision systems, for example through the use of the increasingly popular

(and affordable) depth sensors [66]. Speaking of which, current computer vision

technology has gone as far as being able to detect epileptic seizures through the

tracking of motion blocks [67–73], and when more sophisticated skeletal models

were attempted, vision systems were able to achieve good discrimination between

normal and abnormal head lags and arm asymmetries [2, 74–76]. Still, the number

of published studies to date is still surprisingly low, plus, except for a couple of cases,

most of the presented results are either of qualitative nature or reported solely on

the basis of the driving application, making it really hard to judge the accuracy of

the obtained data, or equivalently, how well their markerless infant mocap solutions

are performing: take for example Hashemi and colleagues [75, 76], or Spina and

colleagues [2], who presented evidence of good agreement between their system’s

ability to point out arm asymmetries and the inputs of an expert physician, given

the movements of a small population of infants at high-risk for ASD, but did not
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show any comparison between their generated motion capture signals and available

ground-truth. Besides, no learning of thresholds and model parameters or cross-

validation of results were reported in their work, so it is also very hard to judge how

well the predictions (scores, diagnoses) would generalize unseen data; it could be

the case that parameters are just overfitting the clinician assessments.

We believe the main reason why markerless infant mocap has been overlooked

by computer vision and artificial intelligence communities would result of a first

impression that the problem would be a mere downscaled version of the general

markerless human motion capture. On the contrary, it is a very special case and

should be treated as such, mostly because infants are pre-language human subjects

that have unique physique, a peculiar postural repertoire and fast-evolving physique

and cognition. Despite the existing evidence on the importance of modeling these

aspects [1], none of the vision systems have chosen to do so, which may result in

restrictive performance and/or applicability upper boundaries, and consequent lack

of generality. In Sec. 4.4 we reflect on the achievements and setbacks of markerless

infant mocap research, and consider ways of exploring the infant features above

listed to advance the state-of-the art.

4.2 Motion capture and the early assessment of Autism Spectrum

Disorder

Autism Spectrum Disorder (ASD) is presently understood as a neurodevelopmen-

tal disorder that alters how a person senses and acts towards other people, objects
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(a) (b)

Figure 4.1: (a) U. of Miami-UCSD motion capture suit measures interactions between the baby
and the caregiver. Reproduced from [77]. (b) U. of Maryland AMIRA team’s custom-designed
infant mocap suit on a baby dummy: it consists of a bib tracker, two wrist straps and a hat.
Reproduced from [63].

or even themselves. It is considered a spectrum disorder because it encompasses a

variety of symptoms, and these symptoms vary from individual to individual. The

American Psychiatric Association’s Diagnostic and Statistical Manual (APA man-

ual) has a number of criteria for the diagnosis of ASD, and the manual is revised

from time to time. For example, according to the 4th edition [57] the individual

used to be diagnosed as having Autism Disorder (AD), Asperger’s Syndrome (AS),

or the catchall Pervasive Developmental Disorder Not Otherwise Specified (PDD-

NOS) which included subgroups Rett Syndrome (RS) and Childhood Disintegrative

Disorder (CDD). Group and subgroup selection depended on the symptoms, their

severity and when in the developmental process they were observed. More recently,

the 5th edition of the APA manual [58] ended the formal diagnosis of AD, AS and

PDD-NOS, and placed them under the single umbrella of Autism Spectrum Disorder.

Individuals are now supposed to be diagnosed as pertaining to a certain level of the

ASD continuum rather than to a group or subgroup. Both versions of the manual

elaborate on the action aspect of the disorder, and establish that ASD individuals
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are expected to display a subset of the following: (1) impaired use of non-verbal

behaviors that regulate social interactions like eye contact, body postures and ges-

tures or (2) stereotyped manual and full-body motor mannerisms, (3) eventual loss

of purposeful manual skills or even (4) problems coordinating trunk and gait.

While scientists are still in the process of figuring out the nature of the disor-

der, the latest data from Centers for Disease Control (CDC) [78] indicate an increase

of ASD incidence: 1 in 54 boys and 1 in 252 girls were identified as having ASD,

a growth of 23% compared to the (last recorded) 2006 prevalence ratios. On the

positive side, recent results are pointing to a possible early diagnosis of ASD. Bhatt

and colleagues [37] compiled a variety of studies and proposed that the observation

of certain sensorimotor abnormalities still in infancy can predict both a future diag-

nosis of ASD and the development of the typical social traits ASD is mostly known

for. They also reported findings where babies who have siblings with positive diag-

nosis for the condition are 20% more likely to display certain motor (gross and fine),

postural and perceptual delays, among which trouble holding the head or rolling,

or to reach for an object, preference for prone playing rather to sitting, and lack of

attention in visual tasks. These results are extremely important from a prophylactic

viewpoint: infants can be run through behavioral tests that verify the presence of

such delays, and depending on the severity of what is observed, these children can

undergo preventive therapy much before the 5 years deadline [79]. Although this

will certainly not cut down on the CDC incidence numbers, it will definitely ease

future social inclusion of ASD individuals and shorten the need for medical treat-

ment, hence minimizing associated costs [80]. From a methodological viewpoint, it
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becomes clear that the study of ASD will require the acquisition of movement data

from infants while engaged in certain tasks, so that the links proposed in [37] can

be better understood.

(a) (b) (c)

Figure 4.2: Closer view of the AMIRA suit trackers. (a) The bib with 2 shoulder markers and a
chest marker. (b) Velcro wrist straps with two markers on a foam base each. (c) The hat and the
2 frontal markers (the third is not visible). The point-cloud tracking software models the wrist
markers in (b) as lines in space, and the ones in (a, c) as planes. Figures reproduced from [63].

4.2.1 Marker-based motion capture in ASD studies and related

There are a number of studies based on movement data captured from babies; in

three cases we came across, movement data were collected by manually marking

trajectories over video frames [81–83], but most often marker-based motion capture

was used. In the context of marker-based studies of ASD, Mari et al. [60], focused

on reach-to-grasp patterns, Chester and Calhoun [62] observed gait symmetry dis-

parities from full-body motion capture, and Shic and et al. [61] found gross and fine

attention differences leading to the appearance of particular developmental trajec-

tories, out of data from six subjects exposed to face stimuli. We note that only a

small fraction of works using baby motion capture did it predominantly on infant

subjects [84, 85]. Partner groups from the University of Miami and the Univer-
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sity of California at San Diego have recently built a custom motion capture suit

to acquire data from infants and caregivers (Fig. 4.1a) while engaged in behavioral

tasks [77, 86]. Their goal is to both study ASD and replicate baby behaviors in

robots. At the same time, project Early Autism Sweden (EASE) is a collective

effort between the Karolinksa Institutet and the Uppsala University that is looking

into applying eye-tracking and body motion capture to study first-year development

of ASD [87].

The thesis project of team AMIRA (Analyzing Movement of Infants at the

Risk of ASD), a group of undergraduate students working under our guidance and

the support of Dr. Rebecca Landa, founder and director of the Center for Autism

and Related Disorders at the Kennedy-Krieger Institute, was an effort to take the

considerations of Dr. Landa and her colleagues [37] to the experimental level [63].

The idea was to try marker-based motion capture to measure movements of infants

at high-risk and control subjects engaged in behaviors that should give rise to the

delays more likely to be displayed by the former group. These behaviors were:

pulled-to-sit, postural control/imitation, reach-to-grasp and visual-tracking of an

object1. Data sessions included the baby, the caregiver (mother) and two testers,

all working on a mat, plus one student that operated the computer and another

that video-recorded the trials (Figs. 4.3a–4.3d). Because infants are smaller and

have different body proportions than older children and adults, markers were often

1This study was conducted according to the principles expressed in the Declaration of Helsinki.
It was reviewed and approved by the Institutional Research Board of the University of Maryland at
College Park (IRB Protocol: 10-0445 – Analyzing the movement of infants at risk for autism spec-
trum disorders). Written informed consent was obtained from parents after a careful explanation
of the testing procedures.
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too close to each other, and the available marker-based motion capture software

quickly fell apart. Students had to come up with a custom-made baby mocap suit

(Fig. 4.1b) and their own tracker setup (Fig. 4.2), and resorted to a point cloud

tracking software to read in movement data, that is, a system that only tracks the

position of markers without fitting a physical model of the human body to it.

Team AMIRA’s study was able to conclude that high-risk participants were

significantly slower to grasp than control counterparts, out of 9 samples of high risk

grasps (2 participants) and 16 samples of control grasps (4 participants), but still,

a lot of data was not useful or lost, most likely because of the system’s sensitivity

to the people in the volume and surroundings, resulting in occlusions and camera

interferences. As a consequence, students had to manually label and/or post-process

tracked markers as an attempt to rescue data that got corrupted due to tracking er-

rors. In a few situations, the babies did not seem to feel comfortable wearing the suit

or simply became curious and tried to remove the markers, which caused even more

problems to the motion capture system and delayed capture sessions (Figs. 4.3e–

4.3h). Nonetheless, we believe that the most important take-home lessons of the

AMIRA project are that (1) a potential tool for ASD diagnosis would centrally de-

pend on systems capable of obtaining movement data from infants in a minimally

invasive fashion and (2) whoever designs such systems has to keep in mind that

the target subjects will be pre-language humans with unique biometrics, and these

individuals are going to be acting around a number of other people with or without

assistance, and will potentially interact with objects. Marker-based motion capture

does not appear to be a viable solution: even sophisticated, custom-designed suits
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like the one in Fig. 4.1a will still present serious drawbacks: wires may affect the

baby’s motion, and leds can be distractive. Even more importantly: these issues

could even compromise the reliability of the output movement data in a very subtle

and dangerous fashion: for example, bare distraction caused by flashy lights and

hanging wires could be mistaken for abnormal eye-contact and as a consequence

prescribe a wrong diagnosis of ASD or another incorrect conclusion.

4.2.2 Markerless motion capture of infants in ASD studies and re-

lated

The bulk of research we reviewed together with our own practical experience in cap-

turing movement data from infants made us advocates of the markerless approach.

In the next section, we will scrutinize different methodologies and problems where

markerless infant mocap was attempted along with state-of-the-art achievements

and setbacks, including the very recently developed systems of Dogra et al. [74] and

Hashemi/Spina and colleagues [2, 75, 76], both pioneers in the use of the markerless

paradigm in the computation of behavioral markers towards the early assessment

of neurodevelopmental disorders. The first team resulted of a partnership between

the Indian Institute of Technology at Kharagpur and the Institute of Post-Graduate

Medical Education and Research/Seth Sukhlal Karnani Memorial Hospital at West

Bengal, both in India; they were able to reasonably predict pulled-to-sit scores for

43 infants from their video recordings, based on feedback provided by collaborating

physicians.
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Of major importance, the second group, with researchers from Universidade

Estadual de Campinas in Brazil, Duke University and University of Minnesota, have

developed computer vision tools to help in the studies of early-age ASD to assess

performances on both visual attention and motor tasks. The first tool aims at inves-

tigating visual attention patterns, and consists of a tracking software that measures

left-right and up-down head motions based on the detection of eyes, nose and ears.

Whenever tasks involved objects, their positions on the video had to be manually

marked. Left-right measurements were used to approximate the children’s perfor-

mances on visual tracking (following an object from one side to another, like in

Fig. 4.3c) and disengagement of attention tasks (shift attention to a second com-

peting conspicuous stimulus presented along the left-right axis, while attending to

another stimulus). Delayed, discontinuous or non-smooth tracking and/or delayed

disengagement are regarded as abnormal and point to ASD. Meanwhile, up-down

motions were used to approximate performances on shared interest tasks, that is,

a complex test that verifies whether the child perceives a third-party involved in

a task, and seeks to engage with that party. In their version of the task, the ex-

perimenter rolled a ball on the table towards the child, and if the child sought eye

contact with the experimenter or the caregiver, the behavior would have been con-

sidered normal. Infrequent or limiting face seeking would indicate ASD. These test

behaviors are a subset of the standard AOSI (Autism Observation Scale for Infants)

battery of behavioral assessment [88]. Their tools were experimented on movements

of 15 children, 9 of which were infants, recruited for (1) being premature, (2) having

an ASD sibling, (3) showing delays or (4) being diagnosed with ASD (1 subject).
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Scores for each task were produced and compared with the assessment of one or

more experts, and general agreement was observed. Although this group’s vision-

based, markerless head tracking system is arguably a form of markerless motion

capture, the focus of this account lies on their second vision tool, which tracks body

poses through frames and evaluates arm asymmetries. Both this tool, and the one

of Dogra et al. [74] will be reviewed in the upcoming section.

4.3 Markerless motion capture of infants

Markerless motion capture of infants (or markerless infant mocap) remains a vastly

unexplored terrain, despite the very interesting potential applications, as will be

summarized next. Previous work can be roughly split into two streams: pressure

sensor-based and optical-based, depending on which devices are utilized to read

in infants’ movement data. Efforts resulted from individual and collaborative work,

and spanned a variety of backgrounds, among which engineering, robotics, computer

science, psychology and medicine.

4.3.1 Pressure sensor images

Perhaps the first approach to infant mocap was to build pads or mats with pressure-

driven sensors and to place them on special cribs where babies would be laid on.

From the digitized 2-D projection of the baby’s pressure against the sensor surface,

pressure sensor images are produced. An array of such images forms a pressure

video, which records changes in pressure that almost invariably result from the
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(a) Reach-to-grasp (b) Postural stability control

(c) Visual tracking (d) Pulled-to-sit

(e) (f) (g) (h)

Figure 4.3: Selected moments of AMIRA test sessions. (a–d) The behaviors tested. (e–f) The
subject removes one of the hand trackers during the test session. (g) The subject gets scared by
one of the testers and hides on her mother’s lap. (h) Subject gets distracted and crawls out of the
capture volume.
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baby’s movements within the crib.

Along this line, we begin by describing the work of Weinberg et al. [64] which

introduced the BabySense system and was aimed at children from 0 to 12 months.

It used a one of such custom-designed sensor pads to detect a short number of limb

motions and behaviors, such as sitting and standing up or playing with toys, based

on changes in the capacitance of the built-in fabric electrodes. More than just a tool

for psychologists and parents, the creators of BabySense wanted the system to help

babies develop their sensorimotor capabilities, by allowing them to interact locally

and remotely with objects and other humans, including peer babies. For example,

the system would react to a particular baby’s behavior locally, by showing her lights

and making sounds, or remotely, so that when a peer baby played with a toy, the

same toy in her crib would wiggle.

Harada and colleagues [1] proposed a similar setup to measure behaviors of

six-month olds but, as opposed to BabySense, they have provided technical details

on sensors and algorithms. The way they turn pressure videos into predictions of

baby postures, behaviors and body parts is summarized by the dependency acyclic

graph (DAG) of Fig. 4.4. They begin by computing an overall movement measured

referred to as activity score (AS): a time-series where each data point integrates the

intensity of body movement over the measurements of all 384 pressure sensors at

once. There were three behaviors (or states) of concern: quiet, crying and what we

here call otherwise. Each of these corresponded to 3 intervals of the AS scale: the

quiet state was marked by light movement of chest and abdomen while breathing,

and was fired anytime an 1-minute average AS < θquietAS . Crying often resulted
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from hard breathing, and was characterized by hard movements of the head, chest,

abdomen, plus some arm and leg motion, and was triggered when a 1-minute average

of AS > θcryingAS . Lastly, the otherwise state corresponded to average AS values within

the interval between the first two or θquietAS < 1-minute average AS < θcryingAS . These

range thresholds were determined by observation.

One of the requirements of their system was to accommodate infant growth,

so one of the modules was responsible for estimating the physique of the child.

Weight and height are computed first, as soon as the baby is observed in the quiet

state. Weight estimation is based on a regressed curve that related the digital

pressure output of a sensor and its corresponding load in grams. Height, on the

other hand, is further estimated as a quadratic function of weight. Finally, the

lengths of body segments head-chest, head-abdomen and head-hip are estimated

from the computed height, in accordance to a model for 6-month old babies or

younger. From the computed physique, the system then attempted to obtain posture

information by checking the pressure image for the number of contact areas on the

pad. Babies were expected to be on supine or prone position, that is, lying on

the back or stomach, respectively. For the supine position, head, back and hip

contacts were expected to produce 3 areas of significant pressure, while for prone

position, head, abdomen and both legs should give rise to 4 pressure areas. So,

the posture is chosen by thresholding the pressure image and counting the number

of connected components through all instants. If the 1-minute average number of

areas ≤ θsupinepressure the system assumes the baby to be in supine position, otherwise it

assumes prone position. The last task is to estimate the positions of head, trunk,
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chest and abdomen and respective motions by looking back at the pressure image

and using the body segments calculated moments earlier. To find the head and

the trunk, the system continuously thresholds the pressure image with decreasing

cutoffs, until the number of connected components < 2. It then sets imaginary

circles of radius equal to the length of head-chest segment, centered around the

two remaining connected components. A new thresholding is done to the original

pressure map, now at a much lower cutoff (more permissive), and the number of

binary elements (areas) of each circle are counted; the one with the largest area is

recognized as the trunk, and its center is considered the trunk position. The head

label is assigned to the other area, and its center is calculated the same way. Chest,

abdomen and hip are localized by imaginary circles around the head center, with

radii set to the lengths of head-chest, head-abdomen and head-hip, respectively. The

element with highest pressure value at a head-chest distance away from the head

is consider to be the chest. Similarly, the abdomen and hip positions will be arise

from the elements with highest pressure at radius head-hip and head-abdomen, in

turn. The intensity of movement at each location is approximated by its pressure

values.

As per results, AS versus time plots were used to prove that proposed cut-

offs θquietAS and θcryingAS would work to recognize the behaviors quiet, crying and other-

wise for a pair of infants 2 and 5 months old. For another pair of babies 1 and 4

months old, graphs with number of contact areas versus time were used to show that

prone and supine postures were properly determined by thresholding the number of

contact areas at the proposed θsupinepressure cutoff. For the same pair of subjects, exam-
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ples of where the body parts were properly located were also provided. Moreover,

plots of another infant’s chest and abdomen pressure intensities versus time served

as a final evidence that movement signals can be indeed obtained by the proposed

method.

Apparently, pressure pads are still being researched. In 2010, Boughorbel

et al. [65] were able to recognize a set of behaviors (breathing, sitting, standing,

lying on the back, crawling and lying on the side) similar to [1], using a set of

four pressure mats. Features were extracted by placing imaginary dartboard-like

polar grids onto the center of gravity of pressure images, accumulating per grid cell

pressures, and forming a rotation-invariant feature vector consisting of the mean,

standard deviation, kurtosis and skewness across cells. The best recognition results

arose from combining a single-frame classifiers with and vote-based classifiers, as

follows: for a giving frame, both classifiers are run. If the top-2 voted classes had

almost the same number of votes, the system would then pick the classification result

of the single-frame classifier, otherwise it would just choose the top voted class. The

system was tested on 3 sequences of the same 1-year old child collected on 3 different

testing dates.

4.3.2 Optical images

Since the mid-2000’s, digital video cameras, storage and communication technologies

have experienced a dramatic cost drop, and as a result a variety of camera-based

surveillance products became accessible to the average consumer. One of the ideas
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Figure 4.4: Dependency DAG derived by interpreting the work of Harada et al. [1]. Discrete
and continuous entities appear as squares and circles, respectively. The position of body parts
(blue circles) are the target variables. An solid arrow from one variable to the second means that
the second depends on the first to be determined, while a dashed arrow indicates the second is a
function of the first, and the function is known prior or computed with regressions. Variables that
are determined based on estimated height and age are displayed with italic captions (a model for
babies of age ≤ 6-months was used): segments from head to chest, from head to abdomen and
from head to hip. Height itself depends on estimated weight and whether the baby’s behavior is
recognized to be quiet. Note that posture type (red box) is recognized and accessible, but is not
being used to help solving other tasks.
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back then was to develop video-based system to help looking after unattended babies

6 to 12 months old, with the job of issuing alarms when (1) the baby’s hand moved

progressively near the mouth and when the hands occluded the mouth alone (2) or

with an object (3) [89]. The first situation is detected from tracking the hand to

head distances over time, while the second come from measuring the increase or

decrease of skin color pixels within the head region. Detection and tracking of

body parts is done in a very rudimentary fashion, by relying on simple heuristics

and strong posture constraints. For example, the baby is assumed to be facing

the camera while sitting upright against a dark, non-skin color background, and is

expected to be wearing short-sleeves and short pants so hands and legs are visible

to the camera. To detect body parts and track the baby’s movement, the system

first looks for skin patches by thresholding the image and pulling out regions from

connected components. Regions are labeled based on the assumed position of the

baby: the topmost detected region is the head, second and third topmost regions are

the hands, and the lowest regions are the feet. Eyes are found out of the darkest two

points in the head region, and the mouth is estimated from the inter-eyes position.

Occlusions with head and legs are computed with templates. The system was tried

on 10 sequences, apparently with the same baby, from which a few pictures with the

tracked body parts were presented in the paper, both when the system worked and

when it failed. Problems with 8 of the sequences were attributed to the system’s

poor ability to deal with head rotations and fast motions of hands.
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4.3.2.1 Diagnosis of epileptic seizures

Members of the health care community have also foreseen digital image and video

processing as a useful means to assist providers with more reliable diagnoses. A

project that stood out was the computer-based recognition of certain types of

seizures undergone by babies. These seizures are known by experts to be char-

acterized by patterns of arms and/or leg motions, so the tracking of body parts

becomes a natural first step towards a final system that can discriminate among

seizures and rule out irrelevant behavior. Karayiannis and colleagues adopted the

block matching paradigm, according to which image regions (blocks) corresponding

to body parts (or anatomical sites of interest) are tracked by assuming that they

preserve appearance throughout the recordings. In particular, the use of robust mo-

tion tracking framework was proposed, that is, a modular solver for tracking the

motion of image blocks that is specified by a transform model and a tracking error

function [69]. The former controls geometry and holds the to-be-optimized param-

eter set, while the second defines the search space for the optimal parameters of the

first, and also controls how outliers are handled during optimization.

In short, tracking of each block between two frames I t and I t+τ is done by

finding the optimal parameter vector z that minimizes an error measure ε(·) that

depends on the tracking error function φ(·) of inter-frame appearance differences

∆I = I t+τ − I t within a W -pixel neighborhood around the location of the body

part block being tracked. By approximating the error measurement by a first-order

Taylor expansion, it can be shown that the solution amounts to finding an optimal
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step vector δz that minimizes the error function of Eq. 4.1 and make zt+τ = zt + δz:

ε =
∑
W

φ(∆I +∇z(I
t+τ )>δz). (4.1)

∇z(I
t+τ ) is the gradient of the error measure ε w.r.t. z. If gradient descent is used,

δz will arise from:

δzi+1 = δzi − α∇δz(ε)ε,

where i is the index of the current iteration and α is a usually small scaling constant.

The gradient of the error measure ε w.r.t. the step can be shown to be:

∇δz(ε) =
∑
W

∇z(I
t+τ )φ′(∆I +∇z(I

t+τ )>δz)︸ ︷︷ ︸
Contribution

of the tracking
error function

, (4.2)

and ∇z(I
t+τ ) can be factored as:

∇z(I
t+τ ) = ∇u(v)−1︸ ︷︷ ︸

Contribution
of the transform

model

∇z(v)∇u(I t). (4.3)

Vectors u = [xt, yt] and v = [xt+τ , yt+τ ] are the coordinates of the block at I t

and I t+τ , respectively. Note that the transform model is plugged into the tracker

through the first two factors on the right side of Eq. 4.3, since gradients∇u(v) relates

the coordinates of the block before and after the transform, whereas ∇z(v) relates

the transformed coordinates with the parameters of the model. The (derivative of

the) tracking error function affects the gradient descent step of Eq. 4.2. The rest
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remains the same for all tracking models, and will depend on the computation of

image differences or spatial derivatives. Also, tracking error functions must satisfy

the admissible function criteria, which are: to be positive everywhere, monotonically

increasing and decreasing when x > 0 and x < 0, respectively and to be piecewise

differentiable. To satisfy the robustness criterion, it has to increase slower than

φ(x) = x2

2
as x moves away from the x = 0 in either direction2.

Still in [69], different robust motion trackers had their performance tested, by

varying both transform models and error functions. Two experiments were carried

out, each of which on two distinct sets of 18 sequences containing myoclonic and

focal seizures plus random movements, six sequences each. These sequences are part

of the CRCNS (Clinical Research Centers for NeoNatal Seizures) database with

hundreds of both EEG signals and video recordings of 46 individuals. The type

of seizure assigned to each sequence was collectively decided by a team of clinical

neurophysiologists and neonatal electroencefalographers who carefully analyzed the

data during face-to-face group reviews. The results were reported in terms of how

close the motion activity signals produced by the tracker models matched manually

annotated counterparts.

In the first experiment, the goal was to find out which transform model would

perform best in the first 18 selected sequences, so the tracking error function was

fixed to be the baseline function φ(x) = x2

2
and the following transform models were

tested: simple translation, affine, fractional and generalized fractional. The last two

models were found out to be the most successful ones, with the generalized fractional

2The use of φ(x) = x2

2 makes ε(·) into a sum-of-squared error criterion.
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model being the best overall. In the second experiment, different tracking error func-

tions were tried and the transform model was set to be the generalized fractional

model. It came out that the two error functions proposed, φ(x) = ln(coshβx)
β2 and

φ(x) = tanh2 βx
2β2 were the best performing ones. With pictures showing the manu-

ally labeled motion signals and the system’s estimations, the study has presented

evidence that these functions were indeed able to handle certain jerky motions typ-

ical of seizures, in comparison to the baseline function and a selected competitor,

φ(x) = x2

x2+σ2 .

Prior to developing these trackers, members from the same research team had

tried/proposed a number of techniques to acquire motion signals for the same CR-

CNS dataset, among which optical flow techniques [71], the Kanade-Lucas-Tomasi

feature tracker [67], plus adaptive and predictive block matching [68, 72]. They

have also tried to estimate image block motions by minimizing a second order Tay-

lor expansion (rather than the first order approximation of Eq. 4.1) with a simple

translation model together with φ(x) = x2

2
[73]. Last but not least, part of their

also work focused on a procedure to automatically select anatomical sites on moving

body parts and to track multiple individual sites but at separate sections of the same

video sequence, so seizures could be described by more than one anatomical site.

In short, selection is done by first thresholding the optical flow image and apply-

ing morphological operations to the resulting blobs [90]. Next, the position of the

anatomical site in the current section of the video sequence is set to be the center of

the blob with either largest area or with maximum average velocity (equivalent out-

comes for both choices were reported). The image block surrounding that position
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is then tracked until a new site is automatically detected. We should note that the

robust motion trackers reviewed here were shown to top all these preceding tech-

niques, being the most successful tools to extract seizure signals and discriminate

among myoclonic seizures, focal seizures and random movements, as was shown by

the results in [70], at least when the CRCNS epilepsy dataset is concerned. Last

but not least, part of their also work focused on a procedure to automatically select

anatomical sites on moving body parts and to track multiple individual sites but at

separate sections of the same video sequence, so seizures could be described by more

than one anatomical site.

Still in the realm of infant seizure detection, Ferrari et al. [91] proposed to de-

tect clonic seizures as a function of whole body periodic motions rather than body

parts. First, they turn every 10 s window of the video into a 1-D signal by differen-

tiating neighbor frames, thresholding and eroding the resulting image, and finally

making the normalized non-zero pixel counts of each frame into a data point. The

resulting signal is called an average luminosity motion signal. To estimate funda-

mental periods, they pass that signal through some hybrid auto-correlation process

and look for points of minima, from which they also estimate the fundamental fre-

quency. If the minima count has more than 1 element, the window is considered

to present periodicity, and when three of such windows are observed in a row, a

clonic seizure event is fired. The algorithm was shown to be consistent with clini-

cal ground-truth on about 1800 three-consecutive half-interlaced (5 s overlap) 10 s

windows from various recordings and different lengths.
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4.3.2.2 Assessment of neurodevelopment disorders

From infant epilepsy we turn to the study of neurodevelopmental disorders, where

very recent vision-based infant motion capture work is being done towards obtain-

ing objective measurements of the developmental markers that are crucial to the

accurate diagnosis of these disorders. We begin with the work of Dogra et al. [74]

and their attempt to improve the assessment of the Hammersmith Infant Neurolog-

ical Examination (HINE) pulled-to-sit test via an automated process that estimates

performance scores. The test is such that the infant initially lays on his or her

back, so the head-neck and neck-torso segments are collinear. Next, the physician

or another trained experimenter pulls up the baby by both arms, while the whole

motion is observed and/or recorded (as in Fig. 4.3d). According to this study, the

HINE protocol prescribes scores 0, 1 and 3 to a pulled-to-sit trial (while a score of 2

is not applicable) based on whether the baby: does not react enough to the pulling

of the head, wobbles the head more than once during the pull, or otherwise keeps

the head fairly aligned with the torso throughout the examination, respectively. In

exchange, a score of 3 is considered to be a predictor of normal development, as

opposed to the other two.

A systematic way of extracting body parts and computing the necessary angles

and corresponding scores was thus proposed. Each trial is filmed by a lateral view

camera that records grayscale frames. These videos are off-line processed in semi-

automatic fashion: first, through the use of a touchpad, the system is fed with

initial positions of the p landmark body parts (head, shoulder and torso). Then,

70



tracking is done independently for each body part according to the following block

matching method: the system searches frame t + 1 for the k nearest blocks (in

terms of minimizing a pixel difference metric) to the coordinates of the considered

body part at time t, that is, it produces k possible candidate positions for that

part in the next frame. The tracking algorithm is designed to keep only k possible

paths per level, leading to a tree with only k leaf nodes/possible full-trajectories.

This means it has to examine up to k2 nodes at every level to choose the next k

ones to be expanded, but since k is usually a small number, overall this represents

small computational effort. This path-pruning process keeps the number of possible

trajectories from growing exponentially as a function of the video length t.

In the following step, with the body parts properly tracked, a simple geometric

model and a few rules are used to evaluate temporal variations of the head-neck-

torso ∂ ̂HeNT
∂t

and torso-hip-ground ∂ ̂THiG
∂t

angles at every t and decide for HINE

scores (Fig. 4.5a). The infant is considered not to react enough when ̂HeNT ≥ 120◦

throughout the whole trial, and in that case a score of 0 was assigned3. Else, if∣∣∂ ̂THiG
∂t

∣∣ > 30◦ is observed more than once but not always during the examination, a

score of 1 is given. Finally, if
∣∣∂ ̂THiG

∂t
− ∂ ̂HeNT

∂t

∣∣ ≤ 15◦ throughout the entire exam-

ination, a score of 3 is assigned. The system was tested on 43 infants and results

were reported in terms of sensitivity and specificity out of comparing score assign-

ments with ground-truth labels provided by participating physicians. The proposed

markerless tracking worked only on 30 of the subjects, for which 5 false negatives

3In Table I of [74], the rule is re-stated as “the head always remain below 30◦ with respect to

torso” which we interpret as ̂HeNT > 120◦(= 90◦+30◦), since that angle is at least 90◦, according
to the model diagram in the third figure of the same article, i. e. we just add 90◦ to the threshold
of 30◦.
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(abnormal pulled-to-sit classified as normal) and 1 false positive (misclassified nor-

mal pulled-to-sit) were reported, resulting in overall 80% of sensitivity and 89% of

specificity. Micropore markers were placed on the other 13 subjects to help with

the tracking, and as a result sensitivity and specificity rates went up to 92% and

96%, respectively (single false positive). Apparently, only one pulled-to-sit trial per

subject was taken into account to produce HINE scores.

In the context of early assessment of Autism Spectrum Disorder (ASD), Spina

et al. [2] have designed an markerless infant mocap system that measures arm asym-

metry of toddlers and infants while they walk unsupported. The goal is to help in the

early assessment of the disorder, following a recently discovered connection between

asymmetric behavior in early age and the later development of ASD [83]. Their

work has appeared previously in [75, 76] but [2] emphasize their markerless infant

mocap solution, which was only briefly discussed in the previous manuscripts. A

full camera-based system that reads in videos, tracks body parts, and computes 2-D

joint positions and angles, plus the asymmetry data was developed in the study. The

core of the approach is to estimate the child’s pose in between frames, by modeling

the child’s body as an articulated Cloud System Model, a 4-tuple Ω = {C,A,G, F}.

We will discuss each component individually and later elaborate on their interaction.

We may replace the original notation with our own whenever we find it simpler.

To begin, C = {C1 · · ·Cn} is a set of n point clouds, each one formed by image

pixels augmented with membership values within the [0, 1] interval, so a point is

defined as x = [xr, xg, xb, xl]. These clouds are at the heart of the model and will

approximate the child’s body parts, hence, they may also be referred to as body part
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(a) Head lag assessment of Dogra and colleagues [74]

(b) The ACSM of Spina et al. [2] (c) Arm asymmetry assessment in [2, 75, 76]

Figure 4.5: Two vision-based markerless infant mocap models aiming at the assessment of neu-
rodevelopmental disorders. (a) Quantizing head lag in pulled-to-sit head angles measured by
Dogra et al. [74]. If throughout the whole trial the baby posture looks like the top figure, i. e.

if
∣∣∂ ̂THiG

∂t − ∂ ̂HeNT
∂t

∣∣ ≤ 15◦ ∀t, a HINE score of 3 is assigned, configuring a normal head pull.

Bottom: for example when | ̂HeNT | ≥ 120◦ ∀t, a score of 0 is assigned, since the baby fails to pull
the head up to keep it aligned with the torso. (b) The ACSM model of Spina et al. [2]: nodes
vk and vl, corresponding parent and child clouds Ck and Cl for the torso and left shoulder in (c),
plus edges elk of the skeleton graph. Note the parameter set Γtl = {syl , sxl ,dlk, θlk}. (c) Quantizing
symmetric (top) and asymmetric (bottom) arm behavior in walking. Differences of elbow and

shoulder angles are used in the asymmetry measures ASf = sigm(| ̂LElbow − ̂RElbow|), ASu =

sigm(| ̂LShoulder− ̂RShoulder|), AS∗ = max(ASf , ASu) and ADf = | ̂LElbowOut− ̂RElbowOut|
in [2, 75, 76]. See text for details.
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clouds. The delineation algorithm A is responsible for establishing crisp boundaries

for the clouds so they can be tracked across frames. It functions according to two

major steps: first, it outputs a set of superpixels R for the whole current frame

being processed. Then, for each superpixel4 r ⊂ R, the system inspects each of

its member points x, and if x is completely inside a body part cloud Cl, i. e. its

membership xl = 1, it is marked as belonging to cloud Cl. Otherwise, the system

(1) populates two sets of points Sfl and Sbl that are 8-connected to x and belong

to the interior (foreground) and exterior (background) of Cl and (2) runs a graph

segmentation algorithm that determines which of the sets Sfl or Sbl will have the

member that produces the shortest path to x (as if these sets were competing for

that point) and mark x to belong in or out of cloud l, accordingly. Everywhere,

the weights of that graph are assigned as the average gradient between 8-connected

points, so paths that cross image edges are expensive. Finally, the set of points

belonging to Cl’s interior form a virtual crisp boundary.

Graph G is a tree model that enforces inter-cloud skeletal structure: each body

part cloud Cl has a corresponding vertex vl, and a joint between Cl and another

adjacent body part Ck (with vertex vk) are represented as edges elk (Fig. 4.5b).

Here, Ck will refer to Cl’s parent according to and hierarchical joint model which

rooted at the torso. Each vl holds length and width parameters syl and sxl which

are the lengths of the first and second major axes of the cloud, in turn. An edge elk

holds displacement vector dlk from the center of Ck to elk plus the angle θlk between

4Although r is termed as superpixel, technically, it is a set of pixels augmented with member-
ships x = [xr, xg, xb, xl].
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that displacement vector and the major axis of Cl, i. e. the angle between the two

neighbor body parts. The displacement parameter is necessary to accommodate

posture changes along the depth axis w.r.t. camera.

Functional F is the final component of the model and it does the job of evalu-

ating how well a cloud at time t > 0 will match another at time t = 0, by averaging

1− χ2 distances of corresponding histograms, for all clouds. In other words, F im-

poses an appearance constraint that is enforced while clouds are tracked throughout

the frames.

Tracking starts out with the user manually entering one contour for each of

the n considered body parts on the initial video frame. These contours are set as

the initial boundaries of all clouds in C, and pixels x = [xr, xg, xb] are assigned to

their enclosing clouds. To augment x with membership scores xl, first each cloud’s

contour is turn into an image mask, which is later converted into a signed distance

map, where inside (or foreground), at-the-boundary and outside (or background)

pixels result in negative, near-zero and positive values, respectively. That map is

further processed by a function that thresholds negative and and positive distances

into values 1 and 0, respectively, while near-zero ones are scored according to a

logistic function (thresholds and parameters are custom-selected). With the clouds

initialized, the next step is to initialize the skeletal graph G’s parameters. For the

vl vertices corresponding to the head and the torso, length and width parameters

syl and sxl are set to be proportional to the major axes of the clouds computed with

Principal Component Analysis (PCA). It was noted that this initialization process

does not deal well with toddlers’ arms and legs, which proportions are more square-
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like than rectangular when compared to older children and adults. The problem

was circumvented by thinning out limb clouds, and only then applying PCA. For

example, to find parameters for the upper arm and the adjacent forearm clouds,

the system will first produce a collective arm skeleton using pixels from a binary

image obtained from the points of both clouds. Then, for each individual cloud

in turn, points that overlap with the arm skeleton are selected as the source data

for PCA, so individual syl and sxl parameters are computed as done for the head

and torso. The last parameters to be initialized are the inter-cloud joint angles and

displacements, that is, the set of parameters of edges elk. Overall, joints are properly

placed by constraining their coordinates to be at the intersection between the major

axis of the child cloud and simultaneously close to both its center and its parent’s.

The displacement vectors and joint angles arise naturally from knowing the edge

position and the centers of the parent-child clouds, as can be seen from Fig. 4.5b.

In particular, the displacement vector of the torso cloud, which is the root of G, is

set to its position within the image frame.

With both the cloud system and the subset of parameters 0Γtl = {syl , sxl ,dlk, θlk}

initialized, the system is ready to estimate body part cloud dynamics from frame

t = 0 to t+ ∆t, where ∆t is the temporal sampling interval. To optimize for param-

eters, a multi-scale search algorithm that minimizes functional F given the initial

solution is run: first, the search algorithm offers a small number of candidate solu-

tions within some pre-specified parameter intervals ∆Γl = {∆syl ,∆sxl ,∆dlk,∆θlk}.

Then, for each candidate solution, the delineation algorithm is run, histograms are

computed and matched against the corresponding ones at time t = 0, and the one
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that best satisfies5 appearance constraints imposed by F is considered the optimal

candidate solution, and the corresponding optimal parameter set constitutes the

tracked pose at t + ∆t. From t > 0 on, the same tracking procedure is utilized,

except that the current frame’s optimal Γtl is not used as the next
0
Γt+η∆t
l (η > 0),

as it would be expected. Instead, the optical flow of non-background pixels was

measured and used to warp6 the cloud system Ω from t to t + η∆t, leading to an

initial
0
Γt+η∆t
l that is supposed to be closer to the next optimal Γt+η∆t

l .

Like in [74], the motion capture system was evaluated on the basis of how

well a particular developmental score would be assigned to a trial, this time by

considering inter-arm asymmetries. For such, a number of scores were proposed:

ASf , ASu result from applying a sigmoid function to left-right angle differences

of elbows | ̂LElbow − ̂RElbow| and shoulders | ̂LShoulder − ̂RShoulder|, respec-

tively, whereas score AS∗ is defined as the maximum of the those two. Moreover,

ADf = | ̂LElbowOut − ̂RElbowOut| tries to pick up situations at which the arms

point to different directions. Video sequences of six babies were looked at, of which

two were from infants (age ≤ 12 months old). These children were all previously

classified to be at risk for ASD: one of them had an ASD sibling, a couple were

premature, two others presented developmental delays, and another presented clear

signs of ASD already at the age of 16 months. Each participant was represented by

5Even though histograms indirectly depend on parameters Γtl , the average χ2 function in F itself
is not directly related to the parameters, so gradients and Hessians are apparently not available
during optimization. Anyhow, it was mentioned that minimization is done on a gradient descent
fashion.

6An example of warping would be to choose one of the robust motion trackers in [69], make
z = Γtl in Eq. 4.1, set ∇u(It) in Eq. 4.3 to the non-background optical flow and solve for each
individual cloud.
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at least 5 seconds of video data (150 frames) from either one or two segments per

participant. In total, 10 segments of walking unassisted were processed. Asymmetry

events were fired anytime AS∗ ≥ 1.0 and ADf ≥ 45◦, a criterion that was chosen af-

ter manually inspecting their asymmetry scores and corresponding scores produced

out of available ground-truth skeletons. Based on that rule, Static and Dynamic

Symmetries (SS and DS, respectively) were computed for each participant, consid-

ering all of his/her sequences. The first metric is the percentage of a participant’s

number of frames where asymmetries were fired. The second is a smoothed version

of the first: half-second windows were classified as asymmetric whenever at least one

of its frames was considered asymmetric, and the percentage of such windows was

output as DS.

In the first experiment, the percentage of automatically detected asymmetries

compared to the same number of asymmetries computed from the ground-truth

skeletons was inspected. Strong agreement was observed, except for a 15-month old

participant with developmental delays. For this subject, the system scored SS = 5%

and DS = 21% asymmetries, while the ground-truth based indicators scored 0% on

both. In the second experiment, it was proposed that DS should be thresholded at

30% to classify a segment as being overall asymmetric or not, and compared the

results with a clinician’s evaluation. The system’s outcome matched the expert’s

assessment in all cases but the first segment of the 16-month old with an ASD

sibling.
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4.4 Principle of dynamical stability and canonical postures

Table 4.1 summarizes the reviewed work on markerless motion capture of infants.

Although very sparse – as Bhatt et al. [89] put it: “research concerning child behav-

ior is still not explored in computer vision” – there are a handful of achievements

worth noting. First, the results of pressure-based images suggest that coarse, holis-

tic representations of infant motions may be sufficient to allow for the inference of

canonical postures or behaviors: we saw success in finding prone and supine posi-

tions [1] as well as in differentiating amongst more complex stances such as sitting,

lying on the back or crawling on the basis of global features [65]. This leads us to

believe that, in computer vision, analogous results could be achieved from the use

of depth sensors and global contour features, so this could be exploited in future

endeavors. Data from the vision studies have also provided, if not proof, strong

evidence that the state-of-the-art camera-based tracking technology allied with very

simple pattern recognition such as blob detection, fundamental frequency estima-

tion or block matching can foresee and classify epilepsy seizures and perhaps other

events of medical concern, for example, SIDS (Sudden Infant Death Syndrome).

Moreover, infant tracking has evolved from pressure-based crib stations to virtu-

ally unconstrained camera-based capture volumes, where infants can move freely in

space while being recorded. Last but not least, current results of vision-based com-

putations of head lags and arm asymmetries have established the possibilities that

can result from solving markerless infant mocap, that is, they have shown that the

use of babies as models in the study of human behavior and its disorders is possible
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also from a computational perspective, since numerous other developmental markers

could be measured using the same frameworks.

Nevertheless, the problem is far from being completely solved, and there is a

lot of room for improvement. The pressure sensor paradigm has obvious limitations

that prevent more complex infant tracking to be achieved, so we will concentrate

our comments on the vision-based approaches to markerless infant mocap. First,

it is currently very hard to discuss progress in terms of the quality of data being

obtained, because the analyses presented by most studies is too qualitative or appli-

cation driven, and there are almost no comparative performances reported. Except

for [69], none of the methods has provided direct measurements of how well the

estimated movement signals matched a ground-truth, and some have only presented

plots for a small number of subjects. The two vision systems motivated by be-

havioral studies have reported evaluations only on the basis of the developmental

markers they propose to measure, by checking their systems’ results against expert

assessments, but no comparison against previously labeled signals, even when avail-

able [2]. It is also very hard to visualize the scalability of these studies: except for

two reported experiments, the maximum number of subjects tested was 5 (which is

understandable, given that recruiting infants and having them collaborate in test

sessions is very resource-demanding). In addition, the evaluation of success based

on expert assessments has to be taken very carefully, since experts themselves often

disagree upon a diagnosis. Take for instance the results of Hashemi et al. [76] for a

visual tracking task: while they did observe strong agreement between the system’s

outcomes and a collaborating clinician’s evaluation, at the same time they noted
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disagreement between the diagnoses of that same clinician and the child/adolescent

psychiatrist and two psychology students that also provided their inputs. Besides,

because no cross-validation of thresholds and model parameters were reported in

any of these studies, it is very hard to judge how well the predictions (scores, di-

agnoses) would generalize unseen data; it could be the case that parameters were

merely overfitting the assessment of the participating experts.

Indeed, the problem remains very challenging, which we can tell from the need

for manual initialization [2, 74–76] or the eventual resorting to supplemental micro-

pore markers to improve block matching performance [74]. There are also behavior

constraints: in [69], the baby must be in supine position with the camera on top, the

model of [74] is planar and lateral, and [2] will process unassisted walking but not

crawling. Ideally, we will want a markerless infant mocap system to be able to cap-

ture data from these children in a variety of postures and orientations with respect

to the camera. Another point worth discussing is that the reviewed vision-based

studies assume that image block motion is always a result of body part motions,

which is not generally the case: data sessions of infants are usually highly-staffed,

so one should expect the infant to interact with one or two people (Figs. 4.8d, 4.8f

and 4.8j) and to play with objects of various natures (Figs. 4.8b, 4.8e and 4.8f).

Explicit modeling of motions of other humans and objects may be necessary.

Conceptually speaking, except for Harada and others [1], none of the other

methods utilized the unique physique properties of infants and/or the occurrence

of postures that are more likely to be displayed by infants to significantly bias the

tracking process. We agree with their position that “in order to recognize the infant
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behavior, it is necessary to base on the characteristics of infant’s unique physique”.

This explains why state-of-the-art motion capture systems should fail if tried on

a very young child, and unless modeling physique is incorporated, current infant-

targeted approaches such as [2] could quickly reach an applicability plateau7. For

example, during infancy, arms and legs are of very similar lengths and the head is

at its biggest size with respect to the rest of the body (Fig. 4.7a). As a result, the

postures displayed by infants will be very peculiar: hands will often reach for the

feet, and there will be a lot of fast, jerky movements around the elbow joints and

neck. They will also be expected to crawl, roll or drag themselves. A number of

these postures will be re-occurring, as they reflect goals that are common to most

infants under similar environmental circumstances, somewhat in accordance with the

principle of dynamic stability advocated by Esther Thellen and her collaborators [92]

p.563:

“Behavior fluctuates, but within limits. That is, organisms tend to show

a delimited number of behavioral patterns, which within certain bound-

ary configurations will act like dynamic attractors. These states will

be the preferred configuration from a number of initial conditions, and

they will be relatively resistant to perturbation. As a consequence of

this dynamic assembly, developing organisms remain flexible in the face

of tasks, but only within the constraints of their energetically stable

possible states.”

7Although Spina et al. [2] initialize arms and legs’ orientation parameters of their skeletal
graph to reflect their observation that “limb proportions are different than those of the adults”
(see Sec. 4.3.2.2, p. 75), their system is not explicitly aware that it is tracking an infant subject.
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These preferred configurations, attractors, or states of energy minima, as

Thellen puts, could be understood as clusters or hidden states that we here term

as canonical postures (Fig. 4.8). Canonical postures would then condition the pa-

rameters of the infant’s physical model, that is, some postures or motions should

be more likely to be observed than others given that a certain canonical posture

has been observed. Spina et al. [2] could have used this concept to narrow down

the search space for initial parameters (Sec. 4.3.2.2, p. 76), by finding the solution

triple {0Γtl = 0γtl ,∆Γtl = ∆γtl ,Λ
t = λt} that maximizes the joint probabilities of

the current canonical posture Λt ∈ {crawl, sit, kneel, stand, prone, supine}, initial

cloud parameters 0Γtl and parameter ranges ∆Γtl , conditioned to the current cloud

parameter set Γt−η∆t
l , the optical flow of non-background pixels ∇u(I tl ), the current

shape St of cloud Cl (recall that global, pressure-based, shape-like features were

successful in discriminating postures) and the previous canonical posture Λt−η∆t,

or:

argmax
0Γtl=

0γtl ,∆Γtl=∆γtl ,Λ
t=λt

P
(

0Γtl ,∆Γtl ,Λ
t|Γt−η∆t

l ,∇u(I tl ), S
t,Λt−η∆t

)
but because:

P
(

0Γtl ,∆Γtl ,Λ
t|Γt−η∆t

l ,∇u(I tl ), S
t,Λt−η∆t

)
=
P
(

0Γtl ,∆Γtl ,Λ
t,Γt−η∆t

l ,∇u(I tl ), S
t,Λt−η∆t

)
P
(

Γt−η∆t
l ,∇u(I tl ), S

t,Λt−η∆t
)
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and also:

argmax
0Γtl=

0γtl ,∆Γtl=∆γtl ,Λ
t=λt

P
(

0Γtl ,∆Γtl ,Λ
t,Γt−η∆t

l ,∇u(I tl ), S
t,Λt−η∆t

)
P
(

Γt−η∆t
l ,∇u(I tl ), S

t,Λt−η∆t
)

= argmax
0Γtl=

0γtl ,∆Γtl=∆γtl ,Λ
t=λt

P
(

0Γtl ,∆Γtl ,Λ
t,Γt−η∆t

l ,∇u(I tl ), S
t,Λt−η∆t

)
(4.4)

the problem can thus be simplified to maximizing the joint probability distribution

of Eq. 4.4.

Another important aspect that could have been better explored by vision sys-

tems is the role of age or developmental stage in movement prediction; the human

body and mind are perhaps growing at its fastest rate during infancy, as can be

noted from Fig. 4.7b. According to the more traditional Piaget’s theory of cognitive

development, infancy corresponds to the first half of the sensorimotor stage, when

an individual’s acting abilities range from basic reactions to prehension coordina-

tion, or even walking. In terms of cognition, during that period, the child learns

important concepts such as object persistence and how to associate basic actions to

consequences, intentionality and some language. Again, age could be incorporated

to the model of Spina et al. [2] as vector of variables A that would somehow encode

information on the infant’s developmental stage (for example, by processing the re-

sults of standard assessment tests) plus condition canonical postures and parameter

ranges, so the problem would now become:

argmax
0γtl=

0Γtl ,∆γ
t
l=∆Γtl ,λ

t=Λt
P
(

0Γtl ,∆Γtl ,Λ
t,Γt−η∆t

l ,∇u(I tl ), S
t,Λt−η∆t, A

)
. (4.5)
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Λt

∇u(I tl )

∆Γtl

Λt−η∆t

Γt−η∆t
l

St

0Γtl

Figure 4.6: Bayesian network proposed to extend the initialization of parameters of Spina et
al. [2]. Discrete variables are shaped as squares, continuous ones as circles. Blue variables are the
ones jointly estimated. Dashed variables correspond to the components currently utilized in their
model, which pre-defines ∆Γtl and determines 0Γtl by means of warping, given the dense optical

flow ∇u(Itl ) and the previous cloud parameters Γt−η∆t
l ; for more details, see the method’s review

in the previous section. Added variables incorporate infant’s physique information by encoding
it as canonical postures Λt,Λt−η∆t ∈ {crawl, sit, kneel, stand, prone, supine} enhanced with age-
related information. By exploring the fact that global shape-like features such as blobs were
successful in discriminating postures evinced by previous work on pressure-based markerless infant
mocap, we can partially condition a canonical posture on contour features St. Nowadays, contour
data can be more easily obtained by the use of depth sensors, which have proven efficient when
it concerns human pose estimation [66]. The fact that canonical postures will appear differently
given the stage of development suggests that these postures should also be conditioned on age
features A. Moreover, given appropriate temporal sampling, canonical shapes should be coupled
from one instant to another, therefore Λt should also depend on Λt−η∆t(η > 0). See text for further
discussion.
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Note that, by exploring the independencies prescribed by the Bayesian network of

Fig. 4.6, the joint distribution can be factored as:

P
(

0Γtl ,∆Γtl ,Λ
t,Γt−η∆t

l ,∇u(I tl ), S
t,Λt−η∆t, A

)
=

P
(

0Γtl |Λt,Γt−η∆t
l ,∇u(I tl )

)
︸ ︷︷ ︸

Next initial solution given
current canonical posture and optical flow

plus previous cloud parameters

· P
(
Λt|A, St,Λt−η∆t

)︸ ︷︷ ︸
Current canonical posture

given features of age, contour
and the previous canonical posture

· P
(
∆Γtl |A,Λt

)︸ ︷︷ ︸
Initial parameter ranges
given age features and

current canonical posture

· K,

(4.6)

where K = P (A) · P (St) · P (Γt−η∆t
l ) · P (Λt−η∆t

l ) · P (∇u(I tl )) is a factor that does

not depend on the choice of the to-be-optimized variables and it is in practice dis-

regarded.
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(a) Changes in the human physique as a function of age (male). Height h is displayed as
a function of the head length. Data from [1].
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(b) Cross-gender average height (blue) and weight (red) growths during infancy (0-12
months). Data adapted from [1].
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In summary, the intuition is the following: contour data, as observed in certain

pressure-based studies, and age/developmental stage data should help us estimate

probabilities of the next canonical posture assumed by the acting infant. This es-

timation is smoothed by the previous canonical posture, in a Markovian fashion.

Suppose now, that all that information led us to believe that crawling is the most

probable current canonical posture (inbound links to Λt on Fig. 4.6); in that case,

parameter search would then bias subspaces that corresponded to values of initial

cloud configurations 0Γtl and ranges ∆Γtl observed to co-occur with crawling in the

training data (outbound links from Λt on the same Figure). In analogy, age/de-

velopmental stage would also impact on deciding for the range of motion of the

infant, thus the direct link between the two. It should be easy to notice the physical

and behavioral constraints herein proposed (top sub-graph nodes of 4.6 represented

with solid lines) could enhance virtually any infant mocap model, and not just the

articulated cloud system of Spina et al. [2].

Finally, data from [1] show that the infant’s body grows a great deal during

the first year, when they get about 50% taller and three times heavier (Fig. 4.7b).

Meanwhile, the height, as a function of head length does not vary much within the

same period (4 heads). In fact, from 1 to 2 years old, the head changes from 25%

to 20% of the infant’s height and reaches 12.5% by the age of 25 (Fig. 4.7a). This

tell us that the head grows slower relatively to the body, and during infancy in

particular, it could be assumed to have constant length. As a consequence, both

the infant’s height and the lengths of body parts could be expressed in head length

units. In other words, a system that could somehow find out about the head length
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HEA
URA

LRA
ULA

COL

LLA

CHE

ABD

HIP

ULL
LLLLRLURL

(a) Kneel, SW (b) Sit, SE (c) Crawl/Kneel NW (d) Stand, SW

(e) Sit, E (f) Sit, E (g) Prone/Crawl, NE (h) Stand, NW

(i) Crawl, SE (j) Supine, NE

Figure 4.8: Example of two subjects and the different canonical postures, cardinal directions and
corresponding manually-labeled contours and body segments after a skeletal model compatible
with the Eskhol-Wachman system [2, 81]. As in (a), selected body segments are: ULL (upper
left leg), LLL (lower left leg), URL (upper right leg), LRL (lower right leg), HIP (segment that
transverses the hips), ABD (abdomen), CHE (chest), ULA (upper left arm), LLA (lower left arm),
URA (upper right arm), LRA (lower right arm), COL ( collar) and HEA (head length segment).

would be able to use it as an additional constraint in the tracking of limbs. This

could again be translated into another improvement to Spina et al. [2]: first, one

would try to detect the head and infer its length syhead, something that could be

partially solved with current face detection technology. Second, one would learn the
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relationship `(syl , s
y
head) between lengths of each body part (main axis parameters

syl ) and the head, for example by regressing some parametric model ŝyl = f(syhead).

Thus, ŝyl would work as a ground-truth, so while estimating sxl and syl (more details

in Sec. 4.3.2.2, p. 75) one would extend the PCA error criterion to include a term

that penalized candidate solutions syl based on the disparity ŝyl − syl .

4.4.1 Canonical posture classification

So far, we have accepted the evidence that holistic contour features properly char-

acterize the previously outlined canonical postures; we then tested this hypothesis

by running a linear posture classifier on labeled contours (note the blue contours

in Fig. 4.8) given our selection of canonical postures and a choice of features that

describe contours as a whole. Note that, unless the hypothesis holds, the central Λt

node in Fig. 4.6 will be of limited use.

The first set of contour features we tried was shape context [93]. These fea-

tures are standard in computer vision, and characterize a contour by tessellating a

neigborhood around each of its points and counting the number of points that fall

within each of the cells. A shape context feature vector is often long and sparse, of

the order of the number of cells times the number of points in the contour: in our

experiments, we tessellated the contours with 5 distinct radii and 12 orientations

around 50 points uniformly sampled through the contour, which led to 3000 features

per contour in the dataset. This number is much bigger than the number of exam-

ples in our data, so the resulting feature matrix (48 × 3000) became singular and
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made linear discrimination inviable. We have then shrunk these 3000 dimensions by

projecting the data onto subsets of the first 30 right singular vectors v of the shape

context feature matrix in the following fashion: for K = {1, 2 . . . 30}, the data was

projected on sets of vectors {{v1}, {v1,v2} . . . {v1 . . .v30}} respectively. In other

words, K is the new dimensionality of the compressed shape context features. We

then trained classifiers for the 30 K settings and ran a leave-one-out validation ex-

periment: a hit rate was obtained from averaging over the individual performances

of the classifier on each left-out examples. The top hit rate was obtained when

K = {4, 5, 7, 8, 9}, for each of which hr = 0.75. The number of occurrences of

each posture in the data was crawl=11, sit=17, stand=10, prone=2, supine= 4

and kneel=4. The average hit rate per posture within the reported K range was:

hr = {0.6136, 0.6765, 0.8750, 0, 1, 0.6875}, respectively.

We also tried a set of segment attributes computed from binary masks that

result from the manually labeled contours. These attributes are currently being

developed by a peer group in the Maryland’s Computer Vision Lab [94]. We tried 6

of their attribute features: roundness, straightness of boundaries at 6 different scales,

elongatedeness, convexity and segment rotation. When we tried to discriminate

postures based on the attribute set alone, we saw poor results: the average hit

rate was only hr = 0.271. However, when combined with the compressed shape

context features, different configurations of these features were shown to improve

the previous best hit rate to as high as hr = 0.771. These improvements ought

to be credited to the simple elongatedness attribute alone (which is the length of

the skeleton divided by the average width of the segment) as can be seen from
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Table 4.2. These effects can also be seen from the confusion matrices in Table 4.3,

where the trace of the matrix increased of 2.8 units, meaning approximately 3 (out

of 48) more postures were correctly classified with the mixed setting. These initial

numbers suggest that for the purposes of discrimination, a good canonical posture

description appears to profit of a hybrid feature space with both low-level and mid-

level attribute-based cues.

4.5 Conclusions and final remarks

Our major goals were to (1) discuss the current demands for infant behavior data

(2) provide evidence that infant movement acquisition has to be as least invasive

as possible, and defend the position that (3) measuring human movement has to

be rethought to deal with infants. We went over the literature and stressed the

importance of making use of results in developmental psychology as guidance; in

particular, we suggested the use of canonical postures as means to improve existing

pose estimation systems, and selected a number of such postures based on observed

infant behavior. We also showed that the selected postures can be classified from a

hybrid feature set consisting of holistic contour features allied with mid-level segment

attributes.
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Table 4.1: Summary of previous approaches to markerless motion capture of infants.

Study Year Application Sensor Tracking Events Test data

Weinberg et
al. [64]

‘98 Monitoring Pressure Limb motions Behavior Not informed

Harada et
al. [1]

‘00 Monitoring &
biometrics

Pressure Head, chest, hip
and abdomen

Postures and
behavior

5 sequences of
5 subjects

Bhatt et
al. [89]

‘03 Monitoring Optical Hands, head, eyes,
mouth

Danger, possi-
ble danger

10 sequences of
1 subject

Karayiannis
et al. [67–73]

‘01
to
‘05

Diagnosis Optical Motion signals of
arms and legs

Myoclonic and
focal seizures

36 sequences

Ferrari et
al. [91]

‘10 Diagnosis Optical Global body mo-
tion signal

Clonic seizures 1823 frames

Boughorbel
et al. [65]

‘10 Monitoring Pressure Not available Postures and
behavior

3 sequences of
1 subject

Dogra et
al. [74]

‘12 Diagnosis Optical Head-torso angles Pulled-to-sit
scores

43 subjects

Hashemi et
al. [75, 76],
Spina et
al. [2]

‘12
and
‘13

Diagnosis Optical Body parts and an-
gles

Arm asymme-
try scores

6 sequences
(150 frames)
of 6 subjects

Hit rate vs. SC (0.75)

0 All 0.729 ↓

1 Roundness 0.667 ↓

2 StrBound1 0.667 ↓

3 StrBound2 0.708 ↓

4 StrBound4 0.708 ↓

5 StrBound8 0.708 ↓

6 StrBound16 0.729 ↓

7 StrBound32 0.708 ↓

*8 Elongatedeness 0.771 ↑

9 Convexity 0.729 ↓

10 Rotation 0.729 ↓

Hit rate vs. SC (0.75)

2− 7 0.667 ↓

1, 8, 9 0.75 −

1, 8 0.75 −

1, 9 0.708 ↓

∗8, 9 0.771 ↑

Table 4.2: Performance of the compressed shape context (SC) features combined with segment at-
tributes. First (top table) we tried augmenting SC with each attribute individually, and noted that
the elongatedness attribute was the only one to improve the SC-only performance (0.75→ 0.771).
Next (bottom table) we tried augmenting SC only with straightness of boundaries attributes (2−7)
and with combinations of roundness (1), elongatedness (8) and convexity (9). The best perfor-
mances arose from sets of attributes that had elongatedness as the only commonality, thus leading
us to conclude that it was the cause of SC’s improvement.
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Cra Sit Sta Pro Sup Kne
Cra 6.8 1.0 0.0 1.4 0.8 1.0 / 11

Sit 2.8 11.8 0.0 2.0 0.0 0.4 / 17

Sta 0.0 0.0 8.8 0.0 0.0 1.2 / 10

Pro 0.0 2.0 0.0 0.0 0.0 0.0 / 2

Sup 0.0 0.0 0.0 0.0 4.0 0.0 / 4

Kne 1.0 0.0 0.2 0.0 0.0 2.8 / 4

Cra Sit Sta Pro Sup Kne
Cra 7 1 0 1 1 1 / 11

Sit 3 13 0 1 0 0 / 17

Sta 0 0 9 0 0 1 / 10

Pro 0 1 0 1 0 0 / 2

Sup 0 0 0 0 4 0 / 4

Kne 1 0 0 0 0 3 / 4

Table 4.3: Confusion matrices summarizing the classification results of canonical postures
(cra=crawl, sit, sta=stand, pro=prone, sup=supine, kne=kneel) from compressed shape-context
features-only (top) and augmented with the elongatedeness segment atribute (bottom). The left
matrix was computed based on the average per-posture hit rates of K = {4, 5, 7, 8, 9}, for which
the same best overall hit rate was observed (hr = 0.75). Blue numbers in the diagonal present the
average number of correct classifications per canonical posture. In red, we note that the two prone
samples were incorrectly assigned to sits. The right matrix was computed based on the average
per-posture hit rates of K = 7, for which the best per-posture hit rate improvement was seen
for the combined features (hr = 0.771). The green values along the main diagonal indicate more
correct classifications of crawls, sits, stands, prones and kneels.
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Chapter 5: Clinical descriptions of infant behavior can help predict

risk for neurodevelopmental disorders

5.1 Introduction

Here we continue the discussion of recording movement data from human infants;

in the last chapter we saw that relatively recent results have linked the presence

of sensorimotor impairments in infancy to the manifestation of neurodevelopmental

disorders such as Autism Spectrum Disorder (ASD) and Cerebral Palsy [58] a few

years later in the child’s life (see [95] and more recently [37]). This exciting new

understanding has opened an opportunity for the administration of early therapies

that can prevent typical traits from advancing and help including these individuals

in society. This can improve the quality of life of several families and decrease

healthcare costs, especially when we consider that disorders like ASD are become

more and more prevalent [78].

To assess the risk for ASD and related disorders, the clinician will carefully

observe how the child behave in their natural environment or when performing

batteries of tests. In many cases, the diagnosis is not fully conclusive, and hard

to quantify, and sometimes more than one evaluation is needed. Current computer
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vision has been shown to help diagnosing ASD behavior in children [75], but the

acquisition of movement data from infants is generally very challenging and demands

time and resources that are often unavailable (see Chapter 4).

However, while inspecting an infant performing a task, the health professional

will often create descriptions of how they perceive the way that child reacts to the

behavioral tasks and how they conform to developmental milestones, for example

a sentences like “This position doesn’t require him to work as hard against gravity

so he is comfortable here and looks much more symmetrical.” (Fig. 5.1), which are

nothing but freely available linguistic counterparts to the actual, low-level movement

signals.

Here we begin to study how these descriptions could be used as a proxy to

the movement signals observed in infant behavioral trials, in the hope that it will

trade low-level description for an easier-to-obtain, interpretable and multi-centered

representation of tasks. Our current results show that, at the level of sentences,

traditionally used text features such as term frequencies and TF-IDF computed

from unigrams and bigrams can be potentially helpful.

5.2 Predicting risk for atypical development

When assessing risk for atypical development, the clinician will typically subject the

child to a behavioral battery of tasks and make a judgement based on his or her

impression and expertise. Computationally speaking, this configures a binary classi-

fication problem where one would learn a mapping between task-related movement
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Figure 5.1: Top: selected frames for one of the sentences from the Pathways.org dataset describing
Owen (atypical) at 2 months of age performing part of the Sidelying task. Overlaid colored sticks
and small arrows are annotations of the baby’s body parts and the tester hands, respectively.

features to labels typical or atypical that are known for a number of individuals,

and use this learned model to assign labels to sets of features for which labels are

unknown. Commonly, these movement features will be derived directly from the

low-level movement data like the kinematics of body parts [75], but here we propose

instead to use language as a proxy to movement, which we refer to as language

features, text features or just text.

Using the methodology of [97] tailored to text classification rather than re-

gression, we studied the discriminative power of text features, as we describe next.
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Train Test

Task Vocab Typical Atypical Total Typical Atypical Total

Supine 474 97 89 186 22 24 46

Sidelying 508 109 100 209 10 13 23

Prone 495 94 95 189 25 18 43

Pull-to-sit 531 105 100 205 14 13 27

Sit 517 103 99 202 16 14 30

Horizontal suspension 534 110 104 214 9 9 18

Protective extension 531 110 103 213 9 10 19

Stand 530 105 101 206 14 12 26

Table 5.1: Leave-one-task-out data splits. Tasks for which we already have movement data
appear in blue.

5.3 Experiments

5.3.1 Data, features and setup

We begin by introducing the Pathways.org dataset, the first public dataset with

text descriptions of typical and atypical infants engaged in behavioral tasks in a

longitudinal fashion.1 Besides text, the data include annotated body parts of chil-

dren, tester and objects central to the tasks. The dataset was produced by our team

by manually processing three of the educational videos in [98]. These videos fea-

ture two subjects, Marty (typical) and Owen (atypical) performing 8 different tasks

when they were 2, 4, and 6 months old respectively. These tasks are typical of infant

behavioral battery tests and assess sensori-motor and social development: Supine,

Sidelying, Prone, Pull-to-sit, Sit, Horizontal suspension, Protective extension and

Standing. To create the actual data, we manually annotated each individual sen-

1These videos were originally intended to help parents to learn how to interact with their babies
and watch out for developmental delays, but the quality of filming is so high, that we realized it
could be used as scientific data.
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tences and sampled 20 image frames per sentence. These sentences were grouped

by task and collapsed over ages, so there were 8 sets of sentences (rows of Table 5.1)

both for Marty and Owen (“Typical” and “Atypical” columns in the same table).

We experimented with term frequencies, TF-IDF and log1p measurements of

lemmatized unigrams plus n-grams. After computing features for each sentence,

we set up a typical vs. atypical binary classification experiment evaluated using

what we call leave-one-task-out cross-validation, that is, we trained a linear SVM

on a set of sentences coming from 7 out of the 8 considered behavioral tasks and

tested on the remainder (one versus all). This let us create individual models for

each task and discuss the results in terms of what we know about these tasks. The

sentence/behavior distribution for the second task and its breakdown for typical and

atypical is shown on Table 5.1.

5.4 Results and Analysis

Quantitative F-measure results for text features can be seen from Table 5.4: these

numbers are all beyond chance, and mostly within 0.7–0.8, with the exception of

Horizontal suspension and Protective extension whose scores were 0.9 or greater.

The best results came from features based on term frequencies or log1p, and the

linear SVMs were by far the best performing model overall, with the exception of

the Sidelying task.

Table 5.3 shows selected tasks (columns) and top-20 words more associated

with atypical and typical sentences (first and bottom rows, respectively) based on
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the SVM models. The more positive the weight assigned by task’s SVM to a word,

the more it relates to atypical sentences, and the opposite for typical sentences.

The top-scoring bags-of-words shown on that table may help explain the per-

formance numbers. First, text features seem to going beyond being a mere proxy to

movement, as we first thought would be the case; we rather see that text is enrich-

ing movement description (whose words appeared labeled as mov, qual and body on

Table 5.3) by incorporating other information also related to the physics of the move-

ment that would be very hard or near impossible to grasp directly from movement

signals, because they are very abstract. Examples of these words are freedom

(to perform some movement) and abl sustain (able to sustain, an indication of

strength). Text is also conveying information on the state of mind and cognition

that concurs with/is part of the task, for example through words like calm (revealing

how comfortable the infant is while engaged in the task) or even investigate. Text

is also incorporating a third-party’s perspective on the movement that is virtually

impossible to obtain from the movement low-level data. This expert’s sentiment

towards the child’s performance is also evident from top-scored words: overshoot,

import(ant), poor, hard, lower (than), greater (than), productive and so on.

A second explanation to why language would help discriminate typicals and

atypicals come from how top words seems to be very well-locked to tasks they charac-

terize; for example, Supine, Prone and Sidelying (Table 5.3) are tasks that demand

a postural control, while at tummy up/tummy down positions or rolling on the

surface, respectively, so there are usually differences in the symmetry of behavior,

balance and the ability to sustain weight between typical and atypical individu-
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als, and these are reflected by task-related textual counterparts like antigravity,

weight, posture, thirty (degrees). Differences in attention are reflected by task-

related words like toy (utilized to check visual engagement with objects) vision and

looking. Some of these top words refer to the exact qualities that help distinguish

typical from atypical behavior. Tasks like Pull-to-sit and Sit involves controlling the

upper-trunk. In normal behavior, the head is supposed not to fall back or to the

side, so we may see the atypically developing child to overshoot the 90 degrees head

position and display a curved silhouette. Top-weighed, quality-related words like

greater (than 90◦), overshoots combined with body-related words upper trunk

and upper thoracic spine express this difference.

5.5 Related work

Our work belongs in an emerging field within NLP that is the application of com-

putational linguistics to problems in clinical psychology, more notably the works

of [99], [100], [101] and [102] who have shown that it is possible to discriminate

between normal subjects and those affected with depression, post-traumatic stress

disorder (PTSD) and other mental health signals. Different from these studies, we

predict typicality/atypicality based on sentences and not individuals. However, as

discussed earlier, the “true” movement described in these sentences carry the signal

that can predict the disorder, so we are indirectly assessing subjects.

These studies rely on processing large volumes of social data “in the wild”

using, among other things, features based on topic models or a LIWC dictionary.
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Supine Sidelying Prone Pull-to-sit

TFIDF, uni + big, stem, F=0.68 log1p uni, lemma, F=0.72 log1p, uni+big, lemma, F=0.72 TF, uni + big, F=0.77

extend 1.06 (mov) away 0.20 down 0.13 narrower 0.47 (qual)

briefli 0.98 (qual) whole 0.14 finger 0.13 (body) individual 0.41

asymmetri 0.97 (mov) variety 0.13 how 0.12 greater 0.36 (qual, sent)

poor 0.94 (sent) due 0.13 upper thoracic spine 0.11 (body) attempts 0.34 (state)

overshoot 0.94 (qual, sent) mobilize 0.12 (state) variety 0.10 overshoots 0.31 (qual, sent)

come 0.89 calm 0.12 (state) atypical 0.10 (qual, sent) vision 0.30 (task)

top 0.86 get 0.12 entire 0.10 looking 0.28 (task)

abl sustain 0.85 (state) work 0.11 round 0.09 (state) course 0.28

keep 0.83 posture 0.11 extend 0.09 (mov) readily 0.27 (qual)

horizont 0.82 (task) keep 0.10 brushing 0.09 (mov) challenge 0.27 (state)

ten 0.81 briefly 0.10 (qual) turn 0.09 (mov) and 0.27

appear 0.80 create 0.10 when 0.08 rattle 0.27 (task)

carri 0.80 sustain 0.09 (state) strength 0.08 (state) reciprocal 0.26 (mov)

upright posit 0.80 (qual) horizontal 0.09 (task) quickly 0.08 (cal) two 0.26

saw 0.80 readily 0.09 (state) lifting 0.08 (mov) spinal 0.25 (body)

freedom 0.73 (state) unlikely 0.09 (sent) core 0.07 (body) handling 0.24

hip 0.72 (body) strategy 0.09 more 0.07 (sent) saw 0.24

unbalanc 0.71 (qual) lot 0.09 now 0.07 brushing 0.24 (mov)

augment 0.71 (sent) also 0.09 femoral 0.07 (qual) presented 0.24

immedi 0.67 (qual) hold 0.09 (state) balance 0.07 (qual) sustains 0.23 (state)

Table 5.2: Bags-of words with the top-20 more important words along with weights assigned by
SVM classifiers for selected tasks (one per column, along with the pre-processing strategy used).
Terms that describe movement = mov, qualify movement = qua refer to body parts = body, qualify
the physical and or mental state of the actor = sta, qualify the task itself = task and terms that
somehow reflect the sentiment of the analyst towards the performance = sent. Terms considered
uninformative or too general were grayed out.

However, despite the good topics and beyond chance-level prediction scores obtained

on the CLPsych 2015 shared tweets (e. g. the system proposed in [103]) these results

were not translated into more concrete insights in the understanding of distinctions

between depression, PTSD and normal subjects. Because of the limited size of our

data, we focused less on prediction scores, and more on examining the weights of

linear SVMs learned for each task.
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Supine Sidelying Prone Pull-to-sit

TFIDF, uni + big, stem, F=0.68 log1p uni, lemma, F=0.72 log1p, uni+big, lemma, F=0.72 TF, uni + big, F=0.77

movement -1.21 infant -0.18 over -0.16 upper trunk -0.40 (body)

follow -1.12 femoral -0.14 (qual) lumbar spine -0.14 (body) most -0.38

over -0.95 flex -0.13 (mov) bang -0.13 (mov) counter -0.31 (qual)

result -0.94 newborn -0.10 also -0.11 many -0.30

reaction -0.92 (state) immediately -0.10 (cal) take -0.09 hard -0.30

roll -0.92 (mov) drive -0.09 (mov) investigate -0.08 (state) somewhat -0.28

possess -0.89 typically -0.09 (qual) delay -0.08 (qual) degrees -0.27

minim -0.84 (sent) always -0.08 area -0.08 productive -0.27 (sent)

import -0.81 (sent) area -0.08 body -0.08 initially -0.25

begin -0.81 movement -0.08 rolling -0.08 (mov) holding -0.24

handl -0.75 symmetrically -0.08 (mov) vision -0.08 (task) remain -0.24

core -0.74 (body) utilize -0.07 hand -0.07 (body) olds -0.23

fulli -0.73 (qual) week -0.07 low extremity -0.07 (body) left -0.23

lower -0.72 (qual, sent) pseudo -0.07 (qual) then -0.07 month -0.22

howev -0.68 age -0.07 typical -0.07 (qual) let -0.21

antigrav -0.68 (task) rather -0.07 (sent) thoracic spine -0.06 (body) increasing -0.21 (sent)

toy -0.65 (task) instead -0.07 (sent) table -0.06 keep -0.21

weight -0.61 (task) attain -0.07 (state) sustain posture -0.06 (state) versa -0.21

postur -0.60 (task) choose -0.06 (state) two -0.06 bouts -0.21 (task)

thirti -0.60 (task) humeral -0.06 (qual) kick -0.06 (mov) turned -0.21 (task)

Table 5.3: Bags-of words with the top-20 more important words along with weights assigned by
SVM classifiers for selected tasks (one per column, along with the pre-processing strategy used).
Terms that describe movement = mov, qualify movement = qua refer to body parts = body, qualify
the physical and or mental state of the actor = sta, qualify the task itself = task and terms that
somehow reflect the sentiment of the analyst towards the performance = sent. Terms considered
uninformative or too general were grayed out.

Feature Supine Sidelying Prone Pull-to-sit Sit Hor. susp. Prot. ext. Standing

TF 0.5581 0.4545 0.5882 0.6000 0.6667 ∗ 0.7500 ∗ 0.7500 ∗ 0.6897 ∗

TFIDF 0.6047 ∗∗ 0.4348 0.5882 0.6000 0.6667 ∗ 0.7500 ∗ 0.7500 ∗ 0.6897 ∗

log1p 0.5366 0.5833 0.6667 ∗ 0.6000 0.6400 ∗∗ 0.7272 ∗∗ 0.7059 ∗ 0.7200 ∗

Table 5.4: F-measures of each method per task using linear SVM. We ran permutation tests with
N=500 so that (*) p < 0.05 and (**) p < 0.1.

5.6 Conclusions and next steps

The absolute quantitative performance of task-based SVMs together with the ob-

served top-scoring typical and atypical bags-of-words suggest that language descrip-
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tions of these tasks should not be taken as a mere poor man’s representation, but

the opposite: we have reason to believe that text features can provide extra dis-

criminative power by incorporating information distributed over a number of latent

variables that qualify task behavior in dimensions that are at best only indirectly

related to the original low-level movement signal. Our next discrimination model

will thus account for these variables explicitly. Precision-recall numbers support a

significant statistical relationship between this “movement language” and the typi-

cal/atypical labels, since they that discarded independence in 6 out of the 8 tasks,

despite the small size of the data (N=500 permutations, p < 0.05, 0.1). Future

work would involve comparing and combining/comparing language with movement

features deriving from inter-segmental angles like the ones shown on Fig. 5.1.
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Chapter 6: Conclusions and future directions

6.1 A computational sketch of action generation based on SB-ST

In Chapter 2 we saw that SB-ST and three other methods suggested that, con-

sidering intersegmental joint angles of the legs, a single spatial basis should be

compressing the postural space. We saw that, despite the large age range of our

jumpers, that both the coefficients and amount of variance explained by that SB

was consistent between subjects. We could then hypothesize that, in the absence of

other dofs being considered, that the process of generating and parsing a jump would

take place like what is shown on Fig. 6.1: the supplemental motor area (SMA) will

issue a motor plan for the jump that specifies SB-1 as the dominant primitive, the

family of basis functions Φτi that define the pattern of spatio-temporal activation

and and control and coordination parameters that will tune those functions, repre-

senting when in time that primitive will be recruited (coordination parameters, τ1,1

and τ1,2 in Fig. 6.1) and how strong will be the activation at that instant (control

parameters, c1,1 and c1,2). When the jump is generated these primitives, functions

and parameters (compressed motor information) would be communicated from the

primary motor cortex to the spinal cord, whereas when the jump is perceived, under

a simulation hypothesis, execution would be suppressed, so that the role of the mo-

104



660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Submission and Formatting Instructions for ICML 2014

tion matrix that SB-ST and TVMS; since xi vectors do not
represent key postures or parametrize their time and mag-
nitude locally, but rather produce a basis of global tem-
poral profiles. This is also true for GPDM, successfully
shown to recreate action trials and forecast postures, be-
cause basis functions f(·) that relates one latent posture to
its preceding ones and g(·) that models how the latent vari-
ables relate to the observed postures (see Equations 1 and
2 in (Lawrence, 2004)) are marginalized out yielding the
same one-to-one X � Y kind of mapping as in GPLVM.
Local parametrization is crucial for the discussion of coor-
dination, critical to the applications covered in this account.

Anyhow, these models are generative by nature and thus al-
low for the reconstruction of Y given optimal X and kernel
parameters by solving:

Ỹ = Ĵ · X(Y ⇥K�1X)⇥,

where K is the kernel matrix. The reconstruction Ỹ re-
sults of pseudo-inverting the 5th equation of (Lawrence,
2004). We then inspected the reconstruction performance
of GPLVM on the whole dataset by varying the number
of latent vectors Ĵ = {1 . . . J}, where here J = 6 is
the number of joints in the data, the maximum allowed
value. For this particular test4, we were not concerned with
speed, so the number of active points was always set to
the full length of the trial. Fig. 5(top) shows means and
standard deviations of R2 for each configuration; SB-ST
clearly outperforms GPLVM, since the best reconstruction
result R2 = 0.92 when Ĵ = 1 is lower than any of the SB-
ST scores in Fig. 2. Note that a GPLVM model with Ĵ = 1
will result in Ĵ · T̄ + 3 = 83 parameters (T̄ = 80 is the
average size of the computed X across all trials) while an
SB-ST configuration with N = 4 scoring R2 > 0.95 has
exactly k(J + 2N) = 42 parameters (k is the number of
SB vectors and 2N is the number of pairs of ST parame-
ters) that is about half the number of parameters. A sample
comparative reconstruction of one of our trials can be seen
from Fig. 5(bottom) where a GPLVM configuration of one
latent vector (154 parameters) is compared with an SB-ST
configuration with k = 3 and N = 10 (78 parameters). The
superiority of the SB-ST fits can be seen from the per-joint
signals and respective R2 scores.

We note that the best GPLVM configuration (other than the
full-dimensional, Ĵ = J = 6) is the one with a single la-
tent vector (Ĵ = 1). At the same time, the addition of more
components from Ĵ = 2 to Ĵ = 5 (except for Ĵ = 3)
make R2 decrease, which we found somewhat counterin-
tuitive, since the addition of components in SB-ST always
improve reconstruction. A possible high-level explanation
for this would be that one major GPLVM latent variable

4We used the GPLVM toolbox in all experiments: http://
ml.sheffield.ac.uk/˜neil/gplvm/
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Figure 6. SB statistics. Mean ± std coefficients of vectors SB-1
(top-left), SB-2 (top-right) and SB-3 (bottom-left). Mean ± std
coefficients of explained variances per SB vector. On the SB plots,
scales were selected to accommodate the biggest variance across
joints.

is sufficient to represent the fundamental features of the
vertical jump, as observed with the synergy matrix V 2 of
TVMS and, as will be seen next, with spatial basis SB-1
coefficients.

4.2. Experiment 2: looking at jumps and jumpers
based on the model parameters

From Fig. 6, note that spatial basis SB-1 coefficient statis-
tics suggest that over 50% of the (trial-averaged) explained
variances in the vertical jump consists of 2 main groups
of rotations: hips and ankles (top coefficient values in the
range of 0.4 to 0.6) together with knee rotations (bottom
coefficients within -0.6 to -0.4). Moreover, overlapping
lines show these distributions seem to generalize across all
populations examined. SB-1 works by clustering leg joints
into the two existing agonist and antagonist motions, which
is also clear from the picture. The same figure also re-
veals that SB-2 coefficients are almost zero-centered and
have high variances, in special, left and right ankle coef-
ficients. SB-3 coefficients are also mostly zero-centered,
have even higher variances than SB-2 coefficients and less
agreement across populations. With average SB-2 and SB-
3 coefficients close to zero and no clear interpretation in
the context of the jump action, the remaining discussion
will focus only on spatio-temporal aspects of SB-1, that
is, the statistics of ST-1’s � 1 = {�1,1 . . . �1,N} and
c1 = {c1,1 . . . c1,N}.

We looked at parameter distributions resulting from de-
compositions with N = 4 and N = 5 to note that when
the number of basis function changes, so does the distribu-
tion of parameters, thus the observed differences will also
depend on the choice of N . The level to which this varia-
tion occur will be a consequence of the selection of the ba-
sis functions and/or the range of scale parameters utilized.
Here, we are not assuming the existence of a right decom-
position, but instead arguing that many decompositions are
possible, and some may be useful for the movement analyst
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Algorithm 1 : [vi, ci, ⌧ i, Ỹ ] = SB ST decomposition(Y ,
k, N i)

Compute [U,⌃,V] = SVD of Y
for i = 1 to the first k columns vi of V (SB-i vectors)
do

Form zi = Y vi

Form approximation z̃i by:
1. finding optimal ⌧ i with a NLLS solver that calls
[r, c̃i, J ] = VARPRO loop(⌧ i, zi), with ⌧ i initial-
ized at random (the solver should minimize r2 using
Jacobian J ),
2. computing matrix (family of functions) ��i from
optimal ⌧ i and fixed standard deviations,
3. letting ci = c̃i and making z̃i = ��ici (ST-i
vectors).
Update approximation Ỹ T⇥J ⌅ Ỹ T⇥J + z̃iv

⇤
i

end for
Return vi, ci, ⌧ i (i = 1 . . . k) and Ỹ

optimization. As in (O’Leary & Rust, 2013), the Jacobian
can be expressed as a sum of two matrices:

J = �(A + B), (4)

where each of their N i columns are:

aj = Dj c̃i � U(U⇤(Dj c̃i)),

bj = U(⌃�1(V >(D⇤
j r))). (5)

Here, Dj is a matrix with zeros at all columns but j,
which will have the partial derivatives of the j-th Gaussian
�(�i,j , t) (or the j-th column of matrix ��i ) w.r.t. �i,j ,
evaluated at all time instants t.

Matrices U , ⌃̃�1 and V come from the truncated SVD
of ��i as in Equation 2. Vector r is the residual zi � z̃i.
Operations were grouped so that only matrix-vector prod-
uct multiplications are required, as in (O’Leary & Rust,
2013), who also propose modifications to the way both the
partial derivatives and the Jacobian are stored to exploit
sparseness. The presented SB-ST decomposition and our
VARPRO implementation are summarized in Algorithms 1
and 2, respectively.

��1 ��2 ��k

4. Experiments and Results
The goals of our experiments were (1) to validate the
decomposition approach, by checking whether SB-ST
parameters would allow for successful reconstruction of
movements performed by different people; (2) to illustrate
how the parameters of the model can be used to pro-
vide important insights related to both the action and
actors involved. Although any kind of action could have

Algorithm 2 : [r, c̃i, J ] = VARPRO loop(⌧ i, zi)
Compute matrix (family of functions) ��i from ⌧ i and
fixed standard deviations
Compute truncated [U,⌃,V] = SVD of ��i

Make c̃i = V ⌃̃�1U⇤zi

Compute current approximation z̃i = ��i c̃i and resid-
ual (or error) r = zi � z̃i

for j = 1 to N i Gaussians of ��i do
Form matrix with partial derivatives Dj =

⇤�(�i,j ,t)
⇤�i,j

Make aj = Dj c̃i � U(U⇤(Dj c̃i)) and bj =

U(⌃�1(V >(D⇤
j r)))

Add aj and bj and form the j-th column of Jacobian
J as in Equation 4

end for
Return r, c̃i and J

been chosen, here we decided to look at vertical jumps,
a non-trivial behavior that requires strength, coordination
and balance. Participants were instructed2 to jump verti-
cally as high as possible trying to reach for a visual tar-
get. Subjects comprised 4 different populations, totalizing
39 participants: 9 typically developing (TD) female chil-
dren (98 jumps), 6 adult females (61 jumps), 10 TD male
children (88 jumps), 5 adult males (52 jumps) and 7 chil-
dren diagnosed with Developmental Coordination Disorder
(DCD) (Henderson & Sugden, 1992; Jensen et al., 1994)
(59 jumps). TD and DCD groups were both assessed with
the MABC (Movement Assessment Battery for Children)
test (Henderson & Sugden, 1992), with scores < 5th per-
centile and > 29th percentile, respectively. Children were
in the broad age range of 5.1 to 14 years old. Adults were
all in their early 20’s.

4.1. Experiment 1: Vertical Jump Reconstruction

In our reconstruction experiments, all jump trials were
decomposed into a spatial basis of 3 vectors SB-i (i =
{1, 2, 3}) with varying (depending on the particular test be-
ing conducted) N i pairs of basis functions/ST parameters
⌧ i and ci. In particular, standard deviations were fixed as
�i = {1/(2 · 1), 1/(2 · 2) . . . 1/(2 · N i)} ⇤ T . Note that
we do not need to require all N i to be the same, but we
opted to do so in our experiments to simplify the analysis.
We refer to these values as N from now on.

Prior to parameter estimation, each zi was normalized into
a unit vector. For the main loop of VARPRO, we used
MATLAB® lsqnonlin() with ⌧ i subject to being within
[0, 1], while no constraints were applied to ci. Fig. 1 shows
the statistics of the coefficients of determination R2 for

2During our test sessions, written informed consent was ob-
tained from all subjects/parents/legal representatives after a care-
ful explanation of the testing procedures.
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Ỹ

optim
ization.

A
s

in
(O

’Leary
&

R
ust,2013),the

Jacobian
can

be
expressed

asa
sum

oftw
o

m
atrices:

J
=

�
(A

+
B

),
(4)

w
here

each
oftheir

N
i colum

nsare:

a
j

=
D

j c̃
i �

U
(U

⇤
(D

j c̃
i )),

b
j

=
U

(�
�

1(V
>

(D
⇤j

r
))).

(5)

H
ere,

D
j

is
a

m
atrix

w
ith

zeros
at

all
colum

ns
but

j,
w

hich
w

illhave
the

partialderivativesofthe
j-th

G
aussian

⇥
(�

i,j ,t)
(or

the
j-th

colum
n

of
m

atrix
⇥

�
i )

w
.r.t.

�
i,j ,

evaluated
atalltim

e
instants

t.

M
atrices

U
,
�̃

�
1

and
V

com
e

from
the

truncated
SV

D
of

⇥
�

i
as

in
Equation

2.
Vector

r
is

the
residual

z
i �

z̃
i .

O
perations

w
ere

grouped
so

thatonly
m

atrix-vectorprod-
uct

m
ultiplications

are
required,

as
in

(O
’Leary

&
R

ust,
2013),w

ho
also

propose
m

odifications
to

the
w

ay
both

the
partial

derivatives
and

the
Jacobian

are
stored

to
exploit

sparseness.
The

presented
SB

-ST
decom

position
and

our
VA

R
PRO

im
plem

entation
are

sum
m

arized
in

A
lgorithm

s1
and

2,respectively.

⇥
�
1

=
⇥

�
2

=
⇥

�
k

=

z
1 (t)⇤

z̃
1 (t)

=
c
1
,1 ⇥

(�
1
,1 ,t)

+
c
1
,2 ⇥

(�
1
,2 ,t)

⇥
(�

i,1 ,t)
⇥

(�
i,2 ,t)

⇥
(�

i,k ,t)

4.Experim
entsand

R
esults

The
goals

of
our

experim
ents

w
ere

(1)
to

validate
the

decom
position

approach,
by

checking
w

hether
SB

-ST
param

eters
w

ould
allow

for
successful

reconstruction
of

m
ovem

entsperform
ed

by
differentpeople;(2)to

illustrate

A
lgorithm

2
:[r,c̃

i ,J
]=

VA
R

PRO
loop(⇥

i ,z
i )

C
om

pute
m

atrix
(fam

ily
offunctions)

⇥
�

i
from

⇥
i and

fixed
standard

deviations
C

om
pute

truncated
[U

,�
,V

]=
SV

D
of

⇥
�

i

M
ake

c̃
i
=

V
�̃

�
1U

⇤
z

i

C
om

pute
currentapproxim

ation
z̃

i
=

⇥
�

i c̃
i and

resid-
ual(orerror)

r
=

z
i �

z̃
i

for
j

=
1

to
N

i G
aussiansof

⇥
�

i do
Form

m
atrix

w
ith

partialderivatives
D

j
=

⇥
�

(�
i
,j

,t)
⇥
�

i
,j

M
ake

a
j

=
D

j c̃
i �

U
(U

⇤
(D

j c̃
i ))

and
b

j
=

U
(�

�
1(V

>
(D

⇤j
r
)))

A
dd

a
j

and
b

j
and

form
the

j-th
colum

n
ofJacobian

J
asin

Equation
4

end
for

R
eturn

r,c̃
i and

J

how
the

param
eters

of
the

m
odelcan

be
used

to
pro-

vide
im

portantinsights
related

to
both

the
action

and
actors

involved.
A

lthough
any

kind
of

action
could

have
been

chosen,
here

w
e

decided
to

look
at

vertical
jum

ps,
a

non-trivialbehavior
thatrequires

strength,coordination
and

balance.
Participants

w
ere

instructed
2

to
jum

p
verti-

cally
as

high
as

possible
trying

to
reach

for
a

visual
tar-

get.
Subjects

com
prised

4
differentpopulations,totalizing

39
participants:

9
typically

developing
(TD

)
fem

ale
chil-

dren
(98

jum
ps),6

adultfem
ales

(61
jum

ps),10
TD

m
ale

children
(88

jum
ps),5

adultm
ales

(52
jum

ps)
and

7
chil-

dren
diagnosed

w
ith

D
evelopm

entalC
oordination

D
isorder

(D
C

D
)

(H
enderson

&
Sugden,1992;Jensen

etal.,1994)
(59

jum
ps).

TD
and

D
C

D
groups

w
ere

both
assessed

w
ith

the
M

A
B

C
(M

ovem
entA

ssessm
entB

attery
for

C
hildren)

test(H
enderson

&
Sugden,1992),w

ith
scores

<
5

th
per-

centile
and

>
29

th
percentile,respectively.

C
hildren

w
ere

in
the

broad
age

range
of5.1

to
14

years
old.

A
dults

w
ere

allin
theirearly

20’s.

4.1.Experim
ent1:VerticalJum

p
R

econstruction

In
our

reconstruction
experim

ents,
all

jum
p

trials
w

ere
decom

posed
into

a
spatial

basis
of

3
vectors

SB
-i

(i
=

{1,2,3})w
ith

varying
(depending

on
the

particulartestbe-
ing

conducted)
N

i pairs
ofbasis

functions/ST
param

eters
⇥

i and
c

i .
In

particular,standard
deviations

w
ere

fixed
as

�
i
=

{1/(2·1),1/(2·2)
...

1/(2·N
i )}⇥

T
.N

ote
that

w
e

do
notneed

to
require

all
N

i
to

be
the

sam
e,butw

e
opted

to
do

so
in

ourexperim
ents

to
sim

plify
the

analysis.
W

e
referto

these
valuesas

N
from

now
on.

Priorto
param

eterestim
ation,each

z
i w

asnorm
alized

into
a

unit
vector.

For
the

m
ain

loop
of

VA
R

PRO
,

w
e

used

2D
uring

our
testsessions,w

ritten
inform

ed
consentw

as
ob-

tained
from

allsubjects/parents/legalrepresentatives
aftera

care-
fulexplanation

ofthe
testing

procedures.

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Submission and Formatting Instructions for ICML 2014

Algorithm 1 : [vi, ci, ⇥ i, Ỹ ] = SB ST decomposition(Y ,
k, N i)

Compute [U,�,V] = SVD of Y
for i = 1 to the first k columns vi of V (SB-i vectors)
do

Form zi = Y vi

Form approximation z̃i by:
1. finding optimal ⇥ i with a NLLS solver that calls
[r, c̃i, J ] = VARPRO loop(⇥ i, zi), with ⇥ i initial-
ized at random (the solver should minimize r2 using
Jacobian J ),
2. computing matrix (family of functions) ⇥�i from
optimal ⇥ i and fixed standard deviations,
3. letting ci = c̃i and making z̃i = ⇥�ici (ST-i
vectors).
Update approximation Ỹ T⇥J ⌅ Ỹ T⇥J + z̃iv

⇤
i

end for
Return vi, ci, ⇥ i (i = 1 . . . k) and Ỹ

optimization. As in (O’Leary & Rust, 2013), the Jacobian
can be expressed as a sum of two matrices:

J = �(A + B), (4)

where each of their N i columns are:

aj = Dj c̃i � U(U⇤(Dj c̃i)),

bj = U(��1(V >(D⇤
j r))). (5)

Here, Dj is a matrix with zeros at all columns but j,
which will have the partial derivatives of the j-th Gaussian
⇥(�i,j , t) (or the j-th column of matrix ⇥�i ) w.r.t. �i,j ,
evaluated at all time instants t.

Matrices U , �̃�1 and V come from the truncated SVD
of ⇥�i as in Equation 2. Vector r is the residual zi � z̃i.
Operations were grouped so that only matrix-vector prod-
uct multiplications are required, as in (O’Leary & Rust,
2013), who also propose modifications to the way both the
partial derivatives and the Jacobian are stored to exploit
sparseness. The presented SB-ST decomposition and our
VARPRO implementation are summarized in Algorithms 1
and 2, respectively.

Y v1 = z1(t) ⇤ z̃1(t) = c1,1⇥(�1,1, t) + c1,2⇥(�1,2, t)
Y vk = zk(t) ⇤ z̃k(t) = ck,1⇥(�k,1, t)

⇥(�i,1, t) ⇥(�i,2, t) ⇥(�i,k, t)

4. Experiments and Results
The goals of our experiments were (1) to validate the
decomposition approach, by checking whether SB-ST
parameters would allow for successful reconstruction of
movements performed by different people; (2) to illustrate

Algorithm 2 : [r, c̃i, J ] = VARPRO loop(⇥ i, zi)
Compute matrix (family of functions) ⇥�i from ⇥ i and
fixed standard deviations
Compute truncated [U,�,V] = SVD of ⇥�i

Make c̃i = V �̃�1U⇤zi

Compute current approximation z̃i = ⇥�i c̃i and resid-
ual (or error) r = zi � z̃i

for j = 1 to N i Gaussians of ⇥�i do
Form matrix with partial derivatives Dj =

⇥�(�i,j ,t)
⇥�i,j

Make aj = Dj c̃i � U(U⇤(Dj c̃i)) and bj =

U(��1(V >(D⇤
j r)))

Add aj and bj and form the j-th column of Jacobian
J as in Equation 4

end for
Return r, c̃i and J

how the parameters of the model can be used to pro-
vide important insights related to both the action and
actors involved. Although any kind of action could have
been chosen, here we decided to look at vertical jumps,
a non-trivial behavior that requires strength, coordination
and balance. Participants were instructed2 to jump verti-
cally as high as possible trying to reach for a visual tar-
get. Subjects comprised 4 different populations, totalizing
39 participants: 9 typically developing (TD) female chil-
dren (98 jumps), 6 adult females (61 jumps), 10 TD male
children (88 jumps), 5 adult males (52 jumps) and 7 chil-
dren diagnosed with Developmental Coordination Disorder
(DCD) (Henderson & Sugden, 1992; Jensen et al., 1994)
(59 jumps). TD and DCD groups were both assessed with
the MABC (Movement Assessment Battery for Children)
test (Henderson & Sugden, 1992), with scores < 5th per-
centile and > 29th percentile, respectively. Children were
in the broad age range of 5.1 to 14 years old. Adults were
all in their early 20’s.

4.1. Experiment 1: Vertical Jump Reconstruction

In our reconstruction experiments, all jump trials were
decomposed into a spatial basis of 3 vectors SB-i (i =
{1, 2, 3}) with varying (depending on the particular test be-
ing conducted) N i pairs of basis functions/ST parameters
⇥ i and ci. In particular, standard deviations were fixed as
�i = {1/(2 · 1), 1/(2 · 2) . . . 1/(2 · N i)} ⇥ T . Note that
we do not need to require all N i to be the same, but we
opted to do so in our experiments to simplify the analysis.
We refer to these values as N from now on.

Prior to parameter estimation, each zi was normalized into
a unit vector. For the main loop of VARPRO, we used

2During our test sessions, written informed consent was ob-
tained from all subjects/parents/legal representatives after a care-
ful explanation of the testing procedures.

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Submission and Formatting Instructions for ICML 2014

Algorithm 1 : [vi, ci, ⇥ i, Ỹ ] = SB ST decomposition(Y ,
k, N i)

Compute [U,�,V] = SVD of Y
for i = 1 to the first k columns vi of V (SB-i vectors)
do

Form zi = Y vi

Form approximation z̃i by:
1. finding optimal ⇥ i with a NLLS solver that calls
[r, c̃i, J ] = VARPRO loop(⇥ i, zi), with ⇥ i initial-
ized at random (the solver should minimize r2 using
Jacobian J ),
2. computing matrix (family of functions) ⇥�i from
optimal ⇥ i and fixed standard deviations,
3. letting ci = c̃i and making z̃i = ⇥�ici (ST-i
vectors).
Update approximation Ỹ T⇥J ⌅ Ỹ T⇥J + z̃iv

⇤
i

end for
Return vi, ci, ⇥ i (i = 1 . . . k) and Ỹ

optimization. As in (O’Leary & Rust, 2013), the Jacobian
can be expressed as a sum of two matrices:

J = �(A + B), (4)

where each of their N i columns are:

aj = Dj c̃i � U(U⇤(Dj c̃i)),

bj = U(��1(V >(D⇤
j r))). (5)

Here, Dj is a matrix with zeros at all columns but j,
which will have the partial derivatives of the j-th Gaussian
⇥(�i,j , t) (or the j-th column of matrix ⇥�i ) w.r.t. �i,j ,
evaluated at all time instants t.

Matrices U , �̃�1 and V come from the truncated SVD
of ⇥�i as in Equation 2. Vector r is the residual zi � z̃i.
Operations were grouped so that only matrix-vector prod-
uct multiplications are required, as in (O’Leary & Rust,
2013), who also propose modifications to the way both the
partial derivatives and the Jacobian are stored to exploit
sparseness. The presented SB-ST decomposition and our
VARPRO implementation are summarized in Algorithms 1
and 2, respectively.

Y v1 = z1(t) ⇤ z̃1(t) = c1,1⇥(�1,1, t) + c1,2⇥(�1,2, t)
Y vk = zk(t) ⇤ z̃k(t) = ck,1⇥(�k,1, t)

⇥(�i,1, t) ⇥(�i,2, t) ⇥(�i,k, t)

4. Experiments and Results
The goals of our experiments were (1) to validate the
decomposition approach, by checking whether SB-ST
parameters would allow for successful reconstruction of
movements performed by different people; (2) to illustrate

Algorithm 2 : [r, c̃i, J ] = VARPRO loop(⇥ i, zi)
Compute matrix (family of functions) ⇥�i from ⇥ i and
fixed standard deviations
Compute truncated [U,�,V] = SVD of ⇥�i

Make c̃i = V �̃�1U⇤zi

Compute current approximation z̃i = ⇥�i c̃i and resid-
ual (or error) r = zi � z̃i

for j = 1 to N i Gaussians of ⇥�i do
Form matrix with partial derivatives Dj =

⇥�(�i,j ,t)
⇥�i,j

Make aj = Dj c̃i � U(U⇤(Dj c̃i)) and bj =

U(��1(V >(D⇤
j r)))

Add aj and bj and form the j-th column of Jacobian
J as in Equation 4

end for
Return r, c̃i and J

how the parameters of the model can be used to pro-
vide important insights related to both the action and
actors involved. Although any kind of action could have
been chosen, here we decided to look at vertical jumps,
a non-trivial behavior that requires strength, coordination
and balance. Participants were instructed2 to jump verti-
cally as high as possible trying to reach for a visual tar-
get. Subjects comprised 4 different populations, totalizing
39 participants: 9 typically developing (TD) female chil-
dren (98 jumps), 6 adult females (61 jumps), 10 TD male
children (88 jumps), 5 adult males (52 jumps) and 7 chil-
dren diagnosed with Developmental Coordination Disorder
(DCD) (Henderson & Sugden, 1992; Jensen et al., 1994)
(59 jumps). TD and DCD groups were both assessed with
the MABC (Movement Assessment Battery for Children)
test (Henderson & Sugden, 1992), with scores < 5th per-
centile and > 29th percentile, respectively. Children were
in the broad age range of 5.1 to 14 years old. Adults were
all in their early 20’s.

4.1. Experiment 1: Vertical Jump Reconstruction

In our reconstruction experiments, all jump trials were
decomposed into a spatial basis of 3 vectors SB-i (i =
{1, 2, 3}) with varying (depending on the particular test be-
ing conducted) N i pairs of basis functions/ST parameters
⇥ i and ci. In particular, standard deviations were fixed as
�i = {1/(2 · 1), 1/(2 · 2) . . . 1/(2 · N i)} ⇥ T . Note that
we do not need to require all N i to be the same, but we
opted to do so in our experiments to simplify the analysis.
We refer to these values as N from now on.

Prior to parameter estimation, each zi was normalized into
a unit vector. For the main loop of VARPRO, we used

2During our test sessions, written informed consent was ob-
tained from all subjects/parents/legal representatives after a care-
ful explanation of the testing procedures.
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optimization. As in (O’Leary & Rust, 2013), the Jacobian
can be expressed as a sum of two matrices:

J = �(A + B), (4)

where each of their N i columns are:

aj = Dj c̃i � U(U⇤(Dj c̃i)),

bj = U(��1(V >(D⇤
j r))). (5)

Here, Dj is a matrix with zeros at all columns but j,
which will have the partial derivatives of the j-th Gaussian
⇥(�i,j , t) (or the j-th column of matrix ⇥�i ) w.r.t. �i,j ,
evaluated at all time instants t.

Matrices U , �̃�1 and V come from the truncated SVD
of ⇥�i as in Equation 2. Vector r is the residual zi � z̃i.
Operations were grouped so that only matrix-vector prod-
uct multiplications are required, as in (O’Leary & Rust,
2013), who also propose modifications to the way both the
partial derivatives and the Jacobian are stored to exploit
sparseness. The presented SB-ST decomposition and our
VARPRO implementation are summarized in Algorithms 1
and 2, respectively.

Y v1 = z1(t) ⇤ z̃1(t) = c1,1⇥(�1,1, t) + c1,2⇥(�1,2, t)
Y vk = zk(t) ⇤ z̃k(t) = ck,1⇥(�k,1, t)

v1, v2, v3 and Y v1 = z1, Y v1 = z2, Y v3 = z3

⇥(�i,1, t) ⇥(�i,2, t) ⇥(�i,3, t)

⇥�1 ,⇥�2 ,⇥�3 with N1, N2, N3 = 5
�1,�2,�3 = {1/2, 1/4, 1/8, 1/16, 1/32}

R2(j) =
1�PT

t=1(Y tj�Ỹ tj)
2

T ·Var(Y j)
Ŷ

⇤
= z1 ⇥ , z2 ⇥ , z3 ⇥

�1 = 0 N = 3 ⇥ Q = 60 T < 180

4. Experiments and Results
The goals of our experiments were (1) to validate the
decomposition approach, by checking whether SB-ST
parameters would allow for successful reconstruction of
movements performed by different people; (2) to illustrate
how the parameters of the model can be used to pro-
vide important insights related to both the action and
actors involved. Although any kind of action could have
been chosen, here we decided to look at vertical jumps,
a non-trivial behavior that requires strength, coordination
and balance. Participants were instructed2 to jump verti-
cally as high as possible trying to reach for a visual tar-
get. Subjects comprised 4 different populations, totalizing
39 participants: 9 typically developing (TD) female chil-
dren (98 jumps), 6 adult females (61 jumps), 10 TD male

2During our test sessions, written informed consent was ob-
tained from all subjects/parents/legal representatives after a care-
ful explanation of the testing procedures.
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Compute [U,�,V] = SVD of Y
for i = 1 to the first k columns vi of V (SB-i vectors)
do

Form zi = Y vi

Form approximation z̃i by:
1. finding optimal ⇥ i with a NLLS solver that calls
[r, c̃i, J ] = VARPRO loop(⇥ i, zi), with ⇥ i initial-
ized at random (the solver should minimize r2 using
Jacobian J ),
2. computing matrix (family of functions) ⇥�i from
optimal ⇥ i and fixed standard deviations,
3. letting ci = c̃i and making z̃i = ⇥�ici (ST-i
vectors).
Update approximation Ỹ T⇥J ⌅ Ỹ T⇥J + z̃iv
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i

end for
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Algorithm 2 : [r, c̃i, J ] = VARPRO loop(⇥ i, zi)
Compute matrix (family of functions) ⇥�i from ⇥ i and
fixed standard deviations
Compute truncated [U,�,V] = SVD of ⇥�i

Make c̃i = V �̃�1U⇤zi

Compute current approximation z̃i = ⇥�i c̃i and resid-
ual (or error) r = zi � z̃i

for j = 1 to N i Gaussians of ⇥�i do
Form matrix with partial derivatives Dj =

⇥�(�i,j ,t)
⇥�i,j

Make aj = Dj c̃i � U(U⇤(Dj c̃i)) and bj =

U(��1(V >(D⇤
j r)))

Add aj and bj and form the j-th column of Jacobian
J as in Equation 4

end for
Return r, c̃i and J

children (88 jumps), 5 adult males (52 jumps) and 7 chil-
dren diagnosed with Developmental Coordination Disorder
(DCD) (Henderson & Sugden, 1992; Jensen et al., 1994)
(59 jumps). TD and DCD groups were both assessed with
the MABC (Movement Assessment Battery for Children)
test (Henderson & Sugden, 1992), with scores < 5th per-
centile and > 29th percentile, respectively. Children were
in the broad age range of 5.1 to 14 years old. Adults were
all in their early 20’s.

4.1. Experiment 1: Vertical Jump Reconstruction

In our reconstruction experiments, all jump trials were
decomposed into a spatial basis of 3 vectors SB-i (i =
{1, 2, 3}) with varying (depending on the particular test be-
ing conducted) N i pairs of basis functions/ST parameters
⇥ i and ci. In particular, standard deviations were fixed as
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Figure 6.1: Generating and parsing jumps under the SB-ST model.

tor cortex would resume to providing higher-level areas with the compressed motor

representations they need to retrieve information from the action and actor. Ac-

cording to what we have observed from the spatio-temporal parameters, differences

between subjects would be observed in control parameters, which could suggest that

humans would be equipped with very similar primitives (or motor programs) and

families of basis functions, and problems would take place somewhere during plan-

ning. But the previous was an exploratory exercise, with a single action and a small

number of dofs, and no statistical inference was carried out on the parameters, so

these outcomes have to be taken more as insights than scientific results. Moreover,

without reconciling behavioral data with brain data, it is very hard to make new

assumptions about the neural basis of jumping or another sensorimotor task for that

matter.
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6.2 The encoding of groups and tasks in the spatial bases

We then turn to a different but related question: how are the spatial bases encoding

information needed to recognize populations (here we will use the term groups) and

tasks? To address this question, we looked at a a subset of the same motion capture

data we collected in the sessions described in Chapter 2 except that this time we

used tasks involving bimanual coordination and object manipulation rather than

jumps. We chose this particular set both because it has large task variability and

because it included most of the participants, maximizing statistical power. The

tasks were (1) clapping, (2, 3) bouncing a ball with each arm, (4) catching and

throwing a ball to a person and (5) pretending to scoop beans from one jar to

another. Our participants were a member of one of the following: TD (typically

developing) DCD (Developmental Coordination Disorder) YAD (young adults) SAD

(senior adults) and PD (Parkinson’s disease seniors). In total, we had data for 53

distinct participants in this study, and all subjects performed all 5 tasks, so subjects

and tasks were equally represented. The number of subjects per group, however

varied: 16 TD, 6 DCD, 11 YAD, 14 SAD and 6 PD. The only normalization applied

to the raw data was the swapping of left and right arms for subjects that used their

left arms to scoop, because they were fewer, the rest was set just like in the jump

experiment. The dofs used were: left and right shoulders, elbows and wrists at x, y

and z rotations, that is a total of 18 dofs.

We tested each individual dof of all spatial bases (more specifically, the abso-

lute value of the coefficients at each dof within the corresponding singular vectors)
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with a 2-way ANOVA withx factors group and task. For each SB-i (singular vector

vi) we split dofs into those with significant interactions (vinti ) and those without

it. The latter were further subdivided into dofs with significant main effects for

groups (vgroupsi ) tasks (vtasksi ) and no significant main effects (vnmei ). For the sake of

simplicity, we may call the former two group discriminating and task discriminating

dofs, respectively, or simply group and task dofs.

In practice, the decomposition is ran by zeroing out all dofs within SB-i that

do not belong to each subdivision. This creates a hierarchical subdecomposition of

each SB-i where each leaf node consists of an exclusive subset of dofs, so all leaves

are orthogonal. The amount of discriminative information per leaf can be assessed

by the ratio of the number of dofs at which that leaf is statistically significant over

the maximum number of dofs (p < 0.05, Bonferroni corrected). For example, the

hierarchy for for SB-1 will look like Fig. 6.2a, and the ratio of task discriminant dofs

would be (12 + 3)/18 = 83.33%. Because all leaves are orthogonal, this implies that

the explained variance within SB-i is also partitioned per subdecomposition, with

the fractions defined by replacing the singular vector corresponding to SB-i with the

equivalent sum of orthogonal vectors in the right factor of the rank-1 expansion of

107



SVD, that is:

siui = Yvi level 0 (root) (6.1)

siui = Y[vinti + vninti ] level 1

siui = Y[vinti + vmei + vnmei ] level 2

siui = Y[vinti + vtasksi + vgroupsi + vnmei ] or level 3

si =
u>i Y

si
[vinti + vtasksi + vgroupsi + vnmei ],

and from Equation 6.1: ui = Yvi
si

, so:

si =
(Yvi)

>Y

si
[vinti + vtasksi + vgroupsi + vnmei ],

with the fractions per term being obtained in terms of the data matrix, spatial bases

and explained variances by dividing the both sides by si:

1 =
(Yvi)

>Y

s2
i

[vinti + vtasksi + vgroupsi + vnmei ].

In other words, the fraction of SB-i variance explained by one of its leaf subdecom-

positions vleafi is:

s%
i,leaf =

v>i Y>Yvleafi

s2
i

(6.2)

with i = 1 . . . k where k ≤ maximum number of spatial degrees of freedom (here 18)

and leaf ∈ {int, nme, tasks, groups}. Because each SB-i basis covers exclusive

parts of the variance, and so does each leaf within that basis, integrating Equa-
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tion 6.2 over all leaves and bases will result in the entire variance in the decomposed

data: ∑
i

∑
leaf

s%
i,leaf = 1. (6.3)

The amount of explained variance per leaf expresses the how much data recon-

struction power is accounted for by the different leaves. Table 6.1 shows the mean

± standard deviation explained variances of each SB-i from 1 to 7 (we stopped at

7 because this is the last spatial basis with at least 1% of the average explained

variance). Fig. 6.2b shows the total number of significant dofs and accumulated

mean variances accumulated for the same spatial bases. These data tells us the

following: first, although in comparison with jumps, the tasks involved in this ex-

periment utilize more degrees of freedom and include more tasks and populations,

the first spatial basis took care of an even higher average amount of variance, that

is, 69.38% (Fig. 6.2a) suggesting that 3D biological motion can be very efficiently

compressed into key postures. Second, and more importantly, all dofs with signif-

icant main effects for groups are also significant for tasks, so group discriminating

dofs are actually group and task discriminating, or alternatively, task-discriminating

dofs are task-exclusive discriminating dofs. This does not mean that group and task

are necessarily interacting, and in fact, we found only a few dofs with significant

interactions (8 out of 126). In practice, this would mean that engaging in cognitive

tasks such as perceiving, imagining and performing both a certain action and that

action but with the addition of the traits that characterizes a certain group of inter-

est would involve the same cost in terms of representation, that is the cost relative
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to the task alone.

Computationally, the fact that all group variance is embedded within the same

discrimination manifold as the task variance means that as we recreate an action

based on the spatial bases, we also recreate the actor’s way of performing it. From

what we see here, recreating the actor would happen faster than the action because

the largest chunk of group discriminating dofs and explained variances are within

SB-1 and SB-3 (see third and fourth columns of Table 6.1). Note as well that the

number of group discriminative dofs actually goes down with SB-i as i increases, as

opposed to what happens with task-exclusive ones (see seventh and eighth columns

of Table 6.1). A compression scheme that allows processing actors faster than ac-

tions could be indicate an underlying bias to social information processing from

motion signals over action recognition, but this would have to be investigated fur-

ther. Anyhow, it is interesting to see that group discrimination information can

afford such compression, especially considering the wide age range of individuals

tested (from 6 to 80 years old, with and without neuromotor disorders).

Although the goal here is not to look at the particular dofs that discriminate

these groups, we can get an idea of what type of differences these spatial bases seem

to be expressing by looking at the results of pairwise post-hoc analyses; for example,

the analysis in Table 6.2 reveals various subsets of numerous dofs that tell children

from senior adults (row DCD and column TD) and adults from seniors (column

YAD) but none that discriminate between the two children groups. Plus it shows

a single set with two dofs that discriminate the two senior groups (PD, SAD). The

boundary between young adults and children seems to be a bit blurry, since there are
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Interaction  (0) No  interaction  (18)

SB-­1  
69.38%  ± 8.94%

Task  only  (3) Task  and  group  (12)

No  significant  
main  effects  (3)

Significant  main  effects  (15)

69.38%  ± 8.94%

18.99%  ± 4.90%
50.39%  ± 8.15%

0.00%  ± 0.00%

23.25%  ± 5.55% 27.14%  ± 6.22%

(a) Hierarchical subdecomposition of SB-1
resulting from 2-way ANOVA.

Task only
93 dofs

Total=97.04%
126 dofs

32.38%
39.17%

19.94%

5.55%

Interaction
8 dofs

No main effects
10 dofs

Task and group
15 dofs (SB 1-3)

SB 1-7

(b) Average explained variance of subdivi-
sions in (a) accumulated over SB 1 to 7.

Figure 6.2

only two single-dof subsets separating this group from the children (column YAD).

We can hence deduce that SB-1 is mostly representing normal differences between

the different developmental stages, with TD and DCD forming a single cluster, YAD

forming another cluster with large overlap with the former, and a third cluster with

SAD and PD far from the rest. The same analysis but at SB-2 and SB-3 reveals a

dof that discriminates TD from DCD and SAD and PD, respectively, so these two

bases are more likely to be connected to abnormal differences between TD and DCD

as well as SAD and PD, respectively. However, one has to be careful when looking

at SB-2 and SB-3 group differences since they amount to a subset of small average

explained variances (see third column of Table 6.2, second row: SB-2 = 4.77± 5.82%

and third row: SB-3 = 0.47± 0.61%).
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s%i,int s%i,nme s%i,groups s%i,tasks dfint dfnme dfgroups dftasks si(%)

SB-1 18.99± 4.90 27.14± 6.22 23.25± 5.55 0 3 12 3 69.38± 8.94

SB-2 4.48± 4.87 4.77± 5.82 3.96± 2.66 5 0 2 11 13.21± 4.20

SB-3 1.07± 1.04 0.46± 0.56 0.47± 0.61 4.39± 1.95 3 1 1 13 6.40± 2.39

SB-4 3.46± 1.51 0 0 0 18 3.46± 1.51

SB-5 0.16± 0.23 2.01± 0.93 0 1 0 17 2.17± 0.98

SB-6 0.17± 0.19 1.25± 0.59 0 3 0 15 1.42± 0.67

SB-7 0.15± 0.14 0.85± 0.47 0 2 0 16 1.00± 0.52

Sum 5.55 19.94 32.38 39.17 8 10 15 93 97.04

Table 6.1: Number of dofs with statistically significant main effects within v
{int,groups,tasks}
i and

dofs without significant main effects for groups or tasks vnmei and corresponding variances from
SB-1 to SB-7 (p < 0.05 Bonferroni corrected). The last row accumulates the dofs or means on
the previous ones, depending on the column. Empty cells mean no variance was explained by the
corresponding subdecompositions.

PD SAD TD YAD

DCD 4 7 1

PD 2 5 6

SAD 7 6

TD 1

Table 6.2: SB-1 post-hoc group analysis: number of group discriminating dofs per group pair
(out of 12) (p < 0.05 Bonferroni corrected). Empty cells or missing group pairs mean no dofs were
found to discriminate between the corresponding members.

TD YAD

DCD 1

PD 2 1

SAD 1

Table 6.3: SB-2 post-hoc group analysis: number of group discriminating dofs per group pair
(out of 2) (p < 0.05 Bonferroni corrected). Empty cells or missing group pairs mean no dofs were
found to discriminate between the corresponding members.
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SAD TD

PD 1 1

Table 6.4: SB-3 post-hoc group analysis: number of group discriminating dofs per group pair
(out of 1) (p < 0.05 Bonferroni corrected). Empty cells or missing group pairs mean no dofs were
found to discriminate between the corresponding members.

6.3 Next steps

Assuming the focus is on the analysis of groups and not tasks, the natural next

step to this research is to look at the statistics of SB-1, SB-2 and SB-3 temporal

behavior to understand how the recruitment of postures vary between groups. We

can do it combining the procedures in Chapter 2, Section 2.4.4 with what we did

in the last section. In Section 2.4.4 we analyzed differences in the spatial-temporal

profile of the single spatial basis (SB-1) which we judged would be the same for all

groups, based on the statistics of Fig. 2.6 (top, left). In other words, we believed

that groups (TD, YAD and DCD) were “registered” with respect to that spatial

basis. As a consequence, the inputs to the spatial-temporal analysis in the step that

followed were the full spatio-temporal profiles of SB-1 (i. e. ST-1) calculated as the

projection z1 = Y v1.

Here, the procedure would be slightly modified. Let us only consider SB-1 to

simplify the description: from Table 6.1, we saw that only 6 out of 18 dofs with

no statistically significant group differences (dofs for which the two-way ANOVA

could not reject the null hypothesis) so these are the only dofs we are interested to

consider further when analyzing spatio-temporal profiles. That said, we would then

(1) zero out all 12 others thus creating a modified vnull1 whose non-zero elements

113



would register all groups with respect to SB-1 in the sense described earlier. Next

(2) we would calculate nullST -1 profiles by projecting Y onto the modified vnull1 . To

calculate the amount of explained variance corresponding to the spatial-temporal

profile, we would use Equation 6.3 just like shown in the previous section.

With the spatio-temporal profiles properly calculated, and assuming we would

stick with univariate analysis, two different steps could be carried out next: (1)

testing every single time instant within the maximum length T of nullST -1 under the

same two-way ANOVA paradigm as before. The problem with this approach is that

it might end up underpowered, as a result of correcting for multiple comparisons.

Alternatively, (2) we would do it as in the SB-ST algorithm/jump experiment, where

we ran VARPRO and fit a small number N << T of Gaussians to spatio-temporal

profiles, and inference would take place only at the 2 · N resulting control and

coordination parameters, thus avoiding the large multiple comparisons problem. To

choose a suitable N we could look for an “elbow” in the plot R2 versus N like in

Fig. 2.4 (top).

This type of temporal analysis can help spotting disparities in how groups

recruit subsets of common factors in time (candidates for action primitives) and

how much these common factors contribute to task performance. These disparities

can be related of abnormalities and provide a better understanding of conditions

such as DCD or PD. However, this is just the behavioral side of the question;

it would be interesting to see if there are neural correlates to these differences.

Based on the principle of direct matching (Chapter 1) it could be the case that the

action observation network in a normal person’s human mirror neural system [104]
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would react differently to experiencing typical and atypical performances of a trial.

A richer experiment would be to subject the typical and atypical populations to

normal and abnormal trials and run a similar study. In any case, using action

observation networks to engage the motor system during observation may be a

clever approach to study behavior that would not otherwise be possible because of

technology limitations (e. g. it is impossible for participants to bounce a ball in

an fMRI scanner) or to help in rehabilitation of subjects with limited mobility, like

certain stroke patients [105]. There is also an ongoing effort to figure out how to use

state-of-the-art knowledge on neural mirror systems to understand the relationship

between the integrity of action primitives and its relation with movement disorders,

sensorimotor injuries [106] and control impairments [107].
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