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Biotic and abiotic stresses negatively affect plant growth and development, hence 

decrease productivity. Many AP2/ERF family transcription factors in plants have 

important roles in stress response signaling although most have not yet been studied. 

Here I show that expression of an Arabidopsis thaliana AP2/ERF family member, which 

I call BOLT, is regulated by a MAPK pathway that includes MEKK1, MKK1, MKK2, 

and MPK4, and has roles in both biotic and abiotic stress response as well influencing 

growth and development. In this thesis, I examined BOLT’s gene expression pattern and 

protein localization, using GUS and YFP reporter genes respectively, measured its 

expression in response to biotic and abiotic stress and plant hormones using RT-qPCR, 

examined phenotypes by generating overexpressing and RNAi lines, and analyzed its 

effect on downstream gene expression using a microarray at time points after inducing 



 

BOLT expression. I found that BOLT is expressed in various plant tissues and the protein 

localizes to nuclear bodies as demonstrated in onion epidermal cells. Knockdown (RNAi) 

plants exhibit greater drought tolerance and are larger than wild type under low light 

conditions, while the overexpressors exhibit a dramatic early flowering phenotype and 

are small and weak under low light. Gene expression analysis suggests BOLT regulates 

genes involved in photosynthesis, hormone biosynthesis and signaling, and defense, 

many of which are also regulated in the MAPK pathway. Increased BOLT expression 

downregulates two discreet systems, cyclic electron flow and glycine cleavage, 

components of photosynthesis and photorespiration, respectively, which are two systems 

that are important under low light conditions. Taking these results together, I conclude 

that BOLT functions downstream of a stress responsive MAPK pathway and regulates a 

variety of growth- and stress-related genes necessary to balance growth and defense in 

response to biotic or abiotic stresses, or low light conditions. 
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Chapter 1:  Abiotic and biotic stress signaling leads to transcription 

factor activity 

 

Changing environmental conditions together with increasing world population 

puts pressure on society to be able to produce sufficient crop plants. Diversity of plant 

species, changes in distribution and community associations are also concerns as plants 

move and adapt to changes at different rates. In addition to impacting food production, 

these developments affect air quality, soil erosion, carbon sequestration, and further raise 

global temperatures(Millar et al. 2007; Nearing et al. 2004; Kelly & Goulden 2008). Our 

understanding of stress responses in plants allows us to more intelligently breed and 

engineer crop plants that can better tolerate current and future growing conditions as well 

as to manage forests and other ecosystems to minimize the disruptions these global 

changes are inducing. Plants under stress use response mechanisms to restrict their 

growth, flower early, or otherwise adjust their growth and development under hostile 

conditions resulting in outcomes that can reduce crop yield. The ability to generate plants 

well suited to their environments and able to successfully deal with stress can help ensure 

food security for the future. 

Environmental stresses impact myriad aspects of plant growth, development, and 

reproduction. Plants, being sessile organisms, cannot avoid adversity by changing 

location to find water, avoid heat or cold, or escape insects, so must have systems to 

maintain homeostasis in the face of harsh conditions and pathogen attack. To do this, 

plants have developed wider ranging defense mechanisms than animals, which are able to 

move about. Plants are subject to abiotic stresses including excess or insufficient water or 
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light, extremes of temperature, salinity, heavy metals, mechanical wounding, and others. 

Biotic stresses include bacteria, fungus, parasites, and insects. These challenges require 

well-orchestrated responses that include sensing, signaling, and changes to gene 

expression in response to numerous and multiple stresses. The coordination and control 

of gene expression (transcription regulation) is critical to the successful survival and 

reproduction of the plant. I am interested in understanding changes in gene expression 

that are responsible for the various responses we see in plants subjected to different 

growth environments. These changes are mediated, in part, by factors that enhance or 

inhibit transcription in response to biotic and abiotic stresses perceived by the plant. 

 

Stress perception and signal transduction by a MAPK pathway 

The sensing of stress signals and their transduction into appropriate responses is 

crucial for the adaptation and survival of plants. Plant cells require mechanisms to 

perceive changes in the environment and signal those changes to organelles that can 

produce the necessary responses such as the synthesis of hormones, antioxidants, defense 

chemicals, as well as gene expression to continue the response and adapt to a new 

condition. Cells respond to stress through a wide array of cell surface receptors such as 

histidine kinases, receptor-like kinases, and NDP kinases (Moon et al. 2003; Osakabe et 

al. 2013; Shiu & Bleecker 2001). These receptors are activated by specific aspects of 

stress, one type of stress potentially activating a number of different receptors based on 

degree and coincident stresses. It has also been shown that there is considerable cross-talk 

among the receptors allowing further specificity to the information transduced (Osakabe 

et al. 2013; Siddhi K Jalmi 2015). 
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Perception of both biotic and abiotic stresses results in the immediate production 

of reactive oxygen species (ROS), major stress-signaling molecules (Rejeb et al. 2014). 

ROS are signaling elements common to both biotic and abiotic stress responses that are 

generated at the plasma membrane as well as in organelles, predominantly chloroplasts, 

mitochondria, and peroxisomes (Apel & Hirt 2004; Carvalho 2008; Mittler 2002; 

Rahikainen et al. 2016; Foyer & Noctor 2005). ROS have different effects in stress 

conditions depending on the types and levels of accumulation, the mechanisms of which 

are not well understood (Mittler 2002; Dat et al. 2000). Low levels of ROS function in 

stress signaling and in trigger defense/acclimation responses, whereas high levels can 

result in cell death (Dat et al. 2000; Mittler 2002). ROS activate mitogen activated protein 

kinase (MAPK) pathways that are specific to the types and magnitude of the stresses 

perceived(Mittler et al. 2011). MAPK pathways control stress responses and link 

upstream receptors to downstream targets (Rejeb et al. 2014). MAPK pathways are also 

activated by direct interaction with receptors (Moon et al. 2003; Mizuno & Yamashino 

2010). It is clear that ROS signaling and MAPK cascades have important roles in gene 

expression under stress conditions, however the signal-specific ROS sensing and 

transducing mechanisms are unknown (Mittler et al. 2011). 

MAPK pathways consist of highly conserved protein modules, ubiquitous in 

eukaryotes, that act in signaling cascades (Cristina et al. 2010). Each cascade includes a 

minimum of three protein kinases, a MAP3K (MEKK), a MAP2K (MEK or MKK), and a 

MAPK (MPK) that are sequentially activated by phosphorylation. In the Arabidopsis 

genome 80 MAP3Ks, 10 MAP2Ks, and 23 MAPKs have been identified suggesting the 

possibility of a very large number of combinations (Taj et al. 2010; Hamel et al. 2006). 
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Distinct MEKK/MKK/MPK modules have been identified that have overlapping 

functions in abiotic stress response, defense and immunity, and development (Meng & S. 

Zhang 2013; Cargnello & Roux 2011; Leissing et al. 2016). 

MAPK cascades have important roles in abiotic and biotic stress responses as well 

as in stress-induced growth and development (Colcombet & Hirt 2008). Activation of 

MAPK cascades is one of the earliest signaling events after perception of stress by the 

plant (Meng & S. Zhang 2013). MAPKs are involved in signaling multiple defense 

responses including the biosynthesis/signaling of plant stress/defense hormones and other 

secondary metabolites, generation of ROS, stomatal closure, cell wall strengthening, and 

gene activation (Meng & S. Zhang 2013). Once activated MAPKs go on to phosphorylate 

target substrates (Meng & S. Zhang 2013). Substantial crosstalk between MAPKs in 

different stress-induced pathways has been shown, although the ultimate signal response 

of a cascade is known to be specific for a particular stimulus in the activation of 

downstream targets (Siddhi K Jalmi 2015). MPK substrates have been shown to be 

enriched in transcription factors involved in the regulation of development, defense, and 

stress responses (Popescu et al. 2009). 

 

Stress induced transcription regulation 

Numerous transcription factors are known to have roles in stress responses in 

Arabidopsis (Licausi et al. 2013; Baldoni et al. 2015; Bakshi & Oelmüller 2014; 

Nuruzzaman & Sharoni 2015). Transcription factors function, together with other factors, 

to activate or repress expression of genes encoding downstream regulatory and structural 

proteins, enzymes, and other functional gene products in response to exogenous and 
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endogenous signals including stress, growth, and development cues. These proteins bind 

specific DNA sequences, and it is on the basis of this binding domain that they are 

classified into gene families(Riechmann et al. 2000). Transcription regulation is complex, 

sophisticated, and specific in terms of cell-type and developmental stage, as well as to 

prevailing environmental conditions.  

We can see by perusing the publically available databases of genome-wide 

transcriptome analyses that many transcription factors have roles in regulating a wide 

variety of stresses (Petryszak et al. 2013; Petryszak et al. 2016; Kapushesky et al. 2011). 

Transcription factors from every major family have been shown to have roles in stress 

responses (Licausi et al. 2013; Baldoni et al. 2015; Bakshi & Oelmüller 2014; 

Nuruzzaman & Sharoni 2015). A single transcription factor may respond to several 

stresses and the response of one transcription factor can change based on the level of 

stress as well as the presence of other stresses that are concurrent eliciting, a total 

response that is different from each individual response (Voelckel & Baldwin 2004). 

As a result of the complete sequencing of the Arabidopsis genome and the 

development of such bioinformatics tools as BLAST, it has become much less 

complicated to identify genes/proteins that share common motifs. The identification and 

categorization of large transcription factor families followed these advancements. To date 

over two thousand transcription factors have been identified in Arabidopsis and classified 

into over fifty families by their common DNA binding domains (J. Jin et al. 2014; J. Jin 

et al. 2015). More than nine hundred of these genes are in the six largest families: 

AP2/ERF, bHLH, bZIP, MYB, NAC, and WRKY.(J. Jin et al. 2015; J. Jin et al. 2014) 

Transcription factors from all of these families have been shown to regulate biotic and 
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abiotic stress responses as well as growth and development, however only a fraction of 

them have been characterized (Singh et al. 2002; Nakano et al. 2006; Carretero-Paulet et 

al. 2010; Ambawat et al. 2013). For example, although 146 AP2/ERF transcription 

factors have been identified, only about 50% are mentioned in a publication, and fewer 

still have been the focus of a study. 

 

The AP2/ERF family of transcription factors 

In 1994, Jofuku et al. identified an essential amino acid motif in APETELA2 

(AP2), a transcription factor that has a role in flower and seed development in 

Arabidopsis (Jofuku et al. 1994). Around the same time Ohme-Takagi identified an 

ethylene responsive DNA-binding domain and cloned and characterized several ethylene 

responsive binding proteins (EREBPs) that specifically interacted with that DNA (Ohme-

Takagi & Shinshi 1995). This domain was the same as the motif in APETELA2, hence 

the various nomenclature to refer to the same domain. The AP2 domain, as it is now 

commonly referred to, is a conserved DNA-binding element consisting of 60-70 amino 

acids. The three-dimensional structure of the AP2 domain of ERF1 (At3g23240) was 

solved by NMR (Allen et al. 1998). The structure consists of a three-stranded �-sheet and 

one �-helix (Fig1.1). Soon afterwards, DNA-binding proteins from tobacco that had 

domains closely related to the AP2 were identified. They were shown to interact with an 

ethylene responsive promoter sequence, and were referred to as AP2/EREBP (ethylene-

responsive element binding proteins) (Ohme-Takagi & Shinshi 1995).  

A short time later, Riechmann et al described the AP2/EREBP, now referred to as 

the AP2/ERF (ethylene response factor), family of plant transcription factors as a large, 
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multigene family with 144 members, whose functions include developmental processes 

as well as response to biotic and abiotic stresses in many plant species(Riechmann & 

Meyerowitz 1998; Riechmann et al. 2000). The AP2/ERF family is one of the largest 

gene families in plants and initially it was thought to be plant specific. AP2 domains are 

not found in animal genes, but Magnani et al demonstrated that homologs are present in a 

cyanobacterium, a ciliate, and several viruses (Magnani et al. 2004). The group also 

demonstrated functional conservation between the prokaryotic and plant AP2 domains 

and hypothesized a horizontal transfer of an AP2 domain-containing endonuclease 

protein from bacteria or viruses into plants as the origin of the AP2/ERF transcription 

factor family in plants. The original nomenclature of Ethylene-response and Ethylene-

binding has been retained although AP2/ERF are not universally responsive to ethylene 

(Licausi et al. 2013). 
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Figure 1.1  Model of the AP2 binding domain. 

NMR structure of the GCC-BOX binding domain of Arabidopsis ERF1 (green) 

complexed with its target DNA. Based on PDB 1GCC (Allen et al. 1998).  
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Sakuma et al studied the DNA-binding specificity of the AP2/ERF domain in 

Arabidopsis(Sakuma et al. 2002). The authors focused on DREB (dehydration-responsive 

element binding) proteins, a subset of AP2/ERF transcription factors that bind a DRE 

sequence (dehydration responsive element), but also undertook an amino acid based 

sequence analysis of the now 145 AP2/ERF proteins. As a result of the study the authors 

classified the proteins in Arabidopsis into groups on the basis of the number of AP2 

repetitions and amino acid sequence of the individual AP2 domains. The classification 

consisted four subfamilies including: DREB (56 genes) and ERF (65 genes) each having 

a single AP2 domain, AP2 (18 genes) with 2 AP2 domains, and RAV (6 genes) having 

one AP2 domain as well as one B3 DNA-binding domain. Using binding and expression 

analyses, the group found that both DREB1A and DREB2A bind the DRE element and 

that DREB1A expression is induced by cold temperature in the leaf and root, and to a 

lesser extent by salt in the root, while DREB2A expression is highly induced by salt in the 

root, as well as dehydration and ABA in the leaf and root(Sakuma et al. 2002). 

Several years later, taking advantage of the increased availability of genomic data, 

Nakano et al (2006) carried out a comprehensive computational analysis of the AP2/ERF 

family of transcription factors that considered the entire amino acid sequences of the 

AP2/ERF genes in Arabidopsis, grouping them based not only on the similarities or 

differences of the AP2 domains, but also based on the rest of the proteins’ sequences 

(Nakano et al. 2006). The analysis resulted in minor changes at the subfamily level, but 

within the subfamilies, genes were recategorized into different groups based on numerous 

shared conserved motifs, most of which have no known function. In the same paper, the 

authors summarized the functions of AP2/ERF genes that had been reported to that point. 



 10

Using overexpression, knockout mutants, and activation tagging, researchers reported a 

function for twenty-eight AP2/ERF genes in Arabidopsis, tobacco, rice, and other 

species. These functions included abiotic stress, response to hormones, disease resistance, 

wax accumulation, organ identity, and leaf petiole development indicating that AP2/ERF 

transcription factors may have wide roles in plant development and stress responses. 

In Nakano et al’s analysis, At1G01250, a gene which I have named BOLT due to 

an early bolting phenotype described in Chapter 3, is classified as a Group III AP2/ERF 

transcription factor, a DREB, along with twenty-two other genes (Fig. 1.2). Group III, 

along with Groups I, II, and IV correspond to Sakuma’s DREB subfamily and are often 

referred to as such. The ERF subfamily comprises Nakano et al’s Groups V – X (Sakuma 

et al. 2002; Nakano et al. 2006). It is interesting to note that fewer than twenty of the 146 

AP2/ERF genes contain an intron, none in Group III, and that the positions of the introns 

are conserved within the groups. An alignment highlights the similarities in the amino 

acid sequences of the AP2 domain in Group III and the lack of similarity among the 

sequences that are outside the AP2 domain (Figs. 1.3 and 1.4).  
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Figure 1.2  Phylogenetic relationships among AP2/ERF transcription factors 

AP2/ERF transcription factors in Arabidopsis thaliana. The AP2 domain and conserved 

motifs are indicated by colored boxes. BOLT is in Group III, outlined in red (Nakano et 

al. 2006).  

Nakano T et al. Plant Physiol. 2006;140:411-432
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Figure 1.3  Alignment of AP2 domains of Group III AP2/ERF transcription factors 

Blue arrows indicate the extent of the AP2 domain. β-sheets and α-helix shown in green. 

BOLT is outlined in red. Known functions of these genes are described in the following 

section. 
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Figure 1.4  AP2/ERF Group III entire protein sequences alignment 

The AP2 domain is well conserved as are several motifs immediately following, 

however, the remainder of the sequences are divergent. 
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Broadly, a number of DREB proteins, including CBF1 and CBF3 of Group III,  

have been shown to bind a DRE element which is associated with dehydration, cold, and 

ABA responsive genes (Stockinger et al. 1997), and some ERF proteins bind the GCC 

box often found in the promoter regions of ethylene, pathogen, and wounding responsive 

genes (Ohme-Takagi & Shinshi 1995). This is a generalization though, and recently, 

members of both subfamilies have been shown to bind both elements as well as 

additional DNA motifs (Sun et al. 2008; Dietz et al. 2010; Shaikhali et al. 2008). TINY, 

another Group III gene,  for instance was shown to bind the DRE and the ERE with 

similar affinity(Sun et al. 2008). 

 

Group III transcription factors and stress responses 

Since BOLT is classified as a Group III AP2/ERF transcription factor, it is worth 

reviewing the current understanding in the field as it pertains to these genes. In the case 

of the twenty-three Group III transcription factors, most of the work is more recent than 

that discussed above, and is focused on elucidating gene expression rather than DNA 

binding. Four genes, CBF1/DREB1B, CBF2/DREB1C, CBF3/DREB1A, and 

CBF4/DREB1D, known to respond to cold, salt, and dehydration, recently were shown to 

have a role in integrating cold signaling with the circadian clock (Chow et al. 2014; 

Haake et al. 2002). Five additional genes, HRD, DDF1, DDF2, TINY, and TINY2 were 

also upregulated in response to salt, and dehydration, with all except HRD also 

responsive to cold (Abogadallah et al. 2011; Karaba et al. 2007; Magome et al. 2004; 

Magome et al. 2008; Kang et al. 2011; Hong et al. 2013; Sun et al. 2008; Wei et al. 

2005). A study of ESE2 showed it binds to promoters of RD29A and COR15A, which are 



 16

known to respond to salt, dehydration, and cold temperature, and it is genetically 

downstream of EIN3, a known ethylene signaling component (L. Zhang et al. 2011). 

These examples indicate roles for AP2/ERF transcription factors in responding to a 

number of abiotic stresses. 

Group III transcription factors have been shown to respond to biotic stresses as 

well as abiotic stresses. HRD, in addition to responding to salt and dehydration is also 

activated by infection with downy mildew (Huibers et al. 2009). The same study showed 

Group III genes At1g63040, At2g36450, and At5g52020 also upregulated by infection 

with downy mildew (Huibers et al. 2009).. 

In addition to biotic and abiotic stress roles, different or additional roles have been 

suggested for Group III transcription factors. For example, FUF1 regulates flower 

senescence/abscission through FYF by suppressing EDF1/2/3/4, ERF022 regulates 

ethylene biosynthesis through ACS7 and ethylene signaling through ERF1 and ETR1, 

negatively controlling ethylene content and perception, and At3g60490 is directly 

downregulated by redox signals from the photosynthetic electron transport chain (W.-H. 

Chen et al. 2015; Nowak et al. 2014; Fey et al. 2005). Further results in the study of TINY 

showed that overexpression resulted in a dwarf phenotype under normal growth 

conditions as well as a partial constitutive triple response in a 3-day-old dark-grown 

seedlings, implying TINY could have a role in ethylene response (Sun et al. 2008).  

We must keep in mind that you don’t find what you don’t look for, for instance in 

order to show a gene is responsive to a particular stress, experiments usually must be 

designed to show that. Development genes are even more tricky as they are expressed on 
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a schedule as well as often responding to stress, which makes the plant’s age and 

developmental stage crucial in designing experiments and interpreting results.  

Additional information about possible functions can be gleaned from searching 

curated microarray and RNA-seq data by such institutions such as European 

Bioinformatics Institute (EBI’s Expression Atlas) and companies such as Genevestigator 

(Petryszak et al. 2013; Petryszak et al. 2016; Kapushesky et al. 2011) 

(https://genevestigator.com). These groups make expression data for thousands of 

experiments available and easily searchable. While response to stress is not confirmation 

of function, these results suggest many of these proteins may have multiple roles in 

diverse stress, growth, and development. For instance, all four CBF genes that are known 

for abiotic stress response were downregulated by fungus, nematode and other pathogenic 

treatments in experiments in these collections. FUF1 is implicated in flower development 

in the literature, but is also shown to be upregulated in cold and salt conditions. This 

further suggests that these Group III genes can respond to different types of stresses, and 

adding an additional level of complexity, it has also been shown that transcriptome 

changes in response to double stresses were not predicted from the responses to single 

stress treatments (Rasmussen et al. 2013).  

Here, I will examine the role of BOLT in stress responses and show that BOLT 

expression changes not only in response to abiotic stress, but also in response to biotic 

stress. Then I will show that overexpressing BOLT results in an early-flowering 

phenotype and a leaf morphology that is different from wild type. In addition, I will 

present evidence that photoperiod and particularly light intensity affects plant growth in 

the overexpressing lines compared to wild type, suggesting a possible role for BOLT in 
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photosynthesis under certain conditions. Finally, I will discuss the results of a genome-

wide expression analysis comparing wild type expression to induced overexpression in 

the 24 hours after induction, and show the results of a co-expression analysis that 

supports directed expression regulation emanating from BOLT. 
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Chapter 2:  BOLT is expressed in various plant tissues and responds to 

abiotic and biotic stresses 

 

Introduction 

When I joined the Kwak lab one of the projects I was given was to determine the 

function of At1G01250, a member of the AP2/ERF family of transcription factors that 

had not been characterized. I subsequently named the gene BOLT as a result of an early 

bolting phenotype described in Chapter 3. The reason we were interested in the gene 

initially was because a microarray carried out in Julian Schroeder’s lab, where Dr. Kwak 

had been a postdoc, showed its expression to be higher in guard cells than in mesophyll 

cells. The objective of that microarray experiment was to isolate promoter candidates, for 

the purpose of manipulating gene expression highly and specifically in guard cells. BOLT 

was not identified in the resulting paper (Y. Yang et al. 2008), but was thought to have a 

potential role in guard cell function or development because of its higher expression in 

guard cells as compared to mesophyll cells and for this reason we undertook this study. 

Although BOLT looked like a promising candidate as a guard cell specific or 

preferential transcription regulator, upon closer inspection of the Schroeder lab’s 

microarray data, the p-values assigned the BOLT samples were much too high to be 

statistically significant, and as described below, I subsequently found that BOLT is 

expressed in various tissues throughout the plant including both guard cells and 

mesophyll cells. The high p-values pertained only to the BOLT samples, which were not 

included in, thus don’t impact the Yang (2008) publication. 
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As described in Chapter 1, BOLT is in the Group III AP2/ERF transcription factor 

family, and that of the Group III genes that have been studied there are examples of stress 

responsive genes as well as genes with roles in development. It is clear too, that many of 

the Group III transcription factors have roles in more than one stress or type of stress, 

responding to dehydration (abiotic) and fungus (biotic) for instance in the case of HRD, 

or to cold and chitin (main component of insect shells and cell walls of some fungi) in the 

case of TINY (Huibers et al. 2009; Karaba et al. 2007; Sun et al. 2008). FUF1 is 

upregulated during flower development, and was also shown to respond to cold, salt, and 

nematode (a parasitic roundworm) (W.-H. Chen et al. 2015). 

The Chapter 1 review of the literature suggests that BOLT could respond to one or 

more abiotic or biotic stresses. In order to understand BOLT’s potential role in stress 

response, I sought to answer several key questions. First, since the results suggesting that 

BOLT was preferentially expressed in guard cells were not reliable, I wanted to know 

where in the plant BOLT is expressed. Second, I wanted to determine the sub-cellular 

localization of the BOLT protein. Being a likely transcription factor, BOLT might 

localize to the nucleus, or it could remain in the cytoplasm and be transported to the 

nucleus under particular conditions. The sub-cellular localization could suggest a 

mechanism for how BOLT functions. A third important question is under what conditions 

BOLT’s expression changes. The answers to these questions will helped direct further 

investigation into BOLT’s role as a putative transcription factor.  
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Results 

BOLT is expressed in various tissues and the protein localizes to nuclear bodies 

An initial question when investigating a new gene/protein is where in the plant 

and where in the cell does it function. These two questions can be addressed in part by 

determining the expression pattern of the gene and the sub-cellular localization of the 

protein. BOLT was originally thought to be specific or preferential to guard cells and I 

sought to confirm this expression pattern. Understanding where and how much BOLT is 

expressed in Arabidopsis may suggest an area of functionality so I performed two 

experiments to determine the expression pattern. First I made transgenic plants that 

express a BOLTpromoter::GUS fusion reporter driven by the BOLT promoter region 

including 1,666 base pairs upstream from the translation start site. I stained and examined 

twenty-four independent lines. Using the 1,666 base-pair promoter fragment would 

obviously not include potential cis-elements outside that range. 

Expression per GUS staining was clear in leaves, flowers, stems, embryos of 

mature green seeds, and vasculature. In the root and stems, staining was in the 

vasculature only. In the leaves, staining was throughout the leaf in young leaves as well 

as in the vascular tissue. Staining was much darker in emerging leaves than in expanded 

leaves. In expanded leaves staining was visible in guard cells, but it was not as dark as in 

the vasculature and other parts of the plant. Flowers and seeds stained darker than all 

other parts of the plants. In the root, staining was evident in the root tip, but not 

immediately behind the root tip. There was staining in lateral roots, but none in root hairs 

(Fig. 2.1). 
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In the second experiment designed to identify in which tissues BOLT is expressed, 

I isolated RNA from flower, stem, leaf, and root samples of wild-type Arabidopsis, 

transcribed cDNA, and performed Real Time Quantitative Polymerase Chain Reaction 

(RT-qPCR) to measure the relative expression in those tissues. Here too, BOLT was 

expressed in all tissues sampled, with higher expression in the aerial parts of the plant 

than in the roots. Of the tissues I tested, expression was highest in flowers (Fig 2.1). I 

concluded from these experiments that BOLT is not only expressed in guard cells, but is 

expressed to different degrees widely in the plant. 

BOLT is a putative transcription factor, so the subcellular localization of the 

protein is an important factor in its activity. I was interested to know if BOLT localizes to 

the nucleus or cytoplasm under normal growing conditions. First I consulted nuclear 

localization prediction software to see if there are any predicted nuclear localization 

signals (NLS) in the amino acid sequence. I used three predictors which all identified one 

potential NLS sequence and one predicted a second potential NLS sequence (Kosugi et 

al. 2009; Brameier et al. 2007). The site predicted by all three has a RKRR sequence, 

which is a known plant NLS signal (Moes et al. 2008). 
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Figure 2.1  Tissue expression of promoterBOLT::GUS 

Staining indicates BOLT expression in a variety of tissues including vascular, embryo, 

root and inflorescence. A 1666 bp fragment of DNA upstream from BOLT’s transcription 

start site was fused to a GUS reporter gene, and BOLTpromoter::GUS transgenic plants 

stained with x-gluc. A, B, and D, ten-day-old seedling, leaf – including guard cells, and 

root. C, mature green seeds, E, inflorescence. F, BOLT expression in flower, leaf, and 

root as measured using RT-qPCR. Both β-actin and UBI10 were used as reference genes. 

Data represents three biological replicates and error bars show standard error of the mean. 
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In order to determine where the BOLT protein is localized in the cell, I made 

transgenic Arabidopsis lines expressing BOLT with either an N-terminal or a C-terminal 

yellow fluorescent protein (YFP) reporter driven by the cauliflower mosaic virus 

constitutive (CaMV35S) promoter. I isolated more than a dozen homozygous, 

independent lines for each construct and examined the roots using a Zeiss AxioObserver 

inverted fluorescence microscope to confirm and assess the fluorescence in each line. In 

the transgenic plants, BOLT was clearly localized to the nucleus in Arabidopsis roots 

(Fig. 2.2). To obtain additional information about BOLT’s localization, I decided to 

transiently express the 35S::BOLT::YFP construct in onion epidermis because onion cells 

are large, transparent, and in easily manipulated layers. So, using a gene gun, I 

bombarded onion epidermis with gold particles coated with vectors containing each of 

the constructs (C-terminal, and N-terminal). In the onion epidermal cells too, BOLT was 

localized to the nucleus (Fig 2.2). Interestingly, inside the nucleus, the YFP signal was 

concentrated in nuclear bodies (Fig. 2.2). Both constructs resulted in similar localization 

and I continued experiments using the C-terminal lines. We can conclude from the in 

vivo experiment using transgenic Arabidopsis plants, the transient expression in onion 

epidermal cells, and the NLS in silico sequence information, that BOLT localizes to the 

nucleus and further that it may localize to sub-nuclear bodies under some conditions. 

BOLT expression changes in response to abiotic and biotic stress treatments  

BOLT is implicated in stress response as a result of its classification as an 

AP2/ERF transcription factor in the Group III subfamily, thus I was interested to see how 

its expression changed in response to various abiotic and biotic stresses. To do this I 
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subjected ten-day-old plate-grown seedlings to abscisic acid (ABA), dehydration, cold 

temperature, wounding, flg22 peptide (a bacterial peptide epitope commonly used to 

trigger immune responses in plants), salicylic acid (SA), or Methyl Jasmonate (MeJA) 

and sampled whole seedlings several times over the course of 24 hours. I isolated RNA, 

transcribed cDNA and performed RT-qPCR experiments to compare BOLT’s expression 

in stressed and unstressed wild-type plants. The results showed BOLT expression 

increased when the plants were subjected to ABA, dehydration, cold temperature, 

wounding, and the flg22 peptide. and decreased with the application of SA and MeJA 

(Fig. 2.3). ABA, SA, and MeJa are each associated with a variety of stress responses, as 

well as other signaling activity in Arabidopsis (Murphy, 2015). These results indicated 

that BOLT expression changes in response to certain abiotic and biotic stresses, as well as 

in response to hormones associated with stress response, consistent with its classification 

as an AP2/ERF Group III transcription factor. 
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Figure 2.2  35S::BOLT::YFP expressed in onion epidermis and Arabidopsis root 

A, BOLT is localized primarily to the nucleus in onion epidermis. B, BOLT is localized 

to sub-nuclear bodies in onion epidermis. C, BOLT is localized to the nucleus in 

Arabidopsis roots.  
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Many of the AP2/ERF genes in Group III respond to more than one, and often to several, 

abiotic and biotic stresses, so I was interested to know if BOLT responds to stresses other 

than the ones I tested above. Because it is impractical to test for all possible stress 

conditions and combinations of conditions, in addition to the above experiments, I 

interrogated publically available genome-wide expression data collected and curated by 

European Bioinformatics Institute’s (EBI) Expression Atlas and Genevestigator for 

conditions and genotypes in which BOLT expression changed more than two-fold (p-

value <.05) (Petryszak et al. 2013; Petryszak et al. 2016; Kapushesky et al. 2011) 

(genevestigator.com). These collections each include data from thousands of microarray 

and RNA-seq studies in Arabidopsis and have been subject to those organizations’ in-

house statistical analysis to provide a level of reliability (Petryszak et al. 2013; Petryszak 

et al. 2016; Kapushesky et al. 2011). Experiments included in these data show that BOLT 

was differentially expressed under stress treatments including phosphate deprivation, 

dehydration, salt, various types of fungi and bacteria, iron deprivation, cold stress, 

osmotic stress, and excess light as well as when treated with the phytohormones SA and 

ABA. These studies corroborate my stress treatment results suggesting that BOLT 

responds to both abiotic and biotic stresses (Fig. 2.3). 
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Figure 2.3  BOLT expression in stress-treated seedlings 

Expression, measured using RT-qPCR, shows increased expression with stresses and 

decreases in response to SA and MeJA. Ten-day-old seedlings were treated with: A, 

50µM, ABA; B 5°C temperature; C, 100mM NaCl or 300mM mannitol; D, dehydration; 

E, 1mM flg22 peptide; F, piercing (all leaves) with 18-guage needle; G, 400µM salicylic 

acid; or H, 100µM methyl jasmonate. Both β-actin and UBI10 were used as reference 

genes. Data represents three biological replicates and error bars show standard error of 

the mean.  
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BOLT is differentially expressed in a range of mutant genotypes  

Transcription factors regulate gene expression as a result of elaborate signaling 

processes. Besides differential expression data regarding stress and growth conditions, 

Genevestigator and Expression Atlas (Petryszak et al. 2013; Petryszak et al. 2016; 

Kapushesky et al. 2011);(https://genevestigator.com) also have a large amount of data 

related to gene expression in mutant genotypes. I wanted to know what upstream genes 

affect BOLT’s expression, to possibly shed some light on a pathway, or pathways, that 

might regulate BOLT. To do this I analyzed the genotype data at the two sites and found 

that BOLT is highly differentially expressed in the LEC1, LEC2, FUS3, and ABI3 group 

of genes that regulate embryo development, as well as in PHYB, PFT1, a PIF quadruple 

mutant, and PSAD1, which are all involved in light signaling and photosynthesis, and 

also a group of genes, PAD4, SIZ1, SID2, and NPR1 that are involved in SA biosynthesis 

and regulation, and defense, and both SIZ1 and NPR1 have been shown to localize to 

some type of nuclear bodies (Saleh et al. 2016) (Miura et al. 2005; F. Wang & Perry 

2013; Sharrock et al. 2003; Ding et al. 2014; J. B. Jin & Hasegawa 2008). However, the 

genotype in which BOLT was most significantly regulated is the mkk1/mkk2 double 

mutant. In this double mutant BOLT was shown to be downregulated more than 10-fold. 

A mitogen-activated protein kinase (MAPK) pathway that includes MKK1 and MKK2 

has been shown to function in abiotic and biotic stress responses (Gao et al. 2008; Kong 

et al. 2012; Ichimura et al. 2006; Teige et al. 2004). Is it possible then, that BOLT could 

be in a pathway with MKK1 and MKK2? 

MKK1 and MKK2 are highly homologous  mitogen activated protein (MAP) 

kinases, that are part of a known MAPK pathway that responds to reactive oxygen 
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species (ROS) signaling that arises upon perception of biotic and abiotic stresses  

(Pitzschke et al. 2009; Kong et al. 2012; Gao et al. 2008; Qiu et al. 2008; Mészáros et al. 

2006). The two MKKs are components in a MAPK signaling cascade that includes 

MEKK1 and MPK4 and results in downstream stress signaling targeting, among other 

genes, certain transcription factors such as NPR1 WRKY25, and WRKY33 all known to 

have roles in biotic and/or abiotic stress response (Gao et al. 2008). A second experiment 

reported in Genevestigator indicates that BOLT is also downregulated in MPK4 and 

MKS1, a substrate of MPK4 shown to interact with stress-related transcription factors, 

suggesting further that BOLT could act downstream of this MAPK pathway (Gao et al. 

2008; Qiu et al. 2008). Thus I became interested to see if I could corroborate the evidence 

that BOLT is regulated by MKK1 and MKK2 and possibly place BOLT in this stress 

signaling pathway (Fig2.4). 

To confirm that BOLT is regulated by MKK1 and MKK2, I obtained seeds of the 

mkk1 and mkk2 single mutants, and the mkk1/mkk2 double mutant (kindly provided by 

Peter Morris, Heriot-Watt University, Scotland). The single mutant plants are similar to 

wild type, but the double mutant plants are severely dwarfed (Fig 2.5). I grew the three 

lines alongside wild-type plants, isolated RNA from the aerial parts of three-week-old 

plants, reverse-transcribed cDNA, and compared BOLT expression among them using 

RT-qPCR. BOLT expression was 94% of wild type in mkk2, 63% in mkk1, but only 8% in 

the double mutant, confirming the data from Genevestigator and Expression Atlas (Fig. 

2.5). The fact that BOLT expression is just 8% of wild type expression in the double 

mutant suggests that MKK1 and MKK2 act upstream from BOLT and regulates its 

expression. 
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To further investigate the possibility that BOLT is acting downstream of the 

MKK1/MKK2 stress response pathway, I subjected the double mutant plants to ABA, 

cold, and flg22 treatments, and measured BOLT expression using qPCR as before. The 

result was that BOLT expression increased significantly more in the wild-type plants than 

in mkk1/mkk2 plants, 8.2x vs 0.5x in ABA treated plants, 7.5x vs 2.5x in cold treated 

plants, and 2.6x and 1.7x vs 1.6x and -0.3x in flg22 peptide treated plants (Fig 2.5). The 

fact that BOLT expression is less than wild type in the double mutant under stresses also 

suggests that MKK1 and MKK2 regulate BOLT, further supporting the possibility that 

BOLT is downstream of, and regulated by the MAPK cascade that includes MKK1 and 

MKK2. Very interestingly, BOLT has the same expression pattern as does MEKK (Fig. 

2.6) (Ichimura et al. 2006). Based on all of these results, I hypothesize that BOLT 

responds to both biotic and abiotic stress and acts downstream of the 

MEKK1�MKK1/MKK2�MPK4 MAPK signaling pathway. 
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Figure 2.4  Hypothesis model 

Model of MEKK1�MKK1/MKK2�MPK4 pathway (solid lines) based on model by 

Miura et al describing the MAPK cascade (Miura & Tada 2014). Colored lines indicate 

different pathways. Red lines indicate defense response pathways, gray lines, drought 

response, and green lines, cold response. The dashed lines expand the published pathway 

to include the possibility that BOLT is in the MAPK pathway. 
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Figure 2.5  BOLT expression in wild type and mkk mutants 

A, BOLT expression in wild type compared to mkk1, mkk2, mkk1/2 mutants measured 

using RT-qPCR. B, C, D, BOLT expression in plants treated with 1µM flg22, 24 hours at 

5oC, or 50µM ABA respectively. 2.5-week-old plants were used for RT-qPCR.Both β-

actin and UBI10 were used as reference genes. Data represents three biological replicates 

and error bars show standard error of the mean. 
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Figure 2.6  Tissue-specific expression of MEKK1 and BOLT are similar 

A through D, Two-week-old promoterMEKK-GUS transgenic plants stained with x-gluc. 

A, cotyledon. B, first true leaf. C, transverse section of first leaf. D, guard cells (Ichimura 

et al. 2006). E and F, Two-week-old promoterBOLT-GUS transgenic plants stained with 

x-gluc. E, cotyledon left, first true leaf right; F, guard cells.  
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Additional in-silico evidence of a wide role for BOLT stress response 

In addition to BOLT’s expression being downregulated in the mkk1/2 double 

mutant, the two web tools, Genevestigator and Expression Atlas, reported 78 additional 

mutant genotypes in which BOLT expression is affected >2x (p-value <.05) 

(genevestigator.com) (Petryszak et al. 2013; Petryszak et al. 2016; Kapushesky et al. 

2011). I used the Database for Annotation, Visualization and Integrated Discovery 

(DAVID) v6.8 to provide functional annotation and classification of these genes based on 

Gene Ontology (GO) terms (D. W. Huang, Sherman & Lempicki 2009a; D. W. Huang, 

Sherman & Lempicki 2009b). GO terms classify genes using the concepts of molecular 

function, cellular component, and biological process to describe gene function 

(Ashburner, et al. 2000). The most enriched clusters included genes involved broadly in 

transcription regulation and defense. It is not surprising that some of the genes that 

regulate BOLT are transcription factors. Response to hormones, defense response, and 

response to dehydration are corroborated by the RT-qPCR results. Reproductive structure 

development and response to light, we did not expect and could suggest new roles for 

BOLT. 

I used the TAIR GO Annotations function to compare the set of genes upstream 

from BOLT to the genome as a whole, and found the upstream set to be enriched for 

nuclear genes and genes that respond to abiotic or biotic stimulus, protein binding, 

response to stress, developmental processes, transcription, DNA or RNA binding, and 

signal transduction (Berardini et al. 2004) (Fig. 2.7). Genes that have been well studied 

tend to have more GO terms assigned them than genes that have not been studied, thus 

genes affecting BOLT expression may have more terms assigned per gene than all genes 
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in the genome. This must be considered when perusing Figure 2.7, however the data is 

very useful in understanding BOLT’s role in stress response. This again indicates a 

possible role for BOLT in development as well as one in abiotic and biotic stress. 

It is informative to understand what DNA binding sites are upstream of a gene. 

This can suggest a possible function based on the proteins known to bind the various 

sites. An analysis of binding-site motifs in BOLT’s promoter using the ATcisDB at the 

Arabidopsis Gene Regulatory Information Server (AGRIS) (Yilmaz et al. 2010; 

Palaniswamy et al. 2006; Davuluri et al. 2003) revealed many known binding sequences 

upstream from the BOLT coding region (Table 1). Further investigation determined that 

these motifs have been shown to reside in promoters, and bind proteins that are related to 

light response and photosynthesis, transition to flowering, auxin-response, dehydration, 

and biotic stress responses (Table 1). Binding sites for abiotic and biotic stress responses 

are consistent with the results that BOLT responds to those types of stresses. It has been 

demonstrated that light responses, photosynthesis, and flowering are regulated by 

environmental stresses to coordinate an appropriate response (Takeno 2016; K. C. Wada 

& Takeno 2014; Takeno 2012; Chaves et al. 2009; Soitamo et al. 2008; Gollan et al. 

2015). 

Taken together, these results suggest that BOLT is an AP2/ERF transcription 

factor that responds to certain biotic and abiotic stress treatments and is potentially 

downstream of the MEKK1�MKK1/MKK2�MPK4 signaling cascade. 
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Figure 2.7  GO annotation of potential upstream regulators of BOLT 

(Petryszak et al. 2013; Petryszak et al. 2016; Kapushesky et al. 2011) 

(genevestigator.com) compared to the whole genome categorization using Gene Ontology 

at TAIR (arabidopsis.org). Comparison shows nuclear genes, genes responding to biotic 

and abiotic stress, and genes involved in developmental processes, as well as some 

others, are over-represented in the genes that potentially regulate BOLT. Not all genes 

have GO terms assigned whereas some genes have multiple terms assigned. 
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Table 1  DNA-binding sites within 3-kb upstream of the BOLT translation start site 

according to the AtcisDB at AGRIS (Yilmaz et al. 2010)

 

  

Binding    site    Function    Binding    

Site    Seq.    

Reference    

       

MYB2 binding site 

motif 

Salt and dehydration responses ctaacca Abe, 1997 

ABRE-like binding site 

motif 

Dehydration and low temperature 

responses 

cacgtgga Shinozaki, 2000 

DRE-like promoter 

motif 

Cold and dehydration responses aaccgacca Maruyama, 2012; Chen, 2002 

ATB2 binding site 

motif 

Osmotic stress response actcat Satoh, 2004 

BoxII promoter motif Responses to light, pathogen, salt ggttaa Le Gourrierec, 1999 

G-box promoter motif Photosynthesis and stress response cacgtg Vandepoel, 2009; Menkens, 1994; 

Figueroa, 2012 

Ibox promoter motif Photosynthesis and stress response gataag Vandepoel, 2009; Giuliano, 1988 

GATA promoter motif Light responsive transcription tgatag Teakle, 2002 

T-box promoter motif Light-activated transcription actttg Chan, 2001 

SORLREP3 promoter 

motif 

Light-regulated gene expression tgtatatat Hudson, 2003 

SORLIP2 promoter 

motif 
Light-regulated gene expression gggcc Hudson, 2003 

MYB4 binding site 

motif 

UV-B response aacaaac Zhao, 2007; Chen, 2002 

Bellringer binding site 

motif 

Flower development aaattaaa Bao, 2004 

ARF1 binding site 

motif 

Auxin response tgtctc Boer, 2014; Ulmasov, 1999 

ATHB2 binding site 

motif 

Auxin response, circadian control, 

embryo dev. 

taataatta Kunihiro, 2011; Turchi, 2013; 

Sessa, 1993 

ARF binding site motif Auxin response tgtctc Boer, 2014 

W-box promoter 

motif 

Defense response ttgacc Ciolkowski, 2008; Yu, 2001 

CCA1 binding site 

motif 

Circadian rhythym aaaaatct Andronis, 2008 

DPBF1&2 binding site 

motif 

ABA response and embryo-

specification  

acacgtg Kim, 1997 

RAV1-A binding site 

motif 

Germination and early seedling 

development 

caaca Feng, 2014; Kagaya, 1999 

RAV1-B binding site 

motif 

Germination and early seedling 

development 

cacctg Feng, 2014 

LFY consensus binding 

site motif 

Transition to flowering and biotic 

stimulus response 

ccactg Winter, 2011 

L1-box promoter 

motif 

Tissue specific expression, L1 layer taaatgta Abe, 2001 

RY-repeat promoter 

motif 

FUS3 and ABI3 binding site, 

embryogenesis 

catgcatg Reidt, 2000 
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Discussion 

In Chapter 1, I presented evidence that BOLT is a potential AP2/ERF 

transcription factor, and that many related transcription factors respond to abiotic and 

biotic stresses. In this chapter I ascertained BOLT’s expression pattern and sub-cellular 

localization, as well as determined that its expression level changes when subjected to 

ABA, SA, MeJA, cold, dehydration, salt mannitol, flg22, and wounding treatments. My 

experiments show an interesting expression pattern, especially the sub-cellular 

localization, and provide evidence that BOLT is potentially downstream of the 

MEKK1�MKK1/MKK2�MPK4 signaling cascade. 

BOLT is expressed widely in the plant 

According to the results of the GUS staining experiments, BOLT is expressed 

most in flowers, embryos, and young leaves. Older leaves and roots show expression 

mostly in the vasculature. The RT-qPCR results show more expression in the flowers and 

leaves than in the roots. These results, interesting on their own are even more so as they 

agree with the spatial expression patterns of MEKK1 and MPK4 reported by Ichimura et 

al (Fig. 2.7) (Ichimura et al. 2006). Both MEKK1 and MPK4 have strong expression in 

vascular tissue and MEKK1 is more strongly expressed in emerging true leaves when 

compared to mature leaves, both similar to BOLT (Fig 2.7) (Ichimura et al. 2006). My 

RT-qPCR and GUS staining results indicating higher expression in flowers and leaves 

than in roots, as well as dark staining in the embryo are also corroborated in a 

transcription profiling experiment designed to show organ-specific expression (J. Liu et 

al. 2012). In that microarray data, BOLT expression was more highly expressed in 
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flowers and seeds and somewhat less so in leaves. In roots the expression level was 

below the cut-off for the experiment (Petryszak et al. 2013; Petryszak et al. 2016; 

Kapushesky et al. 2011). 

For the GUS staining experiments, I used 1666 base pairs of BOLT’s promoter to 

make the GUS lines. It is possible that this promoter is not of sufficient size to elucidate 

BOLT’s entire expression pattern, however since the GUS staining and qPCR 

experiments both show expression in flowers, leaves, and roots, I believe the information 

is meaningful. 

Some transcription factors localize to nuclear bodies  

A very interesting result is the sub-nuclear localization of the YFP signal in the 

transgenic lines in transiently transformed onion epidermis. In the onion epidermal cells, 

BOLT did not localize evenly in the nucleus, but rather the signal was punctate (Fig. 2.2). 

Nuclear bodies are common and dynamic structures found in eukaryotic nuclei. Plant 

nuclear bodies are membrane-less sub-nuclear organelles of various types such as the 

nucleolus, Cajal Bodies, nuclear speckles, dicing bodies, and photobodies ((Petrovska et 

al. 2015). These structures vary in size, shape, and number, and in some cases their 

dynamics have been linked to environmental stresses (Reddy et al. 2012; Geilen & 

Böhmer 2015). 

There are some examples of proteins that are shown to localize to nuclear bodies, 

but how they are formed and maintained is not clear (Mao et al. 2011). An important 

regulatory mechanism for managing transcription factors is cellular compartmentalization 

(Rim et al. 2011).The most pertinent example is that transcription regulators SIZ1 and 
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NPR1 have both been shown to localize to nuclear bodies(Miura et al. 2005; Saleh et al. 

2016). According to publicly available expression data, BOLT is differentially expressed 

in npr1, siz1 and pad4 mutants (Kapushesky et al. 2011; Petryszak et al. 2013; Petryszak 

et al. 2016). SIZ1 is required for PAD4-mediated defense signaling and siz1 mutants 

accumulate SA. NPR1 is a transcriptional regulator of defense response (Saleh et al. 

2016).Both genes also have roles in flowering time regulation (J. B. Jin & Hasegawa 

2008; G.-F. Wang et al. 2011). These data suggest that BOLT could interact with NPR1 

or SIZ1 in nuclear bodies possibly in a role that affects flowering time through defense 

response. 

To determine if BOLT associates or interacts with these proteins, tagged SIZ2 or 

NPR1 could be co-expressed with BOLT in onion epidermal cells. An overlapping signal 

would indicate co-localization. Interaction could then be determined using Bimolecular 

Fluorescence Complementation (BiFC) or Co-Immunoprecipitation (Co-IP). 

It has also been shown that WRKY18 and WRKY40, both pathogen-induced 

transcription factors, co-localize with PIF3, PIF4, and PHYB to Phytochrome B-

containing nuclear bodies (PNBs). When treated with ABA, WRKY40 moves from the 

PNBs to the nucleoplasm (Geilen & Böhmer 2015). It has been suggested that light 

responses are mediated in photobodies by transcriptional regulation. This is supported by 

the fact that many of the known photobody constituents are either photoreceptors or 

transcription factors (Jiao et al. 2007; Van Buskirk et al. 2012). BOLT is regulated in a 

phyb mutant per an experiment in the Genevestigator database (genevestigator.com). This 

suggests that BOLT could have a role in the response to light possibly integrating 

environmental and development cues. 
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In addition, it is known that MKS1 forms a complex with MPK4 and WRKY33 in 

the nucleus of unstressed cells. Upon treatment with P. syringae or flg22, MPK4 

phosphorylates MKS1 and WRKY33 is released from the complex (S. Liu et al. 2015). 

This is especially interesting since BOLT expression may be regulated by MKS1 

(genevestigator.com). Other examples of stress-related transcription factors localizing to 

nuclear bodies are, ERF4, a negative regulator of JA-responsive defense gene expression, 

and AFP, a negative regulator of ABA signaling, both of which have been shown to 

localize to nuclear bodies, potentially controlling the activity of the protein (Z. Yang et 

al. 2005; Lopez-Molina et al. 2003). Interestingly, in these three examples, each of the 

transcription factors is considered a negative regulator of transcription. 

In the YFP localization experiments, my aim was to determine where BOLT 

localized under normal growing conditions. The fact that one of the experiments was 

done in onion epidermal cells may not necessarily show this because BOLT could 

localize there due to stress, or dark, or light, all conditions the onion cells experienced 

until it was viewed under the microscope. The other localization experiment, however, 

was done in transgenic Arabidopsis under normal growing conditions and in these cases 

the YFP signal also localized to the nucleus suggesting this is the actual localization 

under normal conditions. That said, it would be interesting to do additional experiments 

in both onion and Arabidopsis comparing stressed and unstressed conditions as well as 

different light conditions to see if the different environments have an impact on protein 

localization. 

The BOLT::YPF constructs were created using a vector containing a CaMV35S 

promoter which causes overexpression of BOLT. Ideally, a native promoter would have 
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been used in the localization of the protein, however since it is evident from the 

microscopy results that BOLT localizes solely to the nucleus, and the expression pattern 

as evidenced by the GUS staining agrees, it appears that in this case using the 

overexpressor did not produce misleading localization results. If the experiments 

discussed in the previous paragraph were undertaken, generating constructs using a native 

promoter would be a preferable first step. 

BOLT may negatively regulate defense 

BOLT is downregulated more than ten times in the mkk1/mkk2 double mutant and 

publically available microarray results propose that it is also downregulated in mkp4. The 

MAPK pathway has been shown to negatively regulate plant immunity (Kong et al. 

2012)If BOLT is positively regulated by the MAPK pathway, this suggests BOLT’s role 

could be one of negative regulation in response to stress (Petryszak et al. 2013; Petryszak 

et al. 2016; Kapushesky et al. 2011).  

It is interesting that in the stress treatment experiments BOLT expression was 

upregulated within 15 minutes of treatment with flg22, but that the expression dropped 

off by shortly afterwards (Fig 2.3), but that BOLT’s response to cold was very different. 

Expression in response to cold increased somewhat within 90 minutes, but then 

significantly by 24 hours. This could suggest that although the responses may be 

mediated by the same MAPK pathway, the mechanism is different for the two types of 

stress possibly indicating that different genes are involved (Fig2.3). This agrees with 

results showing separate pathways through MKK1 and MKK2 to MPK4 for different 

stresses and is supported by recent studies suggesting that various concurrent stresses 
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result in responses different from the responses to either stress and are as if the plant is 

responding to a new state of stress (Miura & Tada 2014; Aarti Gupta 2016; Rasmussen et 

al. 2013). 

Further support for the conjecture that BOLT could be a negative regulator of 

stress responses is that PAD4, SID2, and NPR1 all downregulate BOLT according to data 

at genevestigator and Expression Atlas (Petryszak et al. 2013; Petryszak et al. 2016; 

Kapushesky et al. 2011). These three genes are shown to have a role in biotic stress 

responses through the biosynthesis and accumulation of, and response to salicylic acid.  

PAD4 is an essential component of defense and participates in a defense 

amplification loop that responds to salicylic acid and ROS, while MPK4 negatively 

regulates SA accumulation (Petersen et al. 2000; Feys et al. 2001; Feys et al. 2005; Song 

et al. 2004; Jirage et al. 1999). In the presence of SA NPR1 translocates to the nucleus to 

effect gene expression of downstream defense genes (Fan & Dong 2002; C. Johnson et al. 

2003). SID2 is required for SA production upon pathogen infection and is negatively 

regulated by MEKK1 (Ichimura et al. 2006). There is apparent antagonism between these 

genes involved in the biosynthesis and accumulation of SA and MPK4 which negatively 

regulate the accumulation of SA and it is interesting that BOLT is downregulated by the 

former and upregulated by the latter. This suggests an SA dependent role for BOLT and 

the possibility that BOLT mediates SA signaling. 

According to RNA-seq and microarray experiments at Genevestigator and EBI 

(Petryszak et al. 2013; Petryszak et al. 2016; Kapushesky et al. 2011) LEC1, FUS3, ABI3, 

and LEC2, embryogenesis regulators, positively regulate BOLT. The data show BOLT 

downregulated in the mature green seeds of knockout mutants and upregulated in an 
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LEC1 overexpressor (Petryszak et al. 2013; Petryszak et al. 2016; Kapushesky et al. 

2011). These four genes are known to control embryo and seed development, and have 

more recently been shown to be involved in the transition from embryo to seedling 

development (Harada 2001; Y. Yamamoto et al. 2010; F. Wang & Perry 2013). This is 

interesting because in the GUS staining experiments, embryos stained very dark blue. In 

addition, there are two RY-repeat promoter motifs in BOLT’s promoter. Reidt, et al 

demonstrated that the RY motif is a target for FUS3 and ABI3 further supporting the 

regulation of BOLT by these development genes (Reidt et al. 2000). This is interesting 

data suggesting either an additional role for BOLT in development, or an additional role 

for the development genes, FUS3 and ABI3 in stress response. 

 

Materials and Methods 

Plant growth 

Seeds were surface sterilized in 25% bleach with 0.01% Triton-X , a surfactant, 

for 10 minutes then washed six times in sterile, nano-pure water.  The sterilized seeds 

were plated on 1/2MS medium (pH 5.8) solidified with 0.8% phytoagar, placed in the 

dark at 4°C for four days for stratification, then transferred to growth chambers. Plants 

(Arabidopsis thaliana, ecotype Columbia-0) were grown at 22°C under 100uM/m2s 

continuous light. Plates containing YPF lines were grown vertically enable root imaging. 

For soil growth, pots were stratified and grown under the above conditions. 

Generation of transgenic plants 
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The expression pattern was studied using the �-glucuronidase (GUS) reporter 

gene system. A DNA fragment from the translation start site and including 1666-bp of 

the promote region was cloned from the F6F3 BAC purchased from ABRC using the 

following primers to add Gateway attB sequences and amplified by PCR. 

Fwd: 

5’ggggACAAGTTTGTACAAAAAAGCAGGCTTCAGTTACTTACTGTTTTAAAAA

CG 3’ 

Rev: 

5’ggggACCACTTTGTACAAGAAAGCTGGGTTTAAAGAGTTTGTTATGTGGTTA

AGTC 3’ 

Using the Gateway cloning system, the PCR product was cloned into pDONR-

Zeo, and the resulting entry clone was recombined with pMDC164 to produce the 

expression vector (Curtis & Grossniklaus 2003).  

Sub-cellular localization was studied using a yellow fluorescent protein (YFP) 

reporter. The BOLT CDS was cloned from ABRC DNA stock U84819, using the 

following primers to add Gateway attB sites and amplified by PCR. 

Fwd: 

5’ggggACAAGTTTGTACAAAAAAGCAGGCTTCATGTCACCACAGAGAATGAAG

CTATCATC 3’ 

Rev: 

5’ggggACCACTTTGTACAAGAAAGCTGGGTTTCACAGACACGCCATGAACTGA

TACTG 3’ 
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Using the Gateway cloning system, the PCR product was cloned into pDONR-

Zeo and the resulting entry clone was recombined with pEarleyGate101 (C-terminal 

YFP) or pEarleyGate104 (N-terminal YFP) to produce the expression vectors (Earley et 

al. 2006).  

Arabidopsis Col-0 plants were transformed per the Clough and Bent protocol 

(Clough & Bent 1998). Homozygous transgenic lines were selected using Basta. T1 

plants were sprayed and the seeds of the heterozygous survivors (T2) were again selected 

for. T3 seeds were planted and sprayed with Basta and the homozygous lines (100% 

survival) were used in further testing. The lines were also confirmed using microscopy to 

visualize the YFP reporter. 

Histochemical β-glucuronidase (GUS) reporter gene expression 

Transgenic seedlings were treated according to the Franks lab protocol, North 

Carolina State University. Whole seedlings were placed in 90% acetone, a vacuum 

applied for 15 minutes, then 30 minutes on ice. Acetone was removed and staining buffer 

without X-Gluc added. Vacuum applied for 15 minutes. The buffer was removed and 

staining buffer containing X-Gluc was added and put in vacuum for 15 minutes. The 

samples were incubated in the dark at 37oC overnight (~14 hours). Staining buffer was 

removed and samples were incubated at room temperature for 30 minutes each in ethanol 

at 20%, 35%, 50%, and 70%. Staining buffer includes: 50mM NaPO4 buffer, pH7.2, 

0.2% Triton X, 2mM Potassium Ferrocyanide, 2mM Potassium Ferricyanide, and 2mM 

X-Gluc (5-bromo-4-chloro-3-indolyl ß-D-glucuronide cyclohexamine salt). 
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Onion epidermis bombardment 

Onion bombardment was performed as described by Hollender and Liu (2010). 

Onion pieces were incubated for 16 hours in the dark. 

Treatments with hormones and stresses 

Ten-day-old seedlings grown as described above were treated by spraying with 

50µM ABA, 500µM SA, or 1mM flg22. Control plants were sprayed similarly but 

without the treatment chemical. Cold treatment was applied by placing the plants at 4oC 

under the same lighting conditions. For dehydration treatment, plates were opened in a 

hood under light. Wounding treatment consisted of puncturing each leaf with an 18-

gauge needle. 

Quantitative RT-PCR 

RNA was isolated from 100mg of seedlings using the Spectrum Plant Total RNA 

Kit from Sigma (STRN250-1KT). Samples were treated with DNase (On-Column DNase 

I Digestion Set – DNASE70-1SET). RNA concentrations and contamination were 

measured using the NanoDrop 2000c, and RNA integrity was assessed gel 

electrophoresis. 1µg RNA was reverse transcribed (20ul reaction) using the iScript 

Advanced cDNA Synthesis Kit (BioRad catalog #172-5038). 1µl of the resulting cDNA 

was used in 10µl qPCR reactions with iTaq Universal SYBR Green Supermix (BioRad 

catalog #172-5121) and 500ng each primer. Samples processed using a CFX96 Real-

Time PCR Detection System (BioRad). Results were analyzed using CFX Manager 

software v.3 (BioRad). 
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qRT-PCR Primers were designed using NCBI’s Primer-BLAST ((Ye et al. 2012). 

BOLT 

Fwd: 5’- GGCAGGAATAGACGACGGAG-3’ 

Rev: 5’- AACACTCACAGACACGCCAT-3’ 

MKK1 

Fwd: 5’-TCTGACCTTGTGTCTCTGTGC-3’ 

Rev: 5’-TGGATTGCTCAAGAGGAGGG-3’ 

MKK2 

Fwd: 5’-TCCTGAGGAAAGGTTTTGGTTC-3’ 

Rev: 5’-TGGAGACAGGACTTCAGGCT-3’ 

PP2A (control) 

Fwd: 5’-GGGTGATTATGTTGATCGAGGGT-3’ 

Rev: 5’-TGACGGCTTTCATGATTCCCT-3’ 

UBI10 (control) 

Fwd: 5’- AGAAGGAATCCACCCTCCAC-3’ 

Rev: 5’- GCAAGAGTTCTGCCATCCTC-3’ 

Protocol: 

1: 95.0°C for 3:00  

2: 95.0°C for 0:10  

3: 60.0°C for 0:30  

Plate Read  

4: GOTO 2, 39 more times 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5: 95.0°C for 0:10  

6: Melt Curve 65.0°C to 95.0°C: Increment 0.5°C 0:05  

Plate Read  

Microscopy 

A Zeiss LSM 710 Confocal Microscope was used to observe and photograph 

onion epidermis. A Zeiss AxioObserver inverted fluorescence microscope was used to 

observe and photograph Arabidopsis roots. 
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Chapter 3:  BOLT overexpression results in early bolting and altered 

response to light intensity; knockdown shows dehydration tolerance 

 

Introduction 

I named BOLT for the early bolting phenotype exhibited by the overexpressing 

lines which are reported in this chapter. In Chapter 2 I presented evidence that BOLT, a 

putative transcription factor, is widely expressed in the plant and responds to biotic and 

abiotic stress treatments. I was then interested to see what effect knocking-out or 

overexpressing BOLT would have on the plant. Would the loss or overproduction of the 

gene cause an identifiable phenotype and help to elucidate BOLT’s role? To understand 

the role of BOLT through analysis of phenotypes, I used both knockout and 

overexpression strategies.  

Two common methods for studying the roles of transcription factors, as well as 

other genes, are investigating the phenotypes in either knockout or in overexpressing 

lines. Growing transgenic plants alongside the wild type can highlight phenotypic 

differences caused by the altered expression of the gene in question. These phenotypes 

can suggest possible functions for the transcription factor.  

Loss-of-function mutants (knockouts or knockdowns) have been used 

successfully to suggest gene function in many species from bacteria, to yeast, C.elegans, 

and Arabidopsis (Giaever et al. 2002; Kamath et al. 2003; Thorneycroft et al. 2001). An 

enormous amount of information has been generated using knockout mutants. It has been 

noted though, that for a large percentage of knockout mutants, no phenotype is observed 

(Kamath et al. 2003). It was hypothesized that the reason for this is functional 
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redundancy due to gene duplication (J. Z. Zhang 2003). In Arabidopsis, this seems to be 

the case as considerable gene duplication has been shown (Vision et al. 2000; Simillion 

& Vandepoele 2002). Functional redundancy is particularly of concern in the study of 

transcription factors because they are generally members of large gene families that often 

include closely related genes (Riechmann et al. 2000).  

Overexpression is an alternative strategy to knockout/knockdown analysis that is 

less affected by functional redundancy but can also result in mutant phenotypes as gene 

dosage is important for normal gene function (Prelich 2012; J. Z. Zhang 2003; Spadafora 

et al. 2012). Balanced gene expression is important and even small changes in copy 

number or concentration can cause mutant phenotypes (Prelich 2012). Overexpressing 

lines have been used to show a phenotype in Arabidopsis when knockouts did not (J.-X. 

Liu et al. 2009). In some instances, even when a knockout mutant has an informative 

phenotype, overexpression has generated different and unexpected phenotypes suggesting 

additional roles for some transcription factors (T. Wada et al. 2002; Schellmann et al. 

2002).  

Overexpressors usually, but not always generate gain-of-function phenotypes. 

These can either result in hypermorphs, which display the result of an increase in 

otherwise normal gene function, or in neomorphs, which exhibit a different phenotype 

from the endogenous gene, possibly the result of incorrect tissue or developmental stage 

expression, or off-target binding due to overabundance. (Prelich 2012; J. Z. Zhang 2003). 

In considering any phenotypes observed in the case of overexpressors, we have to keep 

these possibilities in mind. 
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Results 

Generation of transgenic lines 

Initially, since I was interested to know if I could observe a different phenotype in 

plants lacking BOLT. I analyzed several existing Arabidopsis T-DNA lines, 

GABI_914CO4, purchased from Nottingham Arabidopsis Stock Centre (NASC), and 

Salk_044673.42.65 and SM-3_34537 both purchased from ABRC. The GABI-Kat T-

DNA line had been purchased by a previous postdoc in the Kwak lab. In investigating the 

line at the Salk website (signal.salk.edu), I found the line had additional T-DNAs in two 

other genes, so I discontinued using that line (signal.salk.edu). Salk_046673.42.65 has 

only one hit per the Salk website, however, results of my PCR to locate the T-DNA 

showed it to be in the 3’ UTR and RT-PCR showed gene expression.The third line, SM-

3_34537, did not result in a full length mRNA, however did result in expression using 

two qPCR primer sets, which made it unclear if the T-DNA would knock down BOLT’s 

function (Appendix A). 

Since the available T-DNA lines did not yield a knockdown of BOLT, I decided to 

use RNA interference (RNAi) and generated plants expressing artificial microRNAs 

against BOLT (RNAi lines). To accomplish the experiments comparing the phenotypes 

of wild-type plants with plants deficient in BOLT, I transformed plants with a plasmid 

encoding an artificial microRNA. I identified fifteen homozygous lines, and subsequently 

chose the first four lines tested by qPCR that had very low expression, to use in 

subsequent experiments (Fig. 3.1). In the four lines, I found that BOLT expression was 

knocked down to less than 10% of wild-type expression (Fig 3.1). I initially grew the 
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RNAi plants next to the wild type in normal growing conditions (22oC and 115µM/m2sec 

16-hour light), but observed little difference between the lines in leaf size, shape, or 

color, rosette size, or flowering time. Figure 3.1 includes illustrative photographs of 

RNAi plants compared to wild type. 

Transcription regulation is often redundant, so possibly a knockdown phenotype was 

masked by another gene causing the lack of observable phenotype in the RNAi lines. The 

plants were grown under normal conditions, and since we hypothesize that BOLT may be 

required under stress conditions, this too could be the reason we did not see a phenotype. 

Overexpressing lines have often been used successfully in characterizing transcription 

factors. With this in mind, I made transgenic lines that included a 35S::BOLT::YFP. I 

selected several dozen independent homozygous overexpressing lines, examined seedling 

roots under a fluorescent dissecting microscope for YFP signal and tested the expression 

of eight lines that had a signal. Most of the two dozen lines had a visible YFP signal. I 

chose six lines with different levels of expression, in which the plants appeared to grow 

well to use in further experiments (Fig. 3.2). 

Overexpressing plants bolt earlier than wild type 

I planted the six overexpressing lines along with wild type, and grew them under 

the same normal growing conditions (115µM/m2sec 16-hour light at 22oC). By two 

weeks, the transgenic plants looked similar to wild type. I watered the two-week-old 

plants and left them until the next watering. When I returned to the plants a week later, 

the overexpressing plants had all bolted while none of the wild-type plants even had a 

bud. This phenotype is the reason I call the gene, At1G01250, BOLT. 



 59

 

 

  

0

0.2

0.4

0.6

0.8

1

1.2

wt RNAi-25 RNAi-19 RNAi-14 RNAi-8 RNAi-7

N
o

rm
a

liz
e

d
    e

xp
re

ss
io

n

Line

BOLT    Expression    in    RNAi    linesA

wt RNAi

wt RNAi



 60

Figure 3.1  BOLT expression in RNAi lines, and RNAi plants compared to wild type 

Plants grown under 115µM/m2s light and 16-hour photoperiod. A, BOLT expression 

measured using RT-qPCR in five independent RNAi lines compared to wild type. 

Photographs, 2.5-week-old plants, wild type (top left) and RNAi-25 (top right). 3.5-week-

old plants, wild type(bottom left), and RNAi-25 (bottom right). In RT-qPCR,both β-actin 

and UBI10 were used as reference genes. Data represents three biological replicates and 

error bars show standard error of the mean. 
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Figure 3.2  BOLT expression in overexpressing lines compared to wild type 

Plants were grown under 115µM/m2s light and 16-hour photoperiod. Expression was 

measured using RT-qPCR. β-actin and UBI10 were used as reference genes. Data 

represents three biological replicates and error bars show standard error of the mean. 
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This early flowering was very surprising since at first there appeared to be few 

differences between the transgenic lines and the wild type. The RNAi lines had not yet 

bolted. They subsequently bolted at about the same time as the wild type. I considered 

what, aside from the overexpression, could have caused the early flowering phenotype. 

The plants were crowded in 3-inch pots, or they may have been too dry. The humidity is 

uncontrollable in the chamber which affects plant growth. The wild-type plants were 

under the same conditions as the overexpressors, but to investigate whether one of these 

other possibilities was contributing to the difference in flowering time, I planted 16 plants 

per line, and distributed the lines throughout the trays and the trays throughout the 

chamber to account for any small differences in light, water, or temperature that may 

have affected the earlier results. Again, all of the overexpressing lines bolted well before 

the wild-type.  

This suggested that the early flowering was not due to the stress of crowding, 

dehydration, or small differences in conditions at different points in the chamber. I then 

wanted to do a larger experiment and to collect data on the difference in flowering time, 

and other observable differences, between the overexpressing lines, the RNAi lines, and 

the wild type, and quantify the differences I had seen among the lines. Up to this point, 

all of the plants had been grown in the same chamber under the same conditions, so I 

grew the same lines under the following light conditions: 24-, 16-, or 12-hour normal 

light (115µM/m2sec) or 24-hour low light (50µM/m2sec). I did this experiment twice, 

growing a total of sixteen plants per line, per condition. All of the chambers were kept at 

22oC and approximately 60% humidity, although the humidity could not be controlled in 

the chambers. The aim in doing this was to make sure the phenotype wasn’t connected to 
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the conditions in the one particular chamber and to determine if the various light 

conditions would cause phenotypes.  

Early flowering in BOLT overexpression lines is photoperiod-independent 

One of the striking phenotypes of the overexpressing lines is that the plants 

consistently bolt earlier than wild type, up to two weeks earlier under some conditions. In 

all experiments I considered plants to have bolted when the stem measured 1mm. For the 

plants grown in normal light (115µM/m2sec), the wild-type plants bolted at an average of 

20-days-old in continuous light, 27.8 days in 16-hour light, and 50 days in 12-hour light, 

while the overexpressing lines flowered earlier, at an average of 17.2, 21.6, and 39.6 days 

respectively (Fig. 3.3). The RNAi lines bolted slightly earlier than wild type (Fig. 3.3)  

The overexpressing plants also had fewer rosette leaves at the time of bolting. The 

number of leaves at bolting for wild type was 11.5 in continuous light, 13.25 in 16-hour, 

and 22 in 12-hour light. The overexpressing lines had fewer leaves: 7.2, 7.9, and 15 

respectively (Fig. 3.3). This could be due, at least in part, to the younger age at which the 

overexpressors bolted. In all three photoperiods the RNAi lines flowered slightly earlier 

than wild type (Fig 3.3). The evidence that the overexpressing lines all bolted early 

despite the hours of light suggests BOLT’s role in early flowering is photoperiod-

independent.  
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Figure 3.3  Flowering time comparison 

Overexpressing lines (OE) , RNAi lines and wild type. Plants grown under 115µM/m2s 

light and varying photoperiods. A, age, in days, at which each line bolted. B, number of 

leaves on each plant when it bolted. A plant is considered to have bolted when it has a 

1mm stem. Error bars show standard error of the mean. 
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Figure 3.4  Overexpression lines have larger rosette size under 12-hour photoperiod. 

All plants grown under 115µM/m2s light. Top, 12-hour photoperiod. Middle, 16- hour 

photoperiod. Bottom, 24-hour photoperiod. 
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A second interesting phenotype I found was that the photoperiod does have an 

effect on the relative size of the rosettes in the overexpressing lines compared to wild 

type under normal light levels. Thus, certain phenotypic aspects of overexpressing BOLT  

seems to be dependent on the photoperiod Under continuous light and the 16-hour 

photoperiod, the overexpressing plants and wild-type were similarly sized, but under a 

12-hour (short day) photoperiod, most of overexpressing lines were markedly larger than 

wild type (Fig. 3.4). This result suggests that BOLT has a role in plant growth that is 

dependent on the photoperiod, introducing the possibility that BOLT affects genes in 

growth pathways.  

Low light intensity leads to small/weak plants in overexpressing lines and larger 

plants in RNAi lines 

I also compared plants grown under continuous normal light intensity 

(115µM/m2sec) to plants grown in continuous low light (50µM/m2sec). The most 

interesting low-light phenotype, is that the plants grown under low light were much 

smaller than wild-type with spindly stems, while the RNAi lines were larger than wild 

type (Figs 3.5). The overexpressing plants, even before bolting, could not remain upright 

(Fig. 3.5). These phenotypes were only observed under low intensity light suggesting a 

distinct role for BOLT under low light intensity, possibly separate from the one that 

results in early flowering. 

Under normal light intensity the average overexpressing plant bolted 17.2 days 

after cotyledons appeared, approximately three days earlier than wild type. Under low 

light, however, the difference was greater. Wild-type plants bolted at an average of 33 
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days, but the overexpressors bolted at 21.5 days (Fig 3.6). The RNAi plants bolted earlier 

than wild type as well, but not as early as overexpressors. In both light intensities, the 

overexpressing plants had fewer leaves when they began to bolt than did the wild type, 

which is a typical early flowering phenotype, and so did the RNAi lines, but again the 

difference between them and wild type was much less. Under normal light, wild-type 

plants had an average of 11.5 leaves, and under low light, 13.75. Overexpressing plants 

had an average of 7.2 leaves under normal light, and 6.5 under low light (Fig 3.6). While 

the wild-type plants had more leaves at bolting under low light than under normal light 

intensity, the overexpressors did not. 

These results taken together suggest a possible dual role for BOLT. It appears that 

the early flowering in the overexpressors is not related to the photoperiod or to light 

intensity since it happens in all the light conditions. The small/weak overexpressing 

phenotype however, clearly is related to the light intensity. Could BOLT have separate 

roles, one depending on light intensity? We hypothesize a role for BOLT in stress 

response thus early flowering could be an escape mechanism from stress that threatens 

the current generation. In the second instance, it seems reasonable to propose that BOLT 

downregulates a pathway that is required in low light but not in normal light. 
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Figure 3.5 Overexpressing plants under low light 

In low light, RNAi plants are larger and overexpressing plants are smaller than wild type. 

All plants grown in low (50µM/m2s) continuous light. Top, 3-week-old plants. Bottom, 

4.5-week-old plants 
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Figure 3.6  Flowering time and number of leaves at bolting 

Plants grown under normal (115µM/m2s) or low (50µM/m2s) light intensity. A, average 

age in days at which plants bolted. B, average number of rosette leaves present at the time 

of bolting. n=8. Plant considered to have bolted if stem was 1mm. 
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Other phenotypes 

In addition to the early flowering and light intensity phenotypes discussed above, 

there were differences in the leaf morphology of the overexpressing plants compared to 

wild type and the RNAi lines. In all conditions, the leaves of the overexpressors are 

flatter than wild type and the RNAi lines (Fig 3.7). The seeds of the overexpressing 

plants were somewhat smaller and lighter colored than wild type seeds while the RNAi 

lines seeds were slightly larger (Fig.3.8). I did not collect statistics on either of these 

phenotype, only noticing them during the course of my other experiments. The flat-leaf 

phenotype was irrespective of photoperiod or light intensity, but did seem more 

pronounced in shorter days. In low light, the phenotype was less distinct because the wild 

type leaves were flatter than under stronger light.  

Drought tolerance in RNAi lines 

Since BOLT expression responds to stress, I thought that possibly the RNAi lines 

might show an opposite phenotype to the overexpressing lines, such as flowering later 

than wild type, in response to being stressed. To test this, I subjected plants beginning at 

1.5 weeks of age to wounding, cold temperature, and dehydration stresses over the course 

of four weeks. The wounded plants bolted at the same time as the wild-type and were no 

different in physical appearance. The plants subjected to cold stress also were 

indistinguishable from wild-type, and none of the wt or RNAi lines bolted over the 

course of four weeks, most likely due to the cold temperature. The dehydrated plants also 

flowered at about the same time as wild type. 
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The dehydration experiment consisted of watering plants well for 1.5 weeks, 

suspending watering for 3 weeks, and watering the plants again at that point. At the end 

of 2.5 weeks, the RNAi plants were much greener than wild type (Fig. 3.9). The plants 

also recovered after re-watering whereas the wild type did not (Fig. 3.9). These results 

suggest BOLT could have an inhibitory role with respect to drought response since 

dehydration increases BOLT expression, but the RNAi lines exhibit drought tolerance. 
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Figure 3.7  Overexpressing plants have flatter leaves than wild type or RNAi plants 

Left, 14-hour photoperiod 115µM/m2s light. Right, 16-hour photoperiod, 115µM/m2s 

light. 
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Figure 3.8  Relative seed size in BOLT overexpressing and RNAi lines 

n=50 in each of two experiments. Images were collected with a light microscope and 

ImageJ was used to measure the area. Error bars show standard error of the mean. 
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Figure 3.9  RNAi lines are more tolerant to dehydration than wild type. 

Top, no water for 18 days. Bottom, rewatered after 22 days. Photograph is on day 25. 
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Discussion 

RNAi lines suggest BOLT inhibits drought tolerance  

My experiments growing the RNAi knockdown resulted in no observable 

phenotypic differences between the RNAi lines and the wild type under normal growing 

conditions. As with many genes in Arabidopsis, there could be functional redundancy 

with one or more genes compensating for the loss of BOLT. Extensive duplication of the 

genome over evolutionary time is apparent and there are large numbers of transcription 

factors with related binding domains and conserved motifs (Simillion & Vandepoele 

2002; Vision et al. 2000; Riechmann et al. 2000). It would be a mistake to think that 

plants would have evolved without sufficient redundant systems in place to ensure their 

continued survival. If this is the case with BOLT, comparing wild-type to RNAi lines will 

not result in a loss of function phenotype. A possible solution using knockout lines would 

be to knockout the two genes closest to BOLT in Nakano’s phylogeny, and engineer a 

triple mutant (Fig 1.2). Comparing wild type to the single and triple mutants might 

produce an informative phenotype if the redundancy is the result of one of those genes. 

The drought tolerant result in the RNAi line suggests that we can see a phenotype 

in the loss-of-function lines (Fig. 3.9). The most probable reason the RNAi lines do not 

show a phenotype under stress conditions is that since BOLT is induced by stress (Fig. 

2.3), it may not be required for success of the plant under normal growing conditions. I 

attempted to address this possibility by stressing RNAi lines and comparing them to wild 

type. The drought stress experiment in which watering was stopped for 3 weeks resulted 

in the RNAi plants displaying a greater tolerance to dehydration than the wild type. This 
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is significant because it suggests that BOLT may act under stress conditions. It is also 

interesting because instead of showing that BOLT is necessary under drought conditions, 

it shows that BOLT is inhibitory in that situation. The plants lacking BOLT were drought 

tolerant, not the wild type. This suggest a role for BOLT in the inhibition of drought 

stress response which could indicate that type of role in other types of stress as well. This 

is useful information that can benefit experimental design going forward in the 

investigation into a role for BOLT in Arabidopsis. 

Another possible reason for the lack of phenotype in the RNAi lines under normal 

conditions could be that very small differences between the two genotypes might not be 

detectable, or could be masked by inconsistent growing conditions, such as different 

positions in the growth chamber or trays, which can cause slightly different light, 

temperature, or humidity conditions for each plant. Humidity in the different chambers, 

or in one chamber over time varies considerably depending on the number of plants in the 

chamber and whether they are dry, well-watered, or over watered. This could affect 

experimental results. I grew many, many plants over the course of these experiments, and 

in all cases the RNAi lines appeared similar to wild type, but if more perfectly 

controllable conditions were available they might be used to show differences between 

the line that I was not able to observe. 

When using a knockdown line rather than a knockout line, there is the additional 

the possibility that there may be enough of the protein produced to disguise a mutant 

phenotype. I do not think this is the case with these BOLT RNAi lines however as the 

expression of all of the lines used in experiments is less than 10% of the wild type. 
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Early flowering may be a stress response 

Observing such a striking early flowering phenotype in the BOLT overexpressing 

plants under all light conditions tested indicates that the gene may play a role in transition 

to flowering. In Chapter 2 we saw that BOLT responds to a range of stress treatments. It 

is possible that the early flowering seen in the BOLT overexpressing lines is an escape 

mechanism to avoid stress and protect reproduction. Evidence that stress induces the 

transition to flowering is increasing in the literature (Takeno 2016; K. C. Wada & Takeno 

2014; Takeno 2012; Blanvillain et al. 2011; Yaish et al. 2011; Riboni et al. 2014; Kazan 

& Lyons 2015; Kolár & Senková 2008; Riboni et al. 2013).  

Drought stress promotes flowering under long day conditions in Arabidopsis 

(Riboni et al. 2013), and my results that BOLT expression increases in response to 

dehydration and that the RNAi lines may be more drought tolerant than wild type, 

suggests a possible role for BOLT in drought stress response that leads to early 

flowering. The MAPK cascade discussed in Chapter 2 is well studied with respect to 

defense, however it has also been reported that drought can activate MKK1 (Matsuoka et 

al. 2002; Gao et al. 2008; Kong et al. 2012; Pitzschke et al. 2009). These results, taken 

together with my Chapter 2 results showing BOLT expression responds to dehydration 

stress (Fig. 2.3), suggest a possible dual role for BOLT in inhibiting drought stress 

response, possibly prolonging the life of the plant, and inducing flowering under stressed 

conditions, thereby increasing the likelihood of a next generation. 

BOLT expression may also affect flowering time in response to biotic stresses 

suggesting a possible role in defense. In Chapter 2 I showed that BOLT expression is 

regulated in response to flg22, SA and JA, and wounding (Fig 2.3). SA and JA, long 
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identified as biotic defense-associated hormones, have also been shown to be important 

regulators of flowering time. These hormones are an important link between defense 

response and flowering time (Zhai et al. 2015; Van Wees & De Swart 2000; Korves & 

Bergelson 2003; Lyons et al. 2015; Xue et al. 2013; Martínez et al. 2004). I hypothesized 

in Chapter 2 that BOLT operates downstream from the 

MEKK1�MKK1/MKK2�MPK4 pathway (Fig. 2.4). MKK1, MKK2, MPK4, and its 

substrate MKS1 have all been shown to negatively regulate both SA- and JA-mediated 

defense (Qiu et al. 2008; Brodersen et al. 2006). The mpk4 mutant accumulates SA and 

results in constitutive defense gene expression (Qiu et al. 2008).  

The four SA-related defense genes discussed in Chapter 2 as possibly regulating 

BOLT, PAD4, SIZ1, SID2, and NPR1, all have been shown to have roles in flowering 

time.(LI et al. 2012; G.-F. Wang et al. 2011; J. B. Jin & Hasegawa 2008) NPR1 has been 

shown to negatively regulate flowering time and an npr1 mutant displays an early 

flowering phenotype, and like the early flowering phenotype in the BOLT overexpressors, 

it is independent of the photoperiod (Fig 3.3) (G.-F. Wang et al. 2011). There is evidence 

that these four genes are also regulated by the same MAPK cascade that affects BOLT’s 

expression (Qiu et al. 2008; Brodersen et al. 2006; Kapushesky et al. 2011; Petryszak et 

al. 2013; Petryszak et al. 2016). 

Considering that BOLT responds to biotic stress-related treatments, is regulated 

by genes in several pathways that all have roles in both defense and flowering time, and 

is potentially an inhibitor of stress response, it seems likely that BOLT has a role in 

balancing stress response with flowering time. 
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To further our understanding of BOLT in such a role, we could subject the BOLT 

transgenic lines to biotic stresses such as bacterial and fungal infections and analyze the 

resulting phenotype. Also, analyzing BOLT expression in mutants of PAD4, SIZ1, SID2, 

and NPR1 as I did in Chapter 2 with the with mkk1, mkk2, and mkk1/2 mutants, could 

suggest whether BOLT is regulated by one or more of these genes. 

Possible role for BOLT in photosynthesis 

Most of the differences observed between the overexpressing lines and the wild 

type are apparent in all photoperiods and both light intensities, however, the plants grown 

in low light are very small and spindly compared to those grown in normal light. The 

rosettes fall over even before they bolt and the stems are thin and rangy. Since early 

flowering and other differences occur under all photoperiods and light intensities, and 

this small/weak phenotype occurs only in low light, it appears the two phenotypes could 

be the result of different genetic responses.  

BOLT must therefore have a role in a pathway that is not required in sufficient 

light. If this is the case, under normal light there may be no phenotype, but under low 

light, in which the function is required, the deficiency would be apparent. I discuss one 

possibility of such a role for BOLT in Chapter 4, where microarray results show that an 

increase in BOLT expression downregulate a significant number of genes involved in 

cyclic electron flow which has a role in photosynthetic performance (Munekage et al. 

2004). 

Although it seems probable that the small/weak phenotype is caused by the 

inhibition of photosynthesis, to determine if it could be a more general stress response, 
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overexpression lines could be grown in normal light but subjected to other varieties of 

stress such as cold, dehydration, or pathogen challenge, to see if the small-plant 

phenotype could be reproduced with different stresses. This could show whether the 

response is to low light in particular or a response to various stresses. 

Leaf morphology and shade avoidance  

Regulation of leaf flatness was seen in plants overexpressing BOLT. Since it was 

seen under all the light conditions tested we can see that it is not related only to 

photoperiod or to the light intensity. Flattening of leaves is a well-documented shade 

avoidance mechanism (Casal 2012; Ciolfi et al. 2013; Nozue et al. 2015). One of the key 

regulators of shade avoidance is the red/far red photoreceptor PHYB which promotes 

curled leaves(Kozuka et al. 2013). PHYB has been shown to accumulate in nuclear 

photobodies in association with certain transcription factors in response to red light (M. 

Chen 2008; Van Buskirk et al. 2012; Geilen & Böhmer 2015). In Chapter 2 I showed that 

BOLT::YFP accumulates in some type of nuclear body and referred to publicly available 

expression data that indicate expression is regulated in a phyb mutant. These data, taken 

together could suggest that BOLT has a role in the leaf morphology feature of shade 

avoidance through an association with PHYB. It would be interesting to investigate 

whether BOLT associates with PHYB in photobodies by co-expressing the tagged genes 

in onion epidermis to see if the signals overlap. If they did, further testing for physical 

interaction could be done using BiFC or Co-IP.  
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Seed size suggests BOLT may affect embryogenesis 

One case in which the overexpressing and RNAi lines show an opposite 

phenotype is in seed size. The overexpressing lines have slightly smaller seeds than wild 

type and the RNAi lines seed are slightly larger. The seed-size phenotype in the 

overexpressors could be the result of the reproductive schedule being accelerated, causing 

not only early flowering, but more rapid seed development. This could mean not enough 

time for the seed to develop properly. The seeds used in this experiment were T3 and T4 

generation, however the measurement was done without regard to the light conditions in 

which the parent plants were grown. Since this could have an effect on seed size, it would 

be interesting to grow plants for several generations in consistent conditions to further 

analyze the phenotype. The GUS staining results showed a dark stained embryo (Fig. 

2.1). In addition, as discussed in Chapter 2, BOLT expression is regulated in some 

genome-wide expression experiments by four key seed-development transcription 

factors, LEC1, LEC2, FUS3, and ABI3 (Petryszak et al. 2013; Petryszak et al. 2016; 

Kapushesky et al. 2011). This suggests that rather than a general result of accelerated 

reproduction, BOLT may have a role in seed development in response to stress. I was 

interested to know if there is evidence in the literature to suggest a connection between 

BOLT and these genes. The analysis of the BOLT promoter sequence discussed in 

Chapter 2 identified an RY-repeater motif 950 base pairs upstream from the ATG 

(Yilmaz et al. 2010; Davuluri et al. 2003). FUS3, LEC2, and ABI3 have been shown to 

bind this sequence (Reidt et al. 2000; Kroj et al. 2003; Mönke et al. 2004). This could 

either suggest an additional role for BOLT in embryogenesis or for FUS3, LEC1, LEC2, 
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and ABI3 in stress response. A first step to determine if BOLT is in a pathway with these 

genes would be to obtain the mutants and assess BOLT’s expression in them.  

 

Methods  

Plant growth 

Seeds were planted in soil in 3” pots, stratified at 4oC in the dark then transferred 

to growth chambers. Eight plants of each line were grown under each condition. Plants 

were grown at 22oC under the following light conditions: Continuous 115µM/m2sec light, 

16 hour 115µM/m2sec light, 12 hour 115µM/m2sec light, or continuous 50µM/m2sec 

light. A plant was considered to have bolted once the stem measured 1mm. 

Generation of transgenic plants 

Generation of overexpressing lines is described in the Chapter 2 methods section. 

To create the RNAi lines, I used the design tool and protocol described at 

http://wmd2.weigelworld.org (Ossowski et al. 2008; Schwab et al. 2006). 

The following primers were used to construct the artificial microRNA: 

I 5’-gaTTAACGATACAACGTACGCGTtctctcttttgtattcc-3’ 

II 5’-gaACGCGTACGTTGTATCGTTAAtcaaagagaatcaatga-3’ 

III  5’-gaACACGTACGTTGTTTCGTTATtcacaggtcgtgatatg-3’ 

IV 5’- gaATAACGAAACAACGTACGTGTtctacatatatattcct-3’ 

A-attB 5’- 

ggggACAAGTTTGTACAAAAAAGCAGGCTTCctgcaaggcgattaagttgggtaac-3’ 
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B-attB 5’- 

ggggACCACTTTGTACAAGAAAGCTGGGTTgcggataacaatttcacacaggaaacag-3’ 

Gateway cloning was used to combine the resulting plasmid with pDONR-Zeo 

(Thermo Fisher) to generate the entry clone which was combined with pMDC32 (Curtis 

& Grossniklaus 2003) resulting in the expression vector 2X35S::amiRNA. 

 

Plant transformation 

Plants were transformed using the Clough and Bent method (Clough & Bent 

1998). The resulting seeds were surface-sterilized in 25% bleach with 0.01% Triton-X, a 

surfactant, for 10 minutes then washed six times in sterile, nano-pure water. The 

sterilized seeds (T1) were plated on 1/2MS medium (pH 5.8) solidified with 0.8% 

phytoagar supplemented with 30µg/ml Hygromycin B (hygro plates). The plates were 

cold-treated at 4°C in the dark for four days then transferred to a long-day growth 

chamber (115µM/m2s light and 22°C temperature). Tall, green transformed plants (T1, all 

heterozygous) were selected over stunted pale ones. Identification of homozygous plants 

was made by plating T2 seeds on hygro plates, collecting the 75% non-wild-type plants, 

then plating seeds from those plants (T3) on hygromycin plates and choosing the lines 

from plates in which all plants were tall and dark green (about 1/3 of the plates). T3 

homozygous lines were used in experiments. 

 

The following PCR primers were used to confirm the amiRNA in the homozygous lines: 

A 5’ – ACAAGTTTGTACAAAAAAGCAGGCTTC – 3’ 
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B 5’ – ACCACTTTGTACAAGAAAGCTGGGTT – 3’ 

qPCR testing of expression levels of RNAi and overexpressing lines. 

Materials, methods, and primers used in the experiments are described in the 

Chapter 2 Methods section.  

Stress treatments of RNAi plants 

1.5 week-old seedlings were used in treatments which continued for four weeks. 

cold treatment – 1.5 week-old seedlings were placed at 10oC and 115µM/m2sec 

continuous light. 

wounding treatment – Starting with 1.5 week-old seedlings, each leaf was pierced 

with an 18-guage needle every other day. 

dehydration treatment – water was withheld from two-week-old plants for 22 

days, after which the plants were watered. 

Seed measurement 

Seeds were fixed to slides (50 per line) using Telesis silicone adhesive and 

imaged with a light microscope fitted with a Zeiss camera. Seed area was measured using 

ImageJ. Experiment was repeated twice. 
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CHAPTER 4: Genome-wide transcription analysis of BOLT 

 

Introduction 

In Chapter 2 I investigated BOLT expression in response to different biotic and 

abiotic stresses and found that BOLT transcript levels increase in response to cold, 

drought, ABA, wounding, and the flg22 peptide, and decreases in response to SA (Fig 

2.3). I also found evidence that BOLT expression is downregulated in the mkk1 mutant 

and strongly downregulated in the mkk1/mkk2 double mutant (Fig. 2.5). MKK1 and 

MKK2 are part of a MAP kinase pathway that has been shown to be involved in biotic 

and abiotic stress signaling both through, and independent of, ROS (Miura & Tada 2014). 

Therefore, I hypothesized that BOLT is regulated by this MAP kinase pathway and plays 

a role in response to both biotic and abiotic stress (Fig 2.4). 

In Chapter 3 I presented evidence that transgenic lines overexpressing BOLT 

flower early in comparison to wild-type plants and have distinctly flatter leaves (Figs. 3.3 

and 3.7). The RNAi lines flowered somewhat earlier than wild type, but later than the 

plants overexpressing BOLT (Fig. 3.3). In low light the overexpressing plants are much 

smaller and spindlier than the wild type, whereas in 12-hour days under normal light, the 

overexpressing plants are larger than wild type (Fig. 3.4). In low light the RNAi plants 

were larger than wild type, but in normal light there was no size difference (Fig. 3.4). 

These results suggest definite effects of BOLT overexpression, affecting both flowering 

time and growth. 

To further investigate the hypothesis that BOLT is in the 

MEKK1�MKK1/2�MPK4 pathway, I next wanted to know what genes function 
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immediately downstream of BOLT and are potentially regulated by BOLT. Genome-wide 

transcriptional analysis provides a wealth of information on how transcript abundances 

changes under different conditions or between different genotypes. Thus we decided on a 

microarray experiment to identify genes regulated by BOLT. 

We then considered what would be the best comparison to make that would give 

us the most meaningful information. We hypothesize that BOLT is involved in stress 

responses, however since it responds to many stresses and so do many other genes, doing 

the experiment with treated vs untreated samples was only briefly regarded. To use 

treated samples would require data filtering and analysis that would lessen the value of 

the results and would provide information regarding only one condition. We decided to 

look at transgenic lines. 

The RNAi lines display no obvious phenotype under usual growing conditions, 

suggesting there may be functional redundancy with one or more genes causing the 

effects of the knock-down to be masked. It could also be the case that BOLT is not 

essential under normal growing conditions, so using these lines under usual conditions 

may not provide worthwhile results. An alternative approach was to use an 

overexpression line (J. Z. Zhang 2003). I had made two dozen transgenic lines that 

constitutively overexpress BOLT, however since they constantly express BOLT, using 

any of those lines would not show genes that had only recently been affected by BOLT. 

In addition, results attributable to the inhibition or enhancement of other transcription 

factors could be possible as a consequence of BOLT’s depletion of available of co-

factors. 
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To avoid the problems associated with using a constitutive overexpressor. I used a 

transgenic line, created by the TRANSPLANTA consortium (Coego et al. 2014), 

purchased from the Nottingham Arabidopsis Stock Centre (NASC), that overexpresses 

BOLT using a �–estradiol-inducible promoter. We then considered whether to use the 

transgenic line exclusively and compare treated plants to untreated plants, or to compare 

wild-type to the transgenic line, both treated with the inducer. We chose the second 

option because there is evidence that �–estradiol affects the expression of some genes 

(Petryszak et al. 2013; Petryszak et al. 2016; Kapushesky et al. 2011). So, I treated wild-

type and transgenic plants with the inducer and measured expression over the course of 

24 hours using qPCR. BOLT’s expression increased 25-fold in that time (Fig 4.1). 

In addition to being able to conditionally over express BOLT, my previous results 

showing that BOLT-YFP is detectable only in the nucleus of the plant, and showing 

tissue specificity that agreed with the GUS staining pattern, indicates that BOLT may  
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Figure 4.1  BOLT expression in wild type and inducible lines 

Ten-day-old plate-grown seedlings were treated with 75µM � − estradiol to induce 

overexpression. RT-qPCR was used to measure BOLT expression 4, 8, and 24 hours after 

treatment. β-actin and UBI10 were used as reference genes. Data represents three 

biological replicates and error bars show standard error of the mean. 
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not be mislocalized in overexpressing plants, decreasing the possibility of off-target 

interactions. Using an inducible promoter had two additional advantages. Firstly, BOLT 

expression in the inducible line was about 25-fold after 24 hours. This is comparable to 

the increase I saw in plants under stress treatments. In the constitutively overexpressing 

lines, BOLT expression was approximately 100- to 700-fold higher than wild type 

depending on the line, which I thought might lead to less meaningful results caused by 

artificially high expression levels. Secondly the ability to induce expression at a 

particular time allowed me to focus on the initial changes in gene expression that are 

close to a direct result of an increase in BOLT expression, highlighting those genes that 

are close to BOLT in the pathway.  

 

Results 

Experimental design 

In designing the experiment, our aim was to identify genes that BOLT 

immediately affects. To determine what time points to sample we considered the results 

of two studies, one of which used CHiP-seq followed by RNA-seq to identify ethylene 

binding and the related subsequent transcription of downstream genes (Chang et al. 

2013). The authors found waves of transcription beginning four hours after binding and 

continuing until the end of the experiment, at 24 hours. In the second study, the authors 

developed and tested the XVE chimeric transcription activator used in the 

TRANSPLANTA lines, showing the increase in transcription of a transgene (GFP) to be 

linear between six and 24 hours after induction with some induction as early as one hour 
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(Zuo et al. 2000). Based on these results, I used samples collected at 0, 8, 12, and 24 

hours after induction.  

BOLT expression in inducible line 

To test the expression of the chemically-inducible line, transgenic seeds were 

grown, together with wild type, on plates under continuous 115µM/m2s at 22oC for ten 

days. Treatment with inducer was by spraying, with 75µM �–estradiol. BOLT expression 

increased approximately 25-fold over 24 hours in the inducible line, but not the wild type 

(Fig. 4.1). For the microarray samples, the same growing conditions and treatments were 

applied. Samples were collected before treatment (0 hr time point), and 8, 12, and 24 

hours after treatment, total RNA isolated, and DNase treatment applied as described in 

Chapter 2. The samples were tested for integrity on a BioRad Experion (Fig. 4.2). 

Microarray data analysis 

Oaklabs, Hennigsdorf, Germany performed the microarray experiment using an 

Agilent platform and provided us the raw data. Our collaborators at Penn State, Dr. Réka 

Albert and Dr. Jorge G.T. Zañudo normalized the data using quantile normalization and 

performed a one-way ANOVA for each gene in each sample type. Using the Storey 

method, their statistical analysis generated sets of 208 (q<.01) and 1142 (q<.05) genes 

differentially expressed over the time course and between the wild-type and the induced 

transgenic line (Storey et al. 2005; Storey et al. 2015). A q-value is the false discovery 

rate (FDR) adjusted p-value. A notable result was that majority of the differentially 

expressed genes (62% of the 208 and 61% of the 1142) were downregulated over the 
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time course and significantly more were downregulated between 12 and 24 hours (84% 

and 69% respectively) suggesting that BOLT may be a negative regulator of 

transcription.  

Initially I wanted an overall picture of what genes were differentially expressed 

between the wild type and the induced line to see if the data as a whole suggested a role 

for BOLT so the first thing I did with the results was to compare the genes differentially 

expressed per the microarray with the Arabidopsis genome as a whole. To do this, I used 

TAIR Gene Ontology Annotations, which provides functional annotations for sets of 

genes, to compare the GO terms assigned to the 208 differentially expressed genes 

(q<.01) in the microarray to the GO terms assigned to the genes in the entire Arabidopsis 

genome(Berardini et al. 2004).  

Next I wanted to know if the data contained evidence that any of the genes 

differentially expressed in the microarray were also regulated by genes in the three 

groups of potential upstream genes identified in Chapter 2. In that chapter I considered 

experimental and publically available evidence that MPK4, MKK1 or MKK2, the four 

embryogenesis genes LEC1, LEC2, FUS3, or ABI3, or the three SA-related genes PAD4, 

SID2, and NPR1 all regulate or potentially regulate BOLT (Fig. 2.5) (Petryszak et al. 

2013; Petryszak et al. 2016; Kapushesky et al. 2011). 

Then, I wanted to know the identities of genes differentially expressed in the 

microarray that are related to each other by molecular function, biological process, or 

cellular component. I did this using the Database for Annotation, Visualization and 

Integrated Discovery (DAVID), which can be used to identify enriched biological themes 

and to cluster functionally-related gene groups, I analyzed the gene ontology (GO) terms 
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in the 1142 differentially expressed genes (q<.05) to identify enriched clusters that may 

suggest a role for BOLT (D. W. Huang, Sherman & Lempicki 2009a; D. W. Huang, 

Sherman & Lempicki 2009b) 

BOLT is a transcriptional repressor that regulates chloroplast- and stress-related 

genes  

Using the Gene Ontology Functional Categorization tool at the TAIR website I 

compared the GO terms classifications of the 208 differentially expressed genes (q<.01) 

to the background set of all the Arabidopsis thaliana genes (Fig. 4.3). The smaller gene 

set was used because of the limitations of the TAIR website. The largest category of 

terms for the microarray set of genes was “response to stress or stimulus”. Thirty-three 

percent of the differentially expressed genes had terms in this category compared to 24% 

of genes in the Arabidopsis genome. We had expected to see genes related to stress be 

differentially expressed in our results. The largest differences between the differentially 

expressed genes and the genome as a whole were in Cellular Compartment ontology 

terms. We were surprised to see that 30% of the differentially expressed genes had a 

“chloroplast” ontology term whereas in the total genome, that proportion is only 14%. 

“Mitochondria” terms are also overrepresented, and “plastid” terms are three times higher 

in the differentially expressed gene set (Fig. 4.3). Genes with the term “plasma 

membrane” are more than twice as prevalent in our microarray results as in the genome. 

This is an overall analysis that gives us an idea of what types of genes BOLT regulates. It 

indicates regulation preferentially targeted to organelles and the plasma membrane. 
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Although surprising at first, upon consideration, these are areas of the cell which are 

active in defense and abiotic stress thus the results are reasonable. 

 

Well ID Sample Name RNA Area  RNA Conc. (ng/µl) Ratio [28S:18S] RQI RQI Classification

L Ladder 268.18 160   

1 272 0 1 550.29 328.31 1.29 8.6 Green

2 272 8 1 504.94 301.25 1.34 8.4 Green

3 272 12 1 570.24 340.2 1.38 8.6 Green

4 272 24 1 513.72 306.48 1.35 8.3 Green

5 272 0 2 480.62 286.74 1.01 8.1 Green

6 272 8 2 522.24 311.57 0.99 7.4 Green

7 272 12 2 539.96 322.14 1.1 8.1 Green

8 272 24 2 419.17 250.08 1.09 7.9 Green

9 272 0 3 588.34 351 1.08 8.2 Green

10 272 8 3 486.02 289.96 1.11 8.2 Green

11 272 12 3 500.62 298.67 1.04 8 Green

12 272 24 3 510.13 304.34 0.98 7.3 Green

Ladder     0hr-1   8hr-1     12hr-1  24hr-1 0hr-2  8hr-2    12hr-2   24hr-2  0hr-3  8hr-3    12hr-3   24hr-3 

inducible line

Ladder     0hr-1   8hr-1     12hr-1   24hr-1   0hr-2   8hr-2    12hr-2   24hr-2   0hr-3   8hr-3    12hr-3   24hr-3 

wild type

Well ID Sample Name RNA Area  RNA Conc. (ng/µl) Ratio [28S:18S] RQI RQI Classification

L Ladder 268 160   

1 wt 0 1 478.96 285.95 1.12 8.6 Green

2 wt 8 1 442.05 263.92 1.34 8.7 Green

3 wt 12 1 493.6 294.69 1.3 8.6 Green

4 wt 24 1 477.9 285.32 1.32 8.5 Green

5 wt 0 2 473.92 282.94 1.24 8.5 Green

6 wt 8 2 329.33 196.62 1.26 8.3 Green

7 wt 12 2 517.45 308.93 1.26 8.4 Green

8 wt 24 2 595.59 355.58 1.31 8.3 Green

9 wt 0 3 592.5 353.74 1.22 8.5 Green

10 wt 8 3 578.39 345.31 1.23 8.2 Green

11 wt 12 3 573.67 342.49 1.28 8.4 Green

12 wt 24 3 581.39 347.1 1.32 8.4 Green

A

B

ß 28S
ß 18S

ß 28S
ß 18S
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Figure 4.2  Quality assessment data for RNA microarray samples 

BioRad Experion Automated Electrophoresis System quality assessment. All samples 

have acceptable (>7) RQI (RNA quality indicator). Virtual bands and calculated 28S:18S 

ratio in good range. A, wild type. B, inducible line. Three biological replicates used. 
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Genes upstream from BOLT are known to regulate genes differentially expressed in 

the microarray 

Our hypothesis is that BOLT responds to stress and is downstream of the 

MEKK1�MKK1/MKK2�MPK4 cascade so I next wanted to know if there were genes 

differentially expressed in the microarray that are also regulated by genes in the MAPK 

cascade. I used European Bioinformatic Institute’s (EBI) Expression Atlas (Petryszak et 

al. 2016; Kapushesky et al. 2011) to query how many of the 208 differentially expressed 

genes (q <.01) were shown in its database to have altered expression (>2-fold and p>.05) 

in the mkk1, mkk2, or mkk1/2 mutants. Sixty-six genes of the 208 were also regulated in 

mkk1 or in the double mutant. Fifty-seven were downregulated and 9 were upregulated. 

To get an idea if this was significant, I performed the same query with four different 

random samplings of 208 Arabidopsis gene IDs obtained using atgenie.org/random-list 

(Sundell et al. 2015). The number of random genes regulated in the mkk1, mkk2, or 

mkk1/2 double mutant ranged from 29 to 34 with an average of 31 suggesting 66 genes is 

significant. This further supports that BOLT may operate downstream of the 

MEKK1�MKK1/MKK2�MPK4 pathway. 

In Chapter 2 I noted that BOLT is negatively regulated in the lec1, fus3, lec2, and 

abi4 mutants (Petryszak et al. 2013; Petryszak et al. 2016; Kapushesky et al. 

2011)(genevestigator.com). These genes are described as master regulators of embryo 

development, and control the biosynthesis and accumulation of seed storage proteins 

(Harada 2001; Kroj et al. 2003). Of the 208 (q<.01) genes differentially expressed in our 

microarray, 60 (35 downregulated, 25 upregulated), 53 (24 downregulated, 29 

upregulated), 51 (17 downregulated, 34 upregulated), and 21 (3 downregulated and 18 
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upregulated) are regulated in the fus3, lec1, abi3, or lec2 mutants respectively. This 

suggests a genetic connection between BOLT and these genes, but the nature of the 

relationship is not clear.  
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Figure 4.3  GO categories of differentially expressed genes 

compared to genome as a whole. Gene Ontology categories in genes differentially 

expressed in microarray (q<.01) and the Arabidopsis genome using Gene Ontology at 

TAIR (Arabidopsis.org). 
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In light of the interesting results showing that a significant number of genes 

differentially expressed in the microarray are apparently regulated by MKK1/MKK2 or 

the embryogenesis genes, I was surprised to find that is not the case for the SA-related 

genes, PAD4, SID2, and NPR1. Only SID2, important in SA accumulation, regulated any 

of the differentially expressed genes and only 20 of them (Dewdney et al. 2000; Nawrath 

& Métraux 1999). This suggests that these genes act on BOLT outside of the MAPK 

pathway. 

GO terms analysis of differentially expressed genes using DAVID 

To assess whether the genes differentially expressed between wild type and the 

inducible line may be related functionally and to highlight probable biological themes 

represented in the data I used the functional annotation tool of Database for Annotation, 

Visualization and Integrated Discovery (DAVID) to cluster the 1142 differentially 

expressed genes (q<.05). The DAVID software clusters genes based on the degree of 

similarity between their respective sets of annotation terms(D. W. Huang, Sherman & 

Lempicki 2009a; D. W. Huang, Sherman & Lempicki 2009b). The clusters are ranked 

using a calculation based on the p-values of each term’s inclusion in the cluster. Table 2 

shows the eight clusters of genes differentially expressed in the microarray that have the 

highest enrichment scores. DAVID does not create any of the annotation content, its 

sources are primarily NCBI Entrez Gene (www.ncbi.nlm.nih.gov/Entrez/) and UniProt 

(www.pir.uniprot.org/). 

The cluster of terms with the highest enrichment score also represented the largest 

number of genes; 222 of the 1142 genes (19%) had “chloroplast” as a GO term. Of these 
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182 or 82% were downregulated. Chloroplast genes are overrepresented 1.5- to 2-fold in 

the differentially expressed gene set. The next three clusters were also related to 

chloroplasts. Twenty-four genes respond to light, 21 are involved in starch biosynthesis 

and maltose metabolism, and 21 genes have the term “photosystem II assembly”. These 

genes are involved in primary and secondary metabolic pathways as well as in 

photosynthesis and carbon metabolism and are overrepresented 2.4 to 4-fold in the set of 

differentially expressed genes. 

The next two clusters contain the most statistically overrepresented groups of 

genes compared to the genome as a whole, with 4 to 23-fold enrichment over a random 

sample of the same number of genes. These two clusters are particularly interesting in 

that each is comprised of genes only from a specific complex, the glycine decarboxylase 

complex (GDC), or the NAD(P)H dehydrogenase complex (NDH). DAVID identified 

four GDC genes and eight NDH genes. Further review of the differentially expressed 

genes revealed that BOLT regulated three more genes encoding GCD proteins. This total 

of six genes encodes all of the proteins of the GCD. Six additional genes encoding 

subunits and ancillary proteins of the NDH were also differentially expressed bringing 

the total to fourteen differentially expressed NDH complex genes.  

The GDC system, comprises four proteins, which together, are the mitochondrial 

component of the photorespiratory system, and function in the glycine to serine 

interconversion reactions in that system (Fig 4.4) (Timm et al. 2012). In Arabidopsis, the 

four proteins are encoded by eight genes, two genes each for P-protein (At4g33010 and 

At2g26080) and L-protein (At3g17240 and At1g48030), three genes for H-protein 
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(At2g35370, At2g35120 and At1g32470) and one gene for T-protein (At1g11860) 

(Bauwe 2003; Hasse et al. 2013; Buchanan et al. 2015). Six of these eight genes,  
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Table 2  GO terms clusters of differentially expressed microarray genes 

with highest enrichment scores (q<.05) using DAVID (david.ncifcrf.gov). 

 

Enrichment    Score:    10.56 Chloroplast Number Fold  

Category Term of genes p-value Enrichment

Cellular Compartment GO:0009507~chloroplast 222 3.37E-10 1.49

Enrichment    Score:    4.11 Light Number Fold  

Category Term of genes p-value Enrichment

Biological Process GO:0009637~response to blue light 18 2.23E-06 4.00

Biological Process GO:0010218~response to far red light 16 1.23E-05 3.92

Biological Process GO:0010114~response to red light 16 1.79E-05 3.80

Enrichment    Score:    3.85 Photosynthesis Number Fold  

Category Term of genes p-value Enrichment

Biological Process GO:0000023~maltose metabolic process 20 1.76E-05 3.17

Biological Process GO:0019252~starch biosynthetic process 21 3.23E-04 2.48

Biological Process GO:0043085~positive regulation of catalytic activity 14 4.99E-04 3.14

Enrichment    Score:    2.83 Plastid Number Fold  

Category Term of genes p-value Enrichment

Biological Process GO:0010207~photosystem II assembly 21 7.30E-06 3.24

Biological Process GO:0009657~plastid organization 10 7.99E-03 2.86

Enrichment    Score:    2.63 Glycine    Cleavage    Complex Number Fold  

Category Term of genes p-value Enrichment

Cellular Compartment GO:0005960~glycine cleavage complex 4 5.83E-04 20.18

Biological Process GO:0019464~glycine decarboxylation via glycine cleavage system 4 1.34E-03 15.84

Molecular Function GO:0004375~glycine dehydrogenase activity 3 5.29E-03 23.42

Enrichment    Score:    2.47 NAD(P)H    dehydrogenase    complex Number Fold  

Category Term of genes p-value Enrichment

Cellular Compartment GO:0010598~NAD(P)H dehydrogenase complex 8 2.08E-07 15.52

Biological Process GO:0010258~NADH dehydrogenase complex assembly 3 1.00E-02 17.82

Molecular Function GO:0016655~oxidoreductase activity, acting on NAD(P)H, quinone 3 1.67E-02 14.05

Molecular Function GO:0048038~quinone binding 5 2.64E-02 4.34

Enrichment    Score:    2.47 Hormones Number Fold  

Category Term of genes p-value Enrichment

Biological Process GO:0009753~response to jasmonic acid 28 2.90E-05 2.46

Biological Process GO:0009733~response to auxin 29 2.29E-03 1.85

Biological Process GO:0009739~response to gibberellin 12 3.99E-03 2.77

Biological Process GO:0009751~response to salicylic acid 13 3.19E-02 1.98

Enrichment    Score:    2.00 Defense Number Fold  

Category Term of genes p-value Enrichment

Biological Process GO:0019684~photosynthesis, light reaction 19 8.30E-07 4.07

Biological Process GO:0009409~response to cold 35 1.01E-04 2.06

Biological Process GO:0009867~jasmonic acid mediated signaling pathway 26 3.54E-04 2.20

Cellular Compartment GO:0010319~stromule 7 2.30E-03 5.04

Biological Process GO:0009814~defense response, incompatible interaction 11 4.12E-03 2.94

Biological Process GO:0000165~MAPK cascade 19 4.77E-03 2.08

Biological Process GO:0010310~regulation of hydrogen peroxide metabolic process 17 4.82E-03 2.20

Biological Process GO:0031348~negative regulation of defense response 21 1.00E-02 1.86

Biological Process GO:0009862~SAR, SA mediated signaling pathway 20 1.03E-02 1.89

Biological Process GO:0043900~regulation of multi-organism process 10 1.42E-02 2.61

Biological Process GO:0042742~defense response to bacterium 25 1.88E-02 1.65

Biological Process GO:0009595~detection of biotic stimulus 10 2.77E-02 2.33

Biological Process GO:0009697~salicylic acid biosynthetic process 16 3.21E-02 1.81
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representing all of the proteins, are downregulated in the microarray data suggesting 

BOLT inhibits the activity of the GDC system (Fig. 4.5). The strongest regulation 

occurring between 12 and 24 hours after BOLT induction. 

The NDH complex is located in the stroma-exposed thylakoid membrane and functions in 

one of the two cyclic electron flow (CEF) systems, which route electrons around 

photosystem I (PSI) resulting in reduction of the plastoquinone and acidification of the 

lumen (Fig. 4.6) (Suorsa, 2015). PGR5, a key component of the second CEF system, the 

PGRL1-PGR5 complex, is also downregulated in the microarray results, as is ferredoxin 

(FD1), which accepts electrons from PS1 and routes them into CEF. CEF is much less 

well understood than the linear electron flow of photosynthesis, however evidence of 

roles in response to environmental changes and in development has recently been 

demonstrated (Suorsa 2015). 

There are twelve genes encoding NDH complex subunits that are differentially 

expressed in the microarray results: NDHA,NDHF, NDHM, NDHN, NDHO, NDHT, 

PNSL1, PNSL2, PNSL3, PNSL4, PNSB1, PNSB2, as well as several genes, including 

CRR3 and CRR7 shown to be involved in the assembly of the complex (Ifuku et al. 

2011) (Fig. 4.7). These genes were all downregulated in the microarray experiment and 

again most of the difference is between 12 and 24 hours after the induction of BOLT (Fig. 

4.8). 
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Figure 4.4  Models of the Glycine Cleavage and Photorespiration systems 

A, Model of P-, T-, L-, and H-protein reactions of the GDC. B, Model of the 

photorespiratory system with GDC outlined in blue (Petryszak et al. 2013). 
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Figure 4.5  GDC genes are downregulated in induced line 

Comparison of GDC genes expression in microarray indicating downregulation over the 

time course, particularly at 24 hours. Vertical axis is normalized expression and 

horizontal axis is hours after treatment with 75µM β-estradiol inducer. A, wild type 

samples. B, induced samples. 
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The last significant cluster we considered contains 66 (p<.05 for inclusion in the 

cluster) genes with “photosynthesis”, “response to cold”, “MAPK cascade”, JA and SA 

signaling or biosynthesis terms, and a number of pathogen and defense response terms 

(Table 2). This cluster adds support to the hypothesis that BOLT has a role in abiotic and 

biotic stress responses and reinforces the qPCR data showing BOLT responds strongly to 

cold temperature (Fig. 2.3). 

The results indicating that BOLT may regulate genes in the chloroplast and other plastids 

in its role in biotic and abiotic stress signaling may have been the most valuable 

information to come out of this project. Before doing the microarray experiment, we had 

evidence that BOLT has a role in both biotic and abiotic stress response as do other 

AP2/ERF transcription factors, and we could see a phenotype in the overexpressing 

plants, however, I think no other experiment we could have done would have 

demonstrated so clearly that we need to look at the chloroplast and other plastids to 

elucidate BOLT’s function. 
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Figure 4.6  Model of the Cyclic Electron Flow system 

Based on representation by Yamamoto et al (Hiroshi et al. 2016). Cyclic Electron Flow 

(CEF) and Linear Electron Flow (LEF) are indicated by red and blue arrows respectively. 

CEF systems, NDH and PGR5/PGRL1, are designated by a red border. 
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Figure 4.7  Model of NDH subcomplex composition 

(Ifuku et al. 2011). Plastid-encoded subunits are in red and nuclear-encoded subunits are 

in black. Genes differentially regulated in the microarray experiment are outlined.  
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Figure 4.8  CEF genes are downregulate in induced line in microarray 

Comparison of CEF genes expression in microarray indicating downregulation over the 

time course, particularly at 24 hours. Vertical axis is normalized expression and 

horizontal axis is hours after treatment with 75µM β-estradiol inducer. A, wild type 

samples. B, induced samples.  
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Genes co-expressed with BOLT are regulated by the same MAPK cascade 

Using the 208 genes that are differentially regulated (q<.01) as nodes, our 

collaborators generated a co-expression network to understand and visualize the 

connections between and among BOLT and those genes. They connected each pair of 

genes with an edge if the average time course has a Pearson correlation coefficient 

greater than 0.95 (positive regulation) or lower than -0.95 (negative regulation) (Fig. 4.9). 

The co-expression network, being a correlation network, does not have an inherent 

directionality, however in this network, we see that most of the genes that are 

differentially expressed only at the 24hr time point are more than three edges away from 

BOLT, and 90% of the genes that are three or fewer edges from BOLT are differentially 

expressed at the 8hr time point. In addition, all but two of the genes that are differentially 

expressed at all time points are three or fewer edges away from BOLT. All of this 

suggests that the network is consistent with a directionality emanating from BOLT and 

the nodes that are one, two, or three edges away in the co-expression network are likely 

directly, or close to directly, downstream from BOLT. 

Nine genes are one edge away from BOLT, seven of which are downregulated. 

Three of these genes are also regulated in the mkk1/2 double mutant (Petryszak et al. 

2013; Petryszak et al. 2016; Kapushesky et al. 2011) (genevestigator.com). 
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Figure 4.9  Co-expression diagram including 208 differentially expressed genes 

A red edge indicates negative regulation. A gray edge indicates positive regulation. The 

genes are colored according to the time point at which they are differentially expressed: 

green, 8hr; yellow, 12hr; dark blue, 24hr; aqua, all time points. Genes that are within 

three edges from BOLT have a thick black outline. 
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Four have abiotic or biotic stress GO terms, and all but one is regulated at 8 hours with 

three regulated over the entire 24 hours. The nine genes have, for the most part, not been 

studied at all. BBX32 was shown to antagonize HY5, and is proposed to function 

downstream of photoreceptors modulating light responses (Holtan et al. 2011). A number 

of the genes have defense-related GO terms assigned computationally. The most common 

being “response to fungus”, “metal ion binding”, “response to oxidative stress”, and 

“transcription regulation”. Two edges away from BOLT are 34 genes, 16 of which are 

regulated in the mkk1/2 double mutant, and three edges away are 115 genes, 47 of which 

are regulated in the mkk1/2 double mutant (Petryszak et al. 2013; Petryszak et al. 2016; 

Kapushesky et al. 2011) (genevestigator). 

Taken together these microarray results suggest that BOLT regulates genes that 

have roles in defense, light, and cold temperature responses. Many of the genes BOLT 

regulates are in the chloroplast and other plastids. Two complexes in particular are 

downregulated by BOLT, the GDC and the NDH. This is particularly exciting as the work 

to date that has been done on these systems is limited and these results could help to 

move that part of the field forward. 

 

Discussion 

The results of our microarray experiment have given us much valuable 

information about the transcription regulation role BOLT has in Arabidopsis. I was able 

to tie differentially expressed genes to the upstream MAPK cascade as well as to two 

other groups of genes, that potentially regulate BOLT, LEC1, LEC2, EBI3, and FUS3 

(embryogenesis genes), and PAD4, SID2, and NPR1 (SA-related genes). This expands 
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our hypothesis significantly to include these genes acting through BOLT to regulate 

development, as well as cold and defense responses. 

Analysis of GO terms of the differentially expressed genes highlights BOLT’s 

role in the GDC, and possibly photorespiration as a whole, cyclic electron flow, 

photosynthesis, and defense, and suggests that many of the genes BOLT regulates are in 

the chloroplast and other plastids. In addition, the downregulation of CEF by the plants 

overexpressing BOLT supports the phenotypes we see in the overexpressing plants and is 

the opposite of that in the RNAi lines, which are slightly larger than wt, suggesting a dual 

role in low light and stress response (Fig. 3.5). 

This discussion will mirror the results section. First I will discuss the three groups 

of genes, MAPK, embryogenesis, and SA-related that regulate BOLT (Petryszak et al. 

2013; Petryszak et al. 2016; Kapushesky et al. 2011). The results of these analyses 

expand and support the hypothesized pathway. Next I will talk about the analysis of the 

microarray results as a whole using GO terms analysis. The resources at TAIR provide an 

interesting overall comparison between my data and the Arabidopsis genome, and the 

tools associated with the DAVID database highlight Biological Processes and Cellular 

Components in which the differentially expressed genes are enriched. Prominent 

categories in these analyses are discussed in detail. 

Differentially expressed genes also regulated by MAPK, SA-related, and 

embryogenesis genes 

The microarray results show that 66 of the 208 differentially expressed genes 

(p<.01)are also regulated in one or both of the mkk mutants, more than double the 
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number that would be expected based on a test using four random sample gene sets 

(Petryszak et al. 2013; Petryszak et al. 2016; Kapushesky et al. 2011). This evidence 

supports my hypothesis that BOLT acts downstream of the 

MEKK1�MKK1/MKK2�MPK4 cascade. The MEKK1�MKK1/MKK2�MPK4 

pathway has been shown to  negatively regulate defense responses by repressing cell 

death and immune responses, however the mechanism is not clear (Kong et al. 2012). 

Mutants of the pathway accumulate high levels of SA, and exhibit enhanced pathogen 

resistance (Petersen et al. 2000; Ichimura et al. 2006; Nakagami et al. 200;) Suarez-

Rodriguez et al. 2007). It is known that MPK4 downregulates SA accumulation and 

represses immune function and the microarray array results show that BOLT may also 

have a role in downregulating defense (Petersen et al. 2000)(Table 2). The 

MEKK1�MKK1/MKK2�MPK4 cascade is downstream from PAMP receptors, and  

MKK1 is required for full activation of MPK4 in response to flg22 treatment which also 

upregulates BOLT expression (Fig 2.3) (Droillard et al. 2004). Taken together this 

suggests that BOLT has a role in defense and immunity through the MAPK pathway. To 

further understand its function, we would want to measure SA levels in the 

overexpressing and RNAi plants as well as study BOLT’s responses to a wider variety of 

pathogens and/or elicitors in wild-type and the transgenic lines especially, because of the 

SA accumulation in the MAPK mutants, in the BOLT-RNAi lines.  

The MAPK cascade also has a role in cold, drought, and salinity responses, 

particularly through MKK2 (Furuya et al. 2014; Teige et al. 2004; Ichimura et al. 2000). 

Although MKK1 and MKK2 appear to act redundantly, generally MKK1 is activated by 

biotic stress while MKK2 has been shown to respond to abiotic stress, particularly cold 



 118

temperatures (Furuya et al. 2014; Qiu et al. 2008). BOLT responds to both biotic and 

abiotic stresses and is downregulated in both the mkk1 and mkk2 mutants, but more so in 

mkk1 (Figs. 2.3 and 2.5). Our microarray analysis indicates that thirty-five differentially 

expressed genes have a “cold” GO term, this further suggests that BOLT could act 

through both MKK1 and MKK2 (Table 2). 

The MEKK1�MKK1/MKK2�MPK4 cascade also plays an essential role in 

ROS metabolism (Nakagami et al. 2006; Pitzschke et al. 2009). H2O2 accumulates in 

mekk1 and mpk4 mutants and it also activates MEKK1 in protoplasts (Nakagami et al. 

2006). Because the MEKK1 protein level is also increased by H2O2, the MEKK1 cascade 

may be part of a feedback loop that regulates and responds to ROS levels. ROS 

scavenging mechanisms are disrupted in mekk1, mkk1/2, and mpk4 mutants (Pitzschke et 

al. 2009). These MAPK cascades are controlled by both SA and ROS (Pitzschke et al. 

2009). Because oxidative stress is a common response to biotic and abiotic stresses, ROS 

homeostasis is a convergence point at which to evaluate the plant stress status (Miura & 

Tada 2014).It has been shown that this MAPK pathway regulates ROS homeostasis 

(Pitzschke et al. 2009). Because BOLT is regulated by the MAPK cascade and the 

cascade is activated by ROS, it would be interesting to measure ROS, especially H2O2, 

levels in the BOLT transgenic plants as well as to measure BOLT’s response to 

exogenously applied ROS. 

More surprising and less clear than BOLT regulating defense-related genes is that 

BOLT regulates genes that are also regulated by embryogenesis-related transcription 

regulators. Embryos stained very dark in the GUS experiments indicating high expression 

in that tissue (Fig. 2.1). Four well-studied genes FUS3, LEC1, LEC2, and ABI3 are 
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central transcription regulators of embryo development, where they control the 

biosynthesis and accumulation of seed storage proteins (Harada 2001; Kroj et al. 2003). 

As discussed in Chapter 2, BOLT is downregulated in embryos of all four mutants, 

upregulated in a FUS3 overexpressor, and has an RY motif in its promoter 970 nt 

upstream from the translation start site (Petryszak et al. 2013; Petryszak et al. 2016; 

Kapushesky et al. 2011; Palaniswamy et al. 2006; Yilmaz et al. 2010; Davuluri et al. 

2003). FUS3, LEC2, and ABI3 each has a B3 DNA-binding domain that has been shown 

to bind the highly conserved RY motif (Reidt et al. 2000; F. Wang & Perry 2013). In 

addition, the embryogenesis genes and BOLT all respond to ABA (Fig. 2.3). 

Most of studies of these four genes have been focused on their roles in 

embryogenesis, however recently, involvement in post-embryotic development has been 

demonstrated (Yamamoto et al. 2010; F. Wang & Perry 2013). A 2010 microarray study 

using a FUS3 overexpressor and fus3 knock-down lines that suggest the gene’s role may 

be more diverse than its well-researched function in embryogenesis and seed maturation 

(Yamamoto et al. 2010; Wang & Perry 2013). Yamamoto et al. (2010) found regulation 

of genes that are expressed in leaves, shoots, and flowers well represented in the set of 

differentially expressed genes and showed that genes controlled by FUS3 are not 

confined to embryogenesis, but include genes involved in response to stimuli, including 

light intensity, temperature, and abiotic stress, as well as phloem loading, photosynthesis 

and the production of secondary metabolites, particularly hormone biosynthesis, 

(Yamamoto et al. 2010). In a ChIP-chip experiment to examine what sequence(s) FUS3 

binds, transcription factors were significantly overrepresented (Wang & Perry 2013). 

 



 120

A 2008 study compared the fus3-3 mutant used in the above studies as well as 

many more, to a fus3 T-DNA line, found differences in the phenotypes, and concluded 

that the fus3-3 mutation induces pleiotropic effects due to a truncated gene product. The 

conclusion was that FUS3 function is restricted to embryogenesis (Tiedemann et al. 

2008). This should be considered in any investigation of BOLT with regard to FUS3, 

however, the fact that the FUS3 overexpressing line showed opposite gene expression to 

fus3-3 corroborated the results in the Yamamoto paper (Yamamoto et al. 2010). 

LEC1 too, is well known to have roles in embryogenesis and seed maturation, but 

has very recently also been shown to be a co-activator of PIF4 in transcriptional 

regulation during postembryonic growth (Huang et al. 2015; Meinke et al. 1994; West et 

al. 1994; Harada 2001). PIF4 is a phytochrome mediating factor that integrates 

environmental signals in the coordination of stress vs. growth responses (Koini et al. 

2009). Junker et al also suggests a post-embryonic role for LEC1 as a result of ChIP-chip 

using two-week-old seedlings showing target genes involved in response to hormone 

stimulus, developmental processes, response to light stimulus, light harvesting, 

chlorophyll binding, DNA binding, and transcription factor activity, demonstrating that 

LEC1 is active in post-embryonic plants (Junker et al. 2012). 

Since these genes appear to regulate a significant number of genes that are 

differentially expressed in our microarray, a regulatory pathway from these genes through 

BOLT to the downstream genes could be a possibility (Petryszak et al. 2013; Petryszak et 

al. 2016; Kapushesky et al. 2011). Considering Yamamoto’s and Huang’s results together 

with ours, if BOLT is in a pathway with these four embryo/seed-related genes it would 
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support this latest research into roles for FUS3 and LEC1 in biotic and abiotic stress 

responses (Yamamoto et al. 2010; Huang et al. 2015). 

In addition to MKK1/MKK2 and the embryogenesis genes, BOLT is also regulated 

by a trio of SA-related genes, PAD4, important for SA signaling, SID2, which has a role 

in SA accumulation, and NPR1, a key regulator of the SA-mediated systemic acquired 

resistance pathway (Jirage et al. 1999; Wildermuth et al. 2001; Villajuana-Bonequi et al. 

2014; Dong 2004; Petryszak et al. 2013; Petryszak et al. 2016; Kapushesky et al. 

2011)(genevestigator). It was shown that the MAPK cascade that includes MEKK1, 

MKK1/2, and MPK4 regulates SA accumulation in which SID2 plays a key role 

(Pitzschke et al. 2009). Their effect on BOLT is opposite to that of the embryogenesis 

genes (FUS3, LEC1, LEC, and ABI3), and MKK1/MKK2, as BOLT expression increases 

in the pad4, sid2, and npr1 mutants. 

Because it was the case that a significant number of the differentially expressed 

genes were also regulated by the MAPK and embryogenesis genes, I expected to see 

some regulated by PAD4, SID2, and/or NPR1. However, this was not the case. Of the 

208 differentially expressed genes I found none to be regulated in the pad4 or npr1 

mutants and only 20 genes regulated in the sid2 mutant (Petryszak et al. 2013; Petryszak 

et al. 2016; Kapushesky et al. 2011) and genevestigator). The reason for this could be the 

opposite regulation. BOLT is downregulated by these genes so we may not see their 

effects when it is upregulated as it was in our microarray experiment. This hypothesis 

could be tested by doing the same microarray experiment as we have done, but including 

one or more of the RNAi lines. If the above explanation is correct, we might expect to see 

in the results genes downstream from PAD4, SID2, and NPR1. 
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It is clear that from our results that SA has a role in BOLT expression and that 

BOLT likely has a role in SA biosynthesis, accumulation, and signaling (Fig. 2.3) (Table 

2). Of the 208 differentially regulated genes in the microarray 85 are shown to be 

regulated by exogenous application of SA, in genome-wide transcription experiments 

(Petryszak et al. 2013; Petryszak et al. 2016; Kapushesky et al. 2011). Of those, 27% are 

upregulated and 73% are downregulated. In addition, in the GO terms analysis using 

DAVID, 37 genes are identified with a GO term containing “salicylic acid” (Table 2) 

(Petryszak et al. 2013; Petryszak et al. 2016; Kapushesky et al. 2011). 

GO terms analysis strongly suggest light- and defense-related roles for BOLT 

GO terms analysis is an exceedingly useful tool for making sense of large sets of 

genes. The aim of the Gene Ontology project has been to provide standard language for 

descriptions of gene products (Ashburner, Ball, Blake, Botstein, Butler, Cherry, Davis, 

dolinski, et al. 2000; Harris et al. 2004). Ontology terms are assigned based on various 

information including experimental evidence and computational analysis evidence. Not 

all genes have been assigned any GO terms, however many genes have multiple terms 

assigned both manually and electronically. GO term analysis is extremely useful in 

understanding the functional implications of a large set of genes with large numbers of 

annotations. 

Using the functional annotation tool of the Database for Annotation, Visualization 

and Integrated Discovery (DAVID) to categorize the differentially expressed microarray 

genes (p<.05), the four most enriched clusters indicate that a large number of these genes 

are chloroplast- and photosynthesis-related. The top category is “chloroplast” and 
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contains 222 genes. The following three categories contain light- and photosynthesis-

related terms with 54 unique genes between the three clusters (Table 2). This was initially 

surprising, however chloroplasts are highly responsive to environmental cues and key in 

balancing the competing energy requirements of growth and development with those 

necessary to respond to environmental and defense challenges (Muhlenbock et al. 2008) 

(Huot et al. 2014) (Kangasjarvi et al. 2012). In Chapters 2 and 3 we have seen that BOLT 

responds to biotic stress and that overexpression results in a significant light intensity-

related phenotype (Figs. 2.3, 3.5, and 3.6). Thus, it should not be a surprise that BOLT 

would regulate chloroplast and light-related genes. 

ROS, hormones and other secondary metabolites are produced in the chloroplasts, 

and are available for a rapid and immediate response to abiotic and biotic stress as well as 

for longer-term altered gene expression response (Peterhansel et al. 2010). 

For example, functional chloroplasts are required for the hypersensitive response, 

and P. syringae treatment during the daytime causes a more vigorous defense response 

than nighttime treatment demonstrating a connection between light and defense (Delprato 

et al. 2015). The results in Chapter 2 and Chapter 3 indicating BOLT may localize to 

some type of nuclear body, possibly a photobody, and that the overexpression of BOLT 

causes a significant low-light phenotype suggest that further investigation into BOLT’s 

regulation by light may result in a role for BOLT in both light and defense. In addition, 

investigation of the promoter sequence including 3kb upstream of BOLT shows quite a 

few light-related DNA-binding sites suggesting BOLT may be regulated by proteins 

responsive to light (Table 1). An interesting question these results raise is whether there 
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is an observable chloroplast phenotype or a difference in chlorophyll content between 

wild type and either the overexpressing or RNAi lines. 

Similar results with another AP2/ERF gene 

I was interested to know if genes regulated by other AP2/ERF transcription 

factors might have some similar GO annotations as genes regulated per our microarray. 

To find out, I searched publicly available datasets for genome-wide experiments similar 

to our microarray that compared gene expression of upregulated AP2/ERF transcription 

factors to wild-type expression. I found only one, but it is similar to our experiment and 

the results are very interesting. It is a microarray experiment that included data 

comparing an ERF104 overexpression line to wt (Table 3). I used DAVID to do a 

functional analysis of GO terms associated with this data, as I did with our data, and 

found results that had some striking similarities to the BOLT data, especially in the top 

three categories (david.ncifcrf.gov). The top cluster is the same as in the BOLT analysis, 

“chloroplast”, the second is identical to the third cluster in the BOLT analysis and 

includes “starch biosynthetic process”, “maltose metabolic process”, and “positive 

regulation of catalytic activity”. The third category is similar to category #8 in the BOLT 

analysis, including genes related to defense, SA, JA, and MAPK. There are other similar 

clusters, but there are also divergent ones. Interestingly, the resulting paper describes a 

stress-related role for ERF104 and demonstrates physical interaction between ERF104 

and MPK6 (Timm et al. 2013) 
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Table 3  GO terms clusters of differentially expressed genes in ERF104 

Overexpression compared to wild type (david.ncifcrf.gov). 

 

 
  

Enrichment    Score:    57.15 Chloroplast Number Fold

Category Term of genes p-value Enrichment

Cellular Compartment GO:0009507~chloroplast 699 9.99E-76 1.91

Enrichment    Score:    35.22 Photosynthesis Number Fold

Category Term of genes p-value Enrichment

Biological Process GO:0019252~starch biosynthetic process 104 3.13E-43 4.39

Biological Process GO:0000023~maltose metabolic process 88 2.20E-42 4.98

Biological Process GO:0043085~positive regulation of catalytic activity 54 3.13E-22 4.32

Enrichment    Score:    32.86 Defense Number Fold

Category Term of genes p-value Enrichment

Biological Process GO:0010363~reg. of plant-type hypersensitive resp. 163 5.19E-56 3.77

Biological Process GO:0006612~protein targeting to membrane 163 3.65E-52 3.57

Biological Process GO:0043069~negative reg. of programmed cell death 97 3.50E-46 4.93

Biological Process GO:0031348~negative regulation of defense response 122 5.03E-43 3.85

Cellular Compartment GO:0005623~cell 275 7.44E-43 2.34

Biological Process GO:0009697~salicylic acid biosynthetic process 98 6.91E-36 3.96

Biological Process GO:0009862~SAR, SA-mediated signaling pathway 105 3.93E-33 3.54

Biological Process GO:0000165~MAPK cascade 94 2.74E-31 3.68

Biological Process GO:0042742~defense response to bacterium 125 4.51E-30 2.94

Biological Process GO:0009867~JA-mediated signaling pathway 107 9.18E-30 3.23

Biological Process GO:0010310~reg. of hydrogen peroxide met. process 73 1.00E-21 3.37

Biological Process GO:0009595~detection of biotic stimulus 49 7.14E-19 4.08

Biological Process GO:0050832~defense response to fungus 140 2.65E-15 1.96

Biological Process GO:0043900~regulation of multi-organism process 40 7.06E-14 3.73
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ERF104 is an AP2/ERF, but it is not in the same sub-family as BOLT. It has one 

AP2 domain as does BOLT. ERF104 has been shown to increase expression extremely 

rapidly when light is increased from low to high intensity suggesting a rapid transcription 

mechanism or sequestered mRNA in an undetectable state (Moore et al. 2014). The 

interaction mentioned above between ERF104 and MPK6 is disrupted with the 

application of flg22 peptide(Bethke et al. 2014; Bethke et al. 2009). This is similar to the 

MPK4-MKS1-WRKY33 association discussed in Chapter 2 suggesting it could be that 

defense-related transcription factors, including BOLT, are sequestered in the nucleus for 

swift deployment should a stress cue arrive. 

Although this evidence is the result of examining only one other gene, it is very 

interesting that the most enriched clusters in both microarrays are chloroplast, 

photosynthesis, and defense-related, and that ERF104 expression is shown to increase 

rapidly under strong light. These results could suggest a role in chloroplast/defense 

signaling for AP2/ERF transcription factors through MAPK pathways and can serve as a 

direction in which to take further research. As genome-wide analyses come down in 

price, there will be more of this type of data available that can be used to further the field 

at a lower cost. 

BOLT may have a role in photorespiration 

In our microarray results, the genes that encode all four proteins comprising the 

GDC of the mitochondrial photorespiratory system are downregulated (Fig 4.5). The 

GDC is a key component of the photorespiratory system that impacts plant growth and 

response to pathogens and other environmental conditions. The evidence suggests that 
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BOLT’s inhibition of the GDC influences stress signaling through redox status, 

metabolite concentration, and plant growth in low light conditions. 

Rubisco can bind either CO2 or oxygen. CO2 binding precedes its entry into the 

Calvin-Benson Cycle, and O2 proceeds to photorespiration (Fig 4.4). Oxygen is bound 

approximately one third as often as CO2 under normal growing conditions so 

photorespiration is an significant set of ongoing reactions in the cell (Timm et al. 2012; 

Peterhansel et al. 2010). Under light conditions the proteins involved in photorespiratory 

reactions comprise about half of the proteins in the mitochondria, another indication that 

photorespiration is a key process (Douce et al. 2001). Recent research has redirected the 

focus from photorespiration as a wasteful system necessary to accommodate the high 

concentration of oxygen in the atmosphere, to photorespiration as the major producer of 

H2O2 and a key system contributing to the production of primary and secondary 

metabolites, although a decrease in photorespiration under low light and low oxygen 

environments supports a role in protecting plants against oxidative photodestruction 

resulting from a combination of high light and high oxygen (Bauwe et al. 2012; 

Peterhansel et al. 2010; Foyer et al. 2009; Davies, 1980). These processes have a major 

influence on the cellular redox status and on multiple signaling pathways, particularly 

those governing hormonal control of growth through photosynthesis, and environmental 

and defense responses under stress conditions (Foyer et al. 2009; Timm et al. 2012). 

Because of its participation in multiple pathways, H2O2 is especially suitable for 

mediating crosstalk between different resistance mechanisms (Neill et al. 2002). 

The GDC system represents the major mitochondrial component of the 

photorespiratory pathway. Very briefly, the GDC convers glycine to serine, CO2 and 
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NH3(Bauwe 2003; Engel et al. 2007; Palmieri et al. 2010). What is not well understood is 

how the GDC is regulated within the photorespiratory system and by photosynthesis, or 

its overall physiological role in the plant (Timm et al. 2012). Both glycine and serine 

concentrations exert feedback which affects the GDC, photorespiration, and 

photosynthesis but though these affects are known the mechanisms are not clear (Timm 

et al. 2012). The CO2 and NH3 produced in the GDC reactions are used in the 

biosynthesis of secondary metabolites, some of which play key roles in abiotic stress 

response and defense and Timm et al suggest that serine has a signaling role in 

photorespiration-related transcription (Sørhagen et al. 2013; Timm et al. 2013). All of the 

proteins in the GDC are downregulated in our microarray suggesting BOLT affects both 

photorespiration and photosynthesis (Sørhagen et al. 2013; Palmieri et al. 2010; Wingler 

et al. 2000; Mouillon et al. 1999; Engel et al. 2007). 

GDC is a system of three enzymes (L-protein, T-protein, and P-protein) and one 

additional protein (H-protein) that shuttles an intermediary between the enzymes(Timm 

et al. 2012)(Fig. 4.4).  Engel et al suggest the GDC is required for survival as a double 

mutant lacking GDC activity dies at the cotyledon stage , but this is the only study that 

has shown that (Engel et al. 2007). It is also suggested that GDC activity could be a 

signal in a regulatory network that adjusts carbon flux through the Calvin-Benson cycle 

in response to photorespiration, however the jury is still very much out on the 

physiological roles of the reaction in photorespiration in general and of the GDC complex 

specifically although it is clear that inhibiting photorespiration reduces photosynthesis 

and vice versa (Timm et al. 2015 and 2012). This demonstrates one example of 

coordination between photosynthesis and stress responses. All four of these proteins are 
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encoded by genes that were downregulated in the microarray results (Fig. 4.5). This 

suggests that BOLT may have a role in the regulation of photosynthesis through  

photorespiration. 

Although the GDC has not been very well studied, there is some evidence that 

GDC is involved in responses to abiotic and biotic stress, and light. GDC activity is 

inhibited by inducers of ROS, such as the bacterial elicitor harpin, wounding, cold 

temperature, dehydration, and mutant genotypes that result in high ROS levels, mostly 

conditions in which BOLT is upregulated (Fig. 2.3) (G.-T. Huang et al. 2011; Palmieri et 

al. 2010; Taylor et al. 2002; Hoffmann et al. 2013). In publicly available microarray 

results the GDC genes are also shown to be regulated by additional stresses including 

viruses, insect feeding, fungus, phosphate deprivation and low light(Petryszak et al. 2013; 

Petryszak et al. 2016; Kapushesky et al. 2011). All six of the GDC genes downregulated 

by BOLT induced overexpression were also downregulated in the mkk1/mkk2 double 

mutant and in the mpk4 mutant. (Petryszak et al. 2013; Petryszak et al. 2016; Kapushesky 

et al. 2011)genevestigator.com). This suggests that we could expand our hypothesized 

pathway that the MAPK cascade induces BOLT expression, to include the subsequent 

downregulation of GDC genes in response to abiotic and biotic stress. 

GDC proteins are also strongly light regulated, and compromising 

photorespiration impairs photosynthesis (Foyer et al. 2009; Timm et al. 2013; Timm et al. 

2012). Rosettes of plants overexpressing BOLT are similar to wild type in size in normal, 

light, however in low light they are much smaller. I suggest that the GDC is necessary in 

low light conditions and the inhibition by BOLT overexpression together with low light 

reduces photorespiration to such a level that photosynthesis is severely curtailed. It could 
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be that inhibiting GDC impairs photosynthesis enough to impact the size of the 

overexpressors under low light. Conversely, the RNAi lines, in which BOLT is knocked 

down almost completely, grow larger in low light because the GDC is necessary and 

there is no BOLT to downregulate it. These results suggest that BOLT’s role in 

downregulating the GDC could be in response to abiotic or abiotic stresses signaled via 

the MEKK1�MKK1/MKK2�MPK4 pathway and that the low light phenotype suggests 

that the GDC is not required in normal light but is required in low light. 

Another GDC phenotype that corresponds to plants overexpressing BOLT is that 

plants engineered to bypass much of the photorespiratory system, including the GDC are 

larger than wild-type plants in short days under normal light intensity (Fig. 4.10) 

(Kebeish et al. 2007; Peterhansel et al. 2010). This is the same phenotype we see in 

BOLT overexpressors under similar conditions, suggesting the overexpression of BOLT 

does in fact downregulate the GDC. 

In addition to the six GDC genes in the mitochondria, four photorespiratory genes 

in the peroxisome are also downregulated in the microarray, GOX1, GOX2, HPR1, and 

OPR3. The peroxisome is the central H2O2 producing organelle of photorespiration and 

these genes were shown to have roles in defense and immunity through ROS signaling 

further suggesting a role for BOLT in regulating biotic stress signaling(Sørhagen et al. 

2013). To provide further evidence that GDC genes are in a pathway with BOLT and the 

MAPK genes, a qPCR experiment could be performed using the mkk1/2 double mutant 

plants, and the BOLT overexpressing and RNAi lines and primers for the GDC genes. 
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BOLT may have a role in cyclic electron flow 

In our microarray results, genes in both cyclic electron flow (CEF) systems, the 

NDH and PGR5/PGRL1, were downregulated (Fig. 4.8). CEF has been known for 

decades, however to date only the identity of the subunits and the overall structure is 

considered to be understood, however focus is being turned to its physiological role and 

evidence is starting to emerge that CEF is an important function in plants under low light 

and stress conditions (Suorsa et al. 2009; Suorsa 2015). 

There are two modes of electron transport involving Photosystem I (PSI), one 

linear, through the photosystem on to the Calvin-Benson Cycle, the other cyclic, with 

electrons being routed back to the PQ pool (Fig. 4.6). This second process is termed 

cyclic electron flow, or CEF. Two complexes are known that perform CEF, and it is 

understood that they act separately, although under what conditions each operates is not 

known (Joliot & G. N. Johnson 2011; Suorsa 2015; Suorsa et al. 2016). It has been shown 

that both complexes accept electrons from ferredoxin (FD1) and pass them back to the 

plastoquinone (PQ) (Suorsa 2015; Yamori et al. 2011). 

The NDH complex is a multiprotein complex comprising more than 30 subunits, 

that functions in CEF in the non-appressed thylakoid membranes of the chloroplast 

(Suorsa 2015). Fourteen genes encoding these complexes are regulated by BOLT. The 

identity of the genes that encode the proteins of the NDH, along with a number of 

ancillary proteins that assemble and stabilize the complex have only recently been 

established, and a model of the structure has been suggested (Fig 4.7) (Peng et al. 2011; 

Ifuku et al. 2011; Suorsa et al. 2009; Suorsa 2015). PGR5/PGRL1 also plays a role in 

CEF, and PGR5 is downregulated in our microarray. 
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Figure 4.10  BOLT overexpressing plants share phenotype with GDC bypass plants 

 when both are grown in short (12-hour) days. A, model of a GDC with the bypass 

pathway shown in pink. B, wild type plants, left, GDC bypass mutant, right (Peterhansel 

et al. 2010). C, wild type, left, BOLT overexpressor, right. 

  

B
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As the aim of most of the research into the NDH complex has been to identify the 

subunits and structure, most of the work has been done under optimal growth conditions. 

The NDH comprises a significant number of proteins, so it could be expected that the 

complex would be critical to the survival of the plant, yet under usual growing conditions 

NDH-deficient plants appear normal (Shikanai 2007; Yamori et al. 2011; Yamori et al. 

2015). Recently there has been some investigation into the status of the CEF systems 

under stressful conditions. An interesting result is that the abundance of the NDH 

complex has been shown to decline under various conditions such as cold, low light, 

drought, and heat, suggesting a role for the NDH complex in abiotic stress response or 

signaling (Yamori et al. 2011; Yamori et al. 2015; Ibáñez et al. 2010; García-Andrade et 

al. 2013; Ueda et al. 2012). 

There is evidence that connects the phenotype we see in the BOLT overexpressing 

and RNAi plants with the inhibition of CEF. Plants that constitutively overexpress BOLT 

are much smaller in low light compared to wild-type plants, and the knockdown plants 

are somewhat larger (Fig 3.5). Yamori et al demonstrated that rice plants lacking the 

NDH complex grown under low light (50µM/m2s) or in cold temperature each had 

reduced plant growth with less biomass and lower grain yield than similarly treated wild-

type plants (Yamori et al. 2011; Yamori et al. 2015). The plants grown at low light 

intensity also had lower measures of photosynthetic components, lower CO2 assimilation 

and lower electron transport rates than wild type (Yamori et al. 2015). Further evidence 

of CEF’s role in low light conditions is exemplified in Arabidopsis by three mutants 

lacking both CEF systems which were very small compare to wild type under low light 

conditions (Fig 4.11) (Munekage et al. 2004). The conclusion drawn by Yamori et al is 
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that NDH is not necessary for photosynthesis in normal light, but in low light it is 

important, and possibly has a dual role in maintaining photosynthesis in low light, while 

also acting as a safety valve to prevent over-reduction of the stroma under stress 

conditions (Yamori et al. 2011; Yamori et al. 2015). If CEF is required for photosynthesis 

in low light, it is reasonable that the RNAi plants would be larger than wild-type plants 

because express almost no BOLT which downregulates numerous CEF genes. This 

proposed dual role is interesting because of the phenotypes we see in the plants 

overexpressing BOLT. Under all conditions the plants flower early, and we propose this 

is a stress response, but under low light there is the additional phenotype of very small 

plants in the overexpressing lines and larger plants in the RNAi lines (Figs. 3.5). 

Several additional papers further support the dual role concept for CEF. In 

Arabidopsis, pathogen attack destabilized the NDH complex, and in CEF impaired plants, 

disease resistance to fungal pathogens was substantially enhanced (García-Andrade et al. 

2013). In Marchantia, an ndh mutant had a reduced PQ pool at low light intensity, and 

Ibanez et al showed that the NDH is the more important CEF complex in shade plants, 

while PGR5 is more important in sun plants lending more support to the notion that the 

NDH complex is important in low light (Ibáñez et al. 2010). 

Ten of the CEF genes downregulated on our microarray experiment are also 

downregulated in the mkk1/2 double mutant, as well as in water deprivation, cold 

temperature, and flg22 treatments based on experiments collected at EBI’s Expression 

Atlas (Petryszak et al. 2013; Petryszak et al. 2016; Kapushesky et al. 2011). These data, 

which parallel the experimental data we show in Chapter 2, suggesting that the MAPK  
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Figure 4.11  In low light intensity CEF and BOLT mutants are small 

A, cef mutants grown under low light (circled) (Yamori et al. 2015). B, BOLT 

overexpressing mutants (left and right) and wild type (center) grown under low light. 
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pathway may regulate CEF through BOLT in response to these stresses (Figs. 2.3 and 

2.5). (Kapushesky et al. 2011; Petryszak et al. 2013; Petryszak et al. 2016).  

Using the AGRIS AtcisDB database, I examined the promoter regions of the CEF 

genes that BOLT affects in the microarray, and found many DNA binding sites that are 

shared among the promoters of those genes (Palaniswamy et al. 2006; Yilmaz et al. 2010; 

Davuluri et al. 2003). None of the motifs are in all of the promoters however, suggesting 

a variety of transcription factors are probably involved in regulating the expression of 

these genes, but there is also the possibility that there is some common, but unknown 

motif(s) in the promoters. In our microarray, fourteen genes encoding CEF proteins were 

downregulated. This would be a large number of genes for BOLT to act on directly. The 

fact that FD1 is also downregulated could suggest this is the point at which BOLT 

activity affects CEF, and without electrons to accept, the complexes are not maintained. 

Taken together, these data suggest that BOLT has a role in the response to and 

signaling of environmental stresses in Arabiodpsis through its regulation of cyclic 

electron flow. Most of the work to date into CEF function has been under optimal 

growing conditions. Further investigation into BOLT’s effects on the CEF genes through 

the use of the RNAi lines and the constitutive overexpressors as well as environmental 

stress and light treatments will move the field of AP2/ERF transcription regulation 

forward as well as improve our understanding of the role of cyclic electron flow in biotic 

and abiotic stress signaling. 

Both the photorespiration and cyclic electron flow systems are involved in abiotic 

stress, defense and light-related activities in party by controlling ROS levels. Both are 
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also negatively regulated by BOLT, which responds to stress and has a light-related 

phenotype in the overexpressor. These results taken together could suggest a role for 

BOLT in ROS regulation in response to abiotic and biotic stress, and insufficient light 

levels. Further investigation into the GDC, CEF, and BOLT mutants in response to 

pathogen, cold, and light, which has not yet been done, may produce additional 

interesting phenotypes which would demonstrate the effects of these systems in non-

optimal conditions. 

BOLT may regulate defense response through photosynthesis and hormone 

signaling 

The next most enriched clusters have more terms and more genes than the clusters 

that contain only GDC or CEF genes (Table 2). A total of 44 genes are in Cluster 7 and 

66 in Cluster 8, with a total of 96 unique genes between the two. Cluster 7 includes the 

GO terms for response to JA, auxin, GA, and SA. Cluster 8 includes JA and SA signaling 

terms, plus defense-related terms, “photosynthesis, light reaction”, “stromule”, and 

“MAPK cascade” (Table 2). Most of the terms represent sets of genes that are 

approximately 2 to 3-fold enriched compared to the genome as a whole. The 

photosynthesis and stromule terms are enriched 4 and 5-fold. 

Cluster 7, comprises only “response to” hormone terms and interestingly, both the 

canonical defense-related hormones, SA and JA, as well as growth-related hormones, 

auxin and GA are included (Table 2). This suggests that there may be a role for BOLT in 

the balance plants must maintain between growth and defense. We see evidence of both 

in our expression results and in the early flowering phenotype (Figs. 2.3 and 3.5). We 



 141

know that BOLT expression decreases with exogenous application of SA or JA, that it 

acts downstream of an MAPK pathway that regulates SA, and that there is evidence it is 

regulated by genes involved in the biosynthesis of and response to SA, PAD4, SID2, and 

NPR1 (Fig 2.3 and 2.5) (Brodersen et al. 2006; Petryszak et al. 2013; Petryszak et al. 

2016; Kapushesky et al. 2011). Together this evidence connects BOLT to SA and JA 

responses and signaling and suggests that further experiments testing BOLT’s expression 

in response to auxin and GA could be undertaken to elucidate their effects on BOLT 

expression. In addition, measuring the SA, JA, auxin, and GA content in the BOLT 

transgenic lines could indicate whether BOLT has a role in the biosynthesis or 

accumulation of these hormones. 

Crosstalk between hormone pathways is a major research focus. There is now 

considerable evidence that GA and auxin, not traditionally linked to defense responses, 

have important regulatory roles in SA- and JA-mediated defense (Ballaré 2011; Erb et al. 

2012; Robert-Seilaniantz & Grant 2011). One interesting non-result of the microarray is 

that although we had found in earlier experiments that BOLT expression increases in 

response to ABA, none of the differentially expressed genes cluster into ABA-related GO 

terms (Fig 2.3). This does not unequivocally show no role for BOLT in an ABA-related 

function, but does suggest that BOLT’s primary role in abiotic stress response could be in 

a ABA-independent pathway. 

There is only one Cellular Component term in Cluster 8; that is “stromule” (Table 

2). Stromules are stroma-filled tubular extensions formed by chloroplasts and other 

plastids whose functions are not yet understood, however it is suggested they may be a 

mechanism for communication with the nucleus and other organelles to coordinate 
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genetic programs and other cellular functions, although this has not been proven 

(Brunkard et al. 2015) (Köhler et al. 1997) (Hanson & Sattarzadeh 2011) (Schattat et al. 

2012). Stromules have been shown to form in response to light-sensitive redox signals 

within chloroplasts, during plant immune responses, and in response to SA and H2O2, and 

they from dynamic connections with the nucleus during these responses (Brunkard et al. 

2015; Caplan et al. 2015). This suggests BOLT could have a role in defense signaling 

between the chloroplast and the nucleus via the regulation of stromule formation. 

The Biological Processes terms in Cluster 8 all point to a role for BOLT in 

defense response and defense signaling, but there is one abiotic stress term, “cold” that 

represents a significant number of genes (35) as well. Cold stress, as shown in our 

hypothetical model, as well as elsewhere in the literature, has pathways in common with 

other abiotic and biotic stress signaling (Fig. 2.4) (Solanke & Sharma 2008; Pitzschke et 

al. 2009; Furuya et al. 2014; Ichimura et al. 2006). In Chapter 2, I showed that BOLT 

expression increases substantially when plants are subjected to cold temperature, and it 

has been shown that the MAPK cascade including MKK1 and MKK2 also has a role in 

cold regulation with MKK2’s role being more prominent (Fig 2.3)(Teige et al. 2004). In 

addition, it has been shown that SA mediates response to cold temperature, dehydration, 

and salinity in addition to its well-known role in defense (Miura & Tada 2014). As 

discussed in the introduction, a number of AP2/ERF transcription factors have been 

shown to have roles in both cold temperature signaling and biotic stress, and cold is 

known to affect photosynthesis (Agarwal et al. 2006; Sakuma et al. 2002; Stitt & Hurry 

2002). This suggests a role for BOLT in both cold and defense responses as well as the 

possibility of mediating crosstalk between the two. 
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Early flowering as a possible escape mechanism 

According to Martinez et al, salicylic acid regulates flowering time and links 

defense responses to reproductive development (Martínez et al. 2004). The authors and 

others found that plants under stress can trigger the transition to flowering prematurely, 

and that accelerated flowering is dependent on SA accumulation with SA deficient 

mutants flowering late, and over-accumulating mutants showing early flowering 

transition (Martínez et al. 2004; Rivas-San Vicente & Plasencia 2011; Hara et al. 2007). 

It is also known that flowering transition is tightly regulated however various stresses 

including pathogen infection and extreme temperature can promote flowering (Raskin 

1992; Xu et al. 2013). 

There are a number of genes differentially expressed in the microarray that are 

implicated in circadian rhythm and transition to flowering. Two cyclic nucleotide-gated 

ion channels (CNGCs), CNGC4 and CNGC12, which are differentially expressed in the 

microarray have been shown to have roles both in flowering timing and defense (Fortuna 

et al. 2015). Nuclear Factor-Y (NF-Y) transcription factors are heterotrimeric complexes 

found in all higher eukaryotes. Three subunits, NF-YA4, NF-YA7, and NF-YB2 are 

differentially expressed in the microarray. NF-YA7 has been shown to have roles both in 

stress and in flowering time (Kumimoto et al. 2008; Wenkel et al. 2006), and NF-YB2 has 

been shown to also have a role in flowering time (Cai et al. 2007; Kumimoto et al. 2008). 

ZTL is the F-box component of an SCF complex implicated in circadian clock period, 

and LHY, and the related RVE8, both differentially expressed, both have been shown to 

have central roles in the circadian clock (Fogelmark & Troein 2014). 

Although these genes have roles in circadian rhythm and transition to flowering, 



 144

they are not as readily classified as many of the genes we see being differentially 

expressed within the 24 hours after induction of BOLT overexpression. This is likely 

because flowering time is on an endogenous schedule and responds to environmental 

signals, but integrates them into the development program whereas defense genes are on 

more of a switch as they have to respond very quickly to changing conditions. Our 

microarray covered only a 24-hour period which may not have been sufficient to capture 

gene expression changes in clusters of related flowering time genes. Possibly had BOLT 

been overexpressed for a longer time period we would have started to see groups of genes 

responsible for the early flowering phenotype we see in the transgenic plants. 

 

Methods 

Plant growth 

The wild-type Arabidopsis thaliana and the TRANSPLANTA Line, 

TPT_1.01250.1F used in this study are in the Col-0 background. The TRANSPLANTA 

line was purchased from the NASC.  The plants were grown according to the Chapter 2 

Methods. 

Quantitative RT-PCR  

qRT-PCR was performed according to Chapter 2 methods using the primers described for 

BOLT, PP2A, and UBI10. 
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�-estradiol treatment and sampling 

Zero-hour samples (100mg, about 10 seedlings) of ten-day-old seedlings, wild 

type and inducible lines were taken before the rest of the samples were treated by 

spraying with 75µM �-estradiol in 0.15% EtOH. Samples were the collected after 8, 12, 

and 24 hours into microcentrifuge tubes and immediately frozen in liquid nitrogen. RNA 

was extracted and treated as described in Chapter 2 Methods and the quality assessed 

using a BioRad Experion automated electrophoresis system. Three micrograms per 

sample was preserved with RNA Stable (Sigma Aldrich 93221-001-1KT) for shipping to 

OakLabs, Hennigsdorf, Germany. One microgram per sample was reverse transcribed 

into cDNA and used in RT-qPCR both according to the procedures in the Chapter 2 

Methods section, to confirm an increase in BOLT expression in the induced line. 

Microarray analysis 

Oaklabs, Hennigsdorf, Germany performed the microarray experiment using an 

Agilent platform and provided us the raw data. Our collaborators at Penn State, Dr. Réka 

Albert and Dr. Jorge G.T. Zañudo normalized the data using quantile normalization and 

performed a one-way ANOVA for each gene in each sample type. Using the Storey 

method, their statistical analysis generated sets of 208 and 1142 genes differentially 

expressed over the time course and between the samples (q<.01 and q<.05 respectively), 

between the wild-type and the induced transgenic line. Drs Albert and Zañudo also 

generated a co-expression network from the p<.01 data set. A pair of genes is connected 

with an edge if the average time course has a Pearson correlation coefficient greater than 

0.95 (positive regulation) or lower than -0.95 (negative regulation).  



 146

Chapter 5:  Conclusions and Future Directions 

 
BOLT regulates genes that affect defense and growth 

In broad terms I have shown that BOLT, a putative AP2/ERF transcription factor, 

is expressed widely in Arabidopsis plants, localizes to the nucleus, and has an inhibitory 

role in both abiotic and biotic stress responses (Figs. 2.1, 2.2, ). BOLT responds to stress 

treatments and it acts downstream of a ROS-activated MAPK pathway that regulates SA- 

and JA- signaling and accumulation, and other abiotic and biotic stress responses (Figs. 

2.3, 2.5, and 2.6) (Pitzschke et al. 2009; Qiu et al. 2008). The pathway has also been 

shown to negatively regulate stress responses (Kong et al. 2012). 

The genome-wide expression analysis shows that BOLT affects the expression of 

numerous chloroplast- and plastid-related genes, and other genes that are involved in 

light-, hormone- and defense responses, mostly by inhibiting their expression (Table 2). 

BOLT also regulates genes encoding a key photorespiratory complex, the GDC, 

implicated in stress response, H2O2 generation, and photosynthesis, and genes encoding 

both cyclic electron flow systems, the NDH complex, and PGR5/PGRL1, which have an 

important role in photosynthesis especially under low light conditions (Table 2, Fig. 4.5 

and 4.8). 

These results move the field forward by identifying a role for the previously 

unpublished gene, by placing it in a known MAPK pathway, and by expanding that 

pathway to include discreet downstream systems. These results will serve to direct future 

research into this gene and possibly into other AP2/ERF or MAPK genes or further into 

the genetic relationship between photosynthesis and defense. Thus I have expanded my 

hypothesis to include our new findings (Fig. 5.1).  
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Figure 5.1  Expanded pathway model 

Proposed model including BOLT in the MAPK pathway. BOLT is also regulated by SA 

accumulation and signaling genes, PAD4, SID2, and NPR1, as well as by the 

embryogenesis regulators, LEC1, LEC2, FUS3, and ABI3. BOLT regulates downstream 

genes involved biotic and abiotic stress, including genes encoding complexes central to 

photorespiration and photosynthesis in stress conditions including low light. 
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Summary of findings 

Originally hypothesized to be a guard cell specific transcription factor, using 

transgenic lines expressing 1666 bp of the native BOLT promoter driving a GUS reporter, 

I showed that BOLT is not specific to guard cells, but is expressed widely in the plant.  

BOLT localizes to the nucleus and accumulates in nuclear bodies. I showed this 

shown using the 35S construct, which resulted in very bright, easy to identify bodies. To 

confirm that BOLT is not localized to the bodies for the purposes of degradation because 

it is overexpressed, transgenic lines using a native promoter could be generated and 

experiments performed as described below. 

I tested BOLT’s expression in the mkk1/2 double mutant plants because in an 

analysis of BOLT expression in microarray and RNA-seq databases an experiment 

showed BOLT to be downregulated in this mutant. My experiments agreed. MKK1 and 

MKK2 are components of a known MAPK abiotic and biotic stress response pathway. I 

therefore hypothesized that BOLT regulates abiotic and possibly biotic stress response 

downstream from the MAPK pathway (Fig. 2.4). Further testing confirmed that BOLT 

responds to several types of abiotic and biotic stress. 

Using transgenic overexpressing lines and amiRNA lines, I showed that 

overexpressing BOLT results in decidedly early-flowering, while knocking-down BOLT 

by >90% results in larger plants in low light and slightly earlier flowering. Thus, I 

propose that since BOLT responds to stress, the early-flowering is an escape measure due 

to an overwhelming stress response. The earlier-than-wild type flowering in the RNAi 

lines and the larger size in low light is related to CEF and the GDC being required in low 

light, not to the overexpressing stress response per se. 
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Expanding the model 

I expanded our hypothetical model to include four SA-related genes that are 

regulated by MPK4 and that regulate BOLT. PAD4, SIZ1, SID2, and NPR1 have broad 

roles in SA-mediated defense responses (Jirage et al. 1999; J. B. Jin et al. 2008; 

Wildermuth et al. 2001; Dong 2004). Our microarray results showed numerous hormone 

response genes differentially expressed including those responding to SA, JA, GA, and 

auxin (Table 2). In addition, SIZ1 and NPR1 localize to nuclear bodies as BOLT may do 

as well (Saleh et al. 2016; Cheong et al. 2014). In order to more fully understand BOLT’s 

role concerning these hormones, I would measure the hormones’ levels under various 

conditions in the overexpressing lines and the amiRNA lines compared to wild type. The 

results could indicate if BOLT has a role in the increase or decrease of hormone levels 

and together with the microarray results, suggest experiments to further fill in the 

pathway that includes BOLT. 

The GO terms analysis point further to a specific role for BOLT in abiotic stress 

response. Only one abiotic stress GO term, cold, is in any of the top eight annotation 

clusters (Table 2). Initially this was surprising, but it is suggested by the stress treatment 

results in which BOLT responded more strongly to cold than to other abiotic stresses (Fig 

2.3). In addition, it is known that cold and defense responses are closely associated, affect 

photosynthesis, and that cold responses are mediated by the MAPK pathway that 

regulates BOLT (Miura & Tada 2014; Jeon & J. Kim 2013; Rasmussen et al. 2013; Qiu 

et al. 2008). It would be an important future line of inquiry to dissect the particular biotic 



 151

and abiotic stresses BOLT responds to and how BOLT transduces that information 

downstream.  

Another unexpected finding is that BOLT expression is regulated in the knockout 

mutants of four transcription factors well known for their roles in embryogenesis (LEC1, 

LEC2, FUS3, and ABI4), and that BOLT regulates a significant number of genes that are 

also downstream from those genes according to our microarray results. This was 

surprising because although BOLT is expressed in the embryo, it is also elsewhere in the 

plant and our evidence points to a role in stress response (Figs.  2.1 and 2.3). This 

indicates that either BOLT has a separate role in embryogenesis or the embryogenesis 

genes have a role in stress response. The latter notion is somewhat supported by recent 

investigations (F. Wang & Perry 2013; Junker & Bäumlein 2012). To further examine the 

connection between these genes I would compare expression levels of BOLT and selected 

of the genes differentially expressed in the microarray that may also be regulated by one 

or more of the embryogenesis genes using lines defective in one or more of the 

embryogenesis genes. Most of the investigation into these embryogenesis genes has been 

done in seeds. This would be an opportunity to determine if they have a different or 

additional role in post-embryonic plants. 

 

Remaining questions 

There are, of course, many questions that arise from the results of any research. 

Various directions could be taken from genetics, to cell biology, to biochemistry. I am 

going to suggest a few avenues that I think are particularly interesting or important. 

Overall, ours is a genetics lab, and expanding the model we have proposed would be the 
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likeliest course to follow, and I talk about that below. However, I will also mention a few 

other questions that arose as a result of the project that seem interesting, in part, because 

the results were unexpected. 

35S::BOLT::YFP localizes to the nucleus in spots, suggesting nuclear bodies, or 

photobodies. These bodies were identified in the transient transformation of onion 

epidermis. Considering the evidence I have generated suggesting that BOLT is 

responsive to light, it is possible that BOLT is localizing to photobodies (Figs. 2.2 and 

3.3 to 3.6). It is known that PHYB localizes to photobodies along with a number of PIF 

proteins and that BOLT is regulated in both the phyb and quintuple pif mutants (Leivar & 

Quail 2011; Leivar et al. 2008). In addition, it was shown that MPK4 and MKS1 form a 

complex with a stress-responsive WRKY transcription factor and that in addition to 

regulation by MKK1, MKK2, and MPK4, MKS1 also may regulate BOLT (Fiil & 

Petersen 2014; Petryszak et al. 2013; Petryszak et al. 2016; Kapushesky et al. 2011). We 

would be able to see if any these proteins co-localize with BOLT by co-expressing 

fluorescently tagged versions along with BOLT in onion epidermis and visualizing the 

cells microscopically. If it appears as though any localize with BOLT, BiFC or FRET 

could be used to confirm an interaction. If we can determine proteins that co-localize or 

interact with BOLT in nuclear bodies, we would have information beyond the genetic 

pathway results, that could lead to an understanding of how BOLT carries out its role in 

abiotic and biotic stress response. 

I tested BOLT expression in response to some abiotic and biotic stress treatments 

and can correlate those outcomes to the microarray results (Fig 2.3 and Table 2). 

However, the phenotypes I saw in the transgenic lines suggest a role for BOLT in 
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responding directly or indirectly to light, which is something I did not consider in our 

earlier stress-treatment experiments. BOLT has a number of light-related DNA-binding 

sites in its promoter (Table1). The GDC and CEF genes that are differentially expressed 

in the microarray have been shown to respond to light, although it could be through ROS 

(Timm et al. 2015; Timm et al. 2012; Hoffmann et al. 2013; Suorsa 2015; Endo et al. 

2008). Twenty-four genes with GO terms “response to light” (blue, red, and far-red) are 

regulated by BOLT in our microarray results (Table 2). 

RNAi plants and plants overexpressing BOLT have light intensity-related 

phenotypes (Fig. 3.5 and 3.6). Prolonged activation of the MAPK cascade that results in 

BOLT regulation, leads to chloroplast damage in a light-dependent manner (Pitzschke et 

al. 2009). All of this suggests that it would be worthwhile to investigate how different 

light intensities affect BOLT and how BOLT affects downstream genes in different light 

conditions. Closely related to response to light is response to ROS. ROS in organisms, is 

delicately balanced based in part on light (Pitzschke et al. 2009) Since we have placed 

BOLT downstream of a MAPK pathway that is activate by ROS we should investigate 

whether ROS is accumulated in either the BOLT amiRNA or overexpressing plants.  

 

Filling in the pathway 

Those are a few specific questions suggested by the data, but the broader and, I 

think, more interesting question in a genetics lab is “What other genes make up the 

pathway?” A compelling question with any transcription factor is “what is its target(s)”. 

This is interesting because we want to know the nitty-gritty of what goes on downstream 

where the real work is done. Our microarray experiment has resulted in an abundance of 
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very useful data that has resulted in a more complete understanding of BOLT’s role as a 

transcription factor as well as, along with our upstream, and phenotypic results, given us 

the basis to ask more specific question as to how BOLT’s regulation of downstream 

function changes the plant in response to changes in the environment. 

To actually fill in the downstream pathway with BOLT’s immediate targets we 

could do a couple of different experiments. First, using our co-expression data, we could 

attempt to identify if any of the proteins whose genes are one or two edges away from 

BOLT are physical targets by doing binding assays with BOLT and possible binding sites 

we have identified using databases and the literature. This would be cumbersome, 

possibly unmanageable, and without a guarantee of any results. The second possibility 

would be to use ChIP-seq, which would return candidate target genes that could be tested, 

but at a very high cost in terms of funds and time.   

Because Chip-seq is a prohibitively expensive experiment for many labs, 

downstream targets remain difficult to assess, and if ChIP-seq is performed, it is often 

limited to as few genotypes or conditions as possible. For those reasons, I think the next 

most efficient step in filling in the pathway would be to try to find out what’s upstream. 

What factors bind BOLT’s promoter either between the MAPK cascade and BOLT, or 

upstream from BOLT in another pathway. There is no evidence that BOLT is 

phosphorylated but it is a possibility so a first step might be to test if BOLT is a substrate 

for MPK4, MPK3, or MPK6, the latter two also implicated in biotic and abiotic stress 

response through the MEKK1 pathway (Blom et al. 1999; de Castro et al. 2006; Zulawski 

et al. 2013; Durek et al. 2010; Heazlewood et al. 2008). Although I wouldn’t rule direct 

phosphorylation out completely, from the results of various in silico analysis of BOLT’s 
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sequence, it seems more likely that BOLT is regulated by one or more transcription factor 

that are in turn activated or regulated by the MAPK pathway such as MKS1, an MPK4 

substrate that has been shown to bind transcription factors in its stress response role (Fiil 

& Petersen 2014; Qiu et al. 2008; Andreasson et al. 2005). 

To determine what transcription factors directly bind BOLT’s promoter, I would 

do a promoter pull-down assay. Briefly, in this assay, ~500nt overlapping fragments of 

BOLT’s promoter would be synthesized and biotinylated, incubated with protein extract, 

and separated using streptavidin-coated magnetic beads, and the resulting bound proteins 

identified using mass spectrometry. Resulting candidates could be confirmed using gel 

shift or 32P DNA-binding assays. The advantage of doing this type of experiment is that it 

is not cost-prohibitive and could be done using proteins from plants under a variety of 

stress conditions. This experiment could possibly confirm the model I propose that 

includes SA- and embryogenesis-related transcription factors as potential regulators of 

BOLT.  Once transcription factors are confirmed, the assay could be used again to 

identify proteins that bind those transcription factors which could be very useful in filling 

in the pathway or pathways that include BOLT.  

 

Conclusion 

My research into BOLT serves as the first investigation into a gene that appears to 

have a very interesting role in the genetic integration of growth and defense. The results 

and analysis of this work have suggested a pathway and thus a framework for the further 

study of BOLT as well as the inquiry into two important systems, GDC and CEF, that are 

only recently understood to function in response to biotic and abiotic stress.  
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Appendix A 

 
Fold-changes of the genes differentially expressed in the microarray experiment 

 (q<.01) at 24 hours after induction of BOLT. 

 

Target 

Name 

Gene 

Symbol 
Description 

24 hours 

Fold change 

AT1G14150 CYP78A8 

cytochrome P450, family 78, subfamily A, 

polypeptide 8 protein_coding -40.65 

AT1G17100   

SGNH hydrolase-type esterase superfamily 

protein protein_coding -31.83 

AT1G32520 FAR5 fatty acid reductase 5 protein_coding -25.50 

AT1G48330 TBL19 

TRICHOME BIREFRINGENCE-LIKE 19 

protein_coding -23.86 

AT1G48750   

Uncharacterised protein family (UPF0497) 

protein_coding -16.03 

AT1G49980 QRT1 

Pectin lyase-like superfamily protein 

protein_coding -15.14 

AT1G53000   

GDSL-like Lipase/Acylhydrolase superfamily 

protein protein_coding -13.17 

AT1G53270   pseudogene of unknown protein pseudogene -12.73 

AT1G61760 scpl28 serine carboxypeptidase-like 28 protein_coding -12.64 

AT1G64780   
Uncharacterised protein family (UPF0497) 
protein_coding -12.47 

AT1G78995 CYP86A1 

cytochrome P450, family 86, subfamily A, 

polypeptide 1 protein_coding -12.37 

AT2G07774 PLP8 PATATIN-like protein 8 protein_coding -9.56 

AT2G15020   

hydroxyproline-rich glycoprotein family protein 

protein_coding -9.41 

AT2G21970   
hydroxyproline-rich glycoprotein family protein 
protein_coding -9.24 

AT2G22510 PERK15 
Protein kinase superfamily protein 
protein_coding -8.99 

AT2G42975   

Carbohydrate-binding X8 domain superfamily 

protein protein_coding -8.48 

AT2G43530   

peptidoglycan-binding LysM domain-containing 

protein protein_coding -8.42 

AT3G02830 ABCG10 

ABC-2 type transporter family protein 

protein_coding -7.97 

AT3G04140 BBX32 B-box 32 protein_coding -7.88 

AT3G11470   
BEST Arabidopsis thaliana protein match is: 
Glycine-rich protein family (TAIR:AT5G49350.2); -7.83 
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Has 60 Blast hits to 60 proteins in 12 species: 

Archae - 0; Bacteria - 0; Metazoa - 0; Fungi - 0; 

Plants - 60; Viruses - 0; Other Eukaryotes - 0 

(source: NCBI BLink). protein_coding 

AT3G24030   

Plant protein of unknown function (DUF946) 

protein_coding -7.67 

AT3G42433 PELPK1 

hydroxyproline-rich glycoprotein family protein 

protein_coding -7.66 

AT3G47430   Peroxidase superfamily protein protein_coding -7.26 

AT3G48240   

RPM1-interacting protein 4 (RIN4) family protein 

protein_coding -7.18 

AT3G50440   

transcriptional factor B3 family protein 

protein_coding -7.07 

AT3G55630   unknown protein pseudogene -7.03 

AT3G55710   

Heavy metal transport/detoxification 

superfamily protein protein_coding -6.86 

AT3G62410   

Xanthine/uracil permease family protein 

protein_coding -6.61 

AT4G00050 ATC centroradialis protein_coding -6.36 

AT4G01460 GER3 germin 3 protein_coding -6.07 

AT4G15430 YSL2 YELLOW STRIPE like 2 protein_coding -5.90 

AT4G17090   

unknown protein; Has 24 Blast hits to 18 

proteins in 5 species: Archae - 0; Bacteria - 2; 
Metazoa - 0; Fungi - 0; Plants - 7; Viruses - 0; 

Other Eukaryotes - 15 (source: NCBI BLink). 

protein_coding -5.54 

AT4G20390   

Leucine carboxyl methyltransferase 

protein_coding -5.52 

AT4G24700 EDA4 

Bifunctional inhibitor/lipid-transfer protein/seed 

storage 2S albumin superfamily protein 

protein_coding -5.43 

AT4G37925   

unknown protein; Has 7 Blast hits to 7 proteins 

in 3 species: Archae - 0; Bacteria - 0; Metazoa - 

0; Fungi - 0; Plants - 7; Viruses - 0; Other 

Eukaryotes - 0 (source: NCBI BLink). 

protein_coding -5.19 

AT4G38080   

unknown protein; FUNCTIONS IN: 

molecular_function unknown; INVOLVED IN: 

biological_process unknown; LOCATED IN: 

endomembrane system; EXPRESSED IN: 22 plant 
structures; EXPRESSED DURING: 13 growth 

stages; Has 3 Blast hits to 3 proteins in 1 species: 

Archae - 0; Bacteria - 0; Metazoa - 0; Fungi - 0; 

Plants - 3; Viruses - 0; Other Eukaryotes - 0 

(source: NCBI BLink). protein_coding -4.94 

AT5G01260 WOX1 WUSCHEL related homeobox 1 protein_coding -4.81 
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AT5G02820 RXW8 

lipases;hydrolases, acting on ester bonds 

protein_coding -4.71 

AT5G20630 ZFN1 zinc finger protein 1 protein_coding -4.41 

AT5G42760   

Protein of unknown function (DUF 3339) 

protein_coding -4.22 

AT5G58770 LCR68 

low-molecular-weight cysteine-rich 68 

protein_coding -4.21 

AT5G66520   

unknown protein; EXPRESSED IN: 21 plant 

structures; EXPRESSED DURING: 13 growth 

stages; Has 35333 Blast hits to 34131 proteins in 

2444 species: Archae - 798; Bacteria - 22429; 

Metazoa - 974; Fungi - 991; Plants - 531; Viruses 

- 0; Other Eukaryotes - 9610 (source: NCBI 

BLink). protein_coding -4.13 

AT4G22200   unknown protein. protein_coding -4.01 

AT2G23540   

alpha/beta-Hydrolases superfamily protein 

protein_coding -3.98 

AT2G42690 AMT1;2 ammonium transporter 1;2 protein_coding -3.92 

AT1G26680   

alpha/beta-Hydrolases superfamily protein 

protein_coding -3.89 

AT1G50732   carbonic anhydrase 1 protein_coding -3.81 

AT2G39730   

unknown protein; LOCATED IN: chloroplast; 

EXPRESSED IN: 23 plant structures; EXPRESSED 

DURING: 15 growth stages; Has 30 Blast hits to 

30 proteins in 13 species: Archae - 0; Bacteria - 

0; Metazoa - 0; Fungi - 0; Plants - 30; Viruses - 0; 

Other Eukaryotes - 0 (source: NCBI BLink). 

protein_coding -3.78 

AT3G21760   

unknown protein; FUNCTIONS IN: 

molecular_function unknown; INVOLVED IN: 

biological_process unknown; LOCATED IN: 
chloroplast; EXPRESSED IN: 21 plant structures; 

EXPRESSED DURING: 13 growth stages; BEST 

Arabidopsis thaliana protein match is: unknown 

protein (TAIR:AT1G12330.1); Has 1807 Blast hits 

to 1807 proteins in 277 species: Archae - 0; 

Bacteria - 0; Metazoa - 736; Fungi - 347; Plants - 

385; Viruses - 0; Other Eukaryotes - 339 (source: 

NCBI BLink). protein_coding -3.78 

AT3G27350 PAP16 purple acid phosphatase 16 protein_coding -3.67 

AT3G56290   

Bifunctional inhibitor/lipid-transfer protein/seed 

storage 2S albumin superfamily protein 

protein_coding -3.66 

AT4G09350 GDCH glycine decarboxylase complex H protein_coding -3.60 

AT1G58520   Ankyrin repeat family protein protein_coding -3.46 

AT5G24380 ANN6 annexin 6 protein_coding -3.35 
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AT1G01520   Glycine cleavage T-protein family protein_coding -3.34 

AT3G52790   RING/U-box superfamily protein protein_coding -3.31 

AT5G56850   

unknown protein; BEST Arabidopsis thaliana 

protein match is: unknown protein 
(TAIR:AT5G64190.1); Has 72 Blast hits to 72 

proteins in 10 species: Archae - 0; Bacteria - 0; 

Metazoa - 0; Fungi - 0; Plants - 72; Viruses - 0; 

Other Eukaryotes - 0 (source: NCBI BLink). 

protein_coding -3.27 

AT1G75290   

ERD (early-responsive to dehydration stress) 

family protein protein_coding -3.26 

AT3G43570   

Haloacid dehalogenase-like hydrolase (HAD) 

superfamily protein protein_coding -3.17 

AT5G09530   

basic helix-loop-helix (bHLH) DNA-binding 

superfamily protein protein_coding -3.17 

AT3G21390 CT-BMY chloroplast beta-amylase protein_coding -3.15 

AT4G34630   

unknown protein; Has 30201 Blast hits to 17322 

proteins in 780 species: Archae - 12; Bacteria - 

1396; Metazoa - 17338; Fungi - 3422; Plants - 

5037; Viruses - 0; Other Eukaryotes - 2996 

(source: NCBI BLink). protein_coding -3.11 

AT2G24280   

unknown protein; FUNCTIONS IN: 

molecular_function unknown; INVOLVED IN: 

biological_process unknown; LOCATED IN: 

plasma membrane; EXPRESSED IN: 17 plant 
structures; EXPRESSED DURING: 12 growth 

stages; Has 58 Blast hits to 58 proteins in 12 

species: Archae - 0; Bacteria - 0; Metazoa - 0; 

Fungi - 0; Plants - 58; Viruses - 0; Other 

Eukaryotes - 0 (source: NCBI BLink). 

protein_coding -3.11 

AT5G17170   

unknown protein; BEST Arabidopsis thaliana 

protein match is: unknown protein 

(TAIR:AT2G35830.2); Has 153 Blast hits to 153 

proteins in 52 species: Archae - 0; Bacteria - 62; 

Metazoa - 0; Fungi - 0; Plants - 82; Viruses - 0; 
Other Eukaryotes - 9 (source: NCBI BLink). 

protein_coding -3.09 

AT5G55590 SBPASE sedoheptulose-bisphosphatase protein_coding -3.06 

AT3G05345   
Tetratricopeptide repeat (TPR)-like superfamily 
protein protein_coding -3.04 

AT3G15354   
Single hybrid motif superfamily protein 
protein_coding -2.93 

AT5G35670   
NAD(P)-linked oxidoreductase superfamily 
protein protein_coding -2.87 

AT5G63750 KT2/3 potassium transport 2/3 protein_coding -2.87 
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AT1G07010 NdhM 

subunit NDH-M of NAD(P)H:plastoquinone 

dehydrogenase complex protein_coding -2.82 

ATMG0106

0   

Defensin-like (DEFL) family protein 

protein_coding -2.82 

AT1G01050 DFD DHFS-FPGS homolog D protein_coding -2.80 

AT1G01250   Putative membrane lipoprotein protein_coding -2.75 

AT1G06240 NdhT 
Chaperone DnaJ-domain superfamily protein 
protein_coding -2.74 

AT1G08250 MES10 methyl esterase 10 protein_coding -2.70 

AT1G56320   

UDP-Glycosyltransferase superfamily protein 

protein_coding -2.61 

AT1G62250   

Acyl-CoA N-acyltransferases (NAT) superfamily 

protein protein_coding -2.58 

AT2G03550   

AIG2-like (avirulence induced gene) family 

protein protein_coding -2.49 

AT2G07706 ASG4 

Homeodomain-like superfamily protein 

protein_coding -2.47 

AT2G07806   
NAD(P)-binding Rossmann-fold superfamily 
protein protein_coding -2.43 

AT2G29680   

unknown protein; FUNCTIONS IN: 
molecular_function unknown; INVOLVED IN: 

biological_process unknown; EXPRESSED IN: 22 

plant structures; EXPRESSED DURING: 13 growth 

stages; BEST Arabidopsis thaliana protein match 

is: unknown protein (TAIR:AT2G23370.1). 

protein_coding -2.40 

AT2G31670   

NmrA-like negative transcriptional regulator 

family protein protein_coding -2.33 

AT2G35380 GLDP1 

glycine decarboxylase P-protein 1 

protein_coding -2.30 

AT2G35810   

unknown protein; Has 30201 Blast hits to 17322 

proteins in 780 species: Archae - 12; Bacteria - 

1396; Metazoa - 17338; Fungi - 3422; Plants - 

5037; Viruses - 0; Other Eukaryotes - 2996 
(source: NCBI BLink). protein_coding -2.25 

AT2G43670   
SNARE associated Golgi protein family 
protein_coding -2.24 

AT3G01500   

unknown protein; Has 74 Blast hits to 74 
proteins in 13 species: Archae - 0; Bacteria - 0; 

Metazoa - 0; Fungi - 0; Plants - 74; Viruses - 0; 

Other Eukaryotes - 0 (source: NCBI BLink). 

protein_coding -2.24 

AT3G10150   

SOUL heme-binding family protein 

protein_coding -2.23 

AT3G13070   

Undecaprenyl pyrophosphate synthetase family 

protein protein_coding -2.20 
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AT3G13110 PnsL2 PsbQ-like 2 protein_coding -2.20 

AT3G16910 PEX11B peroxin 11B protein_coding -2.18 

AT3G17930 iqd33 IQ-domain 33 protein_coding -2.17 

AT3G20670   

NmrA-like negative transcriptional regulator 

family protein protein_coding -2.17 

AT3G53920   

unknown protein; Has 30201 Blast hits to 17322 

proteins in 780 species: Archae - 12; Bacteria - 

1396; Metazoa - 17338; Fungi - 3422; Plants - 
5037; Viruses - 0; Other Eukaryotes - 2996 

(source: NCBI BLink). protein_coding -2.17 

AT3G56275 UNE10 

basic helix-loop-helix (bHLH) DNA-binding 

superfamily protein protein_coding -2.16 

AT4G02830   

TPX2 (targeting protein for Xklp2) protein family 

protein_coding -2.14 

AT4G29800   

Stress responsive alpha-beta barrel domain 

protein protein_coding -2.11 

AT4G31310 HEME1 

Uroporphyrinogen decarboxylase 

protein_coding -2.10 

AT5G01260   

Mitochondrial substrate carrier family protein 

protein_coding -2.09 

AT5G02950   

GDSL-like Lipase/Acylhydrolase superfamily 

protein protein_coding -2.07 

AT5G14350   

unknown protein; Has 20 Blast hits to 20 

proteins in 7 species: Archae - 0; Bacteria - 0; 

Metazoa - 0; Fungi - 0; Plants - 20; Viruses - 0; 

Other Eukaryotes - 0 (source: NCBI BLink). 

protein_coding -2.05 

AT5G18404 CP12-2 

CP12 domain-containing protein 2 

protein_coding -2.05 

AT5G20330 ACR11 uridylyltransferase-related protein_coding -2.04 

AT5G23920 CA2 carbonic anhydrase 2 protein_coding -2.04 

AT5G38980   

unknown protein; FUNCTIONS IN: 

molecular_function unknown; INVOLVED IN: 

biological_process unknown; LOCATED IN: 

chloroplast; EXPRESSED IN: 24 plant structures; 

EXPRESSED DURING: 15 growth stages; Has 143 

Blast hits to 142 proteins in 34 species: Archae - 

0; Bacteria - 0; Metazoa - 39; Fungi - 0; Plants - 
56; Viruses - 0; Other Eukaryotes - 48 (source: 

NCBI BLink). protein_coding -2.03 

AT5G57785   

unknown protein; Has 39 Blast hits to 39 

proteins in 15 species: Archae - 0; Bacteria - 0; 

Metazoa - 0; Fungi - 0; Plants - 39; Viruses - 0; 

Other Eukaryotes - 0 (source: NCBI BLink). 

protein_coding -2.02 
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AT5G57960 PMI2 

Plant protein of unknown function (DUF827) 

protein_coding -2.01 

AT1G49010   

alpha/beta-Hydrolases superfamily protein 

protein_coding -2.00 

AT5G58860 SLP1 

Calcineurin-like metallo-phosphoesterase 

superfamily protein protein_coding -1.94 

AT1G01190 SPA3 SPA1-related 3 protein_coding -1.94 

AT1G10380   

unknown protein; FUNCTIONS IN: 

molecular_function unknown; INVOLVED IN: 

biological_process unknown; LOCATED IN: 

chloroplast thylakoid membrane, chloroplast; 

Has 32 Blast hits to 32 proteins in 16 species: 

Archae - 0; Bacteria - 0; Metazoa - 2; Fungi - 2; 

Plants - 28; Viruses - 0; Other Eukaryotes - 0 

(source: NCBI BLink). protein_coding -1.92 

AT4G27030 SPS2 

solanesyl diphosphate synthase 2 

protein_coding -1.89 

AT4G37270 RBCS2B 

Ribulose bisphosphate carboxylase (small chain) 

family protein protein_coding -1.89 

AT1G49990   

unknown protein; FUNCTIONS IN: 

molecular_function unknown; INVOLVED IN: 
biological_process unknown; LOCATED IN: 

chloroplast; BEST Arabidopsis thaliana protein 

match is: unknown protein (TAIR:AT2G05310.1); 

Has 50 Blast hits to 50 proteins in 20 species: 

Archae - 0; Bacteria - 0; Metazoa - 0; Fungi - 0; 

Plants - 50; Viruses - 0; Other Eukaryotes - 0 

(source: NCBI BLink). protein_coding -1.87 

AT4G18130   rubisco activase protein_coding -1.87 

AT5G61150   F-box family protein protein_coding -1.86 

AT2G07749 CKS 

Nucleotide-diphospho-sugar transferases 

superfamily protein protein_coding -1.84 

AT2G48140   

unknown protein; BEST Arabidopsis thaliana 

protein match is: unknown protein 

(TAIR:AT1G53180.1); Has 47 Blast hits to 47 

proteins in 15 species: Archae - 0; Bacteria - 0; 

Metazoa - 13; Fungi - 0; Plants - 30; Viruses - 0; 

Other Eukaryotes - 4 (source: NCBI BLink). 

protein_coding -1.80 

AT3G21150   

unknown protein; Has 35333 Blast hits to 34131 

proteins in 2444 species: Archae - 798; Bacteria - 
22429; Metazoa - 974; Fungi - 991; Plants - 531; 

Viruses - 0; Other Eukaryotes - 9610 (source: 

NCBI BLink). protein_coding -1.80 

AT2G23420 NAPRT2 

nicotinate phosphoribosyltransferase 2 

protein_coding -1.78 
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AT1G05140   

unknown protein; FUNCTIONS IN: 

molecular_function unknown; INVOLVED IN: 

biological_process unknown; LOCATED IN: 

plasma membrane, vacuole; EXPRESSED IN: 22 

plant structures; EXPRESSED DURING: 13 growth 

stages; BEST Arabidopsis thaliana protein match 

is: unknown protein (TAIR:AT5G52420.1); Has 

1807 Blast hits to 1807 proteins in 277 species: 

Archae - 0; Bacteria - 0; Metazoa - 736; Fungi - 
347; Plants - 385; Viruses - 0; Other Eukaryotes - 

339 (source: NCBI BLink). protein_coding -1.78 

AT1G49960 AIB 

ABA-inducible BHLH-type transcription factor 

protein_coding -1.78 

AT1G52290   

unknown protein; FUNCTIONS IN: 

molecular_function unknown; INVOLVED IN: 

biological_process unknown; LOCATED IN: 

plasma membrane; EXPRESSED IN: 24 plant 

structures; EXPRESSED DURING: 15 growth 

stages; BEST Arabidopsis thaliana protein match 

is: unknown protein (TAIR:AT5G40700.1); Has 

230 Blast hits to 202 proteins in 35 species: 

Archae - 0; Bacteria - 3; Metazoa - 77; Fungi - 4; 
Plants - 130; Viruses - 0; Other Eukaryotes - 16 

(source: NCBI BLink). protein_coding -1.76 

AT1G75280 AAE7 acyl-activating enzyme 7 protein_coding -1.74 

AT2G27550   

unknown protein; FUNCTIONS IN: 
molecular_function unknown; INVOLVED IN: 

biological_process unknown; EXPRESSED IN: 24 

plant structures; EXPRESSED DURING: 15 growth 

stages; BEST Arabidopsis thaliana protein match 

is: unknown protein (TAIR:AT5G40700.1). 

protein_coding -1.72 

AT3G27350 PRK phosphoribulokinase protein_coding -1.72 

AT4G13500   

Protein of unknown function DUF455 

protein_coding -1.70 

AT5G13140 KT2 potassium transporter 2 protein_coding -1.68 

AT2G05117 CHR38 chromatin remodeling 38 protein_coding -1.68 

AT3G55800   

myb-like transcription factor family protein 

protein_coding -1.68 

AT5G44550 RAPTOR2 

HEAT repeat ;WD domain, G-beta repeat protein 

protein protein_coding -1.67 

AT4G33010   

Pollen Ole e 1 allergen and extensin family 

protein protein_coding -1.66 

AT5G56860   

unknown protein; LOCATED IN: chloroplast; 

EXPRESSED IN: 23 plant structures; EXPRESSED 

DURING: 15 growth stages; Has 35333 Blast hits 

to 34131 proteins in 2444 species: Archae - 798; -1.65 
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Bacteria - 22429; Metazoa - 974; Fungi - 991; 

Plants - 531; Viruses - 0; Other Eukaryotes - 9610 

(source: NCBI BLink). protein_coding 

AT5G02230   TRAF-like family protein protein_coding -1.63 

AT1G14345 KAN3 

Homeodomain-like superfamily protein 

protein_coding -1.61 

AT1G17050 

ROPGEF1

4 

RHO guanyl-nucleotide exchange factor 14 

protein_coding -1.60 

AT5G12900 SERAT2;2 serine acetyltransferase 2;2 protein_coding -1.58 

AT4G34090 ENH1 rubredoxin family protein protein_coding -1.56 

AT2G02130   

Scorpion toxin-like knottin superfamily protein 

protein_coding -1.55 

AT2G35370   

Late embryogenesis abundant (LEA) 
hydroxyproline-rich glycoprotein family 

protein_coding -1.54 

AT5G01770   

Duplicated homeodomain-like superfamily 

protein protein_coding -1.54 

AT5G18407   

DNA/RNA polymerases superfamily protein 

protein_coding -1.51 

AT5G54250 OASB O-acetylserine (thiol) lyase B protein_coding -1.50 

ATMG0033
0   Carbohydrate-binding-like fold protein_coding -1.50 

AT4G32295 SEP2 stress enhanced protein 2 protein_coding -1.49 

AT1G21460 FADA fatty acid desaturase A protein_coding -1.47 

AT1G24580 PPa1 pyrophosphorylase 1 protein_coding -1.47 

AT1G27370   

unknown protein; BEST Arabidopsis thaliana 

protein match is: unknown protein 

(TAIR:AT3G17580.1); Has 40 Blast hits to 40 

proteins in 11 species: Archae - 0; Bacteria - 0; 

Metazoa - 0; Fungi - 0; Plants - 40; Viruses - 0; 
Other Eukaryotes - 0 (source: NCBI BLink). 

protein_coding -1.46 

AT1G62250 UGLYAH ureidoglycine aminohydrolase protein_coding -1.45 

AT1G75300   Peptidase M50 family protein protein_coding -1.45 

AT1G78510   

hydroxyethylthiazole kinase family protein 

protein_coding -1.44 

AT3G15115   

unknown protein; FUNCTIONS IN: 

molecular_function unknown; INVOLVED IN: 

biological_process unknown; LOCATED IN: 
chloroplast thylakoid membrane; EXPRESSED IN: 

22 plant structures; EXPRESSED DURING: 13 

growth stages; CONTAINS InterPro DOMAIN/s: 

Protein of unknown function DUF3007 

(InterPro:IPR021562); Has 236 Blast hits to 236 

proteins in 83 species: Archae - 0; Bacteria - 117; 

Metazoa - 0; Fungi - 0; Plants - 39; Viruses - 0; -1.41 
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Other Eukaryotes - 80 (source: NCBI BLink). 

protein_coding 

AT3G48450 HMA1 heavy metal atpase 1 protein_coding -1.41 

AT4G17695   

Mitochondrial substrate carrier family protein 

protein_coding -1.39 

AT5G38420 ADT6 arogenate dehydratase 6 protein_coding -1.35 

AT3G03360   GTP-binding protein, HflX protein_coding -1.32 

AT1G70000 SPS1 

solanesyl diphosphate synthase 1 

protein_coding -1.29 

AT5G10220 GNC 

GATA type zinc finger transcription factor family 

protein protein_coding -1.29 

AT5G52420 GLDP2 

glycine decarboxylase P-protein 2 

protein_coding -1.28 

AT1G32470   

Chaperone DnaJ-domain superfamily protein 

protein_coding -1.27 

AT2G35770   TMPIT-like protein protein_coding -1.27 

AT2G43750   

4'-phosphopantetheinyl transferase superfamily 

protein_coding -1.26 

AT3G01210 SERAT3;2 serine acetyltransferase 3;2 protein_coding -1.26 

AT3G10230   

unknown protein; Has 30 Blast hits to 30 

proteins in 10 species: Archae - 0; Bacteria - 2; 

Metazoa - 0; Fungi - 0; Plants - 24; Viruses - 0; 

Other Eukaryotes - 4 (source: NCBI BLink). 
protein_coding -1.24 

AT3G42670 HYR1 
UDP-Glycosyltransferase superfamily protein 
protein_coding -1.24 

AT4G12000 LYC lycopene cyclase protein_coding -1.22 

AT5G40980 HTA13 histone H2A 13 protein_coding -1.16 

AT5G44800 PHYE phytochrome E protein_coding -1.15 

AT4G00780 SWEET1 Nodulin MtN3 family protein protein_coding -1.13 

AT4G33660   

unknown protein; FUNCTIONS IN: 

molecular_function unknown; INVOLVED IN: 

biological_process unknown; LOCATED IN: 

endoplasmic reticulum; EXPRESSED IN: 24 plant 

structures; EXPRESSED DURING: 13 growth 

stages; BEST Arabidopsis thaliana protein match 

is: unknown protein (TAIR:AT5G23920.1); Has 
30201 Blast hits to 17322 proteins in 780 

species: Archae - 12; Bacteria - 1396; Metazoa - 

17338; Fungi - 3422; Plants - 5037; Viruses - 0; 

Other Eukaryotes - 2996 (source: NCBI BLink). 

protein_coding -1.12 

AT3G30768 SPL10 

squamosa promoter binding protein-like 10 

protein_coding -1.12 
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AT3G60910   

S-adenosyl-L-methionine-dependent 

methyltransferases superfamily protein 

protein_coding -1.12 

AT4G12580   

RNA-binding (RRM/RBD/RNP motifs) family 

protein protein_coding -1.11 

AT1G66840 MEE11 RNI-like superfamily protein protein_coding -1.10 

ATMG0111

0   

Tetratricopeptide repeat (TPR)-like superfamily 

protein protein_coding -1.08 

AT2G43390 TRNS.2 tRNA-Ser pre_trna -1.06 

AT2G40540 SCRL9 SCR-like 9 protein_coding -1.04 

AT2G44230 SIGC RNApolymerase sigma-subunit C protein_coding -1.04 

AT5G15900   Peroxidase superfamily protein protein_coding -1.03 

AT2G04790   

Tudor/PWWP/MBT superfamily protein 

protein_coding 1.01 

AT1G78180   

Leucine-rich repeat protein kinase family protein 

protein_coding 1.01 

AT2G26080   

C2 calcium/lipid-binding and GRAM domain 

containing protein protein_coding 1.02 

AT3G26050   Carbohydrate-binding-like fold protein_coding 1.02 

AT4G17050   

transposable element gene 

transposable_element_gene 1.03 

AT5G37690   

Octicosapeptide/Phox/Bem1p family protein 

protein_coding 1.04 

AT1G03370   

unknown protein; BEST Arabidopsis thaliana 

protein match is: unknown protein 

(TAIR:AT3G24150.1); Has 39 Blast hits to 39 

proteins in 10 species: Archae - 0; Bacteria - 0; 

Metazoa - 0; Fungi - 0; Plants - 39; Viruses - 0; 
Other Eukaryotes - 0 (source: NCBI BLink). 

protein_coding 1.05 

AT1G26220   

unknown protein; Has 30201 Blast hits to 17322 

proteins in 780 species: Archae - 12; Bacteria - 

1396; Metazoa - 17338; Fungi - 3422; Plants - 

5037; Viruses - 0; Other Eukaryotes - 2996 

(source: NCBI BLink). protein_coding 1.06 

AT1G16880 CNGC4 

cyclic nucleotide-gated cation channel 4 

protein_coding 1.07 

AT1G29000   

unknown protein; Has 30201 Blast hits to 17322 

proteins in 780 species: Archae - 12; Bacteria - 

1396; Metazoa - 17338; Fungi - 3422; Plants - 

5037; Viruses - 0; Other Eukaryotes - 2996 

(source: NCBI BLink). protein_coding 1.12 

AT1G31650   RING/U-box superfamily protein protein_coding 1.17 

AT2G15580   

F-box/RNI-like superfamily protein 

protein_coding 1.17 



 167

AT3G18800   

Uncharacterized conserved protein (DUF2358) 

protein_coding 1.18 

AT1G79510 VIP4 leo1-like family protein protein_coding 1.18 

AT1G11860   

Pentatricopeptide repeat (PPR) superfamily 

protein protein_coding 1.23 

AT1G72416 CHR4 chromatin remodeling 4 protein_coding 1.24 

AT3G22150 MYB48 myb domain protein 48 protein_coding 1.28 

AT3G44550   

CBS domain-containing protein / transporter 

associated domain-containing protein 

protein_coding 1.31 

AT5G14740   

Chaperone DnaJ-domain superfamily protein 

protein_coding 1.40 

AT1G32060 BETAG4 beta-1,3-glucanase 4 protein_coding 2.00 

AT2G19200 RHL2 

Spo11/DNA topoisomerase VI, subunit A protein 

protein_coding 2.00 

AT4G10430   cell division control 6 protein_coding 2.14 

AT3G14930   

unknown protein; BEST Arabidopsis thaliana 

protein match is: unknown protein 

(TAIR:ATMG00470.1); Has 35333 Blast hits to 

34131 proteins in 2444 species: Archae - 798; 
Bacteria - 22429; Metazoa - 974; Fungi - 991; 

Plants - 531; Viruses - 0; Other Eukaryotes - 9610 

(source: NCBI BLink). protein_coding 2.34 

AT3G46420   

unknown protein; FUNCTIONS IN: 

molecular_function unknown; INVOLVED IN: 

biological_process unknown; LOCATED IN: 

cellular_component unknown; Has 2 Blast hits to 

2 proteins in 2 species: Archae - 0; Bacteria - 0; 

Metazoa - 1; Fungi - 0; Plants - 1; Viruses - 0; 

Other Eukaryotes - 0 (source: NCBI BLink). 

protein_coding 2.40 

AT3G46130 ORF107G hypothetical protein protein_coding 2.86 

AT2G46510   

unknown protein; FUNCTIONS IN: 

molecular_function unknown; INVOLVED IN: 

biological_process unknown; LOCATED IN: 

endomembrane system; Has 30201 Blast hits to 
17322 proteins in 780 species: Archae - 12; 

Bacteria - 1396; Metazoa - 17338; Fungi - 3422; 

Plants - 5037; Viruses - 0; Other Eukaryotes - 

2996 (source: NCBI BLink). protein_coding 2.91 

AT4G35640 ORF251 

Mitovirus RNA-dependent RNA polymerase 

protein_coding 3.13 

AT2G01620   

Mitovirus RNA-dependent RNA polymerase 

protein_coding 3.45 

AT5G64100 ARI13 RING/U-box superfamily protein protein_coding 10.04 
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AT3G18010   

Integrase-type DNA-binding superfamily protein 

protein_coding 17.17 
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Appendix    A    

 

This Appendix shows the fold-changes of the genes differentially expressed in 

the microarray experiment (q<.01) at 24 hours after induction of BOLT. 

 

Target    

Name    

Gene    

Symbol    
Description    

24    hours    

Fold    change    

AT1G14150 CYP78A8 

cytochrome P450, family 78, subfamily A, 
polypeptide 8 protein_coding -40.65 

AT1G17100   

SGNH hydrolase-type esterase superfamily 

protein protein_coding -31.83 

AT1G32520 FAR5 fatty acid reductase 5 protein_coding -25.50 

AT1G48330 TBL19 

TRICHOME BIREFRINGENCE-LIKE 19 

protein_coding -23.86 

AT1G48750   

Uncharacterised protein family (UPF0497) 
protein_coding -16.03 

AT1G49980 QRT1 

Pectin lyase-like superfamily protein 

protein_coding -15.14 

AT1G53000   

GDSL-like Lipase/Acylhydrolase superfamily 

protein protein_coding -13.17 

AT1G53270   pseudogene of unknown protein pseudogene -12.73 

AT1G61760 scpl28 serine carboxypeptidase-like 28 protein_coding -12.64 

AT1G64780   

Uncharacterised protein family (UPF0497) 
protein_coding -12.47 

AT1G78995 CYP86A1 

cytochrome P450, family 86, subfamily A, 
polypeptide 1 protein_coding -12.37 

AT2G07774 PLP8 PATATIN-like protein 8 protein_coding -9.56 

AT2G15020   

hydroxyproline-rich glycoprotein family protein 

protein_coding -9.41 

AT2G21970   

hydroxyproline-rich glycoprotein family protein 

protein_coding -9.24 

AT2G22510 PERK15 

Protein kinase superfamily protein 

protein_coding -8.99 

AT2G42975   

Carbohydrate-binding X8 domain superfamily 

protein protein_coding -8.48 

AT2G43530   

peptidoglycan-binding LysM domain-containing 

protein protein_coding -8.42 

AT3G02830 ABCG10 

ABC-2 type transporter family protein 

protein_coding -7.97 

AT3G04140 BBX32 B-box 32 protein_coding -7.88 

AT3G11470   

BEST Arabidopsis thaliana protein match is: 

Glycine-rich protein family (TAIR:AT5G49350.2); 
Has 60 Blast hits to 60 proteins in 12 species: -7.83 
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