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This research aims to assist investors of “real” tangible assets such as construction 

projects in making an optimal portfolio of phased and regular projects which will yield 

the best financial outcome calculated in terms of discounted cash flow of future 

anticipated revenues and costs. We use optimization techniques to find the optimal 

timing and phasing of a single project that has the potential of being decomposed into 

smaller sequential phases. 

Existence of uncertainties is inevitable especially in cases in which we are planning for 

long durations. In the presence of these uncertainties, full upfront commitment to large 

projects may jeopardize the rationality of investments and cause substantial economic 

risks. Breaking a big project into smaller stages (phases) and implementing a staged 

development is a potential mechanism to hedge the risk. Under this approach, by adding 

managerial flexibilities, we may choose to abandon a project at any time once the 

uncertain outcomes are not favorable. In addition to the benefits resulting from hedging 



 

  

unfavorable risks, phasing a project can transform a financially infeasible project into 

a feasible one due to less load on capital budgets during each time. 

Once some phases of a project are delayed and planned to be implemented sequentially, 

it is important to prepare the infrastructure required for their future development. 

Initially, we present a Mixed Integer Programming (MIP) model for the deterministic 

case with no uncertainties that considers interrelationships between phases of projects 

such as scheduling and costs (economy of scales) in addition to the initial infrastructural 

investment required for implementation of future phases. Pairing possible phases of a 

project and doing them in parallel is beneficial due to positive synergies between phases 

but on the downside requires larger capital investments. Unavailability of enough 

budgets to fully develop a profitable project will cause the investment to be carried out 

in different phases e.g. during times when the required capital for developing the next 

phase (or group of phases) is available. 

After, presenting the model for the deterministic case, we present a scenario-based 

multi-stage MIP model for the stochastic case. The source of uncertainty considered is 

future demand that is modeled using a trinomial lattice. We then present two methods 

for solving the stochastic problem and finding the value of the here and now decision 

variable (the size of the infrastructure/foundation). Finding the value of the here and 

now decision variable for all scenarios using a novel technique that does not require 

solving all the scenarios is the first method. The second method combines simulation 

and optimization to find good solutions for the here and now decision variable. 

Lastly, we present a MIP for the deterministic multi-project case. In this setting, 

projects could have multiple phases. The MIP will help the managers in making the 



 

  

project selection and scheduling decision simultaneously. It will also assist the 

managers in making appropriate decisions for the size of the infrastructure and the 

implementation schedule of the phases of each project. To solve this complex model, 

we present a pre-processing step that helps reduce the size of the problem and a 

heuristic that finds good solutions very fast.   
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Chapter 1: Introduction 

Investments in real tangible assets such as projects often are assumed to be somewhat 

irreversible. An irreversible investment is an investment that its cost cannot be 

recovered once it is installed (Eberly, 2008). Irreversibility of investments increase the 

importance of planning. Projects are undertaken because of a demand. Therefore a 

project’s importance and profitability is influenced directly by the demand. There are 

many methods for executing a project. This research focuses on phased implementation 

of projects. 

Phased implementation of projects relies upon the ability of breaking a huge project 

into smaller pieces. The smaller pieces of the project can be implemented in a stage 

wise manner. In this research the terms “phases” and “stages” have been used 

interchangeably. The phases of projects considered in this research have some 

attributes which are listed below: 

 Phases have precedence and successor relationships: The precedence 

relationship is sequential. Meaning that a successor phase, j, can start no sooner 

than its predecessor phase j-1 . If each phase is thought as an activity, this 

relationship is analogous to the start to start dependency among activity j (phase 

j) and its prior activity (j-1). Figure 1 illustrates this dependency relationship 

among phases. 

 Phases produce profits: Each phase by itself can potentially produce a positive 

utility (revenue) for the firm implementing that phase. The additional revenue 
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of a phase is assumed to be independent from the previous phases because from 

the previous assumption, the implementation of that phase is only possible if its 

prior phases were all started (implemented). In other words, the potential 

revenue at any time is independent of the number of phases implemented until 

that time. 

 Phases can be implemented one by one and in sequences or some phases can be 

grouped together and done in parallel. 

 

Figure 1 Start to Start Relationship between possible phases of a project 

1.1 Examples of projects and potential sequential phases 

Overall many projects can be broken down into smaller phases where some of the 

phases can be done sequentially. Sequence is defined as a particular order in which 

related things follow each other. Based on this definition a sequence can be based on 

time. The potential sequential phases do not necessarily have to be done sequentially 

but can be done sequentially based on management’s preference and decision. For 

example expansion of an infrastructure can be done sequentially. Let this infrastructure 
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be a highway. The investors can decide to expand a two lane highway into a 4 lane 

highway either right-away or by a sequence of first expanding it into a 3 lane highway 

and then doing another expansion and expanding it into a 4 lane highway. In this case 

the potential phases would be: 1) adding one lane to a two lane highway and making it 

a 3 lane highway, and 2) adding another lane to a 3 lane highway and making it a 4 lane 

highway. Note that phases 1 and 2 can be done either sequentially or in parallel. If done 

in parallel, we expand the highway from 2 lanes to 4 lanes at once.  

Another example of an expansion is expanding a 2 story building into a 5 story 

building. The potential phases in this case are the levels: 1) construct level 3, 2) 

construct level 4, and 3) build level 5. Note that similar to the highway expansion 

example, the expansion of the building can be done in one shot and we can add the 

three stories at once. Or we can first finish phase 1 and then do phase 2 and afterwards 

do phase 3. The first method is a purely parallel expansion and the second method is a 

purely sequential expansion. In this example, there are many other alternatives for 

completing the 5 story building. These other “options” are not fully parallel or fully 

sequential. The possible expansion methods based on the phases are summarized in 

Figure 2. Due to ordering and sequential relationships it is not possible to do phases 2 

and 3 in parallel and after that finish phase 1. 
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Figure 2 Spectrum of possible methods for undergoing a project with three phases 

Construction of a residential complex is another example. Assuming that the residential 

complex has b apartment buildings, each building can be thought of as a phase.  

In general when we have n potentially sequential phases, we would have ∑ (𝑛−1
𝑖

)𝑛−1
𝑖=0  

possible options to complete the project. For example, if n=8 , the number of possible 

options to complete all phases will be 128. 
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1.2 Benefits and disadvantages of phasing projects 

Phasing projects can be to the benefit of management if planned wisely. Some potential 

benefits are mentioned below: 

a) Completion of costly and large projects by breaking them down into smaller 

pieces with less costs and performing the smaller pieces at different times upon 

availability of funds;  

b) Breaking large projects into smaller manageable pieces; 
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c) Reducing operating costs required early due to having a smaller portion of the 

entire project completed at sooner times;  

d) Less initial capital costs open the door for investing remaining funds in other 

projects; 

e) Increasing resiliency and allowing for more learning by allowing partial 

completion at different times; and, 

f) Preventing underutilization of a project by hedging risks. 

g) Financing later phases with revenues from early phases. 

Some of the disadvantages of phasing a project and not performing it all together 

(performing the phases in parallel) is listed in the following: 

a) Loss of economy of scale; 

b) Loss of revenue due to loss of unsatisfied demand; 

To eliminate budget limitations and infeasibilities caused by budget limitation at a 

certain time, in addition to phasing a project, we can delay and postpone the project 

until we have enough budget to undertake the project. 

Some of the advantages and disadvantages are summarized Table 1. 
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Table 1 Some advantages and disadvantages of phasing (staging) a project 

 

1.3 Scope of dissertation 

In this dissertation we intend to tackle the problem of optimizing sequential multi-phase 

project investments. We have developed models that can assist decision makers in 

making optimal decisions with respect to potential multi-phase projects. For a single 

project, we determine what phases should be done in parallel and what phases should 

be done sequentially. Then we apply the multi-phase framework to a portfolio of 

projects and find the optimal portfolio of multi-phase projects and single phase projects. 

In the remaining of the dissertation first we review the literature related to phased 

investment and sequential investments. Then we present a mathematical model for 

deterministic cases of multi-phase projects. Then in the next section we consider 

uncertainties and present a stochastic optimization framework for multi-phase projects 

that require initial investments. A deterministic multi-project MIP formulation is then 

Advantages of doing a project in one stage

• Economy of scale

• Gaining more revenue in case of a 
profitable and favorable project

• Less unsatisfied demand (in case of 
public projects)

Advantage of phasing and performing it in 
several stages

• Reduction in uncertainty (more resilient 
solutions). Learning!

• Reduction in operating costs for the 
initial years (maintenance)

• Less initial capital costs open the 
possibility for investment in other 

projects

• Preventing under utilization
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presented. Finally, a summary is provided and conclusions are drawn and some 

directions for future research is provided. 
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Chapter 2: Literature Review 

The scope of this dissertation covers problems related to phased investment and 

sequential investments. Phased investment framework has been applied to many 

practices and industries. Information Technology (IT) projects (Miller, et al., 2004), 

Flexible Manufacturing Systems (FMS) (Lamar & Lee, 1999), and industry plant 

expansion (Lieberman, 1987) are among the applications of phased investment and 

implementation of a project which have been studied in the literature. Other areas of 

studies are, R&D projects (Herath & Park, 2002), market entry decisions (Pennings & 

Lint, 2000), residential development (Ott, et al., 2012), commercial building energy 

retrofits (Lee, et al., 2014), distribution network expansion planning (Carvalho, et al., 

1998), container port expansions (Dekker & Verhaeghe, 2008), parking garage 

construction (De Neufville, et al., 2006), and highway development and expansion 

(Zhao, et al., 2004). 

2.1 Real Options for Evaluating Phased Projects 

Many of the literature related to phased investment focuses on evaluation of such type 

of investments. The general objective of these studies is to evaluate real world cases of 

phased investments in which the investees have majorly decided to invest and justify 

this decision. Real options is the most common method used for investment evaluation. 

(Miller, et al., 2004) use real options to evaluate the Korean information technology 

infrastructure. They utilize the deferral real options framework to evaluate the 

investment decision for investing in the information technology infrastructure of South 
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Korea. They conduct a brief literature review on research that apply real options to IT 

investment decisions. 

They model the three phased investment model using two methods: growth options, 

and compound options. For the growth option, they use the Black and Scholes equation 

and model the IT investment option as a standard European call option assuming that 

investing in phases 1 and 2 will buy us the option to invest in phase 3. They also model 

the investment as compound option such that investing in phase 1 will give us the 

option to invest in phase 2 and investing in phase 2 will give us the option of investing 

in phase 3. The compound option’s value is calculated using Geske’s compound option 

model (Geske, 1979). They state that estimating the volatility parameter is generally 

done using four methods: a) Twin Security Argument; b) Implied Volatility; c) 

Modified Scenario Analysis; and d) Monte Carlo Simulation. 

Herath and Park  study a multi-stage project setting in which each investment 

opportunity derives revenues from different markets but shares common technological 

resources (Herath & Park, 2002). They use the binomial lattice framework to model the 

multi-stage investment as a compound real option when uncorrelated underlying 

variables exist. They use Monte Carlo simulation to estimate the volatility parameter. 

They state that the famous Black and Scholes option pricing model should not be used 

for valuing sequential compound options. 

(Herath & Park, 2002) assume that the time to maturity of options are known 

beforehand and also the time which the investments should take place are given. The 

decision which should be made is whether to invest at that time in the next option or 
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not. To show the performance of their model, they present a hypothetical example of 

an R&D investment in a manufacturing environment. They assume that there are two 

sources of uncertainty. One of them being technological and the other being demand 

for the new product. They evaluate the project investment opportunity both using real 

options and DCF analysis and illustrate how DCF fails to capture the flexibilities in 

future investments and approaches the investment as an all or nothing investment. 

(Pennings & Lint, 2000) use the Black and Scholes option pricing formula to price the 

call and put options in phased market introduction. They find optimal timing and 

optimal rollout area for a phased market introduction of a new product. They solve the 

modified Black-Scholes equations to find the optimal solutions. Their model assumes 

that rollout area is continuous and a firm can decide to enter the market for any portion 

of the entire area. In addition, their model inherits the assumptions and limitation of the 

Black and Scholes model because being built on the base of that model. 

(Ott, et al., 2012) consider economy of scale in construction in their research and 

illustrate how the real options framework can be used in estimating the impacts of 

different economic variables such as economy of scale and inventory costs on optimal 

phasing and inventory decisions. They state that it is to the utmost interest of residential 

developers to sell the developed unit as soon as possible to possibly decrease the cost 

of inventory. However, since the developers actions might affect the prices, they might 

decide to develop in smaller phases and therefore increase the price per unit. They 

assume that each developer has the potential to build up to a certain number of units 
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and does not need to acquire any land as it is assumed that they have the land available 

for the development. 

(De Neufville, et al., 2006) illustrate how practitioners can simply perform real option 

analysis on flexible projects using spreadsheets. They consider three cases: one 

deterministic case, one case which allows for uncertainty, and one case which 

flexibility in design is taken into consideration. The last case is valued using real 

options. They propose a risk preference based decision making method. They use 

binomial lattice tree to model the only source of uncertainty they considered, (parking) 

demand. The decision makers risk preference is measured by the certainty equivalent 

(CE) of a random wealth variable.  

2.2 Mathematical Models for Phased Investments and Expansions 

Even-though the majority of the work done related to phased investment is based on 

the real options framework, some of the existing literature has modelled phased 

investments using mathematical optimization models.  

(Lim & Kim, 1998) present a Mixed Integer Programming (MIP) model for gradually 

replacing conventional dedicated machines with Flexible Manufacturing Modules 

(FMM) under budget restrictions. The objective of their mathematical model is to 

minimize the discounted costs of acquisition and operation of FMMs and the 

operational costs of the conventional machines. Under the phased implementation 

assumption, FMMs are not acquired all at once and are usually acquired at different 

years. 
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(Carvalho, et al., 1998) formulate the problem of finding optimal decisions for the 

distribution network expansion planning under uncertainties. They model the 

uncertainties using a set of scenarios. 

(Zhao, et al., 2004) develop a multistage stochastic model which assists in making 

highway development, operation, expansion, and rehabilitation decisions. Three 

sources of uncertainties and their interdependencies are considered. Namely, traffic 

demand, land price, and highway deterioration. The solution algorithm used is a 

combination of Monte-Carlo simulation and least-squares regression. They consider 

traffic demand to follow a wiener process and use Markov processes to model 

infrastructure deterioration. They also consider rehabilitation and land acquisition in 

their research. 

(Lieberman, 1987) discusses the assumptions and general findings of two models 

which are developed for finding industrial plant sizes and capacity expansion based on 

economy of scale and demand growth parameters. 

Some other research which falls close to phased investment is related to a problem 

called the capacity planning problem. In this problem, we are interested in finding the 

optimal timing and size to increase capacity such that future demand is met. Generally, 

the objective is to satisfy all future demand and deficits in demand are not allowed.  

It is worth noting that if we relax the assumption of no unsatisfied demand, the phased 

investment problem is very similar to the capacity planning problem. Note that if we 

assume the possible increases in capacities to be discrete and each capacity increase to 

be implemented in each phase, the phased investment model can be used to model 
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capacity planning problems. Flexible Manufacturing Systems (FMS) is an area in 

which many optimization models have been developed to find optimal investments to 

meet demands (Fine & Freund, 1990). 

2.3 Sequential Investments 

Another area of research which is close to phased investment is sequential investment. 

If we assume that each investment in a sequential investment is a phase, the two are 

more or less the same. 

(Bar-Ilan & Strange, 1998) consider sequential investments in two phases which its 

phases take time to complete. The benefits are only assumed to be gathered after the 

entire investment is finished. They assume that the price of the output follow a 

geometric Brownian motion. After the first stage, the investors have the option to 

abandon the project or to pursue by investing in the second stage. They use dynamic 

programming for evaluating the investments and model it using recursive equations. 

They do not consider any budget limitations. 

(Baldwin, 1982) looks into the case that investment opportunities arrive sequentially 

thus should be reviewed sequentially. She models firms’ investment decisions as 

Markov reward processes. Another research which assumes that investment 

opportunities arrive in sequences is (Prastacos, 1983). 

(Gupt & Rosenhead, 1968) state that for long-range investment plans which last for 

number of years one possible way of guarding against the danger of committing to a 
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decision based on current knowledge which might turn out to be a bad decision is to 

keep as many options as open as possible. 

(Rocha, et al., 2007) compare the simultaneous and sequential investment strategies in 

real estate development using real options. They conclude that sequential investment 

can help reduce the risks.   

The most common assumption among the majority of studies is that we have the 

opportunity and infrastructure of investing in as many phases as we want. However in 

reality, this is not always the case. This might be the case for some cases of lane 

expansions performed by the government who is the owner of the land required for 

expansion. Or the case that no infrastructure is needed for future phases. These are very 

rare situations in which the infrastructure was acquired and prepared in the past or no 

infrastructure is needed.  However, in a majority of cases the investors have to invest 

in purchasing and preparing the required infrastructure for future phases at the time 

they decide to implement a phased investment plan for a project. In (De Neufville, et 

al., 2006) since the number of levels of the parking garage was assumed to be flexible, 

the columns were assumed to be “strong columns” and not specifically optimized and 

designed for a certain number of levels. This assumption which is very simplistic was 

done since the proposed method for valuing the real options was intended to be very 

simple to implement. However, having the size of the column following an either or 

paradigm might significantly increase the cost and difficulty of construction. In 

addition, due to simplicity, they have not taken into consideration the economies of 
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scale and budget constraints which make the proposed framework further away from 

real world applications. 

The work done by (Zhao & Tseng, 2003) provides a model that addresses the 

limitations of the aforementioned research. It allows for constructing foundations 

which can support different levels and also allows the expansion of different levels at 

different times. The case study they use is the construction of a multi-level parking 

garage which has fixed and variable costs. They present three “models”. The 

differences in the models are in how they model demand. In the first model, they 

assume that demand is constant over time. In their second model, demand varies over 

time but is deterministic. The third model assumes that the demand is uncertain and a 

trinomial lattice framework is used for modelling different outcomes of the demand. 

Dynamic Programming (DP) is used for finding optimal expansion decisions. 

However, they do not consider synergies between different levels and any benefits for 

constructing different levels in parallel. 

Another limitation which many of the previous research including (Zhao & Tseng, 

2003) have is not considering budget limitations at different times. In addition they 

have not considered time value of money in terms of having the ability to invest the 

remaining capital in another investment. Considering these and using real options 

framework is very complicated. However if these limitations are neglected, the real 

options framework will only be useful to a small audience of investors. 

This dissertation aims to fill the gaps and overcome the limitations of existing research. 

In this dissertation we provide Mixed Integer Programming (MIP) models that can be 
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used for finding optimal phasing and expansion decisions. The models consider 

synergies among phases and find an optimal strategy for performing some phases in 

parallel and some other in sequence subjected to budget constraints.  

The more detailed contributions of each chapter is presented within the chapters 

themselves. Nonetheless, some of the major contributions of our research are: 

 Developing a Mixed Integer Programming (MIP) mathematical model which 

can provide optimal decisions in terms of phasing projects and timing of 

execution, 

 Accounting for infrastructural preparations and requirements for 

implementation of future phases, 

 Considering budget constraints and limitations at different times, 

 Accompanying synergies among phases such as cost efficiencies, 

 Considering uncertainties using the binomial lattice framework of real options 

analysis,  

 Presenting a method for finding the optimal here and now decision variable 

values for scenario based problems that the scenarios are generated using the 

lattice framework, 

 Solving the multi-stage stochastic optimization problem using simulation, 

 Performing portfolio optimization and selecting the optimal mix of phased 

projects while considering the interdependencies among phases, and 

 Presenting a pre-processing step and a heuristic to deal with large cases of 

multi-project phased investment problems. 



 

 

17 

 

Chapter 3: Deterministic Multi-phase Project Optimization 

Under certainty assumption, risk is no longer a concern. Therefore the main driving 

factor for phasing a project and sequentially carrying the phases could be budgetary 

constraints or better financially viable options in which the firm can invest its remaining 

capital or preventing underutilization of the entire project at early stages when the 

demand for the project is limited. As a result, phases of a project might be carried in a 

sequential order to save on the funds required at sooner times.  

In this chapter of the dissertation we assist investors in making three decisions. The 

first decision is with regard to the quantity and size of investment. The second decision 

is with regard to pairing of phases and what phases should be done in parallel and what 

phases should be done sequentially. The last decision is about the optimal timing for 

investing in each sequential phase or set of parallel phases which are supposed to be 

done together. 

3.1 Modeling Assumptions 

The modeling assumptions used in this research are with regard to financials and 

different interdependencies among project phases. 

3.1.1 Financial Assumptions 

The financial assumptions of this study are about budget limitations and financial 

opportunities (time value of money). We assume that the firm has a limited capital 

(budget) at time zero. At future times the amount of capital they have depends on the 



 

 

18 

 

amount they had at its previous time step minus the costs incurred at the previous time 

steps plus whatever is the positive income during the previous time and any additional 

infused capital from outside. An assumption regarding timing of the costs and profits 

is that the costs are all collected at the beginning of a time step but the positive income 

cash flow is rewarded at the end of each time step. To accommodate opportunity losses 

and time value of money we include a risk free interest rate which is used to update the 

available budget at future times based on the remaining budget at its previous time step. 

In addition we include inflation in all types of costs. 

3.1.2 Different Types of Costs 

Two type of costs are considered in this model. Initial fixed costs which are 

representative of the required cost for constructing and installing phases. The other cost 

is operating/maintenance costs (OM). OM costs are ongoing costs and depend on how 

many of the phases are implemented during each time. In general, the more number of 

phases implemented, the more the OM costs are likely to be. 

3.1.3 Profits from Phases 

We assume that each phase potentially generates a profit (revenue) depending on the 

time it is implemented. These profits depend on the demand for the project. The profit 

of each phase is expressed in terms of the surplus profit brought by implementing that 

phase and increasing capacity (supply). Consider an arbitrary supply demand curve 

such as what is depicted in Figure 3. If we increase the supply capacity (shift out 

supply) by adding a new phase, the additional revenue which is yielded by serving more 

demands is the additional profit from that phase. Figure 3 illustrates how the served 
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demand quantity will increase. In this Supply-Demand curve, the hashed area is the 

profit. 

 

Figure 3 Supply and Demand analysis in case of increasing supply 

Note that in Figure 3 𝑝0
∗ is the equilibrium price before adding a phase and increasing 

capacity. The total revenue prior to adding a phase is therefore captured as (3-1): 

𝑆0 = 𝑝0
∗ × 𝑞0

∗   →    𝑅0 = 𝑝0
∗ × 𝑞0

∗ (3-1) 

where 𝑞0
∗ is the equilibrium quantity prior to adding the phase. 

After adding the phase, the equilibrium price and quantity are subject to change 

depending on the shape of the supply-demand curve. The additional revenue however 

is captured as follows (3-2): 

𝑅1 = 𝑝1
∗ × 𝑞1

∗ − 𝑝0
∗ × 𝑞0

∗ (3-2) 
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where 𝑝1
∗ and 𝑞1

∗ are the equilibrium price and quantity after adding the phase, 

respectively. 

For the cases of infrastructure developments, the price does not usually fluctuate a lot 

depending on the demand. For example if the price of a parking space is set to $p at a 

year, if we increase the number of parking spaces (until a certain threshold) the price 

will not change and therefore can be considered constant. Here, the supply-demand 

analysis can be done under the assumption of existence of a price ceiling. Figure 4 

illustrates the shifting of supply in the presence of a price ceiling and under the 

assumption of ceteris paribus. The hashed area, illustrates the additional revenue 

brought from implementing the phase and increasing the supply capacity. 

 

Figure 4 Supply and Demand analysis in presence of price ceiling and increasing supply 

In the presence of a price ceiling, by adding more supply (implementing a new phase), 

the new price will remain the same and it will not be equal to the new equilibrium price. 
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Therefore, the increase in revenue is solely proportional to the increase in demand 

served. The additional revenue from adding a phase is therefore as follows: 

𝑅1 = 𝑝𝑐 × (𝑞𝑑
𝑐 − 𝑞𝑠

𝑐) (3-3) 

3.1.4 Resource and Budget Assumptions 

We assume that during each time, t, the investing firm has a certain budget available to 

itself and the operating and investment cost at that time cannot exceed this budget. The 

budget at each time by itself is a function of some variables of the previous time frame. 

These variables are: 

 Budget of the previous time frame, 

 Money invested for development of phases in the previous time frame, 

 Money consumed for head over costs (operation and maintenance costs) in the 

previous time frame, 

 Revenue (Profit) received from previous investments in the previous time 

frame, 

 Risk-free interest rate, and 

 Inflation. 

3.1.5 Time-related Relationships between Phases 

It is assumed that the phases have sequential relationships such that we cannot invest 

in a phase, p, prior to investing in all its previous phases. However, we can decide to 

invest in a group of phases together in parallel due to many reasons such as economy 

of scale. 
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3.1.6 Initial Investment and Phase-Infrastructure Investment 

Investments in phases at future times depend on the initial investment infrastructural 

investment decision at time zero. We can only invest in a phase at any future time if we 

have invested in acquiring the required infrastructure for that future phase. Figure 5 

depicts two different cases of a two phase investment. The left picture is different cost 

profiles and paths if we only invest in the infrastructure of one phase. In this case the 

dotted line represents the cost profile if we do not invest in the phase and abandon the 

project. The solid line represents the cost profile if we invest in the phase.  

 

Figure 5 Different Cost Profiles based on potential number of phases. The left figure the potential is 

only 1 phase. The figure at right can have up to 2 phases 

The picture at right is the cost profile if we invest in the infrastructure of both phases. 

The darkest dotted line is the cost profile of abandoning the remainder of the 

investment. The solid line represents the costs if we invest in only phase one. The dotted 

light line represents the cost profile of investing in both phases at two different times 

(sequential investment). The semi dotted/solid light line represent a parallel investment 

in two phases. 
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3.2 Mathematical Model 

Based on the above-mentioned assumptions we present a novel mathematical model. 

The mathematical model provided in this research is a deterministic Mixed Integer 

Program (MIP). It is deterministic because we assume that all of the model parameters 

and inputs are known a priori without much uncertainty. The Deterministic Single-

project Phased-investment Problem (DSPP) is presented below. 

3.2.1 Model Parameters and Variables 

The input/parameters of the model are mainly monetary. The list of all parameters and 

variables for DSPP are as follows. For convenience and better representation of the 

mathematical model, the parameters all start with Uppercase letters and variables all 

start with lowercase letters. All model parameters and variables are summarized in 

Table 2. 

Table 2 Deterministic single-project phased investment problem parameters and variables  

Variables 

𝑢𝑏 Number of phases selected for 
implementation 

Variables regarding infrastructure 

𝑖𝑡𝑢𝑏 Construction duration for infrastructure 
based on actual number of phases to be 
implemented 

𝑐𝑜𝑠𝑡𝑢𝑏 Construction cost for the infrastructure 
required for implementing 𝑢𝑏 phases. 

Variables regarding phases 

𝑥𝑖𝑗
𝑡  Binary variable that equals 1 if phases 𝑖 

through 𝑗 start their implementation at 
time 𝑡 

Other main variables 

𝑏𝑡 Available budget at the beginning of 
each time period 𝑡 
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𝑛𝑡 Number of phases that have already 
been implemented or are being 
implemented at time 𝑡 

Variables used for linearization 
𝑛𝑡𝑡,𝑖 Binary variable for linearization 

𝑐𝑛𝑖,𝑡 Binary representation of number of 
phases that have already been 
implemented or are being implemented 
at time t for linearization 

𝑛𝑐𝑖 Binary variable for linearization of 
infrastructure cost 

Parameters 

𝑇 Planning period 

𝑈𝐵 Maximum number of phases of project 

𝐵0 Initial available budget 

𝑅 Risk free interest rate 

𝐼 Inflation rate 

𝑀𝑇  Big-M value used for timing 

Times Set of time periods = 0 .. T 

Phases Set of phases = 1 .. UB 
𝑃𝑖,𝑡 Profit gained from first 𝑖 phases at time 

𝑡 
𝐼𝑇𝑢𝑏 Preparation (construction) time for 

infrastructure of 𝑢𝑏 phases 

𝐼𝐶𝑂𝑆𝑇𝑢𝑏 Preparation (construction) cost for 
infrastructure of 𝑢𝑏 phases 

𝑃𝑇𝑖,𝑗 Duration required for implementation of 
each phase 𝑖 − 𝑗 when phases 𝑖 − 𝑗 are 
implemented together 

𝐶𝐶𝑃𝐴𝑖,𝑗 Construction cost of each phases 
between 𝑖, 𝑗 if phases 𝑖 − 𝑗 are being 
done together 

𝑂𝐶𝑃𝐴𝑖,𝑡 Operation cost at time 𝑡 when Number 
of phases that have already been 
implemented or are being implemented 
at time 𝑡 is 𝑖 
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The main decision variables in our model are related to the initial investment in 

infrastructures for preparation of future phases, and the time at which each (grouped) 

potential phase is implemented.  

3.2.2 MIP Formulation (DSPP) 

3.2.2.1 Objective Function 

In our formulation we only consider monetary benefits. Therefore the objective 

function maximizes the Net Present Value (NPV) of our budget at the end of the 

planning period (equation (3-4)). 

max 𝑧 =
𝐵𝑇+∑ 𝑃𝑖,𝑇×𝑐𝑛𝑖,𝑇𝑖 −(∑ ∑ (𝑗−𝑖+1)×𝑥𝑖,𝑗

𝑡
𝑗𝑖 +∑ 𝑂𝐶𝑃𝐴𝑖,𝑇×𝑐𝑛𝑖,𝑇𝑖 )×(1+𝐼)𝑇

(1+𝑅)𝑇
 (3-4) 

The first part of the objective function is the remaining money at the beginning of the 

last year of the planning period, T. The next component is the profit gained at the end 

of the planning period and thereafter. If the project still yields profit after the planning 

period, the future net profit is discounted back to the year of the planning period, T and 

added to the profit of the last year of the planning period (T). The third component of 

the objective function is all the costs at time 𝑇 and thereafter. All components 

discounted back to time 0 using the risk free interest rate. 

3.2.2.2 Constraints related to the size of investment (DSPP) 

The majority of the constraints of our MIP formulation are either related to the initial 

infrastructural investment, or phases of the investment, or the scheduling, or budget 

constraints. The constraints for the initial infrastructural investments are for calculating 
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the size of the initial infrastructural investment. The size of the investment is based on 

the number of potential phases that can be built in the future (ub). Depending on the 

size, the cost of such an investment and required time for completion of the 

infrastructure can be calculated. 

𝑛𝑡 ≤ 𝑢𝑏          ∀𝑡 (3-5) 

𝑐𝑜𝑠𝑡𝑢𝑏 = ∑ 𝐼𝐶𝑂𝑆𝑇𝑖 × 𝑛𝑐𝑖𝑖  (3-6) 

𝑖𝑡𝑢𝑏 = ∑ 𝐼𝑇𝑖 × 𝑛𝑐𝑖𝑖  (3-7) 

𝑢𝑏 = ∑ 𝑖 × 𝑛𝑐𝑖𝑖  (3-8) 

∑ 𝑛𝑐𝑖𝑖 ≤ 1 (3-9) 

Constraints (3-5) limit the total number of phases that are implemented at each time to 

the maximum invested infrastructure. Constraints (3-6) and (3-7) are for calculating the 

infrastructure cost and install duration. For them being linear, we need to express the 

number of phases selected for implementation, 𝑢𝑏, using binary variables. This is done 

using constraints (3-8) and (3-9). 

3.2.2.3 Constraints related to phases (DSPP) 

Constraint (3-10) – (3-15) are the phase related constraints: 

𝑛0 = ∑ ∑ (𝑗 − 𝑖 + 1) × 𝑥𝑖,𝑗
0

𝑗𝑖  (3-10) 

𝑛𝑡 = 𝑛𝑡−1 ∑ ∑ (𝑗 − 𝑖 + 1) × 𝑥𝑖,𝑗
𝑡

𝑗𝑖           ∀𝑡 ≥ 1 (3-11) 
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𝑛𝑡 = ∑ 𝑖 × 𝑐𝑛𝑖,𝑡𝑖         ∀𝑡 (3-12) 

∑ 𝑐𝑛𝑖,𝑡𝑖 ≤ 1        ∀𝑡 (3-13) 

∑ 𝑥𝑖,𝑗
𝑡

𝑗≥𝑖 ≤ ∑ ∑ 𝑥𝑙,𝑖−1
𝑡′

𝑡′≤𝑡  𝑙≤𝑖−1          ∀𝑖 ∈ {2,… , 𝑈𝐵}, 𝑡 (3-14) 

∑ ∑ ∑ 𝑥𝑖,𝑗
𝑡

𝑗≥𝑙𝑖≤𝑙𝑡 ≤ 1         ∀𝑙 ∈ {1,… , 𝑈𝐵} (3-15) 

Constraints (3-10) and (3-11) are for calculating the number of phases 

implemented/being implemented at different times. Constraints (3-12) and (3-13) are 

for representing the number of phases that are implemented/are being implemented 

using binary variables so that we would have linear constraints when calculating the 

different costs and times for phases. Constraints (3-14) prevent implementation of 

succeeding phases prior to the implementation of phases that are preceding them. 

Constraints (3-15) prevent the assignment of a phase to two different groups of phases. 

3.2.2.4 Scheduling constraints of phases (DSPP) 

These group of constraints are for timing of each phase.  

𝑖𝑡𝑢𝑏 ≤ ∑ ∑ 𝑡 × 𝑥1,𝑗
𝑡

𝑡𝑗 + 𝑀𝑇 × (1 − ∑ ∑ 𝑥1,𝑗
𝑡

𝑡𝑗 ) (3-16) 

𝑡 × 𝑥𝑖,𝑗
𝑡 + (𝑗 − 𝑖 + 1) × 𝑃𝑇𝑖,𝑗 × 𝑥𝑖,𝑗

𝑡 ≤ ∑ ∑ 𝑡′ × 𝑥𝑗+1,𝑙
𝑡′

𝑡′≥𝑡𝑙≥𝑗+1 + 𝑀𝑇 × (1 −

∑ ∑ 𝑥𝑗+1,𝑙
𝑡′

𝑡′≥𝑡𝑙≥𝑗+1 )                ∀𝑖, 𝑗 ∈ {2,… , 𝑈𝐵} | 𝑗 ≥ 𝑖, 𝑡 (3-17) 

∑ ∑ 𝑥𝑖,𝑗
𝑡

𝑗≥𝑖𝑖 ≤ 1               ∀𝑡 (3-18) 
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Constraint (3-16) assures that the first group of phases are implemented after the 

infrastructure is completed and successfully implemented. Constraints (3-17) ensure 

that each phase is implemented after the completion of implementation of its preceding 

phases. Constraints (3-18) prevent multiple groups of phases to start their 

implementation together. 

3.2.2.5 Budget constraints (DSPP) 

At each time, the costs for investing in the phases and the operation and maintenance 

costs should not exceed the budget of that time. These budgetary constraints are for 

calculating the available budget at the beginning of each time period and limiting the 

expenses during a time period to the available budget at the beginning of that time 

period. 

𝑏1 = 𝐵0 − 𝑐𝑜𝑠𝑡𝑢𝑏 − (∑ ∑ (𝑗 − 𝑖 + 1) × 𝐶𝐶𝑃𝐴(𝑖, 𝑗) × 𝑥𝑖,𝑗
0

𝑗≥𝑖𝑖 + ∑ 𝑂𝐶𝑃𝐴𝑖,0 ×𝑖

𝑐𝑛𝑖,0) × (1 + 𝑅) + ∑ 𝑃𝑖,0 × 𝑐𝑛𝑖,0𝑖  (3-19) 

𝑏𝑡 = (𝑏𝑡−1 − (∑ ∑ (𝑗 − 𝑖 + 1) × 𝐶𝐶𝑃𝐴(𝑖, 𝑗) × 𝑥𝑖,𝑗
𝑡−1

𝑗≥𝑖𝑖 + ∑ 𝑂𝐶𝑃𝐴𝑖,𝑡−1 × 𝑐𝑛𝑖,𝑡−1𝑖 ) ×

(1 + 𝐼)𝑡−1) × (1 + 𝑅) + ∑ 𝑃𝑖,𝑡−1 × 𝑐𝑛𝑖,𝑡−1𝑖          ∀𝑡 ∈ {2,… , 𝑇} (3-20) 

𝑐𝑜𝑠𝑡𝑢𝑏 + ∑ ∑ (𝑗 − 𝑖 + 1) × 𝐶𝐶𝑃𝐴(𝑖, 𝑗) × 𝑥𝑖,𝑗
0

𝑗≥𝑖𝑖 + ∑ 𝑂𝐶𝑃𝐴𝑖,0 × 𝑐𝑛𝑖,0𝑖 ≤ 𝐵0 (3-21) 

(∑ ∑ (𝑗 − 𝑖 + 1) × 𝐶𝐶𝑃𝐴(𝑖, 𝑗) × 𝑥𝑖,𝑗
𝑡−1

𝑗≥𝑖𝑖 + ∑ 𝑂𝐶𝑃𝐴𝑖,𝑡−1 × 𝑐𝑛𝑖,𝑡−1𝑖 ) × (1 + 𝐼)𝑡−1 ≤

𝑏𝑡                 ∀𝑡 ≥ 1 (3-22) 

Constraints (3-19) and (3-20), are the updates on the available budget at the beginning 

of each time period. The available budget at the beginning of each time period is equal 
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to remaining budget from the previous time period in the current period’s value 

(incorporating time value of money) plus the profits earned at the end of the last period 

as a result of implemented phases in the previous period. Constraints (3-21) and (3-22) 

are the budget limitations during different times. 

3.2.2.6 Variable domain constraints (DSPP) 

The domain of the variables used for this model are presented below: 

𝑥𝑖,𝑗
𝑡 , 𝑐𝑛𝑖,𝑡, 𝑛𝑐𝑖, 𝑛𝑡𝑡,𝑖 ∈ {0,1} (3-23) 

𝑢𝑏, 𝑖𝑡𝑢𝑏 , 𝑐𝑜𝑠𝑡𝑢𝑏 , 𝑏𝑡, 𝑛𝑡 ≥ 0 (3-24) 

3.2.2.7 The complete MIP model 

The complete mixed integer programming model is summarized in the following: 

max 𝑧 =
𝐵𝑇+∑ 𝑃𝑖,𝑇×𝑐𝑛𝑖,𝑇𝑖 −(∑ ∑ (𝑗−𝑖+1)×𝑥𝑖,𝑗

𝑡
𝑗𝑖 +∑ 𝑂𝐶𝑃𝐴𝑖,𝑇×𝑐𝑛𝑖,𝑇𝑖 )×(1+𝐼)𝑇

(1+𝑅)𝑇
 (3-4) 

Subject to: 

𝑛𝑡 ≤ 𝑢𝑏          ∀𝑡 (3-5) 

𝑐𝑜𝑠𝑡𝑢𝑏 = ∑ 𝐼𝐶𝑂𝑆𝑇𝑖 × 𝑛𝑐𝑖𝑖  (3-6) 

𝑖𝑡𝑢𝑏 = ∑ 𝐼𝑇𝑖 × 𝑛𝑐𝑖𝑖  (3-7) 

𝑢𝑏 = ∑ 𝑖 × 𝑛𝑐𝑖𝑖  (3-8) 

∑ 𝑛𝑐𝑖𝑖 ≤ 1 (3-9) 
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𝑛0 = ∑ ∑ (𝑗 − 𝑖 + 1) × 𝑥𝑖,𝑗
0

𝑗𝑖  (3-10) 

𝑛𝑡 = 𝑛𝑡−1 ∑ ∑ (𝑗 − 𝑖 + 1) × 𝑥𝑖,𝑗
𝑡

𝑗𝑖           ∀𝑡 ≥ 1 (3-11) 

𝑛𝑡 = ∑ 𝑖 × 𝑐𝑛𝑖,𝑡𝑖         ∀𝑡 (3-12) 

∑ 𝑐𝑛𝑖,𝑡𝑖 ≤ 1        ∀𝑡 (3-13) 

∑ 𝑥𝑖,𝑗
𝑡

𝑗≥𝑖 ≤ ∑ ∑ 𝑥𝑙,𝑖−1
𝑡′

𝑡′≤𝑡  𝑙≤𝑖−1          ∀𝑖 ∈ {2,… , 𝑈𝐵}, 𝑡 (3-14) 

∑ ∑ ∑ 𝑥𝑖,𝑗
𝑡

𝑗≥𝑙𝑖≤𝑙𝑡 ≤ 1         ∀𝑙 ∈ {1,… , 𝑈𝐵} (3-15) 

𝑖𝑡𝑢𝑏 ≤ ∑ ∑ 𝑡 × 𝑥1,𝑗
𝑡

𝑡𝑗 + 𝑀𝑇 × (1 − ∑ ∑ 𝑥1,𝑗
𝑡

𝑡𝑗 ) (3-16) 

𝑡 × 𝑥𝑖,𝑗
𝑡 + (𝑗 − 𝑖 + 1) × 𝑃𝑇𝑖,𝑗 × 𝑥𝑖,𝑗

𝑡 ≤ ∑ ∑ 𝑡′ × 𝑥𝑗+1,𝑙
𝑡′

𝑡′≥𝑡𝑙≥𝑗+1 + 𝑀𝑇 × (1 −

∑ ∑ 𝑥𝑗+1,𝑙
𝑡′

𝑡′≥𝑡𝑙≥𝑗+1 )                ∀𝑖, 𝑗 ∈ {2,… , 𝑈𝐵} | 𝑗 ≥ 𝑖, 𝑡 (3-17) 

∑ ∑ 𝑥𝑖,𝑗
𝑡

𝑗≥𝑖𝑖 ≤ 1               ∀𝑡 (3-18) 

𝑏1 = 𝐵0 − 𝑐𝑜𝑠𝑡𝑢𝑏 − (∑ ∑ (𝑗 − 𝑖 + 1) × 𝐶𝐶𝑃𝐴(𝑖, 𝑗) × 𝑥𝑖,𝑗
0

𝑗≥𝑖𝑖 + ∑ 𝑂𝐶𝑃𝐴𝑖,0 ×𝑖

𝑐𝑛𝑖,0) × (1 + 𝑅) + ∑ 𝑃𝑖,0 × 𝑐𝑛𝑖,0𝑖  (3-19) 

𝑏𝑡 = (𝑏𝑡−1 − (∑ ∑ (𝑗 − 𝑖 + 1) × 𝐶𝐶𝑃𝐴(𝑖, 𝑗) × 𝑥𝑖,𝑗
𝑡−1

𝑗≥𝑖𝑖 + ∑ 𝑂𝐶𝑃𝐴𝑖,𝑡−1 × 𝑐𝑛𝑖,𝑡−1𝑖 ) ×

(1 + 𝐼)𝑡−1) × (1 + 𝑅) + ∑ 𝑃𝑖,𝑡−1 × 𝑐𝑛𝑖,𝑡−1𝑖          ∀𝑡 ∈ {2,… , 𝑇} (3-20) 

𝑐𝑜𝑠𝑡𝑢𝑏 + ∑ ∑ (𝑗 − 𝑖 + 1) × 𝐶𝐶𝑃𝐴(𝑖, 𝑗) × 𝑥𝑖,𝑗
0

𝑗≥𝑖𝑖 + ∑ 𝑂𝐶𝑃𝐴𝑖,0 × 𝑐𝑛𝑖,0𝑖 ≤ 𝐵0 (3-21) 
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(∑ ∑ (𝑗 − 𝑖 + 1) × 𝐶𝐶𝑃𝐴(𝑖, 𝑗) × 𝑥𝑖,𝑗
𝑡−1

𝑗≥𝑖𝑖 + ∑ 𝑂𝐶𝑃𝐴𝑖,𝑡−1 × 𝑐𝑛𝑖,𝑡−1𝑖 ) × (1 + 𝐼)𝑡−1 ≤

𝑏𝑡                 ∀𝑡 ≥ 1 (3-22) 

𝑥𝑖,𝑗
𝑡 , 𝑐𝑛𝑖,𝑡, 𝑛𝑐𝑖, 𝑛𝑡𝑡,𝑖 ∈ {0,1} (3-23) 

𝑢𝑏, 𝑖𝑡𝑢𝑏 , 𝑐𝑜𝑠𝑡𝑢𝑏 , 𝑏𝑡, 𝑛𝑡 ≥ 0 (3-24) 

3.3 Case Study 

The case study used for this section is based on an example from (Zhao & Tseng, 2003) 

which is about constructing a public parking garage by a county in the Washington, 

D.C. area. The maximum number of floors the parking garage can have is assumed to 

be 6 (i.e. UB=6). The risk free interest rate and inflation rate are 8% and 5% 

respectively (R=8% and I = 5%). In this example, each level represents a phase. The 

life time of this garage is assumed to be 15 years (T= 14). After the 15 years, the parking 

garage generates no more revenue nor cost for the owner. This could be a result of a 

Build Operate Transfer (BOT) contract in which the garage is transferred to a public 

authority after 15 years of operation by a private entity. 

3.3.1 Cost parameters 

(Zhao & Tseng, 2003) gathered the cost data from a feasibility study done by the 

county. Their construction costs are presented in Table 3. 

Table 3 Construction cost summary for parking public parking garage without synergies between levels 1 

Costs type Value 

Site Preparation $300,000  

                                                 
1 Source: Zhao, T., and Tseng, C.L. (2003). Valuing flexibility in infrastructure expansion. Journal of 
infrastructure systems, 9(3), 89-97. 
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Fixed cost for foundation $1 million 

Variable cost for foundation $100,000/level 

Superstructure and miscellaneous $800,000/level 

Construction cost for expansion $850,000/level 

  

As it can be seen in Table 3, the synergy between costs of different levels was not 

reported. In other words, the benefit of constructing multiple levels together is not 

reflected in the costs. We modify the costs by introducing some parameters 𝐴𝑖 ,  𝐵𝑖,  𝐶𝑖, 

to account for the cost interdependencies for the three types of variable costs of Table 

3. The summary of the modified costs are presented in Table 4. 

Table 4 Modified construction costs accounting for cost interdependencies among levels 

Costs type Value 

Site Preparation $300,000  

Cost for building a foundation for only one level  

Cost for building a foundation for two levels  

Cost for building a foundation for three levels  

Cost for building a foundation for four level  

Cost for building a foundation for five levels  

Cost for building a foundation for six levels $1 M +  $600,000 

Superstructure and miscellaneous for one level  

Superstructure and miscellaneous for two levels parallel  

Superstructure and miscellaneous for three levels parallel  

Superstructure and miscellaneous for four levels parallel  

Superstructure and miscellaneous for five levels parallel  

Superstructure and miscellaneous for six levels parallel $800,000/level 

Construction cost for expansion for one level  

Construction cost of expansion for two levels parallel  

Construction cost of expansion for three levels parallel  

Construction cost of expansion for four levels parallel  

$1 𝑀 + 𝐴1 × $100,000 

$1 𝑀 + 2𝐴2 × $100,000 

$1 𝑀 + 3𝐴3 × $100,000 

$1 𝑀 + 4𝐴4 × $100,000 

$1 𝑀 + 5𝐴5 × $100,000 

𝐵1 × $800,000 

𝐵2 × $800,000/𝑙𝑒𝑣𝑒𝑙 

𝐵3 × $800,000/𝑙𝑒𝑣𝑒𝑙 

𝐵4 × $800,000/𝑙𝑒𝑣𝑒𝑙 

𝐵5 × $800,000/𝑙𝑒𝑣𝑒𝑙 

𝐶1 × $850,000 

𝐶2 × $850,000/𝑙𝑒𝑣𝑒𝑙 

𝐶3 × $850,000/𝑙𝑒𝑣𝑒𝑙 

𝐶4 × $850,000/𝑙𝑒𝑣𝑒𝑙 
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Construction cost of expansion for five levels parallel  

Construction cost of expansion for six levels parallel $850,000/level 

 

Using the modified values from Table 4, we can calculate the cost parameters of our 

model as illustrated in Table 5.  

Table 5 Model input Cost Parameters 

Costs Parameter Value 

  

 

 

  

 

 

  

 

 

  

 

 

  

 

 

  

 

$1.9 M 

  

 

 

  

 

 

  

 

 

  

 

 

  

 

 

𝐶5 × $850,000/𝑙𝑒𝑣𝑒𝑙 

𝐶𝑜𝑠𝑡1: 𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 

 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑜𝑢𝑛𝑑𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 1 𝑙𝑒𝑣𝑒𝑙 

$1 𝑀 + $300,000 + 𝐴1 × $100,000 

𝐶𝑜𝑠𝑡2: 𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 

 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑜𝑢𝑛𝑑𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 2 𝑙𝑒𝑣𝑒𝑙𝑠 

𝐶𝑜𝑠𝑡3: 𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 

 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑜𝑢𝑛𝑑𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 3 𝑙𝑒𝑣𝑒𝑙𝑠 

𝐶𝑜𝑠𝑡4: 𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 

 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑜𝑢𝑛𝑑𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 4 𝑙𝑒𝑣𝑒𝑙𝑠 

𝐶𝑜𝑠𝑡5: 𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 

 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑜𝑢𝑛𝑑𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 5 𝑙𝑒𝑣𝑒𝑙𝑠 

𝐶𝑜𝑠𝑡6: 𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 

 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑜𝑢𝑛𝑑𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 6 𝑙𝑒𝑣𝑒𝑙𝑠 

𝐶𝐶𝑖𝑖: 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 𝑜𝑟 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 

 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑙𝑒𝑣𝑒𝑙 𝑖 𝑏𝑦 𝑖𝑡𝑠𝑒𝑙𝑓 

𝐶𝐶𝑖𝑗: 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 𝑜𝑟 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 

 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑡𝑤𝑜 𝑙𝑒𝑣𝑒𝑙𝑠 𝑖 𝑎𝑛𝑑 𝑗 𝑖𝑛 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 

𝐶𝐶𝑖𝑗: 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 𝑜𝑟 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 

 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑡ℎ𝑟𝑒𝑒 𝑙𝑒𝑣𝑒𝑙𝑠 𝑖 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑗 𝑖𝑛 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 

𝐶𝐶𝑖𝑗: 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 𝑜𝑟 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 

 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑓𝑜𝑢𝑟 𝑙𝑒𝑣𝑒𝑙𝑠 𝑖 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑗 𝑖𝑛 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 

𝐶𝐶𝑖𝑗: 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 𝑜𝑟 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 

 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑓𝑖𝑣𝑒 𝑙𝑒𝑣𝑒𝑙𝑠 𝑖 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑗 𝑖𝑛 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 

$1 𝑀 + $300,000 + 2𝐴2 × $100,000 

$1 𝑀 + $300,000 + 3𝐴3 × $100,000 

$1 𝑀 + $300,000 + 4𝐴4 × $100,000 

$1 𝑀 + $300,000 + 5𝐴5 × $100,000 

𝐵1 × $800,000 + 𝐶1 × $850,000/𝑙𝑒𝑣𝑒𝑙 

𝐵2 × $800,000 + 𝐶2 × $850,000/𝑙𝑒𝑣𝑒𝑙 

𝐵3 × $800,000 + 𝐶3 × $850,000/𝑙𝑒𝑣𝑒𝑙 

𝐵4 × $800,000 + 𝐶4 × $850,000/𝑙𝑒𝑣𝑒𝑙 

𝐵5 × $800,000 + 𝐶5 × $850,000/𝑙𝑒𝑣𝑒𝑙 
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The recently introduced parameters, 𝐴𝑖,  𝐵𝑖,  𝐶𝑖, are based on economy of scale. For 

simplicity, assume for each number of levels that are going to be done in parallel, i, 

𝐴𝑖 = 𝐵𝑖 = 𝐶𝑖. Table 6 stores an example of values for the economy of scale input 

parameters. Sensitivity analysis on these inputs can be done to illustrate how these 

values can affect optimal decisions. 

Table 6 Input values for economy of scale adjustment parameters 

 

  
 

Description 
 

  
 

1 Level is constructed alone 1.5 

2 Two levels constructed together 1.4 

3 Three levels constructed together 1.3 

4 Four levels constructed together 1.2 

5 Five levels constructed together 1.1 

 

The maintenance and operation costs are assumed to be constant for each phase (level). 

The operation cost is $100 per parking space. Since each level has 100 parking spaces, 

the operating cost per phase implemented is $10,000. 

3.3.2 Revenue and profit parameters 

The annual revenue of each occupied parking space is $3,600 from parking fees. 

Obviously, if a parking space is empty it will not generate any revenue. The actual 

revenue during each time, t, from the parking garage is calculated using equation (38). 

 

Revenuet = $3,600 × min{𝑑𝑒𝑚𝑎𝑛𝑑𝑡, 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑡} = $3,600 × {𝑑𝑒𝑚𝑎𝑛𝑑𝑡, 100 ×
𝑝𝑜𝑡} (38) 

𝐶𝐶16: 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 𝑜𝑟 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 

 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑙𝑒𝑣𝑒𝑙𝑠 1 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 6 

$1.65 𝑀/𝑙𝑒𝑣𝑒𝑙 

𝑨𝒊 = 𝑩𝒊 = 𝑪𝒊 𝒊 
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Where 𝑝𝑜𝑡 is the variable which represented the number of phases (parking levels) that 

have been completed at time t.  

The Revenue is therefore related to the demand at each time. The predicted average 

annual demand of (Zhao & Tseng, 2003) is presented in Table 7. They predicted this 

value based on the average and standard deviation gained from historical data of 10 

years prior to the time of their study. 

Table 7 Average demand at each time2 

Year Time t 

Average demand 

(units) 

1 0 250 

2 1 263 

3 2 276 

4 3 290 

5 4 305 

6 5 320 

7 6 336 

8 7 353 

9 8 371 

10 9 390 

11 10 410 

12 11 431 

13 12 452 

14 13 475 

15 14 499 

 

3.3.3 Time related parameters 

The site preparation and foundation construction time are added together to form the 

infrastructure preparation time parameter, 𝐶𝑇𝑖. The time period of the study is 15 years. 

                                                 
2 Source: Zhao, T., and Tseng, C.L. (2003). Valuing flexibility in infrastructure expansion. Journal of 
infrastructure systems, 9(3), 89-97. 
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Starting from year 0, T is equal to 14. The construction times that are based on the 

number of phases being done in parallel, 𝐶𝑇𝑖𝑗, and 𝐶𝑇𝑖, are presented in Table 8 and 

Table 9. 

 

Table 8 Construction time for foundation and site preparation time based on potential number of levels 

ub 
 

  
 

1 6 

2 6.5 

3 7 

4 7.5 

5 8 

6 9.5 

  
Table 9 Construction time for each level based on number of levels being done in parallel 

 

# of levels being constructed in 

parallel 
 

 

1 3 

2 2.7 

3 2.5 

4 2.2 

5 2 

6 1.9 

 

The expansion decisions are assumed to be made at the beginning of years. 

3.4 Results and Sensitivity Analysis 

The MIP formulation was solved using Xpress Optimization suite. In general, the 

running time for a problem of the size of the case study which has 401 variables and 

1016 constraints was on average 3 seconds using an Intel Core i5-2400 CPU @3.10 

GHz computer with 4.00 GB of installed memory (RAM). 

𝑪𝑻𝒖𝒃 (𝒎𝒐𝒏𝒕𝒉𝒔) 

𝑪𝑻𝒊𝒋   𝒎𝒐𝒏𝒕𝒉𝒔/𝒍𝒆𝒗𝒆𝒍 
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The optimal decision for the case study is to build three levels (capacity of 300) at year 

1 which is the first year that we can construct any level. Preparing the construction site 

and constructing the foundation will consume a portion of year 0, therefore year 1 is 

the soonest that we can construct any level. The objective function value that represents 

the NPV of the firm’s future budget is equal to $8,178,280. Given that the initial budget 

was $8 M, the overall benefit (profit) of doing the project is $178,280 in today’s money. 

Figure 6 illustrates the number of parking levels during each time that are the optimal 

solution. 

 
Figure 6 Number of parking levels during each time for the base case 

 

3.4.1 Sensitivity Analysis on initial budget when risk free interest rate is 8% 

In the base case example, the available budget was set to be $8 M. We vary this amount 

and solve the problem for each case. The results are depicted in Figure 7. The results 

indicate that the only profitable option when the risk free interest rate is 8% is to invest 

and build 3 phases together all at the soonest possible time. Any other investment 

option is not economically feasible and therefore it is optimal to not invest at all in the 

parking garage project. The option of investing becomes feasible when we have at least 

approximately $7,678,000 available at time zero. If the budget is less, we do not have 

enough funds to build the foundation and build three levels at year one which is the 

only economically feasible option and therefore as explained earlier the optimal 

decision is to not invest. 
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Figure 7 Profit from investment based on initial budget (Risk free interest rate = 8%) 

3.4.2 Sensitivity Analysis on initial budget when risk free interest rate is 5% 

Figure 8 illustrates the optimal decisions and their respective profits depending on the 

available budget at time zero. 
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Figure 8 Profit from investment based on initial budget (Risk free interest rate = 5%) 
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Based on Figure 8, if the initial budget is less than or equal to $5,791,000, the optimal 

decision is not to invest at all in the parking garage project. However, if the available 

budget exceeds that amount and is still less than $6M, the project will be favorable 

because we have enough capital available to invest in two phases (levels) 

simultaneously and benefit from the economy of scale in construction. The optimal 

decision in this case is to invest in phases 1 and 2 together at time (year) 2. We cannot 

invest in phases 1 and 2 at year one due to lack of available budgets. 

If the capital exceeds $6M but is still less than $6,111,000, the optimal decision is to 

build two phases. However, this time since we have enough budget, we can build the 

phases at the earliest time (year 1). As a result the NPV of the profit from the investment 

will increase by approximately $424,000. 

If the initial budget is equal to or greater than $6,111,000 and less than $6,349,000, we 

are capable of building three levels. The optimal decision in this case is to invest and 

build levels 1 and 2 at year 1 and build level 3 at year 5. Figure 9 depicts the optimal 

parking garage levels during each time for this case. The increase in the initial budget 

with respect to the previous case allows us to invest in more phases and therefor 

increase the profit from investing in the parking garage project. 

 
Figure 9 Number of parking levels during each time for the case of risk free interest rate of 5% and initial budget 

between $6.111 M and $6.349 M 

As the initial budget increases, the profit from investing in the parking garage increases 

as well. This general trend continues until we exceed the initial budget of $9,363,000. 

After this amount, the profit from investing in the parking garage project will not 
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increase anymore because we already are gaining the biggest benefit of economy of 

scale by building all 4 levels at the soonest time possible (year 1). Adding another level 

is not beneficial due to the combination of maintenance costs, construction costs and 

the demands at different times. 

Table 10 summarizes the results of the model under different initial available budget 

assumptions.  

Table 10 Optimal solution results for risk free interest rate of 5% by varying initial budget 

B0 (Initial 

budget) 

$1000s 

Z (NPV of 

money) 

$1000s 

NPV profit 

from 

investment 

($1000s) 

UB 

Year 

investing 

in phase 

1 

Year 

investing 

in phase 

2 

Year 

investing 

in phase 

3 

Year 

investing 

in phase 

4 

3500 3500 0 0     

5780 5780 0 0     

5790 5790 0 0     

5791 5912.42 121.42 2 2 2   

5999 6120.42 121.42 2 2 2   

6000 6544.96 544.96 2 1 1   

6110 6654.96 544.96 2 1 1   

6111 6693.45 582.45 3 1 1 5  

6348 6930.45 582.45 3 1 1 5  

6349 7106.56 757.56 3 1 1 4  

7022 7779.56 757.56 3 1 1 4  

7023 7964.92 941.92 3 1 1 3  

7600 8541.92 941.92 3 1 1 3  

7601 8881.01 1280.01 3 2 2 2  

7848 9128.01 1280.01 3 2 2 2  

7849 9708.4 1859.4 3 1 1 1  

9362 11221.4 1859.4 3 1 1 1  

9363 11450 2087 4 1 1 1 1 

10000 12087 2087 4 1 1 1 1 

 

Many managerial insights can be drawn by looking at Figure 8 and Table 10. For 

example, we can see that there is a big increase in the NPV from investing in the parking 

garage project when the initial available budget is marginally increased. For instance, 
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if a firm has an initial available budget of $5.9 M, they can increase the NPV of their 

profit by $424,000 if they borrow an amount as small as $100,000. 

3.4.3 Sensitivity Analysis on initial budget when risk free interest rate is 2% 

Figure 10 and Table 11 illustrate how the NPV of investment in the parking garage 

varies by varying the initial budget available when the risk-free interest rate is 2%. The 

general trend is similar to what was observed when the risk-free interest rate was 5%. 

If the initial budget is more than $9,586,000 the optimal decision is to construct four 

levels at year 1. Increasing the budget further will not cause any changes.
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Figure 10 Profit from investment based on initial budget (Risk free interest rate = 2%) 
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However, the optimal decision in lower available budgets is different for the case with 

a higher risk free interest rate (5%). In the current case, just building one level is still a 

profitable investment. This is mainly because, we get to collect the profit of having a 

one level parking lot for the time period under study (15 years). Since the risk-free 

interest rate is lower, the value of the future money is closer to the value of money 

today.  

Using the results of the model, similar managerial insights and suggestions can be made 

in this case as well. These suggestions could be with regard to the size of a loan and 

the acceptable interest of a loan. 

Table 11 Optimal solution results for risk free interest rate of 2% by varying initial budget 

B0 (Initial 

budget) 

$1000s 

Z (NPV of 

money) 

$1000s 

NPV 

profit 

from 

investment 

($1000s) 

UB 

Year 

investing 

in phase 

1 

Year 

investing 

in phase 2 

Year 

investing 

in phase 

3 

Year 

investing 

in phase 4 

3500 3500 0 0     

3886 3886 0 0     

3887 4113.48 226.48 1 1    

4619 4845.48 226.48 1 1    

4620 5012.72 392.72 2 1 6   

4970 5362.72 392.72 2 1 6   

4971 5627.88 656.88 2 1 5   

5329 5985.88 656.88 2 1 5   

5330 6256.88 926.88 2 1 4   

5696 6622.88 926.88 2 1 4   

5697 6899.82 1202.82 2 1 3   

6041 7243.82 1202.82 2 1 3   

6042 7555.86 1513.86 2 2 2   

6129 7642.86 1513.86 2 2 2   

6130 8226.5 2096.5 2 1 1   

6239 8335.5 2096.5 2 1 1   

6240 8786.89 2546.89 3 1 1 5  

6567 9113.89 2546.89 3 1 1 5  

6568 9384.89 2816.89 3 1 1 4  

7255 10071.9 2816.9 3 1 1 4  
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7256 10348.8 3092.8 3 1 1 3  

7906 10998.8 3092.8 3 1 1 3  

7907 11299.6 3392.6 3 2 2 2  

8029 11421.6 3392.6 3 2 2 2  

8030 12223.1 4193.1 3 1 1 1  

8119 12312.1 4193.1 3 1 1 1  

8120 12321.5 4201.5 4 1 1 1 4 

9434 13635.5 4201.5 4 1 1 1 4 

9435 13690.4 4255.4 4 2 2 2 2 

9585 13840.4 4255.4 4 2 2 2 2 

9586 14603 5017 4 1 1 1 1 

10000 15017 5017 4 1 1 1 1 

 

3.4.4 Summary of sensitivity analysis on different interest rates and different 

available budgets 

Figure 11 captures the results for all three aforementioned cases. It is worth noting that 

for the case with a 10% interest rate, no investment happens at all. From the results, we 

can conclude that for lower risk free interest rates, the value of the project increases. 

This is mainly due to the fact that many of the earnings are gained in the future and are 

in terms of future money. Another conclusion is that as the risk-free rate decreases, 

many options become economically viable and also investing in fewer phases that 

requires less initial capital becomes an option. 
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Figure 11 Profit from investment as a function of both risk-free interest rate and initial available budget 
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Chapter 4: Stochastic Multi-phase Project Optimization 

This chapter focuses on finding the optimal timing and phasing of multi-phase projects 

when some parameters of the project are subject to uncertainty. Hedging unfavorable 

outcomes of uncertain parameters is one of the main purposes of following a multi-

phase paradigm.  

4.1 Source of Uncertainty: Demand 

In the deterministic model presented in the previous chapter, one of the main drivers of 

profits/revenues of a project was the demand for the different phases of the 

infrastructure. Assuming that the unit price of a service/good does not change 

drastically, the overall profit is proportional to the demand. 

Infrastructure projects such as transportation infrastructures are built to serve their 

consumers for long periods.  Prediction and estimates of the close future are oftentimes 

wrong or full of uncertainties.  These uncertainties increase as the prediction duration 

increases.  Therefore, many of the infrastructure planning problems are associated with 

huge uncertainties. These uncertainties are such that even professionals do not agree 

on a unique predictive model. Figure 12 illustrates the demand forecast results of 

analysis of four different consultants all for the same toll road. The vertical scale is 

intentionally left out due to confidentiality. However, the difference between the 

highest and lowest forecast at different times (in percentages) were reported. These 

differences can be found in Table 12. 
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Figure 12 Same toll road, different traffic forecasts (Source: Bain (2009)3) 

Table 12 Difference between the highest and lowest base-case forecast as a function of time for the same road 
(Source: Bain (2009)4) 

Forecast period (from project 
opening) (years) 

Difference between the highest 
and lowest base-case forecast (%) 

5 26% 

10 66% 

15 106% 

20 130% 

25 164% 

30 204% 

35 255% 

 

Table 12 also shows how the predictions of professional firms vary from each other as 

the prediction duration increases. To deal with these uncertainties, there are many naïve 

approaches such as using expected values of outcomes or using the prediction of one 

consultant. Obviously, even if the best consultant is picked, the predictions cannot 

                                                 
3 Source: (Bain, 2009) 
4 Source: (Bain, 2009) 
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deemed to be accurate. There always exists the likelihood of observing an output which 

is very far from the point predictions. This illustrates the need for modelling the 

uncertainties. One of the most common methods for modelling uncertainties in 

infrastructure analysis is real option valuation.  

4.2 Introduction to Real Options Analysis 

Real Options are derived from options analysis. Options are financial derivatives.  They 

are defined as the right, but not the obligation to, purchase or sell a product. This right 

has an expiration date. A premium should be paid to acquire the option, which is based 

on the value of the product, or the stock, and the time remaining until the option 

expiration date. In finance, the right to purchase a stock is termed a call option, and the 

right to sell a stock is called a put option. In terms of allowable exercise dates, options 

are usually either American or European. European options can be only exercised on 

the expiration date. American options can be exercised at any date prior to the 

expiration date, including the expiration date. American options are usually worth more 

as they have fewer restrictions.   

There are also other options called exotic options. An example of an exotic option is a 

Bermudan option. A Bermudan option can be seen as a special case for the American 

option, and it can be exercised early on any of so many pre-specified dates. For 

example, it can be exercised on a particular day of each month. 

The financial options theory focuses on the options in which the underlying asset is 

stock. Whenever the underlying asset is tangible, like an infrastructure project, the 

nomenclature of real options is used.  
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Real options can be defined as the right to take certain business initiatives. These rights 

add flexibility to decision-making; therefore, real options can be seen as flexibilities.  

Real option valuation is used in corporate finance as a tool to evaluate investment 

decisions in uncertain environments where adding flexibility is valuable. This approach 

is used as a replacement or an addition to the traditional DCF analysis, which has 

several shortcomings. Some major shortcomings of traditional DCF analysis are:  

1) Small or no flexibility with a high degree of commitment (i.e. allowing for 

no flexibility), 

2) Neglecting volatility and using expected values, and 

3) Difficulty in finding and updating risk adjusted discount rates.  

Real-option valuation overcomes these shortcomings by inserting flexibility using 

options and utilizing decision nodes. This way, investments are pursued if uncertain 

conditions are favored. Real-option valuation technics generally use risk-neutral 

probabilities and risk-free discount rates for financial evaluations because an interim 

decision can change the risk-adjusted discount rate evaluated at the beginning of the 

project. 

In terms of applications, real options can be on the project scope, like the option to 

expand and the option to contract. They could be about the timing of a project.  Some 

of the most popular timing options are the option to defer and the option to abandon. 

The option to abandon allows management to bail out of a project and possibly get a 

salvage value. These options are similar to put options. The option to defer, on the other 

hand, allows management to start an investment/project at any time at which it is the 

most valuable. This option is analogous to a call option because it gives the right to 
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invest in the project at pre-specified times in the future. An example of an option to 

delay for a road widening investment, which has value in volatile conditions, is 

illustrated in the following. Although this example is an extreme case in which 

uncertainty fades away as a result of waiting, it manages to convey the purpose of the 

example in a simple and tangible fashion. 

Assume that a lane expansion investment is under consideration. The current road has 

a capacity which can service an Average Annual Daily Traffic (AADT) of 6000 

Vehicles/day. The current demand for this road has a ballpark figure of 7000 AADT. 

If a lane is added and the road is expanded, the capacity will increase to 9000 AADT. 

The cost of such an expansion is $500k. Future demand is uncertain. After one year, 

the demand might go up to 8000 AADT with a probability of q=0.5, or it might decrease 

to 6000 AADT with a probability of 1-q=0.5. After the change in demand at the end of 

the first year, demand will remain the same during all the following years. Also assume 

there is no investment production delay, which means that as soon as the investment is 

done, the road is available for use. The additional revenue gained from serving an 

additional demand of 1000 AADT, and 2000 AADT are $100k and $200k per year, 

respectively. The interest rate for this example is 10 percent. The additional revenue 

paths in case the investment takes place are illustrated in Figure 13. 

 

 

Figure 13 Price paths for deferment option 
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Performing Discounted Cash Flow (DCF) analysis for this example at time 0 will lead 

to a positive Net Present Value (𝑁𝑃𝑉 = −𝐼 + 𝑃0 + ∑ 100𝑘

(1+𝑟)𝑡
∞
𝑡=1 = $600𝑘). 

Based on traditional DCF analysis, the positive NPV implies that the investment is 

worthy and should take place. This positive NPV is a result of the upward path in which 

the additional revenue is $200k annually. If the possibility and the right exist to allow 

deferring the investment for one year, until the definite demand and hence additional 

revenue can be observed and the decision would be only to invest if the demand is the 

better case, the NPV of such an option to wait one year is calculated as follows: 

 𝑁𝑃𝑉 = −
500𝑘

(1+𝑟)
× 𝑞 + (∑

200𝑘

(1+𝑟)𝑡
∞
𝑡=1 ) × 𝑞 ≈ $773𝑘. 

The NPV shows that waiting until uncertainties become certain is more valuable than 

investing right away. The increase in the NPV, $173k, is the value of the option to 

defer. Adding the option to defer adds more flexibility which has value. This example 

also emphasizes that performing only traditional DCF analysis is not enough, and it 

points out one of the downsides of solely performing DCF analysis and using 

expectations and point estimates. Many other examples about investment under 

uncertainties and real options are available in (Dixit & Pindyck, 1994). The previous 

example also is an illustration of binomial lattice analysis which is a popular method 

for valuing real options. In general, real options are typically valued using three 

methods: 

1- Black-Scholes formula 

2- Binomial/Trinomial lattice methods 

3- Monte Carlo simulation 
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4.2.1 Black-Scholes option pricing model 

The Black-Scholes formula was first derived in 1973 using delta hedging to 

value financial European options (Black & Scholes, 1973).  This formula was derived 

with the assumptions of having no dividend yields for the stock, having no arbitrage, 

and having stock prices that are log-normally distributed; hence, the returns on the 

stocks are normally distributed. The formula derived by the authors is applicable to 

European options.  

4.2.2 Binomial lattice framework for modeling uncertainties 

The Binomial lattice method is based on the diffusion of possible outcomes of an 

uncertain matter. Based on it, after each time-step, the uncertain element can move 

two ways: upward or downward.  

 

Figure 14 Illustration of a binomial lattice framework 

Figure 14 shows the diffusion for two periods.  During the first period, the uncertain 

parameter value either moves up to 𝑆𝑈 with a risk-neutral probability p, or moves down 

to 𝑆𝐷 with probability (1-p).  At the next time step, the uncertainty could be 𝑆𝑈𝑈, 𝑆𝑈𝐷, 

𝑆𝐷𝑈, or 𝑆𝐷𝐷.  If 𝑆𝐷𝑈=𝑆𝑈𝐷, the binomial tree is called a recombining tree.  The value of 

the uncertain parameter at each step t can be calculated using equation (4-1). 

𝑆𝑡 = 𝑆0 × 𝑈𝑛 × 𝐷(𝑡−𝑛), (4-1) 
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where U is the size of an upward movement and D is the size of a downward movement 

for each step, n is the number of upward movements until step t, and 𝑆0 is the value of 

the uncertain parameter at step 0. In the general binomial model it is assumed that p, D 

and U are constant during all periods and depend on the uncertainty of the uncertain 

article. After the uncertainty fluctuation is modeled using a binomial lattice, a dynamic 

approach is undertaken to find the best decision. In this approach, at each time step the 

best option is explored contingent on the outcomes of the decision taken at its previous 

time stage. The binomial lattice approach can be applied to any type of option. 

4.2.3 Monte-Carlo simulation for valuing real options 

Monte Carlo simulation is popular for valuing all types of options. The phased 

investment problem can be modelled as an option to expand. In terms of type of auction 

based on possible execution times, it is an exotic option because the decision regarding 

the expansion is only made at discrete times (i.e. at the beginning of each year). Since 

the option is exotic, Black-Scholes cannot be used to find its value. Using Monte Carlo 

simulation could be computationally burdensome, especially if a high degree of 

reliability is desired. The simulation outcomes could be based on the probabilities from 

a binomial/trinomial lattice framework. The next section, focuses on briefly describing 

some of the research done related to real options and infrastructures, in particular 

transportation infrastructures. 
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4.3 Additional Literature Review on Real Option Analysis in Infrastructure 

evaluation 

Real options have gained attention from the researchers in infrastructures’ valuation.  

Much of this research surrounds Public Private Partnership (PPP) projects in which the 

public transfers the right and risks of maintaining and operating an infrastructure 

through a contract.  Thus, the risk of the uncertainties, such as the uncertainty in 

demand, is transferred to the private party.  In return, the public provides risk-sharing 

mechanisms or gives incentives to the private party.  

Using real options, (Cui, et al., 2004) introduce an alternative to the conventional 

warranty clauses stated inside contracts.  This alternative transfers the responsibility of 

maintaining highways whenever certain thresholds are met, and it typically gives 

contractors more flexibility in selecting the methods and materials for construction.  

They introduce a warranty option that provides the right to purchase the warranty if 

certain conditions occur at the end of the construction. They also introduce a method 

to compare bids based on the different possible warranties firms may provide in their 

bid proposals.  They show that this optional warranty has more value compared to the 

conventional warranty.   

In another study, (Cui, et al., 2008) a binomial lattice model is used to value a ceiling 

option available in a pavement maintenance warranty clause. 

(Brandai, et al., 2012) reviewed the PPP agreement made in Sao Paulo, Brazil, and they 

reviewed the incentives the government provided for the concessionaire so they would 

invest in the project. Some of the incentives were:  

a) Financial subsidies,  
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 b) Partial exchange-rate guarantees, and  

c) Minimum demand guarantees (MDG).   

They calculated the risk for the concessionaire as the probability of reaching a negative 

NPV and showed how subsidies and MDG decreases the risks.  Based on the total 

expected costs of these risk-sharing mechanisms, they mention how a good 

combination of MDG and subsidies can help reduce the risk for the concessionaire.  

They finally conclude that the risk of the concessionaire decreases as the portion of 

MDG to subsidy increases. 

(Park, et al., 2013) use real-option valuation for valuing underground water and sewer 

systems.  Unlike toll lanes, their sources of uncertainty are not from uncertain demand.  

Instead, they are from uncertain Operation and Maintenance costs. 

(Cruz & Marques, Submitted 2013) discuss different types of uncertainties associated 

with PPP projects.  They put emphasis on cost overruns, demand forecasting and capital 

costs.  In their paper, they evaluate the options related to demand uncertainty, which 

has to do with capacity optimal usage.  They apply their framework on a healthcare 

case study.  The case study is a PPP arrangement for constructing and operating a 

Hospital.  The concessionaire gets paid based on the number of patients served.  They 

consider two values for the two types of treatments: (1) inpatient and (2) ambulatory.  

The demands of these types of treatments are uncertain, which leads to two sources of 

uncertainties.  Monte Carlo sampling technique is used to calculate the expected option 

value.  They conclude that adding flexibility inside the contracts, as expected, increases 

the value of the project whenever uncertainty is present. 
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(Brandao, et al., 2005) elaborate and discuss the benefits of using binomial decision 

trees with risk-neutral probabilities over using binomial lattices with risk-adjusted 

probabilities.  Their argument is that risk-neutral probabilities eliminate the need for 

creating a replicating portfolio at each time step.  Instead of the common practice of 

having uncertainties in the value of the project, they assume that the cash flows, which 

are used to value a project, have uncertainties. They do their modeling in three steps.  

In Step One, using risk-adjusted probabilities and using the expected cash flows, the 

value of the project is calculated.  Step Two focuses on finding the standard deviation 

of the returns of the project by running a Monte Carlo simulation.  In the Third Step, a 

binomial lattice is constructed using the standard deviation from Step Two and the 

project’s initial value from Step One. 

(Kruger, 2012) analyzes the expansion of a two-lane road in Sweden using a binomial 

lattice.  He assumes the only source of uncertainty is in traffic demand.   

4.4 Modeling Approach 

The mathematical model presented in this chapter shares most of the assumptions stated 

in the deterministic model. The main difference is in the method used for dealing with 

uncertainties. We modify the deterministic model and provide a stochastic optimization 

model. A scenario based multi-phase optimization approach is undertaken. 

4.4.1 Scenario generation for uncertainties 

To model uncertainties and some of the possible outcomes of the uncertain demand we 

build scenarios. The scenarios are built based on the trinomial lattice trees used in real 

option valuation. The trinomial lattices are for estimating the demand for each one year 
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period in the future. We then calculate the quantity of demand served that is equal to 

the minimum of supply provided at each time and the demand at that time based on the 

number of phases built during each phase. Based on the demand served we can then 

calculate the overall profit of each scenario. However, we also need to calculate the 

probability of each scenario. This probability is calculated using the risk-neutral 

probabilities of an up-ward move, neutral move, and down-ward move used for 

generating the trinomial lattice. Figure 15 exhibits the possible outcomes when we have 

2 time steps after the current time step (T=3). In this case we have 33−1 = 9 possible 

scenarios. 

 

Figure 15 Scenario generation for demand (trinomial lattice) 
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4.4.2 Multi-phase stochastic optimization 

To solve the problem in the presence of uncertainty we model the problem as a multi-

stage stochastic optimization problem. This modelling is scenario based. Each scenario 

is based on the outcomes of the trinomial lattice at each of the stages as explained in 

the previous subsection.  

The general format for a multi-stage scenario based stochastic optimization objective 

function is shown in (4-2). In multi-stage optimization problems, the most important 

decision variables are those which are related to the first stage. These decisions are 

commonly referred to the “here and now” decisions. The other decisions that are made 

in future times are known as “recourse decisions” and they depend on future scenarios. 

In (4-2), for example, variables 𝑥 are here and now decisions and variables 𝑦 that 

depend on scenarios, 𝜔, are future recourse decisions. 

max 𝑧 = 𝑓(𝑥) + 𝐸𝑥𝑝[𝑔(𝑥, 𝑦𝜔)] 

ℎ(𝑥, 𝑦𝜔) ≤ 𝐴 

𝑞(𝑥, 𝑦𝜔) = 𝐵 

 (4-2) 

The objective function value is usually the expected value of all scenarios. 

4.5 Stochastic Single-Project Phased-investment Problem (SSPP) MIP 

The multi-phase scenario based stochastic optimization problem is described in this 

section. 
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4.5.1 SSPP parameters and variables 

The main here and now decision variable is the infrastructure being prepared, 𝑢𝑏, and 

the main recourse decision variable is the implementation of phases, 𝑥𝑖,𝑗
𝑡,𝜔

. All the 

variables and parameters used in the SSPP model are summarized in Table 13.  

 
Table 13 variables and parameters used in SSPP 

Variables 

𝑢𝑏 Number of phases selected for 
implementation 

Variables regarding infrastructure 

𝑖𝑡𝑢𝑏 Construction duration for infrastructure 
based on actual number of phases to be 
implemented 

𝑐𝑜𝑠𝑡𝑢𝑏 Construction cost for the infrastructure 
required for implementing 𝑢𝑏 phases. 

Variables regarding phases 

𝑥𝑖𝑗
𝑡,𝜔 Binary variable that equals 1 if phases 𝑖 

through 𝑗 start their implementation at 
time 𝑡 in scenario 𝜔 

Other main variables 

𝑏𝑡
𝜔 Available budget at the beginning of 

each time 𝑡 in scenario 𝜔 

𝑛𝑡
𝜔 Number of phases that have already 

been implemented or are being 
implemented at time 𝑡 in scenario 𝜔 

Variables used for linearization 
𝑐𝑛𝑖,𝑡

𝜔  Binary representation of number of 
phases that have already been 
implemented or are being implemented 
at time t for linearization for scenario 𝜔 

𝑛𝑐𝑖 Binary variable for linearization of 
infrastructure cost 

Parameters 

T Planning period 

𝑈𝐵 Maximum number of phases of project 

𝐵0 Initial available budget 

𝑅 Risk free interest rate 

𝐼 Inflation rate 
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𝑀𝑇  Big-M value used for timing 

Times Set of time periods = 0 .. T 

Phases Set of phases = 1 .. UB 
𝑃𝑖,𝑡

𝜔  Profit gained from first 𝑖 phases at time 
𝑡 in scenario 𝜔 

𝐼𝑇𝑢𝑏 Preparation (construction) time for 
infrastructure of 𝑢𝑏 phases 

𝐼𝐶𝑂𝑆𝑇𝑢𝑏 Preparation (construction) cost for 
infrastructure of 𝑢𝑏 phases 

𝑃𝑇𝑖,𝑗 Duration required for implementation of 
each phase 𝑖 − 𝑗 when phases 𝑖 − 𝑗 are 
implemented together 

𝑃𝐶𝑂𝑆𝑇𝑖,𝑗 Construction cost of each phases 
between 𝑖, 𝑗 if phases 𝑖 − 𝑗 are being 
done together 

𝑂𝐶𝑃𝐴𝑖,𝑡 Operation cost at time 𝑡 when Number 
of phases that have already been 
implemented or are being implemented 
at time 𝑡 is 𝑖 

𝑃𝜔 Probability of scenario 𝜔 
 

 

4.5.2 MIP formulation for SSPP 

4.5.2.1 Objective Function 

The objective function is maximizing the Expected Net Present Value (ENPV) of the 

portfolio that is being built based on our investments. The objective function is 

presented in (4-3). It contains the budget at the beginning of the last time period, 𝑇, and 

the profits gained during the last time period and thereon, and the costs incurred during 

the last time period and thereon. All the costs are subject to inflation. 

max 𝑧 = ∑ 𝑃𝜔𝜔 ×
𝐵𝑇

𝜔+∑ 𝑃𝑖,𝑇
𝜔 ×𝑐𝑛𝑖,𝑇

𝜔
𝑖 −(∑ ∑ (𝑗−𝑖+1)×𝑥𝑖,𝑗

𝑡,𝜔×𝑃𝐶𝑂𝑆𝑇𝑖,𝑗𝑗𝑖 +∑ 𝑂𝐶𝑃𝐴𝑖,𝑇×𝑐𝑛𝑖,𝑇
𝜔

𝑖 )×(1+𝐼)𝑇

(1+𝑅)𝑇
=

𝐸 [
𝐵𝑇

𝜔+∑ 𝑃𝑖,𝑇
𝜔 ×𝑐𝑛𝑖,𝑇

𝜔
𝑖 −(∑ ∑ (𝑗−𝑖+1)×𝑥𝑖,𝑗

𝑡,𝜔×𝑃𝐶𝑂𝑆𝑇𝑖,𝑗𝑗𝑖 +∑ 𝑂𝐶𝑃𝐴𝑖,𝑇×𝑐𝑛𝑖,𝑇
𝜔

𝑖 )×(1+𝐼)𝑇

(1+𝑅)𝑇
] (4-3) 
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The constraints of the problem are categorized into infrastructural constraints, phase 

constraints, scheduling constraints, and budgetary constraints. 

4.5.2.2 Infrastructural constraints (SSPP) 

The infrastructural constraints are listed below: 

 

𝑛𝑡
𝜔 ≤ 𝑢𝑏          ∀𝑡, 𝜔 (4-4) 

𝑐𝑜𝑠𝑡𝑢𝑏 = ∑ 𝐼𝐶𝑂𝑆𝑇𝑖 × 𝑛𝑐𝑖𝑖  (4-5) 

𝑖𝑡𝑢𝑏 = ∑ 𝐼𝑇𝑖 × 𝑛𝑐𝑖𝑖  (4-6) 

𝑢𝑏 = ∑ 𝑖 × 𝑛𝑐𝑖𝑖  (4-7) 

∑ 𝑛𝑐𝑖𝑖 ≤ 1 (4-8) 

Constraints (4-4) limit the total number of phases that are implemented at each time for 

each scenario to the maximum invested infrastructure. Constraints (4-5) and (4-6) are 

for calculating the infrastructure cost and install duration. For them being linear, we 

need to express the number of phases selected for implementation, 𝑢𝑏, using binary 

variables. This is done using constraints (4-7) and (4-8). 

4.5.2.3 Phase related constraints (SSPP) 

Constraints (4-9) – (4-14) are the phase related constraints: 

 

𝑛0
𝜔 = ∑ ∑ (𝑗 − 𝑖 + 1) × 𝑥𝑖,𝑗

0,𝜔
𝑗𝑖        ∀𝜔 (4-9) 

𝑛𝑡
𝜔 = 𝑛𝑡−1

𝜔 + ∑ ∑ (𝑗 − 𝑖 + 1) × 𝑥𝑖,𝑗
𝑡,𝜔

𝑗𝑖           ∀𝑡 ≥ 1,𝜔 (4-10) 
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𝑛𝑡
𝜔 = ∑ 𝑖 × 𝑐𝑛𝑖,𝑡

𝜔
𝑖         ∀𝑡, 𝜔 (4-11) 

∑ 𝑐𝑛𝑖,𝑡
𝜔

𝑖 ≤ 1        ∀𝑡, 𝜔 (4-12) 

∑ 𝑥𝑖,𝑗
𝑡,𝜔

𝑗≥𝑖 ≤ ∑ ∑ 𝑥𝑙,𝑖−1
𝑡′,𝜔

𝑡′≤𝑡  𝑙≤𝑖−1          ∀𝑖 ∈ {2,… , 𝑈𝐵}, 𝑡, 𝜔 (4-13) 

∑ ∑ ∑ 𝑥𝑖,𝑗
𝑡,𝜔

𝑗≥𝑙𝑖≤𝑙𝑡 ≤ 1         ∀𝑙 ∈ {1,… , 𝑈𝐵},𝜔 (4-14) 

Constraints (4-9) and (4-10) are for calculating the number of phases 

implemented/being implemented at different times for each scenario. Constraints (4-

11) and (4-12) are for representing the number of phases that are implemented/are being 

implemented using binary variables so that we would have linear constraints when 

calculating the different costs and times for phases for each scenario. Constraints (4-

13) prevent implementation of succeeding phases prior to the implementation of phases 

that are preceding them for each scenario. Constraints (4-14) prevent the assignment of 

a phase to two different groups of phases for all scenarios. 

4.5.2.4 Scheduling related constraints (SSPP) 

Constraints (4-15) – (4-17) are the schedule related constraints: 

 

𝑖𝑡𝑢𝑏 ≤ ∑ ∑ 𝑡 × 𝑥1,𝑗
𝑡,𝜔

𝑡𝑗 + 𝑀𝑇 × (1 − ∑ ∑ 𝑥1,𝑗
𝑡,𝜔

𝑡𝑗 )        ∀𝜔 (4-15) 

𝑡 × 𝑥𝑖,𝑗
𝑡,𝜔 + (𝑗 − 𝑖 + 1) × 𝑃𝑇𝑖,𝑗 × 𝑥𝑖,𝑗

𝑡,𝜔 ≤ ∑ ∑ 𝑡′ × 𝑥𝑗+1,𝑙
𝑡′,𝜔

𝑡′≥𝑡𝑙≥𝑗+1 + 𝑀𝑇 × (1 −

∑ ∑ 𝑥𝑗+1,𝑙
𝑡′,𝜔

𝑡′≥𝑡𝑙≥𝑗+1 )        ∀𝑖, 𝑗 ∈ {2,… , 𝑈𝐵} | 𝑗 ≥ 𝑖, 𝑡, 𝜔 (4-16) 

∑ ∑ 𝑥𝑖,𝑗
𝑡,𝜔

𝑗≥𝑖𝑖 ≤ 1         ∀𝑡, 𝜔 (4-17) 
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Constraints (4-15) assure that for each scenario, the first group of phases are 

implemented after the infrastructure is completed and successfully implemented. 

Constraints (4-16) ensure that each phase is implemented after the completion of 

implementation of its preceding phases for each scenario. Constraints (4-17) prevent 

multiple groups of phases to start their implementation together for all scenarios. 

4.5.2.5 Budget related constraints (SSPP) 

Constraints (4-18) – (4-21) are the budget related constraints: 

 

𝑏1
𝜔 = 𝐵0 − 𝑐𝑜𝑠𝑡𝑢𝑏 − (∑ ∑ (𝑗 − 𝑖 + 1) × 𝑃𝐶𝑂𝑆𝑇𝑖,𝑗 × 𝑥𝑖,𝑗

0,𝜔
𝑗≥𝑖𝑖 + ∑ 𝑂𝐶𝑃𝐴𝑖,0 ×𝑖

𝑐𝑛𝑖,0
𝜔 ) × (1 + 𝑅) + ∑ 𝑃𝑖,0

𝜔 × 𝑐𝑛𝑖,0
𝜔

𝑖          ∀𝜔 (4-18) 

𝑏𝑡
𝜔 = (𝑏𝑡−1

𝜔 − (∑ ∑ (𝑗 − 𝑖 + 1) × 𝑃𝐶𝑂𝑆𝑇𝑖,𝑗 × 𝑥𝑖,𝑗
𝑡−1,𝜔

𝑗≥𝑖𝑖 + ∑ 𝑂𝐶𝑃𝐴𝑖,𝑡−1 × 𝑐𝑛𝑖,𝑡−1
𝜔

𝑖 ) ×

(1 + 𝐼)𝑡−1) × (1 + 𝑅) + ∑ 𝑃𝑖,𝑡−1
𝜔 × 𝑐𝑛𝑖,𝑡−1

𝜔
𝑖          ∀𝑡 ∈ {2,… , 𝑇},𝜔 (4-19) 

𝑐𝑜𝑠𝑡𝑢𝑏 + ∑ ∑ (𝑗 − 𝑖 + 1) × 𝑃𝐶𝑂𝑆𝑇𝑖,𝑗 × 𝑥𝑖,𝑗
0,𝜔

𝑗≥𝑖𝑖 + ∑ 𝑂𝐶𝑃𝐴𝑖0 × 𝑐𝑛𝑖,0
𝜔

𝑖 ≤ 𝐵0∀𝜔 (4-20) 

(∑ ∑ (𝑗 − 𝑖 + 1) × 𝑃𝐶𝑂𝑆𝑇𝑖,𝑗 × 𝑥𝑖,𝑗
𝑡−1,𝜔

𝑗≥𝑖𝑖 + ∑ 𝑂𝐶𝑃𝐴𝑖,𝑡−1 × 𝑐𝑛𝑖,𝑡−1
𝜔

𝑖 ) × (1 + 𝐼)𝑡−1 ≤

𝑏𝑡
𝜔         ∀𝑡 ≥ 1,𝜔 (4-21) 

Constraints (4-18) and (4-19) are the updates on the available budget at the beginning 

of each time period. For each scenario, the available budget at the beginning of each 

time period is equal to remaining budget from the previous time period in the current 

period’s value (incorporating time value of money) plus the profits earned at the end of 

the last period as a result of implemented phases in the previous period. Constraints (4-

20) and (4-21) are the budget limitations during different times for each scenario. 
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4.5.2.6 Variable domain constraints (SSPP) 

Finally, constraints (4-22) and (4-23) are the variable domain constraints: 

 

𝑢𝑏, 𝑖𝑡𝑢𝑏 , 𝑐𝑜𝑠𝑡𝑢𝑏 , 𝑏𝑡
𝜔 , 𝑛𝑡

𝜔 ≥ 0 (4-22) 

𝑥𝑖,𝑗
𝑡,𝜔, 𝑐𝑛𝑖,𝑡

𝜔 , 𝑛𝑐𝑖 ∈ {0,1} (4-23) 

4.5.2.7 Non-anticipatively constraints (SSPP) 

These constraints are for restricting the future decisions that are taken at future steps to 

have the same value regardless of the scenario. 

𝑥𝑖,𝑗
𝑡,𝜔1 = 𝑥𝑖,𝑗

𝑡,𝜔2          ∀𝜔1, 𝜔2, 𝑡, (𝑖, 𝑗) (4-24) 

4.5.2.8 The complete MIP model for SSPP 

The complete multi-phase mixed integer programming model is summarized in the 

following: 

max 𝑧 = ∑ 𝑃𝜔𝜔 ×
𝐵𝑇

𝜔+∑ 𝑃𝑖,𝑇
𝜔 ×𝑐𝑛𝑖,𝑇

𝜔
𝑖 −(∑ ∑ (𝑗−𝑖+1)×𝑥𝑖,𝑗

𝑡,𝜔×𝑃𝐶𝑂𝑆𝑇𝑖,𝑗𝑗𝑖 +∑ 𝑂𝐶𝑃𝐴𝑖,𝑇×𝑐𝑛𝑖,𝑇
𝜔

𝑖 )×(1+𝐼)𝑇

(1+𝑅)𝑇
=

𝐸 [
𝐵𝑇

𝜔+∑ 𝑃𝑖,𝑇
𝜔 ×𝑐𝑛𝑖,𝑇

𝜔
𝑖 −(∑ ∑ (𝑗−𝑖+1)×𝑥𝑖,𝑗

𝑡,𝜔×𝑃𝐶𝑂𝑆𝑇𝑖,𝑗𝑗𝑖 +∑ 𝑂𝐶𝑃𝐴𝑖,𝑇×𝑐𝑛𝑖,𝑇
𝜔

𝑖 )×(1+𝐼)𝑇

(1+𝑅)𝑇
] (4-3) 

Subject to: 

𝑛𝑡
𝜔 ≤ 𝑢𝑏          ∀𝑡, 𝜔 (4-4) 

𝑐𝑜𝑠𝑡𝑢𝑏 = ∑ 𝐼𝐶𝑂𝑆𝑇𝑖 × 𝑛𝑐𝑖𝑖  (4-5) 
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𝑖𝑡𝑢𝑏 = ∑ 𝐼𝑇𝑖 × 𝑛𝑐𝑖𝑖  (4-6) 

𝑢𝑏 = ∑ 𝑖 × 𝑛𝑐𝑖𝑖  (4-7) 

∑ 𝑛𝑐𝑖𝑖 ≤ 1 (4-8) 

𝑛0
𝜔 = ∑ ∑ (𝑗 − 𝑖 + 1) × 𝑥𝑖,𝑗

0,𝜔
𝑗𝑖        ∀𝜔 (4-9) 

𝑛𝑡
𝜔 = 𝑛𝑡−1

𝜔 + ∑ ∑ (𝑗 − 𝑖 + 1) × 𝑥𝑖,𝑗
𝑡,𝜔

𝑗𝑖           ∀𝑡 ≥ 1,𝜔 (4-10) 

𝑛𝑡
𝜔 = ∑ 𝑖 × 𝑐𝑛𝑖,𝑡

𝜔
𝑖         ∀𝑡, 𝜔 (4-11) 

∑ 𝑐𝑛𝑖,𝑡
𝜔

𝑖 ≤ 1        ∀𝑡, 𝜔 (4-12) 

∑ 𝑥𝑖,𝑗
𝑡,𝜔

𝑗≥𝑖 ≤ ∑ ∑ 𝑥𝑙,𝑖−1
𝑡′,𝜔

𝑡′≤𝑡  𝑙≤𝑖−1          ∀𝑖 ∈ {2,… , 𝑈𝐵}, 𝑡, 𝜔 (4-13) 

∑ ∑ ∑ 𝑥𝑖,𝑗
𝑡,𝜔

𝑗≥𝑙𝑖≤𝑙𝑡 ≤ 1         ∀𝑙 ∈ {1,… , 𝑈𝐵},𝜔 (4-14) 

𝑖𝑡𝑢𝑏 ≤ ∑ ∑ 𝑡 × 𝑥1,𝑗
𝑡,𝜔

𝑡𝑗 + 𝑀𝑇 × (1 − ∑ ∑ 𝑥1,𝑗
𝑡,𝜔

𝑡𝑗 )        ∀𝜔 (4-15) 

𝑡 × 𝑥𝑖,𝑗
𝑡,𝜔 + (𝑗 − 𝑖 + 1) × 𝑃𝑇𝑖,𝑗 × 𝑥𝑖,𝑗

𝑡,𝜔 ≤ ∑ ∑ 𝑡′ × 𝑥𝑗+1,𝑙
𝑡′,𝜔

𝑡′≥𝑡𝑙≥𝑗+1 + 𝑀𝑇 × (1 −

∑ ∑ 𝑥𝑗+1,𝑙
𝑡′,𝜔

𝑡′≥𝑡𝑙≥𝑗+1 )        ∀𝑖, 𝑗 ∈ {2,… , 𝑈𝐵} | 𝑗 ≥ 𝑖, 𝑡, 𝜔 (4-16) 

∑ ∑ 𝑥𝑖,𝑗
𝑡,𝜔

𝑗≥𝑖𝑖 ≤ 1         ∀𝑡, 𝜔 (4-17) 

𝑏1
𝜔 = 𝐵0 − 𝑐𝑜𝑠𝑡𝑢𝑏 − (∑ ∑ (𝑗 − 𝑖 + 1) × 𝑃𝐶𝑂𝑆𝑇𝑖,𝑗 × 𝑥𝑖,𝑗

0,𝜔
𝑗≥𝑖𝑖 + ∑ 𝑂𝐶𝑃𝐴𝑖,0 ×𝑖

𝑐𝑛𝑖,0
𝜔 ) × (1 + 𝑅) + ∑ 𝑃𝑖,0

𝜔 × 𝑐𝑛𝑖,0
𝜔

𝑖  (4-18) 
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𝑏𝑡
𝜔 = (𝑏𝑡−1

𝜔 − (∑ ∑ (𝑗 − 𝑖 + 1) × 𝑃𝐶𝑂𝑆𝑇𝑖,𝑗 × 𝑥𝑖,𝑗
𝑡−1,𝜔

𝑗≥𝑖𝑖 + ∑ 𝑂𝐶𝑃𝐴𝑖,𝑡−1 × 𝑐𝑛𝑖,𝑡−1
𝜔

𝑖 ) ×

(1 + 𝐼)𝑡−1) × (1 + 𝑅) + ∑ 𝑃𝑖,𝑡−1
𝜔 × 𝑐𝑛𝑖,𝑡−1

𝜔
𝑖          ∀𝑡 ∈ {2,… , 𝑇},𝜔 (4-19) 

𝑐𝑜𝑠𝑡𝑢𝑏 + ∑ ∑ (𝑗 − 𝑖 + 1) × 𝑃𝐶𝑂𝑆𝑇𝑖,𝑗 × 𝑥𝑖,𝑗
0,𝜔

𝑗≥𝑖𝑖 + ∑ 𝑂𝐶𝑃𝐴𝑖,0 × 𝑐𝑛𝑖,0
𝜔

𝑖 ≤ 𝐵0 (4-20) 

(∑ ∑ (𝑗 − 𝑖 + 1) × 𝑃𝐶𝑂𝑆𝑇𝑖,𝑗 × 𝑥𝑖,𝑗
𝑡−1,𝜔

𝑗≥𝑖𝑖 + ∑ 𝑂𝐶𝑃𝐴𝑖,𝑡−1 × 𝑐𝑛𝑖,𝑡−1
𝜔

𝑖 ) × (1 + 𝐼)𝑡−1 ≤

𝑏𝑡
𝜔         ∀𝑡 ≥ 1,𝜔 (4-21) 

𝑢𝑏, 𝑖𝑡𝑢𝑏 , 𝑐𝑜𝑠𝑡𝑢𝑏 , 𝑏𝑡
𝜔 , 𝑛𝑡

𝜔 ≥ 0 (4-22) 

𝑥𝑖,𝑗
𝑡,𝜔, 𝑐𝑛𝑖,𝑡

𝜔 , 𝑛𝑐𝑖 ∈ {0,1} (4-23) 

𝑥𝑖,𝑗
𝑡,𝜔1 = 𝑥𝑖,𝑗

𝑡,𝜔2          ∀𝜔1, 𝜔2, 𝑡, (𝑖, 𝑗) (4-24) 

 

4.6 Solution Methods for Single-Project Phased-investment Problem (SSPP) 

We are interested in the outcomes of the here and now decision variables standing at 

the current time. Throughout the remainder of this section, the variable that we are 

interested in its value is the variable that determines the size of the infrastructure, 𝑢𝑏. 

𝑢𝑏 is the variable that states how many of the phases would be carried out during the 

planning period. Based on the value of 𝑢𝑏 we prepare the infrastructure for carrying 

out up to 𝑢𝑏 phases during the planning period. Note that although we have prepared 

the infrastructure for 𝑢𝑏 phases, it might turn out that for some scenarios, some recourse 

actions are abandoning the project at some stage or carrying out less phases. 
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We can solve the problem and find 𝑢𝑏 using commercial solvers such as XPRESS for 

problems which do not have many scenarios. The commercial solvers usefulness 

suddenly drops as the size of the problem increases. 

For the parking example, in the presence of 15 time periods and the trinomial tree 

platform for the diffusion of uncertainty, we have a total of 314 ≈ 4.78𝑒6 scenarios. 

Since many of the variables and constraints are scenario related, the complete multi-

stage mathematical model will be very large and solving such a large MIP using merely 

commercial solvers is unrealistic. Two approaches are considered for such cases in this 

research. The first approach is to decompose the problem by solving the problem for 

each scenario independently. The second approach is using simulation to compare the 

bounds on the expected objective function values for different values of the here and 

now decision. Both approaches are explained in more detail in the following 

subsections. 

4.6.1 Solving the problem for all scenarios 

A popular method for solving multi-stage scenario based stochastic optimization 

problems is to solve the deterministic problem for each single scenario. The most 

common solution to the first stage “here and now” decision variable could then be 

picked as the solution to proceed upon. 

This approach has its benefits. One of the most important benefits it has is its 

independence on probabilities of the scenarios. All scenarios have equal value in this 

method. This is valuable especially in cases that we cannot calculate or predict the 

probabilities accurately. It is also profitable when we have many scenarios and as a 

result the probability of most of those scenarios are practically zero (less than machine 
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epsilon). The running time of each scenario is also very small in comparison to the 

running time of the overall stochastic problem since the problem for each scenario is a 

deterministic problem with much fewer constraints and variables. 

The downside of this approach is the curse of dimensionality. If we have many 

scenarios, even though solving each one of them might be very fast, the overall time 

required to solve all of the scenarios may be very large. This causes this method to look 

impractical. To fix this impracticality, many reduce the number of scenarios. In doing 

this, most of the scenario generation and reduction studies try to minimize what is 

called a distance function. This distance function is the difference between the original 

probability distribution of the original scenario tree and the probability distribution of 

the reduced scenario tree. For example, the distance between two scenarios 𝜔𝑖 and 𝜔𝑗 

can be calculated using the norm of their differences (|𝜔𝑖 − 𝜔𝑗|
𝑛
). The overall distance 

for example could be calculated as (4-25). 

∑ 𝑃𝑘 min
𝑗∉𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠

|𝜔𝑘 − 𝜔𝑗|
𝑛

𝑘∈𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠  (4-25) 

The reduced scenario tree has a smaller probability base (fewer scenarios). When the 

size of the base of the reduced scenario tree is given (the number of scenarios to be 

preserved are given) or equivalently the number of scenarios that should be deleted are 

given, the problem is relatively solvable. However when the sizes are not given as an 

input, the problem becomes difficult and different heuristics have been proposed to 

solve the problem. The most famous among the heuristics are the Forward and 

Backward methods. In the Forward method, we select scenarios to preserve iteratively. 

In the backward method, we iteratively select scenarios to delete. The interested reader 
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in the theory of these methods is referred to (Heitsch & Römisch, 2003) and (Dupačová, 

et al., 2003). The forward and backward algorithms have been very popular in 

stochastic optimization studies (Xing, et al., 2006), (Razali & Hashim, 2010), (Growe-

Kuska, et al., 2003), (Sharma, et al., 2013), (Siahkali & Vakilian, 2010), (Pedrasa, et 

al., 2011), (Feng & Ryan, 2013), (Park, et al., 2016). 

Another approach for scenario reduction is clustering. (Beraldi & Bruni, 2014) use a 

cluster based approach. They cluster the scenarios from the decision tree. Then select 

one representative scenario per cluster to remain in the reduced tree. 

Most, if not all of these methods, mainly rely on the probability distributions and they 

eliminate scenarios with some loss. This is while solving the problem for all scenarios 

(without any loss in scenarios) still has some benefits especially when robust 

optimization is important. In addition, all of them might eliminate some scenarios for 

which the problems’ solution (𝑢𝑏 value) might be different from the solution of all the 

remaining reduced number of scenarios. To overcome these shortcoming we present a 

method for solving all scenarios by “elimination via guessing”. This method, that we 

call it the Solve-Search-Delete (SSD algorithm), is applicable to the cases in which the 

value of the “here and now” decision is monotonically related to the outcome of the 

scenario. 

For example, in the phased investment example, we have to show that when all input 

parameters are fixed, for a better scenario, the problem’s here and now variable, 𝑢𝑏, is 

always larger or equal to the that from the worse scenario. In simpler words, when the 
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outcomes are better, we never build a smaller infrastructure than when the outcomes 

are worst. 

4.6.1 Preliminaries for the SSD algorithm 

Before we proceed with explaining the SSD algorithm, we will discuss the main reason 

this algorithm works. 

Theorem: We could “find” the optimal here and now decision variables’ value, 𝑢𝑏 

value, of a scenario 𝜔, 𝑢𝑏𝜔, without solving the scenario if the optimal 𝑢𝑏 values for 

two scenarios that are better, 𝑝, and worse, 𝑛, than 𝜔 are equal and the monotonicity 

condition is satisfied: If 𝑢𝑏𝑝 = 𝑢𝑏𝑛 =>  𝑢𝑏𝜔 = 𝑢𝑏𝑝. 

Before we prove the theorem, it is important to clearly define what we call a “better” 

and “worse” scenario. We say scenario 𝑎 is better than scenario 𝑏 if the value of the 

uncertain parameter during all stages is more favorable or equally favorable in 𝑎 in 

comparison to 𝑏. This means that if the uncertain parameter is demand which is 

positive, the demand of scenario 𝑎 should always be larger or equal to the demand of 

scenario 𝑏. Figure 16 illustrates the case where the green scenario is better than all 

scenarios. The red and dark blue scenarios are not comparable since the value of the 

uncertain parameter crosses during a stage in these two scenarios. It is easy to show 

that the optimal objective function value for the better scenario is better since all other 

parameters except for the uncertain parameter are the same. 
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Figure 16 Comparison among different scenarios 

Note that this declaration of better and worse scenarios is very robust. One might say 

that the dark blue scenario has a better objective function value than the red because 

it’s value is higher in two stages (in comparison to one). The net area between these 

two scenarios is a driving factor in this claim. However, we cannot clearly say that 

because, due to limitations in supply, during the first two stages, we might not be able 

to serve a demand beyond the demand of the red scenario. If the supply increases during 

the last stage however, we can satisfy more overall demand for the red scenario. 

Now that we have declared what is a better and a worse scenario, let’s prove the 

theorem. We prove the theorem by proving parts a and b listed below. 

a) The optimal 𝑢𝑏 of a worse scenario is always a feasible solution to the better 

scenario: This is very trivial since we can always set the value of the decision 
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variables of the better scenario equal to the ones from the worse scenario and 

get a feasible solution. The 𝑢𝑏 here acts as a lower bound. 

b) The optimal 𝑢𝑏 solution of a better scenario is an upper bound to the 𝑢𝑏: This 

is a direct fact from the monotonicity requirement. 

Once we have a lower bound and an upper-bound that are equal, the solution is going 

to be equal to any of these bounds. 

The idea behind the SSD algorithm is to progressively solve scenarios and compare the 

solved scenarios. Once two solved scenarios have the same here and now decision 

variable, 𝑢𝑏, and are comparable (one scenario is better than the other scenario), using 

the theorem, delete the scenarios in-between the comparable scenarios and set their 𝑢𝑏 

to equal the 𝑢𝑏 of the comparable scenarios. As we proceed, we are expanding the list 

of already solved scenarios and therefore, more compatible scenarios would be found. 

This process would continue until there are no more remaining scenarios that we should 

solve as they are either deleted by comparison or solved. After this step the optimal 𝑢𝑏 

for all scenarios is known. 

4.6.2 The Solve-Search-Delete (SSD) algorithm 

The SSD algorithm can be broken into smaller pieces. The first piece is initialization. 

The other major components are the search and delete components. Each of these parts 

are explained in more detail in the following subsections. 

4.6.2.1 Initialization of SSD algorithm 

During this step that is only executed once at the beginning of the algorithm, we build 

the required search arrays and populate them with some non-arbitrary values. The 



 

 

74 

 

initializations step, executes all the steps except for the search step once. The pseudo-

code for this part is: 

 𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔_𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠 ← All Scenarios 

 Create an empty array for each possible value of 𝑢𝑏: 𝑢𝑏_𝑠𝑒𝑎𝑟𝑐ℎ[|𝑢𝑏|] 

 Solve the MIP for the best scenario: 1 

 Add the scenario to its corresponding 𝑢𝑏_𝑠𝑒𝑎𝑟𝑐ℎ value based on its 

𝑢𝑏 value: 

 𝑢𝑏_𝑠𝑒𝑎𝑟𝑐ℎ[𝑢𝑏1] .𝑎𝑝𝑝𝑒𝑛𝑑(1). 

 Remove scenario 1 from the list of available projects: 

 𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔_𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠 .𝑝𝑜𝑝(1) 

 Solve the MIP for the worst scenario: N 

 Add the scenario to its corresponding 𝑢𝑏_𝑠𝑒𝑎𝑟𝑐ℎ value based on its 

𝑢𝑏 value: 

 𝑢𝑏_𝑠𝑒𝑎𝑟𝑐ℎ[𝑢𝑏𝑁] .𝑎𝑝𝑝𝑒𝑛𝑑(𝑁). 

 Remove scenario N from the list of available projects: 

 𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔_𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠 .𝑝𝑜𝑝(𝑁) 

The initialization starts by putting all the scenarios in the list of remaining scenarios. 

Then we create an array that would be used for searching for compatible scenario pairs. 

This array has |𝑢𝑏| cells, where |𝑢𝑏| is the number of possible outcomes for the here 

and now decision variable, 𝑢𝑏. In the case of the parking example, this value would be 

𝑈𝐵 + 1. Each cell of this array will store the IDs for the solved scenarios that their 

“here and now decision variable”, 𝑢𝑏, values are equal to 𝑢𝑏𝑖. 

Next, we populate the built array. During initialization, this is done wisely. Instead of 

selecting random scenarios, we pick the best (ID=1) and worst scenario (ID=N). We 

solve the deterministic MIP problem for each scenario 𝜔 using Xpress. Based on the 

outcome of its here and now decision variable, 𝑢𝑏𝜔, we assign it to its appropriate cell 
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in 𝑢𝑏_𝑠𝑒𝑎𝑟𝑐ℎ. Then since these scenarios are solved, we remove them from the list of 

remaining scenarios. After the initializations step we have 𝑁 − 2 remaining scenarios. 

4.6.2.2 Solve and Search steps of the SSD algorithm 

Now that we have at least a minimum basis for searching (2 scenarios added during 

initialization) and also the we know the bounds of the values for 𝑢𝑏 from the 

initialization step, we can illustrate the solve and search steps. In the solve step, we 

randomly select a scenario 𝜔 from the list of remaining scenarios. We solve the 

deterministic model using the parameters of this scenario with Xpress. Say, the optimal 

here and now decision value for this scenario is 𝑢𝑏𝜔. We search within the list 

𝑢𝑏_𝑠𝑒𝑎𝑟𝑐ℎ[𝑢𝑏𝜔]. We see if there is any scenario in that list which it is either better or 

worse than scenario 𝜔. Recall that the ranking of scenarios were explained earlier. If 

we find such a compatible scenario, we proceed to the delete step of the algorithm. If 

not, we simply add the solved scenario to the search list and delete it from the list of 

remaining projects. 

Figure 17 illustrates how the search step of the SSD algorithm works. Assume that until 

this point in time within the algorithm, 𝑢𝑏_𝑠𝑒𝑎𝑟𝑐ℎ[𝑢𝑏1] has been populated with 

scenario 1 (the one with the dashed line) and 𝑢𝑏_𝑠𝑒𝑎𝑟𝑐ℎ[𝑢𝑏2] has been populated with 

scenarios 𝛼 and 𝛽 (in this order). Scenarios 𝛼 and 𝛽 are those which are solid and darker 

but not bolded. Also, assume that we randomly have selected the bolded scenario 𝜔 

from the list of remaining projects and have solved the deterministic model for this 

scenario and its optimal here and now decision value is 𝑢𝑏2. To find comparable pairs, 

we search within 𝑢𝑏_𝑠𝑒𝑎𝑟𝑐ℎ[𝑢𝑏2]. We start with comparing scenario 𝜔 with scenario 

𝛼. These two scenarios are non-comparable because they cross each other in a stage. 
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Then we proceed to comparing scenario 𝜔 with scenario 𝛽. These two scenarios are 

comparable and scenario 𝜔 is the better scenario. Here we proceed to the deleting step 

of the algorithm. 

 
Figure 17 Search of “guessing” Algorithm Illustrative Example 

4.6.2.3 Delete step of the SSD algorithm 

In this step, if we have found a comparison in the previous step, we delete all the 

scenarios that are sandwiched by the better and worse scenario found in the prior step. 

Figure 18 Illustrates this. During this step, scenarios n and m are sandwiched by 

scenario 𝜔 and 𝛽 and therefore are deleted from the list of remaining scenarios. Their 

𝑢𝑏𝑛 = 𝑢𝑏𝑚 is equal to 𝑢𝑏2 = 𝑢𝑏𝜔. 
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Figure 18 Deleting step in "guessing" algorithm illustrative example 

After this step we proceed by adding scenario 𝜔 to the search list and also deleting it 

from the list of remaining scenarios. This process of solving-searching and deleting is 

continued until no more scenarios remain. The overall algorithm minus the 

initialization step is summarized below: 

 While size(𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔_𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠) ≥ 1: 

 Select a scenario, 𝜔 randomly from 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔_𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠 

 Solve deterministic MIP for scenario 𝜔 and find 𝑢𝑏𝜔 

 Search for compatible scenario 𝑐 in 𝑢𝑏_𝑠𝑒𝑎𝑟𝑐ℎ[𝑢𝑏𝜔],  

 If compatible pair found (𝑐 exists): 

 Delete all remaining scenarios in between 𝜔 and 𝑐. 

 Add 𝜔 to 𝑢𝑏_𝑠𝑒𝑎𝑟𝑐ℎ: 𝑢𝑏_𝑠𝑒𝑎𝑟𝑐ℎ[𝑢𝑏𝜔].𝑎𝑝𝑝𝑒𝑛𝑑(𝜔) 

 Remove 𝜔 from list of 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔_𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠: 

𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔_𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠.𝑝𝑜𝑝(𝜔) 

Now that the SSD algorithm is explained, we proceed by describing the second solution 

method for solving SSPP. 
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4.6.3 Optimization via Simulation for evaluating different here and now decisions of 

the SSPP 

Solving the SSP problem to its entirety is a very cumbersome and complex as illustrated 

before. However, by relaxing the non-anticipatively constraints (4-24), we will be able 

to find good approximation solutions for the here and now decision variable possible 

values. In order to solve the stochastic problem without neglecting the probabilities of 

the scenarios, we utilize a random selection ( and simulation) scheme. In this scheme, 

using the probabilities of moving upward, downward, and not changing in each step of 

the trinomial lattice, we perform a random walk. This random walk is an iteration of 

one run for the simulation. The purpose of this simulation is to find the best possible 

outcome for the here and now decision variable, 𝑢𝑏. If the possible outcomes of this 

decision variable is limited, we can look at each different outcome as a policy and use 

simulation to pick the best policy. The performance measure calculated for comparing 

the different policies is the bound on the expected objective function value that is very 

appropriate as it is the closest simple measure we have to the objective function of the 

SSPP. Since the outcome of the decision variable is fixed for each of these policies, in 

each iteration of each simulation run, we only have to solve the relaxed deterministic 

model for each simulation outcome with a fixed here and now decision variable that is 

very fast and easy using commercial solvers. 

4.6.3.1 Simulation algorithm for SSPP 

The simulation algorithm for one run is presented below: 

 For different possible (groups of) values of 𝑢𝑏; 𝑖= 1..UB: 

 Set 𝑢𝑏 = 𝑖 
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 Counter = 1 

 Total_obj_func[i] = 0 

 While Counter ≤ Max_iterations: 

 Based on 𝑃𝑢,  𝑃𝑚,  𝑎𝑛𝑑 𝑃𝑑 simulate a random walk for the 

uncertain parameter, 𝜔. 

 Solve “remaining relaxed MIP” using Xpress: 

 Update Total_obj_func: Total_obj_func[i] += 𝑍𝜔 

 Counter += 1 

 Avg_obj_func[i] = Total_obj_func[i] / Max_iterations 

Note that during the simulation, we are approximating the expectation of the 

maximization of the relaxed SSPP problem. The relaxed SSPP problem, as mentioned 

earlier, is the SSPP problem without the nonanticipativity constraints. By relaxing these 

constraints, and fixing the here and now decision variable in each simulation run, each 

simulation iteration becomes independent from the other simulation iterations (scenario 

become independent). As a result, the expectation of the maximum will be equal to the 

maximum of the expectation. Since the relaxed problem is giving us an upper bound of 

the non-relaxed “original” SSPP, the performance measure of the simulation is giving 

us the expected upper bound value for each possible value of the here and now decision 

variable (4-26). 

𝑃𝑀 = 𝐸[max 𝑧𝑟] = max𝐸[𝑧𝑟] (4-26) 

In order to achieve certain confidence for the performance measure (upper bound on 

the expected objective function value) calculated during each simulation run, we need 

to have enough iterations in each run of the simulation. We can find the number of 

iterations needed, 𝑚, based on the equation for the confidence intervals. For cases that 
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𝑚 ≥ 30, we can use the following equation for estimating the performance measure 

for system 𝑎 in the first run, 𝑌𝑎1
: 

𝑌𝑎1
̅̅ ̅̅ ± 𝑧𝛼/2 ×

𝜎

√𝑚
 (4-27) 

where 𝛼 = 1 − 𝑐. 𝑐 and 𝑐. 𝑐. is the confidence coefficient, 𝑌𝑎1
̅̅ ̅̅  is the point estimate for 

this performance measure, and the term 𝑧𝛼/2 ×
𝜎

√𝑛
 is known as the margin of error, 𝐸. 

By fixing the value of this parameter, we can find the number of iterations needed using 

equation (4-28). 

𝐸 = 𝑧𝛼/2 ×
𝜎

√𝑚
   →    𝑚 =

𝑧𝛼
2

2×𝜎2

𝐸2  (4-28) 

Once we have the estimates for the performance measures during each run of the 

simulation per policy, we can use those values for comparing the different policies. 

Generally, when we want to compare two systems 𝑎 and 𝑏 using simulation, we look 

at the average performance measure of the simulation runs. Say 𝑌𝑎𝑖
 is the average 

performance measure for system 𝑎 at run 𝑖 of the simulation. Then the overall average 

of the system after 𝐴 runs is 𝑌�̅� =
1

𝐴
∑ 𝑌𝑎𝑖𝑖∈{1,2,…,𝐴} . If the overall average performance 

measure of system 𝑏 after 𝐵 runs is  𝑌�̅�, we can compare the two systems by looking at 

where the difference of the performance measures fall with respect to 0. If, 𝑎 − 𝑏 < 0 

this means that 𝑎 < 𝑏 and if 𝑎 − 𝑏 > 0 this means that 𝑎 > 𝑏. However if 𝑎 − 𝑏 does 

not fall clearly on one of the sides of zero then we cannot draw any conclusions and we 

need more iterations so that 𝑎 − 𝑏 would finally fall on one of the sides of zero. 

Typically, we can estimate 𝑎 − 𝑏 (the difference between the performance measures of 
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the two systems) with a confidence interval of 100(1 − 𝛽)% using the outputs of the 

simulation runs and equation (4-29). 

𝑌�̅� − 𝑌�̅�  ± 𝑡
1− 

𝛽

2
,   𝜈

× 𝑆. 𝑒. (𝑌�̅� − 𝑌�̅�) (4-29) 

where 𝑆. 𝑒. (𝑌�̅� − 𝑌�̅�) is the standard error of 𝑌�̅� − 𝑌�̅�  and 𝜈 is the degree of freedom 

used for finding the critical value of the t-test. When the variances of the runs from 𝑌𝑎 

and 𝑌𝑏 are not equal, we can use the following equations to find the standard error and 

the degree of freedom: 

𝑆. 𝑒. (𝑌�̅� − 𝑌�̅�) = √
𝑆𝑎

2

𝑛𝑎
+

𝑆𝑏
2

𝑛𝑏
 (4-30) 

𝜈 = 𝑟𝑜𝑢𝑛𝑑
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 (4-31) 

The overall procedure of comparing two policies is following two sampling events. 

Assume that event 𝐴 is that the performance measure calculated per each simulation 

run is actually incorrect and the actual value for that performance measure falls out of 

the margin of error plus the point estimate. Event B is that the comparison has an error. 

We can used Bonferroni’s method to find a bound on the overall confidence interval. 

The probability of at least one of the steps of finding a point estimate for the 

performance measures per each run and comparing two policies based on their avg. 

performance is erroneous is 𝑃(𝐴 ∪ 𝐵). 𝑃(𝐴 ∪ 𝐵) however is bound by 𝑃(𝐴) + 𝑃(𝐵). 

So the overall confidence of both steps together would be at least 1 − (𝑃(𝐴) + 𝑃(𝐵)). 
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4.6.3.2 Common Random Number (CRN) Simulation algorithm for SSPP 

We could potentially decrease the number of simulation runs needed using the concept 

of common random numbers (CRN). CRN is a popular variance reduction technique 

that is mainly used when we are interested in comparing performance measures of two 

or more different policies. By using the same random numbers per each simulation 

iteration of the simulation runs, we are adding dependency between the simulation runs. 

The covariance will cause the variance to decrease based on equation (4-32). 

𝑉𝑎𝑟(�̅� − �̅�) = 𝑉𝑎𝑟(𝑎) + 𝑉𝑎𝑟(𝑏) − 2𝐶𝑜𝑣(𝑎, 𝑏) (4-32) 

The CRN simulation algorithm is summarized below: 

 Counter = 1 

 Total_ob_func = zeros(UB) 

 While Counter ≤ Max_iterations: 

 Based on 𝑃𝑢,  𝑃𝑚,  𝑎𝑛𝑑 𝑃𝑑 simulate a random walk for the uncertain 

parameter, 𝜔. 

 For different possible (groups of) values of 𝑢𝑏; 𝑖= 4..5: 

 Set 𝑢𝑏 = 𝑖 

 Solve “remaining MIP” using Xpress: 

 Update Total_obj_func: Total_obj_func[i] += 𝑍𝜔 

 Counter += 1 

 Avg_obj_func[i] = Total_obj_func[i] / Max_iterations 
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4.7 Example and results for Single-Project Phased-investment Problem (SSPP) using 

solution methods 

In this section, we again solve the mentioned parking garage example from (Zhao & 

Tseng, 2003) . The possible outcomes of the uncertainty (demand) are built based upon 

a trinomial lattice model. The same way that it was built in (Zhao & Tseng, 2003). 

During each stage of the uncertain parameter can either increase in value with 

probability 𝑃𝑈 = 0.288, not change with probability 𝑃𝑀 = 0.626, or decrease in value 

with probability 𝑃𝐷 = 0.086. The demand at time 0 is 250. If the demand increases at 

stage 1, it will increase to 𝑒ln(250)+𝐷. If it decreases, it will decrease to 𝑒ln(250)−𝐷. If it 

does not change it will remain as 𝑒ln(250) = 250. By knowing the number of upward 

movements (UP), and downward movements (DN) before each stage, we can find the 

demand during that stage using equation (4-31). 

𝐷𝑒𝑚𝑎𝑛𝑑 = 𝑒ln(250)+(𝑈𝑃−𝐷𝑁)×𝐷 (4-31) 

where 𝐷 was calculated to be 0.2087 based on historical data (Zhao & Tseng, 2003). 

The remaining of the parameters are the same as the ones mentioned in (3.3) unless 

explicitly mentioned otherwise. 

We consider two set of values for parameters (𝐵0, 𝐼, 𝑅), that are the initial investment 

budget, inflation rate, and risk-free interest rate, respectively. These two set of values 

are selected such that for one of them, the maximum 𝑢𝑏 value would be less than the 

maximum allowed, 𝑈𝐵, and in the other one it would be equal. The set of parameter 

values are: (a) 𝐵0 = 6,000, 𝐼 = 5%, and 𝑅 = 2% and (b) 𝐵0 = 10,000, 𝐼 = 2%, and 

𝑅 = 2%. 
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4.7.1 Solving the parking SSPP problem for all scenarios using SSD algorithm 

In this example, we can show that the requirement of “better scenarios give higher 𝑢𝑏 

values” for the SSD algorithm is satisfied by looking at the sensitivity of the solution 

of 𝑢𝑏 to the initial available budget, 𝐵0. Note that we are using a proxy that better 

scenarios are somehow equivalent to bigger initial budgets. This proxy is valid due to 

the way a better scenario is defined throughout this work. The sensitivity analysis on 

𝐵0 shown in Figure 19 verifies that this condition is satisfied for 𝑅 = 2%, I = 5%. 

This condition is also true for the other set of parameters (𝐼 = 𝑅 = 2%). 

 
Figure 19 Verifying the correctness of the condition required for the SSD algorithm for the Parking garage 

example and R=2% 

Note that due to the trinomial lattice framework used for modeling the uncertainty in 

demand (profit), the number of scenarios exponentially increases by increasing the time 

steps (Stages). 
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Solving the problem for each scenario independently as a deterministic problem is very 

time consuming. While the average running time for each scenario is 0.3 seconds, due 

to having approximately 4.78e6 scenarios, the total time for solving all scenarios would 

be roughly 400 hours. By keeping this in mind, we use the SSD algorithm to find the 

optimal here and not decision variable’s value for all the scenarios. 

For the case that the inputs are, 𝐵0 = 6,000, 𝐼 = 5%, and 𝑅 = 2%, the number of 

scenarios remaining based on time executed is depicted in Figure 22. As it is illustrated, 

the 𝑢𝑏 value for all scenarios is solved or found in 2 hours and 6 minutes and 19,334. 

Simply running the algorithm for 30 minutes reduces the number of remaining 

scenarios to 340,418, according to Figure 23.  

Even in the best scenario, the maximum value for 𝑢𝑏 was 2 as it is shown in Figure 20. 

The most common value for 𝑢𝑏 is 2. As illustrated in Figure 21, most of the 𝑢𝑏 values 

are deleted and very few of them are solved. In fact, based on Table 14, on average, for 

each scenario solved, at least 100 scenarios were deleted. For each scenario with 𝑢𝑏 =

2 solved, on average 1431 scenarios with 𝑢𝑏 = 2 were deleted! 
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Figure 20 Pie-chart of frequency of ub values for 6000-02-05 

 
Figure 21 Number of scenarios deleted and solved (6000-02-05) 

Table 14 ratio of scenarios deleted over solved for different ub values (6000-02-05) 

ub deleted/solved 

ub=0 229.49 
ub=1 102.18 

ub=2 1431.84 
 

Supposedly 𝑢𝑏 could be 6 under different environmental input parameters. To illustrate 

the performance of the model in those cases, we run the SSD algorithm for the other 
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set of input parameters. This set of parameters are 𝐵0 = 10000, 𝐼 = 2%, 𝑅 = 2%. 

Under this new setting, the maximum value for 𝑢𝑏 is 6 in the good scenarios. 

 
Figure 22 Remaining number of scenarios vs time (hr) for B0=6000, I=5%, R=2% 

 
Figure 23 Remaining number of scenarios based on (guessing algorithm ran for 30 minutes) for B0=6000, I=5%, 

R=2% 

 

Figure 24 and Figure 25 illustrate how the number of scenarios decrease as time 

proceeds for the case that the input parameters are 𝐵0 = 10000, 𝐼 = 2%,𝑅 = 2%. For 

these inputs, the value for all scenarios are found after approximately 32.83 hours and 



 

 

88 

 

281,283 iterations. This is still a lot (approx. 91.8%) less than the 400 hours needed to 

solve all the 4.78e6 scenarios. The number of remaining scenarios after 30 minutes of 

execution of the algorithm is: 3,318,770. This decrease in the rate of solving/finding all 

scenarios in comparison to the 𝐵0 = 6,000, 𝐼 = 5%, 𝑎𝑛𝑑 𝑅 = 2% case is due to more 

possible outcomes for the 𝑢𝑏 variable in this case and also due to fewer number of 

scenarios deleted per iteration. The average running time per iteration is higher in the 

second case (0.42 secs vs 0.39 secs). This increase in running time per iteration is due 

to the additional searches needed to find compatible scenarios. 

 
Figure 24 Remaining number of scenarios vs time (hrs) – B0=10000, R=2%, I=2% 
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Figure 25 Remaining number of scenarios vs time (first 30 mins)- B0=10000, R=2%, I=2% 

The percentage of scenarios with different 𝑢𝑏 values for B0=10,000, R=2%, and I=2% 

can be viewed in Figure 26. Based on this, the most common 𝑢𝑏 is 𝑢𝑏 = 2 with 𝑢𝑏 =

3 and 𝑢𝑏 = 4 trailing it. 𝑢𝑏 = 4 is the optimal here and the now decision value for 

about 21% of all the scenarios. One could therefore decide to build the infrastructure 

for up to 4 phases if the cost of that is not a lot so that in the future if any of those 21% 

of the scenarios happen, they would gain the most. However, if the stakeholders are 

only interested in the most common size of infrastructure, they should invest in the 

infrastructure required for 2 phases. 



 

 

90 

 

 
Figure 26 Pie-chart of frequency of ub values for 10000-02-02 

 
Figure 27 Number of scenarios deleted and solved (10000-02-02) 

Table 15 ratio of scenarios deleted over solved for different ub values (10000-02-02) 

ub deleted/solved 

ub=0 81.50 
ub=1 8.71 

ub=2 18.62 
ub=3 11.38 
ub=4 27.09 
ub=5 11.87 
ub=6 78.04 

3%
7%

38%

28%

21%

2% 1%

ub frequency for 10000-02-02

ub=0

ub=1

ub=2

ub=3

ub=4

ub=5

ub=6

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

ub=0 ub=1 ub=2 ub=3 ub=4 ub=5 ub=6

FR
EQ

U
EN

C
Y

# of scenarios deleted and solved (10000-02-02)

deleted

solved



 

 

91 

 

Figure 27 and Table 15 illustrate the ratio of number scenarios deleted over number of 

scenarios solved for each possible value of the here and now decision variable. As it 

can be seen, again, most of the largest ratios are for the maximum and minimum value 

of the here and now decision variables. 

4.7.2 Solving the parking SSPP problem using simulation 

For the parking planning stochastic problem, since we have 314 scenarios, we cannot 

solve the stochastic optimization problem efficiently. However since the possible 

outcomes for the here and now decision are limited to 7 cases, we can find a good 

approximate solution to the here and now variable using the proposed approach. Before 

proceeding with the algorithm, we can easily find the final expected objective function 

value for the case in which 𝑢𝑏 = 0. The optimal objective function value for this case 

is equal to 𝐵0 as we will not be doing any investments and therefore the NPV will not 

change. We are then left with 6 remaining policies. Before proceeding with running the 

simulation for all possible policies, we perform a sensitivity analysis on the number of 

iterations to visually identify the competing policies. Table 16 summarizes the estimate 

of the bound on the objective function value for each policy under certain number of 

iterations for simulation. The parameters used for the problem are: 𝐵0 = 10,000 and 

risk free interest rate and inflation rate of 2%. The highlighted cells mark the highest 

bound on the objective function value. As it can be seen, it seems that policies 4 and 5 

are competing and the best policy is always among these two. 

Table 16 Preliminary analysis for identifying competing policies 

# simulations 

per ub 
ub = 1 ub = 2 ub = 3 ub = 4 ub = 5 ub = 6 
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500 10213.1 12034.23 13477.8 14030.38 14003.16 13924.37 

1000 10213.1 12035.17 13495.39 13987.5 14010.25 13959.66 

5000 10213.04 12039.68 13448.54 14017.93 13949.38 13911.69 

10000 10213.06 12042.3 13466.07 13968.63 13925.26 13909.88 

 

For this case, initially, to estimate the variance and average and to find the number of 

iterations needed per simulation run, we simulate each policy using an initial guess of 

500 iterations. Table 17 summarizes the outcomes for the case in which we start with 

initial budget of 𝐵0 = 10,000 and risk free interest rate and inflation rate of 2% for 

policies 4 and 5. Note that the difference in the bound on the objective function value 

of policies 4 and 5 and the same number of iterations between Table 16 and Table 17 

is due to different random seeds. 

 
Table 17 Outcome of 500 iterations for B0=10,000 - I=2%, R=2% 

Policy 
Policy 4: 

ub=4  
Policy 5: 

ub=5  

Avg. O.F 14060.72 13759.65 

Variance 2.31E+06 2.05E+06 
 

If we accept a margin of error of 20, with a confidence coefficient of 0.935, the number 

of iterations needed is: 

 max {
1.5142 × 2313306.68

202
,
1.5142 × 2046324.99

202
}

= max{13256.38, 11726.44} = 13,257 

Based on the above calculation, perform the simulation runs with ≈13,500 iterations 

per run. We want to use simulation to see which one of the policies 4 or 5 are better. 
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So we are interested in the difference between the bounds on the objective function 

values that are the outcomes of each simulation run. 

We start off with 2 simulation runs per policy and perform a t-test for the difference 

between the two policies. The difference is not meaningful and we keep on adding new 

runs to decrease the standard error and therefore make the differences meaningful. We 

stop at 12 simulation runs because the difference is meaningful and also the lower 

bound of the difference is approximately equal to 2 times the accepted error used for 

finding the number of iterations needed per run, 20. The summary of the results and 

calculations are provided in Table 18. From Table 18, we can say that the difference in 

bounds on the objective function value between policy 4 and 5 is within the following 

range: 

(�̅�4 − �̅�5) − 𝑡0.05,   𝜈 × 𝑆. 𝐸. ( �̅�4 − �̅�5) ≤ 𝐹4 − 𝐹5

≤  (�̅�4 − �̅�5) + 𝑡0.05,   𝜈 × 𝑆. 𝐸. ( �̅�4 − �̅�5) 

39.87302 ≤ 𝐹4 − 𝐹5 ≤ 58.89203 

Table 18 Summary of simulation runs and t-test for policies 4 and 5 

Simulation Run 
# 

Avg. obj. func. Val. Variance 

Policy 4 Policy 5 Policy 4 Policy 5 

1 13990.18972 13954.7378 2121269 2176838 
2 13990.28721 13945.57042 2096654 2241521 

3 13999.90093 13955.14194 2095595 2201416 
4 14015.0007 13923.48089 2103278 2205163 
5 14001.22141 13953.46931 2093618 2196729 
6 13996.39225 13945.92813 2122183 2185678 
7 13974.10661 13963.34725 2080020 2191451 
8 13991.85706 13946.82828 2156072 2217405 
9 14003.82788 13935.93889 2106939 2223724 
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10 14021.29753 13957.63289 2099822 2226776 

11 13993.86869 13954.15718 2087012 2227678 
12 13990.17502 13939.30168 2112367 2207908 

Analysis Equation 

Avg of all runs 13997.34375 13947.96122 �̅� =
∑ 𝐹𝑖𝑖∈1..12

12
  

Variance of all 
runs 140.3822104 110.5356856  𝜎2 

        

Difference in 
Avg. of p4-p5 49.38252819  �̅�4 − �̅�5 

Standard Error 4.572726175  𝑆. 𝐸. = √𝜎4
2

12
+

𝜎5
2

12
 

Degree of 
freedom 21.69306586 

𝜈 =

(

 
 
 
 

(
𝜎4

2

12
+

𝜎5
2

12
)

2

[
 
 
 
 (

𝜎4
2

12
)

2

11

]
 
 
 
 

+

[
 
 
 
 (

𝜎5
2

12
)

2

11

]
 
 
 
 

)

 
 
 
 

  

2 t-test critical 
value for 95% 

confidence 2.079613845  𝑇−1(0.05, 𝜈) 
 

So we can approximately say that policy 4 is better than policy 5 with an overall 

confidence coefficient no worse than: 

1 − (𝑃(𝐴) + 𝑃(𝐵)) = 1 − 0.065 − 0.050 = 0.885 

The running time per each run depends on the number of iterations.  
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Figure 28 Running time per run v.s. number of iterations 

Using the equation from fitting a 1d line to the data as show in Figure 28, we can 

calculate the expected time for each run for each policy with 13,500 iterations to be 

about 30 minutes: 

𝑡 = 0.00206 × (13500) + 0.41295 ≈ 28.22 𝑚𝑖𝑛𝑠 

Based on this, tabulating Table 18 that has 2 policies and 12 runs, requires 

approximately 11 hours and 17 minutes. Via extrapolation, we can see for running 12 

simulation runs for all 6 policies, a total of 33 hours and 52 minutes would have been 

required. This is a lot of time for an overall confidence of no more than 90%. 
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However, as mentioned earlier, CRN can potentially yield to a better comparison with 

higher confidence. The results for one run of the simulation via CRN is summarized in 

Table 19. 

 
Table 19 Results for CRN simulation (B0=10000, I=R=2%) 

run # 
Avg. Obj. func. Value 

differences 
running 

time 
(mins) 

ub =4 ub = 5 

1 13997.56301 13953.52996 44.03305 57.3207 

2 13994.05845 13948.48336 45.57509 58.3452 
3 14015.35577 13970.48748 44.86829 58.568 

Analysis 

Avg of difference 44.825   
STD of difference 0.772   

Degree of freedom 2   
2 t-test critical value for 99% 

confidence 9.925   
 

Based on results from Table 19, we can see that the difference between policies 4 and 

5, falls within the range expressed below with 99% confidence: 

44.825 − 9.925 ×
0.772

√3
≤ �̅� − �̅� ≤ 44.825 + 9.925 ×

0.772

√3
 

40.401 ≤ �̅� − �̅� ≤ 49.249 

Note that the overall confidence here is at least 1-(0.01 + 0.065) that equals 92.5 %. 

This confidence is achieved in less than 3 hours and with a lot fewer simulation runs. 

The results are however, consistent as policy 4 is the best for both simulation cases 

(with and without CRN). 
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Chapter 5:  Deterministic Multi-project Phased-investment 

Optimization 
 
In this chapter of the dissertation, we take the deterministic single-project phased-

investment problem of chapter 3 and extend it to a multi-project setting. In the case of 

having a portfolio of projects, one of the most important driving factors influencing the 

investment decision making is the availability of funds. In the presence of more funds, 

the decision makers can more easily disaggregate the pool of projects into separate 

individual projects that could be treated individually. However, in the more realistic 

case, under limited funds, the amount of investment in a project greatly affects the 

availability of funds for future projects. Once some funds are invested in a project, the 

available budget is decreased by the amount of investment. However, the budget will 

begin to increase upon arrival of revenues resulted from the investments. 

Some of the different attributes can make a project become favorable are listed below: 

 Certainty of the outcomes: as the certainty increases, we can be sure about 

the availability of the funds in future and can make rigorous decisions. 

 Profitability: the amount (or expected amount) that a project can generate 

profit greatly affects its favorability. 

 Revenue collecting period: the period (or time periods) that we receive the 

revenue from the investment is also very important. Generally, the sooner we 

start receiving revenue, the better the project is. The available funds increase 

by depositing the revenue received. This opens the opportunity for better 

investments at and after the time of receiving the revenue(s). In addition, 
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faster returning projects, accelerate the time at which the investment breaks 

even and starts to be profitable. 

5.1 Introduction and Literature review for Multi-project optimization 

The overall goal for the Deterministic Multi-project Phased-investment Problem 

(DMPP) is to assist managers in making a simultaneous project selection and 

scheduling decision. We categorize the studies into different classes. The first class is 

the general project selection and portfolio optimization class. Another class of research 

is the research that considers interdependencies among projects in the project selection 

problem. Another class is the class of project scheduling problems. The intersection of 

selection and scheduling is another area studied. Finally, the most similar class to this 

study is the project selection and scheduling with interdependencies among projects. 

The remaining of this section, looks at the problems in each of these classes in more 

detail. 

5.1.1 Project selection and portfolio optimization 

In the presence of more than one candidate project, the main problem that concerns 

management is the selection of a few projects from a pool of existing projects. This 

problem is known as the project selection problem. While the project selection problem 

with one main constraint is small modification to the knapsack problem, many variants 

of the project selection problem are widely studied in the literature. Usually these 

variants are either combining the project selection problem with other problems such 

as scheduling or markup estimation (Shafahi & Haghani, 2014). Or, they are modifying 

the objective function or modeling the problem as a multi-objective optimization 
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problem (Shafahi, 2012). In the latter case, the problem is usually rebranded as 

“portfolio optimization”. For a relative recent survey on portfolio optimization please 

read (Mansini, et al., 2014).  

 One of the approaches taken in portfolio optimization and in the presence of multiple 

objectives is building a single objective based on the priorities and weights of each of 

the objectives. In this case, by taking a weighted average of each objective, we are left 

with a single objective and hence can thereon treat the problem as project selection 

problem with a new hybrid objective. Many of the studies in project portfolio selection 

focus on the multi-criteria optimization aspect and utilize qualitative methods such as 

AHP, weighting methods, and ranking methods. For the purposes of this study, we 

direct our attention to cases with one objective keeping in mind that we can transform 

a multi-objective problem (a portfolio problem) into a single objective problem using 

the mentioned weighted average method. There are many methods for modeling the 

project selection problem. Two of which are goal programming  (Badri, et al., 2001), 

and mathematical modeling (integer programming). 

5.1.2 Project selection with interdependencies among projects 

In the realm of project selection, a majority of the problems assume that the projects 

have minimum or zero interactions on each-other. Even-though this is the case for some 

projects, most projects somehow affect other projects that at least fall within the same 

category. The interdependencies and interactions among projects mainly fall into three 

different categories, namely: benefit, cost, and outcome. The benefit category refers to 

an increase in profit of a given project as a result of doing another project which is 

related (dependent) to that project. The Outcome category refers to the increase in the 
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probability of success for a given project if an earlier project which is in the same 

category is completed. Finally, the cost category refers to the decrease in costs and all 

other resources which a given project is consuming if an earlier project of that kind is 

completed (Shafahi & Haghani, 2013). 

 

These interdependencies among projects have been addressed in previous researches 

(Killen & Kjaer, 2012) (Liesiö, et al., 2008) (Bhattacharyya, et al., 2011) (Dickinson, 

et al., 2001).  

The project selection and decision making problems which consider interdependencies 

have been dealt with using different solution techniques. Some have used goal 

programming (Santhanam & Kyparisis., 1996)  (Lee & Kim, 2000) (Lee & Kim, 2001). 

Others have approached the problem with linear programming, branch and bound, or 

using heuristic approaches (Iniestra & Gutierrez, 2009) (Schmidt, 1993) (Carazo, et al., 

2010) . Constraint Programming is also another approach used for solving problems of 

this type (Liu & Wang, 2011). 

5.1.3 Project scheduling 

As mentioned before, some problems related to project selection are hybrid problems 

that mix project selection with other famous problems. One of the most studied 

problems is project scheduling. Scheduling is the profession of finding “appropriate” 

times for execution of projects or activities. For a survey on deterministic project 

scheduling, we refer the interested reader to (Kolisch & Padman, 2001). The integration 

of project scheduling and project selection is very important since once we have 

selected a project we should also determine its schedule. (Chassiakos & Sakellar, 2005) 
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Perform time-cost analysis of construction projects, formulate the problem using 

integer programming, and present an approximation solution method that solves the 

model by decreasing the number of integer variables and constraints. Their study 

focuses on a single project. (Icmeli, et al., 1993) conduct a survey of different problems 

that are related to scheduling. 

If the scheduling is affected by the constraints enforced by the limitations of funds and 

other resources, the scheduling problem is known as a “Resource-constrained Project 

Scheduling Problem” (RCPSP). RCPSP is an NP-hard problem and hence many 

researches have focused on developing heuristics and solution algorithms. (Chen, et al., 

2010) use ant-colony to solve the RCPSP. (Chan, et al., 1996) model a construction 

scheduling project as a RCSP and use genetic algorithms to solve it. GA is a very 

popular meta-heuristic for solving these classes of problems. (Gonçalves, et al., 2008) 

also use GA to solve the RCPSP problem when we have more than one project. (Kim 

& Ellis Jr, 2008) use GA with elitism to solve the scheduling problem for single 

projects. They assume that problem with more than 60 activities are considered large. 

(Brucker, et al., 1998) and (Dorndorf, et al., 2000) solve the RCPSP problem using a 

branch and bound procedure. (Zhang, et al., 2006) use Particle Swarm Optimization 

(PSO) for solving RCPSP with the objective of minimizing duration and compare the 

performance of PSO with GA. (Hartmann & Kolisch, 2000)  and (Kolisch & Hartmann, 

2006) compare some of the different heuristics that are being used for solving the 

resource constraint scheduling problem. The resource constraint scheduling problem 

has many variations, some of which can be found in (Hartmann & Briskorn, 2010).  
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Another famous scheduling problem studied, especially in computer science is job shop 

scheduling. The focus of this problem is scheduling the jobs and assigning them to the 

machines that can execute them. Most of the Job Shop Scheduling problems assume 

that all jobs have to be executed. In other words, there is no selection of the jobs. 

5.1.4 Intersection of selection and scheduling 

In contrast to the amount of research available about project selection, and project 

scheduling, very few research focus on the intersection of these two problems (Carazo, 

et al., 2010) (Sun & Ma, 2005). Many of the studies are dedicated to developing 

different solution algorithms since each problem by itself is complex and thus the 

intersection would be even more complex. Some example studies are: (Coffin & 

TAYLOR III, 1996) that use filtered beam search heuristic to solve the problem.  

5.1.5 Project selection and scheduling with interdependencies among projects 

In the subject of the mixture of project scheduling and selection, yet very few studies 

exist that in addition to modeling these two problems simultaneously, consider some 

interdependencies among projects as well.  

In (Tao & Schonfeld, 2006) and (Tao & Schonfeld, 2007), the authors consider the 

problem of scheduling and selection of interdependent transportation projects. They 

capture interdependencies beyond more than just pairwise dependence between 

projects. They develop an island model for solving the problem. Island models are 

variants of the traditional GA models that generally achieve better results in 

comparison to traditional GAs. In another study by (Shayanfar, et al., 2016), the authors 

try to prioritize the projects and compare three different metaheuristics, namely GA, 
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SA, and TS and conclude that for their application of scheduling and selection with 

interdependencies, GA yields the most consistent solutions. 

In (Zuluaga, et al., 2007)  a MIP formulation for the selection and scheduling problem 

is presented that includes three types of interdependencies among projects: resource, 

technical, and benefit. The authors also include scheduling relationships. In their 

example they have a project with negative NPV that after running their model it is not 

included! This could have been prevented by preprocessing! 

In (Ballou & Tayi, 1996) a framework for facilitating software maintenance projects 

and their staffing is provided. Initially, the selection process is modeled as an IP and 

afterwards, for the selected projects, staffs are assigned based on a transportation 

algorithm. 

(Tofighian & Naderi, 2015) use ant-colony to solve the integrated selection and 

scheduling problem. They consider two objectives: maximizing benefit and minimizing 

the maximum level of required resources. The only type of interdependency they model 

is mutual exclusiveness. Their study lacks re-investment strategies.  

The study by (Jafarzadeh, et al., 2015) has re-investment strategies such that the profit 

yielded from completing projects can be invested for implementing other projects. The 

planning horizon in their study is flexible and one objective of their study is to find the 

best time horizon. Although they consider re-investments they do not model 

interdependencies among projects and assume that each project is independent. They 

model the problem as an MIP and find commercial solvers sufficient enough for solving 

their proposed problem. Another study that allows for re-investment is (Belenky, 
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2012). In one of the generalized cases in the study, scheduling interdependence and 

priorities are considered. 

(Carazo, et al., 2010) allow transfer of unused funds between the current and next time 

period within their modeling. They consider existing synergies among projects when 

they are done at the same time. Their MIP model is non-linear and hence they solve the 

model using a two-step method. In the first step, Tabu search is done and in the second 

step scatter search is done. 

There are also some studies which model the integrated project selection and 

scheduling problem as an uncertain problem. (Huang & Zhao, 2014) present a study in 

which uncertainty is added to the integrated project selection and scheduling problem. 

Apart from the scheduling restrictions and dependency of the projects, they assume 

projects are independent. To solve the problem, GA is used. This research introduces 

the flexibility in project start times. Each project can start anytime within its certain 

time-frame. (Sefair & Medaglia, 2005) also incorporate uncertainty into their modeling 

and have minimal interdependencies among projects. They simultaneously maximize 

the NPV of their portfolio and minimize the variance to minimize risk. The MIP model 

is solved using commercial solvers. Fuzzy logic has also been used as a means for 

modeling the uncertainties  (Coffin & Taylor, 1996). 

To the best of the knowledge of the author, no study exists that models the integrated 

project selection and scheduling for a pool of projects that themselves can be broken 

down into sequential phases. This study aims to fill this gap by expanding the single 

project deterministic model into a model that can handle the optimization of a pool of 
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phased projects. The traditional models for selection and scheduling are special cases 

of our model in which all of the projects are single phase projects. 

Some of the other contributions of the DMPP introduced in this dissertation is listed 

below: 

 Developing a mathematical model that assists managers in making selection 

and scheduling decisions for cases that some or all of the projects are made up 

from smaller sequential phases. In addition to considering the following facts: 

o Time and cost interrelationships among phases. 

o Transfer of available funds between time periods. 

o Ability to abandon a project prior to the end of its duration. 

o Ability to start investment into a project within a time-frame. 

 Presenting a preprocessing step that can reduce the number of variables and 

constraints without any compromises in terms of the objective function value. 

 Developing a heuristic to solve the problem. 

5.2 MIP model for Deterministic Multi-project Phased-investment Problem (DMPP) 

We present a deterministic MIP model that can assist managers in identifying which 

projects to invest in and for the selected projects, which phases to invest in and when. 

In the presented MIP model, we allow the stakeholders to abandon the project when 

the profits do not cover the costs. 

The input parameters for this problem are categorized into environmental parameters 

and project parameters. The environmental parameters are those which are common 

for all projects. Each project by itself has many attributes associated with it. Some 
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examples are: duration of project, the time frame in which we can start the project 

within, the costs for its infrastructure and phases, and etc. The parameters are 

aggregated in Table 20. 

Table 20 Parameters for deterministic multiple phased investment project optimization 

Environmental Parameters 

𝐵0 Initial budget available at t=0 

𝑅 Risk free interest rate 

𝐼 Annual inflation rate 

𝑇 Planning time period 

𝑡𝑖𝑚𝑒𝑠 Set of times = {0,1,…,T} 

𝑀𝑇  Big-M used in constraints = (2 × 𝑇 + 1) 

Project Related Parameters 

𝑈𝐵𝑘 The upperbound on the number of 
phases associated with project 𝑘 

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑇𝑘 The first time in which project 𝑘 is 
available for investment (The soonest 
that we can start the preparation of the 
infrastructure) 

𝐿𝑎𝑡𝑒𝑠𝑡𝑇𝑘 The latest time that we can start the 
preparation of the infrastructure 
required for project 𝑘 

𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑘 The maximum duration that project 𝑘 
can be ongoing 

𝑃𝑘,𝑖,𝑡 Profit gained from first 𝑖 phases of 
project 𝑘 at time 𝑡 (@ AvailableT) 

𝐼𝑇𝑘,𝑢𝑏 Preparation (construction) time for 
infrastructure of project 𝑘 for 𝑢𝑏 phases  

𝐼𝐶𝑂𝑆𝑇𝑘,𝑢𝑏 Preparation (construction) cost for 
infrastructure of project 𝑘 for 𝑢𝑏 phases 
(@ AvailableT) 

𝑃𝑇𝑘,𝑖,𝑗 Duration required for implementation 
of each phase 𝑖 − 𝑗 when phases 𝑖 − 𝑗 
are implemented together for project 𝑘 

𝑃𝐶𝑂𝑆𝑇𝑘,𝑖,𝑗 Construction cost of each phases 
between 𝑖, 𝑗 for project 𝑘 if phases 𝑖 − 𝑗 
are being done together based on the 
money of the first time the project is 
available (@ AvailableT) 

𝑂𝐶𝑃𝐴𝑘,𝑖,𝑡 Operation cost at time 𝑡 for project  𝑘 
when number of phases that have 
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already been implemented or are being 
implemented at time 𝑡 is 𝑖 (@ 
AvailableT) 

𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑠 Set of projects 

𝑝ℎ𝑎𝑠𝑒𝑠 Set of phases = {1,…, max(𝑈𝐵𝑘)} 
 

The variables used are summarized in Table 21. 

 

Table 21 Variables for deterministic Multi project Phased investment model 

Variables 

𝑢𝑏𝑘 Number of phases of project 𝑘 selected 
for implementation 

Variables regarding infrastructure 

𝑖𝑠𝑡𝑘 The actual time in which we start 
investing in the infrastructure needed 
for project 𝑘 

𝑖𝑡𝑘 Construction duration for infrastructure 
of project 𝑘 based on actual number of 
phases to be implemented 

𝑐𝑜𝑠𝑡𝑢𝑏𝑘  Construction cost for the infrastructure 
required for implementing 𝑢𝑏 phases of 
project 𝑘 

𝑡𝑐𝑜𝑠𝑡𝑢𝑏𝑘,𝑡 A variable that equals 𝑐𝑜𝑠𝑡𝑢𝑏𝑘  at time 
𝑖𝑠𝑡𝑘 

Variables regarding phases 

𝑥𝑘,𝑖,𝑗
𝑡  Binary variable that equals 1 if phases 𝑖 

through 𝑗 of project 𝑘 start their 
implementation at time 𝑡 

Variables regarding projects 
𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑𝑘,𝑡 Binary variable that equals 1 if project 𝑘 

is ended at time 𝑡 (we have exceeded its 
duration) 

𝑠𝑢𝑠𝑝𝑒𝑛𝑑𝑘,𝑡 Binary variable that equals 1 if we 
abandon project 𝑘 at time 𝑡 

𝑛𝑘,𝑡 Number of phases that have already 
been implemented or are being 
implemented at time 𝑡 for project 𝑘 

Other main variables 

𝑏𝑡 Available budget at the beginning of 
each time 𝑡 

Variables used for linearization 
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𝑐𝑛𝑘,𝑖,𝑡 Binary representation of number of 
phases that have already been 
implemented or are being implemented 
at time t for linearization for project 𝑘 

𝑛𝑐𝑘,𝑖 Binary variable for linearization of 
infrastructure cost for project 𝑘 

𝑖𝑛𝑑𝑖𝑐𝑡𝑘,𝑡 Binary variable that equals 1 if project 𝑘 
is starts at time 𝑡 (used for binary 
representation of 𝑖𝑠𝑡𝑘) 

 

The objective function is maximizing the NPV of the available budget at the 

beginning of time T plus the future costs and revenues afterwards from all projects 

where the profits and costs are subject to inflation and interest rates. It is expressed in 

(5-1) 

max 𝑧 =
𝑏𝑇+∑ ∑ 𝑃𝑘,𝑖,𝑇×𝑐𝑛𝑘,𝑖,𝑇×(1+𝑅)𝑇−𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑇𝑘𝑖𝑘

(1+𝑅)𝑇
−

∑ (∑ ∑ (𝑗−𝑖+1)×𝑥𝑘,𝑖,𝑗
𝑡 ×𝑃𝐶𝑂𝑆𝑇𝑘,𝑖,𝑗𝑗𝑖 +∑ 𝑂𝐶𝑃𝐴𝑘,𝑖,𝑇×𝑐𝑛𝑘,𝑖,𝑇𝑖 )𝑘 ×(1+𝐼)𝑇−𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑇𝑘

(1+𝑅)𝑇
 (5-1) 

For each project, the constraints of the problem are categorized into infrastructural 

constraints, phase constraints, and scheduling constraints. The budgetary constraints 

are common. The infrastructural constraints for the projects are listed below: 

𝑛𝑘,𝑡 ≤ 𝑢𝑏𝑘          ∀𝑘, 𝑡 (5-2) 

𝑐𝑜𝑠𝑡𝑢𝑏𝑘 = ∑ 𝐼𝐶𝑂𝑆𝑇𝑘,𝑖 × 𝑛𝑐𝑘,𝑖𝑖          ∀𝑘 (5-3) 

𝑖𝑡𝑘,𝑢𝑏 = ∑ 𝐼𝑇𝑘,𝑖 × 𝑛𝑐𝑘,𝑖𝑖         ∀𝑘 (5-4) 

𝑢𝑏𝑘 = ∑ 𝑖 × 𝑛𝑐𝑘,𝑖𝑖          ∀𝑘 (5-5) 

∑ 𝑛𝑐𝑘,𝑖𝑖 ≤ 1          ∀𝑘 (5-6) 
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𝑢𝑏𝑘 ≤ 𝑈𝐵𝑘         ∀𝑘 (5-7) 

𝑖𝑠𝑡𝑘 = ∑ 𝑡 × 𝑖𝑛𝑑𝑖𝑐𝑡𝑘,𝑡𝑡         ∀𝑘 (5-8) 

∑ 𝑖𝑛𝑑𝑖𝑐𝑡𝑘,𝑡𝑡 = 1       ∀𝑘 (5-9) 

𝑡𝑐𝑜𝑠𝑡𝑢𝑏𝑘,𝑡 ≥ 𝑐𝑜𝑠𝑡𝑢𝑏𝑘 − 𝑀𝑇 × (𝐶𝑂𝑆𝑇𝑈𝐵𝑘,𝑈𝐵𝑘
+ 1) × (1 − 𝑖𝑛𝑑𝑖𝑐𝑡𝑘,𝑡)      ∀𝑘, 𝑡 ≥

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑇𝑘 (5-10) 

Constraints (5-2) limit the total number of phases that are implemented for each project 

at each time to the maximum invested infrastructure. Constraints (5-3) and (5-4) are for 

calculating the infrastructure cost and install duration for each project. For them being 

linear, we need to express the number of phases selected for implementation, 𝑢𝑏𝑘, using 

binary variables. This is done using constraints (5-5) and (5-6). Constraints (5-7) limit 

the size of the infrastructure. Constrains (5-8) and (5-9) are also for constructing the 

binary representation of 𝑖𝑠𝑡𝑘. Constraints (5-10) assure that 𝑡𝑐𝑜𝑠𝑡𝑢𝑏𝑘,𝑡 = 𝑐𝑜𝑠𝑡𝑢𝑏𝑘 

when 𝑡 = 𝑖𝑠𝑡𝑘. 

Constraints (5-11) – (5-16) are the phase related constraints. 

𝑛𝑘,0 = ∑ ∑ (𝑗 − 𝑖 + 1) × 𝑥𝑘,𝑖,𝑗
0

𝑗𝑖        ∀𝑘 (5-11) 

𝑛𝑘,𝑡 = 𝑛𝑘,𝑡−1 + ∑ ∑ (𝑗 − 𝑖 + 1) × 𝑥𝑘,𝑖,𝑗
𝑡

𝑗≥1𝑖 − 𝑠𝑢𝑠𝑝𝑒𝑛𝑑𝑘,𝑡          ∀𝑘, 𝑡 ≥

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑇𝑘 (5-12) 

𝑛𝑘,𝑡 = ∑ 𝑖 × 𝑐𝑛𝑘,𝑖,𝑡𝑖           ∀𝑘, 𝑡 ≥ 1 |𝑡 ≥ 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑇𝑘 (5-13) 

∑ 𝑐𝑛𝑘,𝑖,𝑡𝑖 ≤ 1        ∀𝑘, 𝑡 ≥ 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑇𝑘 (5-14) 
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∑ 𝑋𝑘,𝑖,𝑗
𝑡

𝑗≥𝑖 ≤ ∑ ∑ 𝑥𝑘,𝑙,𝑖−1
𝑡′

𝑡′≤𝑡  𝑙≤𝑖−1          ∀𝑘, 𝑖 ∈ {2,… , 𝑈𝐵𝑘}, 𝑡 ≥ 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑇𝑘 (5-15) 

∑ ∑ ∑ 𝑥𝑘,𝑖,𝑗
𝑡

𝑗≥𝑙𝑖≤𝑙𝑡 ≤ 1         ∀𝑘, 𝑙 ∈ {1,… , 𝑈𝐵𝑘} (5-16) 

Constraints (5-11) and (5-12) are for calculating the number of phases 

implemented/being implemented at different times for each project. Constraints (5-13) 

and (5-14) are for representing the number of phases that are implemented/are being 

implemented using binary variables so that we would have linear constraints when 

calculating the different costs and times for phases for each project. Constraints (5-15) 

prevent implementation of succeeding phases prior to the implementation of phases 

that are preceding them for each project. Constraints (5-16) prevent the assignment of 

a phase to two different groups of phases for all projects. 

The scheduling constraints (5-17) - (5-23) are presented below: 

𝑖𝑡𝑘 + 𝑖𝑠𝑡𝑘 ≤ ∑ ∑ 𝑡 × 𝑥𝑘,1,𝑗
𝑡

𝑡𝑗 + 𝑀𝑇 × (1 − ∑ ∑ 𝑥𝑘,1,𝑗
𝑡

𝑡𝑗 )        ∀𝑘 (5-17) 

𝑡 × 𝑥𝑘,𝑖,𝑗
𝑡 + (𝑗 − 𝑖 + 1) × 𝑃𝑇𝑖,𝑗 × 𝑥𝑘,𝑖,𝑗

𝑡 ≤ ∑ ∑ 𝑡′ × 𝑥𝑘,𝑗+1,𝑙
𝑡′

𝑡′≥𝑡𝑙≥𝑗+1 + 𝑀𝑇 × (1 −

∑ ∑ 𝑥𝑘,𝑗+1,𝑙
𝑡′

𝑡′≥𝑡𝑙≥𝑗+1 )        ∀𝑘, 𝑖, 𝑗 ∈ {2, … , 𝑈𝐵𝑘} | 𝑗 ≥ 𝑖, 𝑡 (5-18) 

∑ ∑ 𝑥𝑘,𝑖,𝑗
𝑡

𝑗≥𝑖𝑖 ≤ 1         ∀𝑘, 𝑡 ≥ 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑇𝑘 (5-19) 

−𝑀𝑇 × (1 − 𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑𝑘,𝑡) ≥ 𝑖𝑠𝑡𝑘 + 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑘 − 𝑡          ∀𝑘, 𝑡 ≥ 1|𝑡 ≥

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑇𝑘 (5-20) 

𝑇 × (𝑈𝐵𝑘 + 1) × (1 − 𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑𝑘,𝑡) ≥ ∑ 𝑛𝑘,𝑡′𝑡′≥𝑡           ∀𝑘, 𝑡 ≥ 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑇𝑘 (5-21) 
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−𝑀𝑇 × (1 − ∑ ∑ 𝑥𝑘,1,𝑗
𝑡′

𝑡′≥1𝑗 ) − 𝑀𝑇 × 𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑𝑘,𝑡 + 𝑡 + 1 ≤ 𝑖𝑠𝑡𝑘 +

𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑘          ∀𝑘, 𝑡 ≥ 1|𝑡 ≥ 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑇𝑘 (5-22) 

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑇𝑘 ≤ 𝑖𝑠𝑡𝑘 ≤ 𝐿𝑎𝑡𝑒𝑠𝑡𝑇𝑘     ∀𝑘 (5-23) 

Constraints (5-17) assure that for each project, the first group of phases are 

implemented after the infrastructure is completed and successfully implemented. 

Constraints (5-18) ensure that each phase is implemented after the completion of 

implementation of its preceding phases for each project. Constraints (5-19) prevent 

multiple groups of phases to start their implementation together for all projects. 

Constraints (5-20) and (5-22) force a project to be finished whenever the last time in 

which the project could be ongoing is passed. Constraints (5-21) force the number of 

phases ongoing for a project to be zero if the project is finished. Constraints (5-23) 

ensure that each project starts within its allowable range. 

The budgetary constraints (5-24) – (5-27) are expressed in the following: 

𝑏1 = 𝐵0 − (∑ 𝑡𝑐𝑜𝑠𝑡𝑢𝑏𝑘,0𝑘 + ∑ ∑ ∑ (𝑗 − 𝑖 + 1) × 𝑃𝐶𝑂𝑆𝑇𝑘,𝑖,𝑗 × 𝑥𝑘,𝑖,𝑗
0

𝑗≥𝑖𝑖𝑘 +

∑ ∑ 𝑂𝐶𝑃𝐴𝑘,𝑖,0 × 𝑐𝑛𝑘,𝑖,0𝑖𝑘 ) × (1 + 𝑅) + ∑ ∑ 𝑃𝑘,𝑖,0 × 𝑐𝑛𝑘,𝑖,0𝑖𝑘  (5-24) 

𝑏𝑡 = (𝑏𝑡−1 − ∑ (𝑡𝑐𝑜𝑠𝑡𝑢𝑏𝑘,𝑡−1 + ∑ ∑ (𝑗 − 𝑖 + 1) × 𝑃𝐶𝑂𝑆𝑇𝑘,𝑖,𝑗 × 𝑥𝑘,𝑖,𝑗
𝑡−1

𝑗≥𝑖𝑖 +𝑘

∑ 𝑂𝐶𝑃𝐴𝑘,𝑖,𝑡−1 × 𝑐𝑛𝑘,𝑖,𝑡−1𝑖 ) × (1 + 𝐼)𝑡−𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑇𝑘−1) × (1 + 𝑅) + ∑ ∑ 𝑃𝑘,𝑖,𝑡−1 ×𝑖𝑘

𝑐𝑛𝑘,𝑖,𝑡−1 × (1 + 𝑅)𝑡−𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑇𝑘−1          ∀𝑡 ∈ {2,… , 𝑇} (5-25) 

∑ 𝑡𝑐𝑜𝑠𝑡𝑢𝑏𝑘,0 + ∑ ∑ (𝑗 − 𝑖 + 1) × 𝑃𝐶𝑂𝑆𝑇𝑘,𝑖,𝑗 × 𝑥𝑘,𝑖,𝑗
0

𝑗≥𝑖𝑖 + ∑ 𝑂𝐶𝑃𝐴𝑘,𝑖,0 × 𝑐𝑛𝑘,𝑖,0𝑖𝑘 ≤

𝐵0 (5-26) 



 

 

112 

 

∑ 𝑡𝑐𝑜𝑠𝑡𝑢𝑏𝑘,𝑡 + ∑ ∑ (𝑗 − 𝑖 + 1) × 𝑃𝐶𝑂𝑆𝑇𝑘,𝑖,𝑗 × 𝑥𝑘,𝑖,𝑗
𝑡

𝑗≥𝑖𝑖 + ∑ 𝑂𝐶𝑃𝐴𝑘,𝑖,𝑡 × 𝑐𝑛𝑘,𝑖,𝑡𝑖 ×𝑘

(1 + 𝐼)𝑡−𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑇𝑘 ≤ 𝑏𝑡         ∀𝑡 ≥ 1 (5-27) 

Constraints (5-24) and (5-25) are the updates on the available budget at the beginning 

of each time period. The available budget at the beginning of each time period is equal 

to remaining budget from the previous time period in the current period’s value 

(incorporating time value of money) plus the profits earned at the end of the last period 

as a result of implemented phases from all projects in the previous period. Constraints 

(5-26) and (5-27) are the budget limitations during different times. Finally, the variable 

domain constraints are shown in (5-28) and (5-29). 

𝑢𝑏𝑘, 𝑖𝑠𝑡𝑘, 𝑖𝑡𝑘, 𝑐𝑜𝑠𝑡𝑢𝑏𝑘, 𝑡𝑐𝑜𝑠𝑡𝑢𝑏𝑘 , 𝑏𝑡, 𝑛𝑘,𝑡 ≥ 0 (5-28) 

𝑥𝑘,𝑖,𝑗
𝑡 , 𝑐𝑛𝑘,𝑖,𝑡, 𝑛𝑐𝑘,𝑖, 𝑖𝑛𝑑𝑖𝑐𝑡𝑘,𝑡, 𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑𝑘,𝑡, 𝑠𝑢𝑠𝑝𝑒𝑛𝑑𝑘,𝑡 ∈ {0,1} (5-29) 

5.3 Solution methods for the Deterministic Multi-project Phased-investment Problem 

(DMPP) 

To solve this problem fast, we present a heuristic algorithm. Prior to the heuristic 

algorithm, we propose a pre-processing step that can potentially decrease the problem 

size without any loss in the value of the optimal solution. 

5.3.1 Pre-processing step for DMPP 

In order to reduce the running time, we follow the simple pre-processing algorithm 

presented below. This algorithm helps eliminate “non-optimal” phases for each project. 

The main intuition behind the algorithm is that if a project, 𝑝, has 𝑁 potential phases 
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but even in the presence of an enormous amount of funds, no more than 𝑁′ phases of it 

will be executed, we can decrease the potential number of phases from 𝑁 to 𝑁′ (𝑁 →

𝑁′) without much or any loss in the optimal objective function value of the entire 

portfolio of projects. Note that we might be able to come up with pathological examples 

in which we might lose a lot in terms of the objective function value. However, these 

cases rarely, if ever, exist in reality. A pathological example is as follows. Assume we 

have two single phase projects A and B. Project A starts sooner than project B. 

However, it does not end prior to the start time of project B. Also, for simplicity assume 

that there is no flexibility in the start time and end time of either project. A schematic 

of the cash flow time-chart of these two projects can be seen in Figure 29. 

 

 
Figure 29 Pathological example for the downside of the preprocessing algorithm 

In this example, assume that project A by itself is non-profitable under the existing 

interest rate and if executed, it will yield a loss of 𝑁𝑃𝑉𝐴. Therefore it should not be 

selected. However, project B is very profitable and should be selected. The selection of 
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project B will yield an profit of 𝑁𝑃𝑉𝐵. Now assume that the initial budget required for 

project B exceeds the available budget at the start time of project B. Hence, project B 

cannot be executed. This is while, due to the cash flow of project A, if project A is 

executed, by the time we get to the start time of project B, we have gained enough funds 

that the execution of project B becomes feasible. In this example, we accept some loss 

in order to make more profit in the long run. 

Note that this pathological example would not have existed if we were allowed to 

abandon project A prior to its end time. In this case, after the project started to become 

unfavorable, we would have abandoned the project. Since we allow for project 

abandonment, we do not need to worry about such pathological examples. 

5.3.1.1 Pre-processing intuition 

The intuition of this algorithm is to effectively reduce the 𝑈𝐵𝑘 parameter for projects, 

which is the maximum potential number of phases for project 𝑘. This parameter is 

given as an input for each different project. However, by decreasing the value of it, we 

can considerably reduce the number of variables and constraints needed. Note that 

many of the variables such as 𝑛𝑐, 𝑥, 𝑛𝑡 depend on the maximum number of phases of 

the project. 

5.2.1.2 Pre-processing algorithm 

The initialization step of the algorithm is increasing the starting budget, 𝐵0, to a large 

amount. All the other input parameters remain intact. After this step, we iterate over all 

the projects, running the mathematical model (DMPP) for each project individually. 
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For this, we assume that the pool of projects of DMPP only has one project. Once the 

problem is solved, we compare the optimal value for 𝑢𝑏𝑘, 𝑢𝑏𝑘
∗  with the input parameter 

𝑈𝐵𝑘. Two cases might happen: 

o 0 < 𝑢𝑏𝑘
∗ ≤ 𝑈𝐵𝑘: In this case, the project is overall economically feasible 

and we keep this project in the pool of available projects. Although, we 

update its 𝑈𝐵 value to the preprocessed value of 𝑈𝐵, 𝑈𝐵𝑘 = 𝑢𝑏𝑘
∗ .  

o 𝑢𝑏𝑘
∗ = 0: In this case, the project was never economically viable under the 

input parameters. We delete the project from the list of available projects. 

The algorithm is summarized in the flowchart illustrated in Figure 30. 

 
Figure 30 Flowchart for pre-processing 

 

5.3.2 Solution heuristic for DMPP 

We could assume that the optimal solution of the selection problem and scheduling 

problem of DMPP is built by adding projects one by one and limiting their 𝑈𝐵 value 
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in an “optimal” way. We are not aware of this “optimal” sequence and “optimal” way 

of limiting the 𝑈𝐵 values for the projects. Our heuristic however tries to imitate this 

selection and mutation behavior by adding some randomness into the process. So, the 

general idea behind the heuristic is: 1) select a project from the pool of projects; 2) limit 

its 𝑈𝐵 value; 3) try to add the project to the list of projects that are already undertaken 

in previous steps. These general steps are repeated until all projects have been 

considered and no more projects remain in the pool of remaining projects. Each of the 

steps are explained in more detail in the next sub-sections. 

5.3.2.1 Step1 of heuristic- Candidating: Selecting a project from the pool of 

remaining projects for consideration  

In this step, we are interested in picking a project from the pool of available projects. 

For this step, we should have a measure of favorability for each project. This measure 

directly influences the order of selecting projects since we set the probability of 

selecting a project proportional to this measure. Some examples of the measures of 

favorability for the projects are: 

o 𝑃𝑟𝑜𝑓𝑖𝑡𝑘,𝑢𝑏: NPV of profit for each project given its optimal 𝑢𝑏 value from 

preprocessing. This is easily calculated during the preprocessing step. This 

value is equal to the objective function value minus the initial available 

budget that was an input. 
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o 
1

𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑘
: This is based on the fact that as the duration of projects become 

shorter, the investment period shrinks and therefore we can invest the 

funds faster. 

o 
1

𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡𝑘
: This measure favors the projects that require less overall capital. 

o 
𝑃𝑟𝑜𝑓𝑖𝑡𝑘,𝑢𝑏

𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡𝑘
: This measure combines the first and third measures. 

o 
𝑃𝑟𝑜𝑓𝑖𝑡𝑘,𝑢𝑏

𝐿𝑎𝑠𝑡𝐴𝑣𝑇𝑖𝑚𝑒𝑘
: This measure favors projects with higher profits from the pre-

processing step and the ones which have to be selected sooner. 

In the examples solved, we compare the performance of the heuristic when the 

favorability measure is  
𝑃𝑟𝑜𝑓𝑖𝑡𝑘,𝑢𝑏

𝐿𝑎𝑠𝑡𝐴𝑣𝑇𝑖𝑚𝑒𝑘
 , H2, with the heuristic when the favorability 

measure is 𝑃𝑟𝑜𝑓𝑖𝑡𝑘,𝑢𝑏, H1. 

Once this measure for all projects, 𝑀𝑘, is evaluated, we calculate the probability of 

selecting a project using equation (5-30) which is a simple normalization of the 

selection probabilities. 

𝑆𝑒𝑙𝑒𝑐𝑡_𝑃𝑟𝑜𝑏𝑘 =
𝑀𝑘

∑ 𝑀𝑞𝑞∈𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑠
 (5-30) 

After this, a random number 𝑟~𝑈(0,1), is drawn form an uniform distribution between 

0 and 1. Using 𝑟, we select a project, 𝑝𝑠, for the second step of the heuristic. 
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5.3.2.2 Step2 of heuristic- Limitation: Limiting the candidate project’s phases using 

mutation 

In this step, for the selected project that is under consideration at step 1, 𝑝𝑠, we decrease 

its 𝑈𝐵 value, 𝑈𝐵𝑝𝑠 to 𝑈𝐵̅̅ ̅̅
𝑝𝑠 ~ [1, 𝑈𝐵𝑝𝑠] with mutation probability, 𝐿𝑖𝑚𝑖𝑡_𝑃𝑟𝑜𝑏.  

5.3.2.3 Step3 of heuristic- Inclusion/Not inclusion: Deciding whether to include the 

project from step1 and step2 in the solution or not 

In this step, we solve a modified version of DMPP, MOD_DMPP, for 𝑝𝑠 and 𝑈𝐵𝑝𝑠
̅̅ ̅̅ ̅̅ ̅. 

The parameters of MOD_DMPP, is updated every time a project is added to the pool 

of selected projects. More detail on MOD_DMPP can be found in the next section. 

MOD_DMPP attempts to add a project that is given as an input and find the optimal 

scheduling for it based on availability of budgets at different times. The scheduling of 

the project is done optimally by solving the MOD_DMPP model using Xpress or any 

other commercial solvers. 

We decide to accept (pass) the candidate project from step 1 and put it in the list of 

projects that would be executed or reject it based on the outcome of MOD_DMPP. A 

project 𝑝𝑠 is accepted if once the MOD_DMPP is solved we have 𝑢𝑏𝑝𝑠
∗ = 𝑈𝐵𝑝𝑠

̅̅ ̅̅ ̅̅ ̅. This 

means that project 𝑝𝑠 has fulfilled its potential and all of its phases would be 

implemented. Accepting a project is from hereon referred to case a throughout the rest 

of this section. If 𝑢𝑏∗ ≠ 𝑈𝐵𝑝𝑠
̅̅ ̅̅ ̅̅ ̅, two other cases are possible: 

Case b) 0 < 𝑢𝑏𝑝𝑠
∗ < 𝑈𝐵𝑝𝑠

̅̅ ̅̅ ̅̅ ̅: In this situation, we do not accept the project as is. We add 

a mask of the project to the list of available projects with a change in its measure of 
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favorability. Note that the change in the measure of favorability of this project would 

affect the probability of selecting all remaining projects. 

Case c) 𝑢𝑏𝑝𝑠
∗ = 0: in this situation, we are not able to implement any portion of project 

𝑝𝑠 at any time. So, we simply delete the project. 

5.3.2.4 Step4 of heuristic- Removing: Deleting the selected project from step1 and 

returning back to step1 

After step 3, we delete 𝑝𝑠 from the list of remaining projects. In this step, after one 

iteration, either the number of remaining projects have decremented by one or remained 

unchanged. It remains unchanged if in step 3, case b happens. In the other situations, 

the size of remaining projects is lessened by one. While the size of remaining projects 

is greater than 0, we loop and go to step 1. 

Once no more projects remain, one major iteration is finished. We add up the individual 

benefits (differences in the objective function) made when a project was accepted and 

added. The value gained is the final overall profit for this major iteration. We can run 

another major iteration by changing the starting seed and starting off again with all 

projects. 
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Figure 31 Steps 1 and 3 for heuristic for the case which project 3 gets is candidate selected from a list of 4 

remaining projects 

 

Figure 31 gives an illustration of steps 1-3. In this example, we start off step 1 with 4 

projects. And during step 1, we select project 3 to be considered for being accepted. 

Figure 32 depicts 3 complete iterations of one major iteration of the heuristic. Note that 

the remaining pool of projects after an iteration is the pool of projects the next iteration 

starts with. In this example, in iteration 1, project 3 is selected for consideration. It is 

accepted (case a) and removed from the pool of available projects. In iteration 2, project 

2 is chosen for consideration. In it not accepted as-is nor rejected (case b) and therefore 

a mask of the project, project 2’, with modified UBP is added to the pool. In iteration 

3, project 4 is picked for consideration. It is rejected (case c) and removed from the 

pool of available projects. 
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Figure 32 3 example iterations for heuristic 

5.3.2.5 Summary pseudo code of the heuristic 

The gist of one major iteration of the heuristic algorithm is summarized in the following 

pseudo-code: 

 Calculate “favorability measure” for each project. i.e. 𝑀𝑝 for each 

preprocessed project when it is done by itself. 

 Set adjustment parameters for MOD_DMPP equal to 0. 

 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔_𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑠 ← 𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑_𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑠 

 While 𝑠𝑖𝑧𝑒( 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔_𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑠 ) ≥ 1 
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 Calculate the probability of selecting projects: 𝑃𝑝 =
𝑀𝑝

∑ 𝑀𝑝𝑝∈𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔_𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑠
 

 Select a project 𝑝𝑠 randomly using roulette wheel and it’s probability 

of selection. 

 With 𝑃𝐿𝑖𝑚𝑖𝑡 Limit the UB for 𝑝𝑠: 𝑈𝐵𝑝𝑠
̅̅ ̅̅ ̅̅ ̅ = 𝑟𝑎𝑛𝑑𝑖𝑛𝑡(1, 𝑈𝐵𝑝𝑠). If not 

limited: 𝑈𝐵𝑝𝑠
̅̅ ̅̅ ̅̅ ̅ = 𝑈𝐵𝑝𝑠 

 Solve the MOD_DMPP for 𝑝𝑠 with 𝑈𝐵𝑝𝑠
̅̅ ̅̅ ̅̅ ̅ to optimality using Xpress. 

 If 𝑢𝑏∗ = 𝑈𝐵𝑝𝑠
̅̅ ̅̅ ̅̅ ̅ :accept project and update adjustment parameters for 

MOD_DMPP. 

 Else if 𝑢𝑏∗ = 0: the project will be deleted, do not update the 

adjustment parameters. 

 Else: Add a mask of the 𝑝𝑠, 𝑝𝑠′ to 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔_𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑠 with 𝑈𝐵𝑝𝑠′ =

𝑢𝑏∗ and calculate its “favorability measure”, 𝑀𝑝𝑠′ .  

 Remove 𝑝𝑠 from list of remaining projects: 

𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔_𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑠.𝑝𝑜𝑝(𝑝𝑠) 

5.3.2.6 Modified version of DMPP, MOD_DMPP, used in the heuristic for DMPP 

This modified version is for the execution of the heuristic. MOD_DMPP takes in one 

projects’ input and some adjustment input parameters from its previous iterations. 

These input parameters modify the available budget at the beginning of each period. 

They also keep update of the objective function value. So, in total, we have 𝑇 + 1 

budget adjustment input parameters that updated after each iteration of the heuristic if 

the project being considered during that iteration is added to the list of selected projects.  

The constraints for MOD_DMPP are mainly similar to the constraints of DMPP for 

one project. The only constraints that change are constraints (5-26)-(5-28) of DMPP. 

The modified constraints add an adjustment parameter to the RHS of the budget 

limitation constraints. 
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𝑡𝑐𝑜𝑠𝑡𝑢𝑏𝑝𝑠,0 + ∑ ∑ (𝑗 − 𝑖 + 1) × 𝑃𝐶𝑂𝑆𝑇𝑝𝑠,𝑖,𝑗 × 𝑥𝑝𝑠,𝑖,𝑗
0

𝑗≥𝑖𝑖 + ∑ 𝑂𝐶𝑃𝐴𝑝𝑠,𝑖,0 × 𝑐𝑛𝑝𝑠,𝑖,0𝑖 ≤

𝐵0 + 𝑨𝒅𝒋𝒖𝒔𝒕𝒎𝒆𝒏𝒕𝟎 (5-26’) 

𝑡𝑐𝑜𝑠𝑡𝑢𝑏𝑝𝑠,𝑡 + ∑ ∑ (𝑗 − 𝑖 + 1) × 𝑃𝐶𝑂𝑆𝑇𝑝𝑠,𝑖,𝑗 × 𝑥𝑝𝑠,𝑖,𝑗
𝑡

𝑗≥𝑖𝑖 + ∑ 𝑂𝐶𝑃𝐴𝑝𝑠,𝑖,𝑡 × 𝑐𝑛𝑝𝑠,𝑖,𝑡𝑖 ×

(1 + 𝐼)𝑡−𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑇𝑝𝑠 ≤ 𝑏𝑡 + 𝑨𝒅𝒋𝒖𝒔𝒕𝒎𝒆𝒏𝒕𝒕         ∀𝑡 ≥ 1 (5-27’) 

We also relax the domain of 𝑏𝑡 in (5-28) of DMPP and allow it to also take on negative 

values. This is allowed since, we are solving MOD_DMPP for each individual project. 

As a result, even-though the costs for a single project might exceed the initial budget, 

we are covering for that shortage in costs using the Adjustment parameter: 

𝑏𝑡 𝑖𝑠𝑓𝑟𝑒𝑒       ∀𝑡 (5-28”) 

The budget adjustments, Adjustment, are updated once a project passes step 3 of the 

heuristic and is included in the selected projects list. The detailed updates are done 

using (5-31) and (5-32): 

𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡(0) = 𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡(0) − 𝑡𝑐𝑜𝑠𝑡𝑢𝑏0
∗ + ∑ ∑ (𝑗 − 𝑖 + 1) × 𝑃𝐶𝑂𝑆𝑇𝑖,𝑗 ×𝑗𝑖

𝑥𝑖,𝑗
𝑡 ∗ + ∑ 𝑂𝐶𝑃𝐴𝑖,0𝑖 × 𝑐𝑛𝑖,0

∗  (5-31) 
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𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡(𝑡)

= 𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡(𝑡) + 𝑏𝑡
∗

− (𝑡𝑐𝑜𝑠𝑡𝑢𝑏𝑡
∗

+ ∑∑(𝑗 − 𝑖 + 1) × 𝑃𝐶𝑂𝑆𝑇𝑖,𝑗 × 𝑥𝑖,𝑗
𝑡   ∗ + ∑𝑂𝐶𝑃𝐴𝑖,𝑡 × 𝑐𝑛𝑖,𝑡

∗

𝑖𝑗𝑖

)

× (1 + 𝐼)𝑡−𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑇 − 𝐵0 × (1 + 𝑅)𝑡 

 (5-32) 

In (5-31) and (5-32), all variables with an asterisk on top of them are the optimal 

solution of the problem of solving MOD_DMPP for the project at step 3 of the 

heuristic. If the project is not accepted in step 3, the Adjustments do not get updated. 

5.4 Solved Example for the Deterministic Multi-project Phased-investment Problem 

(DMPP) 

In order to illustrate the performance of the Preprocessing Step and the Heuristic, we 

generate two pools of projects. One that is relatively small and can be solved to 

optimality relatively fast using commercial solvers. The other is a large size problem. 

The constant parameters for the generated small size and large size problems are 

summarized in Table 22: 

Table 22 Parameters for generated case examples 

Parameter Name Small Example Large Example 

Number of Projects 5 50 

Time period (T) 10 60 
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Inflation rate, 𝑰 5% 5% 

Risk free interest rate, 𝑹 2% 2% 

Max UB for all projects 8 8 
  

5.4.1 Potential savings from the pre-processing step 

The savings from preprocessing for both the small and large cases can be seen from the 

summarization of the number of variables and constraints before and after 

preprocessing. The numbers reported in Table 23 are based on solving DMPP with 

Xpress. 

Table 23 Number of variables and constraints before and after pre-processing step 

Description Without (W/O) pre-
processing 

With (W) pre-processing 

Large Example 

Number of vars after 
presolving by Xpress 

31,107 10,933 

Number of Constraints 
after presolving by 
Xpress 

23,562 7,829 

Remaining Number of 
Projects 

50 33 

Small Example 

Number of vars after 
presolving by Xpress 

321 273 

Number of Constraints 
after presolving by 
Xpress 

261 236 

Remaining Number of 
Projects 

5 4 

 

As it can be seen, in the large case, the total number of variables and constraints after 

pre-processing is about 66% less than what it is before preprocessing. For the small 

case, the saving is around 13%. Nevertheless, the preprocessing step will never 
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adversely affect the optimal solution and it is relatively fast as it is only solving the 

DMPP problem for just one project at a time. 

5.4.2 The effect of favorability measure in the performance of the heuristic 

In order to verify the performance of the heuristic, we ran the heuristic for the small 

case example using the simplest favorability measure for each project (Profit). Note 

that the Profit for each project by itself could be easily stored while performing the pre-

processing step. After the pre-processing step, only the projects with Profit >0 remain. 

The optimal objective function value for the small case with 𝐵0 = 5000 was 12510.2. 

Using the Profit favorability measure for each project we were rarely able to reach this 

value with mutation probability of 0. This was mainly due to the setup of the small 

case. One of the projects that could have been started at the final time periods required 

a lot of funds. These funds would have become available if the prior projects were done. 

However since the profit of the latest project was relatively high, its favorability was 

high and it rarely was selected as the last project. As a result the project was rejected 

in most iterations due to unavailability of funds during that iteration.  

Inspired by what we had learned, we considered an alternative favorability measure for 

the projects. This favorability was the ratio of Profit/LastAvTime for each project. 

LastAvTime is the LatestT parameter defined in Table 20. The two different 

favorability measures compared are summarized in Table 24. 

Table 24 Two heuristics compared 

Heuristic Name Heuristic 1 (H1) Heuristic 2 (H2) 

Favorability Measure Profit Profit/LastAvTime 
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In order to capture the performance of each heuristic in different situations of 

availability of funds, we considered different levels of initial budget available. The 

different available budget tiers for each one of the small and large projects are 

summarized in Table 25. 

Table 25 Different tiers of available funds for each case 

Case B0 Description 

Small case example 

S-1 10,000 Large availability of funds 
tier 

S-2 5,000 Medium availability of 
funds tier 

S-3 3,200 Small availability of funds 
tier 

Large case example 

L-1 40,000 Large availability of funds 
tier 

L-2 20,000 Medium availability of 
funds tier 

L-3 10,000 Medium to small 
availability of funds tier 

L-4 5,000 Small availability of funds 
tier 

 

We ran the heuristic for mutation probability equal to zero for the small case and 

mutation probability equal to 0.1 for the large case. In the small case, the averages are 

based on 20 iteration of the heuristics and for the large case, the averages are based on 

5 iterations. Figure 33 and Figure 34 illustrate the results for the small and large case 

under different values of B0. As it can be seen, generally when the initial budget is 

relatively large, both heuristics perform more or less the same. The reason is that in this 

case, most projects can be implemented and there is no need to first implement the ones 
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that come sooner to build funds for those which become available later. In smaller 

budget tiers, the order becomes important and heuristic 2 outperforms heuristic 1. 

 
Figure 33 Difference between two heuristics - small case (different values of B0) 

 
Figure 34 Difference between two heuristics - large case (different B0 values) 

Based on these results, we decide to mostly use the second heuristic. 
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5.4.3 The effect of mutation probability – tuning the heuristic parameters 

In order to verify the performance of the heuristic and tune the mutation probability 

parameter required for step 2 of the heuristic, we ran the heuristic for the small case 

example, which we were able to find fast optimal solutions for it. To illustrate the 

dependency on the mutation probability, we ran the second heuristic for the small case 

for various values of mutation probability and various values of initial investment funds 

(B0). For each of this pair of inputs, we ran the heuristic 20 times (20 iterations). The 

average of all these 20 iterations are used as a measure of performance. Figure 35 

illustrates the summary of the results. As it can be seen, on average as we increase the 

mutation probability, the average objective function value decreases. There is only one 

exception to this and that is for B0=10,000. The best performance for the high budget 

tier is with mutation probability 0.2. It is worth noting that the optimal objective 

function value was not found only when the mutation probability was 1. Based on these 

results, we have concluded to use a mutation probability of 0.1 for the large case. 

 
Figure 35 Average objective function value vs mutation probability for different cases of B0 
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5.4.4 The overall performance of pre-processing and heuristics – large case 

The purpose of this section is showing the performance of the pre-processing step and 

the heuristic. To better illustrate the performances, we compare the results from 

different models/methods summarized in Table 26 for each availability of funds tier.  

Table 26 Different methods/models used for illustrating the effects of pre-processing and the heuristics for the 
large case 

Model name 

Solving MADASD using Xpress w/o 
preprocessing (XW) 

Solving MADASD using Xpress w 
preprocessing (XP) 

Solving MADASD using Heuristic 1 
(Favorability measure: Profit) (H1) 

Solving MADASD using Heuristic 2 
(Favorability measure: Profit/LastAvTime) 
(H2) 

 

Figure 36 summarizes the results for 5 different iterations of the heuristics 1 and 2 and 

the results from XPRESS with and without pre-processing when the initial available 

budget (funds) is relatively high (40,000). Each iteration result for the heuristics are 

independent. The Xpress results are also not proven to be optimal as we have stopped 

the run after a minimum of 2 hours. The objective function value illustrated is the best 

solution found by XPRESS within the time limit imposed. As it can be seen, the 

heuristics (H1 and H2) almost always beat XW. However, throughout the five iterations 

shown, H1 only beats XP once. When you take into account the running times, for each 

iteration and the running times of XW and XP, the solutions found using the heuristics 

are very fast good solutions. Based on the stats in Table 27, the average running time 

for the heuristics are approximately 1 minute as opposed to the 5 hours used for finding 

the best solution found for XP and XW. A fairer comparison for H2 was to run the 
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heuristic at least 300 times (approximately 5 hours) and compare the best solution 

among the 500 iterations to the one found from XP (127,453). To verify that H2 can 

beat XP, we ran H2 for more iterations. H2 was able to find a better solution after 5 

more additional iterations. At iteration 10, the solution found by H2 was 129,358. 

 
Figure 36 Performance of different methods for B0=40,000 

Table 27 Average execution time (s) for finding the reported best solution of different methods (B0=40,000) 

Method Avg. Running time (time reported best 
solution found) (secs) 

Xpress without Preprocessing (XW) 18,042.20 

Xpress with Preprocessing (XP) 17,659.49 

Average running time for H1 64.59 

Average running time for H2 56.64 
 

Figure 37, Figure 38, and Figure 39 illustrate the performance (best solutions found) of 

the different methods for different tiers of available budget at time 0, 𝐵0 = 20,000, 

𝐵0 = 10,000, and 𝐵0 = 5,000, respectively. Again, both H1 and H2, beat XP and XW 

at least during one of the 5 iterations of the heuristics.  H2 has its best performances in 

the lowest available budget tier (Figure 39). 

120000

121000

122000

123000

124000

125000

126000

127000

128000

0 1 2 3 4 5 6

O
.F

.

ITERATION

B0=40,000 ; R=2% ; I=5%

W/0 Preprocessing W Preprocessing

Heuristic 1 (Profit) Heuristic 2 (Profit/LastAvTime)



 

 

132 

 

 
Figure 37 Performance of different methods for B0=20,000 

 
Figure 38 Performance of different methods for B0=10,000 
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Figure 39 Performance of different methods for B0=5,000 

The average running time of the iterations and the running time for XP and XW are 

summarized in Table 28. Note that XP and XW are not solved to optimality and the 

solutions reported are the best solutions found at the time stated in Table 28. 

Table 28 Time in which best sols are found for different methods and different B0s - large case 

B0 
Method best sol time (s) 

XW XP H1 H2 

B0=20,000 7,455.4 7,164.0 73.5 48.8 
B0=10,000 6,899.4 7,161.5 68.4 40.9 
B0=5,000 7,411.0 6,032.7 57.86 39.2 

 

By comparing the results from Figure 36-Figure 39, we can see the estimated gain in 

the objective function value from additional funds. For example, the best objective 

function value for 𝐵0 = 5,000 is 70,275.5. The best objective function value for 𝐵0 =

10,000 is 90,314.1. This means that an increase of 5,000 in the initial budget can cause 

an estimated increase of 20,000 in the objective function (marginal profit of 15,000). 

Also, the best result for 𝐵0 = 20,000 is 106,921. Therefore another additional 10,000 

increase in initial budget would only increase the objective function by about 15,000 
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(marginal profit of 5,000). Lastly, the best solution for 𝐵0 = 40,000 is 129,358. This 

is only an estimated 22,000 increase in objective function (2,000 marginal increase). 

Therefore, we can conclude based on the available budget, a small amount of loan can 

potentially increase the profit by a lot if the initial budget is small. If the initial budget 

is larger, the marginal benefit lessens. 
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Chapter 6: Summary, Conclusions, and Future Directions 
 

6.1 Summary 

In this dissertation, we presented different models for finding the optimal grouping of 

phases and scheduling of phased investment projects. Each model is tailored for a 

specific situation. The first model that is the backbone of all other models as well, is 

the Deterministic Single-project Phased-investment Problem (DSPP). DSPP captures 

cost and time interdependencies among phases of the project. The model is used for 

finding the optimal decisions for a parking garage construction example. We show that 

via sensitivity analysis, managers can gain insight about how to improve the overall 

system. Some of the contributions of the novel MIP in this part of this dissertation are: 

Considering time and cost interdependencies among the phases of the project; 

considering construction duration (implementation duration) for each phase; and 

accounting for the initial infrastructure size and cost required for future development 

of phases.  

The second model is a multi-stage scenario based MIP for the Stochastic Single-project 

Phased-investment Problem (SSPP). The uncertainties are modeled using the trinomial 

lattice framework. Due to the modeling framework for uncertainty, the problem size 

increases exponentially with the number of stages. We present two solution methods 

for finding a good value for the here and now decision variables for the SSPP problems. 

The first method is finding the here and now decision variable for all scenarios using 

the Solve-Search-Delete (SSD) algorithm. The second method is finding the here and 

now decision variable value using simulation combined with optimization. We apply 
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the SSPP model to the parking garage construction example. The contributions of this 

part of the problem are: Presenting a novel multi-stage stochastic optimization model 

for phased investment that accounts for time and cost interdependencies among phases, 

and initial infrastructure requirements; Solving for every scenario of the huge stochastic 

problem using a novel solve-search-delete algorithm and also finding optimal solutions 

with given confidences by solving the problem using the combination of simulation.  

The third and last model is the Deterministic Multi-project Phased-investment Problem 

(DMPP). This model simultaneously solves the project selection and scheduling 

problem and also considers interdependencies among the phases. Re-investment is also 

permitted – similar to DSPP and SSPP. To solve this problem, we present a pre-

processing step that helps reduce the size of the problem. We also propose a heuristic 

that proceeds by adding projects one by one and adjusting the available budget at 

different times accordingly. The order of adding projects to the list of accepted projects 

depends on the selected measure of favorability. Some of the contributions of the 

DMPP are: Presenting a novel mathematical model that can assist managers in making 

simultaneous selection and scheduling decisions for a pool of projects built from some 

potentially sequential phased projects that require initial infrastructure investments and 

have synergies among phases. The model allows transfer of funds between different 

stages of time. It also allows for abandonment of projects already implemented. In 

addition the starting time of the projects’ implementation are allowed to be flexible. 

The other contributions are related to the process of finding solutions: A preprocessing 

step is presented that can reduce the number of variables and constraints without any 



 

 

137 

 

compromises in terms of the objective function value; A novel heuristic is developed 

that optimizes the problem for each project at a time. 

6.2 Conclusions and Findings 

Each model is applicable to different settings. The DSPP model is most applicable to 

cases that we are planning for a single project and the planning period is short or the 

information that we have about the future are accurate and certain. It is also usefeul for 

cases that we are interested in doing thorough sensitivity analysis for a phased project 

since the running time of the model is very small. For example, in the parking garage 

example, under certain set of input environmental parameters such as risk-free interest 

rate and inflation rate, an increase in the current available budget even though as small 

as thousands of dollars can cause an increase in profit of about 1 million dollars. 

The SSPP model is most useful for planning for a single phased project in which the 

planning period is long or the environment is very uncertain. In stochastic settings, the 

problem size dramatically increases. We need to use various solution techniques that 

in a way decreases the size of the problem. This could be achieved by either 

decomposition of the overall problem or reducing the number of scenarios through a 

sampling method. 

We show that based on the values of the input parameters, the SSD algorithm could 

decrease the running time required for solving all scenarios by more than 90%. Also, 

we show how for the optimization via simulation case, the use of common random 

numbers (CRN), improves the running time and increases the confidence of finding the 

approximate solution over the case that we do not use CRN. 
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The SSD algorithm’s speed depends on which scenarios are solved during the solve 

step. The number of scenarios deleted per each scenario solved are the greatest for the 

here-and-now decision variable values that are the best possible and worst possible. 

This is because of the initialization step of the algorithm that we selected the best and 

worst scenario to solve. 

The DMPP is most applicable in settings that we are selecting among a pool of projects 

that some of which could be projects that could be broken into smaller phases. The 

problem, even under deterministic settings, is very huge and finding solutions for it is 

difficult.  

Via an example, we show that, by looking at each project individually first, we can 

reduce the size of the problem. The savings gained by reducing the size of the problem 

(up to 60% less variables and constraints for large-size problems). 

For the heuristic, selection of an appropriate measure of favorability for the projects, 

can greatly influence the performance of the heuristic. We show that in cases that the 

initial budget is little, the favorability measure of Profit/LastAvTime performs better 

than the favorability measure of Profit. For cases that the initial budget is relatively 

large, both measures perform similarly. The run time for these heuristics is about 1 

minute for large-size examples. The solution found is most of the times better than the 

solution found by commercial solvers after even 2 hours. This saving in time, allows 

managers to perform multiple sensitivity analysis on the parameters. We show that if 

the initial budget is small, a marginal increase in the initial budget can greatly improve 

the overall profits in comparison to the case that the initial budget is medium or large. 
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6.3 Future Studies 

This research opens the venue to many future studies related to phased investment. 

Some possible research direction are: 

 Development of a model for Stochastic Multi-project Phased-investment 

Projects, 

 Considering more sources of uncertainty in the SSPP model 

 Improving the efficiency of the SSD algorithm, via parallel processing  

 Adding other types of interdependencies to the model and model the 

interdependencies among the projects as well in the DMPP model 

 Perform sensitivity analysis on all the parameters of the models 

 Comparing the performance of the heuristic when other favorability measures 

are considered for the selection step of the heuristic 

 Comparing the outcomes of the heuristic to those from Meta-heuristics such as 

GA, SA, and TS. 
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