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Cyber-physical systems often consist of multiple non-collocated components

that sense, exchange information and act as a team through a network. Although

this new paradigm provides convenience, flexibility and robustness to modern sys-

tems, design methods to achieve optimal performance are elusive as they must

account for certain detrimental characteristics of the underlying network. These

include constrained connectivity among agents, rate-limited communication links,

physical noise at the antennas, packet drops and interference. We propose a new

class of problems in optimal networked estimation where multiple sensors operating

as a team communicate their measurements to a fusion center over an interference

prone network modeled by a collision channel. Using a team decision theoretic

approach, we characterize jointly optimal communication policies for one-shot prob-

lems under different performance criteria.

First we study the problem of estimating two independent continuous random

variables observed by two different sensors communicating with a fusion center over



a collision channel. For a minimum mean squared estimation error criterion, we

show that there exist team-optimal strategies where each sensor uses a threshold

policy. This result is independent of the distribution of the observations and, can

be extended to vector observations and to any number of sensors. Consequently,

the existence of team-optimal threshold policies is a result of practical significance,

because it can be applied to a wide class of systems without requiring collision

avoidance protocols.

Next we study the problem of estimating independent discrete random vari-

ables over a collision channel. Using two different criteria involving the probability of

estimation error, we show the existence of team-optimal strategies where the sensors

either transmit all but the most likely observation; transmit only the second most

likely observation; or remain always silent. These results are also independent of

the distributions and are valid for any number of sensors. In our analysis, the proof

of the structural result involves the minimization of a concave functional, which is

an evidence of the inherent complexity of team decision problems with nonclassical

information structure.

In the last part of the dissertation, the assumption on the cooperation among

sensors is relaxed, and we show that similar structural results can also be obtained

for systems with one or more selfish sensors. Finally the assumption of the inde-

pendence is lifted by introducing the observation of a common random variable in

addition to the private observations of each sensor. The structural result obtained

provides valuable insights on the characterization of team-optimal policies for a

general correlation structure between the observed random variables.
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Chapter 1: Introduction

State estimation is a fundamental component in stochastic control. Algo-

rithms that estimate or track the state (or a function of the state) of a physical

system provide essential information for monitoring, control and decision-making

under uncertainty. Recent technological advancements have allowed the use of smart

distributed sensing devices interconnected over a network to perform various com-

plex tasks. Although sensor networks provide convenience, flexibility and robustness

to modern systems, design methods to achieve optimal performance are elusive as

they must account for certain detrimental characteristics of the underlying network.

These include constrained connectivity among agents, rate-limited communication

links, physical noise at the antennas, packet drops and interference. This disserta-

tion studies a new class of problems of optimal networked estimation where multiple

sensors operating as a team communicate their measurements to a fusion center

over an interference prone network. Using a team decision theoretic approach, we

characterize jointly optimal transmission policies under different cost criteria over a

single time-step: also known as one-shot problems.
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1.1 Networked estimation

Cyber-physical systems are often formed by multiple non-collocated compo-

nents that sense, exchange information and act as a team through a network [1]. In

such networked decision systems the agents are sensors, estimators, controllers and

actuators, and are generically referred to as decision makers or DMs as in Fig. 1.1.

DM

DM

DM

DM

DM
DM

DM

DM

DM

DM

DM
DM

Communication
network

Figure 1.1: A networked decision system.

Regardless of their role in the system, a decision making node is typically capable

of making local measurements and, sending and receiving information packets with

other nodes in the network. This is illustrated in Fig. 1.2. The limitations introduced

by the network may come in many forms: noisy or rate-limited communication links,

delay, interference and packet drops, to name a few. Generally, the performance of

the system is degraded by the network, imposing new challenges on the analysis and
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design of modern systems.

      Communication
network

Xi

Yi

local observation

received packet

transmitted packet

Si
DMi

Figure 1.2: Basic functionalities of a decision making node.

Within this context, remote estimation systems are comprised by non-collocated

sensing and estimation blocks that communicate over a constrained network. The

goal of the system designer is to obtain communication and estimation policies that

optimize a given performance criterion such as the mean squared or the probability

of estimation error, subject to the constraints imposed by the network. Most of

the existing results in this research area consist of characterizations of optimal com-

munication policies for a single sensor and a single remote estimator in sequential

decision making settings over a finite or infinite horizon [2]. However, remote sensing

systems with multiple sensors operating under interference have not received much

attention from researchers in the fields of control and estimation theory. What was

not understood (or known) is whether there existed a tractable model for interfer-

ence in a multi-sensor remote estimation scenario for which optimal solution could

be characterized. This dissertation answers this and other questions by studying

canonical one-shot problem formulations where the wireless network is modeled us-
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ing a collision channel. As in the wireless communication networking literature,

where this class of channels is widely used [3,4], we show that the collision channel

is a useful model for decentralized networked control and estimation.

S1

S2

S3

Sn

collision
channel

...

Y

X1

X2

X3

Xn

2
64

X̂1

...

X̂n

3
75

U1

U2

U3

Un

E

Figure 1.3: Basic framework.

The main framework used in the problems in this dissertation is depicted in

Fig. 1.3 and is described as follows. Consider a decentralized remote sensing system

where n ≥ 2 sensors make local measurements, denoted by X1, · · · , Xn. Each sensor

must decide whether or not a given measurement should be transmitted to the fusion

center and communicate them in packets, denoted by S1, · · · , Sn, over a wireless net-

work. The group of sensors cooperate as a team to achieve the optimal performance,

but are not allowed to communicate with each other. This decentralized operation

mode is called silent coordination [5]. The network is modeled by a collision channel

for which at most one transmitted packet can reliably reach the fusion center and

multiple transmissions result in a collision. The fusion center E observes the chan-

nel output Y and forms estimates of all the measurements, X̂1, · · · , X̂n. The goal

4



is to design the communication policies U1, · · · ,Un at the sensors such that a given

performance metric involving the estimation error is minimized.

1.2 Applications

The framework proposed here can be used to model a distributed sensor net-

work in which measurements that are made by non-collocated sensors are wirelessly

transmitted to a fusion center. One-shot problem formulations arise when the ob-

jective is to detect a one-time event of interest or estimating vital variables in real

time, and with minimal delay. This is the case when multiple sensors monitor large

structures or systems such as bridges, electric power grids and, oil and gas pipelines,

which are subject to potentially catastrophic events. In such scenarios, the delay

and additional infrastructure required for coordinating access to the network over

large distances would be costly and impede swift detection and estimation. Here

we adopt a one-shot formulation in which each sensor does not have time to coor-

dinate or communicate with the other, and must decide whether to communicate

based solely on its measurement. The observations are independent, but other-

wise allowed to be arbitrarily distributed, possibly coming from different families of

distributions.

The collision channel captures the effect of interference present in wireless net-

works where devices share the same frequency band for communication and do not

follow any form of scheduling or random access protocols. Constraints like the ones

addressed in this dissertation are common in settings where the devices are very

5



simple and can only perform elementary operations without sophisticated commu-

nication modules. Examples where this is the case include: nanoscale intra-body

networks for health monitoring and drug delivery systems; networks for environmen-

tal monitoring of air pollution, water quality and biodiversity control [6,7]. Remote

estimation systems of this type can also be applied in scenarios where the devices

are heterogeneous and there is a strict requirement for real-time wireless networking.

For example, ad hoc networks such as the Internet-of-Things for the lack of necessity

in agreement of a communication protocol among the devices [8]; systems such as

data centers, which are subject to cascading power failures [9] or cyber-attacks [10],

and must be detected in minimal time and as accurately as possible.

1.3 Related literature

Control and estimation over communication networks have been of great inter-

est to control theorists and engineers during the last decade [11]. With the advent

of cyber-physical systems as a new paradigm for system design, the development of

new tools and models in networked control and estimation are as important now

as ever. The components or blocks of a cyber-physical system are noncollocated

and typically interconnected by a network. Moreover, these blocks have access to

different information, which is often corrupted by noise, delayed or incomplete due

to physical or operational constraints. Such problems can be cast in the frame-

work of team decision theory and their analysis often combine tools from control,

information and optimization theories [12].
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Many channel and network models have been studied in the existing networked

control and estimation literature. Apart from the traditional additive Gaussian noise

(AWGN) and fading channels, the packet drop channel (also known as analog erasure

channel) has attracted most of the attention of the research community in control.

Most notably, the works of Sinopoli et al. [13] and Gupta et al. [14,15] have become

landmark references in the area. However, there have been only few studies that

explicitly deal with the effects of interference in control and estimation over wireless

networks [16–20]. Our work seeks to contribute in this growing field by modeling

interference using a simple model for a communication medium shared by multiple

devices known as the collision channel [21], which has been largely used, along with

queueing theory, in the design and analysis of wireless networks [3].

We assume that the collision channel can only carry one packet and differs from

the packet drop channel in the following fundamental aspect: the channel output

alphabet has two distinct symbols to represent no-transmission (idle channel) and

collision (simultaneous transmissions) events. Therefore, the receiver is always able

to detect if the transmitters attempted to communicate or not, even though the

colliding packets cannot be correctly decoded.

There exist various ways in which the collision channel model could be modified

to incorporate features of more sophisticated systems. For instance, channels with

asynchronous access [22] and multi-packet reception capabilities [23, 24]. There are

also variants that assume sequential transmissions with and without feedback [25].

One of the possible variations is the collision channel with capture, where the sensors

may also adjust the power used to transmit a packet, and in the event of a collision,

7



the packet transmitted with the largest power survives the collision and the others

are lost [26].

Since the communication between the components in a cyber-physical system

usually occurs over a network of limited capacity (or limited infrastructure), it is

important to understand how these limitations may degrade the performance of

the overall system. More importantly, the system designer must provide strategies

that make the best use of the limited available communication resources. There are

three main lines of research that consider the effects of communication links between

sensors and estimators. The first class of problems corresponds to the characteri-

zation of fundamental limitations on performance caused by noisy communication

channels [27]. Here we find the more traditional communication models such as the

AWGN and fading channels [28–30]; as well as the packet drop channel of [13–15].

The second class of problems studies the effect of noiseless but rate limited chan-

nels in estimation and control, in which signals are quantized prior to transmission.

Results known as data-rate theorems [31] establish the minimum quantization rate

necessary to stabilize an unstable plant, while other works establish conditions for

the existence of stable quantizer-estimator schemes [32].

Finally, a third class of problems studies the trade-off between communica-

tion rate and estimation performance over noisy or noiseless but costly communica-

tion channels. An interesting common feature of these problems is that threshold

(event-based) policies emerge as solutions to optimization problems and are not an

architecture imposed by the system designer. The first contributions in this field

were done by Imer and Basar in [33], where a limit on the number of noiseless trans-
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missions that can be made by the sensor over a finite horizon imposes an upper

bound on the communication rate. The idea that event-based estimation/control

systems can be used for signalling was first mentioned in [33], whose results were

later complemented by [34]. A continuous time formulation of this problem was

studied by Rabi et al. in [35]. Xu and Hespanha in [36] solved an infinite horizon

problem whose objective functional combined the expected estimation error and a

communication cost. Lipsa and Martins in [37] also considered a finite horizon prob-

lem with an objective functional that combines estimation error and communication

costs and established the structure of jointly optimal communication and estimation

policies. In particular, [37] shows that there exist optimal communication policies

of the symmetric threshold type and the optimal estimator admits a simple recur-

sive structure. In [38] the authors showed that this structure is preserved when the

channel randomly drops packets. Nayyar et al. in [39] generalized [33] and [37]

obtaining structural results when, in addition to communication costs, there is a

stochastically varying energy budget, which reflects the sensor’s ability to harvest

energy from the environment in order to communicate. In the context of control

of dynamical systems over communication networks, the work of Molin and Hirche

in [40] shows that certainty equivalence controllers are optimal for point-to-point

communication links are of the type in [33] and [37]. A model similar to the one

presented here was used Gupta et al. in a game between a sensor and a jammer in

a remote estimation problem [41].
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1.4 Contributions

My doctoral research has introduced a new class of problems in remote estima-

tion for which optimal solutions can be characterized analytically. One contribution

in the area of networked control and estimation systems is the formal definition of

a collision channel and its use to model interference among agents sharing a (wire-

less) communication network. The collision channel has been a widely used model

in wireless networks. To the best of our knowledge, most of the current literature

in networked control that uses this channel model assumes some form of collision

avoidance mechanism. These protocols may cause delays and require additional

infrastructure in networked systems. We chose to deal with packet collisions in a

different way, by exploiting them for implicit communication (also known as signal-

ing) among the agents.

Our system models are formulated using the framework of team decision prob-

lems, which are generally difficult to solve. However, the class of problems posed in

this dissertation admits characterizations of team-optimal strategies. This consti-

tutes a contribution to the field of team decision theory, where most of the problems

that admit characterizations of team-optimal strategies belong to the class of linear

quadratic Gaussian (LQG) or linear exponential Gaussian (LEG) teams.

For the problem of estimating independent continuous random variables with

a mean squared error criterion, the existence of team-optimal strategies with a

threshold structure is established. Our proof uses a technique based on Lagrange

duality theory for generalized moment optimization problems with variable bounds.
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This technique may also be useful in other decentralized control and estimation

problems with quadratic cost functionals. As a side contribution, a new metric for

quantization of continuous random variable with unequal distortion was introduced.

To the best of our knowledge, this is the first time that such metric is reported in

the literature. Due to the asymmetry of the distortion metric, the convergence of

the modified Lloyd-Max algorithm devised to minimize this new cost does not follow

from the classic sufficient condition by Fleischer [42]. We provide a proof for the

convergence to a locally optimal quantizer in the Gaussian case. Finally, we show

that the optimal policies for a system with identically distributed observations and

symmetric probability density functions have asymmetric thresholds. This a major

departure from the current literature on remote estimation.

For the problem of estimating independent discrete random variables over

the collision channel, two performance criteria are used: the aggregate and total

probability of error. In both cases, we show that the optimization over the policy

space of one decision maker while keeping the other fixed is a concave minimization

problem, which is known to be NP-hard. Typically, such problems are solved using

approximation techniques which guarantee performances within a fixed bound from

the optimal. However, we are able to solve these problems exactly using a “converse-

achievability" approach, where we obtain a lower bound and provide a structured

policy that achieves it. On one hand this illustrates the complexity of solving team

problems with discrete observation and action spaces; and on the other it shows that

there may be instances of such problems that are tractable using non-traditional

techniques. One important contribution is the characterization of a team-optimal
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strategies for the system with a total probability of estimation error, in which each

sensor transmits all but the most likely of its observations.

In addition to this dissertation, my doctoral research has produced conference

articles [43–46], journal papers [47, 48] and a book chapter [2].

1.5 Outline

The dissertation is structured in seven chapters, including this introduction.

The rest of the dissertation is organized as follows.

Chapter 2 presents the basic team decision framework used in the analysis

of the networked estimation problems posed in this dissertation. We define the

concept of a static team decision problem with a non-classical information structure

and, the notions of team-optimality and person-by-person optimality. This chapter

introduces the jargon and the notation used throughout the dissertation.

Chapter 3 introduces the problem of estimating two independent continuous

random variables over the collision channel. Using a person-by-person optimality

approach, we show that there exists a team-optimal strategy where the sensors use

threshold policies with respect to a mean squared estimation error criterion. The

proof of this result relies on an analogy with a remote estimation subproblem with

communication costs and the solution of a generalized moment optimization problem

with variable bounds. This structural result is independent of the distribution of

the observed random variables.

Chapter 4 shows that the computation of person-by-person optimal thresh-
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old policies for the problem in Chapter 3 is equivalent to the design of a one-bit

quantizer that minimizes a distortion metric that is unequal across quantization

regions. We argue that asymmetric thresholds are optimal when it is advantageous

to embed information in collision and no-transmission symbols. The numerical ex-

amples illustrate that the policy design is a non-convex problem in general, and

optimal solutions can be symmetric or asymmetric, depending on the parameters

that specify the problem. A numerical approach to compute locally optimal thresh-

old policies is proposed based on a modified version of the Lloyd-Max algorithm.

We present examples for the case when the variables are Gaussian that illustrate

that the algorithm converges to a local minimum and that it can be used to compute

person-by-person optimal solutions.

Chapter 5 considers the problem of estimating two independent discrete ran-

dom variables over the collision channel. We obtain structural results of team op-

timal policies for two criteria: a convex combination of the individual probabilities

of estimation errors for each observation; and a total probability of error. In the

first case, we show that there exist team-optimal policies where the sensors either

transmit all but the most likely observation; transmit only the second most likely

observation; or always remain silent. In the second case, we show that the every

sensor transmitting all but the most likely observation is a team-optimal strategy.

In both cases, the proof consists of using the person-by-person approach involv-

ing the minimization of a concave functional. We solve these problems exactly by

obtaining a lower bound and providing a policy that achieves it. The results can

be extended to n sensors and are valid for any probability mass functions for the
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observed random variables.

Chapter 6 extends the basic framework in two separate directions. First,

we allow each sensor to minimize its own cost functional, which leads to a non-

cooperative game formulation. We show that the search for Nash-equilibria can be

constrained to the class of threshold policies. Second, we relax the independence

assumption by considering that each sensor observes a common random variable

in addition to their private observations. We show that there exist team-optimal

strategy where each sensor uses a policy such that: for every realization of the

common observation, is a threshold policy on the private observations.

Chapter 7 concludes the dissertation and outlines open research problems.
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Chapter 2: Fundamentals

The problems studied in this dissertation can be categorized as team decision

problems, where multiple agents have access to limited local information and must

choose their actions with the goal of jointly minimizing a common cost function. The

origins of team decision theory can be traced back to the seminal work of Marschak

and Radner in economics [49–51] and Witsenhausen in control theory [52]. An

important aspect of this class of problems is the role played by information on their

tractability. The different connections between economics, decentralized control and

information theory in team decision problems can be found in the tutorial paper by

Ho [53]. The complexity of solving problems in this class is in general NP-hard, a

fact that was established by Tsitsiklis and Athans in [5].

In order to set the stage for the forthcoming chapters, here we introduce the

main components of a stochastic team decision problem. There are several levels of

sophistication at which this material could be presented. We have chosen to provide

a definition that deliberately avoids technical details. A more in-depth definition is

available in the book by Yuksel and Basar [12, ch. 2].
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2.1 Static team decision problems

The team decision problems we consider in this dissertation are stochastic,

which means that there is an underlying notion of uncertainty with a known prob-

abilistic description characterized by a probability space (Ω,A,P). Consider a ran-

dom variable W , which denotes the state of the world, taking values on an alphabet

W. The random variable W is either continuous or discrete, and is distributed ac-

cording to a probability density function fW or a probability mass function pW . A

team consists of a set of n ≥ 2 agents or decision makers, where the i-th decision

maker will be denoted by DMi. It is assumed that all the agents agree on the under-

lying probability space in the problem. What distinguishes a team decision problem

from other problems of decision making under uncertainty is that each agent only has

partial knowledge about the state of the worldW . In a static team decision problem,

the observation of DMi is denoted by a random variable Xi taking values on Xi and

is related to the state of the world by an information function Hi : W → Xi such

that Xi = Hi(W ). The set of information functions H = (H1, · · · ,Hn) constitute

an information structure. Under a classical (or centralized) information structure

all the agents have the same information. Otherwise, a static team decision problem

is said to have a non-classical (or decentralized) information structure.

Based solely on xi, the DMi choses a control action ui ∈ Ai according to a

control policy Ui : Xi → Ai such that ui = Ui(xi). The set of admissible control

policies for DMi is denoted by Ui. Finally, for each set of control actions u =

(u1, · · · , un) and the state of the world w ∈ W, a cost C(u,w) ∈ R is incurred. A
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team strategy is denoted by U = (U1, · · · ,Un) and the strategy space is denoted by

U = U1 × · · · × Un. A stochastic team decision problem is stated formally bellow:

Problem 2.1 (Stochastic team problem). Given the probabilistic model of the un-

certainty variable W , information structure H and a cost function C, find a team

strategy U∗ ∈ U that minimizes the cost functional J (U) defined in Eq. (2.1):

J (U)
def
= E

[
C
(
U1

(
H1(W )

)
, · · · ,Un

(
Hn(W )

)
,W
)]
. (2.1)

2.2 Notions of optimality

Throughout the chapters of this dissertation we will be primarily interested in

characterizations of the solutions of different instances of Problem 2.1. There are

two solution concepts that we will often be referring to: the notion of team-optimal

and person-by-person optimal solutions.

Definition 2.1 (Team-optimal solutions). For a given stochastic team decision prob-

lem, a team strategy U∗ = (U∗1 , · · · ,U∗n) ∈ U is a team-optimal solution if

J (U∗) = inf
U∈U
J (U). (2.2)

If such a strategy exists, the optimal cost is denoted by J ∗.

Static team decision problems with a non-classical information structure are

in general difficult solve, often leading to non-convex optimization problems. In

particular, problems with discrete observation and control action sets are known to
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be NP-hard [5]. However, in the continuous case, there are two important classes

of teams with linear information functions for which the structure of the optimal

solutions are known in closed form: teams with quadratic and exponential quadratic

cost functions, and where the state of the world W is a Gaussian random vector

(LQG and LEG teams, respectively). These classic results were obtained by Radner

[50] and Krainak et al. [54, 55].

An alternative way to deal with the inherent complexity of solving a team

decision problem is by the use of certain approximation techniques, which guarantee

that a suboptimal strategy is within a fixed bound of the optimal [56]. However, it

may be possible to establish structural properties of team-optimal policies by using

a weaker notion of optimality known as person-by-person optimal solutions.

Definition 2.2 (Person-by-person optimal solutions). For a given stochastic team

decision problem, a team strategy U∗ = (U∗1 , · · · ,U∗n) ∈ U is a person-by-person

optimal solution if

J (U∗) ≤ J (U∗1 , · · · ,U∗i−1,Ui,U∗i+1, · · · ,U∗n), Ui ∈ Ui, i ∈ {1, · · · , n}. (2.3)

Person-by-person optimality is a necessary but, in general, not a sufficient

condition for team optimality. However, using the fact that if U∗ is team-optimal

for Problem 2.1 then it is also person-by-person optimal, if a particular structure

holds for every person-by-person optimal policy, it must also hold for team-optimal

strategies. The idea of characterizing team-optimal solutions via person-by-person

optimality is called the person-by-person approach. The advantage of using this
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approach is to decompose a complicated problem into simpler subproblems for which

a systematic analysis is often possible.

2.3 Notation

We use the terminology sensor, agent and decision maker (DM) interchange-

ably throughout this dissertation. We adopt the following notation: random vari-

ables and random vectors are represented using upper case letters, such as X. Real-

izations of random variables and random vectors are represented by the correspond-

ing lower case letter, such as x. We denote the independence between two random

variables X and Y by X ⊥⊥ Y . The probability density function of a continuous

random variable X, provided that it is well defined, is denoted by fX . Functions

and functionals are denoted using calligraphic letters such as F or F . We use B(δ)

and N (m,σ2) to represent the Bernoulli probability mass function of parameter

δ ∈ [0, 1] and the Gaussian probability distribution of mean m and variance σ2,

respectively. The real line is denoted by R. Sets are represented in blackboard bold

font, such as A. The cardinality of a set A is denoted by |A|. The complement of

a subset A ⊂ B is denoted by B\A. The complement of a subset A ⊂ R is denoted

by Ac def
= R\A. The empty set is denoted by ∅. The extended real line is defined

as R̄ def
= R ∪ {−∞,+∞}. The probability of an event E is denoted by P(E); the

expectation and variance of a random variable Z are denoted by E[Z] and V[Z],

respectively. The positive and negative parts of a real-valued function G are defined

as [G(x)]+
def
= max{0,G(x)} and [G(x)]−

def
= max{0,−G(x)}. We denote by Lpµ(R) the
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space of all µ-measurable functions G : R → R such that
∫
R |G(x)|pdµ(x) < +∞,

1 ≤ p <∞. The probability mass function of a discrete random variable X taking

values on the set X is denoted by p(x), where x ∈ X. We denote the reordering of

the elements of X according to decreasing probability by [X] = {x[1], x[2], . . . }, where

x[m] precedes x[n] if p(x[m]) ≥ p(x[n]), withm,n ∈ {1, · · · , |X|}. Denote p[n] = p(x[n]),

for n ∈ {1, · · · , |X|}. The indicator function of a set A is denoted by 1A(x).
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Chapter 3: Minimum mean squared error estimation over the collision

channel

Consider a distributed sensing system that comprises two sensors, each observ-

ing a random variable, and a remote estimator. The goal of the remote estimator

is to produce estimates of the random variables based on information transmitted

to it by the sensors. The random variables are independent and information is

transferred from the sensors to the estimator via a collision channel, which can only

convey a single packet at a time. Each sensor has the authority to decide what and

when to transmit, and simultaneous transmissions result in a collision event to be

detected at the estimator. We assume that there is no communication between the

sensors, which precludes the use of coordinated strategies. In this chapter, we use a

person-by-person optimality approach to characterize the structure of team-optimal

strategies at the sensors with respect to a mean squared error criterion. More

specifically, we show that there exists a team-optimal strategy that uses determin-

istic threshold policies to decide when to transmit a measurement. This structural

result is independent of the distributions of the observed random variables.
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3.1 Motivation

Cyber-physical systems are often formed by multiple non-collocated compo-

nents that sense, exchange information and act as a team through a network [1].

In the wireless case, the network may support only a finite number of simultane-

ous transmissions due to limitations such as interference. Here, we are interested

in characterizing team-optimal policies when the maximal number of simultaneous

transmissions is strictly less than the number of components sharing the same net-

work. In order to obtain design principles that can be characterized analytically,

we consider a simple configuration formed by a remote estimator that operates on

information received from two sensors that measure a random variable each (see

Fig. 3.1). Each sensor has the authority to decide whether to attempt a transmis-

sion or to remain silent based solely on the random variable it measures. In our

formulation, we assume that information is conveyed through a collision channel

for which at most one transmission can reliably reach the estimator and multiple

transmissions result in a collision. We consider the design of policies that minimize

a mean squared estimation error, subject to the communication constraint imposed

by the collision channel. In particular, we will prove the optimality of policies with

a threshold structure, which constitute an important class of event-based policies in

problems of remote estimation and control.
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Figure 3.1: Block diagram representation for estimation over the collision channel.

3.2 System model

We adopt the basic framework depicted in Fig. 3.1, which comprises two sen-

sors (or decision makers) labelled U1 and U2 and a remote estimator labelled E

connected by a collision channel χ. Consider two independent continuous random

variables X1 and X2 with distributions µ1 and µ2, respectively. The random variable

Xi is observed by Ui, and we assume that E[Xi] = 0 and V(Xi) < +∞, i ∈ {1, 2}.

Each decision maker has the authority to decide whether to attempt a transmission

of its measurement to the estimator. It is also important to notice from Fig. 3.1

that there is no communication between U1 and U2, which precludes policies that

involve coordination. The collision channel defined below conveys information from

the sensors to the estimator.

Definition 3.1 (Collision Channel). The channel input alphabet is S def
= R ∪ {∅},

and the channel output alphabet is Y def
= ({1, 2} × R) ∪ {∅,C}, where C represents

the occurrence of a collision. The symbol ∅ indicates absence of transmission. The
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collision channel is a deterministic two-input map χ : S×S→ Y defined as follows:

χ(s1, s2)
def
=





(1, s1) if s1 6= ∅, s2 = ∅

(2, s2) if s1 = ∅, s2 6= ∅

C if s1 6= ∅, s2 6= ∅

∅ if s1 = ∅, s2 = ∅.

(3.1)

The channel inputs are denoted by S1 and S2, while Y designates the output that is

defined as Y def
= χ(S1, S2).

Assumption 3.1. We assume that a transmission is successful if it conveys its real-

valued measurement to the estimator. This is a realistic premise when the transmit-

ted message has enough bits to represent a real number with negligible quantization

error. According to Eq. (3.1), we also consider that each packet contains in its

header the identification number of the sender. This allows the remote estimator to

unambiguously determine the origin of a successful transmission.

The following are precise definitions of the communication policies at the de-

cision makers.

Definition 3.2 (Communication policies). A communication policy for the i-th sen-

sor is determined by a map Ui : R→ [0, 1]. The actions U1 and U2 are binary random

variables that satisfy the following probabilistic law:

P(Ui = 1|Xi = xi)
def
= Ui(xi), i ∈ {1, 2}, (3.2)
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where Ui = 1 means that the i-th sensor will attempt transmission; and Ui = 0

means that it will remain silent. We adopt independent randomization mechanisms

to generate U1 and U2, which guarantee that (X1, U1) is independent of (X2, U2).

Each Ui acts on the i-th channel input according to the following definition:

Si
def
=





Xi if Ui = 1

∅ if Ui = 0

, i ∈ {1, 2}. (3.3)

The combined action of Eq. (3.3) and the channel in Eq. (3.1) leads to the

following rule to determine the output of the channel:

Y =





(1, X1) if U1 = 1, U2 = 0

(2, X2) if U1 = 0, U2 = 1

C if U1 = 1, U2 = 1

∅ if U1 = 0, U2 = 0.

(3.4)

We can now precisely state the problem of optimal remote estimation over the

collision channel.

Problem 3.1. Let X1 and X2 be two independent continuous random variables with

zero mean and finite variance. Consider the following cost

J (U1,U2)
def
= E

[
(X1 − X̂1)2 + (X2 − X̂2)2

]
, (3.5)
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where each X̂i is defined below1:

X̂i
def
= Ei(Y ), and Ei(y)

def
= E[Xi|Y = y], y ∈ Y. (3.6)

Solve the following optimization problem:

minimize
(U1,U2)∈U1×U2

J (U1,U2), (3.7)

where Ui represents the set of randomized policies defined as follows:

Ui
def
={U ∈ L2

µi
(R) | U : R→ [0, 1]}, i ∈ {1, 2}. (3.8)

Remark 3.1. If X1 and X2 are non-constant then the two terms in Eq. (3.5) cannot

be both zero because the collision channel can convey at most one sensor transmission

to the estimator. This implies that there is a trade-off in Eq. (3.5) that causes the

minimal cost to be always positive.

3.3 Structural result: optimality of threshold policies

The goal of this subsection is to state our main result as Theorem 3.1, which

guarantees the existence of team-optimal deterministic threshold policies as defined

below. This is an important structural result because it shows that the infinite

dimensional minimization stated in Problem 3.1 can be recast as a finite-dimensional

search with respect to threshold limits. We will defer the proof of Theorem 3.1 until
1Notice that the estimator in Eq. (3.6) is always optimal for the cost in Eq. (3.5).
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U(x)
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Figure 3.2: A deterministic threshold policy

the end of Section 3.4, in which we develop all the required auxiliary results.

Definition 3.3 (Determinisic threshold policy). A policy U is of the deterministic

threshold type if there are constants a and b in R̄ for which the following holds:

U(x) =





0 if a ≤ x ≤ b

1 otherwise.

(3.9)

If a = −b then the threshold policy is called symmetric, otherwise it is called asym-

metric.

Theorem 3.1. There exists a pair of deterministic threshold policies (Ŭ∗1 , Ŭ∗2 ) that

is team-optimal for Problem 3.1.

Remark 3.2. Although we were unable to do so, we believe that the existence of

an optimum could have been established using the results in [57]. Regardless of

whether this interesting connection to [57] is possible or not, Theorem 3.1 is an

indispensable result because it shows the existence of a team-optimal solution with a

specific deterministic threshold structure.
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3.4 Estimation with communication costs

We will prove Theorem 3.1 using the person-by-person optimality approach,

which consists of minimizing the cost over the policy space of each of the decision

makers while keeping the other fixed. Using this approach, for any pair of policies

we can construct a new pair with equal or better cost, where each policy is threshold.

Here, we establish an analogy between the minimization of the cost in Eq. (3.5) with

respect to either U1 or U2 while keeping the other fixed, and a problem of optimal

remote estimation systems with communication costs. The intuition behind this

correspondence is that if U{j:j 6=i} is fixed then the increase in the mean squared

estimation error of Xj that results from the collisions caused by Ui can be viewed,

from the perspective of Ui, as a communication cost. This analogy will be useful in

the proof of our main result (Theorem 3.1) and, as we explain later, it also leads to

a new class of problems of independent interest.

In order to make this analogy precise, without loss of generality, consider that

U∗j is fixed to an arbitrary choice in Uj, and let JU∗j (Ui) denote the resulting cost

defined as follows:

JU∗j (Ui) def
= J (U1,U2)

∣∣∣
Uj=U∗j

, i 6= j. (3.10)

The following proposition unveils the underlying additive communication cost em-

bedded in Eq. (3.10).
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Proposition 3.1. Given a preselected U∗j , and i 6= j, the following holds:

JU∗j (Ui) = E
[
(Xi − X̂i)

2
]

+ ρU∗jP(Ui = 1) + θU∗j , (3.11)

where ρU∗i and θU∗j do not depend on Ui and are given by:

ρU∗j = E
[
(Xj − X̂j)

2 | Ui = 1
]
− E

[
(Xj − X̂j)

2 | Ui = 0
]

(3.12)

θU∗j = E
[
(Xj − X̂j)

2 | Ui = 0
]
. (3.13)

Proof. Using total expectation, write:

E
[
(Xj − X̂j)

2
]

= E
[
(Xj − X̂j)

2 | Ui = 1
]
P(Ui = 1)

+E
[
(Xj − X̂j)

2 | Ui = 0
]
P(Ui = 0). (3.14)

Since P(Ui = 0) = 1−P(Ui = 1), we have:

E
[
(Xj − X̂j)

2
]

=
(
E
[
(Xj − X̂j)

2 | Ui = 1
]
− E

[
(Xj − X̂j)

2 | Ui = 0
])

P(Ui = 1)

+ E
[
(Xj − X̂j)

2 | Ui = 0
]
. (3.15)

The cost functional in Eq. (3.11) has three components: the first is the mean

square estimation error of Xi, the second ascribes a cost ρU∗j to the probability of

attempting a transmission and the third is constant with respect to Ui. The following
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proposition will be important later on.

Proposition 3.2. For a given a preselected U∗j , it holds that ρU∗j ≥ 0.

Proof. Using iterated expectations and the fact that for i 6= j, Ui and Uj are mutu-

ally independent, we write

ρU∗j = E[(Xj − X̂j)
2|Ui = 1]− E[(Xj − X̂j)

2|Ui = 0] (3.16)

= E[(Xj − X̂j)
2|Ui = 1, Uj = 0]P(Uj = 0)

− E[(Xj − X̂j)
2|Ui = 0, Uj = 0]P(Uj = 0)

+ E[(Xj − X̂j)
2|Ui = 1, Uj = 1]P(Uj = 1)

− E[(Xj − X̂j)
2|Ui = 0, Uj = 1]P(Uj = 1). (3.17)

When (Ui = 0, Uj = 1), the estimator receives Y = (j,Xj). Since Ej(j,Xj) = Xj,

we have that E[(Xj − X̂j)
2|Ui = 0, Uj = 1] = 0. In the cases where Y = (i, xi) and

Y = ∅, the optimal estimates are

Ej(i, xi) =E[Xj|Y = (i, xi)] (3.18)

(a)
= E[Xj|Uj = 0, Ui = 1, Xi = xi] (3.19)

(b)
= E[Xj|Uj = 0] (3.20)

30



and

Ej(∅) =E[Xj|Y = ∅] (3.21)

(c)
= E[Xj|Uj = 0, Ui = 0] (3.22)

(d)
= E[Xj|Uj = 0], (3.23)

where the equality (a) follows from the equivalence Y = (i, xi) ⇔ (Uj = 0, Ui =

1, Xi = xi), equality (b) follows from the independence between Xj and (Ui, Xi),

equality (c) follows from the equivalence between Y = ∅ ⇔ (Ui = 0, Uj = 0),

and equality (d) follows from the independence between Xj and Ui. Therefore, the

following equality holds

E[(Xj − X̂j)
2|Ui = 1, Uj = 0] = E[(Xj − X̂j)

2|Ui = 0, Uj = 0]. (3.24)

Finally, the communication cost is given by

ρU∗j = E
[
(Xj − X̂j)

2|Ui = 1, Uj = 1
]
P(Uj = 1) ≥ 0. (3.25)

From Propositions 3.1 and 3.2, we conclude that the minimization of J with

respect to Ui, while keeping U∗j fixed, can be cast as follows:

Problem 3.2. Consider that β in [0, 1] and a non-negative constant % are given.

Let D and X be two independent random variables. The variable D is Bernoulli
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with P(D = 1) = β and X is a continuous random variable with distribution µ,

zero-mean and finite variance σ2
X . Let U def

={U ∈ L2
µ(R) | U : R → [0, 1]}. Find a

solution to the following:

minimize
U ∈U

J (U ) (3.26)

where the cost is defined for any U in U as follows:

J (U )
def
= E[(X − X̂)2] + %P(U = 1). (3.27)

Here, U ∈ {0, 1}, P(U = 1|X = x)
def
= U (x), the pair (X,U) is independent of

D and X̂ def
= E[X|Z], where Z is the output of the point-to-point collision channel

defined as follows:

Z
def
=





X if U = 1, D = 0

C if U = 1, D = 1

∅ if U = 0.

(3.28)

Remark 3.3. From Propositions 3.1 and 3.2, we conclude that the minimization

of Eq. (3.5) with respect to Ui, while keeping a preselected U∗j fixed, is equivalent

to Problem 3.2 provided that we recognize a correspondence between (X,U,D) and

(Xi, Ui, Uj). To complete this analogy, we can select β as P(Uj = 1) and % as ρU∗j .

Optimality of deterministic threshold policies for Problem 3.2

Notice that the channel specified in Eq. (3.28), which is adopted in the for-

mulation of Problem 3.2, is fundamentally different from the erasure model of [13].
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Unlike the latter where erasures occur independently of the channel input, infor-

mation loss in Eq. (3.28) results from collision events that depend on both U and

the exogenous variable D. Our goal in what follows is to prove Theorem 3.2, which

establishes that there is at least one deterministic threshold policy that is optimal.

This is an important result for the solution of Problem 3.2 because it shows that the

infinite dimensional optimization in Eq. (3.26) can be recast as a finite-dimensional

minimization with respect to the thresholds. Equally important is Lemma 3.2, which

is central for the proof of Theorem 3.1.

We start by stating the following proposition that can be derived from standard

continuity arguments:

Proposition 3.3. Consider a policy U ′ ∈ U for Problem 3.2. Given a positive real

constant ε, there is a policy U ∈ U satisfying the following two inequalities:

|J (U )−J (U ′)| < ε (3.29a)

0 < U (x) < 1, µ− a.e. (3.29b)

The following lemma will be used on the proof of Lemma 3.2 and it states the

solution of a moment minimization problem akin to what can be found in [58].

Lemma 3.1. Consider that a random variable X with distribution µ, constants
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γ ∈ R and α ∈ (0, 1) are given, and consider the optimization problem

minimize
G∈L2

µ(R)
E[X2G (X)]

subject to E[XG (X)] = γ

E[G (X)] = 1

0 ≤ G (x) ≤ 1

1− α, µ− a.e.

(3.30)

If the problem in Eq. (3.30) has a feasible solution G for which the last constraint is

satisfied with strict inequalities then there is an optimal solution Ğ with the following

threshold structure:

Ğ (x) =





1
1−α if ă ≤ x ≤ b̆

0 otherwise,

(3.31)

for some real constants ă and b̆.

Proof. The proof uses a technique from [59, Section 5.7.3] adapted to infinite di-

mensional linear programming. We start by defining a new objective function

C : L2
µ(R) → R+ ∪ {+∞} that incorporates the inequality constraints by mak-

ing them implicit

C (G ) =





E[X2G (X)] if 0 ≤ G (x) ≤ 1
1−α , µ− a.e.

+∞ otherwise.

(3.32)
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This leads to the following equivalent optimization problem:

minimize
G∈L2

µ(R)
C (G )

subject to E[XG (X)] = γ

E[G (X)] = 1.

(3.33)

Letting ν ∈ R2 denote the vector of dual variables ν = (ν0, ν1), the Lagrange

dual function for this problem is

C ∗(ν) = −ν1 − ν0γ + inf
0≤G (x)≤ 1

1−α

E
[
(X2 + ν0X + ν1)G (X)

]
, (3.34)

where the bounds on G hold µ−a.e. The following function minimizes the last term

in the right hand side of Eq. (3.34):

Gν(x) =





1
1−α if x2 + ν0x+ ν1 ≤ 0

0 otherwise,

(3.35)

which when substituted in Eq. (3.34) leads to the following expression for C ∗(ν):

C ∗(ν) = −ν1 − ν0γ −
1

1− α E
[
[X2 + ν0X + ν1]−

]
. (3.36)

In Appendix A.2 it is shown in detail that, provided there exists a feasible solu-

tion G for which the last constraint in Eq. (3.30) is satisfied with strict inequalities,

then strong duality holds and there exists a vector ν∗ ∈ R2 that maximizes C ∗(ν).
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Hence, an optimal solution G ∗ for the problem in Eq. (3.33) is obtained by substi-

tuting such a ν∗ in Eq. (3.35), or equivalently, by setting the equality G ∗ = Gν∗ .

From Appendix A.3, any such ν∗ leads to a polynomial x2 + ν∗0x + ν∗1 that always

admits real roots, which we denote as a∗ and b∗, with a∗ ≤ b∗. Since x2 + ν∗0x + ν∗1

is a convex parabola in x, we can further conclude that the test x2 + ν0x + ν1 ≤ 0

can be replaced with a∗ ≤ x ≤ b∗. Using these facts in conjunction with Eq. (3.35),

we conclude that there is an optimal solution of the form in Eq. (3.31).

Lemma 3.2. Assume that U ′ ∈ U is a given policy for Problem 3.2. For ev-

ery positive real constant ε, there is a deterministic threshold policy Ŭ for which

J (Ŭ ) < J (U ′) + ε.

Proof. Our overarching strategy is to view the problem in Eq. (3.30) as a version

of Problem 3.2 with additional constraints so that we can use Lemma 3.1 to obtain

the desired result.

From Proposition 3.3, we know that from the given U ′, we can construct U ′′

so that the following holds:

J (U ′′) < J (U ′) + ε (3.37a)

0 < U ′′(x) < 1, µ− a.e. (3.37b)
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We now proceed by defining γ and α as follows:

γ
def
= E[X|U ′′ = 0] (3.38a)

α
def
= P(U ′′ = 1) = E[U ′′(X)] (3.38b)

where the action U ′′ is generated from the policy U ′′ as described in Problem 3.2.

The cases when α = 0 or α = 1 immediately correspond to optimal threshold

policies Ŭ (x) = 0, µ − a.e. and Ŭ (x) = 1, µ − a.e., respectively. So, without loss

of generality, we consider that α is in (0, 1).

Fact 1: Given γ and α defined in Eq. (3.38), we conclude that G ′′ defined as

follows:

G ′′(x)
def
=

1−U ′′(x)

1− α , x ∈ R (3.39)

satisfies the constraints of Eq. (3.30), and from Eq. (3.37b) the variable bounds

are satisfied with strict inequality. Hence, we conclude that the conditions for

Lemma 3.1 are satisfied for the γ and α defined in Eq. (3.38). Denote with Uα,γ the

subset of policies U ∈ U for which the following holds:

E[X|U = 0] = γ; E[U (X)] = α, (3.40)

where U is the action generated from U as described in Problem 3.2. For any U

in Uα,γ, J (U ) can be written as:

J (U ) = E
[
β(X − x̂C)2 + % | U = 1

]
α + E

[
(X − x̂∅)2 | U = 0

]
(1− α), (3.41)

37



for which x̂C and x̂∅ are defined as:

x̂C
def
= E[X|Z = C]; x̂∅

def
= E[X|Z = ∅], (3.42)

where Z is the channel output as described in Problem 3.2. Since E [X|U = 1] = x̂C,

we can rewrite the cost as:

J (U ) = (1− β)E
[
X2 | U = 0

]
(1− α)

−
[

(1− α)2

α
β + (1− α)

]
γ2 + %α + βσ2

X , (3.43)

where U ∈ Uα,γ and we used the facts that x̂CP(U = 1) = −x̂∅P(U = 0) and

x̂∅ = E[X|U = 0] = γ.

Fact 2: Notice that for U in Uα,γ, E[X2|U = 0] and E [X|U = 0] can be

written as E [X2G (X)] and E [XG (X)], respectively, where G is found from Bayes’

law to be:

G (x) =
1−U (x)

1− α , x ∈ R. (3.44)

Fact 3: From Fact 2, Eq. (3.44) and Section 3.4, we conclude that minimizing

J (U ) with respect to U constrained to Eq. (3.40) is equivalent to solving the

problem in Eq. (3.30).

From Fact 1 we know that the conditions for the validity of Lemma 3.1 are

satisfied. Hence, from Lemma 3.1, Fact 3 and Eq. (3.44) we conclude that there is a

deterministic threshold policy Ŭ that minimizes J (U ) subject to the constraints

in Eq. (3.40). Such policy can be computed from the solution in Lemma 3.1 as
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follows:

Ŭ (x) = 1 + (α− 1)Ğ (x), x ∈ R. (3.45)

Since Ŭ satisfies Eq. (3.40), by optimality we conclude that J (Ŭ ) ≤ J (U ′′)

holds, which in conjunction with Eq. (3.37a) concludes the proof.

Theorem 3.2. There is a deterministic threshold policy Ŭ ∗ that is optimal for

Problem 3.2.

Proof. Consider that the parameters that specifies an instance of Problem 3.2 are

given and denote the minimum cost in Eq. (3.26) as ς∗. Let U(n) be a sequence

of policies such that limn→∞J (U(n)) = ς∗. From Lemma 3.2, we can define a

sequence of threshold policies Ŭ(n), such that

J (Ŭ(n)) ≤J (U(n)) +
1

n+ 1
. (3.46)

Let ă(n) and b̆(n) be the thresholds associated with Ŭ(n)(x). We now proceed to

study the convergence to an optimum based on the sequence {(ă(n), b̆(n))}∞n=0. We

start by remarking that the sequence {(ă(n), b̆(n))}∞n=0 has at least one subsequence

{(ă(mn), b̆(mn))}∞n=0 for which ă∗ def
= limn→∞ ă(mn) and b̆∗ def

= limn→∞ b̆(mn) are well de-

fined and take values in R̄, with ă∗ ≤ b̆∗. The proof follows by using Eq. (3.46) and

Proposition A.2 (Appendix A.1) to conclude that the thresholds ă∗ and b̆∗ define an

optimal policy for Problem 3.2, which we denote as Ŭ ∗.
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Proof of Theorem 3.1

Our proof is organized in two main steps that hinge on the analogy developed

in the first part of this section, which presents results of independent interest for

an optimal point-to-point remote estimation paradigm that includes communication

costs.

Proof of Theorem 3.1. For any parameter selection that specify an instance of Prob-

lem 3.1, let ς∗ be the minimum cost and select a sequence of policies {(U1,(n),U2,(n))}∞n=0

for which the following holds:

lim
n→∞

J (U1,(n),U2,(n)) = ς∗. (3.47)

Step 1: From Remark 3.3 and Lemma 3.2, we conclude that there is a sequence

of deterministic threshold policies {(Ŭ1,(n), Ŭ2,(n))}∞n=0 for which the following holds:

J (Ŭ1,(n),U2,(n)) ≤ J (U1,(n),U2,(n)) +
1

n+ 1
, n ≥ 0 (3.48a)

J (U1,(n), Ŭ2,(n)) ≤ J (U1,(n),U2,(n)) +
1

n+ 1
, n ≥ 0. (3.48b)

Step 2: We can repeat the method used in Step 1 to conclude that there

is a sequence of deterministic threshold policies {( ˘̆U1,(n),
˘̆U2,(n))}∞n=0 for which the
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following holds:

J (Ŭ1,(n),
˘̆U2,(n)) ≤ J (Ŭ1,(n),U2,(n)) +

1

n+ 1
, n ≥ 0 (3.49a)

J (
˘̆U1,(n), Ŭ2,(n)) ≤ J (U1,(n), Ŭ2,(n)) +

1

n+ 1
, n ≥ 0. (3.49b)

Our conclusion from Eqs. (3.47) to (3.49) is that the sequences {( ˘̆U1,(n), Ŭ2,(n))}∞n=0

and {(Ŭ1,(n),
˘̆U2,(n))}∞n=0 satisfy the following:

lim
n→∞

J (
˘̆U1,(n), Ŭ2,(n)) = ς∗ (3.50a)

lim
n→∞

J (Ŭ1,(n),
˘̆U2,(n)) = ς∗. (3.50b)

Without loss of generality, we proceed to analyze the convergence of the se-

quence {( ˘̆U1,(n), Ŭ2,(n))}∞n=0 to an optimal solution. An equivalent argument could

have been developed using {(Ŭ1,(n),
˘̆U2,(n))}∞n=0. Let ˘̆a∗1,

˘̆
b∗1, ă∗2 and b̆∗2 be constants in

R̄ for which there is a subsequence {( ˘̆U1,(mn), Ŭ2,(mn))}∞n=0 whose associated thresh-

olds satisfy limn→∞ ˘̆a1,(mn) = ˘̆a∗1, limn→∞
˘̆
b1,(mn) =

˘̆
b∗1, limn→∞ ă2,(mn) = ă∗2 and

limn→∞ b̆2,(mn) = b̆∗2. The proof is concluded by invoking Proposition A.1 (Ap-

pendix A.1) to show that the thresholds ˘̆a∗1,
˘̆
b∗1, ă∗2 and b̆∗2 define an optimal policy,

which we denote as (Ŭ∗1 , Ŭ∗2 ).

Remark 3.4. Note that the proofs of the structural results of Theorems 3.1 and 3.2

are completely independent of the distributions of X1 and X2, as long as they are zero

mean independent continuous random variables with finite variances. In fact, X1

and X2 may come from completely different families of distributions. The structural
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a1 b1

Ŭ∗1 (x)

x

a2 b2

Ŭ∗2 (x)

x

Figure 3.3: There exists an team-optimal pair (Ŭ∗1 , Ŭ∗2 ) of threshold policies for
Problem 3.1 even if the densities are asymmetric or multimodal.

result of Theorem 3.1 is also true for a sensing system with any number of sensors

measuring mutually independent random variables, under the additional assumption

that the remote estimator can decode the indices of the sensors involved in a collision.

3.5 Consequences for more general systems

In most sequential multi-agent decision making problems, it is useful to solve

the problem for a single pair of agents in a single time step to characterize the

structure of the team-optimal policies. Our results constitute a first step in solv-

ing a decentralized sequential estimation problem over a collision channel, providing

valuable insights into the nature of its team-optimal solutions. Despite the apparent

simplicity of our model, our results have implications for a wide class of systems.

Firstly, the structural results herein also hold for continuous random vectors, re-
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quiring only minor modifications in the proofs. We chose to present the results for

scalar random variables to simplify the proofs and facilitate the visualization of the

threshold policies in R, since in Rn they would become hyper-ellipsoidal surfaces.

Another important feature of our formulation is that the results hold for an arbi-

trary number of sensor nodes measuring independent random variables. In order to

see this, we need the additional assumption that the remote estimator can decode

the index of the sensors that were involved in a collision. Then, when solving the

person-by-person optimization problem, we can treat the sensors with fixed strate-

gies as a “superuser” observing a random vector and occupying the channel with

a given probability β. Following the same arguments of Section 3.4 we obtain the

same structural result.

The one-shot problem we have solved is a fundamental building block for the

sequential problem. The fact that the result is independent of the probability density

functions of the measurements is particularly important in the sequential case with

feedback because the state of a Gauss-Markov system conditioned on the channel

outputs or acknowledgements has a distribution that is no longer Gaussian. Finally,

we have shown that the optimal thresholds can be asymmetric for a single stage

problem with even probability density functions. This implies that the restriction

to symmetric threshold policies is suboptimal for more general sequential event-

based estimation problems over the collision channel.

43



3.6 Summary

We studied the collision channel as a model for interference in a multi-sensor

remote estimation problem. Our goal was to characterize team-optimal communi-

cation policies in a simple interference setting. Using a person-by-person optimality

approach, we established the existence of a team-optimal strategy which consists of

threshold policies. We showed that, from the perspective of a single decision maker,

the aggregate quadratic cost can be decomposed in two terms: a mean squared es-

timation error and a communication cost. For this cost, we proved that there exist

an optimal threshold communication policy. The proofs of our results hinge on La-

grange duality applied to a generalized moment optimization problem with variable

bounds. The structural results obtained here are independent of the distributions

of the random variables.
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Chapter 4: Numerical computation of optimal thresholds

In this chapter, we turn our focus to the design of optimal policies for Prob-

lem 3.2, which will ultimately lead to person-by-person optimal policies for Prob-

lem 3.1. We base our arguments on the observation that Problem 3.2 can be under-

stood as an one-bit quantization problem with distinct quadratic distortion metrics

across two quantization regions. The intuition behind this interpretation comes from

the fact that the sensor’s decision of transmitting or not can be exploited for commu-

nication by embedding in the two possible actions an additional bit of information.

When the transmission is successful, this additional bit is redundant because the

received packet already contains all the relevant information for a perfect estimate.

However, when the transmission fails due to the occurrence of a collision, the esti-

mator forms X̂ based on this additional bit. The objective of the system’s designer

is to “compress” in this bit (represented by ∅ and C) the maximum amount of in-

formation about X as possible. This situation does not occur if instead of collisions

we had random erasures. The observation of an erasure does not reveal the sensor’s

intent to communicate since they cannot be distinguished from “erasures” due to

the absence of transmitted packets when the channel is idle.
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4.1 Policy design via quantization theory

The structural result of Theorem Theorem 3.2 established the existence of

an optimal deterministic threshold policy for Problem 3.2. Here we will make the

analogy with one-bit quantization more precise. First, we will let U act as a de-

terministic encoder, which partitions the real line R into two measurable sets A0

and A1 = Ac
0 such that A0

def
= U −1(0) and A1

def
= U −1(1). We relax Problem 3.2 by

letting the estimator E lie in a class of admissible deterministic decoders, where

E (z) = z, if z /∈ {∅,C}. (4.1)

Let x̂∅, x̂C ∈ R, define

E (∅)
def
= x̂∅ and E (C)

def
= x̂C. (4.2)

With the cost in Problem 3.2 now depending on U and E , and assuming that the

random variable X has zero mean, finite variance σ2
X , and admits a probability

density function fX(x), we can rewrite the functional as

J̃ (U ,E ) =

∫

A0

(x− x̂∅)2fX(x)dx+

∫

Ac0

[
β(x− x̂C)2 + %

]
fX(x)dx. (4.3)

Our goal is to choose a partition of R into a measurable set A0 and its complement

Ac
0 and their respective representation points x̂∅ and x̂C such as to minimize the

average distortion quantified by J̃ (U ,E ).
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Applying the structural result obtained in Chapter 3 the optimal partition is

such that A0 = [a, b], where a ≤ b and a, b ∈ R̄. When they exist1, the optimal

thresholds and representation symbols can be found by solving the optimization

problem in Eq. (4.4) with variables in a, b, x̂∅, x̂C ∈ R:

minimize
∫

[a,b]

(x− x̂∅)2fX(x)dx+

∫

[a,b]c

[
β(x− x̂C)2 + %

]
fX(x)dx

subject to a ≤ b

(4.4)

In other words, the communication and estimation policies that jointly minimize

the cost J̃ (U ,E ) can be found by solving an optimal scalar quantization problem

of a random variable X ∼ fX(x), where representation symbols are penalized by

distinct quadratic distortion functions.

Remark 4.1. Relaxing the estimator to lie in a larger class of admissible estimators,

rather than fixing it as the conditional expectation operator, will be important in

order to obtain a numerical procedure for finding solutions for Problem 3.2.

The nearest neighbor condition and an equivalent problem

Let x̂ def
=(x̂∅, x̂C) ∈ R2. For any given x̂, the set A∗0 which yields the minimal

cost must satisfy

x ∈ A∗0 ⇔ (x− x̂∅)2 ≤ β(x− x̂C)2 + %. (4.5)
1The existence of optimal thresholds for Gaussian observations was established in [45].
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This is true regardless of the probability density function fX(x). Since % ≥ 0, for

0 ≤ β < 1, the second degree polynomial

Px̂(x)
def
=(x− x̂∅)2 − β(x− x̂C)2 − % (4.6)

admits two distinct real roots2. We will denote the minimum of these roots by a(x̂)

and the largest by b(x̂). Therefore, without loss of optimality, we may assume that

the no-transmission interval is, for a given x̂,

A0 = [a(x̂), b(x̂)] , (4.7)

and the cost is reduced to a function Jq : R2 → R defined as

Jq(x̂)
def
=

∫

[a(x̂),b(x̂)]

(x− x̂∅)2fX(x)dx+

∫

[a(x̂),b(x̂)]c

[
β(x− x̂C)2 + %

]
fX(x)dx, (4.8)

where the two maps a : R2 → R and b : R2 → R are given by

a(x̂)
def
=

1

1− β
[
(x̂∅ − βx̂C)−

√
β(x̂∅ − x̂C)2 + (1− β)%

]
(4.9)

and

b(x̂)
def
=

1

1− β
[
(x̂∅ − βx̂C) +

√
β(x̂∅ − x̂C)2 + (1− β)%

]
. (4.10)

Remark 4.2. The function Jq(x̂) is twice continuously differentiable at every x̂ ∈
2When β = 1, the polynomial Px̂(x) admits a single root. This case can be arbitrarily well

approximated by a sequence of problems with βn ∈ [0, 1) such that {βn} ↑ 1.
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R2. Furthermore, there is no loss in optimality in minimizing Jq(x̂) over R2 instead

of solving the problem in Eq. (4.4), which is defined over R4 [42].

Therefore, we have an equivalent finite dimensional unconstrained optimiza-

tion problem in terms of the pair of representation points x̂ that specify the estimator

E :

Problem 4.1. Given the constants % ≥ 0, β ∈ [0, 1) and fX(x), solve the uncon-

strained nonlinear optimization problem

minimize
x̂∈R2

Jq(x̂). (4.11)

The centroid condition

We now obtain a set of necessary optimality conditions corresponding to

∇Jq(x̂∗) = 0.

Proposition 4.1. Any minimizing x̂∗ = (x̂∗∅, x̂
∗
C) must satisfy

∫

[a(x̂∗),b(x̂∗)]

(x− x̂∗∅)fX(x)dx = 0 (4.12)
∫

[a(x̂∗),b(x̂∗)]c
(x− x̂∗C)fX(x)dx = 0. (4.13)

Proposition 4.1 essentially states that the optimal representation points must

be centroids of the interval A∗0 = [a(x̂∗), b(x̂∗)], defined by the two roots of Px̂∗(x),

and its complement. If the density fX has full support on R, the conditions in
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Proposition 4.1 can be written more compactly as

x̂∗ = F(x̂∗), (4.14)

where F : R2 → R2 such that

F(x̂)
def
=




1∫ b(x̂)
a(x̂)

fX(x)dx

−1

1−
∫ b(x̂)
a(x̂)

fX(x)dx




∫ b(x̂)

a(x̂)

xfX(x)dx. (4.15)

Hence, any critical point of Jq(x̂) and, in particular, any optimal solution x̂∗ are

fixed-points of the nonlinear map F . The first and second components of the vector

F(·) are denoted by F∅(·) and FC(·), respectively.

Proposition 4.2. If fX has full support on R and is even, the following statements

about the map F in Eq. (4.15) hold:

1. Any nonzero fixed point x̂ must satisfy

sgn(x̂∅) = − sgn(x̂C) (4.16)

2. The vector x̂ = (0, 0) is always a fixed point

3. If x̂ is a fixed point then −x̂ is also a fixed point

4. The set

Lβ
def
={x̂ ∈ R2 | x̂∅ = βx̂C} (4.17)

is mapped into (0, 0)
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5. Any fixed point x̂ satisfies

|x̂∅||x̂C| ≤ σ2
X , (4.18)

where σ2
X = V(X).

Proof. The first statement can be readily verified from the definition of F . To prove

the second statement we compute a(·) and b(·) at x̂ = (0, 0), which yield

b(0, 0) = −a(0, 0) =

√
ρ

1− β . (4.19)

Since fX(x) is an symmetric probability density function,
∫ b
−b xfX(x)dx = 0, which

implies that F(0, 0) = (0, 0). The third statement can be shown by assuming that

F(x̂) = x̂ and computing F(−x̂). It can be verified that a(−x̂) = −b(x̂). Therefore,

with a change of variables we obtain

∫ b(−x̂)

a(−x̂)

xfX(x)dx =

∫ −a(x̂)

−b(x̂)

xfX(x)dx = −
∫ b(x̂)

a(x̂)

xfX(x)dx (4.20)

and

∫ b(−x̂)

a(−x̂)

fX(x)dx =

∫ −a(x̂)

−b(x̂)

fX(x)dx =

∫ b(x̂)

a(x̂)

fX(x)dx. (4.21)

Substituting these in the expression of F(−x̂), we obtain

F(−x̂) = −F(x̂) = −x̂. (4.22)
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The fourth statement can be verified by noticing that for x̂ ∈ Lβ, we have a(x̂) =

−b(x̂). Since fX(x) is even,

∫ b(x̂)

a(x̂)

xfX(x)dx = 0. (4.23)

Finally, since x̂∅ = E [X | a(x̂) ≤ X ≤ b(x̂)], the following inequality holds [60]:

|x̂∅| ≤ σX


1−

∫ b(x̂)

a(x̂)
fX(x)dx

∫ b(x̂)

a(x̂)
fX(x)dx




1
2

. (4.24)

From the definition of F(x̂),

x̂C = −
∫ b(x̂)

a(x̂)
fX(x)dx

1−
∫ b(x̂)

a(x̂)
fX(x)dx

x̂∅, (4.25)

which implies that

|x̂C| ≤ σX




∫ b(x̂)

a(x̂)
fX(x)dx

1−
∫ b(x̂)

a(x̂)
fX(x)dx




1
2

. (4.26)

Eqs. (4.24) and (4.26) imply the inequality in Eq. (4.18).

The following proposition reveals an important symmetry property of the cost

function Jq(x̂).

Proposition 4.3. If fX(x) is an symmetric probability density function, then the

cost Jq(x̂) is an even function. In particular, if fX(x) = N (0, σ2), the cost Jq(x̂) is

an even function.

Proof. The proof follows from the fact that a(−x̂) = −b(x̂), then performing a
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change of variables in the integrals of the expression of Jq(−x̂) with the assumed

symmetry of fX(x).

It is easy to show that if fX is an even probability density function, then the

cost Jq(x̂) is an even function. In particular, if X ∼ N (0, σ2
X) the cost function in

Eq. (4.8) is even. One important consequence this fact together with Proposition 4.2

is that, for any even density fX , the search for an optimal solution x̂∗ may be

constrained to either

Q1
def
={x̂ ∈ R2 | x̂∅ ≥ 0, x̂C ≤ 0} (4.27)

or

Q2
def
={x̂ ∈ R2 | x̂∅ ≤ 0, x̂C ≥ 0} (4.28)

without loss of optimality. Figure 4.1 shows where the stationary points of F may

lie.

4.2 Examples

In this section we provide examples of optimal policies for Problem 3.2 obtained

as solutions to Problem 4.1 when X ∼ N (0, σ2
X).

Example 4.1 (Non-convexity of the cost function). Consider the cost Jq(x̂) for a

typical choice of parameters: let X ∼ N (0, 1), β = 0.5 and % = 1 in Problem 4.1.

The plot of the cost function in log-scale is shown in Fig. 4.2 and its level curves are

shown in Fig. 4.3. These two figures allow us to make two important observations.

First, since the sublevel sets are not convex, Jq(x̂) is neither convex nor quasi-
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Q2

Q1

|x̂∅||x̂C| = σ2
X

|x̂∅||x̂C| = σ2
X

x̂∅

x̂C

Lβ

Figure 4.1: The shaded region of R2 shown above contains all the critical points of
Jq(x̂) when fX is an even density. The origin is always a critical point and the line
Lβ is entirely mapped by F into (0, 0).

convex. This is the case even if we constrain its domain to Q1 or Q2. The second

observation is the occurrence of a single minimum in each Qi, i ∈ {1, 2}. However,

due to the intricate structure of Jq(x̂), obtaining a proof of this fact remains an open

problem.

The optimal solutions to the various minimization problems considered in what

follows were obtained using standard nonlinear programming solvers constraining

Jq(x̂) to Q1. More sophisticated algorithms for solving Problem 4.1 with optimality

guarantees (such as the Branch-and-bound method) can be used along with the fact

that Jq(x̂) can be decomposed as a difference of convex functions since it is twice

continuously differentiable [61].

Example 4.2 (Optimality of asymmetric thresholds). Let X ∼ N (0, 1), β = 0.5

and % = 1 in Problem 4.1. A pair of representation points that minimize the cost

54



−3
−2

−1
0

1
2

3

−5−4
−3

−2−1
01

23
45

−0.5

0

0.5

1

1.5

2

2.5

x̂0

logJq(x̂)

x̂1

lo
g

J q
(x̂

)

x̂?x̂C
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−0.653 4.898

N (0, 1)

U∗(x)

x

Figure 4.4: Optimal threshold policy for the problem in Example 4.2.

function in Eq. (4.8) is x̂∗ = (0.434,−1.255) corresponding to a cost J ∗q = 0.681. By

using the expressions in Eqs. (4.9) and (4.10), we obtain the values of the optimal

thresholds of the optimal no-transmission interval A∗0 = [−0.653, 4.898]. This policy

is depicted in Fig. 4.4. Therefore, the optimal no-transmission interval is charac-

terized by asymmetric thresholds. If, on the other hand, we consider only symmetric

threshold policies, by the centroid conditions, their optimal representation points are

(0, 0)
def
= x̂sym. Hence, the optimal cost within the class of symmetric policies is

J ∗sym
def
= Jq(0, 0) = 0.871 > J ∗q . (4.29)

We cast the observation about the asymmetry of the optimal thresholds drawn

from Example 4.2 as the following remark.

Remark 4.3. For β > 0 the optimal communication policies for Problem 3.2 have,

in general, asymmetric thresholds.

This may lead us to erroneously assume that when β > 0 the optimal policies

must be asymmetric. The purpose of the next example is to show this is not always
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the case.

Example 4.3 (Optimality of symmetric thresholds). Consider Problem 3.2 with

X ∼ N (0, 1), β = 0.1 and % = 1. In this case, we can verify numerically that

the pair of representation points that minimizes the cost function in Eq. (4.8) is

x̂∗ = (0, 0), yielding a cost J ∗q = 0.595. Recovering the corresponding optimal

no-transmission interval we have A∗0 = [−1.054, 1.054]. This policy is depicted in

Fig. 4.5.

−1.054 1.054

N (0, 1)

U∗(x)

x

Figure 4.5: Optimal threshold policy for the problem in Example 4.3.

It is also interesting to observe how the optimal thresholds vary with the vari-

ance σ2
X . Table 4.1 shows that when σ2

X increases, the no-transmission interval has

a positive drift and its length increases while its probability decreases. This means

that transmissions will occur more often as the variance of the random variable X

increases.

4.3 A modified Lloyd-Max algorithm

In this section of the chapter, we propose an iterative procedure inspired by the

Lloyd-Max algorithm [62] to design optimal communication and estimation policies
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σ2
X x̂∗ A∗

0 J ∗
q P(U = 1)

1 (0, 0) [−1.054, 1.054] 0.595 0.292
2 (0.505,−0.565) [−0.495, 1.743] 0.822 0.472
3 (1.124,−0.789) [0.086, 2.586] 0.970 0.588
4 (1.658,−0.856) [0.562, 3.313] 1.085 0.660
5 (2.130,−0.886) [0.970, 3.960] 1.186 0.706

Table 4.1: Numerical results of the optimization Problem 3.2 when X ∼ N (0, σ2
X),

β = 0.1 and % = 1 for different values of σ2
X .

for Problem 3.2. We call this procedure the Modified Lloyd-Max (MLM) algorithm.

The MLM is an alternative to standard nonlinear solvers to find optimal solutions

to Problem 4.1. The k-th iteration of the MLM algorithm consists of two steps:

• Threshold update step: For a fixed pair of representation points x̂(k) ∈ R2,

update the thresholds that define the no-transmission interval according to

A(k)
0 = [a(x̂(k)), b(x̂(k))] (4.30)

• Centroid computation step: Obtain a new pair of representation points

x̂(k+1) as the centroids of A(k)
0 and its complement, i.e.,

x̂
(k+1)
∅ = E

[
X | X ∈ A(k)

0

]
, (4.31)

and

x̂
(k+1)
C = E

[
X | X /∈ A(k)

0

]
. (4.32)

Henceforth, we will consider only the Gaussian case by assuming thatX ∼ N (0, σ2
X).

This allows us to make important claims and observations about the MLM algo-
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rithm, properties of fixed points and its convergence.

An equivalent nonlinear autonomous dynamical system

The MLM algorithm outlined above can be understood as a nonlinear dynam-

ical system described by successive applications of the map F in Eq. (4.15). For a

fixed x̂(0) 6= (0, 0),

x̂(k+1) = F(x̂(k)), k = 0, 1, . . . (4.33)

It is important that the initial point x̂(0) is a nonzero vector, otherwise the algorithm

outputs a sequence identically equal to zero. When X ∼ N (0, σ2
X) , it can be shown

that the sets Q1 and Q2 are invariant to the map F , i.e.,

F(Qi) ⊂ Qi, i ∈ {1, 2}. (4.34)

Therefore, a sequence of points generated by Eq. (4.33) will either belong to Q1

or Q2 depending on the initial condition x̂(0). Furthermore, it is a well-known fact

that the Lloyd-Max iterations generate a non-increasing sequence of values of the

objective function [63], i.e.,

Jq(x̂(k+1)) ≤ Jq(x̂(k)), k = 0, 1, . . . (4.35)
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On the convergence of the MLM algorithm

In general, unless it is known that F is a Banach contraction, there are no

guarantees that the dynamical system describing the MLM algorithm will converge

to a unique fixed point. Moreover, empirical evidence shows that for a very large

set of parameters, there are multiple fixed points. Therefore, it is unlikely that

such contraction properties will hold for F . However, the fact that the MLM is a

descent algorithm together with the fact that the stationary points in Qi, i ∈ {1, 2}

are isolated indicate that convergence results to a local minimum may be proved.

The paper by Du et al. [64] present several convergence results for Lloyd-Max type

algorithms that can be used to establish convergence of the MLM. In particular, [64,

Theorem 2.6] states:

If the iterations in the Lloyd algorithm stay in a compact set where the

Lloyd map F is continuous, then the algorithm is globally convergent to

a critical point of Jq(x̂).

In Appendix B we show the existence of such a compact set when X ∼

N (0, σ2
X), β ∈ [0, 1) and % ≥ 0. Under these conditions, the MLM is globally

convergent to a local minimum of Jq(x̂) .

Remark 4.4. The classic sufficient condition due to Fleischer in [42] stating that

if fX is a log-concave density with full support on R, the Lloyd-Max algorithm con-

verges to a unique stationary point does not hold here due to the non-uniformity of

the distortion metric in the quantization problem in Eq. (4.4).
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4.4 Numerical results

When X ∼ N (0, σ2
X) the design of the transmission thresholds and representa-

tion points can be done by means of a globally convergent algorithm, which consists

of iteratively applying a nonlinear map F to a nonzero initial vector x̂(0) ∈ Qi,

i ∈ {1, 2}. Since Jq(x̂) is non-convex we are not able to claim that a critical point

found through the MLM algorithm is a global minimum, but from observing the

general shape of Jq(x̂) for several combination of parameters, we conjecture that

F will have at most two critical points in each Qi, i = 1, 2. One of the stationary

points is always (0, 0), which can be a global minimum in some cases. For exam-

ple, the trajectory of a sequence {x̂(k)} → (0, 0) generated by the MLM applied to

x̂(0) = (1,−1) when β = 0.1 and % = 1 is shown in Fig. 4.6. The stopping criterion

used was based on the magnitude of the gradient at x̂(k) as follows

‖∇Jq(x̂(k))‖ < 10−6. (4.36)

In most cases, however, the global minimum is a nonzero stationary point,

which will correspond to asymmetric thresholds for the no-transmission interval A∗0.

Fig. 4.7 illustrates the trajectory of points generated by F when β = 0.3, % = 1

and σ2
X = 1. The initial condition x̂(0) was chosen to lie on the curve x̂∅x̂C = −σ2

X .

In all the numerical examples of this section, the algorithm was initialized with

x̂(0) = (σX ,−σX).

We obtained the optimal solutions of Problem 3.2 with the probability of
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β x̂∗ A∗
0 P(A∗

0) J ∗
q Nit

0 (0, 0) [−1, 1] 0.683 0.516 39
0.1 (0, 0) [−1.054, 1.054] 0.708 0.595 168
0.2 (0.408,−1.008) [−0.608, 2.133] 0.712 0.649 27
0.3 (0.454,−1.183) [−0.596, 2.908] 0.723 0.666 21
0.4 (0.447,−1.231) [−0.624, 3.756] 0.734 0.675 22
0.5 (0.434,−1.255) [−0.653, 4.898] 0.743 0.681 22
0.6 (0.421,−1.275) [−0.680, 6.612] 0.752 0.687 22
0.7 (0.409,−1.295) [−0.705, 9.477] 0.760 0.693 22
0.8 (0.399,−1.313) [−0.729, 15.22] 0.767 0.699 22
0.9 (0.388,−1.330) [−0.752, 32.47] 0.774 0.704 23
0.99 (0.380,−1.345) [−0.772, 343.1] 0.780 0.709 23

Table 4.2: Numerical results of the optimization Problem 3.2 when % = 1, σ2
X = 1

and different values of β.

collision β varying from zero to 0.99, which are displayed in Table 4.2. A few

observations can be drawn from this table. First, we notice that when β = 0.1 the

number of iterations Nit to achieve the convergence criterion in Eq. (4.36) is much

larger than for any other row. This is justified by the values of the cost function

evaluated near the origin being very close to the minimum. Therefore, all the points

around (0, 0) are nearly stationary, hence the slow convergence.

Another interesting observation is that when the probability of a concurrent

transmission β approaches 1, the no-transmission interval A∗0 tends to increase.

However, we can see that its probability tends to a value bounded away from 1.

Therefore, even when the collision event has probability 1, it may be worth paying

the communication cost to transmit a packet because the optimal strategy always

conveys one-bit of information through the collision and no-transmission symbols.

The dependency of the optimal solutions with the communication cost % when

β = 0.5 and σ2
X = 5 is shown in Table 4.3. We make the following observations.

Even when communication is free (% = 0), the optimal no-transmission interval has
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% x̂∗ A∗
0 P(A∗

0) J ∗
q Nit

0 (2.360,−1.279) [0.853, 11.14] 0.351 1.244 29
0.1 (2.321,−1.309) [0.800, 11.10] 0.361 1.309 29
0.2 (2.283,−1.339) [0.744, 11.07] 0.370 1.372 28
0.5 (2.169,−1.432) [0.580, 10.96] 0.398 1.557 28
1 (1.986,−1.591) [0.311, 10.82] 0.445 1.846 25
2 (1.655,−1.917) [−0.206, 10.66] 0.537 2.355 27
5 (0.970,−2.806) [−1.460, 10.95] 0.743 3.406 23
10 (0.457,−3.866) [−2.795, 12.35] 0.894 4.246 16
20 (0.135,−5.223) [−4.377, 15.36] 0.975 4.792 10
50 (0.006,−7.686) [−7.078, 22.47] 0.999 4.993 5

Table 4.3: Numerical results for Problem 3.2 when β = 0.5 and σ2
X = 5 for various

values of %.

a positive probability. This is because there is a probability that information will

be lost due to a collision. In order to make the best use of the virtual signaling

channel (see Fig. 4.9), the Shannon entropy H(U) must be nonzero, which forces

P(U = 0) = P(A∗0) > 0.

When %→ +∞ two notable things happen. One is that the number of itera-

tions required to achieve the convergence criterion in Eq. (4.36) decreases sharply.

Also, as opposed to the case when β → 1, the probability of the no-transmission

interval tends to one, P(A∗0) → 1, as % increases. Therefore, not transmitting will

turn out to be optimal in the regime of very large communication costs.

4.5 Person-by-person optimal policies for the Gaussian case

Table 4.4 illustrates that the results developed in the previous sections can

be used to obtain person-by-person optimal policies for Problem 3.1 when Xi ∼

N (0, σ2
i ), i ∈ {1, 2}. Letting σ2

2 = 1 and varying σ2
1, we applied the MLM algo-

rithm, alternating between the optimization of the policies for DM1 and DM2 until
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a fixed point was found. We do not have a proof that this procedure converges

globally, but the policies obtained can be verified to be person-by-person optimal.

The communication policy for DMi is summarized by its no-transmission interval

denoted by A∗i,0.

We observe that as the variance of the observations of DM1 increases, the

person-by-person optimal policies are such that the channel will be more often ac-

cessed by DM1 and less often accessed by DM2. This will cause a decrease in the

probabilities of collisions and of an idle channel. It is interesting to note that all the

policies listed in Table 4.4 outperform traditional sensor scheduling policies in which

only the sensor measuring the random variable with the largest variance, which is

the one that can reduce the cost the most, transmits. In that case, even with colli-

sions, the person-by-person optimal policies when σ2
1 = σ2

2 = 1 outperform the naive

scheduling policy by approximately 46%. That is the case even when σ2
1 = 5, which

is considerably larger than σ2
2 = 1, yielding a gain of approximately 3% over the

scheduling policy. Also note that when σ2
1 = σ2

2 = 1, the framework of Problem 3.1

is completely symmetric, i.e., X1 and X2 are identically distributed and fX is an

even probability density function. Despite these two facts, the person-by-person

optimal policies listed in the first row of Table 4.4 have asymmetric thresholds. The

pair of person-by-person optimal policies obtained for σ2
1 = σ2

2 = 1 is depicted in

Fig. 4.8. This is a major departure from the previous results in remote estimation

from [37–41], all of which establish the optimality of symmetric threshold policies.
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σ2
1 A∗

1,0 A∗
2,0 P(C) P(∅) J ∗

1 [0.098, 5.359] [0.098, 5.359] 0.290 0.213 0.540
2 [0.864, 4.534] [−0.545, 10.50] 0.214 0.191 0.764
3 [1.877, 4.060] [−1.260, 27.67] 0.090 0.116 0.889
4 [2.635, 4.158] [−1.718, 56.71] 0.040 0.072 0.945
5 [3.236, 4.374] [−2.051, 98.63] 0.019 0.048 0.971

Table 4.4: Person-by-person optimal policies for DM1 and DM2 in Problem 3.1
where the measurements are independently distributed as X1 ∼ N (0, σ2

1) and X2 ∼
N (0, 1).

0.098 5.359

N (0, 1)

U∗1 (x),U∗2 (x)

x

Figure 4.8: Person-by-person optimal policies obtained for Problem 3.1 when X1 ∼
N (0, 1) and X2 ∼ N (0, 1).
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4.6 On the optimality of asymmetric thresholds

An interesting feature of the person-by-person policies of Table 4.4 is the asym-

metry of optimal thresholds. This can be intuitively justified by the presence of a

collision symbol at the channel output, which can be used to convey information to

the remote estimator. Note that when the probability of the channel being occupied

in Problem 3.2 is zero, the optimal policies are always symmetric. The presence of

two distinct symbols for collision and no-transmission creates an implicit noiseless

channel between the sensor and estimator shown in Fig. 4.9. For a given com-

munication cost, asymmetric communication policies can lower the variance of the

estimation error in Problem 3.2 and, consequently, may be optimal for Problem 3.1.

Notice that for the models in [13], in which collisions and communication costs are

not considered, it is optimal to always transmit.

U = 1
cost %

U = 0
free

input output
1− β

β

1

X X

C

∅∅

Figure 4.9: Implicit channel between the sensor and the remote estimator in Prob-
lem 3.2.

4.7 Summary

We considered the design of optimal thresholds of communication policies the

remote estimation problem over the collision channel. First, we established the
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connection between Problem 3.2 and a new class of one bit quantization problems.

Then, we showed that the optimal thresholds can be symmetric or asymmetric,

depending on the parameters that describe the optimization problem. We show that

asymmetric threshold policies exploit the additional output symbol in the output

of the channel to transmit valuable information to the remote estimator. Finally,

a Lloyd-Max type algorithm is proposed and shown to be globally convergent to a

locally optimal solution in the Gaussian case.
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Chapter 5: Maximum a posteriori probability estimation over the col-

lision channel

So far, our results concern only the estimation of continuous random vari-

ables in the mean square sense over the collision channel. However, most modern

systems have state spaces that either digital or discrete in nature. In this chap-

ter, we consider a Bayesian estimation problem illustrated by the block diagram

of Fig. 5.1: Two sensors observing independent discrete random variables, decide

whether to communicate their measurements to a remote estimator over a collision

channel according to stochastic communication policies. The communication con-

straint imposed by the collision channel is such that only one sensor can transmit its

measurement perfectly; and if more than one sensor transmit simultaneously, a colli-

sion is declared. Upon observing the channel output, the estimator forms estimates

of all the measured random variables. The goal is to design communication policies

at the sensors and at the fusion center so as to form estimates of all of the observed

random variables with two fidelity criteria: a convex combination of the individual

probabilities of estimation errors, and a total probability of estimation error. We

show that there exist person-by-person optimal policies for these problems with a

certain deterministic structure involving only the two most likely outcomes of each
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Figure 5.1: Block diagram representation for estimation over the collision channel.

random variable. This structure is then used to find team-optimal policies for any

probability mass functions of the observed random variables. In particular, we find

a team-optimal strategy for the case of minimum total probability of estimation

error, which consists of each sensor transmitting all of the observations except the

most likely one.

5.1 System model

Consider two independent discrete random variables X1 and X2 taking values

on finite or countably infinite alphabets X1 and X2, respectively. Let i ∈ {1, 2},

the random variable Xi is arbitrarily distributed according to a probability mass

function pi(xi), where xi ∈ Xi. Without loss of generality, we assume that every

element of Xi has a strictly positive probability, i.e., pi(xi) > 0 for all xi ∈ Xi.

The decision maker DMi observes the realization xi, and must decide to attempt

to transmit it or not to the remote estimator, based solely on its measurement,

according to a communication policy Ui. The decision to attempt a transmission or

not is represented by a binary random variable Ui ∈ {0, 1}, where Ui = 1 denotes

an attempt to transmit and Ui = 0 denotes the decision to remain silent.
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Definition 5.1 (Communication policies). The communication policy for DMi is a

function Ui : Xi → [0, 1] such that

P(Ui = 1|Xi = xi)
def
= Ui(xi), i ∈ {1, 2}. (5.1)

The set of all communication policies for DMi is denoted by Ui = [0, 1]|Xi|. The chan-

nel input Si corresponds to a communication packet1, whose content is determined

as follows:

Si =





Xi if Ui = 1

∅ if Ui = 0

, i ∈ {1, 2}, (5.2)

where the symbol ∅ denotes no-transmission.

Remark 5.1. The transmitted packets always contain in their headers the identifi-

cation number of its sender. This allows the estimator to unambiguously determine

the origin of every successfully received packet.

Definition 5.2 (Collision Channel). The channel input alphabet for DMi is Si
def
= Xi∪

{∅}, and the channel output alphabet is Y def
= ({1× X1} ∪ {2× X2}) ∪ {∅,C}, where

C represents the occurrence of a collision. The symbol ∅ indicates absence of trans-

mission. The collision channel is a deterministic two-input map χ : S1 × S2 → Y
1The concept of packet used here is slightly different from the usual notion from the literature

of communication networks. Here, a packet is not constrained on the number of bits it may carry.
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defined as follows:

χ(s1, s2)
def
=





(1, s1) if s1 6= ∅, s2 = ∅

(2, s2) if s1 = ∅, s2 6= ∅

∅ if s1 = ∅, s2 = ∅

C if s1 6= ∅, s2 6= ∅.

(5.3)

Remark 5.2. There is a fundamental difference between the collision channel de-

scribed above and the erasure channel commonly found in the literature of remote

control and estimation, e.g. [13]: there are two distinct symbols to represent no-

transmission and collision events. This creates an opportunity to embed on these

symbols information that can aid the fusion center in estimating the observed ran-

dom variables even when the communication fails.

5.1.1 Aggregate probability of estimation error

For any given pair of communication policies (U1,U2) ∈ U1×U2, the estimator

is interested in forming estimates X̂1 and X̂2 that minimize a fidelity criterion con-

sisting of a convex combination of the individual probabilities of error of estimating

X1 and X2. Define JA : U1 × U2 → R such that

JA(U1,U2)
def
= α1P(X1 6= X̂1) + α2P(X2 6= X̂2), (5.4)

where α1, α2 > 0, such that α1 + α2 = 1.

The motivation for using this criterion is that, in some situations, it is possible
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that one of the random variables is more important to the estimator than the other.

This cost allows the receiver to set the priority of each of the random variables it is

interested in. It is straightforward to show that for any two communication policies,

the receiver that minimizes the cost in Eq. (5.4) forms a maximum a posteriori

probability (MAP) estimate of the random variable Xi given the observed channel

output Y according to functions Ei : Y→ Xi defined as

Ei(y)
def
= arg max

xi∈Xi
P(Xi = xi|Y = y), i ∈ {1, 2}. (5.5)

Problem 5.1. Given a pair of probability mass functions p1 and p2, find a pair of

policies (U1,U2) ∈ U1 ×U2 that jointly minimizes JA(U1,U2) in Eq. (5.4) subject to

the communication constraint imposed by the collision channel of Eq. (5.3) and that

the estimator employs the MAP rule of Eq. (5.5).

5.1.2 Total probability of estimation error

For any given pair of communication policies (U1,U2) ∈ U1×U2, the estimator

is interested in forming estimates X̂1 and X̂2 that minimize the probability of the

union of the individual estimation error events X1 6= X̂1 and X2 6= X̂2. Define

JB : U1 × U2 → R such that

JB(U1,U2)
def
= P({X1 6= X̂1} ∪ {X2 6= X̂2}) (5.6)

The interpretation behind this choice for the objective function is that there
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are cases in which the observed random variables are components of a vector source

and the goal of the fusion center is to estimate the entire source with minimum

probability error. In this case, for any two communication policies, the receiver

that minimizes the cost in Eq. (5.6) forms a MAP estimate of the random variables

(X1, X2) given the observed channel output Y according to a function E : Y →

X1 × X2 defined as

E(y)
def
= arg max

(x1,x2)∈X1×X2

P(X1 = x1, X2 = x2|Y = y). (5.7)

Problem 5.2. Given a pair of probability mass functions p1 and p2, find a pair of

policies (U1,U2) ∈ U1 ×U2 that jointly minimizes JB(U1,U2) in Eq. (5.6) subject to

the communication constraint imposed by the collision channel of Eq. (5.3) and that

the estimator employs the MAP rule of Eq. (5.7).

Remark 5.3. One important feature of the information structure in the problems

considered here is that it is non-classical: the action of DM1 cannot be perfectly

predicted by DM2, and vice versa.

5.1.3 A motivating example

The collision channel in Eq. (5.3) can only transmit perfectly a single commu-

nication packet at a time. One way to guarantee that collisions never occur is by

means of a sensor scheduling policy (also known as a collision avoidance protocol).

Sensor scheduling however is not a truly decentralized strategy in the sense that

the system designer enforces all but one agent to remain silent while a single sensor
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transmits. Consider the simple scenario where X1 and X2 are independent Bernoulli

random variables with probability mass functions p1 and p2, respectively. Using a

sensor scheduling policy where only one sensor is allowed to access the channel in

Problem 5.1, the best possible performance is given by

J sch
A

def
= 1− max

i∈{1,2}
max
x∈{0,1}

αipi(x) > 0. (5.8)

However, it is possible to achieve zero aggregate probability of error using the fol-

lowing pair of deterministic policies (U∗1 ,U∗2 ):

U∗i (xi) =





0 if xi = 0

1 if xi = 1

, i ∈ {1, 2}. (5.9)

This holds for any pair of Bernoulli random variables with probability mass functions

p1 and p2. The reason behind this is the fact that Y = ∅⇔ (X1 = 0, X2 = 0) and,

similarly, Y = C ⇔ (X1 = 1, X2 = 1). This team-optimal pair of policies makes

use of the distinction between no-transmissions and collisions to convey information

about the observations to the remote estimator. We are interested in answering

the following question: Is there a similar strategy that is team-optimal for any two

arbitrarily distributed random variables?

5.2 Structural results

In this chapter we characterize the structure of team-optimal communication

policies for Problems 5.1 and 5.2. One important feature of the results below is that
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they are independent of the distributions of the observations, and are valid even

when the alphabets are countably infinite.

Theorem 5.1 (Team-optimal solutions for Problem 5.1). There exists a pair of

team-optimal policies for Problem 5.1 where each sensor either transmits all but the

most likely of its observations; transmits only the second most likely of its observa-

tions; or remains always silent.

Theorem 5.2 (Team-optimal solutions for Problem 5.2). There exists a pair of

team-optimal policies for Problem 5.2 where each sensor transmits all but the most

likely of its observations.

From here on, we will prove Theorems 5.1 and 5.2 using the person-by-person

optimality approach. We will show that the optimization subproblem faced by a

single DM while keeping the policies of the other DM fixed is a concave minimization

problem. Such problems are NP-hard. However, we are able to solve these concave

minimization problems exactly using a two-step approach: first, we obtain a lower

bound that holds for any feasible policy (the converse part) and then we provide

a structured deterministic policy that achieves this lower bound (the achievability

part).

5.3 Solution to Problem 5.1

In order to characterize the structure of a class of communication policies that

minimize the cost in Eq. (5.6), we will re-express it in a more convenient form using

Bayes’ rule from the point of view of a single DM. Let i, j ∈ {1, 2} such that j 6= i,
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from the perspective of DMi and assuming that the policy used by DMj is arbitrarily

fixed as U∗j ∈ Uj, , we have:

JA(Ui,U∗j ) = αiP(Xi 6= X̂i) + αj(ρU∗jP(Ui = 1) + θU∗j ), (5.10)

where

ρU∗j
def
= P(Xj 6= X̂j|Ui = i)−P(Xj 6= X̂j|Ui = 0) (5.11)

and

θU∗j
def
= P(Xj 6= X̂j|Ui = 0). (5.12)

The terms ρU∗j and θU∗j are constant in Ui. In particular, ρU∗j can be interpreted as a

communication cost incurred by DMi when it attempts to transmit its measurement.

A similar interpretation has been used in [47] and relates this problem to the multi-

stage estimation case with limited actions solved in [34].

5.3.1 Communication cost

We proceed to characterize the communication cost and the offset terms in

further detail: first by showing that they are constant in Ui and then establishing

that they are non-negative and upper bounded by 1. These facts will be subsequently

used in the proof of Theorem 1.

Proposition 5.1. Provided that X1 and X2 are mutually independent, the term

that corresponds to the communication cost ρU∗j and the off-set term θU∗j , where
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j ∈ {1, 2}, in Eqs. (5.11) and (5.12), are given by

ρU∗j =
∑

x∈Xj

U∗j (x)pj(x)−max
x∈Xj

U∗j (x)pj(x). (5.13)

and

θU∗j =
∑

x∈Xj

(1− U∗j (x))pj(x)−max
x∈Xj

(1− U∗j (x))pj(x). (5.14)

Consequently,

0 ≤ ρU∗j , θU∗j ≤ 1. (5.15)

Proof. First, we need to show that, for i, j ∈ {1, 2} and j 6= i, the following holds

Ei ((j, xj)) = Ei(∅), xj ∈ Xj. (5.16)

In other words, for the purpose of estimating Xi, the observation of Y = (j, xj) at

the fusion center is equivalent to receiving Y = ∅.

From the definition of the MAP estimator Ei in Eq. (5.5), we write

Ei(∅) = arg max
xi∈Xi

P(Xi = xi|Y = ∅)

= arg max
xi∈Xi

P(Xi = xi|Ui = 0, Uj = 0)

(a)
= arg max

xi∈Xi
P(Xi = xi|Ui = 0). (5.17)
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Similarly,

Ei((j, xj)) = arg max
xi∈Xi

P(Xi = xi|Y = (j, xj))

= arg max
xi∈Xi

P(Xi = xi|Ui = 0, Uj = 1, Xj = xj)

(b)
= arg max

xi∈Xi
P(Xi = xi|Ui = 0)

= Ei(∅). (5.18)

The equalities (a) and (b) follow from the fact that, since X1 and X2 are mutually

independent, the following Markov chain relationship holds

X1 ↔ U1 ↔ U2 ↔ X2. (5.19)

Consequently, the probability of estimation error obtained by using the MAP esti-

mator conditioned on the events (Ui = 1, Uj = 0) and (Ui = 0, Uj = 0) are the same,

i.e.,

P(Xj 6= X̂j|Ui = 1, Uj = 0) = P(Xj 6= X̂j|Ui = 0, Uj = 0). (5.20)

Finally, given that (Ui = 0, Uj = 1)⇔ (Y = (j,Xj)), we have

P(Xj 6= X̂j|Ui = 0, Uj = 1) ≡ 0. (5.21)

Expressing ρU∗j using the law of total probability and, Eqs. (5.20) and (5.21), we

79



obtain

ρU∗j = P(Xj 6= X̂j|Ui = 1, Uj = 1)P (Uj = 1) (5.22)

= P(Xj 6= Ej(C), Uj = 1). (5.23)

Using the definition of the MAP estimator and expressing the result in terms of the

policy U∗j , we have

ρU∗j =
∑

x∈Xj

U∗j (x)pj(x)−max
x∈Xj

U∗j (x)pj(x). (5.24)

Following similar steps, we can show that the off-set term θU∗j is given by:

θU∗j = P(Xj 6= Ej(∅), Uj = 0), (5.25)

which expressed in terms of U∗j is

θU∗j =
∑

x∈Xj

(1− U∗j (x))pj(x)−max
x∈Xj

(1− U∗j (x))pj(x). (5.26)

5.3.2 Single decision maker subproblem

Consider a different estimation problem depicted in Fig. 5.2 where a single

sensor observes a random variable X and must decide whether to transmit a mea-

surement x over a stochastic collision channel to a remote estimator, which forms
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Figure 5.2: An equivalent single DM estimation problem over a collision channel.

an estimate X̂ on the basis of the channel output Y . We would like to find policies

at the DM and the estimator that minimize a cost that combines the probability of

estimation error and a communication cost. The solution to this problem will have

implications to the solution of Problem 5.1.

We will now make the statement of the subproblem precise. Let the input S

to the channel be determined according to

S =





X if U = 1

∅ if U = 0,

(5.27)

where the probability distribution of the binary random variable U is given by

P(U = 1|X = x) = U (x), U ∈ U, (5.28)

where U is the communication policy used by the DM and U def
={U | U : X→ [0, 1]}

is the set of admissible policies. The collision channel we consider now is stochastic

and can be in one out of two states controlled by a Bernoulli random variable

D ∼ B(β). When D = 0 the channel is not occupied, and if the DM decides to

transmit, its packet will reach the destination; when D = 1, the channel is occupied
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and any transmission attempted by the DM will result in a collision.

Definition 5.3 (Stochastic point-to-point collision channel). Let D ∼ B(β). The

output of the point-to-point collision channel Y = χ̃(S,D) is given by the following

map

χ̃(S,D)
def
=





∅ if S = ∅

S if S 6= ∅, D = 0

C if S 6= ∅, D = 1.

(5.29)

Finally, we must define the cost to be minimized by the DM. Let J (U ) :

U→ R such that

J (U )
def
= P(X 6= X̂) + %P(U = 1). (5.30)

Problem 5.3. For given β ∈ [0, 1], % ≥ 0 and X ∼ p(x), x ∈ X, find a policy U ∈ U

that minimizes the cost J (U) in Eq. (5.30) subject to the constraint imposed by the

channel in Eq. (5.29) and that the estimator forms X̂ according to the following

MAP rule:

E (y)
def
= arg max

x∈X
P(X = x|Y = y). (5.31)

We will provide a solution to Problem 5.3 using the following two lemmas.

Lemma 5.1 establishes an important property of the cost.

Lemma 5.1. The cost J (U ) is concave on U.
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Proof. Using the law of total probability, we rewrite the cost J (U ) as:

J (U ) =
(
βP(X 6= X̂|U = 1, D = 1) + %

)
P(U = 1)

+P(X 6= X̂|U = 0)P(U = 0). (5.32)

Simplifying this expression using the relationships developed in the previous sec-

tions, we get:

J (U ) = 1 + (%+ β − 1)P(U = 1)−P(X = E (∅)|U = 0)P(U = 0)

−βP(X = E (C)|U = 1)P(U = 1). (5.33)

Using the definition of the MAP estimator, we can write the following probabilities

in terms of U :

P(X = E(∅)|U = 0) = max
x∈X

(1−U (x))p(x)

P(U = 0)
(5.34)

and

P(X = E(C)|U = 1) = max
x∈X

U (x)p(x)

P(U = 1)
. (5.35)

Finally, after some algebraic manipulation, the cost can be rewritten as

J (U ) = 1 + (%+ β − 1)
∑

x∈X

U (x)p(x)−max
x∈X

(1−U (x))p(x)

−βmax
x∈X

U (x)p(x). (5.36)
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The rest of proof follows by standard arguments found in [59, ch. 3].

Lemma 5.2. For β ∈ [0, 1] and % ≥ 0, the following policy minimizes J (U ):

U ∗
β,%(x) =





1X\{x[1]}(x) if 0 ≤ % ≤ 1− β

1{x[2]}(x) if 1− β < % ≤ 1

0 otherwise.

(5.37)

Proof. Since J (U ) is continuous and U is compact with respect to the weak∗

topology2, the minimizer exists [65]. Due to the concavity of J (U ) established in

Lemma 5.1, the minimizer must lie on the boundary of the feasible set. Moreover, the

search can be further constrained to the corners of the |X|-dimensional hypercube

that describes the feasible set. This implies that Problem 5.3 admits an optimal

deterministic policy. Without loss of optimality, we constrain the search for an

optimal policy by considering partitions of the alphabet X = XU
0 ∪ XU

1 , where

XU
k

def
={x ∈ X | U (x) = k}, k ∈ {0, 1}. (5.38)

Searching over the set of possible partitions has exponential complexity. However,

we may still explore the structure of the cost to obtain an optimal solution to this

problem. Let

J (U ) = 1 + (%+ β − 1)
∑

x∈XU
1

p(x)− max
x∈XU

0

p(x)− β max
x∈XU

1

p(x). (5.39)

2This technical detail can be ignored when |X| <∞.
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We will obtain a lower bound that holds for every deterministic policy U ∈ U, and

show that U ∗
β,% always achieves it.

First, consider the case when % > 1− β. Since

∑

x∈XU
1

p(x) ≥ max
x∈XU

1

p(x) (5.40)

the cost satisfies the following lower bound:

J (U ) ≥ 1− (1− %) max
x∈XU

1

p(x)− max
x∈XU

0

p(x). (5.41)

The right hand side of the inequality above can be minimized by assigning x[1] to

the set XU
0 . If 1 − % ≥ 0, we assign x[2] to the set XU

1 , otherwise we set XU
1 = ∅.

Therefore, we obtain the following lower bound for the cost:

J (U ) ≥ 1− [1− %]+p[2] − p[1]. (5.42)

This lower bound is met with equality by the policy U ∗
β,%:

J (U ∗
β,%) =





1− (1− %)p[2] − p[1] if 1− β ≤ % ≤ 1

1− p[1] if % > 1.

(5.43)

Similarly, when 0 ≤ % ≤ 1− β we have

∑

x∈XU
1

p(x) ≤ 1− max
x∈XU

0

p(x). (5.44)
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Therefore, for every U ∈ U, we establish the following lower bound on the cost:

J (U ) ≥ (%+ β)(1− max
x∈XU

0

p(x))− β max
x∈XU

1

p(x) (5.45)

The right hand side of the inequality above can be minimized by assigning x[1]

to the set XU
0 . If 1− % ≥ 0, we assign x[2] to the set XU

1 . Therefore, we obtain the

following lower bound for the cost:

J (U ) ≥ (%+ β)(1− p[1])− βp[2]. (5.46)

The policy U ∗
β,% achieves this lower bound:

J (U ∗
β,%) = 1 + (%+ β − 1)

∑

x∈X\{x[1]}

p(x)− max
x∈{x[1]}

p(x)− β max
x∈X\{x[1]}

p(x) (5.47)

= (%+ β)(1− p[1])− βp[2]. (5.48)

Remark 5.4. Lemma 5.2 provides a solution to Problem 5.3 described only in terms

of the two most likely outcomes of the observed random variable X. We observe that

the optimal policy depends on β and %. As a particular case: when β = 0 and any

% ∈ [0, 1], the optimal policy is

U ∗(x) =





0 if x = x[1]

1 otherwise.
(5.49)
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This result is related to a similar problem solved by Imer and Basar in [34].

5.3.3 Team-optimal policies for Problem 5.1

We will now use the results in Section 5.3.2 to reduce the search space of

possible optimal strategies for each DM in Problem 5.1. The strategy is to use

a person-by-person optimality approach together with Lemma 5.2 to prove that,

without loss in optimality, the search can be constrained to three policies for each

DM.

Proof of Theorem 5.1. Consider the cost JA(U1,U2) in Problem 5.1. Arbitrarily

fixing the policy of DMj we have

JA(Ui,U∗j ) ∝ P(Xi 6= X̂i) +
αj
αi

(ρU∗jP(Ui = 1) + θU∗j ). (5.50)

The problem of minimizing JA(Ui,U∗j ) over Ui ∈ Ui is equivalent to solving an

instance of Problem 5.3 with parameters % and β defined as

%
def
=
αj
αi
ρU∗j and β

def
= P(Uj = 1) =

∑

x∈Xj

U∗j (x)pj(x). (5.51)

From Lemmas 5.1 and 5.2, for every policy U∗j ∈ Uj there exists an optimal policy

U∗i for DMi where either the sensor attempts to transmit every measurement with

the exception of the most likely observation; attempts to transmit just the second

most likely observation; or it remains always silent. Since this is true for every U∗j it

must also hold when U∗j is such that (U∗i ,U∗j ) is a person-by-person optimal solution.
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Since every team-optimal solution is also person-by-person optimal, there exists a

team-optimal pair of policies where each policy has one of the structures outlined

above.

Remark 5.5. There may be other optimal solutions that do not display the same

structure of the policies in Lemma 5.2. One implication of our result is that the

performance of the optimal remote estimation system is determined by the probabil-

ities of the two most likely outcomes of X1 and X2. Also, the optimal performance

of a system with binary observations is always zero, i.e., independent binary ob-

servations can be estimated perfectly from the output of the collision channel with

two users. The pair of team-optimal policies described in the motivating example of

Section 5.1.3 also fits in the structure of the team-optimal policies of Theorem 5.1.

Since there is no loss in optimality in constraining the search over policies with

the structure given by Theorem 5.1, we define the following candidate policies for

DMi:

U1
i (x)

def
= 1Xi\{xi,[1]}(x) (5.52)

U2
i (x)

def
= 1{xi,[2]}(x) (5.53)

U3
i (x)

def
= 0 (5.54)

for i ∈ {1, 2}. Therefore, the search space is reduced to a set of 9 pairs of policies.

We proceed by evaluating the performance of each of the pairs (U1,U2) using the
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expressions in Eqs. (5.11) and (5.12). Let i ∈ {1, 2} and define the quantity

ti
def
= 1− pi,[1] − pi,[2], (5.55)

we have the following:

• If DMi choses to use U1
i (x), then

P(Ui = 1) = 1− pi,[1] (5.56)

ρUi = ti and θUi = 0; (5.57)

• If DMi choses to use U2
i (x), then

P(Ui = 1) = pi,[2] (5.58)

ρUi = 0 and θUi = ti; (5.59)

• If DMi choses to use U3
i (x), then

P(Ui = 1) = 0 (5.60)

ρUi = 0 and θUi = 1− pi,[1]. (5.61)
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Corollary 5.1. The optimal cost obtained from solving Problem 5.1 is given by

J ∗A = min





α1t1(1− p2,[1]) + α2t2(1− p1,[1])

α1t1p2,[2] + α2t2

α1t1 + α2t2p1,[2]

α1(1− p1,[1])

α2(1− p2,[1])





. (5.62)

Proof. Using the notation developed in the previous sections, we have:

JA(U1,U2) = α1(ρU1P(U2 = 1) + θU1) + α2(ρU2P(U1 = 1) + θU2), (5.63)

where

ρUi =
∑

x∈XUii,1

pi(x)− max
x∈XUii,1

pi(x), (5.64)

and

θUi =
∑

x∈XUii,0

pi(x)− max
x∈XUii,0

pi(x). (5.65)

Construct Table 5.1 containing the values of the objective function for each

choice of policies. It can be verified by inspection that the pairs m = 6, 7, 8 and 9

are always outperformed by the other pairs of policies and can be discarded from

our search, which can be done by searching over a list of 5 possible pairs.
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m (U1,U2) J (m)
A (U1,U2)

1 (U1
1 ,U1

2 ) α1t1(1− p2,[1]) + α2t2(1− p1,[1])
2 (U1

1 ,U2
2 ) α1t1p2,[2] + α2t2

3 (U2
1 ,U1

2 ) α1t1 + α2t2p1,[2]
4 (U1

1 ,U3
2 ) α2(1− p2,[1])

5 (U3
1 ,U1

2 ) α1(1− p1,[1])
6 (U2

1 ,U2
2 ) α1t1 + α2t2

7 (U2
1 ,U3

2 ) α1t1 + α2(1− p2,[1])
8 (U3

1 ,U2
2 ) α1(1− p1,[1]) + α2t2

9 (U3
1 ,U3

2 ) α1(1− p1,[1]) + α2(1− p2,[1])

Table 5.1: Value of the cost function JA(U1,U2) evaluated at each of the 9 pairs of
candidate solutions.

5.3.4 Examples

We explore the role of the probability distributions in determining which of

the 5 pairs of policies (m = 1 through 5 in Table 5.1) is team-optimal. In Examples

1, 2 and 3 below, we assume that α1 = α2
3, which further reduces our search to

policy pairs m = 1, 2 and 3. We will use the following quantities:

J (2)
A − J

(3)
A = −t1(1− p2,[2]) + t2(1− p1,[2]) (5.66)

J (2)
A − J

(1)
A = t2(p1,[1] − t1) (5.67)

J (3)
A − J

(1)
A = t1(p2,[1] − t2). (5.68)

Uniform random variables

For uniformly distributed observations, we have

pi(x) =
1

Ni

, x = 1, 2, · · · , Ni. (5.69)

3In this case, the weights α1 and α2 are irrelevant and we may assume that they are both equal
to 1.
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Hence, the probabilities of the two most likely outcomes are

pi,[1] = pi,[2] =
1

Ni

(5.70)

and the probability of the remaining symbols is given by

ti = 1− 2

Ni

, i ∈ {1, 2}. (5.71)

Without loss of generality we assume that N1, N2 ≥ 3 and N1 ≤ N2. Since

J (2)
A − J

(3)
A =

1

N1

− 1

N2

≥ 0 (5.72)

J (3)
A − J

(1)
A =

(
1− 2

N1

)
·
(

3

N2

− 1

)
≤ 0, (5.73)

our assumptions imply that J ∗A = J (3)
A and the pair of policies corresponding to

m = 3 is team-optimal. In other words, for uniformly distributed random obser-

vations, a team-optimal strategy is: Each DM arbitrarily chooses a priori one of

the possible outcomes in their respective alphabets; the DM observing the random

variable with the largest support transmits every measurement that does not match

its chosen symbol; and the DM observing the random variable with smaller support

only transmits only the measurements that match its chosen symbol.
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π1

π2

1

3

2
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√
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2

1

1

0

Figure 5.3: Partition of the parameter space indicating where each of the policy pairs
is team-optimal when the observations are geometrically distributed. The circled
number corresponds to m in Table 5.1.

Geometric random variables

For a geometrically distributed random variable with parameter πi, we have

pi(x) = (1− πi)xπi, x = 0, 1, · · · . (5.74)

The probabilities of the two most likely outcomes are

pi,[1] = πi (5.75)

pi,[2] = (1− πi)πi (5.76)

and the probability of the remaining symbols is given by

ti = (1− πi)2, i ∈ {1, 2}. (5.77)
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Note that J (1)
A ≤ J (2)

A ,J (3)
A if and only if pi,[1] − ti ≥ 0, i ∈ {1, 2}, i.e.,

−π2
i + 3πi − 1 ≥ 0, i ∈ {1, 2}. (5.78)

Also, J (2)
A ≤ J (3)

A if and only if

(1− π2)2π1 ≤ (1− π1)2π2, (5.79)

which is satisfied if π1 ≤ π2. This yields the partitioning of the parameter space

(π1, π2) ∈ [0, 1]2 into the three regions depicted in Fig. 5.3 indicating which pair of

policies is team-optimal in the corresponding region.

Poisson random variables

For a Poisson distributed observation with parameter λi ≥ 1, we have

pi(x) =
λxi
x!
e−λi , x = 0, 1, · · · . (5.80)

The probabilities of the two most likely outcomes are

pi,[1] = pi,[2] =
λ
bλic
i

bλic!
e−λi (5.81)

and the probability of the tail is given by

ti = 1− 2
λ
bλic
i

bλic!
e−λi , i ∈ {1, 2}. (5.82)
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Using the same argument as in the previous example, note that J (1)
A ≤ J (2)

A ,J (3)
A if

and only if pi,[1] − ti ≥ 0, i.e.,

λ
bλic
i

bλic!
e−λi ≥ 1

3
, i ∈ {1, 2}. (5.83)

Defining the following function

F(λ)
def
=
λbλc

bλc!e
−λ − 1

3
, (5.84)

the value of λ̄ for which F(λ̄) = 0 can be found numerically and is approximately

equal to λ̄ = 1.5121. Also, J (2)
A ≤ J (3)

A if and only if

λ
bλ2c
2

bλ2c!
e−λ2 ≥ λ

bλ1c
1

bλ1c!
e−λ1 , (5.85)

which is satisfied when λ1 ≥ λ2.

Identically distributed observations

When the observations are identically distributed, i.e., X1 = X2
def
= X, and

p1(x) = p2(x)
def
= p(x), x ∈ X, we have:

J (2)
A = J (3)

A = (1− p[1] − p[2]) · (1 + p[2]) (5.86)

and

J (1)
A = (1− p[1] − p[2]) · (2− 2p[1]) (5.87)
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Figure 5.4: Partition of the parameter space indicating where each of the policies is
team-optimal in the case of identically distributed observations. The circled number
corresponds to the optimal m in Table 5.1.

Therefore, J (2)
A ≤ J (1)

A if and only if

2p[1] + p[2] ≤ 1. (5.88)

Recalling that p[1] ≥ p[2], we have the partitioning of the parameter space [0, 1]2

according to Fig. 5.4.

5.4 Solution to Problem 5.2

In this section we consider the optimization of a different cost, the total prob-

ability of an error event. The interpretation is that the random variables X1 and

X2 are the components of a vector source W = (X1, X2) where W ∼ pW (x1, x2) =

p1(x1)p2(x2), where (x1, x2) ∈ X1 × X2, with each component being observed by a

different sensor. The goal is to find policies at the sensors such as to minimize the

probability of error in estimating the entire vector W :

JB(U1,U2) = P(W 6= Ŵ ). (5.89)
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In order to minimize the probability of error criterion, the estimator also imple-

ments the MAP rule with respect to the joint conditional probability, i.e., Ŵ = E(Y )

where

E(y) = arg max
w∈W

P(W = w|Y = y), (5.90)

where W = X1 × X2.

The overall proof strategy is to obtain a characterization of team-optimal

strategies using a person-by-person optimality approach. Unfortunately, the cost

JB(U1,U2) does not admit a nice decomposition similar to the one used in Prob-

lem 5.1. On the other hand, through our analysis we obtain a team-optimal solution

for Problem 5.2.

We start by expanding the cost JB(U1,U2) using the law of total probability

to obtain an expression that will serve as the basis for identifying the dependencies

of the cost in terms of the communication policies U1 and U2.

Proposition 5.2. When the MAP estimator is used in Problem 5.2, the following

holds:

P(W = Ŵ |Y = C) = max
x∈X1

P(X1 = x|U1 = 1) max
x∈X2

P(X2 = x|U2 = 1); (5.91)

and

P(W = Ŵ |Y = ∅) = max
x∈X1

P(X1 = x|U1 = 0) max
x∈X2

P(X2 = x|U2 = 0). (5.92)

Proof. The conditional probability of a correct estimate conditioned on the event of
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a collision can be computed as:

P(W = Ŵ |Y = C)
(a)
= max

w∈W
P(W = w|Y = C)

(b)
= max

w∈W
P(W = w|U1 = 1, U2 = 1)

(c)
= max

x∈X1

P(X1 = x|U1 = 1) max
x∈X2

P(X2 = x|U2 = 1),

where (a) follows from the definition of a MAP estimate; the equality (b) follows

from the equivalence of the events Y = C ⇔ (U1 = 1, U2 = 1); finally, (c) follows

from the independence of X1 and X2 and the fact that Ui is independent of Xj, for

i, j ∈ {1, 2} such that i 6= j.

The proof of the second equality can be derived from the equivalence of the

event Y = ∅⇔ (U1 = 0, U2 = 0) followed by the same sequence of steps.

Proposition 5.3. When the MAP estimator is used in Problem 5.2, for i, j ∈ {1, 2}

and i 6= j, the following holds:

P(W = Ŵ |Y = (i,Xi))
w.p.1
= max

x∈Xj
P(Xj = x|Uj = 0). (5.93)

Proof. It suffices to show that for every x̃ ∈ Xi, the following equalities hold:

P(W = Ŵ |Y = (i, x̃))
(a)
= max

w∈W
P(W = w|Y = (i, x̃))

(b)
= max

w∈W
P(W = w|Ui = 1, Xi = x̃, Uj = 0)

(c)
= max

x∈Xi
P(Xi = x|Ui = 1, Xi = x̃) max

x∈Xj
P(Xj = x|Uj = 0)

= max
x∈Xj

P(Xj = x|Uj = 0), (5.94)
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where (a) follows from the definition of the MAP estimator; the equality in (b)

follows from the equivalence of the events Y = (i, x̃) ⇔ (Ui = 1, Xi = x̃, Uj = 0);

and (c) follows from the independence of X1 and X2.

5.4.1 Single decision maker subproblem

Unlike Problem 5.1, where the additive nature of the cost allowed us to make

an analogy with a single DM remote estimation problem with a communication cost,

Problem 5.2 does not admit an additive decomposition. However, we can still use

the same techniques with an equivalent cost somewhat less insightful than the one

in the previous section. We proceed to define the auxiliary abstract problem solved

by each of the decision makers using a person-by-person problem approach.

Let X be a discrete, finite or countably infinite alphabet, and p(x) a probability

mass function defined on X. Let U be the space of all functions U : X→ [0, 1], and

define JB : U→ R such that

JB(U )
def
= 1− τ max

x∈X
U (x)p(x)− %

∑

x∈X

U (x)p(x)

− (%+ β) max
x∈X

(1−U (x)) p(x). (5.95)

Lemma 5.3. For nonnegative constants %, τ and β, the cost JB is concave on U.

Proof. The proof follows from standard arguments that can be found in [59, ch.

3].

Lemma 5.4. Given nonnegative constants %, τ and β ∈ R such that τ ≤ β, and a
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probability mass function p(x) with x ∈ X, the cost JB in Eq. (5.95) is minimized

by the following policy:

U ∗(x) =





0 if x = x[1]

1 otherwise.
(5.96)

Proof. From Lemma 5.3, the cost is concave in U . Therefore, without loss in

optimality, we can constrain the optimization to the class of deterministic strategies.

For any deterministic policy U ∈ U, define

XU
k

def
={x ∈ X | U (x) = k}, k ∈ {0, 1}. (5.97)

Constraining the policies to be deterministic and using the notation defined above,

the cost becomes

JB(U ) = 1− τ max
x∈XU

1

p(x)− %
∑

x∈XU
1

p(x)− (%+ β) max
x∈XU

0

p(x). (5.98)

Since
∑

x∈XU
1

p(x) ≤ 1− max
x∈XU

0

p(x), (5.99)

we obtain the following inequality, which holds for every deterministic policy U ∈ U:

JB(U ) ≥ 1− %− τ max
x∈XU

1

p(x)− β max
x∈XU

0

p(x). (5.100)

The lower bound on the right hand side of the inequality above can be mini-
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mized. If τ ≤ β, we assign the symbol x[1] to XU
0 and x[2] to XU

1 , yielding:

JB(U ) ≥ 1− %− τp[2] − βp[1]. (5.101)

Evaluating the cost of the policy U ∗, the lower bound is achieved with equality and

therefore it is optimal.

5.4.2 Team-optimal policies for Problem 5.2

Theorem 5.2 states that a pair of communication policies at the sensors that

jointly minimizes a probability of estimation error criterion consists of sending every

measurement with exception of the most likely one for both sensors. This structure

is independent of the probability mass function of the measurements. In other words,

the following pair of policies (U∗1 ,U∗2 ) is team-optimal for Problem 5.2:

U∗i (x) =





0 if x = xi,[1]

1 otherwise
, i ∈ {1, 2}. (5.102)

Proof of Theorem 5.2. Using the person-by-person optimality approach, we will write

the cost from the perspective of a single decision maker. Using the law of total

probability and the results in Propositions 5.2 and 5.3, we can re-express the cost
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as follows:

JB(U1,U2) = 1−max
x∈X1

U1(x)p1(x) max
x∈X2

U2(x)p2(x)

−max
x∈X1

(1− U1(x))p1(x) max
x∈X2

(1− U2(x))p2(x)

−
∑

x∈X1

U1(x)p1(x) max
x∈X2

(1− U2(x))p2(x)

−
∑

x∈X2

U2(x)p2(x) max
x∈X1

(1− U1(x))p1(x). (5.103)

Let i, j ∈ {1, 2} such that i 6= j. Fixing the communication policy of sensor j,

U∗j ∈ Uj, from the perspective of DMi we have the following cost

JB(Ui,U∗j ) = 1− τU∗j max
x∈Xi
Ui(x)pi(x)− %U∗j

∑

x∈Xi

Ui(x)pi(x)

−(%U∗j + βU∗j ) max
x∈Xi

(1− Ui(x))pi(x), (5.104)

where

βU∗j
def
=
∑

x∈Xj

U∗j (x)pj(x), (5.105)

%U∗j
def
= max

x∈Xj
(1− U∗j (x))pj(x) (5.106)

and

τU∗j
def
= max

x∈Xj
U∗j (x)pj(x). (5.107)

Note that for any given U∗j ∈ Uj, we have βU∗j ≥ τU∗j . From Lemma 5.4, the policy
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U∗i that minimizes J (Ui,U∗j ) is:

U∗i (x) =





0 if x = xi,[1]

1 otherwise.
(5.108)

Since this is true for every U∗j it must also hold when U∗j is such that (U∗i ,U∗j ) is a

person-by-person optimal solution. Since every team-optimal solution is also person-

by-person optimal, there exists a team-optimal pair of policies with the structure

outlined above.

5.5 Extension to teams of n sensors

The problem formulation involving only two sensors may seem too restrictive,

but it is a fundamental step in going from a centralized problem with a single

decision maker to a decentralized setup. In this section, we extend the results of this

paper to a team of n sensors observing independent observations and communicating

over a collision channel which can only support one transmitted packet. Let U =

(U1, · · · , Un) denote the vector of binary decision variables, and U−i denote vector

of decision variables other than Ui. Similarly, let U = (U1, · · · ,Un) denote a vector

of policies and U−i denote the vector of policies other than Ui. We will need the

following assumption:

Assumption 5.1. If two or more sensors transmit simultaneously, the remote esti-

mator receives a collision symbol but is able to decode the index of the transmitting

sensors. This enables the receiver to determine if DMi was silent or not when a
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collision occurs, i ∈ {1, · · · , n}.

The ability of identifying nodes involved in collisions in systems with packet

capture has been demonstrated empirically in [66].

Extension of Theorem 5.1

The result of Theorem 5.1 can be extended to a team of n sensors using the

same person-by-person approach of the previous sections. In this section we provide

a sketch of the proof. The problem statement for a team with n sensors is identical

to the one in Section 5.3. Here we just specify the new cost:

JA(U)
def
=

n∑

k=1

αkP(Xk 6= X̂k) (5.109)

and make explicit that a collision occurs when more than one sensor attempts to

transmit, i.e.,

Y = C⇔
n∑

k=1

Ui ≥ 2. (5.110)

Theorem 5.3. There exists a team-optimal policy U∗ such that the policy of each

sensor U∗i , i ∈ {1, · · · , n}, has one of the following structures: the sensor transmits

all except its most likely observation; transmits only its second most likely observa-

tion; or remains always silent.

Proof. Fixing the policies of all the sensors except DMi, we can write:

JA(Ui,U∗−i) = αiP(Xi 6= X̂i) + ρU∗−iP(Ui = 1) + θU∗−i , (5.111)
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where the communication cost and offset terms are given by

ρU∗−i
def
=
∑

j 6=i

αj(P(Xj 6= X̂j|Ui = 1)−P(Xj 6= X̂j|Ui = 0)) (5.112)

and

θU∗−i
def
=
∑

j 6=i

αjP(Xj 6= X̂j|Ui = 0). (5.113)

Then, the problem from the perspective of DMi is equivalent to Problem 5.3 with %

given by

%
def
=
ρU∗−i
αi

, (5.114)

and the probability of collision of a packet from DMi with packets coming from

other sensors in the team is:

β
def
= 1−

∏

j 6=i

P(Uj = 0). (5.115)

From Lemma 5.2, the policy U∗i that minimizes the cost JA(Ui,U∗−i) for any choice of

U∗−i is either to transmit all but the most likely observation; transmit only the second

most likely observation; or to remain always silent. Since every person-by-person

optimal solution admits an equivalent solution of this form, and every team-optimal

solution is person-by-person optimal, there must exist a team-optimal solution with

this structure.
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Extension of Theorem 5.2

Let W = (X1, · · · , Xn) be distributed according to

pW (x1, · · · , xn) =
n∏

k=1

pk(xk). (5.116)

The remote receiver is interested in forming an estimate vector Ŵ = (X̂1, · · · , X̂n)

such that the following cost is minimized

JB(U) = P(W 6= Ŵ ). (5.117)

Theorem 5.4. For a problem with n sensors observing independent random vari-

ables and communicating over the collision channel there exists a team-optimal so-

lution U∗ such that each sensor transmits all observations except its most likely one.

Proof. Using the definition of the MAP estimator, we can express the following

probabilities:

P(W = Ŵ |Y = ∅) =
n∏

k=1

max
x∈Xk

P(Xk = x|Uk = 0) (5.118)

and

P(W = Ŵ |Y = (j, x̃)) =
∏

k 6=j

max
x∈Xk

P(Xk = x|Uk = 0). (5.119)

When a collision occurs, our assumption implies that the receiver is able to identify
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the realization of the random vector U = (u1, · · · , un). Therefore,

P(W = Ŵ |Y = C) =
n∏

k=1

max
x∈Xk

P(Xk = x|Uk = uk). (5.120)

Using total probability we can express the cost as:

JB(U) = 1−
n∏

k=1

max
x∈Xk

P(Xk = x, Uk = 0)

−
n∑

j=1

(∏

k 6=j

max
x∈Xk

P(Xk = x, Uk = 0)
)
P(Uj = 1) (5.121)

−
∑

u:‖u‖≥2

( n∏

k=1

max
x∈Xk

P(Xk = x, Uk = uk)
)
.

In terms of the policies Uk, k ∈ {1, · · · , n}, the expression above is equal to:

JB(U) = 1−
n∏

k=1

max
x∈Xk

(1− Uk(x))pk(x)

−
n∑

j=1

(∏

k 6=j

max
x∈Xk

(1− Uk(x))pk(x)
)∑

x∈Xj

Uj(x)pj(x) (5.122)

−
∑

u:‖u‖≥2

( ∏

k:uk=0

max
x∈Xk

(1− Uk(x))pk(x)
)( ∏

k:uk=1

max
x∈Xk
Uk(x)pk(x)

)
.

Fixing the policies of every DM except DMi, we have:

JB(Ui,U∗−i) = 1− τU∗−i max
x∈Xi
Ui(x)pi(x)− %U∗−i

∑

x∈Xi

Ui(x)pi(x)

−(%U∗−i + βU∗−i) max
x∈Xi

(1− Ui(x))pi(x), (5.123)
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where the coefficients %U∗−i , τU∗−i and βU∗−i are given by:

%U∗−i
def
=
∏

k 6=i

max
x∈Xk

(1− U∗k (x))pk(x); (5.124)

τU∗−i
def
=

∑

u−i:‖u−i‖≥1

( ∏

k:uk=0

max
x∈Xk

(1− U∗k (x))pk(x)

)( ∏

k:uk=1

max
x∈Xk
U∗k (x)pk(x)

)
;

(5.125)

and

βU∗−i
def
=

∑

u−i:‖u−i‖≥2

( ∏

k 6=i:
uk=0

max
x∈Xk

(1− U∗k (x))pk(x)

)( ∏

k 6=i:
uk=1

max
x∈Xk
U∗k (x)pk(x)

)

+
∑

j 6=i

( ∏

k 6=i,j

max
x∈Xk

(1− U∗k (x))pk(x)

)∑

x∈Xj

U∗j (x)pj(x). (5.126)

It remains to show that βU∗−i ≥ τU∗−i . Consider the following quantity:

τU∗−i − βU∗−i =
∑

u−i:‖u−i‖=1

( ∏

k 6=i:
uk=0

max
x∈Xk

(1− U∗k (x))pk(x)

)( ∏

k 6=i:
uk=1

max
x∈Xk
U∗k (x)pk(x)

)

−
∑

j 6=i

( ∏

k 6=i,j

max
x∈Xk

(1− U∗k (x))pk(x)

)∑

x∈Xj

U∗j (x)pj(x) (5.127)

=
∑

j 6=i

( ∏

k 6=i,j

max
x∈Xk

(1− U∗k (x))pk(x)

)

·
(

max
x∈Xj
U∗j (x)pj(x)−

∑

x∈Xj

U∗j (x)pj(x)

)
(5.128)

≤0. (5.129)

From Lemma 5.4, the policy U∗i that minimizes JB(Ui,U∗−i) for any fixed U∗−i
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is:

U∗i (x) =





0 if x = xi,[1]

1 otherwise.
(5.130)

Therefore, there exists a team-optimal solution U∗ such that each decision maker

transmits all the observations except the most likely one.

Illustrative example

Consider the case of a system where n sensors observe independent identically

distributed random variables with pmf p(x), x ∈ X. If the sensors optimize their

strategies with respect to cost JB(U), Theorem 5.4 states that transmitting all but

the most likely observation is a team-optimal solution. The performance of the team

can be computed as a function of the probability of the two most likely symbols p[1]

and p[2]:

JB(U∗) = 1− npn−1
[1] (1− p[1] − p[2])− (p[1] + p[2])

n. (5.131)

When the observations are binary random variables, p[1] + p[2] = 1, therefore

the optimal cost is equal to zero. This is true for any number of sensors, i.e.,

J bin
B (U∗) = 0. (5.132)

However, when |X| ≥ 3 we have p[1] + p[2] < 1 and the performance of the system

degrades when the number of sensors n increases, i.e.,

lim
n→∞

JB(U∗) = 1. (5.133)
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In order to illustrate how the performance degrades with n, assume that each

Xk is geometrically distributed with parameter π ∈ [0, 1], k = 1, · · · , n. Figure 5.5

shows the minimum total probability of error for a team with n = 2, 4, 8, 16 and 64

sensors sharing a common medium modeled by a collision channel. Note that the

probability of error is always close to 1 when π is sufficiently small, but falls sharply

to 0 as π increases.

π

J ∗B

n = 2

n = 4

n = 8

n = 16

n = 64

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5.5: Optimal performance of a team with n sensors observing i.i.d. geometric
random variables with parameter π and minimizing the total probability of error
criterion.
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5.6 Summary

In this chapter we studied a class of team-decision problems motivated by

remote estimation of independent discrete random variables over a wireless network

modeled by a collision channel. As a performance metric, we used two variations

of the probability of estimation error criterion. For an aggregate probability of

error, we obtained the structure of person-by-person optimal policies and used it to

reduce the search space of candidate team-optimal policies. For the total probability

of estimation error, we obtained a team-optimal solution. Our results are valid to

arbitrarily distributed random variables on finite or countably infinite alphabets, and

can be extended to any number of sensors under the assumption that the receiver can

identify which sensors are involved in a collision. We showed that the performance of

the overall system only depends on the probabilities of the two most likely symbols

of each source and provided several examples.
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Chapter 6: Extensions

In the systems considered in this dissertation so far, we assumed that the agents

make independent observations and have a common objective, working as members

of a team. The purpose of this chapter is to generalize these two assumptions on

the basic model and show that this framework can be used in other less restrictive

scenarios. In the first part of this chapter, we will allow each decision maker to

have its own objective functional, leading to a non-cooperative remote estimation

game formulation. In the second part, we will consider a problem with dependent

measurements, where each sensor observes a vector consisting of a common and a

private component.

6.1 Remote estimation games

Consider a system where two sensors and two remote estimators share the

same network, which can only support the perfect communication of a single packet

between one sensor-estimator pair at a time. Each sensor observes a random variable

and must decide when to send a measurement to its corresponding remote estima-

tor. Each remote estimator forms an estimate of the random variable observed by

its corresponding sensor according to the minimum mean squared error criterion.
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The problem setup is inspired by the conventional Gaussian interference channel

model [67]. In particular, the work of Berry and Tse in [68], which uses a game the-

oretic approach to characterize the trade-offs in the capacity region of the Gaussian

interference channel.

6.1.1 System model

The basic framework for the problem considered in this section is illustrated

in Fig. 6.1. The DMi observes a realization of a random variable Xi where Xi ∼

N (0, σ2
i ), i ∈ {1, 2} such that X1 ⊥⊥ X2. The DMi then decides if it will transmit

or not a packet containing its measurement over the channel. The decision variable

Ui = 1 denotes that DMi will attempt transmission and Ui = 0 denotes the decision

to remain silent. We refer to Ui as the communication policy of DMi.

Definition 6.1 (Communication policies). The communication policy for DMi is a

measurable function Ui : R→ [0, 1] such that

P(Ui = 1|Xi = xi)
def
= Ui(xi), i ∈ {1, 2}. (6.1)

The set of all communication policies for DMi is denoted by Ui. The channel input

Si corresponds to a communication packet, whose content is determined as follows:

Si =





Xi if Ui = 1

∅ if Ui = 0

, i ∈ {1, 2}, (6.2)

where the symbol ∅ denotes no-transmission.
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The DMs are connected to the estimators by a wireless network modeled as a

collision channel.

Definition 6.2 (Collision channel). The collision channel is defined by the deter-

ministic map χ : S2 → Y2, where S def
= R ∪ {∅} and Y def

= R ∪ {∅,C} such that

χ(s1, s2)
def
=





(∅,∅) if s1 = ∅, s2 = ∅

(x1,∅) if s1 = x1, s2 = ∅

(∅, x2) if s1 = ∅, s2 = x2

(C,C) if s1 = x1, s2 = x2,

(6.3)

where the symbol C represents the occurrence of a collision.

X1

X2

S1

S2

U1

U2

�

DM1

DM2

Remote
Estimator 1

Collision 
Channel

E1

E2

Y1

Y2

X̂1

X̂2

Remote
Estimator 2

Figure 6.1: General setup for a non-cooperative remote estimation game over the
collision channel.

The channel output is given by (Y1, Y2) = χ(S1, S2). The i-th estimator forms

an estimate X̂i based on its corresponding channel output Yi according to a measur-

able map Ei : Y→ R. The function Ei is called the estimation policy of estimator i.

The goal of each sensor-estimator pair is to minimize a corresponding mean squared

estimation error. Therefore, we assume without loss of optimality that for a given
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pair of communication policies, the estimation policies are the conditional mean,

i.e.,

Ei(y) = E[Xi|Yi = y], y ∈ Y. (6.4)

The costs functionals are maps Ji : U1 × U2 → R such that

J1(U1,U2)
def
= E[(X1 − X̂1)2] (6.5)

and

J2(U1,U2)
def
= E[(X2 − X̂2)2], (6.6)

for DM1 and DM2, respectively. The expectation in each Ji is taken with respect

to both X1 and X2 and the goal of each sensor is to minimize its own cost.

6.1.2 Solution concepts

There are several ways to define the notion of solution of a non-cooperative

game. The most typical solution concepts are: security policies (also known as

minimax) and Nash-equilibrium solutions.

Definition 6.3 (Security policies). Let i, j ∈ {1, 2} and j 6= i, the security policy

for DMi is obtained by solving the following optimization problem:

min
Ui∈Ui

max
Uj∈Uj

Ji(Ui,Uj). (6.7)

The security policy for DMi is obtained by assuming that its opponent is
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making the worst decision possible (from DMi’s perspective). It is a robust solution

concept that establishes an upper bound for the performance known as the security

level for DMi.

Definition 6.4 (Nash-equilibrium). A Nash-equilibrium solution consists of a pair

of policies (U∗1 ,U∗2 ) satisfying the following pair of conditions

J1(U∗1 ,U∗2 ) ≤ J1(U1,U∗2 ), U1 ∈ U1 (6.8)

J2(U∗1 ,U∗2 ) ≤ J2(U∗1 ,U2), U2 ∈ U2. (6.9)

In other words, at a Nash-equilibrium solution, there is no incentive for either DMs

to unilaterally change their communication policies.

6.1.3 Structural results

Security policies

Theorem 6.1. Consider the remote estimation game over the collision channel with

independent Gaussian observations Xi ∼ N (0, σ2
i ), i ∈ {1, 2}. The policy

U sec
i (xi)

def
=





1 if x ≥ 0

0 if x < 0,

(6.10)
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is a security solution for DMi, i ∈ {1, 2}. The corresponding estimation policy is

given by

E sec
i (y) =





E[Xi|Xi ≥ 0] = +
√

2
π
σi if y = C

E[Xi|Xi < 0] = −
√

2
π
σi if y = ∅.

(6.11)

The security level for DMi given by

J̄i def
=

(
1− 2

π

)
σ2
i . (6.12)

Proof. From the perspective of DMi, the worst case scenario is when its opponent,

DMj, attempts to access the channel regardless of its measurement, i.e., DMj uses

a selfish policy U self
j (x) ≡ 1. In this case, the channel is occupied with probability

P(Uj = 1) = 1 and there is no chance of getting a packet through the collision

channel χ to its corresponding remote estimator. In this case, the best course of

action is to signal 1 bit of information about Xi using solely the no-transmission

and collision symbols ∅ and C. When a single bit is available to describe a zero

mean Gaussian variable, one strategy that minimizes the mean square error is to

transmit a packet when Xi ≥ 0 and not to transmit when Xi < 0. This choice is

clearly not unique.

Example 6.1. Consider the game over the collision channel with X1 ∼ N (0, 1) and

X2 ∼ N (0, 2). The security policy for DM1 is the single threshold policy described

above and its corresponding cost is

J1(U sec
1 ,U self

2 ) = 0.3634. (6.13)
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If DM2 indeed chooses to adopt the selfish policy of always transmitting while its

opponent adopts the afore mentioned security policy, the transmissions made by

DM2 will succeed and fail with probabilities 0.5, respectively. When the transmission

fails, the best the remote estimator 2 can do is to output x̂2 = E[X2] = 0 then

incurring in a cost of

J2(U sec
1 ,U self

2 ) = 1. (6.14)

If DM2 decides to abandon its selfish policy in favor of using its own security policy,

it is not difficult to show that

J sec
1

def
= J1(U sec

1 ,U sec
2 ) =

3

4

(
1− 2

π

)
σ2

1 = 0.2725 (6.15)

and

J sec
2

def
= J2(U sec

1 ,U sec
2 ) =

3

4

(
1− 2

π

)
σ2

2 = 0.5450. (6.16)

Figure 6.2 illustrates the security and selfish policies in Example 6.1.

Nash-equilibrium policies

Example 6.1 shows that there is an incentive for DM2 not to use a selfish

policy and share the channel with DM1. Therefore, the selfish policy U self
2 is not

in Nash-equilibrium with the security policy U sec
1 . In this section, we make use of

the results from Chapter 3 to show that for the remote estimation game considered

here, one may constrain the search for Nash-equilibria over the class of deterministic

threshold policies.
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0

N (0, σ2
i )

U sec
i (x)

x

0

N (0, σ2
i )

U self
i (x)

x

Figure 6.2: Security and selfish policies for DMi when Xi ∼ N (0, σ2
i ), i ∈ {1, 2}.

Theorem 6.2. Let (U∗1 ,U∗2 ) be a Nash-equilibrium solution for the remote estimation

game with independent observations Xi, where Xi ∼ N (0, σ2
i ) for i ∈ {1, 2}. There

exists a pair of Nash-equilibrium deterministic threshold policies (Ŭ∗1 , Ŭ∗2 ) that attains

the same costs.

Proof. In order to establish this structural result, it is enough to show that there

exists a deterministic threshold policy that is optimal for the problem

min
Ui∈Ui

Ji(Ui,U∗j ), (6.17)

with U∗j ∈ Uj arbitrarily fixed, where i 6= j. If we find a class of policies with a

particular structure that contains the optimal solution for every possible choice of

U∗j , the structure will also hold when (U∗i ,U∗j ), is a Nash-equilibrium solution.
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As we have done previously in Chapters 3 and 5, we analyze the problem by

constructing an equivalent single DM subproblem. Let U∗j ∈ Uj be arbitrarily fixed,

the collision channel will be occupied by DMj with probability P(Uj = 1) = β. The

cost to be minimized by the DM is

Ji(Ui,U∗j ) = β E[(Xi − X̂i)
2|Ui = 1]P(Ui = 1) + E[(Xi − X̂i)

2|Ui = 0]P(Ui = 0),

(6.18)

which can be related to problem as an instance of Problem 3.2 with β = P(Uj = 1)

and % = 0. Theorem 3.2 guarantees the existence of a deterministic threshold policy

Ŭ∗i that is optimal for this problem. The same argument can be repeated for DMj,

j 6= i, leading to a deterministic policy Ŭ∗j .

Example 6.2 (Nash-equilibrium policies). Consider the game over the collision

channel without capture where X1 ∼ N (0, 1) and X2 ∼ N (0, 2). Using the Modified

Lloyd-Max algorithm from Chapter 4, we may find Nash-equilibrium policies for the

game over the collision channel by iteratively using it to find policies which constitute

a fixed point of the following procedure: First, we fix β ∈ (0, 1) and apply the MLM

algorithm for DM1 until we find a critical point, which corresponds to a policy U1.

From U1, we obtain the corresponding α = P(U1 = 1) and repeat the same steps

for DM2, where α now plays the role of probability of the collision channel being

occupied. Whenever a fixed point to this procedure is found, we stop and output

the pair (U∗1 ,U∗2 ). It is not known if this procedure will always produce a Nash-

equilibrium. Using the procedure outlined above, we obtained the following pair of

communication policies summarized in Table 6.1.
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i A∗i0 x̂∗i∅ x̂∗iC J nash
i

1 [0.274,6.683] 0.980 -0.632 0.278
2 [0.387,9.451] 1.386 -0.894 0.557

Table 6.1: An example of a Nash-equilibrium

Remark 6.1. It can be numerically verified that (U sec
1 ,U sec

2 ) is not a Nash-equilibrium.

Note that despite the fact that the policies in Example 6.2 are in Nash-equilibrium,

their performance is strictly worse than if both DMs act according to their security

policies, i.e.,

J sec
i < J nash

i , i ∈ {1, 2}. (6.19)

However, we cannot guarantee that there is no other Nash-equilibrium with a better

performance than (U sec
1 ,U sec

2 ). This is an open question for future investigation.

Remark 6.2. The probability of transmission for DM1 and DM2 in the Nash-

equilibrium policies of Example 6.2 are both equal to

P(Ui = 1) = 0.608, i ∈ {1, 2}. (6.20)

Also note that the costs at this Nash-equilibrium scale linearly with the ratio between

the variances of the measurements, i.e.,

J nash
2 =

(
σ2

2

σ2
1

)
J nash

1 . (6.21)

We conjecture that these curious observations will always hold, but their proofs re-

main open for future work.
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6.1.4 Summary

We have presented preliminary results on a problem where multiple sensors

compete for the access to a collision channel in a non-cooperative game. Using the

results from Chapter 3, we have established the structure of security policies and

showed that, whenever a pair of Nash-equilibrium policies exists, there exists another

equilibrium consisting of threshold policies attaining the same costs. In order to

illustrate our results, we provided an example where the equilibrium policies were

explicitly computed with the aid of the Modified Lloyd-Max algorithm. The main

message here is the following altruistic result: even when sensors do not cooperate

as members of a team, there is an incentive to share the communication resources

among the agents.

6.2 Sensors with private and common observations

In the second part of this chapter we consider the Bayesian estimation problem

illustrated by the block diagram of Fig. 6.3. Two sensors, each observing a private

and a common random variable, decide whether to transmit their measurements to

a remote estimator over a collision channel according to possibly stochastic commu-

nication policies. The communication constraint imposed by the collision channel

is such that only one transmission may reach the estimator and, if more than one

sensor transmits, a collision is declared. Upon observing the channel output, the

estimator forms estimates of all the measured random variables. Our goal is to

characterize communication policies that minimize a mean squared error criterion.
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Figure 6.3: Schematic representation of decentralized estimation over a collision
channel with private and common observations.

6.2.1 System model

Consider a random vector W with three components X1, X2 and Z taking

values on alphabets denoted by X1,X2 and Z, respectively. The vectorW represents

the state of the stochastic system that we wish to sense remotely over a wireless

network. We assume that the probability density function of W has the following

structure:

fW (x1, z, x2) = fZ(z) · fX1|Z(x1|z) · fX2|Z(x2|z), (6.22)

for all (x1, z, x2) ∈ X1×Z×X2, i.e., the random variablesX1 andX2 are conditionally

independent given Z. The state W is jointly monitored by two sensors, which have

access to partial observations: DMi has access to

Wi
def
=(Xi, Z), (6.23)

where Xi denotes its private information and Z denotes the common information,

i ∈ {1, 2}. Note that, unless Z is deterministic, W1 and W2 are dependent, or
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equivalently, they satisfy W1 ⊥6⊥W2. From the perspective of DMi, the fact that W1

and W2 may be dependent leads to the following structural differences relative to

Chapter 3, where observations are assumed independent:

• The event that there is a concurring transmission may not be independent of

Wi.

• A successful transmission made by DMj, j 6= i, may contain valuable side

information for the estimation of Xi.

The decision maker DMi observes the realization (xi, z), and must decide

whether to communicate it to the remote estimator based solely on its measurement

according to a communication policy Ui, i ∈ {1, 2}. The decision to communicate

or not is represented by a binary random variable Ui ∈ {0, 1}, where Ui = 1 denotes

an attempt to communicate and Ui = 0 denotes the decision to remain silent.

Definition 6.5 (Communication Policies). The communication policy for DMi is a

measurable function Ui : Xi × Z→ [0, 1] such that

P(Ui = 1|Xi = xi, Z = z)
def
= Ui(xi, z), i ∈ {1, 2}. (6.24)

The set of all communication policies for DMi is denoted by Ui. When a sensor

decides to transmit, it sends its identification number, its private and common ob-

servations to the remote estimator. Otherwise, it remains silent. The channel input
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Si is determined as follows:

Si =





(Xi, Z) if Ui = 1

∅ if Ui = 0

, i ∈ {1, 2}, (6.25)

where the symbol ∅ denotes a no-transmission.

Definition 6.6 (Collision Channel). Let the channel input alphabet be denoted by

S1 × S2, where Si = {Xi × Z} ∪ {∅} and the channel output alphabet be denoted

by Y =
{
{1 × S1} ∪ {2 × S2} ∪ {∅,C}

}
. Given the input random variables S1 and

S2, the collision channel output Y = χ(S1, S2), where χ is given by the following

deterministic map:

χ(s1, s2)
def
=





(1, s1) if s1 6= ∅, s2 = ∅

(2, s2) if s1 = ∅, s2 6= ∅

∅ if s1 = ∅, s2 = ∅

C if s1 6= ∅, s2 6= ∅.

(6.26)

The symbol C denotes the occurrence of a collision between two simultaneous trans-

missions.

Remark 6.3. The identification number allows the estimator to unambiguously de-

termine the origin of every successful transmission.

Remark 6.4. There is a fundamental difference between the collision channel de-

scribed above and the erasure channel commonly found in the literature of remote

control and estimation, e.g. [13]: here there are two distinct symbols to represent
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no-transmission and collision events. This provides the sensors the opportunity to

use the no-transmission and collision symbols to transmit information using signal-

ing [69].

For any given pair of communication policies (U1,U2) ∈ U1×U2, the estimator

is interested in forming an estimate Ŵ that minimizes a mean squared error criterion.

Define J : U1 × U2 → R such that

J (U1,U2)
def
= E

[
(W − Ŵ )T (W − Ŵ )

]
(6.27)

It is straightforward to show that for any two communication policies, the receiver

that minimizes the cost in Eq. (6.27) forms a minimum mean squared error (MMSE)

estimate of the random variable W given the observed channel output Y , i.e.,

Ŵ
def
= E(Y ), and E(y)

def
= E [W |Y = y] , y ∈ Y. (6.28)

We are now ready to state the optimization problem for which the desired structural

properties of optimal solutions will be established.

Problem 6.1. Find a pair of policies (U1,U2) ∈ U1 × U2 that jointly minimize

J (U1,U2) subject to the communication constraints imposed by the collision channel

of Eq. (6.26) and the MMSE estimation rule of Eq. (6.28).
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6.2.2 The common information approach

We characterize solutions to Problem 6.1 using the common information ap-

proach proposed by Nayyar et al. in [70], which consists of expanding the cost by

writing it as

J (U1,U2) = E

[
E
[
(W − Ŵ )T (W − Ŵ )|Z

] ]
(6.29)

and for each realization of the common information z, minimizing the conditional

cost defined as

J z(U1,U2)
def
= E

[
(W − Ŵ )T (W − Ŵ )|Z = z

]
(6.30)

over U1×U2. The idea is to look at the problem from the perspective of a fictitious

agent called the coordinator that observes the common information and chooses the

policies that each DM will use on their private information random variables [70].

This concept is illustrated in Fig. 6.4.

X1

X2

S1

S2

�

DM1

DM2

Remote
Estimator

Collision 
Channel

EY
X̂1, Ẑ, X̂2Z

U1(·, Z)

U2(·, Z)

Coordinator

Figure 6.4: The common information approach applied to the collision channel with
common and private observations.
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6.2.3 Structural result

The main contribution in this section is to show that there are optimal policies

that, for each realization of the common random variable, can be cast as a threshold

policy on the private random variable. This is generalizes the results of Chapter 3.

We proceed to formally define the class of threshold policies on private information.

Definition 6.7 (Threshold policy on private information). A policy U is a deter-

ministic threshold policy on private information when, for every z ∈ Z, there are

constants a(z) and b(z) ∈ R̄ for which the following holds:

U(x, z) =





0 if a(z) ≤ x ≤ b(z)

1 otherwise

, x ∈ X. (6.31)

If a(z) = −b(z), z ∈ Z, the threshold policy is called symmetric, otherwise it is

called asymmetric.

In other words, when a threshold policy on private information is used, the

observations are transmitted over the channel if the private information is above or

below specific thresholds, otherwise the sensor remains silent.

Theorem 6.3. If the minimizer of J (U1,U2) exists, there is a pair of threshold

policies on common information that attains the optimal cost.
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Figure 6.5: A threshold policy on private information for a fixed z ∈ Z.

Structure of the optimal estimator

Before proving our main result, we must develop a few auxiliary results. The

first step is to characterize the structure of the MMSE estimator E in Problem 6.1.

Definition 6.8 (Class of admissible estimators). An estimator E : Y → R3 is

admissible if it has the following structure

E(y) =





[x̂1∅ ẑ∅ x̂2∅] if y = ∅

[x̂1C ẑC x̂2C] if y = C

[x1 z f̂2∅(z)] if y = (1, x1, z)

[f̂1∅(z) z x2] if y = (2, x2, z)

(6.32)

with x̂i∅, x̂iC ∈ R, f̂i∅ : Z→ R, i ∈ {1, 2} and ẑ∅, ẑC ∈ R. The set of all admissible

estimator is denoted by E.

Lemma 6.1. For any pair of policies (U1,U2) ∈ U1 × U2, the MMSE estimator

belongs to the class of admissible estimators E.
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Proof. For a fixed pair of policies (U1,U2) ∈ U1 × U2, the MMSE estimator of W

given the channel output Y = y is E(y) = E[W |Y = y]. Note that computing the

conditional expectation for each possible value of y ∈ Y is equivalent to computing

the following quantities:

E(∅) = E [W |U1 = 0, U2 = 0] (6.33)

E(C) = E [W |U1 = 1, U2 = 1] (6.34)

E
(
(1, x1, z)

)
= E [W |U1 = 1, U2 = 0, X1 = x1, Z = z] (6.35)

E
(
(2, x2, z)

)
= E [W |U1 = 0, U2 = 1, X2 = x2, Z = z] . (6.36)

Let the following conditional expectations be denoted by

x̂i∅
def
= E[Xi|U1 = 0, U2 = 0] ∈ R, i ∈ {1, 2} (6.37)

and

ẑ∅
def
= E[Z|U1 = 0, U2 = 0] ∈ R. (6.38)

Similarly,

x̂iC
def
= E[Xi|U1 = 1, U2 = 1] ∈ R, i ∈ {1, 2} (6.39)

and

ẑC
def
= E[Z|U1 = 1, U2 = 1] ∈ R. (6.40)

When the estimator receives Y = (i, xi, z), the conditional expectations of Xi and Z are
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equal to xi and z, respectively. Finally, for i 6= j we have:

f̂i∅(z)
def
= E[Xi|Y = (j, xj , z)]

= E[Xi|Ui = 0, Uj = 1, Xj = xj , Z = z]

= E[Xi|Ui = 0, Z = z], (6.41)

where the last equality follows from the conditional independence of X1 and X2 given

Z.

In the proof of Theorem 6.3 we allow the estimator to be arbitrarily fixed

within the class of maps which have the same structure as the MMSE estimator.

The idea is to show that there exists a pair of deterministic threshold policies on

private information for any fixed estimator E with this structure.

Single decision maker subproblem

From now on, we assume that the estimator is arbitrarily fixed in the class

of admissible estimators E and does not depend on the communication policies. In

order to apply the person-by-person optimality approach, we first need to express

the cost from the perspective of a single decision maker, assuming that the commu-

nication policy of the other sensor is arbitrarily fixed. For i, j ∈ {1, 2} such that

i 6= j, we can write the conditional cost for DMi for any fixed choice of Uj ∈ Uj as

follows:

J z(Ui,Uj) = E
[
(Xi − X̂i)

2 + (Z − Ẑ)2|Z = z
]

+ ρzjP(Ui = 1|Z = z) + θzj , (6.42)
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where ρzj and θzj are given by:

ρzj
def
= E

[
(Xj − X̂j)

2|Ui = 1, Z = z
]
− E

[
(Xj − X̂j)

2|Ui = 0, Z = z
]

(6.43)

and

θzj
def
= E

[
(Xj − X̂j)

2|Ui = 0, Z = z
]
. (6.44)

Proposition 6.1. Let i, j ∈ {1, 2} such that i 6= j. For any fixed Uj ∈ Uj and

E ∈ E, the values of ρzj and θzj are constant in Ui ∈ Ui.

Proof. The key idea to prove this result is that the following Markov chain relation-

ship holds

X1, U1 ↔ Z ↔ X2, U2, (6.45)

i.e., X1, U1 and X2, U2 are conditionally independent given Z. Using the law of total

expectation and Eq. (6.45), we have

ρzj = E[(Xj − x̂jC)2|Uj = 1, Z = z]P(Uj = 1|Z = z)

−E[(Xj − x̂j∅)2|Uj = 0, Z = z]P(Uj = 0|Z = z)

+E[(Xj − f̂j∅(z))2|Uj = 0, Z = z]P(Uj = 0|Z = z). (6.46)

Similarly,

θzj = E[(Xj − x̂j∅)2|Uj = 0, Z = z]P(Uj = 0|Z = z). (6.47)

Therefore, ρzj , θzj do not depend on the choice of Ui.
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This means that we can define a new equivalent cost J z
j : Ui → R such that

J z
j (Ui) def

= E
[
(Wi − Ŵi)

T (Wi − Ŵi)|Z = z
]

+ ρzjP(Ui = 1|Z = z), (6.48)

which has the interpretation that, from the perspective of DMi, the cost has two

components: a mean square estimation error of the observed random vector Wi =

(Xi, Z) and a communication cost that accounts for loss in estimation of the private

information of DMj. The single decision maker subproblem from the perspective of

DMi is to minimize J z
j in Eq. (6.48) over Ui assuming that the policy Uj used by

DMj is fixed.

Proof of Theorem 6.3 . Assume that the estimator E ∈ E, i.e., has the structure

in Eq. (6.32). Let i, j ∈ {1, 2} such that i 6= j. For every realization z ∈ Z and

any fixed Uj ∈ Uj, we will show that there exists a threshold policy on private

information that minimizes J z
j (Ui). The conditional cost from the perspective of

DMi in Eq. (6.48) can be further expanded and expressed as

J z
j (Ui) = E

[
βzj
{

(Xi − x̂iC)2 + (z − ẑC)2
}

+ ρzj |Ui = 1, Z = z
]
×P(Ui = 1|Z = z)

+
(
E
[
(1− βzj )

{
(Xi − x̂i∅)2 + (z − ẑ∅)2

}
|Ui = 0, Z = z

]

+E
[
βzj (Xi − f̂i∅(z))2|Ui = 0, Z = z

] )
×P(Ui = 0|Z = z), (6.49)

where

βzj
def
= P(Uj = 1|Z = z). (6.50)
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The conditional distribution of the private information Xi given Z = z and Ui = 1

is

fXi|Ui,Z(x|1, z) =
Ui(x, z)fXi|Z(x|z)

P(Ui = 1|Z = z)
. (6.51)

Similarly, given Z = z and Ui = 0, we have

fXi|Ui,Z(x|0, z) =
(1− Ui(x, z))fXi|Z(x|z)

P(Ui = 0|Z = z)
. (6.52)

Defining the following polynomials:

P0(x)
def
=(1− βzj )

[
(x− x̂i∅)2 + (z − ẑ∅)2

]
+ βzj (x− f̂∅(z))2 (6.53)

and

P1(x)
def
= βzj (x− x̂iC)2 + (z − ẑC)2 + ρzj , (6.54)

Eq. (6.49) becomes:

J z
j (Ui) =

∫

Xi

(
P1(x)− P0(x)

)
Ui(x, z)fXi|Z(x|z)dx+

∫

Xi
P0(x)fXi|Z(x|z)dx. (6.55)

For a fixed z ∈ Z and Uj ∈ Uj, our optimization problem is:

minimize
Ui∈Ui

J z
j (Ui)

subject to 0 ≤ Ui(x, z) ≤ 1, x ∈ Xi.

(6.56)
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The cost is linear in Ui, and is minimized by the following policy:

U∗i (x, z) =





0 if P1(x)− P0(x) ≥ 0

1 otherwise.
(6.57)

Since

∇2
x

(
P1(x)− P0(x)

)
= βzj − 1 ≤ 0, (6.58)

the set of points x ∈ R such that P1(x)−P0(x) ≥ 0 is convex and can be represented

by a closed interval, i.e.,

U∗i (x, z) =





0 if a(z) ≤ x ≤ b(z)

1 otherwise,
(6.59)

where a(z), b(z) ∈ R̄. This structure must hold for any estimator E ∈ E. From

Lemma 1, the MMSE estimator belongs to E and, therefore, the threshold structure

with private information is also optimal when E is given by Eq. (6.28). Finally,

for any given z ∈ Z, from any given pair of person-by-person optimal solutions for

J z(U1,U2) we can find has a pair of threshold policies that attains the optimal cost

J z∗. Since every pair of team-optimal solutions is also person-by-person optimal,

if a team-optimal solution exists, we can construct a pair of threshold policies on

private information that attains the optimal cost J ∗.

Remark 6.5. When X1,Z and X2 are finite alphabets, a team-optimal solution

is guaranteed to exist. When either one of the alphabets is of infinite cardinality,

the question of existence of team-optimal solutions becomes rather technical and is
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beyond the scope of this dissertation. We refer the readers to [71] for a comprehensive

treatment on this topic.

6.2.4 Computation of person-by-person optimal policies

The structural result of Theorem 6.3 is useful because we can constrain the

search for optimal solutions over a smaller strategy space. In particular, when Z

is a finite alphabet, the optimization can be performed over a finite dimensional

space, rather than an infinite dimensional one. In this section, we use the structure

to derive expressions for the computation of person-by-person optimal policies for

DM1 and DM2. For a fixed pair of threshold policies on private information U1 and

U2, we obtain expressions for the computation of the optimal estimates. For a given

threshold policy on common information Ui, we denote the no-transmission sets by

Ai(z)
def
={x ∈ Xi | ai(z) ≤ x ≤ bi(z)} i ∈ {1, 2}. (6.60)

The MMSE estimate of Xi when the estimator observes a no-transmission

symbol is

x̂i∅ = E[Xi|Y = ∅]

= E
[
E[Xi|Ui = 0, Uj = 0, Z]

]

= E
[
E[Xi|Ui = 0, Z]

]

= E
[
f̂i∅(Z)

]
. (6.61)
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Recall from Eq. (6.41) that f̂i∅(z) is the optimal estimate of the private information

of DMi when the estimator receives Y = (j, xj, z), j 6= i. The interpretation is that

f̂i∅(z) is a refinement of the estimate of Xi given that DMi sent a no-transmission

symbol in the presence of common information provided by Z = z. Using the

structure of the optimal policies, we can write

f̂i∅(z) =

∫ bi(z)
ai(z)

x · fXi|Z(x|z)dx
∫ bi(z)
ai(z)

fXi|Z(x|z)dx
, z ∈ Z. (6.62)

Repeating these steps for the case when the estimator observes a collision symbol,

we have:

x̂iC = E[Xi|Y = C]

= E
[
E[Xi|Ui = 1, Uj = 1|Z]

]

= E
[
E[Xi|Ui = 1, Z]

]
. (6.63)

Note that the estimator never observes that DMi attempted to transmit along with

the common information Z. However, we define the auxiliary estimate functions

f̂iC : Z→ R such that

f̂iC(z)
def
= E[Xi|Ui = 1, Z = z], (6.64)

which because of the thresholds structure of the optimal policies, can be written as

f̂iC(z) =

∫
R̄\[ai(z),bi(z)] x · fXi|Z(x|z)dx
∫
R̄\[ai(z),bi(z)] fXi|Z(x|z)dx

, z ∈ Z. (6.65)
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Finally, the estimator averages these auxiliary functions to obtain:

x̂iC = E
[
f̂iC(Z)

]
. (6.66)

The estimates above are computed for the cases when communication either fails

as a result of a collision between two simultaneous transmissions or when the chan-

nel is idle. When exactly one sensor successfully transmits its measurements, i.e.,

Y = (j, xj, z), the common information aids the estimation of Xi, acting as side

information.

The expression for the estimate of the common information in the case of a

collision is derived from

ẑC = E[Z|U1 = 1, U2 = 1], (6.67)

which is computed as follows:

ẑC =

∫
Z z · βz1βz2fZ(z)dz∫
Z β

z
1β

z
2fZ(z)dz

. (6.68)

Finally, we compute the optimal estimate of the common observation in the case of

a collision from

ẑ∅ = E[Z|U1 = 0, U2 = 0], (6.69)

which corresponds to:

ẑ∅ =

∫
Z z ·

(
1− βz1

)(
1− βz2

)
fZ(z)dz∫

Z

(
1− βz1

)(
1− βz2

)
fZ(z)dz

. (6.70)
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The natural iterative procedure to search for a person-by-person optimal so-

lution is to alternately optimize U1 and U2 keeping one of them constant until a

fixed point is found. There are no guarantees that this procedure will converge. For

i, j ∈ {1, 2} such that i 6= j, an iteration of the numerical procedure consists of the

following steps:

• Step 0: Choose a threshold policy on private information Uj ∈ Uj. Fixing

the communication policy of DMj corresponds to fixing the sets Aj(z), z ∈ Z.

• Step 1: Compute f̂j∅(z) and f̂jC(z), z ∈ Z, according to Eqs. (6.62) and (6.65),

then compute x̂j∅ and x̂jC using Eqs. (6.61) and (6.66).

• Step 2: Compute the conditional probabilities of transmission, the commu-

nication costs and off-set terms according to:

βzj = 1−
∫ bj(z)

aj(z)

fXj |Z(x|z)dx, (6.71)

ρzj =

∫ bj(z)

aj(z)

(
x− f̂j∅(z)

)2
fXj |Z(x|z)dx

−
∫ bj(z)

aj(z)

(x− x̂j∅)2fXj |Z(x|z)dx

+

∫

R̄\[aj(z),bj(z)]
(x− x̂jC)2fXj |Z(x|z)dx (6.72)
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and

θzj =

∫ bj(z)

aj(z)

(x− x̂j∅)2fXj |Z(x|z)dx, z ∈ Z. (6.73)

• Step 3: Provided that for all z ∈ Z, βzj , ρzj and θzj are fixed; that x̂i∅, x̂iC, ẑ∅

and ẑC are given by Eqs. (6.61), (6.66), (6.68) and (6.70), solve the problem

in Eq. (6.74):

minimize
Ui∈Ui

E
[
J Z(Ui,Uj)

]

subject to ai(z) ≤ bi(z), z ∈ Z,
(6.74)

with variables ai(z), bi(z), f̂i∅(z) and f̂iC(z), z ∈ Z; where where J z(Ui,Uj) is

given by the expression in Eq. (6.75):

J z(Ui,Uj) def
=

∫ bi(z)

ai(z)

[
βzj
[
(x− x̂iC)2 + (z − ẑC)2

]
+ ρzj

]
fXi|Z(x|z)dx

+

∫

R\[ai(z),bi(z)]
(1− βzj )

[
(x− x̂i∅)2 + (z − ẑ∅)2

]
fXi|Z(x|z)dx

+

∫

R\[ai(z),bi(z)]
βzj (x− f̂i∅(z))2fXi|Z(x|z)dx+ θzj . (6.75)

• Step 4: Fix the policy of DMi according to the solution of the problem in

Eq. (6.74) and follow the steps above for the optimization of Uj. Repeat steps

1 through 4 until the cost cannot be further reduced and a fixed point is found.

Remark 6.6. The optimization problem in Eq. (6.74) is defined over a finite dimen-

sional space if Z is a finite alphabet and may be solved using nonlinear programming

solvers. The solution of this problem when Z is a continuous random variable is a
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topic for future investigation.

6.2.5 Example

Assume that X1, X2 and Z are mutually independent. The random variables

X1, X2 ∼ N (0, 1) and Z ∈ {−1,+1} is distributed according to:

Z =





−1 with probability 1− p

+1 with probability p.

(6.76)

Implementing the numerical procedure outlined in the previous section for different

values of the probability p, we obtain the pairs of person-by-person optimal solutions

shown in Table 6.2. As the parameter p approaches 0.5, the variance of the the

common information Z increases to 1. The dependence between W1 and W2 can be

measured using the RV coefficient [72], which in the case of this example is given by

RV(W1,W2) =
(4p(1− p))2

1 + (4p(1− p))2
. (6.77)

Note that when p = 0.5, the RV coefficient between W1 and W2 achieves its max-

imum value. However, as the observations become more dependent, the variance

of Z also increases, causing the overall mean squared estimation error to be larger.

That explains why the minimum cost in Table 6.2 increases with p, even though the

observations become more dependent.

The structural result from Theorem 6.3 states that the optimal communica-
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Figure 6.6: The RV coefficient between W1 and W2 in our problem. RV(W1,W2)
is a measure of statistical dependence that generalizes the correlation coefficient for
scalar random variables.

tion policies are event-based. In general, the person-by-person optimal policies in

Table 6.2 show us that the thresholds used to define these event-based policies are

asymmetric. This is attributed to the ability of the DMs to encode information in

the collision and no-transmission symbols in order to further reduce the cost. We

also note that the cost of using a time-sharing policy, in which the sensors take

turns transmitting and remaining silent and thus, avoiding collisions, is equal to

1. In the worst case scenario, when p = 0.5, using the person-by-person optimal

threshold policy in the last row of Table 6.2 shows an improvement of 21.6% over

the scheduling policy. Therefore, this approach leads to a considerable reduction in

cost over pure collision avoidance protocols. We also observe that DM1 employs a

combination of scheduling and event-based policies. This shows that the common

observation acts as a switch that schedules the transmission of DM1: when Z = +1,

it always transmits regardless of its private information; when Z = −1, it uses an

asymmetric threshold policy.

142



p U1 U2 J (U1,U2)

0
[+0.0977,+5.3593] [+0.0976,+5.3593]

0.5397
– –

0.1
[+0.1006,+5.3386] [+0.0939,+5.3653]

0.5866∅ [−1.3931,+∞]

0.2
[+0.1123,+5.2634] [+0.0803,+5.3975]

0.6349∅ [−1.3625,+∞]

0.3
[+0.1388,+5.1130] [+0.0517,+5.4920]

0.6844∅ [−1.3207,+∞]

0.4
[+0.1872,+4.8772] [0.0032,+5.7099]

0.7344∅ [−1.2664,+∞]

0.5
[+0.2621,+4.5763] [−0.0668,+6.1340]

0.7838∅ [−1.2038,+∞]

Table 6.2: Person-by-person optimal policies for DM1 and DM2 in Problem 6.1
where the measurements are independently distributed as X1, X2 ∼ N (0, 1) and
Z ∼ B(p). Each policy is represented by a pair of no-transmission intervals Ai(−1)
and Ai(+1).

a1 b1

x

Z = −1

a1 = b1

x

Z = +1

(a) Communication policy U1

a2 b2

x

Z = −1

a2

x

Z = +1

(b) Communication policy U2

Figure 6.7: Structure of person-by-person optimal communication policies from in
Table 6.2.

6.2.6 Summary

We took a first step to generalize the estimation problem over the collision

channel to the case of dependent observations by considering the case where the
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sensors observe common and private random variables. Using a combination of the

common information and person-by-person optimality approaches, we showed that

the search for team-optimal policies can be performed within the class of determin-

istic threshold on private information communication policies. Using this result,

we obtained expressions for the MMSE estimates, outline an iterative procedure to

compute person-by-person optimal policies and provide a numerical example. The

results contained in this section may be useful for solving the dynamic case with

feedback, when common information in the form of acknowledgements is available

to the sensors prior to transmission.
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Chapter 7: Conclusion and future research

7.1 Conclusion

Estimation and control over wireless networks has been a very active research

area with potential applications of great economic impact, e.g. cyber-physical sys-

tems. Within the context of remote estimation, systems with a single sensor are very

well understood for a wide range of channel models and communication constraints.

However, little is known when the sensing task is distributed among multiple sen-

sors sharing a common communication medium. Part of the difficulties in obtaining

results for the multiple sensor scenarios lies on finding a model that captures the

essence of the interference phenomenon while retaining the overall tractability of the

research problem. Another aspect is to use the right formalism to solve the prob-

lem and obtaining structural results leading to design principles for real systems.

This dissertation proposes a new class of canonical decentralized remote estimation

problems which are based on an abstraction for the wireless medium known as the

collision channel. We derive structural results for the optimal solutions to these

problems using the formalism of team decision theory.

The first part of the dissertation focuses on the problem of estimating two

independent continuous random variables observed by two different sensors commu-
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nicating with a fusion center over a collision channel. For a minimum mean squared

estimation error criterion, we show that there exist team-optimal strategies where

each sensor employs a threshold policy. Moreover, this is independent of the distri-

bution of the observations irrespective of assumptions on modality and symmetry

of the probability density functions. This result can be extended to vector observa-

tions and, under an additional assumption on the channel, to any number of sensors.

Consequently, the existence of optimal policies with an event-based structure is a

result of practical significance, because it can be applied to a wide class of systems

where the network is modeled by a collision channel without any assumptions on

collision avoidance protocols such as sensor scheduling.

The second part of the dissertation focuses on the problem of estimating two

independent discrete random variables observed by two different sensors communi-

cating with a fusion center over a collision channel. Using two criteria involving the

probability of estimation error, we also show the existence of team-optimal strate-

gies with a particular form of event-based structure characteristic to problems with

discrete observations. These results are also independent of the distributions and a

valid for any number of sensors, under an additional assumption on the channel. In

our analysis, the proof of the structural result involves the minimization of a con-

cave function, which is an evidence of the inherent complexity of such team decision

problems. However, we are still able to solve the problem exactly without using any

approximation techniques.

In the third part of the dissertation, the assumptions on the cooperation among

sensors is relaxed, showing that similar structural results can also be obtained for
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systems with one or more selfish sensors. Finally, the assumption on the indepen-

dence is lifted by introducing the observation of a common random variable in addi-

tion to the private observations of each sensor. The structural result obtained may

lead to characterizations of team-optimal policies for a general correlation structure

between the observed random variables.

7.2 Future research

There are many opportunities for future research stemming from the problems

posed in this dissertation. The most important question at this point is how to

extend the problem formulation and the structural results from a one-shot to the

sequential case. This is a challenging problem that would have many important

consequences in estimation and control theory, generalizing the notion of Kalman

filtering with intermittent observations to deal with collisions, as well as the struc-

tural result of Lipsa and Martins [37] to the multi-sensor case. The answer to this

question may have connections with sequential one-bit quantization schemes such

as sigma-delta modulators.

Another important question is to obtain ways to verify if a person-by-person

optimal solution obtained for Problem 3.1 is in fact team-optimal or not. We suggest

two possible ways to do this: the first would be to show if a set of technical conditions

known as stationarity conditions [12] hold in our problem. If such conditions are

satisfied, person-by-person optimality implies team-optimality. Another way that

this can be done is to obtain a bound on estimation error akin to Cramer-Rao lower
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bounds, and verify if a particular pair of person-by-person optimal policies achieves

it. In this case, the achieving pair of person-by-person optimal policies would be

team-optimal.

A natural extension of the model presented here is to allow the channel to sup-

port n users and a collision event when m < n simultaneous transmissions are made.

Another open question is to determine the structure of optimal policies when obser-

vations are correlated instead of independent. Another interesting problem occurs

in the n sensor case, when the assumption on the ability of the remote estimator to

identify colliding nodes is removed. In that case, there is ambiguity on who trans-

mitted a packet when a collision is observed. The problem formulation of Chapter 5

can also be extended to the case of sequential estimation of discrete Markov sources

over the collision channel with feedback in the form of acknowledgements. On the

numerical aspects of the problem with common and private observations in Chap-

ter 6, more work is needed on how to efficiently perform the optimization procedure

when Z is a continuous random variable. The results contained in that section may

be useful for solving the dynamic case with feedback, when common information in

the form of acknowledgements is available to the sensors at each time.

Finally, there has been an increasing interest in designing control systems

robust to so-called cyber-attacks. Jamming can be seen as a denial-of-service attack

on a wireless channel, in which the attacker blocks the communication between the

legitimate parties by congesting the network with random data or injecting extra

noise in the channel [41]. Problems of estimation in the presence of an intelligent

jammer have been studied in the context of the Gaussian channel, e.g. [73, 74].
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We argue that the collision channel could also be used to study estimation and

control in the presence of malicious jammers. A new interesting scenario aligned

to the system models in this dissertation is: a legitimate DM communicates with

a remote estimator through a network modeled by a collision channel shared with

a jammer. The jammer has access to side information about the DM’s observation

and choses its actions strategically. The goal of the sensor-estimator pair is to

choose a communication policy to minimize the mean squared estimation error and

the jammer’s purpose is to perform an attack on the channel with the intent to

maximize it.
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Appendix A: Continuity and strong duality results

A.1 Auxiliary results on continuity

This Appendix includes two propositions that state important continuity prop-

erties of the costs for Problems 3.1 and 3.2. In particular, they state that when eval-

uated for deterministic threshold policies, the cost varies continuously with respect

to the thresholds. This is observation is key to show the existence of an optimum

in Theorems 3.1 and 3.2.

Proposition A.1. Let (Ū1, Ū2) be a given pair of deterministic threshold policies

characterized by thresholds ā1, b̄1, ā2 and b̄2 in R̄. Let {(Ŭ1,(n), Ŭ2,(n))}∞n=0 be a given

sequence of policies with associated thresholds {ă1,(n)}∞n=0, {b̆1,(n)}∞n=0, {ă2,(n)}∞n=0

and {b̆2,(n)}∞n=0. If limn→∞ ă1,(n) = ā1, limn→∞ b̆1,(n) = b̄1, limn→∞ ă2,(n) = ā2 and

limn→∞ b̆2,(n) = b̄2 holds then the following also holds:

lim
n→∞

J (Ŭ1,(n), Ŭ2,(n)) = J (Ū1, Ū2). (A.1)

Proposition A.2. Let Ū be a deterministic threshold policy characterized by thresh-

olds ā and b̄ in R̄, with ā ≤ b̄. Let U(n) be a sequence of policies for problem 3.2 with

associated thresholds a(n) and b(n) that satisfy limn→∞ a(n) = ā and limn→∞ b(n) = b̄.
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The following holds:

lim
n→∞

J (U(n)) = J (Ū ). (A.2)

A.2 Strong duality

The purpose of this Appendix is to provide a proof that, under the conditions

of Lemma 3.1, strong duality holds for the problem in Eq. (3.30). This is important

since, as opposed to their finite dimensional counterparts, strong duality for infinite

dimensional linear programs does not necessarily hold. Our proof will hinge on a

result due to Borwein and Lewis [75] adapted by Limber and Goodrich in [76]. The

constraint qualification under which strong duality holds involves the concepts of

quasi interior (qi) and quasi-relative interior (qri) of a set. The relative interior of

a set is denoted by ri.

Theorem A.1 (Limber and Goodrich [76] - Theorem 4.1). Let G be a Banach space,

J : G → (−∞,+∞] a convex functional, A : G → Rn a linear continuous map,

and Gc ⊂ G a closed convex set. Let b ∈ Rn be a fixed vector such that b ∈ ri A(Gc)

and suppose that

p∗ = inf {J (G ) | A(G ) = b, G ∈ Gc} (A.3)

is finite. If

d∗ = sup
ν∈Rn

{
bTν + inf

G∈Gc

{
J (G )− νTA(G )

}}
, (A.4)

then p∗ = d∗, i.e., strong duality holds and the maximum is attained at some ν∗ ∈ Rn.
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Since ri A(Gc) = A(qri Gc), when qri Gc 6= ∅, this can be restated as follows: if

∃G ∈ qri Gc such that A(G ) = b, (A.5)

then p∗ = d∗.

Proof. The reader is referred to [76] and [75].

We will verify that the conditions of Theorem A.1 are indeed satisfied for the

optimization problem in Eq. (3.30).

(i). The space L2
µ(R) is a Banach space.

(ii). The objective functional is linear in G and therefore convex.

(iii). The map A : L2
µ(R) → R2, where A(G )

def
=
[
E[XG (X)] E[G (X)]

]T is linear

in G , and it is also bounded and therefore continuous. Boundedness can be

verified as follows

‖A(G )‖2
2 = |E[XG (X)]|2 + |E[G (X)]|2 (A.6)

≤ (E[X2] + 1)E[|G (X)|2] (A.7)

< +∞. (A.8)

The first inequality follows from the Cauchy-Schwarz inequality applied to

the first term and Jensen’s inequality applied to the second term. The strict

inequality in the last step follows from the fact that X has finite second

moment and G ∈ L2
µ(R).
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(iv). The set

Gc = {G ∈ L2
µ(R) | 0 ≤ G (x) ≤ 1

1− α, µ− a.e.} (A.9)

is closed and convex.

(v). Assuming the existence of a feasible point we have,

p∗ ≤ E[X2G (X)] ≤ 1

1− α E[X2] < +∞, (A.10)

where the strict inequality follows from X having finite second moment.

(vi). Finally, we must check if the following constraint qualification is satisfied

∃G ∈ qri Gc such that A(G ) = b, (A.11)

which corresponds to Borwein-Lewis’ constraint qualification in [76]. There-

fore, in order to have strong duality, there must be feasible point G ∈ qri Gc

such that A(G ) = [γ 1]T. From [76, Theorem 2.1, Example 2.2], we have

qri Gc =

{
G ∈ L2

µ(R)
∣∣∣0 < G (x) <

1

1− α, µ− a.e.
}
, (A.12)

which is the condition that must be satisfied for Lemma 3.1 to hold.
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A.3 Suboptimality of sensor schedulling

In this Appendix we state and prove the following result used in the proof of

Lemma Lemma 3.1.

Proposition A.3. If ν∗ is a maximizer of the the Lagrange dual function in Eq. (3.34),

the polynomial x2 + ν∗0x+ ν∗1 always admits distinct real roots.

Proof. We will show that (ν∗0)2 > 4ν∗1 . Suppose that ν satisfies ν2
0 ≤ 4ν1, implying

that [x2 +ν0x+ν1]− ≡ 0. The Lagrange dual function becomes C∗(ν) = −ν1−ν0x̂∅,

its supremum subject to 4ν1 ≥ ν2
0 is equal to x̂2

∅ and it is achieved by ν∗0 = −2x̂∅

and ν∗1 = x̂2
∅.

When ν2
0 > 4ν1, the polynomial x2 + ν0x + ν1 admits two distinct real roots

denoted by a(ν) and b(ν):

a(ν), b(ν) =
−ν0 ±

√
ν2

0 − 4ν1

2
. (A.13)

Let ν0 = −2x̂∅ and ν1 = x̂2
∅− δ, for some δ > 0. Clearly, ν2

0 −4ν1 = 4δ > 0. We will

show that ∃δ > 0 such that C∗(ν) > x̂2
∅ and therefore there is no loss in optimality

in restricting the dual problem to {ν ∈ R2 | ν2
0 > 4ν1}. We start with

C∗(ν)

∣∣∣∣∣ν0=−2x̂∅
ν1=x̂2∅−δ

= x̂2
∅ + δ+

1

1− α

∫ x̂∅+
√
δ

x̂∅−
√
δ

[
(x− x̂∅)2 − δ

]
fX(x)dx, (A.14)
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and define
∫ x̂∅+

√
δ

x̂∅−
√
δ

(x− x̂∅)2fX(x)dx
def
=W(δ). (A.15)

When x varies from x̂∅−
√
δ to x̂∅ +

√
δ, the quantity (x− x̂∅)2 varies from 0 to δ.

Therefore,

0 ≤ W(δ) ≤
∫ x̂∅+

√
δ

x̂∅−
√
δ

δfX(x)dx
def
= V(δ). (A.16)

Since

V(δ)

δ
=

∫ x̂∅+
√
δ

x̂∅−
√
δ

fX(x)dx, (A.17)

the limit δ ↓ 0 yields V(δ)
δ
→ 0. Therefore, V(δ) = o(δ) and consequently, W(δ) =

o(δ). Implying that

C∗(ν)

∣∣∣∣∣ν0=−2x̂∅
ν1=x̂2∅−δ

= x̂2
∅ + δ + o(δ) > x̂2

∅. (A.18)

This proposition implies that always-transmit and never-transmit degenerate

strategies used in sensor scheduling are strictly suboptimal for Problem 3.1.
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Appendix B: Convergence of the Modified Lloyd-Max algorithm

Theorem B.1. Assume that X ∼ N (0, σ2). There exists a compact set C, which

contains all the critical points of Jq(x̂), such that F(C) ⊂ C. Consequently, the

modified Lloyd-Max algorithm is globally convergent to a critical point of Jq(x̂).

Proof. Without loss of generality, we can constrain our analysis to Q1 (or Q2).

Proposition 4.2 implies that F maps every x̂ ∈ Q1 into

H1
def
= Q1 ∩ {x̂ ∈ R2 | x̂∅x̂C ≥ −σ2}. (B.1)

To construct a compact set C1 invariant with respect to F we will intersect H1 with

{x̂ ∈ R2 | ‖x̂‖∞ ≤ `}, where is ` is an arbitrarily large, finite and positive real

number. Hence,

C1
def
= H1 ∩ {x̂ ∈ R2 | ‖x̂‖∞ ≤ `}. (B.2)

Points x̂ ∈ C1 such that ` � x̂∅ and −` � x̂C will never map outside of C1.

This can be shown using Eqs. (4.24) and (4.26) and is omitted for brevity. We will

now show that the points in the two regions:

1. x̂ ∈ H1 with x̂∅ ≈ ` such that x̂∅ ≤ ` and x̂C ≈ 0

2. x̂ ∈ H1 with x̂C ≈ −` such that x̂C ≥ −` and x̂∅ ≈ 0.
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C2

C1

|x̂∅||x̂C| = σ2
X

|x̂∅||x̂C| = σ2
X

x̂∅

x̂C
`

`
−`

−`

Figure B.1: The shaded region is the set C = C1 ∪ C2 containing all the critical
points of F(x̂) on R2.

will map to points inside of C1.

Here we provide the detailed proof for region 1. The proof for region 2 is

analogous and omitted for brevity. First we note that in the asymptotic regime of

region 1,

a(x̂) ≈ x̂∅

1 +
√
β

and b(x̂) ≈ x̂∅

1−√β . (B.3)

Therefore, when x̂∅ ≈ ` and x̂C ≈ 0, both a(x̂) and b(x̂) are large. Defining

L(x̂)
def
=

∫ b(x̂)

a(x̂)

xfX(x)dx− `
∫ b(x̂)

a(x̂)

fX(x)dx (B.4)

=

√
σ2

2π

[
e−

a2(x̂)

2σ2 − e−
b2(x̂)

2σ2

]
− `

2

[
erfc

(
a(x̂)√

2σ2

)
− erfc

(
b(x̂)√

2σ2

)]
.(B.5)

Using the fact that erfc(t) ≈ 1√
π
e−t

2

t
, for large values of t, we have

L(x̂) ≈
√
σ2

2π

[(
1− `

a(x̂)

)
e−

a2(x̂)

2σ2 −
(
1 +

`

b(x̂)

)
e−

b2(x̂)

2σ2

]
. (B.6)
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Since x̂∅ ≤ ` we have that `
a(x̂)
≥ 1. Therefore, L(x̂) ≤ 0, which implies that

F∅(x̂) ≤ `. Finally, since
∫ b(x̂)

a(x̂)
fX(x)dx ≈ 0 and F∅(x̂) ≤ `,

FC(x̂) =

∫ b(x̂)

a(x̂)
fX(x)dx

1−
∫ b(x̂)

a(x̂)
fX(x)dx

F∅(x̂) ≈ 0. (B.7)

The analysis can be repeated for x̂ ∈ Q2, which will lead to a set H2 that can then

be truncated to a compact set C2, also invariant to F . Let

C def
= C1 ∪ C2. (B.8)

This set is illustrated in Fig. B.1.
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