ABSTRACT

Title of dissertation: ASSIGNMENT PROBLEMS
AND THEIR APPLICATIONS IN ECONOMICS

Melika, Abolhassani, Doctor of Philosophy, 2016

Dissertation directed by: Professor Mohammad Taghi Hajiaghayi
Department of Computer Science

Four assignment problems are introduced in this thesis, and they are ap-
proached based on the context they are presented in. The underlying graphs of
the assignment problems in this thesis are in most cases bipartite graphs with two
sets of vertices corresponding to the agents and the resources. An edge might show
the interest of an agent in a resource or willingness of a manufacturer to produce
the corresponding product of a market, to name a few examples.

The first problem studied in this thesis is a two-stage stochastic matching
problem in both online and offline versions. In this work, which is presented in
Chapter 2 of this thesis, a coordinator tries to benefit by having access to the
statistics of the future price discounts which can be completely unpredictable for
individual customers. In our model, individual risk-averse customers want to book
hotel rooms for their future vacation; however, they are unwilling to leave booking to
the last minute which might result in huge savings for them since they have to take
the risk of all the hotel rooms being sold out. Instead of taking this risk, individual

customers make contracts with a coordinator who can spread the risk over many

such cases and also has more information on the probability distribution of the future
prices. In the first stage, the coordinator agrees to serve some buyers, and then in
the second stage, once the final prices have been revealed, he books rooms for them
just as he promised. An agreement between the coordinator and each buyer consists
of a set of acceptable hotels for the customer and a single price. Two models for
this problem are investigated. In the first model, the details of the agreements are
proposed by the buyer, and we propose a bicriteria-style approximation algorithm
that gives a constant-factor approximation to the objective function by allowing a
bounded fraction of our hotel bookings to overlap. In the second model, the details
of the agreements are proposed by the coordinator, and we show the prices yielding
the optimal profit up to a small additive loss can be found by a polynomial time
algorithm.

In the third chapter of this thesis, two versions of the online matching problem
are analyzed with a similar technique. Online matching problems have been studied
by many researchers recently due to their direct application in online advertisement
systems such as Google Adwords. In the online bipartite matching problem, the
vertices of one side are known in advance; however, the vertices of the other side
arrive one by one, and reveal their adjacent vertices on the offline side only upon
arrival. Each vertex can only be matched to an unmatched vertex once it arrives and
we cannot match or rematch the online vertex in the future. In the online matching
problem with free disposal, we have the option to rematch an already matched offline
vertex only if we eliminate its previous online match from the graph. The goal is to

maximize the expected size of the matching. We propose a randomized algorithm

that achieves a ratio greater than 0.5 if the online nodes have bounded degree. The
other problem studied in the third chapter is the edge-weighted oblivious matching in
which the weights of all the edges in the underlying graph are known but existence
of each edge is only revealed upon probing that edge. The weighted version of
the problem has applications in pay-per-click online advertisements, in which the
revenue for a click on a particular ad is known, but it is unknown whether the user
will actually click on that ad. Using a similar technique, we develop an algorithm
with approximation factor greater than 0.5 for this problem too.

In Chapter 4, a generalized version of the Cournot Competition (a foundational
model in economics) is studied. In the traditional version, firms are competing in
a single market with one heterogeneous good, and their strategy is the quantity
of good they produce. The price of the good is an inverse function of the total
quantity produced in the market, and the cost of production for each firm in each
market increases with the quantity it produces. We study Cournot Competition on
a bipartite network of firms and markets. The edges in this network demonstrate
access of a firm to a market. The price of the good in each market is again an
inverse function of the quantity of the good produced by the firms, and the cost of
production for each firm is a function of its production in different markets. Our
goal is to give polynomial time algorithms to find the quantity produced by firms
in each market at the equilibrium for generalized cost and price functions.

The final chapter of this thesis is on analyzing a problem faced by online
marketplaces such as Amazon and ebay which deal with huge datasets registering

transaction of merchandises between many buyers and sellers. As the size of datasets

grow, it is important that the algorithms become more selective in the amount of
data they store. Our goal is to develop pricing algorithms for social welfare (or
revenue) maximization that are appropriate for use with the massive datasets in
these networks. We specially focus on the streaming setting, the common model
for big data analysis. Furthermore, we include hardness results (lower bounds)
on the minimum amount of memory needed to calculate the exact prices and also
present algorithms which are more space efficient than the given lower bounds but
approximate the optimum prices for the goods besides the revenue or the social

welfare of the mechanism.

ASSIGNMENT PROBLEMS AND THEIR APPLICATIONS IN
ECONOMICS

by

Melika Abolhassani

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
2016

Advisory Committee:

Professor Mohammad Taghi Hajiaghayi, Advisor
Professor Lawrence M Ausubel, Chair

Professor William Gasarch

Professor S. Raghu Raghavan

Professor Ashok Agrawala

(© Copyright by
Melika Abolhassani
2016

Acknowledgments

I owe my gratitude to my advisor, Prof. Hajiaghayi, who provided me with
the opportunity of working with him, and who has been very supportive since day
one and throughout all the years of my PhD program. It has been an honor to
work with him during these years, and I am very thankful for his continuous help,
motivation and support.

I would like to thank my mentor Dr. Kamal Jain who has been a great source
of motivation and inspiration for me during the short period of time I had the
pleasure of working with him.

I am very grateful for the opportunity of working with amazing researchers
such as Prof. Aravind Srinivasan, Prof. Robert Kleinberg, Prof. Brendan Lucier,
Mohammad Hossein Bateni, and my dear friend Hamid Mahini.

Special thanks to my defense committee, Prof. Lawrence Ausubel, Prof.
William Gasarch, Prof. Raghu Raghavan and Prof. Ashok Agrawala for their very
insightful comments.

During my PhD program, I have had the chance to both work and become
friends with an amazing and talented research group whom I have learnt from ev-
eryday. I would like to thank my friends Vahid Liaghat, Hossein Esfandiari, David
Malec, Soheil Ehsani, Anshul Sawant, Sina Dehghani, Saeed Seddighin, Hadi Yami,
Reza Khani. I would also like to thank Hubert Chan, Fei Chen, and X.Wu whom I
have had the pleasure to work with but not the chance to meet them in person.

I am very blessed to have found an unbelievably kind and caring group of

i

friends during this time who have helped and supported me through this journey.
I would like to express my gratitude to my dearest friends Kiana Roshan Zamir,
Ali Shafahi, Ladan Rabiee Kenari, Pouya Samangouei, Soudeh Montazeri, Niloufar
Shadab and Faeze Dorri.

Words cannot describe how grateful I am to my beloved parents and brothers
for everything they have done for me. Without a doubt, I would not be here without

such an amazing family.

il

Table of Contents

[List of Figures| vi
[l__Introductionl 1
L1 Overviewl. e e 1
(1.2 Selling Tomorrow’s Bargains Today| 4
(1.3 Edge-Weighted Oblivious and Online Matchingl)
(1.4 Network Cournot Competition|. 8
(1.5 Market Pricing for Data Streams| 9

[2 Selling Tomorrow’s Bargains Today]| 12
2.1 Introduction|o 12
[2.1.1 Buyer-selected Packs| 14

2.1.2 Coordinator-selected Packd 16

[2.1.3 Examples| 16

214 OQurresultd 19

2.1.5 Relatedworkl 21

[2.2 Profit Maximization in Buyer-selected Packs Modell 23
[2.3 Regret Minimization in Buyer-selected Packs Model| 28
[2.3.1 Approximate-optimality via sampling| 28

[2.3.2 Approximating Regret Function After Sampling| 30

2.4 Coordinator-selected Packs Modell 39
2.5 Conclusion|. 53

3 Edge-Weighted Oblivious and Online Matching] 55
3.1 Introductionl 55
B.1.1 OurResults o oo 57

3.1.2 Related Worklo 62

[3.2 Preliminaries: Matching Coverage as an Analysis Technique] 66
[3.3 Edge-Weighted Oblivious Matching Problem with a Bounded Number |

| of Distinct Weights| 69
3.3.1 Partitioning (‘2/) into Batches| 0. 70

3.3.2 kdge-Weighted OM: Running Unweighted A"" on Each Batchl 71

v

[3.4 Edge-weighted Online Bipartite Matching with Free Disposal and |

| Bounded Online Degree, 83
[3.5 "The Hardness of Eidge-Weighted Online Bipartite Matching without |

| Free Disposallo 96
3.6 Conclusion|. 98

[4 Network Cournot Competition| 99
4.1 Introductionl 99
[4.1.1 Examplel 101

412 Related Workl oo 104

[4.1.3 Results and techniques| 106

“.1.3.1 Linear Inverse Demand Functionsl 108

[4.1.3.2 'The general case| 110

[4.1.3.3 Cournot oligopoly| 111

4.2 Notations 113
4.3 Cournot competition and potential games| 114
4.4 Finding equilibrium for cournot game with general cost and inverse |

| demand functions 120
[4.4.1 Marginal profit tunction| 122

[4.4.2 Non-linear complementarity problem| 123

[4.4.3 Designing a polynomial-time algorithm| 125

[4.4.4 Price Functions for Monotone Marginal Revenue Function| . . 133

4.5 Algorithm for Cournot Oligopoly| 136
[4.5.1 Polynomial time algorithm|. 137

4.5.2 Proof of correctnesso 140

46 Conclusion|. 146

[> Market Pricing for Data Streams| 147
b1 Introductionl 147
b.11 OQOurResultd 149

Hh.1.2 Related Workl o 153

[>.2 Pricing problem: Maximizing Social Weltare] 155
[>.3 Pricing problem: Maximizing Revenue| 159
[>.4 Improving Space Efficiency While Approximating Social Weltarel . . . 162
(5.5 Improving Space Etficiency While Approximating Optimum Revenue| 169
0.6 A Hardness Proof for Social Welfare Maximization Probleml 174
0.7 A Hardness Proof for Revenue Maximization Probleml. 178
H.8 Conclusion|. 181
Bibliograp 182

List of Figures

[2.1.1 Buyer-selected packs example graph| 17
[2.3.2 The buyer-selected packs integer program|. 31
[2.3.3 lllustration of the instance of the problem with high integrality gap. | 33
[3.4.1 The graph corresponding to Example|sl|. 95
[4.1.1 The figure showing scenarios in Example}4.1.1) 102
[5.6.1 An example tfor Theorem [>. 11| 176

vi

Chapter 1: Introduction

1.1 Overview

The Assignment Problem is a foundational problem in Theoretical Computer Sci-
ence, Optimization and Operations Research. In its most simple form, there is a
set of people on one side and a set of tasks on the other side. Each person can
potentially do a subset of these tasks. Each person can only be assigned one task
and each task can be assigned to only one person. The goal is to get as many tasks
done as possible. The underlying graph of this problem is a bipartite graph and the
assignment which matches maximum number of tasks to people is called a maximum
bipartite matching. A more general form of the maximum bipartite matching prob-
lem is the weighted matching problem in which edges between people and tasks are
weighted and we are interested in finding the matching with the maximum weight.
The matching problem is a special case of linear programming and the min cost flow

problem.

Recent technologies such as online marketing, network allocations and social net-
works have raised up many new assignment problems with more complicated struc-

tures. Many different versions of the bipartite matching problem have been consid-

ered by researchers to solve fundamental problems in Theoretical Computer Science,
Economics and Business. Online matching introduced by Karp, Vazirani and Vazi-
rani in 1990, has gained a lot of attention due to its direct relation with internet
ad allocations and search-based advertising. In the online matching problem, a set
of the vertices L of the left side of a bipartite graph G(L, R, E) is known to us.
However, the vertices on the right side, denoted by R, arrive one vertex at a time
and the neighbors of the incoming vertices are revealed upon their arrival. Each
arriving vertex can be matched at the time of arrival to an unmatched neighbor
in the left side, and if it is not matched immediately, it cannot be matched in the
future. The goal is to maximize the number of the matched vertices. The online
matching problem can be generalized to the weighted online matching problem in
the same way as the matching problem is generalized to the weighted matching
problem. In search-based advertising, the advertisers are known in advance, and
upon each word’s search, they reveal how much they are willing to bid if their ad
is shown to the user who searched the word. The advertisers can be viewed as
the set of offline vertices, the searched keywords can be considered as the set of
online vertices, and the advertisers bids for keywords are the weights on the edges.
The most well-known algorithm for the online matching problem is called Ranking
which is also introduced by Karp, Vazirani and Vazirani. In this algorithm, the
offline vertices are permuted according to a random permutation and the online
incoming vertices are matched to the first available neighbor in the order of this
permutation. Online matching problem has many different aspects and variations

itself. One example is when multiple ad slots can be assigned to one advertiser but

the advertisers’” budgets are limited. The advertisers might also have contracts for
the maximum number of search keywords that gets matched to them. The problem
has also been considered widely in the online mechanism design. Another variant
of the online bipartite matching is the online stochastic matching problem which
was introduced in a paper published in FOCS 2012 by Mehta and Panigrahi. In
this specific version, each edge has a probability of becoming a successful match.
That is if an online vertex is matched to an offline vertex by an algorithm, the
matching is successful with a certain probability shown on the edge. They consider
the problem when the probabilities are equal and derive different algorithms and
competitive ratios depending on whether this probability is vanishingly small or not.
The algorithms and their analysis also depend strongly on the assumptions about
the available information on the requests arriving online. The four models stud-
ied so far about these assumptions are called Adversarial, Random Order Arrival,

Unknown Distribution and Known Distribution.

The assignment problems have also been studied by many researchers in the stream-
ing setting which is the common model for working with large datasets. Over the
past decade, massive datasets from huge and growing graphs such as the social net-
works, web pages and their links and the citations of academic work, have required
a change in the nature of some algorithms. Algorithms should be more time and
specially space efficient as the size of the datasets increase. In the streaming setting,
a stream of data (for example set of edges of the bipartite graph) arrives sequentially

and must be analyzed by an algorithm with limited memory. These streams can

only be read once (or a limited number of times), and so the algorithms must be
selective in the data they choose to store. An application of these algorithmic tech-
niques is in the market design problems. For instance, one might imagine that there
is a set of items (e.g., goods for sale) and a set of potential buyers (e.g., individual

consumers) to which they should be matched.

In each of the following four chapters, an assignment problem is introduced along
with its application in economics, and our algorithms for achieving specific goals
such as revenue maximization, or to calculate properties of the network such as its
equilibria are presented along with the proof of their correctness and efficiency. Brief

explanations of these problems are given below.

1.2 Selling Tomorrow’s Bargains Today

In Chapter 2, we consider a two stage stochastic matching problem in both online
and offline cases. In this work, we study how a reseller of hotel rooms can profit
from having access to forecasts of the future price discounts. The price to book a
hotel can change dramatically as the date of the booking approaches. An individual
looking for a hotel room who is aware of this fact might choose to gamble, delay-
ing booking until the last minute in the hope of getting heavy discounts. While
this gamble can yield large savings, it also carries large risk. Consider an online
hotel booking business which offers customers a compromise by assuming the risk
of last minute bookings but sharing the savings via discounted rates. Here we ex-

plore how this company could best profit from forecasts of such future discounts.

In this two-stage optimization problem, the coordinator (the online hotel booking
business), first agrees to serve some buyers, and then later books rooms for them
once the final prices have been revealed. Agreements with buyers consist of a set
of acceptable hotels and a price. We investigate two models, one where the details
of the agreements are proposed by the coordinator, and one where the details of
the agreements are proposed by the buyer. In the former, we show that even when
buyers arrive online, we can find prices yielding the optimal profit up to a small
additive loss. In the latter case, we propose a bicriteria-style approximation algo-
rithm that gives a constant-factor approximation to the minimal regret by allowing
a fraction of our hotel bookings to overlap. Importantly, however, we show that our
algorithm provides a strong, uniform bound on the amount of the reservation over-
lap per hotel rooms. The paper of this work, “Selling Tomorrow’s Bargains Today”,
has appeared on International Conference on Autonomous Agents and Multiagent

Systems (AAMAS 2015).

1.3 Edge-Weighted Oblivious and Online Matching

In Chapter 3, we consider the weighted versions of the oblivious matching problem
along with the online bipartite matching with free disposal. In the oblivious matching
problem, an adversary decides on a simple undirected graph G' = (V, E') with non-
negative weights on the edges. The adversary then reveals the nodes V' and the
weights of all pairs to the (randomized) algorithm. However, the edges E are kept

secret. The output of the algorithm is a permutation of all (‘2/) pairs of nodes. At

the end of the algorithm, the pairs of nodes are probed one by one in the order
specified by the output to form a matching greedily. Upon probing pair (u,v) if
both nodes are currently unmatched and the edge (u,v) is in F, the two nodes will
be matched to each other; otherwise, we simply continue to the next pair. The
goal is to maximize the performance ratio of the (expected) sum of the weights of
the edges in the matching produced by the algorithm to that of a maximum weight

matching in G.

We prove the first non-trivial performance ratios strictly above 0.5 for the weighted
versions of the oblivious matching problem. Even for the unweighted version, achiev-
ing a ratio above 0.5 is quite challenging. Since Aronson, Dyer, Frieze, and Suen
first proved a non-trivial ratio above 0.5 in the mid-1990s, during the next twenty
years several attempts have been made to improve this ratio, until Chan, Chen,
Wu and Zhao successfully achieved a significant ratio of 0.523 very recently (SODA
2014). This work is the first in the literature that considers the node-weighted and
the edge-weighted versions of the problem in arbitrary graphs (as opposed to the
bipartite graphs). For arbitrary node weights, we prove that a weighted version of
the Ranking algorithm has ratio strictly above 0.5. This property allows us to form
LP constraints for both the node-weighted and the unweighted oblivious matching
problems. Consequently, we prove that the ratio for the node-weighted case is at
least 0.501512, and improve the ratio for the unweighted case to 0.526823 (from
the previous best 0.523166 in SODA 2014). For a bounded number of distinct edge

weights, we show that a ratio strictly above 0.5 can be achieved by partitioning

edges carefully according to the weights, and running the (unweighted) Ranking al-
gorithm on each part. Our analysis is based on a new primal-dual framework called
the matching coverage, in which the dual feasibility is bypassed, and instead, only

dual constraints corresponding to the edges in an optimal matching are satisfied.

The online bipartite matching problem with free disposal is the same as the weighted
online matching problem except that a matched offline vertex can be rematched in
case we decide to discard the previously matched edge to it. More formally, in this
problem an adversary fixes an edge-weighted bipartite graph G(U UV, E) between a
set U of online nodes and a set V' of offline nodes, and determines the arrival order
of the online nodes. Upon arrival of an online node u, all the weights of the edges
between u and the offline nodes in V' are revealed to the algorithm. However, the
algorithm matches u to one of the offline nodes v € V', even if this node is already
matched to a previous online node. That is the algorithm is allowed to dispose of the
previously matched edge to v, and match u to v instead. The goal is to maximize
the performance ratio, which is the (expected) sum of the weights of the edges in
the final matching to that of a maximum weight matching in hindsight. It has been
proven that a greedy algorithm can achieve ratio 0.5, however, no approximation
algorithm has been found to achieve a better ratio. We propose a randomized
algorithm that achieves a ratio strictly greater than 0.5 for the case in which each
online node has bounded degree using the matching coverage framework. Using the
same framework, we also design and analyze an algorithm for the edge-weighted

online bipartite matching problem with free disposal. We prove that for the case of

bounded online degrees, the ratio is strictly above 0.5. Our paper “Beating Ratio
0.5 for Weighted Oblivious Matching Problems” has been accepted for publication

in Furopean Symposium on Algorithms (ESA 2016).

1.4 Network Cournot Competition

In Chapter 4, we consider a general version of the Cournot Competition. Cournot
competition, introduced in 1838 by Antoine Augustin Cournot, is a fundamental
economic model that represents firms competing in a single market of a homogeneous
good. Each firm tries to maximize its utility (naturally a function of the production
cost as well as the market price of the product) by deciding on the amount of
production. This problem has been studied comprehensively in Economics and
Game Theory; however, in today’s dynamic and diverse economy, many firms often
compete in more than one market simultaneously, i.e., each market might be shared
among a subset of these firms. In this situation, a bipartite graph models the
access restriction where the firms are on one side, the markets are on the other side,
and the edges demonstrate whether a firm has access to a market or not. We call
this game Network Cournot Competition (NCC). Computation of the equilibrium,
taking into account a network of markets and firms and the different forms of cost
and price functions, makes challenging and interesting new problems. In this work,
we propose algorithms for finding pure Nash equilibria of the NCC games in different
situations. We design a potential function for NCC, when the price functions for the

markets are linear functions of the production in that market. This result lets us

leverage the optimization techniques for a single function rather than multiple utility
functions of many firms. However, for nonlinear price functions, this approach is
not feasible—there is indeed no single potential function that captures the utilities
of all firms for the case of nonlinear price functions. We model the problem as
a nonlinear complementarity problem in this case, and design a polynomial-time
algorithm that finds an equilibrium of the game for strongly convex cost functions
and strongly monotone revenue functions. We also explore the class of the price
functions that ensures strong monotonicity of the revenue function, and show a
large number of price functions belong to this class. Moreover, we discuss the
uniqueness of the equilibria in both of these cases which means our algorithms find
the unique equilibria of the games. When the cost of the production in one market is
independent from the cost of production in other markets for all firms, the problem
can be separated into several independent classical Cournot Oligopoly problems in
which the firms compete over a single market. We give the first combinatorial
algorithm for this widely studied problem. Interestingly, our algorithm is much
simpler and faster than the previous optimization-based approaches. The paper of
this work, “Network Cournot Competition”, has appeared on the 10th Conference

on Web and Internet Economics (WINE 2014).

1.5 Market Pricing for Data Streams

Finally, in the last chapter, we again deal with an assignment problem in a network

of sellers and buyers, however, the problem is examined in the streaming setting.

The motivation for using streaming setting in this chapter is that internet-enabled
marketplaces such as Amazon deal with huge datasets registering transaction of
merchandises between lots of buyers and sellers. We specially focus on the stream-
ing setting, the common model for big data analysis. As explained before, in the
streaming setting, a stream of data arrives sequentially and must be analyzed by
an algorithm with limited memory. The number of passes on the data stream is
also limited (once or a limited number of times), and hence streaming algorithms
must be frugal in the amount and nature of data that they choose to store. Here,
the development of the pricing algorithms that are appropriate for use with massive

datasets is studied.

An assignment of the prices to the items and the items to the buyers in our setting
is called enwvy-free, if no buyer prefers his outcome to the outcome of the other buy-
ers. An envy-free mechanism would specially be important here since it guarantees

stability and fairness.

We consider both social-welfare maximization and revenue maximization versions
of the envy-free pricing problem. We present an envy-free mechanism for social
welfare maximization problem in the streaming setting using O(k?l) space, where
k is the number of different goods and [is the number of available items of each
good. We also provide an a-approximation mechanism for revenue maximization
in this setting given an a-approximation mechanism for the corresponding offline
problem. Moreover, we provide mechanisms to approximate the optimum social

welfare (or revenue) within 1 — e factor, in space independent of | which would

10

be favorable in case [is large compared to k. Finally, we present hardness results
showing approximation of optimal prices that maximize social welfare (or revenue)
in the streaming setting needs €2(l) space. The resulting paper, “Market Pricing
for Data Streams”, has been accepted for publication in Conference on Artificial

Intelligence (AAAI 20017).

11

Chapter 2: Selling Tomorrow’s Bargains Today

2.1 Introduction

Google makes 96% of its revenue by offering free advertising services to its customers.
Google AdWords, an online auction-based advertising system, lets the advertisers
bid on keywords for showing their ads in Google’s search results. The cost per click
(CPC) amount that an advertiser pays for users clicks on its ads heavily depends on
the online demand and other competitors’ bids and is not known to the advertisers

at the bidding time.

Many risk-averse advertisers do not like to take this risk and prefer to have a pre-

determined contract which guarantees a fixed price for a fixed number of clicks.

Customers of many other businsessses face a similar situation due to the uncertainly
of future demand, future costs, and competitors’ behavior. As another example, con-
sider a family that decides, on Monday, that they would like to go on a vacation the
following weekend. Perhaps they do some research, and find a convenient location
that seems both pleasant and affordable. The only thing left to do is to actually re-
serve their accommodations. However, this involves an interesting dilemma: should

they book a room now, or wait until late in the week? Booking now assures them

12

a place to stay that is affordable. On the other hand, many hotels offer last-minute
deals, which could save the potential vacationers some money if they decide to wait.
Unfortunately, the latter option carries not only the chance for large savings, but
the risk that prices go up, perhaps even to the point where the vacation becomes

impossible.

In this work, we study how a company might profit by offering customers a compro-
mise between these options. While dealing with online prices typically carries too
much risk and requires too much effort to appeal to individual customers, a coordi-
nator has the advantage of spreading the risk across many contracts. By expending
the effort to collect pricing data and forming estimates of future prices, a company
could reasonably hope to monetize this advantage by offering customers a reliable
contract with an affordable price, while executing the contract when prices are as
favorable as possible. In fact, while not every contract may be profitable, good price

estimates should provide a profit in aggregate.

In fact, this opportunity arises more generally — the key relevant aspects of our
examples are uncertain future prices. Thus, one could hope to exploit this sort of
future arbitrage when selling airline tickets, rental cars, event tickets, temporary
labor contracts, or any product or service that typically faces price fluctuation. Our
goal in this work is to answer this question: Given estimates of future prices, what

is the best way for an enterprising coordinator to offer contracts to the buyers?

13

Two-stage optimization. We have a coordinator who can provide options from
a set H, and who will have a chance to offer these options to a set of potential
buyers B. This process, however, takes places in stages: in the first stage, the
coordinator negotiates agreements; in the second stage, the prices will be realized,
and the coordinator must serve options in the realized scenario to fulfill all of the
previously made agreements. Each agreement with a buyer b € B specifies a pack
P C H of options that are acceptable to the buyer, and a value v, the buyer must
pay. The coordinator may satisfy the agreement by getting any option in the pack to
the buyer, and it does not matter which one. The two-stage nature of our problem
arises because the coordinator must make binding decisions about what agreements

to make before prices are revealed.

2.1.1 Buyer-selected Packs

First stage: agreements. The first stage of our optimization problem models the
formation of agreements. We mainly study a buyer-selected packs model where the
pack P and value v, are whatever pack and price the buyer included in their offer.
Note that agreements are only formed when an offer is made and the coordinator
accepts; therefore, we refer to the set S of buyers the coordinator formed agreements

with as the served set.

Second stage: execution. In the second stage, the coordinator must match

each buyer b € S to a option in their associated pack. At this point, the prices are

14

revealed, and the coordinator’s problem becomes one of maximum-weight matching.
We call the collection of revealed prices a scenario, and denote it by I; we denote the
full set of possible scenarios are Z. We denote the price of option A in scenario I by
cl. The I seen in the second stage is drawn according to a probability distribution,

and the coordinator has the ability to sample from this distribution.

Objectives. The coordinator’s objective is to maximize profit. We denote the

profit from a served set S as

P(S) = 3 hes b + [Dongnr(s) Chls

where M(S) is the cheapest set of options that buyers in S can be matched to in
scenario I, and the expectation is over which I occurs. The first term is the profit
that is extracted from agreements in S, e.g., set of contracts in the Google advertising
example. The second term is the profit that is made by selling the remaining options

in the future, e.g., selling through online Google AdWords system.

In some applications such as the hotel booking system the value ¢} can be interpreted
as the cost of providing option h in scenario I. In these situations, we study the
regret minimization problem rather than the profit maximization one. Therefore,

we also consider a modified objective we call regret, which has the form

R(S) = ZbeB\S Uy + [ZheMI(S) Ch-

Note that R(S) is an affine transformation of P(S). Intuitively, the regret objective
tries to capture the idea of lost revenue, where we can lose revenue either by choosing
not to serve a buyer, or by having to spend it to pay for an option.

15

2.1.2 Coordinator-selected Packs

We also investigate the setting where the coordinator decides about the offers. In
particular, the coordinator partitions the set of available options into packs such that
all the options inside a pack have similar properties, e.g., all keywords related to the
word “insurance” in the Google advertising example.The packs are formed entirely
based on external criteria. The customers then arrive one-by-one and choose a pack
they like, and the coordinator offers each of them a non-negotiable price which they

can only accept or reject.

2.1.3 Examples

Example 1 Buyer-selected packs: In this example, there are two buyers by and
by, three hotels hq, hy, and hs, and three possible weekend scenarios. FEach weekend
scenario can be represented by a vector of 3 elements indicating the weekend costs
of the three hotels. Assume the weekend scenarios are Iy = {125,250,25}, [, =
{200, 25,225}, and I3 = {75,150,100}, and they happen with probabilities 0.4, 0.3,
and 0.3, respectively. The first buyer is willing to pay a price equal to 125 dollars
for being served, while the second buyer will pay 100 dollars. Figure|2.1.1| illustrates

this example.

In this case, if we only serve by, the best matches to this buyer in weekend scenarios
I, I, and I3 cost 125, 25, and 75 dollars, respectively. Therefore, our expected

revenue from choosing only by to serve would be 125—(0.4(125)40.3(25)+0.3(75)) =

16

First Scenario Second Scenario Third Scenario

Figure 2.1.1: Buyer-selected packs example graph

45 dollars. On the other hand, if we only choose by, our expected revenue would be
100 — (0.4(25) + 0.3(25) + 0.3(100)) = 52.5 dollars. Finally, if we choose both
buyers to serve, we may no longer be able to serve each buyer with their cheapest
feasible hotel. In the first scenario, the best hotels to book for by and by would be
hy and hs, respectively, for a total cost of 150 dollars. Similarly, it would cost us
225 and 175 dollars to serve both buyers in the second and third weekend scenarios,
respectively. Therefore, the expected total profit from serving both customers would
be 1254100 — (0.4 x 150+ 0.3 x 225+ 0.3 x 175) = 45 dollars. Thus, our best option
1s to only serve by for a total profit of 52.5 dollars, even though her offered price is

less than the price by is willing to pay us.

Explanation of Figure [2.1.1: FEach graph corresponds to one scenario. The upper
vertices show the buyers and the price they are willing to pay. The lower vertices
show the hotels and their cost at the weekend in each scenario. The edges indicate
the buyers’ interest in hotels. In this example, the best Monday decision is to choose

by, for which our best weekend matches are shown with dashes.

Example 2 Coordinator-selected packs: Suppose there is only one hotel with
three rooms available. A key feature of the seller-selected packs model is that the

17

coordinator only needs to know the expected marginal cost of serving each agent to
make decisions; therefore, we can assume that the expected cost to rent a single
room is 50 dollars, and the expected additional cost to rent second and third rooms,

respectively, is 100 dollars and 200 dollars.

All the customers in this ezample have the same budget probability distribution which
15 50 dollars with probability 0.4, 100 dollars also with probability 0.4, or 150 dollars
with probability 0.2. Recall that the coordinator only knows the distribution, and

does not know the exact budget of the buyer when choosing a price to offer her.

If the coordinator expects to face exactly 3 buyers, what is the best way to set prices
for the hotel rooms? We can immediately observe that there is no benefit in picking
a price strictly between two possible amounts in customers’ budget probability distri-
bution, or in picking a price that is not strictly greater than the (expected) marginal
cost to rent another room. Thus, the coordinator should charge either 100 or 150
dollars for the first hotel room rented, 150 dollars for the second hotel room rented,
and never sell three hotel rooms. The only decision left for the coordinator is how
to price the initial room. Case analysis indicates that the best strategy is to start at
the higher price of 150, and if this is rejected by the first buyer, immediately switch

to the lower price of 100 for future buyers.

To see what actually happens in such an instance, consider the case where the first
customer’s budget is 50 dollars, and the second and third customers’ budgets are
150 dollars. The coordinator offers a price of 150 to the first buyer which will be

rejected. Next, the coordinator offers a price of 100 to the second buyer which will

18

be accepted, and finally, he offers a price of 150 dollars to the last buyer which will
also be accepted. Note the price is increased again for the third customer, since the
coordinator’s marginal cost increased when the second customer accepted the offer.
Since the expected costs for the coordinator to rent the first and the second hotel
room are 50 and 100 dollars respectively, a profit of 250 — 150 = 100 s made from

these particular customers.

2.1.4 Our results

We mainly study the buyer-selected packs model where our problem becomes fun-
damentally complicated. Since buyers may specify any pack of hotels they like,
the marginal value of serving a particular customer becomes hard to quantify —
they may conflict with other buyers in complex and arbitrary ways. Nevertheless,
we prove the profit function is submodular, and thus a polynomial time algorithm

approximates the optimum value within a factor of 0.42 [1-3].

Theorem (Section [2.2, Theorem [2.1)) The profit function is submodular in the

buyer-selected packs model.

We also study the regret objective function that has been used in the associated
literature [4H7]. The regret objective has the form of “missed” value; note that
exactly minimizing regret is equivalent to exactly maximizing profit. Unfortunately,
the regret object functions is supermodular and does not have the nice structural

property of the profit object function. We begin by showing that we can use sampling

19

to construct an integer program that, with high probability, provides a (1 + O(¢))-
approximation to the regret objective. Unfortunately, this does not directly lead to
an approximation, as we show that the integrality gap of the corresponding linear

program is quite high.

Theorem (Section Theorem [2.3)) The integrality gap of the buyer-selected

packs IP is at least Q(log V).

The high integrality gap of aforementioned linear program leads us to consider
bicriteria-style approximations; our main result is the following, which provides an
approximation to the regret objective by relaxing the matching constraints between

buyers and options.

Theorem (Section m, Theorem Any fractional solution to the buyer-
selected packs integer program can be rounded to an integral solution while increas-
ing the regret objective value by at most a factor of 1/f, while ensuring that no
option is matched to more than 2 buyers and at most a min{ﬁ, 5} fraction of

buyers cannot be uniquely matched to an option, for any 0 < f < %

Last but not least, we study the coordinator-selected hotel packs model and present
an approximation to the optimal profit, the value the coordinator receives in the first
stage plus the value that she achieves in the second stage. The nice structure on
packs ensures the marginal value of serving an additional customer is well-defined;
this, in turn, makes it reasonable to analyze the trade-offs involved in deciding
whether to serve a buyer even in online settings with very general value models for

20

options. Our main theorem for this model is the following:

Theorem (Section , Theorem Let € and 6 be arbitrary small positive
numbers, Np be the number of packs, and N™* be the maximum number of buyers
that can ever arrive. Assume every pack contains a constant number of options. If
every option price lies in the range [¢, h], then using 4Np(N™2)3h /(%5 samples of
scenarios we can generate a set of offers which produce profit that approximates the

optimal profit to an additive factor of eh with probability 1 — 9.

In the above, the requirement that the number of options in a pack be constant arises
from allowing general cost functions; we could remove this requirement by restricting
value functions. The key technical challenge in this section arises from the two-stage
nature of our problem: given exact values for expected marginal values, we can use
a dynamic program to compute the profit maximizing prices to offer. However, we
only have sample access to the distributions, and so must rely on estimates of the
expected marginal values. In essence, our main theorem above says that we can do

so in our dynamic program with only a small additive penalty.

2.1.5 Related work

Our problem falls into the framework of two-stage stochastic optimization. This
framework formalizes hedging against uncertainty into two stages: in the first,
decisions have low cost but the exact input is uncertain; in the seceond, the in-

put is known but decisions have high cost. Many problems have been cast in this

21

framework, e.g., set cover, minimum spanning tree, Steiner tree, maximum weighted
matching, facility location, and knapsack [8-11]. Prior work has considered linear
programming approaches in this framework [12}/13], for example the Sample Average
Approximation (SAA) method to reduce the size of a linear program [14,(15]. Ensur-
ing the reduced linear program is representative of the original problem is generally
hard and requires problem-specific techniques for most combinatorial optimization

settings, however, and so no unified framework has been developed so far.

The buyer-selected packs version of our problem is most closely related to bipartite
matching problems in this literature. Katriel et al. [16] consider such a problem
where the goal is to buy an edge set containing a maximum matching, and balance
fixed first-stage edge costs against the potential risks and rewards of random second-
stage edge costs. They propose a polynomial-time deterministic algorithm which ap-
proximates the expected cost of minimum weight maximum matching within a factor
of O(n?), where n is the size of the input graph. They also design a polynomial-time
bicriteria randomized algorithm which returns, with probability 1 —e™", a matching
of size at most (1 — 8)n which approximates the optimum cost within a factor of
1/6. In our setting, however, we must book a room for every buyer chosen in the
first stage, and this bicriteria algorithm gives no guarantee on the set of chosen but
unmatched buyers — they might even all have demanded the exact same option. We
seek an algorithm assigning a limited number of customers to each option, even in
the worst case, an objective that requires significant new insight compared to the

setting of [16]. We design an algorithm which assigns at most two customers to each

22

option. Kong and Schaefer [17] give results for the maximum-weighted matching

problem, but this objective fails to capture either of our problems.

The seller-selected packs model is closely related to pricing problems in the algo-
rithmic game theory literature. How to optimally form packs of items (of which,
the buyer will receive only one) has been studied both in models where buyers have
distributional knowledge of which item they will receive from a pack |18}/19], and
where buyers have no such knowledge [20]. The focus in these works is different
from our own, as we assume packs capture external characteristics and only prices
are controlled by the coordinator. The problem of choosing optimal prices to offer a
sequence of buyers has also been studied extensively (see, e.g., [21,22] and references
therein), but the uncertainty of supply costs in our setting presents novel challenges.
A related question is how to set prices when the number of items, rather than their
cost, is unknown [23]; the challenges in the two settings require different techniques,
however. Our problem also bears similarity to secretary problems, where non-linear
objectives [24,25] and even value-minus-cost objectives [26] have been considered.
The differences between revenue and value achieved by a pricing, however, makes

these results hard to apply in our setting.

2.2 Profit Maximization in Buyer-selected Packs Model

In this subsection, we consider the profit function from Buyer-selected Packs model.
Our first step is to consider the second-stage of the coordinator’s optimization prob-

lem more closely. Note that we let customers form any pack of options they like.

23

Since packs can now intersect in arbitrary ways, the problem of choosing how to as-
sign buyers to options once prices are revealed becomes more complicated. We shall
show, however, the coordinator’s objective function has good structural properties.
In particular, we show that the profit objective function is submodular. In order to
show the submodularity of the profit function, we first prove the expected cost for
satisfying a set of buyers S C B in the second stage is supermodular in S, where

the cost of satisfying a set of buyers S C B is defines as follows:

C(S) = [ZheMI(S) chls

where MZ(S) is the minimum matching that covers buyers in S in scenario I, and
the expectation is over which I occurs. We then leverage the supermodularity of

the cost function and prove the profit function is submodular.

We now show that the expected cost for reserving a set of buyers S C B in the
second stage is supermodular in S. We begin by showing that for any fixed future
scenario I € Z, the cost Cr(S) = >, pi(s) ¢l of reserving options for a set S C B
is supermodular in S. Since our expected cost overall is just a weighted sum of
the costs in each possible scenario, it immediately follows that the expected cost of
serving a set of buys is supermodular as well. Thus, for the rest of this section, our
discussion and arguments fall within the context of a single fixed future scenario
I € 7, and so omit it from our notation. Before we begin our proof, however, we
first define some notation that will prove useful. First, given a set of buyers S, let
M(S) denote the minimum-cost matching of buyers S to options. Note that even
after fixing a scenario, this may not be well weekend, since multiple matchings may

24

give the same cost; careful tie-breaking is critical to our proofs, and so we defer
further discussion of this matter until later. Lastly, we use C(S) = >_, . M(s) Ch tO

denote the minimum cost to serve a set of buyers S in our fixed scenario.

We now proceed to show that the function C(5) is supermodular in S, that is
C(T'u{b}) —C(T) > C(SU{b}) —C(5)

for any S CT C B and b € B\ T. We start by finding a clean characterization of

how adding buyers to our served set changes the optimal matching to options.

Lemma 2.1 For any S CT C B and any choice of M(S), there exists a choice of
M(T) such that M(S) AN M(T) consists of k =T \ S disjoint paths of odd length.

Furthermore, each of these paths has one endpoint in T\ S.

Proof: Choose M(T') to be the minimum-cost matching covering 7" such that
M(S) A M(T) is minimized. First, note that in M(S) A M(T), every element of
T\ S has degree exactly one; every element of S has degree either zero or two; every
other element of B has degree zero; and every element of H has degree zero, one,
or two. As such, we can immediately see that M(S) A M(T) can be decomposed
into a disjoint union of paths and cycles, and the latter must all be of even length
since our underlying graph is bipartite. We shortly show that if an even length path
or cycle exists, we can use it to modify M(T) and get a minimum-cost matching
that covers T but has strictly smaller symmetric difference with M(S). The claim

immediately follows, since this means M(S) A M(T) is a disjoint union of paths of

25

odd length, and as we already observed the set of vertices in B with degree one is

precisely 7'\ S.

Let C be any cycle of even length in M(S) A M(T). Consider what it represents in
the context of our original problem. It means that both of our matchings assigned
the customers incident to C to the options incident to C, just in a different order.
Thus, M(T') A C would still be a minimum-cost matching, but have strictly smaller
symmetric difference with M(S). Similarly, let P be an even length path in M(S)A
M(T). Note that the endpoints of the path must lie in H — otherwise, the set of
buyers served by M(S) and M(T') would be incomparable, rather than the former
being a subset of the latter. Thus, we can see that in the context of our problem,
the path P represents that the two matchings used served the incident buyers using
slightly different sets of options. If an option has degree one in M(S) A M(T),
however, we may conclude that it is used in precisely one of the matchings. Thus, it
follows that both M(S) AP and M(T') AP are valid matchings covering S and 7T,
respectively. Since both M(S) and M(T') are minimum-cost matchings, however,
we may conclude either of these assignments of the buyers incident to P to options
have the same cost. As such, M(7T) A P is a minimum-cost matching that has
strictly smaller symmetric difference with M(.S), contradicting our choice of M(T).
Thus, we may conclude that no paths of cycle of even length exist in M(S) A M(T).

a

We may use the above lemma to show that the cost function is, in fact, supermod-

ular.

26

Lemma 2.2 For any S CT C B, and any b € B\ T, we have that C(T U {b}) —

C(T) > C(S U {b}) — C(S).

Proof: Consider applying Lemma to the sets T'U {b} and S, and some
minimum-cost matching M(S). Let P, be the resulting path with endpoint b, and
let Pp\g be the union of the paths with endpoints in 7"\ S. Observe that each of
these paths is an alternating path with respect to M(S), and that since they are
disjoint they can be applied one-by-one to M(.S) in any order to produce a sequence
of matchings. Since every path has odd length, we can see that it will increase the
size of the matching by one and the cost of the matching by precisely the cost of
the option that is one of the path’s endpoints. But then, M(S) A P, is a matching
covering S U {b}, and so has cost at least C(S U {b}). Similarly, M(S) A Ppg is a

matching covering 7', and so has cost at least C(7"). But then we can see that
C(T U {b}) = C(S) = (C(S U {b}) = C(S)) + (C(T) = C(S)).

Rearranging terms gives precisely the desired inequality.]

Theorem 2.1 The profit function is submodular in the buyer-selected packs model.

Proof: We first write the profit objective function as follows:

P(S) =Y w+[>_] = C(S).

beS heH

Knowing facts that C(S) is supermodular (based on Lemma , > hemerl is a
constant independent of S, and), _¢ vy is just an additive function we can conclude

the profit function is submodular. O

27

2.3 Regret Minimization in Buyer-selected Packs Model

2.3.1 Approximate-optimality via sampling

Charikar et al. consider general 2-stage stochastic models. In these models, one
must make a decision in the first stage which leads to a known cost in the first stage
and an unknown cost in the second stage. For our problem, this first stage decision
is choosing which customers to serve. In terms of the regret objective, our first stage
cost is the values of customers we do not choose to serve, and our second stage cost
is buying options for the customers we choose to serve. To that end, we use

g(S) = va and w(S,I) = Z c

beS heM(3)

to denote the first and second stage costs, respectively, of choosing to serve a set of
customers S C B when second stage scenario I € 7 happens. Recall that M (S)
is the minimum-cost matching between customers in S and the options in second
stage scenario I. Thus the regret objective for a future scenario I is R;(S) =
g(S)+w(S,I). The goal is to find a first stage decision S C B so that E; (R;(S5)) =
g(S) + Er (w(S,1)) = R(S) is minimized. space Z might be very large it is hard
to solve the problem of minimizing the function R over the full space Z. Instead,
we define another function R from R as follows. Given N independent samples

of scenarios Iy, I, ..., Iy from the space Z, we estimate the function R by fE(S) =
9(S) + % ElgiSN w(S, I;).
In order to apply Charikar et al.’s theorem, we need to prove some properties on

28

the first and second stage costs. These properties are as follows.

1. Both first and second stage costs must always be nonnegative for all first stage

decisions and all future scenarios.

2. There must exist a first stage decision for which the first stage cost is zero and
the second stage cost is more than that of any other first stage decision for
any future scenarios. That is there must exist a first stage decision Sy C B
for which g(Se) = 0 and w(S,) < w(Sy,I) for all S C B and all I € Z. We

call this Sy the null decision.

3. There must be a bounded inflation factor. That is if .Sy is the null decision
from the previous property, then w(Sy, I) — w(S,I) < ng(S) should hold for
all S C B and a fixed finite real number 7. This means the penalty that we
have to pay in the second stage because of making a null first stage decision
compared to any other first stage decision is no more than a constant factor

of the cost of the other first decision.

In our problem, g(S) = > .45 0. Since v, is nonnegative for all customers b € B,
g(S) should also be nonnegative for all S. Moreover, w(S,) is equal to the cost
of the matching M (S); since the weights in this matching represent nonnegative
option costs, this must be nonnegative as well. Thus, the first property holds. For
the second property, we claim B gives the desired null decision for the first stage.
Now, ¢(B) = Zb¢B v, = 0, and for a fixed future scenario I, the optimization

problem on the future would be matching all the customers, which must be more

29

costly than matching any other subset of customers. The third property holds for

Maz™
MinB >

our problem with n = where Max™ is the maximum possible option price

and Min® is the minimum value of customers. We can see this because

Z - Z c,ﬁﬁZMa:UH

heM(B) heM;(S) b S
<n Z Min®?
b S
<nYy_ v =ng(S).
b S

Thus, we may apply the following theorem, which is a restatement of a theorem

from [15], specialized to our setting.

Theorem 2.2 Let R be an estimate of R using O(n* % log(|Z])log(3)) samples of
scenarios. Let S be the set of buyers which minimizes R. Then R(S) is a (1+0(€))-

approximate of the optimum value of R with probability at least 1 —26. That is with

probability at least 1 — 25, the inequality R(S) < (14+0(e))R(S) holds for all S C B.

2.3.2 Approximating Regret Function After Sampling

Unfortunately, the regret objective given by R remains hard to approximate as well.
While we can phrase our problem as an integer program, we can show that the
integrality gap of this program is quite large. This motivates us to try relaxing

some of the constraints in our problem, and find a bicriteria-style approximation.

We investigate how the coordinator can minimize the regret objective R(S), in the
buyer-selected packs model. We can find an approximate solution R to function

30

minimize: (ZbEB (1 — YZ,)U{, +]lV ZlngN Z(b,h)EE xhbkchk>

subject to: Y, Tuk > Vs Vbe BV1<k<N
ZbeBI‘hbkgl VhEH,VlSI{ZSN
Yb,xhbkE{O,l} Vhe HVbe BV1I<k<N

Figure 2.3.2: The buyer-selected packs integer program

R using polynomially-many samples of scenarios and solving the problem simulta-
neously for these samples based on the previous section. Therefore, our goal is to
minimize function R. The integer program for the problem of minimizing function

R can be written as in Figure We call it the buyer-selected packs IP.

In the buyer-selected packs IP: (i) N is the number of samples; (ii) ¢z is the known
price of hotel h in the k™ sample; (iii) variable Y} is 1 if and only if b € S, and
Y, = 0 otherwise; and (iv) variable xpy, is 1 if and only if hotel h is assigned to
buyer b in the k', sample and is 0 otherwise. Constraint requires that if
Y, = 1, then at least one hotel should be assigned to this buyer in every sample
1 <k < N. We call this family of constraints the capacity constraints. Constraint
for each hotel h € H and each scenario k requires that hotel h in sample k

can be assigned to no more than one buyer; we call this family of constraints the

31

assignment constraints. The objective function of this IP is exactly equal to R(S).
Let Y .5 (1 = Y;)vy be the lost term, and), Z(b’h)eE ThpeChi be the cost term of
the objective function. In the following, we relax the last two constraints of this IP
to their linear counterparts z,y, € [0, 1] and Y, € [0, 1] to obtain an linear program.
Edge between buyer b and hotel A in sample k is a fractional edge in a LP solution

(x,Y) if and only if 0 < zpp < 1.

The first question that comes to mind when trying to find a minimizer of function
R is whether we can use a solution to the LP to find an exact or an approximate
solution to the IP. However, we show that the integrality gap between the IP and

LP solutions can be quite high by the following theorem:
Theorem 2.3 The integrality gap of the buyer-selected packs IP is at least Q(log N).

Proof: Assume there are 2n buyers and (2n — 2)(*") hotels. Suppose there are
only two possible prices for each hotel at the weekend: the low price for all hotels
is 0 and the high price for all hotels is (2n + 1)(27?) For each buyer b, v, = 1.
Partition the hotels into (2:) groups of size 2n — 2 each. Consider all the subsets of
buyers of size n. There are (277) such subsets. Let v denote any one to one mapping
from these subsets to hotel groups. For each subset S and the group of hotels v(5)
mapped to it add edges from each b € S to all the first n — 1 hotels in v(S) and add
edges from each b ¢ S to all the last n — 1 hotels in v(5). Figure illustrates
the edges between the buyers and the group of hotels v(S) for an arbitrary subset
of buyers S of size n. Consider (2:) samples and in sample 7 suppose all the hotels
in the i-th group have the low price (which is 0) and all other hotels have the high

32

> A 4 : » a 4
© " ‘1 [n 71
\\\ [‘9 Y 1 ,’l
’ \
AR S A [R
Koot S N Y I ¢
nn—1 Y Y &~ [NS n,n—1
A RV [VA
T vy O A
VN, Ve
\ 7 AR 17 A
(S) v ~ . v v
n—1 n—1

Figure 2.3.3: Illustration of the instance of the problem with high integrality gap.

price.
[

Since the high price for hotels is very large, we can never assign a person to a hotel
that has a high price. This is true because a trivial solution to the IP is when all
the variables are equal to 0 in which case the objective value would be equal to 2n.
However, if we assign a person to a hotel with high price for even one sample, the
objective would become at least 2n + 1, which is worse than the trivial solution.
Therefore, in any optimal solution to the IP we can assume x,; is 1 only if hotel A

in sample k has price 0. Thus, the second term in the objective function is always

IFigure explanation: In this graph the upper vertices show the buyers with a subset of
size n labeled as S and the rest of buyers labeled as S. The lower vertices show the group of hotels
~(S). Note that in exactly one scenario all the hotels in (S) have a zero cost and they have very
high costs in all other scenarios. Therefore, we can only match the buyers to hotels in v(S) in one
scenario, and no matching can use this set of hotels in any other scenario. The best LP solution
requires us to assign an amount % to each edge in this figure in the aforementioned scenario, and

to assign a value equal to zero to all these edges in all other scenarios.

33

equal to 0, and the objective function for this example simplifies to >, 5 (1 = Y3),

the number of buyers that we fail to serve.

Note that the objective of the IP in this example is to maximize the number of
buyers served. Recall, however, our earlier observation that an optimal integral
solution can never use a hotel with high cost. By construction, this means that an
optimal IP solution can only serve at most n — 1 buyers. Note this property is much
less restrictive for LP solutions. Simply serving every buyer at a rate of (1 — 1/n)
will satisfy this requirement while serving a (fractional) total of 2n — 2 customers.
We now proceed to formalize the above discussion and demonstrate that it yields

the desired gap.

We present a feasible LP solution for which the objective value is equal to 2. Then
we show no IP solution can achieve an objective value of less than n + 1 and we

conclude the integrality gap between the LP and IP solutions can be very large.

Here we present a feasible LP solution.

n—1

Y, = Vb e B (2.3.1)

n

if Chk =0
Thok = VhEH,VbGB,VISkSN

0 otherwise
Consider the first set of constraints in the LP. For each buyer b € B and each sample,
b has edges to n — 1 hotels with low prices. Therefore, for n — 1 hotels xpp, = %
This means Zhe 1 Trok 0 each sample for each buyer b is ”T’l, which is equal to Y,

and the constraint holds. Now consider the second set of constraints. For each hotel

34

h € H and each sample, at most n buyers have an edge to this hotel. The maximum
possible value of the variables x is % Therefore, Zbe B The cannot exceed 1. Thus
the set of variables form a feasible LP solution. The objective value with this set of

variables would be equal to >, 5 (1 — 21) = 2.

On the other hand, assume an IP solution can achieve an objective value less than
n+ 1. Since the objective function is equal to), (1 — Y3), this means for at least
n buyers Y, = 1. Consider S to be the set of these n buyers. Consider the sample
which has the group of hotels 7(.S) as its low price hotels. In this sample, these n
buyers have edges to only n — 1 hotels with low prices. It means at least one of
them is matched to a hotel with the high price. Therefore, Y, can be equal to 1 for
at most n — 1 of them contradicting the fact that ¥, = 1 for all the buyers b € S.

Therefore, no IP solution can achieve an objective value less than n + 1.

Therefore, while the optimum LP solution is less than or equal to 2, the optimum IP
solution cannot be less than n+1. Since, the number of vertices is 2n+(2n—2)(*") =

O(4™), we conclude the integrality between our LP and IP is logarithmic. O

The result of Theorem leads us to consider relaxations of our problem. In
particular, we consider relaxing the constraint that requires matching at most one
customer to each hotel. We will allow ourselves to match up to two buyers to a
hotel, but try to minimize the fraction of buyers who are not matched uniquely. We
say a buyer is multi-covered in a scenario if she is matched to the same hotel as
a previous buyer in that scenario: if we match 2 buyers to a hotel then one of them

is multi-covered. We formally define the bicriteria-style approximation below.

35

Definition 2.1 An («, 8)-approzimate solution to the Buyer-selected packs IP is
a solution which has an objective value at most o times the objective value of the
optimal solution to this IP while the number of buyer vertices that it multi-covers
in all graphs overall is no more than [times the number of buyer vertices that it

covers in all graphs overall.

Theorem 2.4 For any given [such that 0 < f < 1/2, we can find in deterministic

f 1

polynomial time, an (1/f, min{m7 5 })-approzimate solution to the Buyer-selected

packs IP in which in every scenario, any hotel 1s matched to at most two buyers.

Proof:

The four-step algorithm supporting Theorem is parametrized by 0 < f < 1/2

and is described next. The primary work done is for Step 4, as seen below.

Step 1: Solving the LP. Solve the LP relaxation; let () and y™ denote the

vectors x and Y of the LP, that occur as the optimal solution-vectors.

Step 2: Filtering. Update y(V) to y® as follows: for all b such that yl()l) <1-/,

set yéQ) := 0, with yéZ) = yél) for all other b. Let 2 := z(1.

Step 3: Scaling up. Update y® to y©® as follows: for all b such that yéQ) > 0, set
yt¥ =1 (we have {”) = 0 for all other b). Next update z to 23 in two sub-steps

as follows:

e for all b such that y,g?’) =1, and for all (h, k), set q:f;)k = :c,(fb)k/ylgl), so that the

constraints 1’ are satisfied; for all other (h,b, k), initialize xégb)k = xfb)k,

36

e arbitrarily decrease the x,(i)k values (subject to non-negativity) such that equal-

ity now holds in the constraints ([2.3.2]).

Step 4: Derandomized Dependent Rounding. Separately for each scenario
k, we apply a certain derandomized version of the bipartite dependent-rounding
procedure of [27] to the vector z(3) (restricted to the index k): the details are as
follows. Let £x(h) =", xfl’,)k denote the fractional load on hotel h. This procedure
rounds zpy, for each (h,b) —recall that we are considering any fixed k now — to some

Xpnpre € {0, 1}, such that the following properties hold, among others:
(P1) For all (h,b), E[Xu] = 2\0);
(P2) For all b such that yég) =1, >, Xnpr = 1 with probability one, and

(P3) For all h, >, X € {[4k(R)], [€x(h)]} with probability one.

We will run a derandomized version of this procedure as follows. For ¢ = 1,2, 3, let
L; and C; denote the “lost” and “cost” values of the objective function for scenario

k, at the end of step ¢ above. That is, for ¢ = 1,2, 3, at the end of Step 7 above, let
L; = Z (1-— yéi))vb and C; = szgkchk.

beB (b,h)

Let t = 3, y®b be the final number of buyers chosen, and define Hy, = {h : {x(h) >

1}; let s = |Hyg|. Consider the potential function

o en Xmwcn 1=2f e [0, Xnoe) — 1]

*= 15 c TATF mi{tfsf/0- N

At every step of the dependent-rounding procedure of [27] — which randomizes among
two choices and continually updates the vector X which initially starts at z® —

37

deterministically make the choice that never increases ®. As pointed out in [27],
this is indeed possible ((P1) and the linearity of expectation, along with the nature

of the choices made in 27|, justify this).

Analysis of the algorithm. Let us start with L;. It is easy to see that Ly < L1/ f,
and that L; does not decrease any further. Thus, the “lost” value gets blown up by

a factor of at most 1/f, as compared to the initial LP value.

Note next that z\0, <z} /(1— f). Combined with (2.3.2), this shows that £;(h) <
1/(1 — f) < 2 for all (h,k). Thus, property (P3) assures us that the final load

> - Xnow on hotel b in scenario k£ will be at most two.

To analyze the cost and overbooking, we first claim that for all h € Hy,

> (fe(h) = 1) < min{tf,sf/(1 - f)}. (2.3.2)

h

To see this, start by recalling that ¢,(h) < 1/(1 — f) and note that: (i) the LHS of
£33 s
D le(h) - (1=1/6(R) < Y bu(h) - (1= (L=) < tf.
h b

and (ii) since ¢x(h) < 1/(1 — f), the LHS of is at most s+ (1/(1 —f)—1) =
sf/(1 = f). Thus we have (2.3.2).

Therefore we see that @ is initially at most - - 1 + % = 1, and thus never

-7
exceeds 1. Thus, the final cost value is at most >, Cs - (1 — f)/f. However, since
xfj’}k < a:fllb)k /(1 — f), this implies that the final total cost is at most the LP’s cost
times ((1— f)/f)-1/(1 — f); thus, just like the “lost” function, the “cost” function

again gets blown up by a factor of at most f.

38

Finally for the multi-covering. It is easy to see that the fraction of people multi-
covered at the end is at most U = (1/t) - >, .y [(3 4 Xnpr) — 1]. Since @ < 1 at the

end, this implies that

1—f
1—2f

U< (/1) - min{tf, sf/(1— f)}. (2.3.3)

However, property (P3) shows an additional upper-bound on U:

< min{t,tZs} —s

(2.3.4)

A case analysis of the minimum of these two upper-bounds (e.g., based on whether

s/t is at least or at most 1/2), we get the bound

foo1
1—-2f'2

U < min{

}

as desired. O

2.4 Coordinator-selected Packs Model

In this section, we consider the setting where hotel packs are selected and suggested
by the coordinator. In this setting, the coordinator will face a stream of buyers, each
interested in a single (predetermined) pack of hotels. Upon arrival of each buyer, the
coordinator decides what price should be offered to this buyer, and the buyer would
reject or accept the offer immediately based on his or her budget. The coordinator
wants to offer prices to buyers in a way that maximizes his own revenue and he
must take into account both profit from the current customer and the expected
profit obtained in the future. Note that in this setting the buyers arrive one by

39

one and the coordinator only has statistics (rather than the exact values) of how
many buyers will arrive in the future, what hotel packs they are interested in, and
the costs and deals of hotel reservations. We assume that the coordinator forms
packs of hotels based on fixed external qualities, such as review scores and location;
i.e, the choice of hotel packs is predetermined, and is not part of the coordinator’s

optimization problem.

Before giving a general solution, we consider the problem with just one single hotel.
In this setting, we interact with customers in an online fashion. Our cost to reserve
rooms at this hotel is uncertain and can be quite general. For example, a hotel
might normally charge guests $150 per room, change its rate to $100 per room if
at least 10 rooms are reserved together(e.g by a coordinator), and in some rare
cases offer a flat rate of $125 per room. Thus, a coordinator must handle not only
uncertainty over the prices, but over whether enough customers will appear to make
bulk pricing feasible. This online problem is closely related to prophet inequality
problems (see, e.g., [22] and references therein), but with hard supply constraints
replaced by costs. The uncertainties present in our cost functions give a unique
variant of the problem: for example, achieving approximately optimal profit may
require us to incur negative profit initially in settings where we expect to see bulk

price discounts.

In order to handle types of hotel costs in this setting, we need to consider the
marginal cost of reserving a room. Let Total,(r) be the minimum cost of reserving

r rooms from pack P, and let Costp(r) = Totalp(r) — Totalp(r — 1) be the the

40

marginal cost of the 7" room. Both Totalp(r) and Costp(r) are random variables.
When we consider multiple scenarios at once, we denote these quantities in scenario
I as Totalh(r) and Costh(r), respectively. Finally, let Price’s™ and Price’s™ be the
minimum and maximum possible prices, respectively, of reserving a room in pack

P, in any scenario I and at any level of demand. Let A\ = (Pricep™ /Prices™) be

the ratio of these prices.

In this setting, we expect to see a stream of n (upper bounded by constant N™2¥)
buyers, each interested in precisely one of the packs. Customers are characterized
by the pack they are interested in and their willingness to accept an offered price;
both are random variables that are independently and identically distributed across
customers. The probability that a buyer is interested in pack P is denoted by ¢p.
The budget of the buyer has tail distribution function gp; i.e, the buyer accepts an

offered price of s with probability gp(s).

Each time a customer appears, the coordinator must choose a price to offer to him,
balancing profit from the current sale against the effect on future profit. Future
profits from a pack P of hotels depend both on how many customers we have seen
and how many of them have bought rooms. If we have seen ¢ customers and sold r
rooms from pack P, we use Vp(r,i) to denote the optimal (expected) profit we can
achieve from future customers interested in P. Thus, a coordinator who wants to
offer an optimal price to the (i+1)™® customer must both consider the cost [Cost (r)]
of providing them a room and compare the values of Vp(i+1,r) and Vp(i+1,r+1).

Let Offerp(r, i) denote the optimal price for the coordinator to offer in this situation.

41

Algorithm 1 OnlineDP
0: for r < number of rooms in pack P,...,0 do

0: Vp(r, N™) ¢ 0

0: fori< N™> _—1...,0do

0: Revp(r,1) — msax{ gp(s)(s — [Costp(r +1)] + Vp(r+1,i + 1))
+ (1 —gp(s))Vp(r,i+ 1)}

0: Offerp(r,i) < argmax,{ (gp(s)(s — [Costp(r + 1)] + Vp(r+1,i+ 1))
+ (1 —=gp(s))Vp(ri+ 1))}

0: Vp(r,i) < Pr(n > in > i)((1 — gp)Vp(r,i + 1) + gpRevp(r,i))

0: end for

0: end for=0

Algorithm (1] in is based around the optimization process referred to above, and as
the following Theorem states, computes the optimal price for a coordinator to offer

in all situations that can arise.

Theorem 2.5 Given the value of [Costp(r)] for all packs P and numbers r, the

OnlineDP Algorithm computes Vp(r,i) and Offerp(r,i) for all r, i, and P.

Proof: Assume the (i + 1)™ customer has just arrived and is interested in pack
P, and r of the previous ¢ customers purchased rooms from pack P. We want to
understand how to compute the optimal price to offer the (i + 1) customer. Say
we offer them a price of s. If they accept, they pay us s and our expected cost to
serve them is [Cost (7 + 1)]; if they reject, we receive no payment and incur no cost.
In the former case, our expected profit from future rounds is Vp(i + 1,7 + 1), while

42

in the latter it is Vp(i + 1,7). Recall that the probability a customer interested in
pack P will accept an offer of s is gp(s). Thus, we can see that if there is an (i + 1)
buyer and they are interested in pack P, the best profit we can hope to receive in
this and future rounds is precisely given by Revp(r,i) in Figure [l and is achieved

by offering price Offerp(r,1).

Once we know how to compute optimal prices, however, we can compute the optimal
profit we can achieve from pack P in this and future rounds. We have only three
cases to consider: if ¢ was the last customer, we receive no further profit from this
(or indeed any) pack; if customer (i + 1) is interested in a pack other than P, we
receive no profit in this round, but Vp(r,i + 1) from future rounds; and if customer
(1+1) is interested in pack P, we receive profit Revp(r, i) as we just discussed. Note
that the first happens with probability Pr[n = i|n > i]; the second with probability
(1 — gp) Pr[n > iln > i]; and the third with probability gp Pr[n > i|n > i, we can

see that Vp(r,4) is precisely as defined in our dynamic algorithm. O

While the previous theorem requires that we know [Cost ()] exactly, we can only
estimate this quantity in our setting. The next two theorems show, however, that
we can compute good estimates of [Costp(r)] with few samples, and that using
sufficiently good samples in Algorithm [1| provides revenue that is within a small

additive loss of optimal.
Before proceeding to show that we can estimate the values of [Costp(r)], we first

state two concentration bounds that we need in our proof.

Lemma 2.3 (Bhatia-Davis Inequality [28]) Suppose a random variable X is bounded

43

between m and M, i.e. m < X < M always. Then if u is the expected value of X

and o* is the variance of X, we have that 0® < (M — pu)(pu —m).

Lemma 2.4 (Chebyshev’s Inequality) Let X be a random variable with expected

2

value p and non-zero variance o=. Then for any real number k > 0, we have that

Pr{|X — p| > ko] < .

First, we use the Bhatia-Davis Inequality to bound the variance of Costp(r); then
we can use Chebyshev’s Inequality to show that for any set 7 of]f | = \/de? random
and independent samples of future scenarios from Z, % >,z Costh(r) provides a
good estimate of [Costp(r)] with high probability. Note, however, that this is of
little use if we cannot compute Costh(r) efficiently for fixed I and r. The following
lemma shows that we can do so whenever the pack P contains only a constant

number of hotels.

Lemma 2.5 Let P be a pack with a constant number of hotels. We can compute

Costh(r) in polynomial time for any fized I.

Proof: First, note that in any valid reservation of r rooms from a pack of hotels,
at most r rooms can be reserved in any single hotel. Hence, the number of ways
of reserving r rooms from a pack is no more than the number of ways of reserving
between 0 and r rooms in each hotel in the pack. But there are precisely (r + 1)¢7
ways to do the latter, where Cp is the number of hotels in pack P. Also, once we fix

the rooms being reserved, it is trivial to compute the associated total cost. Thus,

44

by iterating over all possible reservations, we can computer Totalk(r), and hence

Costh(r), in polynomial time for any fixed I. O

Theorem 2.6 Let ¢ and & be arbitrary small positive numbers and let P be a pack
with a constant number of hotels. Using \/d€* samples of scenarios, with probability

1 — 9§ we can compute [Cost p(r)] with relative error of €.

Proof: Let Z be a set of |Z| = \/d¢? random and independent samples of scenarios.
Since the number of hotels in pack P is constant, Lemma [2.5]tells us we can compute
Costh(r) in polynomial time for any fixed scenario /. In the rest of the proof we
show that C/’o\stp(r) = % >~ ez Costh(r) provides a good estimate of [Cost p(r)] with

high probability. Our proof is based around the following two bounds:

Var(Totalp(r)) < Pricep™[Costp(r)]; and (2.4.5)

Prices™ < Costp(r) < Prices™. (2.4.6)

First, we show how our main claim follows from (2.4.5) and (2.4.6), and then we

prove these two inequalities hold. Our goal is to show that
Pr[| Cost p(r) — [Costp(r)]| > €[Costp(r)]] < 6.

Since @tp(r)is the average of |Z| independent samples of Costh(r), we know that

[Costp(r)] = E[(i)gtp(r)] and Var(C/ogtP(r)) = Var(Costp(r))/|Z|. So if we denote

45

o2 = Var(Costp(r)) and 2 = Var(Costp(r)), we can see that

[Costp(r)] > \/[Costp(r)]Pricerlgm
_ \/Prices™[Cost p(r)]

3 max
/ PrlcePA
4 min
Pricep

)\’

where the first inequality follows from ([2.4.6)) and the second follows from ([2.4.6)).

>

S

Thus we can upper bound the probability that our estimate Cost p(r) has relative

error exceeding € as

Pr[| Costp(r) — [Costp(r)]] > e[Costp(r)] <

— 1z A
Pr || Costp(r) — [Costp(r)]| > o\ — | < —,
| Gontp(r) = [Costiolr)] = 5/ 50| <

where the second inequality follows by an application of Chebyshev’s Inequality.

But recall that we chose |Z| = A/d€?, and hence \/e2|Z| is precisely & as desired.

Now that we have shown that the theorem holds given inequalities (2.4.5)) and ([2.4.6]),

we now prove that these inequalities do in fact hold.

Recall that Totalp(r) is the least possible cost to reserve r hotel rooms. Since one
way of reserving n rooms is to take the optimal set of » — 1 rooms and add an

arbitrary room to it, we can see that
Totalp(r) < Totalp(r — 1) + Pricep™.

Similarly, since we can form a set of r — 1 rooms by taking the optimal set of r

rooms and just removing one, we get that

Totalp(r — 1) < Totalp(r) — Price’s™.

46

Recalling that Costp(r) = Totalp(r) — Totalp(r — 1), we see that by rearranging

terms in the above inequalities we may conclude that
Prices™ < Cost p(r) < Price’s™,

which is precisely inequality (2.4.6). We can derive inequality (2.4.5)) as

Var(Totalp(r)) < (Pricep™ — [Costp(r)])
([Costp(r)] — Priceiin)

< Pricep™[Cost p(r)],

where the first inequality follows by the Bhatia-Davis Inequality and the second by

observing that Costp(r) and Price’s™ are always nonnegative. O

Theorem 2.7 Let e and d be arbitrary small positive numbers and Np be the number
of hotel packs. Assume every pack contains a constant number of hotels. Using
ANp(N™a)3)\ /€25 samples of scenarios we can generate a set of offers which produce

revenue that approrimates the optimal revenue to an additive factor of € Pricep

with probability 1 — 9.

Proof: We apply Theorem [2.6| using 4 Np(N™3)3) /e2§ samples of scenarios. With

probability 1 — w2 — we can compute [Costp(r)] with relative error of 55, For

NN
all 7 < N™> and all packs P we will compute [Costp(r)] using the same set of

samples. Let Ep(r) be the resulting estimate of [Costp(r)]. For all r < N™ and

all packs P, we have Pr[|Ep(r) — [Costp(r)]] > E[CQ(])\S;,{;E(TH] < NmeNP, so by union

47

bound we have

e[Cost p ()]

Pr[3p, < ymass.t.|Ep(r) — [Costp(r)]] > S

<o

Consider the result of using the approximations Ep(r) in OnlineDP instead of the
true values [Costp(r)]. Let Vp(r,i) and 6f\fgrp(r, i) be the computed future profits

and optimal offers, respectively.

Since we did not use the exact values of Ep(r) in OnlineDP, Theorem gives us
no guarantee on the profit from offering prices O/fférp(r, i). As we shall now show,
however, the resulting profit is approximately optimal. Let I~/p(7“, i) be the expected
value we achieve by offering price Off\fgrp(r, i). Later we show that when all Ep(r)

have relative error of s, we have \N/p((), 0) > ‘?p(O, 0)—qp GPriC;rfgax and ‘713(0, 0) >

max

VP(O, 0) —gp ePrice’s

5 .

Combining this gives ‘7]3(0, 0) > Vp(0,0) — gpePrice™, and

so we have

> Vp(0,0) = "(Vp(0,0) — gpePricep™)
Vp Vp

= Vp(0,0) =) gpePricep™
vP Vp

= Vp(0,0) — ePrice™.
Vp

The above inequality says that by offering prices O?fgrp(r, i), we achieve expected

profit of at least that of the best online algorithm minus ePrice™*. It is sufficient

to show when all Ep(r) have relative error of s, We have
~ ePricep™ -
VP<07 O) - QPT < VP<07 O) (247>

48

and

max

ePricep

Vp(0,0) — gp < Vp(0,0). (2.4.8)

Recall from Inequality that Costp(r) < Pricep™. Thus, we have that

€ € Pricep™

PR —
2 N max [COStP(T)] — 9Nmax '’

|Ep(r) — [Costp(r)]| <

H max
€ Pricels

meaning that each Ep(r) has additive error of at most N

. In the two following

lemmas we prove Inequalities [2.4.7]

Lemma 2.6 When cach Ep(r) has additive error of sz‘ﬁi“ we have Vp(r,i) —

(N™2*—qg)e Pricelp®*

QP 2Nmax S VP (lr" 7’) .

Proof: We prove this lemma by induction on N™** — 4. The base case occurs

when i = N™* where both Vp(r, N™*) and ‘7]3(7“, N™>) are zero. For readability

€ Pricep®*

2Nmax

let, € = qp Jj=(N™*—4—1), and let P,y; be equal to Pr[N > i|N > i].

To prove the induction step, we begin with

?P(Tv i) = Pi+1|i((1—qp)‘7p(7“,i +1)
+gp max(gp(s)(s — Ep(r+1)+ Vp(r+1,i+1))

+(1 = gp(s))Vp(r,i+1))).

Now, the induction hypothesis gives us that for any r, Vp(r,i4+1) —je' < ‘7]3(7", i+1).

Substituting this into the above equality and using the fact that E p(r+1) > Ep(r+

49

/
1) — = we have
qp

~

Vp(r, 1) >Piqi(1—gp)(Ve(r,i + 1) — j€)

/

+qp max(gp(s)(s — Ep(r +1) — qE_ + Vp(r+1,i+1) — j€)
s P

+(1=gp(s))(Vp(r,i+ 1) — j€))).

By separating out the terms which contains € and using the fact that for any positive

function f and h, max,(f(s) — h(s)) > max,(f(s)) — maxs(h(s)) we have

~

Vp(r,i) = Pipi((1=qp)Ve(r,i + 1)
+apmax(gp(s)(s — Ep(r + 1) + Va(r + 1,i + 1))
+(1 = gp(s)Vp(r,i+1)))
—Pi1i((1 = qp) (j€)

/

+apmax(ge(s)(—+) + (1= gp())j).

Note the first part is precisely Vp(r,47) and the absolute value of the second part is

clearly less than (j 4+ 1)€¢/. Hence we have

~

Vp(r,i) > Vp(r,i) — (j + 1)€

(N™ax — j)e Pricep™
9 N max ’

= Vp(?",i) —dgp

as claimed. O

M max
€ Pricep

Lemma 2.7 When each Ep(r) has additive error of at most —5mb—, we have
T . N™3X_4)e Price'i?* i .
VP(TJ Z) - QP(2]\f)max = S VP(TJ Z)

20

Proof: We prove this lemma by induction on N™** —4. The base case occurs when

i = N™* where both \7p(r, N™2) and Vp(r, N™3) are zero. For more readability

3 max
¢ Price’p

2 Nmax

let € = gp Jj = (N"* —4—1), and let P,1y; be equal to Pr[N > i|N > i].

Let s realize the maximum

m?x(gp(s)(s — Ep(r+1)+Vp(r+1,i+1))

(1 — gp(s))Vp(r,i +1)).
For the induction step we begin with

Vo(r,i) = Poap((1 = ap)V(ri + 1)
+ap(gp(s)(s — Ep(r+1) + Vp(r + 1,i + 1))

+ (1= gp(s))Vp(r,i+ 1))).

By the induction hypothesis, we have that for any r, \A/p(r, i+1)—jée < vp(r, i+1).

Substituting this into the above equality yields

Vi (r, i) >Piyp1i((1 = gp) (Ve(r,i + 1) — jé)

+ap(gp(s)(s — Ep(r +1) — qi FUp(r+ 1,0+ 1) — jé)
P

+(1 = gr(9)(Vp(r,i + 1) — j€)).

o1

Collecting the terms involving € gives us

Vo(r,i) > Praya((1 = qp)Vp(r,i+ 1)
+aqp(gp(s)(s — Ep(r+ 1)+ Up(r + 1,0 + 1))
+ (1= gp(s))Vp(r,i +1)))
—Pir1i((1 = gp) (')

+qp(gp(s)(€/qp + j€') + (1 — gp(s))j€)).

Now, by the definition of s we may conclude that the first part above is precisely
Vp(r,4). Since the absolute value of the second part is clearly less than (j + 1)¢, we

conclude that

Vi(r,i) > Vp(r,i) = (j + 1)

(N™* — §)e Pricep™
9 [N max ’

?P(Tv Z) —dgp

exactly as desired. O O

52

2.5 Conclusion

We studied the problem faced by a reseller of options which are prone to price fluctu-
ations to risk-averse customers. The reseller wants to make a profit by having access
to information such as probability distribution of future option prices and spreading
the risk over his many customers. Two variants of this problem were investigated in
this chapter. In the first variant, buyers could form their own option packs and in-
form us about their budget. The arbitrary overlap between customers chosen packs
in this case gives the problem a matching aspect, and it aligns most closely with the
two stage stochastic matching literature. In this case, we gave an algorithm which
helps the coordinator choose the most profitable set of customers. This profit is
determined by taking expectation over all possible future price scenarios. For this
model, we defined a profit function and showed it is submodular, and thus, it can
be approximated using the approximation algorithms for submodular functions. We
also defined a regret function and showed we can minimize it within an approxima-
tion factor if we solve the problem for a sample of future scenarios. Minimizing the
regret objective function would was then modeled by an Integer Program which we
showed has a big integrality gap and therefore, cannot be solved or approximated
efficiently. We then defined a bicriteria style approximation algorithm and provided
an algorithm which approximates the minimum regret value possible by at most a
factor of %, while ensuring that no option is matched to more than 2 buyers and

at most a mm{ﬁ, 0.5} of buyers cannot be uniquely matched to an option, for

93

any 0 < f < 0.5. The future work in this setting is to improve these approximation
factors and to provide hardness results to show the approximation factors cannot

be improved any further and are tight.

In the second variant, packs of options are chosen by the coordinator and are always
disjoint, and so we may solve the problem independently for each pack. We consider
this variant of our problem in an online setting (the customers arrive one by one)
, where it resembles online selection problems such as secretary problems and the
prophet inequalities but presents additional challenges. In this setting, we assume
the coordinator only knows the distribution of customers’ budget and should pro-
vide the customer with a take it or leave it price immediately. The customer then
might reject or accept the offer based on her actual budget. This version of our
problem, though easier, provided a more realistic model for many online services,
and we provided an online algorithm which decides price offers to the customers
such that the maximum profit is approximated within a factor close to one with

high probability.

o4

Chapter 3: Edge-Weighted Oblivious and Online Matching

3.1 Introduction

The primal-dual LP framework has been vastly used by many researchers to show ap-
proximation factors of algorithms designed for many different versions of matching
problem including online bipartite matching and online budgeted allocation prob-
lem [29,30]. In this framework, the algorithm builds both a primal and a dual
solution during each run. To analyze the approximation ratio, the value of the pri-
mal solution returned by the algorithm is compared with that of the dual solution.
When the primal LP is a maximization problem, any feasible dual value provides an
upper bound on the optimal primal value and can guarantee some approximation
ratio. Hence, it is crucial in this framework to establish the feasibility of the dual
solution returned by the algorithm or even its feasibility when scaled by a constant
factor. In most matching problems, dual feasibility requires sum of the dual values

of every edge’s end-points to be large enough.

We observe that this strict requirement of dual feasibility is an artifact of the approx-
imation analysis, and instead explore a new analysis method in which dual feasibility

can be bypassed. We call this new framework Matching Coverage and show how our

95

algorithms when analyzed by this framework improve the previous approximation
factors for two different variations of edge-weighted maximum matching problem.
We use a wvector to mean an assignment of non-negative values to each node. A
vector & is a matching coverage for a matching M if for each edge in M, the sum
of the values of its incident nodes in @ is at least the edge weight; in other words, if
the vector satisfies only the dual constraints corresponding to the edges in match-
ing M. In our new analysis, alongside the execution of the algorithm, we assume
that a matching coverage vector is constructed with the knowledge of the optimal
solution. This is a major departure from the conventional primal-dual framework
in which a feasible dual solution (satisfying every single constraint) is returned by
the algorithm. We also compare the primal solution returned by the algorithm with
this matching coverage vector. Since every dual constraint corresponding to every
edge in the primal solution (a matching) returned by the algorithm is satisfied, the
sum of the vector’s values on each matching’s edge is greater than the weight of that
edge and thus, the total sum of the values in the vector gives an upper bound on

the optimal weight of a primal solution.

Since we no longer need to return a feasible dual solution, we gain more flexibility
in the design and the analysis of our algorithms. In particular, we apply this match-
ing coverage framework to two well-known problems: (1) edge-weighted oblivious
matching on general graphs [31,32], (2) edge-weighted online bipartite matching

with free disposal [33].

o6

3.1.1 Our Results

We propose a new matching coverage framework for analyzing algorithms on the

following graph matching problems.

(1) Edge-Weighted Oblivious Matching on General Graphs. An undirected
graph G(V, F) is fixed by the adversary in advance; moreover, each pair e € (‘2/) of
nodes has some weight w.. The node set V' and the weights of all edges are revealed
to the algorithm as its input, whereas the edge set E is unknown initially. The
(possibly randomized) algorithm returns an ordering on all (‘2/) pairs for probing.
The edges are probed one by one according to this order. Upon probing the edge
e = {u, v}, if both nodes are currently unmatched and an edge is revealed between
them once probed, the end-points of the edge, u and v are matched to each other;
otherwise, we skip to the next pair, until all pairs in the list are probed. The goal
is to maximize the competitive ratio, which is the ratio between the expected sum
of weights of edges in the matching produced by the algorithm and the maximum
weight of an optimal matching in the graph. The greedy algorithm lists the edges

in non-increasing weight order, and can be shown to achieve a ratio of %

The unweighted version of the problem has applications in the Kidney Exchange
Problem [34], in which donor-recipient pairs are probed and greedily matched when
two pairs are compatible. The weighted version of the problem has applications in
pay-per-click online advertisements, in which the revenue for a click on a particular

ad showing on a particular page is known, but it is unknown whether the user will

27

actually click on that ad.

Adaptive Algorithms. An algorithm could in general be adaptive, i.e., after seeing the
result of a probe, the algorithm can change the order of the pairs in the remaining

list. However, we only consider non-adaptive algorithms in this work.

Number of Distinct Weights. The unweighted oblivious matching problem is a spe-
cial case when all pairs have the same weight. In this case, the work of Aronson
et al. [31] and Chan et al. [32] states that there exists £ > 0 such that there is an
algorithm with a competitive ratio of + &. Observe that in [31], it was shown

that & > and since then there have been some attempts [35,36] (which

o000
we discuss below) to improve the ratio. However, almost twenty years have passed
before the improvement & > 0.023 was proved recently [32] by considering the Rank-
ingalgorithm, which is easy to describe. A permutation on V is picked uniformly
at random, and this induces a lexicographical order on the node pairs that is used
for probing. No results on the edge-weighted version of the problem are known

previously even for two distinct weights. We extend the result to the case when the

number of distinct weights is bounded.

Theorem 3.1 (Edge-Weighted OM with Bounded Number of Distinct Weights)
Suppose there is an algorithm on unweighted OM with competitive ratio %—1—51. Then,
for each positive integer k > 1, there exists &, = Q(fl)o(kQ) such that the following
holds. There exists an algorithm on the edge-weighted oblivious matching problem

such that on instances with k distinct edge weights, the competitive ratio is % + &

o8

(2) Edge-weighted Online Bipartite Matching (OBM) with Free Disposal.
Suppose V is the set of offline nodes, each of which has capacity 1, i.e., it can be
matched to at most one online node. The adversary fixes a bipartite graph between
a set U of online nodes and V', and the weights of edges between U and V. The
adversary determines the order of arrival for the online nodes. When an online node
u arrives, all the weights w,,’s of edges between u and the offline nodes v in V' are
revealed to the (possibly randomized) algorithm. The algorithm matches u to one of
the offline nodes v. Even if an offline node v is already matched to a previous online
node v, the algorithm is allowed to dispose of the edge {u/, v} and include the edge
{u,v} in the matching, provided that w,, > wy,, where the quantity w,, — Wy,
is known as the benefit of edge {u,v}. The goal is to maximize the competitive
ratio, which is the expected sum of weights of edges in the final matching to that of
a maximum weight matching in hindsight. We show (in Section that without
the free disposal assumption, no randomized algorithm can achieve any non-trivial
constant guarantee on the ratio. Hence, when we refer to the edge-weighted version
of OBM, unless otherwise stated, we implicitly assume that we have free disposal.
The greedy algorithm matches an online node u to an offline node v with the largest

benefit, and can be shown to achieve a ratio of %

Degree of Online Nodes. Despite previous research on OBM, it is unknown whether
there is an algorithm with ratio strictly larger than % on the edge-weighted version
with free disposal, for the hard instances where each offline node has capacity 1. We

design an algorithm which beats the ratio % when each online node has bounded

29

degree, i.e., each online node is incident to a bounded number of edges with positive

weights. Observe that we do not place any degree constraints on the offline nodes.

Theorem 3.2 (Edge-weighted OBM with Bounded Online Degree) There
exists an algorithm for edge-weighted online bipartite matching with free disposal
such that on instances in which every online node has degree at most A, the com-

petitive ratio is 3 + Q=5).

Our Techniques. Our matching algorithms for both problems are analyzed using
the matching coverage framework. In the analysis, we assume the knowledge of an
optimal matching, and construct a (random) vector alongside the execution of the
(randomized) algorithm to ensure that the vector is always a matching coverage of
the optimal matching. The technical part is to show that the (expected) sum of
assigned values by the vector over all nodes is small compared to the (expected)
weight of the matching produced by the algorithm. We next outline the techniques

specific to each problem.

Edge-weighted OM. The idea is to group pairs of similar weights in batches, and run
each batch using an algorithm on unweighted OM with competitive ratio % + &, for
some & > 0. For instance, it is proved in [32] that Rankinghas & > 0.023.

Consider the simple case when there are only two batches contained in the corre-
sponding intervals Iy = [ag, bo] and I} = [a1,b1], where by < ay. If % is close to
1, then running Rankingon edges with weights in I; should produce a matching M;

with ratio (with respect to the optimal matching using edges with weights in ;)

60

close to % + &. However, the matching M; might eliminate some edges from the
optimal matching with weights in I5 or smaller. When Z—f is small, we can argue that
this damage is small. Using the framework of matching coverage, we can express
the competitive ratio in terms of the quantities y; = §+ and pp = Z—f If the number
of distinct weights are bounded, we show that it is possible to group the edges such
that there is some constant gap between the p; and ps, which is required to obtain

a competitive ratio strictly larger than %

FEdge-weighted OBM. The idea is to modify the greedy algorithm such that, when an
online node u arrives, the incident edges are grouped into two sets whose benefits
are in intervals Iy = [ag,bo] and I} = [a1,b1], where by < ay. Depending on the
degree d,, of u, the intervals Iy and I, can be chosen such that ‘;—i is at least some
threshold, and at the same time % is smaller than another threshold, where both
thresholds depend on d,. The edges with benefits in I; are known as active edges.
The algorithm picks an active edge uniformly at random. Using the framework of

matching coverage, we can express the competitive ratio in terms of the maximum

online degree.

As discussed below, there are lots of related work on similar problems, but not much
progress has been made so far for the weighted versions of the two particular prob-
lems that we consider. We believe that our result is a sensible progress towards these
very difficult problems by considering bounds on the number of distinct weights or
the degree (which are both reasonable assumptions in practice). Our main technical

contribution is the introduction of the novel matching coverage technique, which is

61

important in its own right and we believe will have potential applications for other

problems as well.

3.1.2 Related Work

Online Bipartite Matching. The bipartite matching problem is a classical problem in
computer science. Karp, Vazirani, and Vazirani introduced the (unweighted) online
bipartite matching problem in their seminal work [37] (STOC 1990). They used a
complicated analysis to show that the Rankingalgorithm (for OBM which also in-
volves a random permutation) has optimal competitive ratio 1—%. Subsequent works
by Goel and Mehta [38] (SODA 2008), and Birnbaum and Mathieu [39] (SIGACT
News 2008) simplified the proof. Aggarwal, Goel, Karande, and Mehta [40] (SODA
2011) generalized the Rankingalgorithm when each offline node has a weight, and
showed that its competitive ratio is 1 — % for the corresponding node-weighted ver-
sion of the problem. Generalizing online biparite matching, Mehta, Saberi, Vazirani,
and Vazirani [41] (FOCS 2005) introduced the online budgeted allocation problem
to model sponsored search auctions, and proposed a 1 — %—competitive algorithm

when the bid-to-budget ratio tends to zero.

Primal-Dual Framework. Using the primal-dual approach, Buchbinder, Jain, and
Naor [29] (ESA 2007) designed a deterministic online algorithm for the aforemen-
tioned allocation problem with the same competitive ratio, where a feasible dual

solution is also returned by the algorithm.

Devanur, Jain, and Kleinberg [30] (SODA 2013) considered a randomized primal-

62

dual approach for matching problems. In particular, they re-analyzed the Rank-
ingalgorithm [40] for the online bipartite matching problem with weighted offline
nodes. The algorithm is randomized and can be augmented to return a (random)
dual solution, whose expectation is feasible. Moreover, it is interesting that this
randomized primal-dual framework can be adapted to analyze the deterministic

algorithm [29] for the online budgeted allocation problem.

Jain et al. [42] (JACM 2003) analyzed greedy facility location algorithms using dual-
fitting with factor-revealing LP. Although the dual solution involved is not feasible
initially, it can be fitted by scaling with some appropriate factor to achieve feasibility.
In contrast, our matching coverage approach ignores some dual constraints and does

not attempt to achieve any kind of dual feasibility.

Oblivious Matching. In the mid-1990s, Dyer and Frieze first considered whether a
randomized greedy approach can be used to solve the maximum matching prob-
lem, although they did not use the same name for the problem. They showed that
returning a permutation of unordered pairs uniformly at random cannot achieve a
constant ratio strictly larger than 3 [43] (Random Struct. Algorithms 1991). Aron-
son et al. [31] (Random Struct. Algorithms 1995) achieved the first non-trivial ratio
by showing that the modified randomized greedy (MRG) algorithm has performance
1

ratio at least % + &, where £ = 100,000 Even though the ratio is only slightly above

0.5, the proof used very sophisticated combinatorial arguments.

While the problem on general graphs seems difficult, there are some results on

the special case of bipartite graphs. The Rankingalgorithm by Karp et al. |37] for

63

online bipartite matching can be readily adapted for oblivious matching problem on

bipartite graphs to give the same ratio.

Since running Rankingfor OM on bipartite graphs is equivalent to running Rankingfor
OBM with random arrival order, the result by Karande, Mehta, and Tripathi [44]
(STOC 2011) implies that Rankingachieves a ratio of 0.653 for OM on bipartite
graphs, and is later improved to 0.696 by Mahdian and Yan [45] (STOC 2011) using

the technique of strongly factor-revealing LP.

Since the first result by Aronson, Dyer, Frieze and Suen [31], no attempts at im-
proving the % + £ ratio for general graphs have been made until two papers were
published in FOCS 2012. Goel and Tripathi [36] claimed a ratio of 0.56, but later
announced the withdrawal of the paper on arXiv [46] due to a bug in their proof.
Poloczek and Szegedy [35] claimed a ratio of 0.5039, but, according to personal com-
munication with the authors, they are currently bridging some gaps in their proof

at the time of writing.

Chan, Chen, Wu and Zhao [32] (SODA 2014) analyzed the Rankingalgorithm on
general graphs. They also employed an LP framework to give a bound on the per-
formance ratio. To analyze the limiting behavior of the LP as the number of nodes
grows, they developed new primal-dual and complementary slackness characteriza-

tions for continuous LP and obtained the currently best theoretical ratio of 0.523.

Edge-weighted Online Bipartite Matching. Feldman, Korula, Mirrokni, Muthukrish-
nan, and P4l [33] (WINE 2009) proposed the free disposal feature for edge-weighted

online bipartite matching. They considered the setting in which each offline node v

64

has capacity n(v), and an online algorithm benefits from the n(v) highest-weighted
edges matched to v. They proposed an 1 — é—competitive online algorithm, where
e = (1+ %)k , and k is a lower bound on capacities. Thus, the proposed algorithm

has competitive ratio % for the classic weighted version, when all capacities are 1.

Other Stochastic Settings. There are several attempts to study the online match-
ing problem in a stochastic setting. In the known distribution model, the online
algorithm knows the online vertices are drawn i.i.d. from a known distribution.
Feldman, Mehta, Mirrokni, and Muthukrishnan [47] (FOCS 200) first studied the
online unweighted matching problem in the known distribution model, and proposed
a 0.67-competitive online algorithm which beats 1 — . Bahmani and Kapralov [48]
(ESA 2010) and Manshadi, Oveis-Gharan, and Saberi [49] (SODA 2011) improved
competitive ratio to 0.699 and 0.702 respectively. Haeupler, Mirrokni, and Zadi-
moghaddam [50] (WINE 2011) considered the weighted version in the same input
model and proposed an online algorithm with competitive ratio 0.667. They com-
puted multiple offline solutions and used them as a guideline for the online solution.
The authors applied the same technique for designing a 0.7036-competitive online
algorithm for the unweighted bipartite graph. A stricter input model is the un-
known distribution model. In this model, online vertices are drawn i.i.d. from an
unknown distribution, i.e., the algorithm has no information about the distribution.
Karande, Mehta, and Tripathi [44] (STOC 2011) analyzed the Ranking algorithm
and showed it has competitive ratio 0.653 for the unweighted version in the unknown

distribution model.

65

3.2 Preliminaries: Matching Coverage as an Analysis Technique

Given an undirected graph G = (V, E) with non-negative edge weights, we recall
the standard maximum weight matching LP relaxation, together with its dual (also

known as vertex cover), as follows.

max w(z) = Z WypTyy (3.2.1) min Cla) = Zau (3.2.2)
{”LL,'U}GE ueV
s.t Z Ly S 1 YveV s.t Oy + 2 Way V{U,U} S
u{uv}el

a, >0 YvoeV
Ty >0 V{u,v} ekl

If z is an integral primal feasible solution, then x corresponds to some matching M,
and we write w(M) := w(z). When G is a bipartite graph between U and V', we use
a, for the variables corresponding to the nodes in U and 3, for those corresponding

to the nodes in V.

Definition 3.1 Let M be a matching in graph G. A wvector a €' is a matching
coverage for matching M if « is non-negative, and the dual constraints of LP[3.2.3
corresponding to the edges of M are satisfied. In other words, for each {u,v} € M,

Qy + Z Wy -

The following lemma is a trivial consequence of the fact that any two distinct edges

in a matching do not share any node.

Lemma 3.1 If a vector v is a matching coverage for a matching M, then C(a) >
w(M).

66

General Framework of Matching Coverage. We describe this general frame-
work for analyzing a matching algorithm. A typical primal-dual algorithm implicitly
constructs a feasible primal-dual pair of solutions, and the approximation analysis
compares the pair of solutions. In our new analysis framework, the algorithm does
not actually return any dual solution (not even an infeasible one). In the analysis,
we imagine that as an algorithm ALG is executed, a vector « is constructed along-
side with the knowledge of an optimal matching M*. The idea is that the values in

« are increased just enough to make sure that « is a matching coverage for M*.

Why does this help the analysis? Since the vector « is a matching coverage for
M*, by Lemma3.1] we have w(M*) < C(a). As a does not have to be feasible for all
edge constraints, it is possible that the resulting value C'(«) could be smaller than
that of a feasible dual. Therefore, we can hope to get a smaller value of B when we
compare C(«a) < B - w(Marg) with the weight of the matching Mayq returned by
ALG, thereby getting a larger competitive ratio w(Marg) >

Cla) > 5 -w(M*).

5 5
It is known that the minimum solution to the dual LP can be as large as 1.5 times the
maximum solution to the matching problem. For example, any maximum matching
of a complete graph with three vertices has just one edge. Although, the minimum
vertex cover of this graph has the cost 1.5. This ratio compare to the available
approximation ratios of matching problems is pretty high. The question raised here

is that, do we really need to satisfy all of the constraints in the dual LP to be an

upper bound for the matching problem?

Consider, in the dual LP, for each edge (u,v) we have a constraint states a, + a, >

67

Wyy- But, in the matching problem lots of edges do not play any role. In fact, if
we just write the dual LP for a subgraph of the actual graph which has the same
maximum matching, it is still an upper bound for the maximum matching problem.
As a minimal subgraph we can write the dual LP for a graph just consist of the
edges in a fixed maximum matching of the actual graph. However, this LP can be a
conceptual LP that just helps us to analyze our algorithm better. We call a solution

to this LP, a matching coverage.

Definition 3.2 Let M be a matching in graph G. Vector C(M) = @ is a matching
coverage of matching M if the dual constraints of LP[3.2.9 corresponding to the edges
of M are satisfied by this vector. Note there is no need for other constraints to be

satisfied. Let the weight of C'(M) be the total sum of all values in vector o, e

w(C(M)) =2 ev Qu

The following lemma shows that size of any matching can be bounded by a matching

coverage of the that matching.

Lemma 3.2 The weight of any matching M is at most that of any matching cov-

erage of M.

Proof: Let C(M) = @ be a matching coverage of M. For each edge e = (u,v) in
M we have w, < o, + «, due to the corresponding dual constraint. By summing it

up over all edges in M we have

Zweg Z oy, + Q.

eeM (u,v)eM

68

The left-hand side is the weight of matching M. Since edges in M do not share an
endpoint, the right-hand side is the sum of «,, over a subset of vertices. Hence, the

right-hand side is at most the weight of C'(M). O

3.3 Edge-Weighted Oblivious Matching Problem with a Bounded

Number of Distinct Weights

We consider the edge-weighted oblivious matching problem where the number of
distinct weights is k. We give an algorithm whose competitive ratio is % + &g, where
&, only depends on k. As a subroutine, we use an algorithm A""for the unweighted
version of the problem with competitive ratio % + &1, where & > 0. For instance, it

was proved in [32] that the Rankingalgorithm achieves & > 0.023.

Running A""on a Subset H C (‘2/) This means that A""is first run to produce
a random order L of node pairs. Only pairs in H are kept in L, while pairs not in

H are removed. Then, the list L is used for probing as before.

High Level Idea. We partition the pairs in () into batches {H;};>1, where the
weights of pairs in each batch are similar. Then, starting from the batch with
largest weights, we run A""on each batch H; to produce a list L;, and return the
concatenated list used for probing. An alternative view is that A“"is used to probe

pairs in a batch with higher weights before those in one with lower weights.

69

3.3.1 Partitioning () into Batches

Given a set W of k distinct weights, the algorithm first returns disjoint intervals
{I;}i>1 whose union contains . The intervals will be used to partition (‘2/) into
batches such that H; is the batch containing pairs with weights in interval I;. We
use the convention that an interval with a smaller index 7 contains larger values, i.e.,
I; is the interval containing the largest weights. The following lemma describes the
properties of the intervals picked by the algorithm. Recall that A""has competitive
ratio %—i—& on unweighted OM. Given two real numbers a < b, we denote dist(a, b) :=

14,

Lemma 3.3 (Partitioning Weights into Batches) Given a set W of k distinct
weights, there exists an integer r = O(k?) and ¢ = % such that the algorithm can
return disjoint intervals {I; := [a;, b;] }i>1, whose union contains W, and for each

7 Z 1, diSt(CLi, b2> S " and diSt(bi+1, bz) 2 GT_I.

Proof: The algorithm first finds the smallest integer » > 1 such that there are no
distinet < y in W satisfying ¢” < dist(z,y) < € ~!. Observe that there are only (’;)
such distinct pairs (x,y), and hence by the Pigeon Hole Principle, the algorithm can

start testing from r = 1 and eventually will find an r < (g) + 1 with this property.

The algorithm next partition weights from W into batches using the following simple
rule: two weights © < y in W are in the same batch iff dist(z,y) < €¢". To show

that this is well-defined, it suffices to prove the following transitivity property.

70

Claim. Suppose x < y < z are three distinct weights in W. Then, dist(z,y) < €

and dist(y, z) < € implies that dist(z, z) < €.

Proof of Claim. Observe that dist(z,y) < " and dist(y, z) < " implies that both .

and ¥ are at least 1 — ¢”. Hence, it follows that £ > (1 —¢")*> > 1 — €', because

€= %1 < % Therefore, dist(x, 2) < €', and by the choice of r, dist(x, z) cannot be
in the interval (¢",¢"~!]. So, we conclude that dist(x,2) < €". u

Therefore, each batch of weights defines an interval I;, where a; is the minimum
weight in the batch and b; is the maximum one. From the definition of a batch, it

follows that dist(a;, b;) < €".

To show that weights from different batches are far apart, for each ¢ > 1, since
biy1 < b; are in different batches, it must be the case that dist(b;1,b;) > €. By the

choice of r, this implies that dist(b;y1,b;) > 1. O

3.3.2 Edge-Weighted OM: Running Unweighted A“" on Each Batch

Given an instance of edge-weighted oblivious matching problem, the algorithm re-
ceives a node set V', and the weight w, for each pair e € (‘2/) Here is the outline of

the algorithm to return a probing list.

Suppose W is the set of weights of pairs. Using the procedure in Lemma [3.3]
disjoint intervals are constructed to partition W, which induces a partition of (‘2/)
into batches {H;}%,, where H; is the batch containing pairs with largest weights.

Starting from i = 1 to k, the unweighted .A*"is run (using independent randomness)

71

Algorithm 2 Algorithm for Edge-Weighted OM

Input: Set of vertices V' with w, for any e € (‘2/)

Output: The probing list L.

o

W {we.:ee (3)}

o

: {I; := [a;,b;]}E, « Disjoint intervals as given in Lemma to partition W,
where [is the interval with the largest weights.
0: for i from 1 to K do
0: H; < Pairsin (‘2/) with weights in I;
0: L; < List produced by running unweighted A“" on H; using independent
randomness
0: end for

0: return concatenated list L := L1 ® Ly @ --- P L =0

72

on H; to produce list L;.

The lists are concatenated to produce a list L := L1 ® Ly @ - - - @ Ly, that is used for

probing.

Analysis: Assume we are given an optimal matching OPT, we construct a match-
ing coverage o € for OPTduring an execution of the algorithm. For a matching
M, we use | M| to denote its cardinality and w(M) to denote the sum of weights of
its edges. We say an edge e in OPTis destroyed by a matching M if edge e is not in
M but at least one end-point of e is matched in M. Moreover, two edges intersect

if they share at least one end-point.

For each i > 1, we define the following edge sets.

ALG, is the set of the edges the algorithm includes in the matching when list L; is
probed. Observe that ALG; is maximal in the sense that every edge in L; intersects

with an edge in ALG;.

OPT; is the set of edges in OPT that intersect with edges in ALG;, but do not
intersect with edges in ALG;, for all j < i. Intuitively, those are the edges in OPT
that are either selected or first destroyed by ALG;. Observe that each edge in OPT;

has weight at most b;.
OPTY := OPT; N H;, each of which has weight in [a;, b;]; we shall make sure that
exactly one end-point of such an edge will receive value b; in «.

The matching resulting from the probing list L returned by the algorithm is ALG :=

U;ALG;. Since ALG is a maximal matching in G, it follows that every edge in OPT

73

appears in exactly one OPT;.

Remark. Observe that conditioning on {ALG;},;, OPTY are exactly those edges
in OPT N H; that have not been destroyed by {ALG,};<;. The reason is that
each of these edges will either be selected or destroyed by ALG;. Hence, OPT: f{ is

(conditionally) independent of the randomness used in running A"“"on H; to produce

ALG;.

Constructing a Matching Coverage. In addition to the optimal matching OPT,
the proposed vector a also depends on the randomness of the algorithm. For each
1 > 1, we apply the following analysis. Suppose V; is the set of nodes matched in
ALG,;. We define «, for each v € V; such that the resulting « is sufficient to be a
matching coverage for OPT;. We will compare C(ay;) ==), ¢y @, With w(ALG;)
to analyze the competitive ratio, where oy, is the vector a restricted to coordinates

corresponding to V.

Recall that every edge in H; has weight [a;, b;], and every edge in OPT; has weight
at most b; or at most b; if it is not in H;. We first define a subset f/\; C V, as
follows. Since ALG, is maximal with respect to edges in H;, each edge in OPT has
at least one end-point in V;; we arbitrarily pick one such an end-point and include
it in V;. Note that |17Z| = |OPT¥|. For each v € V}, we set a, to be b; if v € V;, and

bi+1 otherwise.

Checking Matching Coverage Requirement. For each edge e € OPT;, if it is in H;,

then one of its end-points will receive value b; in «, and hence the dual constraint

74

corresponding to e is satisfied. Otherwise, e € OPT; \ H;, and by definition, e

intersects with an edge in ALG; and has weight at most b;,1; hence, at least one of

its end-points will receive value b;;1 in a;, and the corresponding dual constraint is

also satisfied. Combining the analysis over all ¢« > 1, it follows that the resulting

vector «v is a matching coverage for OPT.

Lemma 3.4 (Local Competitive Ratio) Suppose the weights of H; are in [a;, b;]

where 1 := dist(a;, b;); moreover, let A := dist(b;y1,b;)

. Then, [w(ALG,)] > (1—n) -
(5 + 1355) - [Claw)].

Proof: From the construction, C(ay;) = (2|ALGy| — |OPTE|) - biyy + |OPTH| - b,
Suppose we condition on {ALG;};.;. Then, OPT " is determined. Observe that
since A“"has competitive ratio % + &, and when A""is run on H;, all edges in

OPTY are still available. Hence, we have [[ALG;|] > (3 + &) - [OPT]"], where the

latter expectation is taken over the randomness in {ALG;},«;.

Since dist(b;41,b;) = A, it follows that b1 = (1 — A)b;

Moreover, every edge in
ALG; has weight at least a;, and dist(a;, b;) = n. Hence, we have

[Clav)] = 2(1=N)b; - [[ALG,[] + \b; - [JOPTY|] < (2(1 = A) +

b - [IALC.
g e aLal
1 30 - 1 &ax
(5+ raen—yy) b IALGD < G+ 125007 b [ALG]
L, G

5 o) (=) (ALG)

as required.

Finally, we are ready to prove the competitive ratio of the algorithm.

5

Proof of Theorem [3.1} From Lemma [3.3] it follows that the parameters in
Lemmasatsify A> e ltandn < €, where r = O(k?). Observing that ¢ = % < %,

it follows that the local competitive ratio is

[w(ALGZ)] 1 51/\ r 1 §1€r_1 . r 1 2€¢”
Clav)] > —77)'(§+1+2£1)2(1—€)(§+1+2§1)—(1—€)(§+1+2£1)
1 € , 1 L&,
= otogag el 2o+ (B

where the last inequality follows because r > 1 and € < %1.

Hence, we have [ALG] = }_,[ALG;] > (3 + 2+14€1 ()" 3=,[C(ay;)]. Finally, observe
that > ,[C(ay,)] = E[C(a)] > w(OPT), as « is a matching coverage for OPT.

Therefore, we conclude that the competitive ratio for the whole algorithm is % + &,
where &, = ﬁ(%)r = Q(&)°%) | as required. m
Let W = {wy, ws, ..w,,} be the set of weights appears in the the graph G where
wy > wy > -+ > wy,. We define the distance between two weight w; and w; for
w; < wj as dis(w;, w;) =1— g—;.For any matching M, we show the number of edges
of matching M by |M| . Weighted size of a matching M, is) ., w(e) where w(e)

is the weight of edge e. We show the weighted size of the matching M by w(M).

The following is our suggested algorithm for weighted oblivious matching problem.
This algorithm uses an algorithm UWAlg for un-weighted oblivious matching prob-

lem.
Algorithm 1
Find the smallest integer « > 0 with the following property.

There is no two weights w; and w; such that € < dis(w;, w;) < e L.

76

replace weight w of each edge with the highest weight in set W which is at most

Run algorithm 2 on the new graph.
Algorithm 2

Find a permutation 7 based on the algorithm UWAIlg. First output the edges of

weight w; according to m and then edges of weight w, and so on.

Lemma 3.5 Assume € < 0.5 and let x be the variable selected by Algorithm 1. If

dis(w;, w;j) < €* then Algorithm 1 replaces w; and w; with the same weight.

Proof: Assume Algorithm 1 replace w; with w; and w; with w;. Suppose that

wy # w;. Without loss of generality, we can assume that w; < w;. We show that

Wq
1—eT”

w; is at most Assumption wy, < w; and fact w; < 45 together contradict the

1—

choice of wy,.

—L-. Also, we have dis(w;, w;) <

Since Algorithm 1 replace w; with w;, we have w; <

€’ which means 1 — =+ < ¢*. By putting these two together we have
J

%:ﬁﬂZ(1_Ew)(1_ex):1_2€l‘+(ex)221—269”.
wq w; Wy

Using the above inequality and assumption € < 0.5, we have

dis(w;,w;) =1 — Wiy (1 —2€") = 26" < "1,
wy

However, we know that the distance of non of weight pairs falls in the range (€%, €*71].

Hence, we have 1 — z—l = dis(w;, w;) < €. This is equivalent to w; < 5 which

together with wy, < w; contradict the choice of wy. O

7

One immediate conclusion of lemma |3.5| is that Algorithm 1 divides the weights to
some bunches. The distance between weights inside a bunch is at most €” and the
distance of any two weights from two different bunches is at least €~!. Algorithm
1 increase the weight w of each edge to the maximum weight in its bunch. We call

this weight representer of weight w.

Lemma 3.6 Let G be the input graph and let G, be the graph that Algorithm 1
produce by replacing the weights with their representers. If Algorithm 2 finds an
f-approximation solution to the oblivious weighted matching problem for graph G.,.,

it is a (1 — €*) f-approximation solution for the oblivious weighted matching problem

for G.

Proof: Since we just increase the weight of edges, the size of the maximum
matching does not decreased. Hence, in order to bound the approximation ratio,
we can compare the size of the resulted matching in graph G with the maximum
matching in graph G,. Let w, be the weight of edge e in graph G and let w] be the
weight of edge e in graph G,. We know that for any edge e, dist(we, w]) < €” which

We

means 1 — @& < ¢*. Thus, we have

e

We = wi% > wl (1 —€). (3.3.3)

Let M, be an arbitrary matching of graph G, and let M be the matching consist of

edges of M, in graph G. By summing up the inequality for all edges in M we

have

w(M) =) we > > wi(l—€) =w(M,)(1— ¢ (3.3.4)

ec M eeM

78

Which means the size of any matching in graph G is at least 1 — €” times the size of
the same matching in graph G,. Let Alg*(G,) denote the random weighted match-
ing resulted by applying Algorithm 2 on graph G, and let Alg(G) be the random
weighted matching resulted by applying Algorithm 1 on graph G. By Inequality

3.3.4) we know that w(Alg(@)) > w(Alg*(G,))(1 — €*). Thus, we have

Elw(Alg(@))] _ Elw(Alg(G))]
Opt(G) = Opt(G,)
o Elw(Alg*(Gr))(1 = €)]
- Opt(G,)
=1 —-€)f

which means Alg(G) is a (1 —€") f-approximation solution for the oblivious weighted

matching problem for G. This completes the proof of the lemma. O

Lemma 3.7 The value of x in Algorithm 1 is at most (g‘) +1 where m is the number

of deferent weights.

Proof: There is at most (’;) different distance of weight pairs and each falls in one
range of the form [¢¥,e¥~!). Thus, there exist is a z < (7)) + 1 such that [e*, e ?)
does not contain any distance dis(w;, w;). This directly implies that z < () + 1.

O

Let Opt be a fixed maximum weighted matching of input graph G, and Alg be
the random matching resulted by algorithm 2 where the randomness comes from
the random decision in algorithm UWAIlg. Let Alg; be the set of edges in Alg
with weight w;. We define Optf”g as the set of edges of Opt with following three
properties.

79

e has weight at most w;.
e Share an end point with an edge of Alg;.

e Do not share an end point with an edge of Alg; where j <.

We define SubOptiAlg as the subset of edges in Optf”g which has the weight w;.

Lemma 3.8 FEach edge of Opt is exactly in one of the sets Optf”g.

Proof: Consider an edge e of an arbitrary weight w; in Opt. Algorithm 2 outputs
all the edges of weight more than w; before e which means for all j < ¢, all the edges
in Alg; are matched. Also, Algorithm 2 may outputs some of the edges of weight
w;. This means some of the edges in Alg; are matched; we call this subset of the

edges PAlg;. When Algorithm 2 outputs e one of the following three cases happen.

Alg

i .

e Non of the endpoints of e is covered. In this case, e is in Opt

e One of the endpoints of e is in UVj<i Alg;. In this case, for a number j < i, e

Alg
J

is in Opt

e Non of the endpoints of e is in Uw <; Alg; but at least one of the endpoints of

Alg

i

e is in PAlg;. Again, in this case, e is in Opt

There for each edge in Opt is exactly in one of the sets Optf”g as desired. O

Theorem 3.3 Given a %—l—f-approm’mation Algorithm UWAIg for un-weighted obliv-

[

tous matching. Algorithm 2 is a % + %

-approximation algorithm for weighted

80

oblivious matching where X is the minimum distance between each two weights in

the input graph.

Proof: In order to prove this theorem for each i we present a matching coverage

C(OptM9) with weight %w(%ﬂgi). Recall from lemma 7?7, each edge of Opt is

exactly in one of the sets ijf;4 "9 Also, by definition each edge of Alg is exactly in
one Alg;. Hence, |, C’(Optf”g) = C'(Opt) is a matching coverage of Opt with the

weight > .. %w(%ﬂgi) = %w(%ﬂg). Recall lemma says w(C(Opt)) >

w(Opt). By putting these two fact together one can see

w(Alg) _ w(Alg) w(Alg)

w(Opt) = C(Opt) =2, 4lg)

0.5+¢
0.5+¢ 1 19

14+26—26N 2 1+426—2)\
1 EN

SRR
That means Algorithm 2 is a % + £2 _approximation algorithm. It remains to

1+2¢

present a matching coverage C(Opt:"?) with weight %w(%ﬂgi).

Alg

9, we know (u,v) share an end point with one edge

For each edge (u,v) € SubOpt
in Alg;. Assume v is the intersection of (u,v) and an edge in Alg; (If both are so,
select one of them arbitrary). We set a,, = w;. For all the other vertices in Alg; we
set o, = w;(1 — A). This clearly covers all the edges in SubOptiA ' and since any

other edge in Optf”g has weight at most w; 11 < w;(1 — A), it covers all the edges in

Opt. For |SubOpt:*?| number of vertices, we set o = w; and for rest of them we

81

set @« = w;(1 — \). Hence, we have
w(C(OptM9)) = |SubOpt | w; + (2| Alg;| — | SubOpt | Yw; (1 — \)
= 2| Alg;|w; — A(2| Alg;| — | SubOpt: ™|)w;. (3.3.5)

Consider the Algorithm 2 runs UWAIg on a subgraph that contains the matching
SubOpt™. Hence, we have |Alg;| > (3 + &)|SubOpt:*?|. Putting this together with

equality gives us

w(C(Opt9)) = 2| Alg;|w; — M2|Alg;| — | SubOpt: ™) w;

< 2|Algi|w; — M(2|Alg;| — ——Z2)w;
< 2|Algi|w; — A(2|Algi] 0'5_‘_6)11}2
_ |Algi| + 28| Algi| — 26M|Algi|
0.5+ ¢ '
:Mw(mgi)_

0.54+¢

This means the weight of cover C(Opt:") is %w(%ﬂgi) which complete the

proof of the theorem. O

Theorem 3.4 Given a %—}—f—approximation Algorithm UWAlg for un-weighted obliv-

tous matching. Algorithm 1 is a % + ﬁ(g)(?)ﬂ—appmximation algorithm for

weighted oblivious matching where m s the number of different weights in the input

graph.

Proof: In Algorithm 1 we set € = % Using this €, Observation says that the

minimum distance between each two weights in the graph reported to Algorithm 2

§)z—1

is at least (%)”_1. By Theorem we know that Algorithm 2 finds a % + €(12+2€ -

approximation solution of this graph. At the end, applying Lemma says that

82

Eye—
Algorithm 1 is a (1 — (5)*"1)(% + §(12+)2£1

)-approximation algorithm for weighted

oblivious matching. We have

2 r+1
g_(§+%+£2_x)
1426

€ 1 &5

1=GG+ T :

1
(5)“1 £E< 3 and x > 1

)=

1

This means Algorithm 1 is a 5 + 575

(§)*-approximation algorithm for weighted
oblivious matching. From Lemma we know that = < (7;) + 1. Therefore,

Algorithm 1 is a %—i—ﬁ(%) (T;)H—approximation algorithm for the weighted oblivious

matching problem. This completes the proof of the theorem. O

3.4 Edge-weighted Online Bipartite Matching with Free Disposal and

Bounded Online Degree

As a warmup, we restate a well-known greedy algorithm for the edge-weighted OBM,
where V' is the set of offline nodes, and the online nodes U arrive in an arbitrary
order. Upon arrival of an online node u, consider all its neighbors among offline
nodes. The greedy algorithm picks an offline node which maximizes the benefit of
assigning the new online node, where benefit is the difference between the corre-
sponding edge weight and the maximum edge weight previously assigned to this

offline node.

83

The following is a well-known proposition, and its proof can be given by augmenting
the algorithm to construct a feasible dual solution («, 5) along the way, where «
gives the dual values for the online nodes in U, and [gives the dual values for
the offline nodes in V. We will give a brief review and explain how the matching

coverage approach can suggest a better algorithm.

Proposition 3.1 Greedy algorithm has a competitive ratio of %

Algorithm 3 Greedy(Augmented)
0: for each offline node v € V do

0: [, 0

0: end for

0: for all arriving online node v € U do

0: Assign u to an offline node v for which w,, — 3, is maximized.
0: Q¢ Wuy — B Bo ¢ Bo + (Wuo — Bo)

0: end for=0

Brief Analysis of Greedy. Observe that at every round when an online node u
arrives, the increase in the dual solution is 2(w,, — f3,), which is twice the increase
in the weight of the primal solution. Hence, if we can prove that the resulting dual

1
3

is feasible, then we can conclude readily that the competitive ratio is
Observe that the g values do not decrease during the execution of the algorithm.
Hence, it suffices to show that at the end of every round, the dual (o,) values
satisfy all edge constraints that appear in that round. Consider an edge (u,v) € E.

If this edge is picked by the algorithm, then 3, = w,,, and so the dual is feasible for

84

this edge. Otherwise, it must be the case that (3, is unchanged in this round, and

based on the choice of Greedy «,, > wy, — (B,, and therefore, a,, + £, > Wy,.

How can the matching coverage approach bring improvement? In the
Greedy algorithm, «, does not play any essential role, but its value needs to be
chosen for the sake of analysis in a way that the dual («, /) is feasible for every edge
incident to u. In the framework of matching coverage, we assume the knowledge
of an optimal matching OPT, and we construct a (not necessarily feasible) dual
solution (c,) that is feasible only for the edges in OPT. Moreover, if an edge in
OPT is picked by the algorithm, then we do not have to increase «a,, at all. Since in
this framework we could potentially obtain smaller « values, it is possible that we

could improve the competitive ratio.

New Randomized Algorithm. We propose a new algorithm based on Greedy
algorithm which takes advantage of randomization. The algorithm works as follows.
Let d, denote the degree of online node u. For each arriving online node u, assume 7
is a chosen natural number which is less than or equal to d,,. The algorithm considers
1 neighbors of the online vertex with maximum benefits, and assigns the online node
to one of these 7 offline nodes uniformly at random. Our choice of ¢ depends on the

values of benefits as well as the degree of the online node.

Before analyzing the competitive ratio of RandGreedy, we present the intuition be-
hind this algorithm. In each step, Greedy algorithm assigns the arriving online node
to an offline node with maximum benefit. However, Greedy is a deterministic algo-

rithm, and it is known that no deterministic algorithm can achieve a competitive

85

Algorithm 4 RandGreedy

0: for each offline node v € V' do

0: [« 0

0: end for

0: for all arriving online node v € U do

0: Sort neighbors according to the benefit b, = w,, — 3, in non-increasing order.
0: Let vy,v9,...,04, be the offline nodes in the sorted order.

0 S(u) + {i]l1 <i <dy—1and by, X (1 = 572) > buvi }

0: if S(u) is not empty then ¢ <— min element of S(u)

0: else i<+ d,

0: end if

0: Let Act(u) be the set {(u,v1),..., (u,v;)} of edges.

0: (u,v") < an edge from Act(u) chosen uniformly at random.
0: Assign u to v'; By ¢ Wy

0: end for=0

86

ratio better than % in this proble. In order to take advantage of randomization,
we consider more than one offline node as potential vertices that the arriving online
node in each step can be assigned to. However, we only consider those offline nodes

for which the benefit is relatively high.

Matching Coverage. In the description of RandGreedy, the values in 3 are already
decided. Moreover, the sum), 3, is exactly the weight of the matching returned
by the algorithm. We shall later construct a in the analysis to give a matching
coverage for an optimal matching, and show that the expectation [Y . o] is not

too large.

Let the set of active edges of the arriving online node u be the set of edges which
might be assigned to u by RandGreedy. We denote the set of active edges of online
vertex u by Act(u). An edge of u which is not in Act(u) is called a non-active edge.
The algorithm chooses an edge from set Act(u) uniformly at random and assigns u

to the vertex on the other end of this edge.

Lemma 3.9 For any ey and ey in Act(u), we have b,, < (1+ i)b@ ; in other words,

their benefits are within a multiplicative factor of 1 + i from each other.

Proof: For convenience, we define d = d,. Let m = |Act(u)| be the size of
Act(u), and let 7 = (r1,7,...,7m) be the sorted benefits of edges in Act(u) in

non-increasing order, i.e., 7; = by,,. From definition for each 1 < i < m, we have

!'Note that edge-weighted OBM is a generalization of OBM, and there is no deterministic algo-

1

rithm for OBM with competitive ratio above 3.

87

ri(1 — £2) < riy1. Hence, we have ri(1 — 7)™ " < ryy,. Since m is at most d, we

replace m — 1 with d and conclude r; < (1 - ﬁ) - rm < (14 é) T, Where the last

inequality follows because for d > 1, one can verify that (1 — 75)7 < (1 + 55) <

n."‘

< (1—4)" ' <142 We give the detailed calculation in Lemma m

2d
This means the maximum benefit among the edges in Act(u) is at most 1+ é times
the minimum benefit among the edges in Act(u). Thus, we immediately conclude

this holds for any two edges in Act(u). O

The following lemma is used in the calculation in the proof of Lemma [3.9]

Lemma 3.10 Ford>1, (1 —;5) 4 <1+2

Proof: We first show

1
14+ —;. (3.4.6)
T 2
1- 5 2d
First, we note that
1 1
Lot [Itee lhae (3.4.7)

1 1 1 1 1
=gz l-—gg 1tz l1+ip—zm

Since d is at least 1, we have Thus, we have 1 + > 1. By putting

4d2 = 8d4 4d2 - 8d4

this and Equality together, we obtain Inequality [3.4.6]

Next, we show

(1 + 2—;2>d <(1+ E)' (3.4.8)

88

To prove it, first we have

! d<ﬁ 1
JRS— e =
2d2 - e 21d

1
< T (since e™* >1—x >0, for all z < 1)
1=
1412 o _ 1
= ———%—_ (multiplying both the numerator and the denominator by 1 +
1+ 55— 50

(3.4.9)

Since d is at least 1, we have %l > #. Thus, we have 1—1—2—1d — # > 1. By

putting this and Inequality together, we obtain Inequality [3.4.8l By putting

Inequalities |3.4.6| and |3.4.8| together, we obtain the required inequality. O

Construction of Matching Coverage. Suppose ALG is the matching returned
by RandGreedy, and we assume that the knowledge of an optimal weight matching
OPT is given. Without loss of generality, we can assume that every online node u
is matched in both ALG and OPT, because for every online node u, we can add a
dummy offline node v,, which connects to v with an edge of weight zero. Observe

that the values in 3 are already constructed in the execution of RandGreedy.

Lemma 3.11 (Construction of Matching Coverage for OPT) Given an op-

timal matching OPT, we can set values in « such that (o, B) is a matching cov-

erage for OPT. Moreover, [C(a,8)] < (2 — +5)[w(ALG)], where C(a,) :=

4A2

Y wer Qu Y vey Bos and A is the mazimum online degree.

Proof: We describe how values in o are assigned. For an online vertex u, let

OPT(u) be the edge in OPT incident on u and ALG(u) be the corresponding edge

89

7

in M. Observe that the § values do not decrease during the execution of the
algorithm. Hence, in order to show that («,) is a matching coverage for OPT, it

suffices to check, at the end of each round in which online node u arrives, the vector

(o, B) is feasible for the edge OPT(u).

We shall also prove that [a,,] < (1 — 7x3)[barcw)]. We next condition on the ran-
domness F used by the algorithm before online node u arrives. (Specifically, we
prove that Eloy,|F] < (1 — 1x3)barc), and hence we can take expectation again

over randomness F.)

Case 1: Act(u) does not contain OPT(u). In this case we set o, := bopr(w).-

Hence, if OPT(u) = (u,v), we have a, + 5, = (Wyuy — By) + Bo = Wyy-

Recall that the benefit of a non-active edge of an online vertex u is at most 1 — le%
times the minimum benefit of any active edge of u. Since in this case OPT(u) is
not an active edge and also ALG(u) is an active edge, we have a, = boppw) <

(1 = 372)bara(< (1= 32)barc), which also holds in expectation.

Case 2: Act(u) contains OPT(u). In this case if OPT(u) = ALG(u), we set
o, = 0; when an offline node v is picked, we have 3, = w,,, which clearly makes
the vector feasible for the edge OPT(u) = (u,v). Otherwise, OPT(u) # ALG(u),

and we set «, = bopr(u); similar to case 1, the resulting vector is feasible for

OPT(u).

Recall that RandGreedy selects an active edge of u uniformly at random. Also,

|Act(u)| is at most d,. Hence, it selects OPT(u) with probability at least i. It

90

means that with probability at least é, we set a,, := 0, and with probability at

1

most 1 — n

we set o, := bopr(w). Therefore, [o,|F] < (1 — é)bopT(u).

Since both OPT(u) and ALG(u) are active neighbors of u, we can apply Lemma
and conclude that bopr) < (1 + i)bALg(u).

Combining the last two inequalities together, we conclude that [a,|F] < (1—=)(1+
2barae) = (1= 72)barc < (1= 22)barcw < (1= 132)barc)-

To summarize, we have shown that («,) is always a matching coverage for OPT.

Moreover, [Y oo + > e Bo) < (1 - ﬁ)E[ZueU baLcw] + ey Bol-

Next, observe that in each round when online u is matched, we see that among
all offline nodes, only the value of the offline node in ALG(u) is increased by
barc)- Hence, the total sum ZvEV B, increases by exactly barg(u), which means
2uev baLa) = 2vey Bo-

Finally, observe that whenever an offline node v is assigned to an online node u, we

set (3, to wy,. Hence, it is immediate that) ., 8, = w(ALG).

Therefore, we conclude that [Y . au+ >, oy Bu] < (2— 122)[w(ALG)], as required.

a

We are now ready to complete the proof for the competitive ratio of RandGreedy.

Proof of Theorem : From Lemma [3.11} we have w(OPT) < [C(a, B)] <
. o . . |w(ALG

(2— ﬁ)[w(ALG)], which means the competitive ratio is [w§OPT§] > 27% = % (1-

az) P> 1 (14 5x3) = 5 + 1ea7, as required. "

91

Theorem 3.5 RandGreedy is % + ﬁ—competz’tive, where A is an upper bound on

degree of online vertices.

Proof: Let M be the output matching of RandGreedy on graph GG and let OPT be a
maximum weighted matching of graph G. We show there exist a matching coverage

C(OPT) = (3,?) for each run of RandGreedy such that, E[w(C(OPT))] < (2 —

N

z)E[w(M)]. By applying Lemma , we conclude E[w(M)] > 5=—w(OPT).

Thus, we have

E[w(M)] 1
w(OPT) ~ 2— 15
1 1+ 553
22— 1+
14 22
2~ mae
1+ 1 1
25 =5 o

That means RandGreedy has a competitive ratio 1 + 16%.

In order to define C(OPT) = (o, ﬁ), initially for all v and v we set «,, and /3, to 0.
Upon arrival of online vertex u, RandGreedy matches it to offline vertex v with edge
e = (u,v); We increase (3, by b, for offline vertex v where b, is the benefit of edge e.
Recall that ¢, is the weight of the last edge matched to v and we have b, = w, — ¢,.
Thus, B, = ¢, i.e., B, is always equal to the weight of the last edge matches to v.

Later, we describe how to change «, for online vertices such that we increase «,, by

1

— gx2)be in expectation.

at most (1

At the beginning, for each online vertex, we add a dummy offline vertex and connect
it to the online vertex with an edge of weight 0. Since the weight of new edges are

92

0, selecting them have no effect on the size of the final matching. On the other
hand, each online vertex has an edge with non-negative weight to a distinct offline
dummy vertex. Thus, without loss of generality, we can assume each online vertex
has a match in both M and OPT. For an online vertex u, let OPT(u) be the edge

of OPT adjacent to u and ALG(u) be the edge that RandGreedy matches to w.

Case 1: Act(u) does not contain OPT(u). In this case we increase «, by

bopT(u)-

1

Recall that the benefit of a non-active edge of an online vertex u is at most 1 — P

times the minimum benefit of any active edge of w. Since in this case OPT(u) is not

an active edge and also ALG(u) is an active edge, we have

1
boprw) < (1 — m)bALG(u)-

This means in this case we increase «y,, by at most (1— M%)bALg(u) < (]_—ﬁ)bAL(;(u)
as desired. Recall that 3, is equal to ¢, and for each edge e = (u,v) we have

b = w, — ¢,. Let v be the offline vertex that OPT assigns to u. We have

WOoPT(u) = bOPT(u) +Cy =y + Bv-

That means the dual constraint for edge OPT(u) is feasible.

Case 2: Act(u) contains OPT(u). In this case if OPT(u) = ALG(u) we do not

increase o, otherwise we increase o, by bopr(u)-

Recall that RandGreedy selects an active edge of u uniformly at random. Also,
|Act(u)| is at most d,. Hence, it selects OPT(u) with probability at least i. It
means with probability at least i we do not increase «, and with probability at

93

1

most 1 — i

we increase «, by bopr(,). Thus, in expectation we increase a, by at

most

1
(1- d_)bOPT(u)- (3.4.10)

u

Since both OPT(u) and ALG(u) are active neighbors of v we can apply Lemma

and conclude

1

boprw) < (14 d_)bALG(u)-

Putting the above inequality and Formula together we conclude we increase

ay by at most (1 — =)(1 +)barcw) = (1 — g2)barcw) < (1= a7)barg) in

expectation. Let v be the offline vertex that OPT assigns to u. Recall that [, is
always equal to the largest edge matched to v. Hence, when OPT(u) = ALG(u), we
have 8, > wopr(y) which means the dual constraint for edge OPT(u) is feasible since
a, > 0 and thus oy, + B, > woprw). On the other hand when OPT(u) # ALG(u),

we have o, = bopr(). Thus, we have

WOPT(u) = bOPT(u) TGy = Oy + ﬁ'u-

This means the dual constraint for edge OPT(u) is feasible and thus C(OPT) =

(, ﬁ) is a coverage. This finishes the proof. O

We finish this section with an example to describe how a matching coverage is

constructed in the course of the algorithm.

94

U1 (%) (%R

Figure 3.4.1: The graph corresponding to Example

Example 3 Assume U = {uj,us} and V- = {vy,v9,v3}. Online vertex uy has two
edges with weights 3 and 2 to vy and vy respectively. Online vertexr us has three
edges with weights 6, 3, and 1 to vy, ve, and vs respectively. Note that d,, = 2 and
du, = 3. The optimum matching is OPT = {(u1,v2), (uz,v1)} with w(OPT) = 8.
This instance has been shown in Figure[3.4.1. P

When uy arrives online it has two options. However, we know 3 x (1 — 55) > 2

which means by,v, (1= 53—) > buye, and Act(uy) = {(u1,v1)}. Therefore, RandGreedy
U1

matches uy to vy for sure. As the OPT(uy) = (u1,v2) is not in active set Act(uy)

we increase oy, by boprw,) = 2. We also set 3, =3

In the next step ug arrives and it has three edges. We have by,,, = 6 — 3 = 3,
buyw, = 3, and by,,, = 1 which means Act(us) = {(u2,v1), (ug,v2)}. Hence, Rand-
Greedy selects one of edges in Act(ug) uniformly at random and constructs a match-
ing coverage based on each selection. If the algorithm selects (ug,v1) € OPT(us),
it only increases (,, to 6 and builds matching coverage C(OPT) = (3,?) =

((2,0),(6,0,0)) in this case. If the algorithm selects (ug,va) ¢ OPT(uy), it in-

2Explanation of Figure Dashed lines represent the optimum matching. RandGreedy con-

structs two matching coverages ((2,0), (6,0,0)) and ((2,3), (3,3,0)) in the course of algorithm.

95

creases By, by 3 and o, by boprs) = busw, = 6 — 3 = 3. Matching coverage

C(OPT) = (@, ?) =((2,3),(3,3,0)) will be constructed in this case. Note that

w(OPT) = 8
1 1
E[w(C(OPT))] = 5 x8+5x11=095
1 1
Elw(M)] = §><6+§><6:6

3.5 The Hardness of Edge-Weighted Online Bipartite Matching with-

out Free Disposal

In this section, we show without the free disposal assumption, there is no randomized
online algorithm with bounded competitive ratio for edge-weighted online bipartite
matching. Assume there is an online algorithm A with competitive ratio % for the
problem. Consider offline vertex v and a sequence of online vertices uy, us, -+ , un.
We will define N later. Online vertex u; has an edge to v with weight w,,, = k"'
Assume online vertices arrive in this order: wuq,us, -+ ,uy. Consider online vertex
u; and assume offline vertex v is unmatched by Algorithm A upon arrival of u;. Let

p; be the probability that A match u; to v in this situation.

Let graph G; be the subgraph of G which consists of offline vertex v and online
vertices uq, - - - ,u;. The expected value of the output of online algorithm A should
be at least % the maximum weighted matching of G; for all 1 < i < N. Note that the
maximum weighted matching for graph G; is the edge (u;, v) which has weight k1.

Therefore, the expected value of the output of the online algorithm should be at

96

least k'~2 on graph G;. Note that the expected weight of the output matching of A
is T = 23:1 ¢j—1pjk?~t, where ¢; = Hizl(l — py) is the probability that vertex v is
unmatched upon arrival of w;;;. Online algorithm A is %-competitive which means
T, > k=2, Now we prove p; should be at least ;. Note that T; = 23:1 qj—1piki

and &7 is an increasing function in j. Therefore, we have

% i—1
T, = Z g = Z G1pik T+ qapikt
=1 =1

< (1 —q)K" 2+ qpk ™

where Z;;ll gj—1pj = 1 — g;—1 is the probability that v is matched upon arrival of

u;. On the other hand, we have T; > k=2, Hence, we conclude

. . . 1
(1=)k + qapk™ ' > K2 = p > T (3.5.11)

Let N be a big number such that (1 —)V < o=

55> and W be the sum of weights of

all edges in graph Gy. Construct graph G’ by adding another online node «' with
Wyry = 2kW to graph G . The optimum offline solution is 2kW for graph G’. Thus,
the expected value of the output of online algorithm A should be at least 2IW on
graph G'. Assume u’ be the last online vertex which arrives online. The probability
that v remains unmatched upon arrival of v’ is ¢y = Hivzl 1—p,.. Asp, > % for all

1<r<Nand (1-)N <5

55> we conclude gy < ﬁ It means the expected weight

of the output of A is at most (1 — gn)W + gn2kW < W + W = @ Therefore,

online algorithm A is not %—competitive.

97

3.6 Conclusion

We introduced a new framework called the matching coverage which is a more
powerful tool than the primal dual framework for analyzing some approximation
algorithms. We utilize this framework to show our algorithms for two variations of
matching problem can achieve a competitive ratio strictly greater than 0.5 for the

first time. There are many areas where we can continue this work in the future.

Can we achieve a better approximation ratio for any of these two problems? How can
we use the matching coverage framework for other online problems (not necessarily
matching problems)? and Can we analyze some previous algorithms using this
framework to show that they actually have a higher competitive ratio than we

thought?

98

Chapter 4: Network Cournot Competition

4.1 Introduction

In this paper we study selling a utility with a distribution network, e.g., natural
gas, water and electricity, in several markets when the clearing price of each market
is determined by its supply and demand. The distribution network fragments the
market into different regional markets with their own prices. Therefore, the relations
between suppliers and submarkets form a complex network [51-57]. For example, a
market with access to only one supplier suffers a monopolistic price, while a market
having access to multiple suppliers enjoys a lower price as a result of the price

competition.

Antoine Augustin Cournot introduced the first model for studying the duopoly com-
petition in 1838. He proposed a model where two individuals own different springs
of water, and sell it independently. Fach individual decides on the amount of water
to supply, and then the aggregate water supply determines the market price through
an inverse demand function. Cournot characterizes the unique equilibrium outcome
of the market when both suppliers have the same marginal costs of production, and

the inverse demand function is linear. He argued that in the unique equilibrium

99

outcome, the market price is above the marginal cost.

Joseph Bertrand Bertrand1883 criticized the Cournot model, where the strategy of
each player is the quantity to supply, and in turn suggested to consider prices, rather
than quantities, as strategies. In the Bertrand model each firm chooses a price for
a homogeneous good, and the firm announcing the lowest price gets all the market
share. Since the firm with the lowest price receives all the demand, each firm has
incentive to price below the current market price unless the market price matches
its cost. Therefore, in an equilibrium outcome of the Bertrand model, assuming all
marginal costs are the same and there are at least two competitors in the market,

the market price will be equal to the marginal cost.

The Cournot and Bertrand models are two basic tools for investigating the compet-
itive market price, and have attracted much interest for modeling real markets; see,
e.g., [53H56]. While these are two extreme models for analyzing the price competi-
tion, it is hard to say which one is essentially better than the other. In particular,
the predictive power of each strongly depends on the nature of the market, and
varies from application to application. For example, the Bertrand model explains
the situation where firms literally set prices, e.g., the cellphone market, the laptop
market, and the TV market. On the other hand, Cournot’s approach would be
suitable for modeling markets like those of crude oil, natural gas, and electricity,

where firms decide about quantities rather than prices.

There are several attempts to find equilibrium outcomes of the Cournot or Bertrand

competitions in the oligopolistic setting, where a small number of firms compete

100

in only one market; see, e.g., [58-63]. Nevertheless, it is not entirely clear what
equilibrium outcomes of these games are when firms compete over more than one
market. In this paper, we investigate the problem of finding equilibrium outcomes
of the Cournot competition in a network setting where there are several markets for

a homogeneous good and each market is accessible to a subset of firms.

4.1.1 Example

We start with the following warm-up exampleﬂ. This is a basic example for the
Cournot competition in the network setting. It consists of three scenarios. We
assume firm ¢ € {A, B} produces quantity g;; of the good in market j € {1,2}. Let
q be the vector of all quantities. The detailed computations are in the Appendix.
Scenario 1: Consider the Cournot competition in an oligopolistic setting with two
firms and one market (see Figure[5.6.1)). Let p(q) = 1—qa1 —gp1 be the market price
(the inverse demand function), and ¢;(q) = 1¢% be the cost of production for firm
i € {A, B}. The profit of a firm is what it gets by selling all the quantities of good
it produces in all markets minus its cost of production. Therefore, the profit of firm
i denoted by m;(q) is ¢;1(1 — qa1 — gB1) — %qfl. In a Nash equilibrium of the game,
each firm maximizes its profit assuming its opponent does not change its strategy.

Hence, the unique Nash equilibrium of the game can be found by solving the set of

IExplanation of Figure : This figure represents the three scenarios of our example. Vector

) is

o =

q = (i, i) represents the unique equilibrium in the first scenario. Vector q = (%, é, %,
the unique equilibrium of the second scenario. Finally, Vector q = (0.18,0.1,0.16) is the unique

equilibrium in the third scenario.

101

First Scenario Second Scenario Third Scenario

m4=0.0938 mp=0.0938 4 =0.0938 T5=0.0938 74=0.124 7p=0.064

@w ® W B @ o
qa1 qB1 a1 dB2 qa1 |4A2 B2
plzé p1=

Figure 4.1.1: The figure showing scenarios in Example [4.1.1

equations 274 = I —

s = 5o = 0. So qa1 = qp1 = i is the unique Nash equilibrium where

p(a) = %, and m4(q) = 75(q) = 0.9375.

Scenario 2: We construct the second scenario by splitting the market in the pre-
vious scenario into two identical markets such that both firms have access to both
markets (see Figure[5.6.1)). Since the demand is divided between two identical mar-
kets, the price for market j would be p;(q) = 1 — 2¢q4; — 2¢p;j, i.e., the clearance
price of each market is the same as the clearance price of the market in Scenario 1,
when the supply is half of the supply of the market in Scenario 1. In this scenario,
the profit of firm i € {A, B} is mi(q) = >_; ¢i;(1 — 2q4; — 2g5;) — (g + g2)*. Any
Oma Oma onp

Nash equilibrium of this game satisfies the set of equations e = g =gl =

g;;; = 0. By finding the unique solution to this set of equations, one can verify that
q= (3 % % &) is the unique equilibrium of the game where pi(q) = p2(q) = 3, and
ma(q) = mp(q) = 0.09375. Since we artificially split the market into two identical

markets, this equilibrium is, not surprisingly, the same as the equilibrium in the

previous scenario.

102

Scenario 3: Consider the previous scenario, and suppose firm 2 has no access to
the first market (see Figure|5.6.1]). Let the demand functions and the cost functions
be the same as the previous scenario. The profits of firms 1 and 2 can be written as

follows:

1
WA(Q) = QA1(1 - 26]A1) + C]A2(1 — 2qa2 — 2932) - §(QA1 + CIA2)27

1
m5(q) = gqp2(l —2qa2 —2qp2) — 5611232-

The unique equilibrium outcome of the game is found by solving the set of equa-

: ora _ Ompa _ Omp __ : _ _
tions 574 = F = JH- = (. One can verify that vector q = (qa1, qa2,qp2) =

(0.18,0.1,0.16) is the unique equilibrium outcome of the game where p;(q) = 0.64,
p2(q) = 0.48, ma(q) = 0.124, and w(q) = 0.064. The following are a few observa-

tions worth mentioning.

Firm A has more power in this scenario due to having a captive marketﬂ.

The equilibrium price of market 1 is higher than the equilibrium price in the

previous scenarios.

The position of firm B affects its profit. Since it has no access to market 1, it

is not as powerful as firm A.

The equilibrium price of market 2 is smaller than the equilibrium price in the

previous scenarios.

2A captive market is one in which consumers have limited options and the seller has a monopoly

power.

103

4.1.2 Related Work

There are several papers that investigate the Cournot competition in an oligopolistic
setting (see, e.g., [58,/59,/6163]). In spite of these works, little is known about the
Cournot competition in a network. [64] studies the Cournot competition in a network
setting, and considers a network of firms and markets where each firm chooses a
quantity to supply in each accessible market. He studies the competition when the
inverse demand functions are linear and the cost functions are quadratic (functions
of the total production). In this study, we consider the same model when the
cost functions and the demand functions may have quite general forms. We show
the game with linear inverse demand functions is a potential game and therefore
has a unique equilibrium outcome. Furthermore, we present two polynomial-time
algorithms for finding an equilibrium outcome for a wide range of cost functions and
demand functions. While we investigate the Cournot competition in networks, there
is a recent paper which considers the Bertrand competition in network setting [65],

albeit in a much more restricted case of only two firms competing in each market.

The final price of each market in the Cournot competition is a market clearing price;
i.e, the final price is set such that the market becomes clear. Finding a market clear-
ance equilibrium is a well-established problem, and there are several papers which
propose polynomial-time algorithms for computing equilibriums of markets in which
the price of each good is defined as the price in which the market clears. Examples

of such markets include Arrow-Debreu market and its special case Fisher market

104

(see related work on these markets [66-72]). cleard design an approximation scheme
which computes the market clearing prices for the Arrow-Debreu market, and clear6
improve the running time of the algorithm. The first polynomial-time algorithm for
finding an Arrow-Debreu market equilibrium is proposed by clear2 for a special case
with linear utilities. The Fisher market, a special case of the Arrow-Debreu market,
attracted a lot of attention as well. clear7 present the first polynomial-time algo-
rithm by transferring the problem to a concave cost maximization problem. clear3
design the first combinatorial algorithm which runs in polynomial time and finds
the market clearance equilibrium when the utility functions are linear. This result

is later improved by clear5.

For the sake of completeness, we refer to recent works in the computer science liter-
ature [73,/74], which investigate the Cournot competition in an oligopolistic setting.
winel(study a coalition formation game in a Cournot oligopoly. In this setting,
firms form coalitions, and the utility of each coalition, which is equally divided
between its members, is determined by the equilibrium of a Cournot competition
between coalitions. They prove the price of anarchy, which is the ratio between
the social welfare of the worse stable partition and the social optimum, is ©(n?°)
where n is the number of firms. [74] consider a Cournot competition where agents
may decide to be non-myopic. In particular, they define two principal strategies to
maximize revenue and profit (revenue minus cost) respectively. Note that in the
classic Cournot competition all agents want to maximize their profit. However, in

their study each agent first chooses its principal strategy and then acts accordingly.

105

The authors prove this game has a pure Nash equilibrium and the best response
dynamics will converge to an equilibrium. They also show the equilibrium price in

this game is lower than the equilibrium price in the standard Cournot competition.

4.1.3 Results and techniques

We consider the problem of Cournot competition on a network of markets and
firms for different classes of cost and inverse demand functions. Adding these two
dimensions to the classical Cournot competition which only involves a single market
and basic cost and inverse demand functions yields an engaging but complicated
problem which needs advanced techniques for analyzing. For simplicity of notation
we model the competition by a bipartite graph rather than a hypergraph: vertices
on one side denote the firms, and vertices on the other side denote the markets. An
edge between a firm and a market demonstrates willingness of the firm to compete
in that specific market. The complexity of finding the equilibrium, in addition to
the number of markets and firms, depends on the classes that inverse demand and

production cost functions belong to.

We summarize our results in the following table.

106

Cost functions | Inverse demand | Running time | Technique
functions
Convex Linear Convex optimiza-
O(E?)
tion, formulation
as an ordinal
potential game
Convex Strongly monotone Reduction to a non-
marginal revenue poly(E) linear complemen-
functionﬂ tarity problem
Convex, separa- | Concave O(nlog® Qumax) | Supermodular opti-
ble mization, nested bi-

nary search

In the above table, E denotes the number of edges of the bipartite graph, n denotes
the number of firms, and Q. denotes the maximum possible total quantity in the
oligopoly network at any equilibrium. In our results we assume the inverse demand
functions are nonincreasing functions of total production in the market. This is the

basic assumption in the classical Cournot Competition model: As the price in the

3Marginal revenue function is the vector function which maps production quantities for an edge

to marginal revenue along that edge.

107

market increases, it is reasonable to believe that the buyers drop out of the market
and demand for the product decreases. The classical Cournot Competition model
as well as many previous works on Cournot Competition model assumes linearity
of the inverse demand function [64,73]. In fact there is little work on generalizing
the inverse demand function in this model. The second and third row of the above
table shows we have developed efficient algorithms for more general inverse demand
functions satisfying concavity rather than linearity. This can be accounted as a big
achievement. The assumption of monotonicity of the inverse demand function is a
standard assumption in Economics [75-77]. We assume cost functions to be convex
which is the case in many works related to both Cournot Competition and Bertrand
Network [78/79]. In a previous work [64], the author considered Cournot Compe-
tition on a network of firms and markets; however, assumed that inverse demand
functions are linear and all the cost functions are quadratic function of the total
production by the firm in all markets which is quite restrictive. Most of the results
in other related works in Cournot Competition and Bertrand Network require lin-
earity of the cost functions [65,/73]. A brief summary of our results presented in

three sections is given below.

4.1.3.1 Linear Inverse Demand Functions

In case inverse demand functions are linear and production costs are convex, we
present a fast and efficient algorithm to obtain the equilibrium. This approach works

by showing that Network Cournot Competition belongs to a class of games called

108

ordinal potential games. In such games, the collective strategy of the independent
players is to maximize a single potential function. The potential function is carefully
designed in such a way that changes made by one player reflects in the same way
in the potential function as in their own utility function. We design a potential
function for the game, which depends on the network structure, and show how it
captures this property. Moreover, in the case where the cost functions are convex,
we prove concavity of this designed potential function (Theorem concluding
convex optimization methods can be employed to find the optimum and hence, the
equilibrium of the original Cournot competition. We also discuss uniqueness of
equilibria in case the cost functions are strictly concave. Our result in this section is
specifically interesting since we find the unique equilibrium of the game. We prove

the following theorems in Section 4.3|

Theorem 4.1 The Network Cournot Competition with linear inverse demand func-

tions forms an ordinal potential game.

Theorem 4.2 QOur designed potential function for the Network Cournot Competi-
tion with linear inverse demand functions is concave provided that the cost func-
tions are convex. Furthermore, the potential function is strictly concave if the cost
functions are strictly convex, and hence the equilibria for the game is unique. In
addition, a polynomial-time algorithm finds the optimum of the potential function

which describes the market clearance prices.

109

4.1.3.2 The general case

Since the above approach does not work for nonlinear inverse demand functions,
we design another interesting but more involved algorithm to capture more general
forms of inverse demand functions. We show that an equilibrium of the game can
be computed in polynomial time if the production cost functions are convex and the
revenue function is monotone. Moreover, we show under strict monotonicity of the
revenue function, the solution is unqiue, and therefore our results in this section is
structural; i.e. we find the one and only equilibria. For convergence guarantee we
also need Lipschitz condition on derivatives of inverse demand and cost functions.
We start the section by modeling our problem as a complementarity problem. Then
we prove how holding the aforementioned conditions for cost and revenue functions
yields satisfying Scaled Lipschitz Condition (SLC) and semidefiniteness for matrices
of derivatives of the profit function. SLC is a standard condition widely used in
convergence analysis for scalar and vector optimization [80]. Finally , we present
our algorithm, and show how meeting these new conditions by inverse demand and
cost functions helps us to guarantee polynomial running time of our algorithm. We
also give examples of classes of inverse demand functions satisfying the above condi-
tions. These include many families of inverse demand functions including quadratic
functions, cubic functions and entropy functions. The following theorem is the main

result of Section [4.4] which summarizes the performance of our algorithm.

Theorem 4.3 A solution to the Network Cournot Competition can be found in

110

polynomial number of iterations under the following conditions:

1. The cost functions are (strongly) convex.
2. The marginal revenue function is (stmnglgﬂ) monotone.

3. Ther first derivative of cost functions and inverse demand functions and

the second derivative of inverse demand functions are Lipschitz continuous.

Furthermore, the solution is unique assuming only the first condition. Therefore,

our algorithm finds the unique equilibria of NCC.

4.1.3.3 Cournot oligopoly

Another reasonable model for considering cost functions of the firms is the case
where the cost of production in a market depends only on the quantity produced
by the firm in that specific market (and not on quantities produced by this firm in
other markets). In other words, the firms have completely independent sections for
producing different goods in various markets, and there is no correlation between
cost of production in separate markets. Interestingly, in this case the competitions
are separable; i.e. equilibrium for Network Cournot Competition can be found by
finding the quantities at equilibrium for each market individually. This motivates

us for considering Cournot game where the firms compete over a single market. We

4For at least one of the first two conditions, strong version of condition should be satisfied,
i.e., either cost functions should be strongly convex or the marginal revenue function should be

strongly monotone.

111

present a new algorithm for computing equilibrium quantities produced by firms in
a Cournot oligopoly, i.e., when the firms compete over a single market. Cournot
Oligopoly is a well-known model in Economics, and computation of its Cournot
Equilibrium has been subject to a lot of attention. It has been considered in many
works including [81-85] to name a few. The earlier attempts for calculating equi-
librium for a general class of inverse demand and cost functions are mainly based
on solving a Linear Complementarity Problem or a Variational Inequality. These
settings can be then turned into convex optimization problems of size O(n) where
n is the number of firms. This means the runtime of the earlier works cannot be
better than O(n?) which is the best performance for convex optimization [86]. We
give a novel combinatorial algorithm for this important problem when the quantities
produced are integral. We limit our search to integral quantities for two reasons.
First, in real-world all commodities and products are traded in integral units. Sec-
ond, this algorithm can easily be adapted to compute approximate Cournot-Nash
equilibrium for the continuous case and since the quantities at equilibrium may not
be rational numbers, this is the best we can hope for. Our algorithm runs in time
O(nlog?*(Qmax)) Where Qumax is an upper bound on total quantity produced at equi-
librium. Our approach relies on the fact that profit functions are supermodular when
the inverse demand function is nonincreasing and the cost functions are convex. We
leverage the supermodularity of inverse demand functions and Topkis’ Monotonicity
Theorem [87] to design a nested binary search algorithm. The following is the main

result of Section [4.5]

112

Theorem 4.4 A polynomial-time algorithm successfully computes the quantities
produced by each firm at an equilibrium of the Cournot oligopoly if the inverse de-
mand function is non-increasing, and the cost functions are convex. In addition,
the algorithm runs in O(n10g2(QmaX)) where Qmax 18 the mazimum possible total

quantity in the oligopoly network at any equilibrium.

4.2 Notations

Suppose we have a set of n firms denoted by F and a set of m markets denoted by
M. A single good is produced in each of these markets. Each firm might or might
not be able to supply a particular market. A bipartite graph is used to demonstrate
these relations. In this graph, the markets are denoted by the numbers 1,2,...,m
on one side, and the firms are denoted by the numbers 1,2,...,n on the other side.
For simplicity, throughout the paper we use the notation i € M meaning the market
1, and j € F meaning firm j. For firm j € F and market ¢« € M there exists an
edge between the corresponding vertices in the bipartite graph if and only if firm j
is able to produce the good in market i. This edge will be denoted (i, j). The set of
edges of the graph is denoted by £, and the number of edges in the graph is shown
by E. For each market i € M, the set of vertices N (i) is the set of firms that this
market is connected to in the graph. Similarly, Nz(j) denotes the set of neighbors
of firms j among markets. The edges in £ are sorted and numbered 1, ..., F, first
based on the number of their corresponding market and then based on the number

of their corresponding firm. More formally, edge (i,7) € £ is ranked above edge

113

(l,k)ye Eifi<lori=1and j < k. The quantity of the good that firm j produces
in market ¢ is denoted by ¢;;. The vector q is an £/ x 1 vector that contains all the
quantities produced over the edges of the graph in the same order that the edges

are numbered.

The demand for good ¢, denoted D;, is the sum of the total quantity of this good

produced by all firms, i.e., D; = > gij- The price of good %, denoted by the

JENM()
function P;(D;), is only a decreasing function of total demand for this good and not
the individual quantities produced by each firm in this market. For a firm 7, the
vector §; denotes the strategy of firm j, which is the vector of all quantites produced
by this firm in the markets Nz(j). Firm j € F has a cost function related to its
strategy denoted by ¢;(sj). The profit that firm j makes is equal to the total money
that it obtains by selling its production minus its cost of production. More formally,
the profit of firm j, denoted by =;, is

= Y B(D)ag; —c;(5)). (4.2.1)

1€ENF(J)

4.3 Cournot competition and potential games

In this section, we design an efficient algorithm for the case where the price func-
tions are linear. More specifically, we design an innovative potential function that
captures the changes of all the utility functions simultaneously, and therefore, show
how finding the quantities at the equilibrium would be equivalent to finding the set

of quantities that maximizes this function. We use the notion of potential games

114

as introduced in monderer. In that paper, the authors introduce ordinal poten-
tial games as the set of games for which there exists a potential function P* such
that the pure strategy equilibrium set of the game coincides with the pure strategy

equilibrium set of a game where every party’s utility function is P*.

In this section, we design a function for the Network Cournot Competition and
show how this function is a potenial function for the problem if the price functions
are linear. Interestingly, this holds for any cost function meaning Network Cournot
Competition with arbitrary cost functions is an ordinal potential game as long as
the price functions are linear. Furthermore, we show when the cost functions are
convex, our designed potential function is concave, and hence any convex optimiza-
tion method can find the equilibrium of such a Network Cournot Competition. In
case cost functions are strictly convex, the potential function is strictly concave. We
restate a well known theorem in this section to conclude that the convex optimiza-
tion in this case has a unique solution, and therefore the equilibria that we find in

this case is the one and only equilibria of the game.

Definition 4.1 A game is said to be an ordinal potential game if the incentive of all
players to change their strategy can be expressed using a single global function called
the potential function. More formally, a game with n players and utility function u;
for player i € {1,...,n} is called ordinal potential with potential function P* if for

all the strategy profiles ¢ € R™ and every strategy x; of player i the following holds:

wi (i, q—i) — ui(qi, g—i) > 0 iff P*(ws,q-5) — P*(qs,q-¢) > 0.

115

An equivalent definition of an ordinal potential game is a game for which a potential
funciton P* exists such that the following holds for all strategy profiles ¢ € R™ and
for each player 1.

dq; B 0q; '

In other words, for each strategy profile q, any change in the strateqy of player i has

the same impact on its utility function as on the game’s potential function.

The pure strategy equilibrium set of any ordinal potential game coincides with the
pure strategy equilibrium set of a game with the potential function P* as all parties’

utility function.

Theorem 4.5 The Network Cournot Competition with linear price functions is an

ordinal potential game.

Proof: Let P/(D;) = a; — 5;D; be the linear price function for market i € M
where a; > 0 and 3; > 0 are constants determined by the properties of market <.
Note that this function is decreasing with respect to D;. Here we want to introduce

a potential function P*, and show that % = % holds V(i,7) € €. The utility
ij i

function of firm j is
T = Z <Oéz' — Bi Z ij>%'j —¢(7),
1ENF(9) kENF(5)
and taking partial derivative with respect to ¢;; yields

87@»

dc;(53) |
aQij

aQij

=a; — [Z ki — Bidij —

k€ENx(j)

116

We define P* to be

P*:Z|:ogz Z qm 61 Z q” Bz Z qijqik —

1eEM JENM (3 JENM (i k]GNM(z)

whose partial derivative with respect to g;; is

oP* 0 0c;(s;
=a; —26iqij — 5 — | B Z QuGim | — 95,(5;)

dqi; 9qij = i
l,mEN z (1)
0c;(s7)
= a; — 2B,q;; — Bi(Di — qi5) — -
Bigij — Bi(Di — qij) as
_om
a%’j.

Since this holds for each ¢ € M and each 5 € F, the Network Cournot Competition

is an ordinal potential game.

We can efficiently compute the equilibrium of the game if the potential function P*

c;(s7)
Z |Nf(j)|}’

JENM(4)

is easy to optimize. Below we prove that this function is concave.

Theorem 4.6 The potential function P* from the previous theorem is concave pro-

vided that the cost functions of the firms are convex. Moreover, if the cost functions

are strictly convex then the potential function is strictly concave.

Proof: The proof goes by decomposing P* into pieces that are concave. We first

define f for one specific market 7 as

Z q@] + Z i qik,

JENM(4) k]ENM()

and prove that it is convex.

117

Recall that q is an E x 1 vector of all the quantities of good produced over the
existing edges of the graph. We can write f = q/ M q where M is an E x E matrix

with all elements on its diagonal equal to 1 and all other elements equal to \/Li:

1 L L

V2 V2

1 1 1

M= V2 V2
4L 1

V2 V2 |

To show that f is convex, it suffices to prove that M is positive semidefinite, by

finding a matrix R such that M = R R. Consider the following (£ +1) x F matrix:

CcC C C

a 0 0
R=10 a 0f -

0 0 a

where a, ¢ are set below. Let R; be the i-th column of R. We have R; - R; = a® + ¢?

and R; - R; = ¢ for i # j.

Setting ¢ = 271 and a = VI —c yields M = RTR, showing that M is positive

semidefinite, hence the convexity of f.

The following expression for a fixed market i € M, sum of three concave functions,

is also concave.

2 ¢;(s5)
o Z Qij — 5z‘< Z %Gyt Z Qiqu'k) - Z N
FENM(7) FENMm() kER 0y (8 FENM(9)

118

Summing over all markets proves concavity of P*. Note that if a function is the
sum of a concave function and a strictly concave function, then it is strictly concave
itself. Therefore, since f is concave, we can conclude strictly concavity of P* under

the assumption that the cost functions are strictly convex.]

The following well-known theorem discusses the uniqueness of the solution to a

convex optimization problem.

Theorem 4.7 Let F' : K — R"™ be a strictly concave and continuous function for
some finite convex space K € R"™. Then the following convex optimization problem

has a unique solution.

max f(z) s.t. x€K. (4.3.2)

By Theorem [4.6], if the cost functions are strictly convex then the potential function

is strictly concave and hence, by Theorem [4.7] the equilibrium of the game is unique.

Let ConvexP(E, (a1, ...,am), (B1,...,Bm),(c1,...,¢cn)) be the following convex op-

timization program:

min — o o — 2 _ 3. e ¢;(s7)
> { D> G = B4 =B Y Gt — Y)|N;(j)|] (4.3.3)

iEM =5EN (1) JENAM(7) k,jekzéj,lu) FJENM (2
subject to ¢ >0 V(i,j) ef.

Note that in this optimization program we are trying to maximize P* for a bipartite
graph with set of edges &£, linear price functions characterized by the pair (o, 5;)
for each market ¢ € M, and cost functions c¢; for each firm j € F.

119

Algorithm 5 Compute quantities at eq. for NCC with linear price functions.
Input: Set of edges &£, cost function ¢; for each firm j, coefficients of price function

of market i as («, ;).

Output: Quantities produced at equilibrium.

0: Let C be this convex optimization problem

ConvexP(E, (a1, ..., am), (b1, Bm), (c1, ..., ¢n)).

0: Solve C using a convex optimization algorithm
0: Return result of convex optimization algorithm as ¢ of equilibrium quantities.

=0

The above algorithm has a time complexity equal to the time complexity of a convex
optimization algorithm with E variables. The best such algorithm has a running

time O(E®) [86].

4.4 Finding equilibrium for cournot game with general cost and in-

verse demand functions

In this section, we formulate an algorithm for a much more general class of price
and cost functions. Our algorithm is based on reduction of Network Cournot Com-
petition (NCC) to a polynomial time solvable class of Non-linear Complementarity
Problem (NLCP). First in Subsection [4.4.1] we introduce our marginal profit func-
tion as the vector of partial derivatives of all firms with respect to the quantities that

they produce. Then in Subsection 4.4.2] we show how this marginal profit function

120

can help us to reduce NCC to a general NLCP. We also discuss uniqueness of equi-
librium in this situation which yields the fact that solving NLCP would give us the
one and only equilibrium of this problem. Unfortunately, in its most general form,
NLCP is computationally intractable. However, for a large class of functions, these
problems are polynomial time solvable. Most of the rest of this section is dedicated
to proving the fact that NCC is polytime solvable on vast and important array of
price and cost functions. In Subsection [4.4.3] we rigorously define the conditions
under which NLCP is polynomial time solvable. We present our algorithm in this
subsection along with a theorem which shows it converges in polynomial number of
steps. To show the conditions that we introduce for convergence of our algorithm in
polynomial time are not restrictive, we give a discussion in Subsection |4.4.4| on the
functions satisfying these conditions, and show they hold for a wide range of price

functions.

Assumptions Throughout the rest of this section we assume that the price func-
tions are decreasing and concave and the cost functions are strongly convex (The
notion of strongly convex is to be defined later). We also assume that for each firm
there is a finite quantity at which extra production ceases to be profitable even if
that is the only firm operating in the market. Thus, all production quantities and
consequently quantities supplied to markets by firms are finite. In addition, we
assume Lipschitz continuity and finiteness of the first and the second derivatives
of price and cost functions. We note that these Lipschitz continuity assumptions

are very common for convergence analysis in convex optimization [86] and finiteness

121

assumptions are implied by Lipschitz continuity. In addition, they are not very re-
strictive as we don’t expect unbounded fluctuation in costs and prices with change
in supply. For sake of brevity, we use the terms inverse demand function and price

function interchangeably.

4.4.1 Marginal profit function

For the rest of this section, we assume that P; and ¢; are twice differentiable functions

of quantities. We define f;; for a firm j and a market ¢ such that (¢, j) € £ as follows.

. 37rj
a%‘j

aQij Y 3%‘]"

fij = = —P(D;) - (4.4.4)

Recall that the price function of a market is only a function of the total production

in that market and not the individual quantities produced by individual firms. Thus

OP;(D;) _ OP;(D;)
0qij gk

Vi, k € Np(i). Therefore, we replace these terms by P/(D;).

8Cj

fij = —Pi(Di) — P/(Di)qij + :
= =P(D) = PU(Day + 5.2

(4.4.5)

Let vector F' be the vector of all f;;’s corresponding to the edges of the graph in the
same format that we defined the vector ¢q. That is f;; corresponding to (i,j) € &
appears above f;, corresponding to edge (I,k) € £ iff i <l ori=1and j < k. Note

that F' is a function of q.

Moreover, we separate the part representing marginal revenue from the part repre-
senting marginal cost in function F'. More formally, we split F' into two functions

R and S such that F' = R+ S, and the element corresponding to the edge (i,j) € £

122

in the marginal revenue fuction R(q) is:

871" /
Tij = _E)q;j = —F(D;) — P'(Di)gij,

whereas for the marginal cost function S(q), it is:

8cj
Sii — .
! 0%’;’

4.4.2 Non-linear complementarity problem

In this subsection we formally define the non-linear complementarity problem (NLCP),

and prove our problem is a NLCP.

Definition 4.2 Let F' : R* — R" be a continuously differentiable function on R}.
The complementarity problem seeks a vector x € R™ that satisfies the following

constraints:

(4.4.6)

Theorem 4.8 The problem of finding the vector q at equilibrium in the Cournot

game 1s a complementarity problem.

Proof: Let ¢* be the vector of the quantities at equilibrium. All quantities
must be nonnegative at all times; i.e., ¢* > 0. It suffices to show F'(¢*) > 0 and
¢TF(¢*) = 0. At equilibrium, no party benefits from changing its strategy, in

particular, its production quantities. For each edge (i,7) € &, if the corresponding

123

om;
0qij

quantity g;; is positive, then ¢j; is a local maxima for 7;; i.e., fi;(¢") = —
q*

On the other hand, if ¢j; = 0, then S;Z' _ cannot be positive, since, if it is, firm j
q
would benefit by increasing the quantity ¢;; to a small amount e. Therefore, aa(; is
(%) q*

always nonpositive or equivalently f;;(¢*) > 0, i.e., F'(¢*) > 0. Also, as we mentioned

_ Om
0qi;

= 0. Hence,

q*

above, a nonzero ¢;; is a local maximum for 7;; i.e., fi;(¢*) =
either ¢j; = 0 or f;;(¢") = 0; thus, ¢j;fi;(¢") = 0. This yields > e ¢ fi;(¢") =

Definition 4.3 F': K — R" is said to be strictly monotone at x* if

(F(x) — F(z*)", 2 —2*) > 0,Vz € K. (4.4.7)

F is said to be strictly monotone if it is monotone at any x* € K. Equivalently, F

18 strictly monotone if the jacobian matriz is positive definite.

The following theorem is a well known theorem for Complementarity Problems.

Theorem 4.9 Let F' : K — R" be a continuous and strictly monotone function
with a point x € KC such that F(x) > 0 (i.e. there exists a potential solution to
the CP). Then the Complementarity Problem introduced in characterized by

function F' has a unique solution.

Hence, the Complementarity Problem characterized by function F' introduced el-
ement by element in (4.4.4) has a unique solution under the assumption that the
revenue function is strongly monotone (special case of strictly monotone). Note that

124

the marginal profit function or F' in our case is non-negative in at least one point.
Otherwise, no firm has any incentive to produce in any market and the equilibrium
is when all production quantities are equal to zero. In the next subsection, we aim

to find this unique equilibrium of the NCC problem.

4.4.3 Designing a polynomial-time algorithm

In this subsection, we introduce Algorithm [¢] for finding equilibrium of NCC, and
show it converges in polynomial time by Theorem [4.12| This theorem requires the
marginal profit function to satisfy Scaled Lipschitz Condition(SLC) and monotonic-
ity. We first introduce SLC, and show how the marginal profit function satisfies SLC
and montonicty by Lemmas to[4.6 We argue the conditions that the cost and
price functions should have in order for the marginal profit function to satisty SLC
and monotonicity in Lemma [£.6] Finally, in Theorem [£.12] we show convergence of

our algorithm in polynomial time.

The following theorem states the performance guarantee of the algorithm proposed

by [80].

Theorem 4.10 (Zhao Han Convergence Theorem) Let F': R* — R" be the
function associated with a complementarity problem satisfying the two following con-

ditions:

e VF is a positive semidefinite matrix for a constant scalar.

125

o [satisfies SLC; i.e., for some scalar A > 0,
|X[F(z+h) — F(z) — VF(2)h]||e < Ah'VE(2)h|

holds Vx > 0 and Vh satisfying || X 'h| < 1.

Then the algorithm converges in time O (n max(1, \) log(uo/e)) and outputs an ap-
prozimate solution (F(z*), x*) satisfying (x*)T F(2*)/n < € where py = (x0)* F(x0) /n,

and (F(z),xo) is the initial feasible point.

Before introducing the next theorem, we explain what the Jacobians VR, V.S, and
VF are for the Cournot game. First note that these are F x E matrices. Let
(i,7) € € and (I, k) € € be two edges of the graph. Let e; denote the index of edge
(,7), and es denote the index of edge (I, k) in the graph as we discussed in the first
section. Then the element in row e; and column ey of matrix VR, denoted VR,
is equal to %. We name the corresponding elements in VF and V.S similarly. We

have VF =VR+VSas F =R+ 5.

Definition 4.4 (Scaled Lipschitz Condition (SLC)) A function G : D — R",
D C R™ is said to satisfy Scaled Lipschitz Condition (SLC) if there exists a scalar

A >0 such thatV h € R*,Y z € D, such that || X 'h| <1, we have:
|X[G(z + h) — G(x) — VG(2)h]||ee < AW VG(2)h], (4.4.8)

where X is a diagonal matriz with diagonal entries equal to elements of the vector

x in the same order, i.e., Xy = x; for all i € M.

126

Satisfying SLC and monotonicity are essential for marginal profit function in The-
orem In Lemma [4.6| we discuss the assumptions for cost and revenue function
under which these conditions hold for our marginal profit function. We use Lemmas
to [4.6] to show I satisfies SLC. More specifically, we demonstrate in Lemma [4.1]
if we can derive an upperbound for LHS of SLC for R and S, then we can derive an
upperbound for LHS of SLC for F = R+ S too. Then in Lemma [£.2] and Lemma
we show LHS of S and R in SLC definition can be upperbounded. Afterwards,
we show monotonicity of S in Lemma [£.5] In Lemma we aim to prove F' satifies
SLC under some assumptions for cost and revenue functions. We use the fact that
LHS of SLC for F can be upperbounded using Lemma[£.3]and Lemma [£.2] combined
with Lemma 4.1l Then we use the fact that RHS of SLC can be upperbounded using
strong monotonicity of R and Lemma [4.5 Using these two facts, we conclude F'

satisfies SLC in Lemma (4.6

Lemma 4.1 Let F,R,S be three R* — R" functions such that F(q) = R(q) +
S(q), Vq € R". Let R and S satisfy the following inequalities for some C' > 0 and

V h such that || X 'h| < 1:

IX[R(q + 1) — R(q) = VR(@)h]l|l < ClIR|I%,

IX[S(q+h) = S(q) = VS(9)h][l < ClIh]1%,
where X is the diagonal matriz with X; = q;. Then we have:

IX[F(q+h) = F(q) = VF(g)h]]l < 2C2]1*

127

Proof: Definition of function F' implies
| X[F(q+ h) = F(q) = VF(q)hllls =[X[R(q + h) — R(q) — VR(q)h]
+ X[S(g+h) = S(q) = VS(@)h]ll~
applying triangle inequality gives
| X[F(q+ h) = F(q) = VF(@)hll|« <[X[R(q +h) — R(q) — VR(q)h][|
+ I X[S(q + 1) — S(q) = VS(g)h]ll
Combining with assumptions of the lemma, we have the required inequality. O

The following lemmas give upper bounds for LHS of the SLC for S and R respec-

tively.

Lemma 4.2 Assume X 1is the diagonal matriz with X; = q;. YV h such that
| X~'h|| < 1, there exists a constant C > 0 satisfying: || X[S(¢ + h) — S(q) —

VS(@)h]l < CllA]>.

Proof: Let m;; = 88;3. The element of vector X(S(q + h) — S(q) — hV.S) corre-

sponding to edge (4, 7) is given by:
¢ij(mi(q + h) +mi;(q) — hVei(q))

Let 2L3 be an upper bound of Lipschitz constants for derivates of ¢;’s. Then, from

Theorem and upper bound @ on production quantities, we have:

|qi3(mij(q + 1) + mij(q) — hVei(q))| < QLs||h|)?

128

Lemma 4.3 Assume X 1is the diagonal matriz with X; = q;. YV h such that

IX~h|| < 1, 3C > 0 such that] X[R(q + h) — R(q) — VR(g)A] |l < C||12.

Proof: Before we proceed, we state the following theorem from analysis and Lemma

44

Theorem 4.11 [86] Let f : R" — R be a continuously differentiable function with

Lipschitz gradient, i.e., for some scaler ¢ > 0,
IVf(x) =Vl <cle -yl VazyeR"
Then, we have ¥V x,y € R",

) < F@) + V@) (@ = y) + Slly = 2l

(4.4.9)

Lemma 4.4 For any vector x € R" and an arbitrary S C [n], let X = Y . _ox;.

Then we have \/n||x|| > X

Proof: LetY =3, |z Clearly, Y| > |X].

i€[n
V2=) fmigl =) 2w +)
i,j€[n] 1<j
Since, s? + 12 > 2st V s,t € R, we have

X2<YP<y (af +ad) + |alP = nllz)?

i<j

Now we are ready to prove Lemmal[d.3] First note that R(q-+h)—R(q)—V R(q)h is an

B x 1 vector. Let H; =), n i hij- The element corresponding to edge (7,) € €

129

in vector R(q + h) is Py(D; + H;) + P/(D; + H;)(q;j + hij). Similarly, the element
corresponding to edge (¢, 7) € € in R(q) is P;(D;)+P/(D;)q;; whereas the correspond-
ing element in VR(q)h is Ypen, hikges = — Yrenpn hie(PL(Di) + PI(Di)ai)) +
hi; P/(D;). Therefore, the element corresponding to edge (i,7) € &£ in vector R(q +

h) — R(q) — VR(q)h is:

—Pi(D; + H;)—P{(D; + H;)(qi; — hij) — P{(D;) — P{(D;)qy;

+ Z hie(P;(D;) + P/'(D;)qij) + hijP{(D;).

kEN (i
Besides, X is the diagonal matrix of size E x E with diagonal entries equal to
elements of ¢ in the same order. Therefore, X[R(q¢ + h) — R(q) — VR(q)h] is an
E x 1 vector where the element corresponding to edge (4, j) € € is ¢;; multiplied by

the element corresponding to edge (i, 7) in vector R(q + h) — R(q) — VR(q)h:
Gij <P,~(DZ- + Hy) + P{(D;i + H;)(qi; + hig) — Pi(Ds) — P(Di)gy;
Z hi (P, + P/ (Di)qij) — hz‘jPiI(Dz‘)>
kENM(’L)
=4 ([Pi(Di + Hy) — Pi(D;) — HiP(D;)]
+ [P{(D; + H;) — P{(D;) — HP/(Di)] (g3 + hag) + hiy Hi P (D;))

<¢ij (|Pz'(Dz‘ + H;) — P{(D;) — H;P/(D;)|
+ |P{(D; + Hy) = P{(Dy) — HiP(Di)|[(as; + hag)| + |hiniPi”(Di>|> :
Let P’ and P” be Lipschitz continuous functions with Lipschitz constants 2L; and

2L4 respectively. To bound the last expression, we use Theorem and Lemma

130

|P(Di + H;) — Pi(Dy) — HiP/(D;)| < LiH} < LiE|[h|?
|P/(D; + H;) — P/(D;) — H;P/'(Dy)| < LyH} < Ly E||h?
|hi; H: P!'(D;)| < E|[h||*P/' (D)
Then, from finiteness of derivatives, we have:
|hi; HiP{'(Di)| < EMs|[R]?
Thus, the LHS is bound from above by:
G BIIB|* (L1 + La(gij + hij) + M)

Let @ be an upper bound on maximum profitable quantity for any producer in any

market. Then the LHS is bound above by C|/h|?, where:

C = QE(Ly + 2QLy + M) (4.4.10)

If R is assumed to be strongly monotone, we immediately have a lower bound on
RHS of the SLC for R. The following lemma gives a lower bound on RHS of the

SLC for S.

Lemma 4.5 If cost functions are (strongly) convex S is (strongly) monotonm.

5A matrix M € R™ ™ is strongly positive definite iff V x € R"™ and some a > 0 27 Mz > of|z||?.

6 A differentiable function f : D — R™ is monotone iff its Jacobian V f is positive semidefinite

over its domain D.

7 A differentiable function f : D +— R™ is strongly monotone iff its Jacobian Vf is strongly

positive definite over its domain, D.

8A twice differentiable function f : D + R is strongly convez iff its Hessian V2f is strongly

131

Proof: Let S =), -c;. Then S', being a sum of strongly convex functions, is
a strongly convex function. Also, S = VS’. Thus, h¥'V25'h = hT'VSh is bounded
from below by a.|h||?,Vh € R" for some a, > 0 if the cost functions are strongly

convex and alpha. = 0 is cost functions are convex. O

The following lemma combines the results of Lemma and Lemma using
Lemma to derive an upper bound for LHS of the SLC for F. We bound RHS of

the SLC from below by using strong montonicity of R and Lemma [4.5]
Lemma 4.6 F' satisfies SLC and is monotone if:

1. Cost functions are convez.
2. Marginal revenue function is monotone.

3. Cost functions are strongly convexr or marginal revenue function is strongly

monotone.

Proof: From lemmas and [4.1] RHS of SLC for F is O(E|h|?). If cost
functions are strongly convex or marginal revenue function is strongly monotone,
then from Lemma [4.5] and definition of strong monotonicity, the LHS of SLC for
F is Q(||h]|?). Thus, F satisfies SLC. We note that F' is a sum of two monotone

functions and hence is monotone. a

We wrap up with the following theorem, which summarizes the main result of this
section. Lemma guarantees that our problem satisfies the two conditions men-

tioned in [80]. Therefore, we can prove the following theorem.

positive definite over its domain, D.

132

Theorem 4.12 Algorithm[f] converges to an equilibrium of Network Cournot Com-

petition in time O(E2 log(,uo/e)) under the following assumptions:

1. The cost functions are strongly convez.
2. The marginal revenue function is strongly monotone.

3. The first derivative of cost functions and price functions and the second

derwative of price functions are Lipschitz continuous.

This algorithm outputs an approzimate solution (F(q*), q*) satisfying (¢*)T F(q*)/n <

e where 1o = (q0)" F(go)/n, and (F(qo),qo) is the initial feasible point [’}

4.4.4 Price Functions for Monotone Marginal Revenue Function

This section will be incomplete without a discussion of price functions that satisfy
the convergence conditions for Algorithm [} We will prove that a wide variety of
price functions preserve monotonicity of the marginal revenue function. To this end,

we prove the following lemma.

Lemma 4.7 VR(q) is a positive semidefinite matriz ¥ q > 0, i.e., R is monotone,

provided that for all markets |P/(D;)| > w.

9Initial feasible solution can be trivially found. E.g., it can be the same production quantity
along each edge, large enough to ensure losses for all firms. Such quantity can easily be found by

binary search between [0, Q].

133

Algorithm 6 Compute quantities at equilibrium for Generalized Cournot game.
Input: The price function P; for each market ¢ € M, the cost function ¢; for each

firm j € F, and € > 0
Ouput: The vector of quantities produced by all firms at equilib-

rium.

o

. Calculate vector F' of length E as defined in (4.4.4)).

0: Find the initial feasibldT_U]solution (F(xg), o) for the complementarity problem.
This solution should satisfy zo > 0 and F'(xy) > 0.

0: Run Algorithm 3.1 from [80] to find the solution (F'(z*),z*) to the CP charac-

terized by F'.

0: return z* =0

Proof: Let e; be the index of the edge (i, 7) and es be the index of edge (I, k). The

elements of VR are as follows.

% = —2P/(D;) — P/'(Di)gij if e1 = e
VRe1el = < % — _Pz‘/(Di) _ Pi//(Di)qZ'j ifi—= l7j 7& k

i 0 ifi £l Ak

L Oak
We note that since price functions are functions only of the total production in

their corresponding markets and not the individual quantities produced by firms,

Blg;?i) = B%}fi). Therefore, we have replaced the partial derivatives by P! (D;).
i 7

We must show x7VR(D;)z is nonnegative Vo € R¥ and VD; > 0.

134

2T (VR(D;))x = Z Z x”xlkam Z Z x”xlk

(i,9)€€ (kl)e&E i€EM 5, k€N (3

= Z Z x?j [—2P/(D;) — P”<Di)xij]

i€EM \GEN (i)

+ Z zijxik [— P (D;) — P/ (D;)qij]

JkENM(2),5#k

—-S [S @2Rmy+ Y wea(P(D) + P(D)gy)

ieEM \ jEN (i) JkE€N M (3)

==Y | PD) Y i+ PUDy) > wiwae+ PI(D:) Y wiqiwa

ieEM JENM(3) J,kENp(2) k€N (2)

) Y @+ PUD) Y wwa — [PID)lgllel| Y iyl
1EM FENM(3) k€N (7) JENAM(3)
2

= Z —P/(Dj)|z|* — P/(Dy) sz‘j + B (D:)| Dilz|] Z i

ieM JENM(3) JENM(3)

-

Since P;’s are decreasing functions, we have , P/(D;) < 0, Vi € M. Thus, over

domain of P;’s (D; > 0), the above expression is non-negative if |P/(D;)|D; <

2|P/(D;)| Hence, 27 (VR(D;))x > 0 equivalently VR(D;) is positive semidefinite. O

While the above condition may seem somewhat restrictive, they allow the problem
to be solved on a wide range of price functions. Intuitively, the condition implies that
linear and quadratic terms dominate higher order terms. We present the following

corollaries as examples of classes of functions that satisfy the above condition.

Corollary 4.1 All decreasing concave quadratic price functions satisfy Lemmal[{.7].

Corollary 4.2 All decreasing concave cubic price functions satisfy Lemma [4.7]

135

Corollary 4.3 Let a; € R%, for i € {1...k} be arbitrary positive vectors. Let
[R%y — R be the following function: f(x) = Zie{ln_k}(aiTx) log(al'z). Then f

(and —f) satisfies Lemma[4.7

4.5 Algorithm for Cournot Oligopoly

In this section we present a new algorithm for computing equilibrium quantities
produced by firms in a Cournot oligopoly, i.e., when the firms compete over a single
market. Cournot Oligopoly is a standard model in Economics and computation of
Cournot Equilibrium is an important problem in its own right. A considerable body
of literature has been dedicated to this problem [81-85]. All of the earlier works
that compute Cournot equilibrium for a general class of price and cost functions rely
on solving a Linear Complementarity Problem or a Variational Inequality which in
turn are set up as convex optimization problems of size O(n) where n is the number
of firms in oligopoly. Thus, the runtime guarantee of the earlier works is O(n?) at
best. We give a novel combinatorial algorithm for this important problem when the
quantities produced are integral. Our algorithm runs in time nlog*(Qpnaz) Where
Qmae 1s an upper bound on total quantity produced at equilibrium. We note that,
for two reasons, the restriction to integral quantities is practically no restriction at
all. Firstly, in real-world all commodities and products are traded in integral units.
Secondly, this algorithm can easily be adapted to compute approximate Cournot-
Nash equilibrium for the continuous case and since the quantities at equilibrium

may not be rational numbers, this is the best we can hope for.

136

As we have only a single market rather than a set of markets, we make a few
changes to the notation. Let [n] = {1,...,n} be the set of firms competing over
the single market. Let q = (¢1,¢2,...,qn) be the set of all quantities produced by
the firms. Note that in this case, each firm is associated with only one quantity.
Let Q = Zie[n] ¢; be the sum of the total quantity of good produced in the market.
In this case, there is only a single inverse demand function P : Z — Rx, which
maps total supply,), to market price. We assume that price decreases as the
total quantity produced by the firms increases, i.e., P is a decreasing function of
Q. For each firm i € [n], the function ¢; : Z +— Rso denotes the cost to this
firm when it produces quantity ¢; of the good in the market. The profit of firm
i € [n| as a function of ¢; and @, denoted m;(¢;, @), is P(Q)q; — ci(g;). Also let
filgi;, Q) = mi(q¢; +1,Q + 1) — m;(g;, Q) be the marginal profit for firm i € [n]
of producing one extra unit of product. Although the quantities are nonnegative
integers, for simplicity we assume the functions ¢;, P, m; and f; are zero whenever any

of their inputs are negative. Also, we refer to the forward difference P(Q+1)— P(Q)

by P'(Q).

4.5.1 Polynomial time algorithm

We leverage the supermodularity of price functions and Topkis’ Monotonicity The-
orem [87] (Theorem [4.13) to design a nested binary search algorithm which finds
the equilibrium quantity vector q when the price function is a decreasing function

of () and the cost functions of the firms are convex. Intuitively the algorithm works

137

as follows. At each point we guess @’ to be the total quantity of good produced by
all the firms. Then we check how good this guess is by computing for each firm the
set of quantites that it can produce at equilibrium if we assume the total quantity
is the fixed integer). We prove that the set of possible quantities for each firm
at equilibrium, assuming a fixed total production, is a consecutive set of integers.
Let I; = {¢,, ¢ +1,...,¢% — 1,¢*} be the range of all possible quantities for firm
i € [n] assuming ()’ is the total quantity produced in the market. We can conclude
Q' was too low a guess if }7, ., ¢t > @'. This implies our search should continue
among total quantities above @)'. Similarly, if Ziew ¢ < @', we can conclude our
guess was too high, and the search should continues among total quantities below
@Q’. If neither case happens, then for each firm i € [n], there exists a ¢, € I; such
that Q' = Zie[n} ¢; and firm ¢ has no incentive to change this quantity if the total
quantity is @'. This means that the set ' = {¢},...,¢,} forms an equilibrium of

the game and the search is over.

The pseudocode for the algorithm is provided in Algorithm [7, whose correctness we
prove next. The rest of this section is dedicated to proving Theorem .14} Here, we

present a brief outline of the proof. To help with the proof we define the functions

F; and G; as follows. Let Fj(¢;,Q) = P(Q + 1)g; + Png) (¢ — 3)* — c(g;). We note
that the first difference of F'(¢;, @) is the marginal profit for firm ¢ for producing one
more quantity given that the total production quantity is () and firm ¢ is producing

¢i- Let Gi(¢;, Q) = Fi(q;, @ —1). The first difference of G;(g;, Q) is the marginal loss

for firm ¢ for producing one less quantity given that the total production quantity

138

Algorithm 7 Compute quantities at Equilibrium in a Cournot oligopoly.

Input: Price function P and all cost functions ¢;.
Output: ¢, vector of quantities produced by firms at the game’s equilib-
rium.

0: Let Quin :=1

0: Let QF be the monopoly optimum quantity of firm .

0: Let Quax := Zie[n] Qr

0: while Qi < Qmax do

R

0: for alli € [n] do

0: Binary search to find the minimum nonnegative integer ¢! satisfying
0: fZ(Q£7QI) :771(@5+17Q/+1) —772‘(615762/) S 0
0: Binary search to find the maximum integer ¢¥ < @)’ + 1 satisfying

0: filg =1,Q" = 1) =m(q, Q) —mi(qf —1,Q = 1) 20

0: Let I; = {q},...,q"} be the set of all integers between ¢! and ¢*.
0: end for

0: if Yiepql > Q' then

0: Qmin == Q' +1

0: else if Yicnq) < Q' then

0: Qmax = Q/ —1

0: else

0: Find q = (¢1, - - -, ¢,) such that ¢; € I; and Zie[n} g = Q'
0: return q

0: end if

139
0: end while=0

is @) and firm ¢ is producing ¢;. Maximizers of these functions are closely related to
equilibrium quantities a firm can produce given that the total quantity in market
is (). We make this connection precise and prove the validity of binary search in

Lines 8-12 of Algorithm [7] in Lemma [£.§f In Lemma [£.9, we prove that F; and

G; are supermodular functions of ¢; and —@. In lemmas [4.10| and 4.11, we use

Topkis’ Monotonicity Theorem to prove the monotonicity of maximizers of F; and
G;. This, along with lemmas and leads to the conclusion that the outer
loop for finding total quatity at equilibrium is valid as well and hence the algorithm

18 correct.

4.5.2 Proof of correctness

Throughout this section we assume that the price function is decreasing and concave

and the cost functions are conver.

Lemma 4.8 Let ¢/ (Q) = {¢....q¢"} , where ¢¢ = minargmazgego..qua.tFi(6, Q)
and ¢ = MaxX argmazeco..Qm..1Gi(¢, Q). Then ¢ (Q) is the set of consecutive
integers I; given by binary search in lines 8-12 of Algorithm [1. This is the set of

quantities firm 1 can produce at equilibrium given that the total quantity produced is

Q.

Proof: Again let P'(Q) = P(Q + 1) — P(Q) be the forward difference of the price
function, and let ¢j(q;) = ci(¢; + 1) — ci(¢;). From definition of profit function

m; and f;, we have fi(¢;,Q) = P(Q + 1)+ P'(Q)q; — ci(q;). Assume @Q is fixed.

140

Suppose we have ¢; < ¢;. The marginal profit of firm at production quantity g¢; is
P(Q+1)+ P'(Q)q — ci(q;) whereas the marginal profit at production quantity ¢; is
P(Q+1)+ P(Q)di — (@), Thus, P(Q+1)+ P'(Q)g; > P(Q+1) + P(Q)ds since
P'(Q) is negative (from concavity of P) and ¢; < ¢;. As the discrete cost functions
are convex, we have c,(q;) < ¢;(g;). This implies fi(¢;, @) > fi(¢, Q) when ¢; < G;.
Thus, for a fixed @, fi(¢;, @) is a non-increasing function of ¢;. Similarly, we can
see that f;(q;, @) is a non-increasing function of (). From definitions of F; and Gj,

we have:

Fi(gi +1,Q) — Fi(¢:, Q) = fi(q:, Q) (4.5.11)
Gi(gi+1,Q) — Gig:;, Q) = Fi(g; + 1,Q — 1) — Fi(¢:, @ — 1) = fi(q:;, @ — 1)
(4.5.12)
For a fixed @, Let ¢; be the minimum maximizer of F;(q;, Q). Then f;(¢—1,Q) > 0.
Let ¢, be the maximum maximizer of G;(¢;, Q). Because f; is non-increasing, we
have fi(q—1,Q — 1) > fi(q — 1,Q) > 0. Thus, any number smaller than ¢, cannot
be a maximizer of G; and we have ¢, < ¢,. Let ¢ € {q...¢,}. Then, because
q > ¢ we have fi(¢,Q) < 0 and from ¢ < ¢,, we have fi(¢ — 1,Q — 1) > 0.
Thus, ¢ is an equilibrium quantity when total production quantity is Q). If ¢ < ¢,
then fi(¢,@) > 0 and if ¢ > ¢, then f;(¢ — 1, —1) > 0. Thus {¢...q.} is the
set of equilibrium quantities. In Line of Algorithm [7, we are searching for
the minimum maximizer of F; and in Line we are searching for maximum

maximizer of GG;. Binary search for these quantities is valid because first differences

for both functions (equations |4.5.11| and |4.5.12)) are decreasing. O

141

Lemma 4.9 Let F; (¢;, —Q) = Fi(¢;, Q) and G; = Gi(q;, —Q). Then F; and G;

are supermodular functions.

Proof: We use the following definition from submodular optimization in the lemma.

Definition 4.5 Given lattices (X1, >) and (Xz,>), f: Xi X Xy — R is supermod-
ular iff for any x1,y1 € X1;29,y2 € Xo such that x1 >y, and xo > ys, the following

holds:

f(xr,y2) — f(w1,22) > f(yr,v2) — fy1, 72)

We have, Fi(q;, Q) = P(Q + 1)g + Png) (@i — %)2 —¢i(q;). Let —Q1 > —Q2. Let
¢; > ¢;. Then, we have:

P'(Q1) — P'(Q2) 1

Fi(qi, Q1) — Fi(qi, Q2) = (P(Q1 + 1) = P(Q2 + 1))g; + 5 (q; — 5)2
Fig Q1) = FaQa) = (P(Q1 +1) = P(Qu +) + L@ Ly

Since P and P’ are a decreasing functions, we have P(Q;) > P(Q2) and P'(Q;) >

P'(Q2). From this and the fact that ¢} > ¢;, we have:

Fi(q;, Q1) — Fi(g;, Q2) > Fi(qi, Q1) — Fi(q:, Q2)

Therefore F;~ is a supermodular function. Since G;(g;, Q) = Fi(q;, Q@ — 1), may a

similar argument we can conclude that G, is supermodular. O

Lemma 4.10 Let I = {¢,...,q¢"} = ¢/ (Q) = argmazeci. Qma.) Fi(t, Q) and
I = {q;l,...,q;“} = ¢f'(Q) = argmaggc(i. . Qme.Fi(e, Q). Let Q > Q'. Then
g > ¢ and " > gt

142

Proof: We need the following definition and Topkis’ Monotonicity Theorem for

proving the lemma.

Definition 4.6 Given a lattice (X, >), we define Strong Set Ordering over A, B C

X. We say A > B iff Va € A,¥b € B,max{a,b} € A Amin{a,b} € B.

We note that the strong set ordering induces a natural ordering on sets of consecutive
integers. Let Iy = {l1,...,u1}. Let Iy = {ly,...,us}. Then I >, I, iff [> [and

UL = Us.

Theorem 4.13 (Topkis’ Monotonicity Theorem [87]) For any lattices (X, >
) and (T,>), let f : X x T + R be a supermodular function and let x*(t) =

argmazqex f(x,t). If t > t', then x*(t) >4 2*(t'), i.e., 2*(t) is non-decreasing in t.

We note that in the theorem above, strong set ordering is used over x* because

argmax returns a set of values from lattice X.

Now we are ready to prove Lemma m From Lemma , F7 (¢, —Q) is a su-
permodular function. Thus, from Theorem , ' (Q) = argmazFi(q;, Q) is a
non-decreasing function of —@Q, i.e., ¢/ is a non-increasing function of Q. Thus
Q> Q = I' >, 1. As noted above, strong set ordering on a set of consecutive

integers implies that q,;l > ¢t and q;“ > g a

Lemma 4.11 Let I = {¢',...,q¢"} = ¢(Q) = argmatge(i.. Qm..+Gi(q, @) and
I = {q;l,...,q;“} = ¢“(Q) = argmazgc(i. Qm..tFi(e, Q). Let @ > Q'. Then
¢ > ¢ and " > g

143

Proof: From Lemma G; (¢, —Q) is a supermodular function. Thus, from
Theorem [4.13, ¢%(Q) = argmazF;(g;, Q) is a non-decreasing function of —Q, i.e.,
q¢ is a non-increasing function of Q. Thus Q > Q' = I' >, I. As noted above,

strong set ordering on a set of consecutive integers implies that q;l > ¢! and q;“ > g

|

Lemma 4.12 Let Q be total production quantity guessed by Algorithm[7 at a step
of outer binary search. Let I = (I,...,I,), where I; = {q,...,q"}, be the set of
best reponse ranges of all firms if the total quantity is a fized integer Q). Then,
if Yor gt < Q, there does not exist any equilibrium for which the total produced

quantity is greater than or equal to Q).

Proof: Assume for contradiction that such an equilibrium exists for total quantity
Q' > Q. From Lemma |4.11], we have ¢%(Q) >, ¢“(Q") = {¢;'...¢*}. Thus, we have
g > ¢;*. Since @' is an equilibrium quantity, >°" | ¢;* > Q'. Thus, we have Q' < Q

and this is a contradiction. O

Lemma 4.13 Let Q be total production quantity guessed by Algorithm [7 at a step
of outer binary search. Let I = (Iy,...,1,), where I; = {q,...,q"}, be the set of
best reponse ranges of all firms if the total quantity is a fized integer Q). Then,
if SO0 gk > Q, there does mot exist any equilibrium for which the total produced

quantity is less than or equal to Q).

Proof: Assume for contradiction that such an equilibrium exists for total quantity
Q' < Q. From Lemma [4.10, we have ¢/ (Q) <, ¢/ (@) = {g;*. .. ¢;*}. Thus, we have

144

¢l < ¢ Since @' is an equilibrium quantity, "1, ¢;'leq@Q’. Thus, we have Q' > Q

and this is a contradiction. O
Finally, the results of this section culiminate in the following theorem.

Theorem 4.14 Algorithm @ successfully computes the vector @ = (q1,G2,- -, qn)
of quantities at one equilibrium of the Cournot oligopoly if the price function is
decreasing and concave and the cost function is convex. In addition, the algorithm
runs in time O(nlog*(Qumax)) where Quax 15 the mazimum possible total quantity in

the oligopoly network at any equilibrium.

Proof: Lemma 4.8 guarantees that the inner binary search successfully finds the
best response range for all firms. Lemmas and ensure that the algorithm
always continues its search for the total quantity at equilibrium in the segment where
all the equilibria are. Thus, when the search is over, it must be at an equilibrium of
the game if one exists. If an equilibrium does not exist, then the algorithm will stop
when it has eliminated all quantities in {1...Q..} as possible total equilibrium
production quantities. Let QQnax be the maximum total quantity possible at any
equilibrium of the oligopoly network. Our algorithm performs a binary search over
all possible quantities in [1, Quax|, and at each step finds a range of quantities for
each firm ¢ € [n] using another binary search. This means the algorithm runs in
time O(nlog®(Qmax)). We can find an upper bound for Q.y, noting that Q. is
at most the sum of the production quantites of the firms when they are the only
producer in the market; i.e, Quax < Zie[n] Qi where QF = ¢f(g;) is the optimal

quantity to be produced by firm ¢ when there is no other firms to compete with. O

145

4.6 Conclusion

In this chapter, a generalized version of the Cournot Competiton was introduced
and studied. Instead of assuming firms produce a single product and compete in
a single market, we take into account a more realistic model where each firm can
produce any subset of goods corresponding to different markets. As a result, the
cost function for each firm can be any complex function of different quantities of
goods produced in different markets. We provide both optimal and approximation
algorithms which find the quantities produced by each firm (in each of the markets
it has access to) in the equilibria of the game. We try to generalize the firms’ cost
functions as well as markets’ price functions as much as possible. Finally, for the
traditional version of Cournot Competition, we provide a combinatorial algorithm
for finding quantities at equilibria which is significantly faster than the previous

algorithms before this work.

146

Chapter 5: Market Pricing for Data Streams

5.1 Introduction

Modern, Internet-enabled marketplaces have the potential to serve an extremely
large volume of transactions. Giant online markets such as eBay and Amazon work
with massive datasets that record the exchange of goods between many different
buyers and sellers. Such datasets present an opportunity: it is natural to ana-
lyze the history of transactions to estimate demand and solve central pricing prob-
lems. Indeed, a recent and exciting line of literature in the algorithmic game theory
community has set out to understand how the availability of data, in the form
of samples from a transaction history, can be employed to tune prices and design
mechanisms [88-92]. Big-data environments are a boon for such tasks. However,
as datasets grow ever larger, data-analysis algorithms must become ever more effi-
cient. An algorithm that runs in polynomial (or even linear) time may not have a

reasonable running time in practice.

In this paper, we study the development of pricing algorithms that are appropriate
for use with massive datasets. We will adopt the model of streaming algorithms,

a standard model for massive dataset analysis. In the streaming algorithm model,

147

a stream of data arrives sequentially and must be analyzed by an algorithm with
limited memory. These streams can only be read once (or a limited number of
times), and hence streaming algorithms must be frugal in the amount and nature

of data that they choose to store.

Streaming algorithms were first theoretically introduced in fields such as data mining
and machine learning over 20 years ago in order to model problems in which the data
cannot be accessed all at once. Over the past decade, there has been a significant
demand for algorithms to process and handle dynamic data coming from huge and
growing graphs such as social networks, webpages and their links and citations of
academic work. These algorithmic techniques are also relevant to market design
problems. For instance, one might imagine that there is a set of items (e.g., goods
for sale) and a set of potential buyers (e.g., individual consumers) to which they
should be matched. Such markets are essentially bipartite matching problems, which
have themselves been the subject of study in the context of streaming algorithms.
This begs the question: to what extent can market design and pricing problems be

resolved adequately in the streaming model?

We have in mind two main applications of solving this pricing problem on a massive
collection of static data, especially on the data of previous sales. First, by computing
optimal prices on past transactions, one can subsequently employ those prices as a
guideline for setting future prices; this is a key step in many recent pricing method-
ologies based on stastical learning theory. Also, the optimal welfare or revenue in

hindsight is a useful benchmark for the online pricing mechanism being employed

148

by the platform, and can therefore be used to evaluate and tune.

5.1.1 Our Results

In this paper, we instantiate our high-level question by focusing on the envy-free
pricing problem with big data. Our model is as follows. Suppose there is a bipartite
graph G with a set of n unit-demand buyers by,...,b, on one side, and a set of
k distinct types of items vy,..., v, with [copies of each on the other side. The
utility of buyer b; for item v; is denoted by w,,,, and is shown by a weighted edge
between the corresponding two vertices. The price assigned to item ¢ is denoted
by p;. The goal is to assign prices to items, and then items to buyers, such that
the assignment is envy- freeﬂ i.e., each buyer prefers the item assigned to her rather
than an item assigned to another buyer. Subject to the envy-freeness condition, the
designer wishes to maximize either the social welfare or revenue of the corresponding
allocation. This is precisely the envy-free pricing problem introduced by Guruswami
et al. [93]. We ask: how well can envy-free prices be computed in the streaming

setting?

We note that there are many possible representations of the input as a data stream.
We will perform our analysis under a model in which the utility values w,, 3, arrive

in a data stream in an arbitrary order. We note that there are other potential

'If we assign item v;, to buyer b;, and item v;, to buyer bj,, then we have Uy, by, — P(i1) >

U”Uiz ,bjl - p(Z2)'

149

options, such as assuming that all values associated with a certain agent arrive
simultaneously, or that the values u,,, are not provided directly but rather the
input contains only the revealed preference of a buyer in response to prices. We

leave the exploration of these alternative models as an avenue for future work.

We consider both social-welfare maximization and revenue maximization versions
of the envy-free pricing problem. First, we provide streaming mechanisms that
compute both allocation and prices of the items using O(k?l) space. Later, we
present streaming mechanisms that only compute the prices using space O(k3),
approximating social welfare (or revenue) within a factor of 1 — ¢, where poly-
logarithmic factors are hidden in the notation of O. At the end, we present lower
bounds on the required space of any mechanism that computes optimum prices for

either social-welfare maximization or revenue maximization.

In Theorem 5.1] we provide an envy-free streaming mechanism for the social-welfare

maximization problem using O(k?) space.

Theorem 5.1 There exists an envy-free mechanism for the social-welfare maxi-
mization problem in the streaming setting using O(k?1) space. This mechanism re-

members the allocation as well as the prices.

Indeed, finding the maximum matching in a bipartite graph with O(k) vertices in
the streaming setting requires Q(k?) space [94]. Thus, for [= 1, the space required

by our mechanisms in Theorem [5.2] and Theorem [5.1] are tight.

The following theorem extends our result to the revenue maximization problem.

150

Even in the static (i.e., non-streaming) environment, this problem has resisted
constant-factor approximation factors for simple versions, including the case of unit-
demand bidders studied here. We frame our result as a reduction: given an algo-
rithm for computing envy-free prices in the static setting, we show how to construct
a streaming algorithm with the same approximation guarantee. As with the welfare

maximization problem, the required space is O(k?1).

Theorem 5.2 Given an envy-free a-approximation mechanism for the revenue mazx-
imization problem, there exists an envy-free a-approximation mechanism for the
revenue mazimization problem in the streaming setting using O(k?l) space. This

mechanism remembers the allocation as well as the prices.

Each of the above results are with respect to algorithms that return not only a profile
of envy-free prices, but also the corresponding allocation. We note that the size of
the allocation is O(kl), and thus any mechanism that remembers the allocation
requires at least (2(kl) space. This space may be quite large when [is large, which
is not desirable. What if we are only interested in determining the envy-free prices,
and just being within an approximation of the maximum social welfare(or revenue)?
As it turns out, this variation of the problem allows significant improvement when [
is large. We provide an almost optimal streaming mechanism using O(k?’) space that
computes prices. That is, the required space here is poly-logarithmic in the number
of buyers and the number of copies of each item type. The following theorem states

our result for the social-welfare maximization problem.

151

Theorem 5.3 Let € be an arbitrary small constant. There exists a streaming mech-
anism for the social-welfare mazximization problem which with high probability gives
an envy-free (1 — €)-approximate solution using O(k'?’) space. This mechanism only

remembers the prices.

The following theorem extends our results to the revenue maximization problem as
well. Note that, again here the required space is poly-logarithmic in the number of

buyers and the number of copies of each item type.

Theorem 5.4 Given an envy-free a-approximation mechanism for the revenue maz-
imization problem, and any small constant €, there exists a streaming mechanism
for the revenue maximization problem which with high probability gives an envy-free
(1 — €)a-approzimate solution using O(k?) space. This mechanism only remembers

the prices.

To show that the approximation in Theorem is necessary, we prove there is no
streaming mechanism to find the prices that maintain the optimal social-welfare

using space sublinear in /.

Theorem 5.5 There is no envy-free streaming mechanism that finds the welfare-

optimal envy-free prices using space o(l). This bound holds even for k = 2.

As with welfare maximization, any algorithm that computes revenue-optimal envy-

free prices would require space that is at least linear in [.

152

Theorem 5.6 There is no envy-free streaming mechanism which finds the set of
prices that maximize the revenue using a space sublinear in l. This bound holds

even for k = 2.

5.1.2 Related Work

In this paper we focus our attention on the problem of finding envy-free prices for
unit-demand bidders in the streaming setting, a problem that has received much
attention in the static setting. The revenue-maximizing envy-free pricing problem
was introduced by Guruswami et al. [93]. There has since been a significant line of
work attacking variants of this problem [95-97], and mounting evidence suggests that
it is computationally hard to obtain better than a polylogarithmic approximation
for general unit-demand bidders [98,/99]. For welfare maximization, it is well-known
that a Walrasian equilibrium corresponds to a set of envy-free prices that optimizes
welfare, and such an equilibrium always exists for unit-demand bidders. Moreover,
in the static setting such prices can be found in polynomial time [100,/101]. Our

focus is on developing streaming algorithms for these problems.

Our motivation of determining prices from sampled data relates to a recent line of
literature on the sample complexity of pricing problems and applications of statis-
tical learning theory. Much of this work has focused on the problem of learning an
approximately revenue-optimal reserve price in a single-item auction [8990,102,(103].

More generally, statistical learning methods have been used to quantify the sampling

153

complexity of learning approximately optimal auctions, in the prior-free context by
Balcan et al. [88] and in a prior-independent setting by Morgenstern and Roughgar-

den [92].

Hsu et al. [91] study the genericity of market-clearing prices learned from sampled
data, and demonstrate that under some conditions on buyer preferences (including
the unit-demand case studied here) prices computed from a large dataset will ap-
proximately clear a “similar” market; that is, one where buyer preferences are drawn

from a the same underlying distribution.

Our technical results build upon recent work in the streaming algorithms literature
on maximum matching. Chitnis et al. [94] consider the matching problem in the
streaming setting and provide optimum solutions to both vertex cover and matching
in O(k?) space, where k is the size of the solution. In addition, they show that
any streaming algorithm for the maximum matching problem requires Q(k?) space.
Later, they extend this result to dynamic streams in which we have both addition

and deletion of edges [104].

McGregor [105] considered the matching problem in the streaming setting with
several passes. He provides a (1 —¢)-approximation algorithm for unweighted graphs
and a (0.5 — €)-approximation algorithm for weighted graphs, both with constant

number of passes and using O(n) space.

Kapralov et al. |[106] provide an streaming algorithm that estimates the size of a
maximum matching in the random order setting (i.e., the graph is chosen by an

adversary, but the order of arrival of edges is chosen uniformly at random among

154

all permutations). They provide a ploylogarithmic approximation of the size of

maximum matching, using a polylogarithmic space.

Later, Esfandiari et al. [107] consider the maximum matching problem in planer
graphs and bounded arboricity graphs. They provide a constant approximation of
the size of a maximum matching in these graphs using O~(n2/ 3) space in the streaming
setting. Later, simultaneously Bury et al. [108] and Chitnis et al. |[104] extend this
algorithm to work for both addition and deletion of edges using a larger space of

O(n*/5).

5.2 Pricing problem: Maximizing Social Welfare

In this section, we consider the problem of assigning prices to items, and items to
buyers in a streaming setting such that the assignment would be envy-free, and
the social welfare is maximized. The social welfare would be sum of the weights
(or utilities) of the assigned edges. As we explained earlier, we only use O(k?])
memory for storage of the stream of edges. Our approach is to store the kl + 1
edges with maximum weight for each item, and to run the optimum algorithm to
find the social welfare maximizing envy-free assignment in offline setting when the
stream ends. We call the optimum streaming algorithm of this section SWM to use
it in Section 5.4} Let G be a weighted bipartite graph with k vertices corresponding
to the k item types on one side, and n vertices corresponding to the buyers on the

other side. The weight of the edges denote the utilities of buyers for item types.

155

Each item type, can be sold to at most [buyers. In other words, there are [copies
of each item type available for sale. Let G’ be the graph constructed from graph
G, such that for each item we only keep kl edges with maximum weight (breaking
ties arbitrarily), and remove the rest of edges from the graph. Note that a feasible
solution matches each item to at most [buyers. Here, we slightly abuse the notation

and simply call this structure a matching.

The next lemma shows that removing these edges does not affect the weight of the

maximum matching.

Lemma 5.1 The value of the marimum weighted matching in G s equal to the

value of the mazximum weighted matching in G'.

Proof: Let M’ be a maximum weighted matching in G, and M be the maximum
weighted matching in G which has the maximum number of intersecting edges with
G'. Since removal of edges from a graph does not increase the weight of the maximum
matching, it is clear that the weight of M is not less than the weight of M’. It
remains to show that the reverse is also true. If M only contains edges present in
G, then clearly the weight of M and M’ would be equal. Suppose in contrast that M
contains an edge e = (v;,b;) (between buyer b; and item v;) which does not belong
to G'. Note that M has exactly kl edges and therefore, one of the neighbors of item
v; in G’ must be unassigned by matching M. Let b; be this neighbor. Remove edge
e from M and replace it with edge e’ = (v;,b;). We know that the weight of edge
¢’ is bigger than or equal to the weight of e. In case the weight of e is bigger than
weight of €/, the new matching is bigger than M. On the other hand, if the weights

156

are equal, we have another maximum weighted matching in G which shares more
edges with the edges of G’. Both cases lead to a contradiction with the assumption
about M. Therefore, the weight of maximum matchings in both graphs should be

equal. O

In the next step, we build another graph H from graphs G and G’ as follows. Starting
from graph G’, we build H by adding a dummy buyer vertex d; for each vertex v;
corresponding to an item type in GG. The weight of the edge between d; and v;
denoted by u,, 4, would be equal to the weight of (kl + 1)-th maximum weight edge

connected to item v; in graph G.

Lemma 5.2 There is a maximum weighted matching in H which does not include

any dummy buyer vertices.

Proof: Note that G’ can be viewed as a subgraph of graph H in which for each
item type we only keep kl edges connected to it with maximum weight. The rest

follows from Lemma [5.1] |

Finally, we present our pricing and allocation rule. Recall that we keep graph G’
and graph H using O(kI?) available memory while the edges are being streamed.
By Lemma [5.2, we know that there exists a maximum weighted matching M in
graph H which is a subgraph of graph G’ (does not contain any of dummy vertices
in graph H). Consider a minimum weight vertex cover C' corresponding to this
matching such that the values assigned to all dummy vertices would be zero (Since

dummy vertices are not matched by M, such a vertex cover can be found). For a

157

vertex z, let ¢, denote the value assigned to z by vertex cover C'. We set the price of
item v; to its value in our vertex cover c,,, and assign it to its matched buyer in M.
Since the social welfare in this case would be the weight of M which is a maximum
weighted matching, it is clear that our algorithm maximizes social welfare. It is left

to show that our algorithm produces an envy-free assignment.

Lemma 5.3 Our assignment algorithm is envy-free.

Proof: Suppose for contradiction our assignment algorithm is not envy-free, and
there exists a buyer b; who prefers item v, over item v; that our algorithm assigned
to her. Consider the dummy buyer vertex d, that we added and connected to item
vy in graph H. As we argued, our chosen vertex cover C, sets ¢4, = 0 for every
dummy vertex di. Therefore, the value assigned to item v, by our vertex cover must
be at least the weight of the edge between v, and dg, i.e, ¢,, > w,,q,- Also, recall
that our algorithm sets the price of item v, to c,,. Hence, since buyer b; prefers
item v, her profit for this item must be non-negative, i.e, uy, s, — ¢y, > 0. From the
above two inequalities we have u,, 5. > Uy,q4, Wwhich means the weight of the edge
between buyer b; and item v, is bigger than the weight of the £l 4 1-th biggest edge
connected to item v,. From this statement we can argue that graph G’ contains the
edge (bj,v,), and thus ¢y, + ¢y, > Uy, p,. Furthermore, since the edge (b;, v;) belongs

to the maximum weighted matching, we must have

Cb; + Gy = Uy, ,b; = U, b; — Coy; = Cb, > Uyg,b; — Cou

0 J q

This is a contradiction to the fact that buyer b; prefers item v, to item v; assigned

158

to her by our algorithm. O

The following theorem is the main result of this section.

Theorem 5.7 Our streaming assignment algorithm which assigns prices to items
and items to buyers in the aforementioned market is an envy-free social welfare

mazximizing assignment, and it uses O(kI*) memory.

Proof: As we discussed above, we only keep graphs G’ and H which have O(k?])
edges. As we explained in this section, our algorithm suggest an assignment that
maximizes social welfare. Furthermore, by Lemma [5.3] this assignment is also envy-

free. O

5.3 Pricing problem: Maximizing Revenue

Just like the previous section, we try to find a pricing for items, and an envy-free
assignment of items to buyers in our described market when the input is revealed in
a streaming fashion. However, in this section, we aim to maximize revenue instead
of social welfare. Here we show that if we are given an envy-free a-approximation
mechanism for the revenue maximization problem then we can have an envy-free a-
approximation mechanism for the revenue maximization problem in the streaming
setting with O(k?l) available memory. We call this mechanism designed for the

streaming setting RM for use in the later sections.

159

First, we construct graph G’ from graph G by keeping only the kl + 1 largest edges

connected to each item while the edges are being streamed.

Let M be the envy-free assignment in G which yields the maximum revenue and has
the maximum number of intersecting edges with the edges of G’. If we prove that G’
includes all the edges in M, then we can say M is a feasible envy-free assignment in
G’ and conclude that the optimum solution in G’ is at least as good as the optimum

solution in G. The following lemma shows this property.

Lemma 5.4 G’ includes all the edges of M.

Proof: Suppose for contradiction M has at least one edge e = (v;,b;) which is
not present in G’. Since item v; has kl + 1 neighbors in G’, and we have k item
types with [available copies of each item, according to the pigeonhole principle v;
has at least one neighbour like buyer b, who has not bought any items. Let e’ be
the edge between b, and v;. Since G’ has the kl 4+ 1 largest edges of G for each
item type, the weight of e is no more than the weight of €¢/. If the weight of e is
equal to the weight of €/, buyer b; can be replaced by buyer b, in M for an envy
free revenue maximizing assignment in GG that has more intersecting edges with G’
than M resulting in a contradiction with the choice of M. On the other hand, if
the weight of e is less than the weight of €/, buyer b, is envious of the outcome for
buyer b; which is a contradiction to envy-freeness of M. Therefore, G’ includes all

the edges in M. O

Now, we know that the optimum solution in G is a feasible solution in G’. It is left

160

to show that the optimum solution in G’ is feasible in GG, to be able to conclude
that the optimum solution in G’ is also optimum in G. Let M’ be the optimum
(revenue maximizing) envy-free assignment in G’. We prove that M’ is an envy-free

assignment in G.

Lemma 5.5 The optimum envy-free assignment in G’ denoted by M' is an envy-free

assignment in G.

Proof: Suppose by contradiction that M’ is not an envy-free assignment in G.
Then, G has a buyer like b; who is envious of item v; bought by buyer b,. Since M’
is an envy-free assignment in G’, the edge e = (v;,b;) does not belong to G'. Item
v; has kl + 1 neighbors in G/, and there are kl available items for purchase. Hence,
according to the pigeonhole principle, v; has at least one neighbor like b, who has
not bought any items in M’. Since G’ has the kl 4+ 1 largest edges for each item
node, the weight of the edge between v; and b, is not less than the weight of e which
means b, would be envious of the item that b; has bought which is a contradiction
to the envy-freeness of M’ in G'. Thus, M’ should also be an envy-free assignment

in G. O

The following theorem is a corollary of the above lemmas and is the main result of

this section.

Theorem 5.8 Given an envy-free a-approximation mechanism for the offline rev-
enue maximization problem, there exists an envy-free a-approrimation mechanism
for the revenue mazimization problem in the streaming setting using O(k?l) space.

161

Proof: We construct graph G’ in the O(k?l) available memory while the edges of
graph G are being streamed. According to Lemma [5.5], the optimum assignment in
(' is a feasible assignment in . Furthermore, due to lemma |5.4f we know that the
optimum solution in G’ is at least as good as the optimum solution in G. Hence,
keeping the edges of graph G’ while the edges of G are being streamed is enough for
finding the optimum assignment in G. It is clear that given an envy-free mechanism
that approximates maximum revenue in offline graph G’ within a factor o we can use
the exact mechanism as an a-approximation for the revenue maximization problem

in graph G. a

5.4 Improving Space Efficiency While Approximating Social Welfare

In this section, we try to improve space efficiency in the problem solved in Section
5.2, when we relax the goal of achieving maximum social welfare to obtaining an
approximation of it. More specifically, suppose we have k item types, [available
items of each type, and n buyers, and the utilities of buyers for item types are re-
vealed in a streaming fashion. Recall that we can find the social welfare maximizing
prices for the items and an assignment of items to buyers in O(k?]) available mem-
ory. In this section, our goal is to find prices for item types when the amount of
available memory is independent of [(number of available items of each item type).
We prove when each buyer picks the most profitable item based on the prices that
our algorithm suggests and his own utilities, there would be no more than [requests

for any of the item types with high probability, and the social welfare would be a

162

good approximation of the optimum social welfare. Thus, we can conclude this self
selection of items by customers is envy-free and valid with high probability, and we
do not have to deal with item to buyer allocations after setting the prices. Our
approach here is to collect a sample of buyers while the data is being streamed,
decide the prices based on this sample, and prove that these prices would yield a
good approximation of the social welfare and an envy-free assignment of items to
buyers in the original graph while the assignment of items is done by the buyers
themselves and not by us. This algorithm is especially favorable over previous ones
when the number of different item types is relatively small compared to the total

number of items. In other words, when k is small compared to (.

Let B be the set of our n buyers, and V' the set of k item types. Assume we have [
available items of each type. Let G be the weighted bipartite graph of buyers and
item types showing utilities of buyers for items. For arbitrary constants d, ¢ > 0, our
algorithm finds prices of items in V' such that the greedy item picking strategy by
buyers would yield a valid envy-free assignment and achieves a social welfare that
is (1 — 2¢)-approximation of the maximum possible social welfare with probability

—log (5)+1096 (k) +klog(n) and sample every buyer

1—0. We define a new parameter t = 3
in B with probability ¥. Let B be the set of buyers chosen in our sampling, and G’
be the induced subgraph of G when we remove all the vertices that are not in B’.
We assume there are (1 — €)t available copies from each item type in graph G’ which
can be sold to the buyers in B’. As we discussed in previous sections, we can find

the optimal prices for items in B’ to achieve maximum Social welfare in graph G’

163

Algorithm 8
Input: Weighted bipartite graph G with B UV as set of vertices, [number of

available items from each item type, and constants €, > 0.
Output: Price vector p’ which yields a (1 — 2¢)-approximation of opt SW and an

envy-free assignment with probability 1 — 4.

—log(6)+log(2k)+klog(n)
2

0: t <3
0: B' <0

0: for b€ B do

0: Add b to B" with probability ¢

0: end for

0: Let G’ be the subgraph of G induced by B’ UV

0: I’ <= t(1 — €) be the number of available items of each item type in G’
0: Upon stream of edges in G, ignore any edge e ¢ G’

0: Find optimal p using SWM Algorithm (section on edges of G’

0: Return p =0

in O(k?t) available memory. After this step, we use the same prices for the general
case, and prove that these prices along with the greedy item selection by buyers

satisfies the aforementioned criteria.

Once the prices are determined by our algorithm, we let each buyer pick his own
profit maximizing item to accomplish an envy-free assignment. We use a combi-
nation of Chernoff and union bounds in the following two lemmas to prove the

probability that this assignment is invalid is small. More formally, we show that

164

when buyers choose items greedily, the probability that the number of requests for

each item is within (1 — 2¢)l) and [is at least 1 — §.

Lemma 5.6 Fiz the prices of all available item types in V. Sample the buyers by
choosing each buyer with probability q. Let x; be the number of buyers in our sample
who prefer item i over any other item. Let y; be the number of buyers who prefer
item 1 in the original setting with all buyers. Then assuming x; < ql we have

. 2,1
Pr(ly; — ﬂ| > el) < 2exp(—%)
q

Proof:
T
Pr(ly; — EI > el) = Pr(lyiq — xi| > eql)

We need to apply Chernoff bound to find an upperbound on the above probability.
Here y;q can be thought of as a guess for x;. Therefore, by letting (= ;—q_l and pu = x;
in the Chernoff bound given by the inequality Pr(|z — u| > (u) < Qexp(—%u) we
have

¢? —¢° €%ql
Pr(lyiq — x| > Cp) < 2€xp(—u§) = 2exp(-) < Qexp(_T)'

)

Where the last inequality follows from the assumption that x; < ¢l. O

Lemma 5.7 Let y; be the number of buyers who prefer item v over any other item

in the original setting with prices set by Algorithm|[8 Then we have

2
t
Pr(ly,— (1 —e)l] > €l) < Qexp(—%)

165

Proof: Algorithm (8| chooses each item with probability # and sells (1 — €)¢ of each

item to the sampled buyers for an envy-free assignment in G'. Therefore, for a fixed

pricing and a fixed item i € [k], we can use Lemma with parameters ¢ = ¢ and

x; = (1 —e)t.

1— 21 2
B9 >) < 2ep(=1) = Pr(ly — (1 1| >) < 2ep(~)
1

PT(L% -

Lemma 5.8 When the prices are set by Algorithm [§ and the buyers greedily pick
the best item for themselves, the probability that the number of requests for each item
is between (1 — 2€)l and 1 is at least 1 — §. Note that this also means the greedy
selection of items by the buyers would yield a valid assignment with probability at

least 1 — 9.

Proof:

From Lemma [B.7] we have

€t

Pr(y; > 1) + Pr(y; < (1 —2€)l) < Qexp(—?)

Let P denote the set of all possible price vectors for the item types in V that
Algorithm [§] might return. Since there are k item types and n reasonable price
values for each item type |P| < n*. Let A;; be the event that with price vector p,
the number of requests for item i is more than [or less than (1 — 2¢)l. Then

166

€2t

Pr(Az:) = Pr(y; > 1) + Pr(y; < (1 —2¢)l) < 2exp(—?)

Furthermore, using Union Bound we show that the probability of any of the events

Aj;; happening for all possible price vectors p'e P and all item types i € [k] is

2
t
U U Api <2 knF exp(—%) <46

PEP ic(k]

Where the last inequality follows from the choice of ¢. O

Lemma 5.9 Consider the price vector p returned by algorithm [§ combined with the
greedy selection of items by the individual buyers. If every item type is requested by
the buyers between (1 — 2€)l and | times then the social welfare of this assignment

is within (1 — 2€)-approzimation of the mazimum possible social welfare.

Proof: Let H be a bipartite graph with the set of buyers B on the left side and [
vertices for each item type in V' on the right side. The weight of the edges between
a buyer vertex and an item would be the utility of the buyer for that item type.
Let H' be a similar bipartite graph with set of buyers on the left side and (1 — 2¢)l
vertices for each item type in V on the right side. Then the weight of the maximum
weighted matching in H' is at least (1 — 2¢) of the weight of the maximum weighted

matching in H.

Consider the greedy selection of items by the buyers after we run Algorithm [8 and
set prices for item types. Suppose every item type is sold between (1 — 2¢)l and
[times. Remove some buyers so that every item is picked by exactly (1 — 2¢)l

167

buyers. The remaining edges form a matching in graph H’. It is left to show that
this matching is a maximum weighted matching in H’. For this purpose, we build

a vertex cover C' of same weight for the matching.

For every buyer remaining in the graph, let its vertex cover value be the profit
(utility minus price) that he makes from his selected item. For each item, let its
vertex cover value be the suggested price by Algorithm [for its item type. These
values in the vertex cover would clearly cover every edge in the matching. Let b;
be a buyer in B. Let v; be the item type that b; chooses and v;, be another item
type. We want to show that C covers the weight of the edge between b; and an
vertex of the item type vy. Note that uy, ., — py, > Up, v, — Pu,- The value of C
for buyer b; is uy, ,; — py; and the value of C' for any vertex of item type v; is p,,.
Therefore, Up;v; — Pu; + Po, > Up;n,- Thus, our algorithm produces a maximum

weighted matching in H’. O

Theorem 5.9 The pricing suggested by Algorithm [§ along with the greedy selec-
tion of items by the buyers yields a valid envy-free assignment and a (1 — 2¢)-
approzimation of the maximum possible social welfare with probability 1 — 6. The
space needed by Algorithm [§ is independent of I, the number of available items of

each item type.

Proof: Since Algorithm |8 runs the social welfare maximizing algorithm of section
on a sample of buyers assuming there are (1 — €)t available item of each type,

only O(k?*t) memory is needed for finding the optimal price vector p of graph G'.

168

Here t is a function of k,n, ¢ and € and does not depend on /. Lemma 5.8 guarantees
the number of requests for each item type does not exceed the number of available
items of that type with probability at least 1 — ¢ and Lemma proves the social
welfare in this case would be within (1—2¢)-approximation of the maximum possible

social welfare. O

5.5 Improving Space Efficiency While Approximating Optimum Rev-

enue

In section 5.2} we introduced a simple streaming mechanism (RM) that finds
the price vector and an envy-free assignment of items to buyers to a-approximate
maximum revenue given a mechanism that a-approximate the maximum revenue in
the offline case. In this section, we are concerned with reducing the amount of space
used by our streaming algorithm. As we mentioned earlier, O(k?) available space is
needed for any streaming algorithm that finds a revenue maximizing assignment in
our setting. Just like the previous section, we are interested in a streaming algorithm
for which the amount of space used is independent of [, the number of copies of each
available item type. Algorithm [J] is our algorithm for this purpose. As a result
of reduction in the required memory, the revenue of the assignment given by our
algorithm loses another (1 — 2¢) approximation factor compared to the maximum
possible revenue. When [is small compared to k, this algorithm would be beneficial
since it dramatically improves the amount of space used. The algorithm and some
of the proofs are similar to the ones in the previous section.

169

Algorithm 9
Input: Weighted bipartite graph G with B UV as set of vertices, [number of

available items from each item type, and constants €,6 > 0.

Output: Price vector p which yields a (1 — 2¢)-approximation of opt revenue and
an envy-free assignment with probability 1 — §.

0 t<—3 *109(5)+1096(22k)+k109(n)

0: B« 0

0: for b€ B do

0: Add b to B" with probability *

0: end for

0: Let G’ be the subgraph of G induced by B’ UV

0: I’ <= t(1 — €) be the number of available items of each item type in G’
0: Upon stream of edges in G, ignore any edge e ¢ G’

0: Find optimal p using RM Algorithm (section on edges of G’

0: Return p =0

170

Lemma 5.10 Let y; be the number of buyers who prefer item i over any other item
type in the original setting with prices set by Algorithm[9. Then we have
€2t
Pr(ly; — (1 —¢€)l| > €l) < Qexp(—?)
Proof: This lemma is exactly the same as Lemma[5.7]that we proved in the previous

section. 0

Lemma 5.11 When the prices are set by Algorithm[9 and the buyers greedily pick
the best item for themselves, the probability that the number of requests for each item
type is between (1 —2€)l and l is at least 1 — 6. Note that this also means the greedy
selection of items by the buyers would yield a valid assignment with probability at

least 1 — 9.

Proof: Again this lemma is the same as Lemma [5.8| proved in the previous section
and since our parameters in sampling is the same in both algorithms the proofs are

exactly the same. |

So far in this section, we used exactly similar lemmas as the previous section to
show our sampling approach results in an envy-free valid assignment with high
probability. Next we want to show why our algorithm also yields a revenue that
is a good approximation of the optimum revenue. Note that Algorithm [9] uses the
revenue maximizing Algorithm introduced in Section [5.2] as opposed to the social
welfare maximizing Algorithm of Section that Algorithm [§] uses, and our goal

here is to maximize the revenue. Therefore, showing that our algorithm’s revenue

171

is (1 — 2¢)-approximation of the maximum possible revenue is different from the

previous section.

Lemma 5.12 Fiz a price vector p for all available item types in V. If p’ produces
revenue R in G, it produces a revenue bigger than (1 — e)%R in G" with probability

at least 1 — 4.

Proof: Let z; be the number of requests for item type ¢ in graph G’ and y; be the
number of requests for the same item type in graph G when the price vector is fixed.
Lemmawith parameters ¢ = ¢ and y; = [shows Pr(z; < (1—e)t) < 261’])(—%).
Again, using Union Bound the same way we used in Lemma 5.7} we can show the
probability that any of the x;’s is less than (1 — €)t is less than . Thus, with
probability at least 1 — 0 each item type is sold to at least (1 — €)t buyers in G'.
Since each item type is sold to at most [buyers in G, our revenue in G/ must be at

least (1 — €)% of the revenue in G with probability 1 — 0. O

Lemma 5.13 Consider the price vector p returned by algorithm [along with the
greedy selection of items by the individual buyers. If the number of requests for every
item type is at least (1 — 2¢€)l and at most [, then the revenue of this assignment is
within (1 — 2€)-approzimation of the maximum possible revenue with probability at

least 1 — 6.

Proof: Let Reva(G) denote the revenue of the price vector given by algorithm A

on graph G and Revy(G’) be the revenue that the same price vector produces on

172

the sampled graph G’. Note that in case every item type is requested by the buyers

at least (1 — 2¢)l times, we have

I (1 et

ReUAl@(G,) < RevAlﬂ(G> = m

—_— R G
= (1 - 26)l evag(C)
. Let OPT be the optimum offline revenue maximizing assignment for the specific
graph G. Recall that the price vector chosen by Algorithm [9] maximizes the revenue

in G’ and thus

RBUOPT(G,) S R@UA[@(G/>

. Furthermore, due to Lemma [5.12 we have

(1—e)t

RevopT(G) S RevopT(G’)

with probability at least 1 — §. Combining the above three inequalities proves

(1 —2¢)Revopr(G) < Revagg(G) with probability at least 1 — 6.

Theorem 5.10 The pricing suggested by Algorithm [9 along with the greedy selec-
tion of items by the buyers yields a valid envy-free assignment and a (1 — 2¢)a-
approzimation of the maximum possible revenue with probability at least 1 —20 given
an envy-free mechanism that a-approximates maximum revenue in the offline case.
The space needed by Algorithm [is independent of 1, the number of available items

of each item type.

Proof: Lemma [5.11| shows the greedy selection of items by buyers after running
Algorithm [J] results in a valid and envy-free assignment with probability at least

173

1 — 9. Lemma [5.13]| shows in case the assignment is valid, the revenue is within
(1 — 2¢)-approximation of the maximum revenue with probability 1 — §. Thus,
with probability 1 — 20 the Algorithm [9 results in a valid envy-free assignment and
approximates the maximum revenue within a (1 — 2¢)« factor. Here « is added to
the approximation factor since RM gives an a-approximation for maximum revenue
in the streaming setting, given an a-approximation mechanism for the offline case.

|

5.6 A Hardness Proof for Social Welfare Maximization Problem

In Section [5.2], we presented a streaming algorithm which finds an envy-free social
welfare maximizing assignment of prices to items and items to buyers using O(k?[)
memory, where k is the number of item types and [is the number of available items
of each type. This result raises the following interesting question. Is it necessary
to have €(l) available memory if we want to only determine the prices? In other
words, if the number of item types is small compared to the total number of items
(or k is small compared to [, can we find prices in space independent of [? In this
section we prove for any constant € > 0, no streaming algorithm can e-approximate
the envy-free social welfare maximizing prices in o(l) space. The proof is done via

a reduction from Disjointness, a well-known communication complexity problem .

Definition 5.1 Disjointness Problem is a communication complexity problem in
which Alice is given a string x € {0,1}" and Bob is given a string y € {0,1}".
Their goal is to decide whether there is an index i, such that x; = y; = 1. Index i

174

in this case is called an intersection. It is known that the minimum number of bits
required to be exchanged between Alice and Bob to find an intersection is (n) bits

even with multi-passes allowed.

Theorem 5.11 For any arbitrary small constant € > 0, there is no streaming al-
gorithm which uses o(l) space and e-approximates all the item prices of the social

welfare maximizing price vector.

Proof: For an arbitrary €, assume for the sake of contradiction there exists an
algorithm A which can find an e-approximation of an optimal pricing in o(l) space.
We show a reduction from any instance of Disjointness problem to an instance of
our market design problem such that if Algorithm A exists, Disjointness problem
can be solved using o(l) space.

Let Z; be an instance of Disjointness problem with x € {0, 1} as Alice’s string and
y € {0, 1} as Bob’s string. A corresponding instance of our market design problem
7, can be built as follows. Consider two item types in Zy, one corresponding to Alice
and one corresponding to Bob. Suppose each of these two item types have 2/ copies
available. Let G = (Vi, V5, EY) be the bipartite graph of item types and buyers in
instance Zy, with Vi = {vajice, VUBop} as the item type vertices. We start with 21
buyer vertices V, = {aj,aq,...,a;} and V, = {by,be,..., b} in V5. For any index
1, if x; = 1, we connect v4j.. to both vertices a; and b;. Similarly, for any index ¢
such that y; = 1, we connect vg,, to both vertices a; and b;. Let I, be the set of
all indices j such that x; = 1 in string 2. We add a set Ugyce with 20 — |1, | buyer
vertices to V5, and connect v ;5. to all vertices in Uy so that the degree of v ace

175

VBob VU Alice

N

€ 53
® O e o o e o o ® 6 0 ¢
Uy o ai az a3 by ba by up, UB, UA, UA,

Va Vi

Figure 5.6.1: An example for Theorem

would be exactly 2[. Similarly, we add a set of vertices Up,, with 2 — |I,| buyer
vertices to V5 and connect vg,, to all vertices in Upgy,. Finally, we add two buyer
vertices uy, us to Vo and connect vy, to both of them. Note that the set of buyer
vertices V5 would be {ul,u2} UV, UV, UUajice UUpy. The utility of buyers u; and
uy for Bob’s item are € and €3 respectively. The utility of any other buyer for any
other item connected to it (Ve OF vpep) Would be 1. In other words, the weight of
the edge (vpep, u1) is €, the weight of the edge (vpep, us) is €, and the weight of all

the other edges in F is 1. (See Figure as an example.) [

Now suppose both Alice and Bob know about algorithm A. Let E 4. be the set
of edges connected to vy, and Epg,, the set of edges connected to vg,, in graph

G. Note that Alice only knows about Ea. and buyer vertices Va\({uy,us} U

2Here, x = {1,0,1} and y = {0,1,1}. The weight of the first and the second edges are ¢ and €3

as they are labeled, and the weight of all other edges are one.

176

Upop)- Similarly, Bob only knows about Ep,, and buyer vertices Vo\Uajice. Alice
starts streaming her edges and running algorithm A on it. She would send the
information that algorithm A stores in o(l) available space to Bob. Bob at the
other end receives all the information stored by algorithm A and sent by Alice, and
continues running algorithm A by streaming his own edges. Algorithm A can find
social welfare maximizing prices for both Alice and Bob items in o(l) space. The
algorithm finishes at Bob’s end after he streams all of his edges. At this point we
claim that Bob can decide whether the strings have intersection or not based on
the following two case. If the price suggested by algorithm A for his item type is
less than e, Bob should declare no intersections exist and if the price is above €2
he should declare existence of at least one intersection. Furthermore, algorithm A

would never set a price between € and €2 for vy. Next we prove why this claim is

valid.

Suppose Alice and Bob’s strings have no intersections. Then in graph G, no buyer
is connected to both Alice and Bob. That is vp,, is connected to 2/ buyer vertices
with utility 1 for his item and none of his buyers want Alice’s item. Alice’s item is
also connected to 2] buyer vertices that do not want Bob’s item. The optimal prices
for both Alice and Bob’s items to maximize social welfare would be 1 in this case,

and no item would be sold to buyers u; and wus,.

On the other hand, if the strings have at least one intersection, say at index 7, both
Varice a0d v would be connected to a; and b;. To maximize social welfare in this

case, Alice would sell all of her items to the 2] buyers who want her item at price

177

1, and Bob can sell at most 2] — 2 items to those who want his item at price 1 and
has to sell two items to buyers u; and us; who want to pay € and € for his item
respectively. Therefore, the price for Bob’s item should be €3. Since the goal is to
maximize social welfare, Bob cannot decide to leave out u; and u, and sell 21 — 2

items at price 1 to the buyers whose utility for his item is 1.

Due to our assumption, algorithm A can e-approximate all optimal prices for social
welfare maximization while Alice and Bob stream the edges using only o(() available
space. Specifically, if the optimal price for vp,, is 1, i.e, there is no intersection in
the two strings, algorithm A would set a price higher than € for vg,,. Otherwise, in
case the optimal price for vg,, is €3, algorithm A would set a price lower than €2 for
Bob’s item. These two prices are the only optimal prices for Bob’s item and thus,
only these two cases exist. Hence, Bob can distinguish between these two cases by
checking the price set for his item once the algorithm ends. Any price less than €
corresponds to an intersection, and any price higher than € signals no intersection

between the strings. O

5.7 A Hardness Proof for Revenue Maximization Problem

In Section 5.6, we presented a hardness proof to show no streaming algorithm
exists to approximate the optimal prices using o(l) available space in our market
design problem with the goal of social welfare mazximization. In this section, we
establish a hardness result for the case that our goal is to find prices that maximize

the revenue, however, the result of this section does not involve any approximation.

178

That is we only guarantee there exists no algorithm which finds the exact optimal
prices for revenue maximization market design problem in o(l) space. Just like

previous section, our approach is based on a reduction from Disjointness problem.

Theorem 5.12 There is no streaming algorithm which uses o(l) memory, and finds

the revenue maximizing price vector for an envy free assignment.

Proof:

Suppose for contradiction, we have an algorithm A which finds an envy-free as-
signment and the revenue maximizing price vector using o(l) available space. Let
z € {0,1} be Alice’s string and y € {0, 1}! be Bob’s string. Consider two item types
one corresponding to Alice and one corresponding to Bob. Suppose each of these two
item types have [copies available. Let G = (V;, V3, F) be the bipartite graph of item
types and buyers, with Vi = {Vjice, VBop} as the item type vertices. Consider three
sets of buyers V, = ay,ay,...,a; , Vo = b1,bo,... b, and V. = c1,¢9,..., ¢,
For any index i, if z; = 1, buyer a; has utility one for Alice’s item. Similarly, for
each index 7 such that y; = 1, buyer a; has utility one for Bob’s item. Moreover,
suppose all buyers in V, have utility 1 for Alice’s item and all buyers in V, have

utility 1 for Bob’s item. Finally, we add buyer v; with utility 1 — % for Bob’s item.

Alice knows all the buyers connected to her item with their utilities but she is not
aware of the utilities of edges connected to Bob’s item. She starts running algorithm

A while streaming her edges. Once the stream of Alice’s edges ends, she sends the

179

information that algorithm A stores in o(l) available space to Bob. Bob at the other
end only knows about the buyers and the utility of edges connected to his own item.
He also receives all the information stored by algorithm A and sent by Alice. Bob
continues running algorithm A by streaming his own edges as A’s input. Algorithm
A finds the revenue maximizing prices for both Alice and Bob’s items in o(l) space.
The algorithm finishes at Bob’s end after he streams all of his edges. At this point
we claim that Bob can decide whether the strings have an intersection or not based
on the following two cases. If the price suggested by algorithm A for his item type
is 1, Bob should declare no intersections exists and if the price is 1 — % he should
declare existence of at least one intersection. Next we prove validity of this claim.

In case x and y have no intersections, both Alice and Bob’s items are connected
to exactly [disjoint vertices. The optimal price for both item types is 1 and the
optimal revenue would be 2[. On the other hand, if Alice and Bob’s strings have
an intersection, then Bob can either sell at most [— 1 items at price 1 which with
Alice’s revenue would result in a total revenue of 2 — 1, or he can sell all his [
items at price 1 — 2% which would give an overall revenue of 2] — % after adding
Alice’s revenue. Since the second strategy would result in a higher revenue, the
optimal revenue maximizing price for Bob’s item would be 1 — % Thus, the price

given by Algorithm A for Bob’s item can help distinguish between the two cases in

Disjointness problem using only o(l) available space, which is a contradiction. O

180

5.8 Conclusion

In this chapter, we studied another version of online bipartite matching problem with
an additional difficulty faced by online marketplaces such as Amazon and ebay: huge
size of datasets. Massive datasets and limited space gives a whole new aspect to the
problems which were previously solved efficiently, and this work would not be com-
plete without studying a matching problem in the streaming setting. We designed
algorithms which decide about the assignment of prices to items and items to buyers
in order to achieve goals such as social welfare or revenue maximization while min-
imizing the space needed. Our assignments also satisfy envy-free constraints which
ensure fairness in the mechanisms. Assuming k items and at most [copies of each
of the items, we solved both problems efficiently with space O(k?l). Furthermore,
we provided algorithms which (1 — €)-approximate the maximum possible social
welfare or revenue in space independent of [for any small ¢ > 0. This is a great
improvement over the previous algorithm since these algorithms significantly reduce
the amount of memory used in case number of item types is small compared to the
total number of items. Finally, we showed approximation of all optimal prices that
maximize social welfare (or revenue) in the streaming setting needs at least (1)
space, and thus if we want to get close to all the optimal prices, the memory usage

will not be very efficient.

181

1]

Bibliography

Shayan Oveis Gharan and Jan Vondrak. Submodular maximization by simu-
lated annealing. In Symposium on Discrete Algorithms (SODA), pages 1098
1116, 2011.

Uriel Feige, Vahab S. Mirrokni, and Jan Vondrak. Maximizing non-monotone
submodular functions. In Foundations of Computer Science (FOCS), pages
461-471, 2007.

Moran Feldman, Joseph Seffi Naor, and Roy Schwartz. Nonmonotone submod-
ular maximization via a structural continuous greedy algorithm. In ICALP,
pages 342-353, 2011.

David S. Johnson, Maria Minkoff, and Steven Phillips. The prize collecting
steiner tree problem: theory and practice. In Symposium on Discrete Algo-
rithms (SODA), pages 760-769, 2000.

Ajit Agrawal, Philip Klein, and R. Ravi. When trees collide: an approximation
algorithm for the generalized Steiner problem on networks. SIAM J. Comput.,
24(3):440-456, 1995.

Michel X. Goemans and David P. Williamson. A general approximation tech-
nique for constrained forest problems. STAM J. Comput., 24(2):296-317, 1995.

Aaron Archer, MohammadHossein Bateni, MohammadTaghi Hajiaghayi, and
Howard Karloff. Improved approximation algorithms for prize-collecting
steiner tree and tsp. SIAM J. Comput., 40(2):309-332, March 2011.

Kedar Dhamdhere, Vineet Goyal, R. Ravi, and Mohit Singh. How to pay, come
what may: Approximation algorithms for demand-robust covering problems.
In Foundations of Computer Science (FOCS), pages 367-378, 2005.

182

[9]

[10]

[11]

[12]

[13]

[18]

[19]

[20]

Abraham D. Flaxman, Alan Frieze, and Michael Krivelevich. On the ran-
dom 2-stage minimum spanning tree. In Symposium on Discrete Algorithms

(SODA), pages 919-926, 2005.

Nicole Immorlica, David Karger, Maria Minkoff, and Vahab S. Mirrokni.
On the costs and benefits of procrastination: approximation algorithms for
stochastic combinatorial optimization problems. In Symposium on Discrete

Algorithms (SODA), pages 691-700, 2004.

Anupam Gupta, Martin Pal, R. Ravi, and Amitabh Sinha. Sampling and
cost-sharing: Approximation algorithms for stochastic optimization problems.
SIAM J. Comput., 40(5):1361-1401, September 2011.

David B. Shmoys and Chaitanya Swamy. Stochastic optimization is (almost)
as easy as deterministic optimization. In Foundations of Computer Science

(FOCS), pages 228-237, 2004.

Chaitanya Swamy and David B Shmoys. Sampling-based approximation algo-
rithms for multi-stage stochastic optimization. In Foundations of Computer

Science (FOCS), pages 357-366, 2005.

Anton J. Kleywegt, Alexander Shapiro, and Tito Homem-de Mello. The sam-
ple average approximation method for stochastic discrete optimization. STAM
J. on Optimization, 12(2):479-502, February 2002.

Moses Charikar, Chandra Chekuri, and Martin Pal. Sampling bounds for
stochastic optimization. In Approximation, Randomization and Combinatorial
Optimization. Algorithms and Technique (APPROX/RANDOM), pages 610
610, 2005.

Irit Katriel, Claire Kenyon-Mathieu, and Eli Upfal. Commitment under un-
certainty: Two-stage stochastic matching problems. Theoretical Computer
Science, 408(2):213-223, 2008.

Nan Kong and Andrew J. Schaefer. A factor %approximation algorithm for
two-stage stochastic matching problems. Furopean Journal of Operational
Research, 172:740-746, 2004.

Yuval Emek, Michal Feldman, Iftah Gamzu, Renato Paes Leme, and Moshe
Tennenholtz. Signaling schemes for revenue maximization. In ACM Confer-
ence on Electronic Commerce (EC), pages 514-531, 2012.

Patrick Briest, Shuchi Chawla, Robert Kleinberg, and S Matthew Wein-
berg. Pricing randomized allocations. In Symposium on Discrete Algorithms
(SODA), pages 585-597, 2010.

Patrick Briest and Heiko Roglin. The power of uncertainty: Bundle-pricing
for unit-demand customers. In Workshop on Approximation and Online Al-
gorithms (WAQOA), pages 47-58, 2010.

183

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

Robert Kleinberg and Seth Matthew Weinberg. Matroid prophet inequalities.
In Symposium on Theory of Computing (STOC), pages 123-136, 2012.

Saeed Alaei. Bayesian combinatorial auctions: Expanding single buyer mech-
anisms to many buyers. In Foundations of Computer Science (FOCS), pages
512-521. IEEE, 2011.

Mohammad Mahdian and Amin Saberi. Multi-unit auctions with unknown
supply. In ACM Conference on Electronic commerce (EC), pages 243-249,
2006.

MohammadHossein Bateni, MohammadTaghi Hajiaghayi, and Morteza Zadi-
moghaddam. Submodular secretary problem and extensions. In Approzima-
tion, Randomization and Combinatorial Optimization. Algorithms and Tech-

nique (APPROX/RANDOM), pages 39-52, 2010.

Anupam Gupta, Aaron Roth, Grant Schoenebeck, and Kunal Talwar. Con-
strained non-monotone submodular maximization: Offline and secretary al-
gorithms. In Workshop on Internet and Network Economics (WINE), pages
246-257, 2010.

Siddharth Barman, Seeun Umboh, Shuchi Chawla, and David Malec. Secre-
tary problems with convex costs. In International colloquium conference on
Automata, Languages, and Programming (ICALP), pages 75-87, 2012.

R. Gandhi, S. Khuller, S. Parthasarathy, and A. Srinivasan. Dependent round-
ing and its applications to approximation algorithms. Journal of the ACM,
53:324-360, 2006.

Rajendra Bhatia and Chandler Davis. A better bound on the variance. The
American Mathematical Monthly, 107(4):353-357, 2000.

Niv Buchbinder, Kamal Jain, and Joseph Seffi Naor. Online primal-dual al-
gorithms for maximizing ad-auctions revenue. In ESA, pages 253264, 2007.

Nikhil R. Devanur, Kamal Jain, and Robert D. Kleinberg. Randomized primal-
dual analysis of ranking for online bipartite matching. In SODA, 2013.

Jonathan Aronson, Martin Dyer, Alan Frieze, and Stephen Suen. Randomized
greedy matching. ii. Random Struct. Algorithms, 6(1):55-73, 1995.

T-H. Hubert Chan, Fei Chen, Xiaowei Wu, and Zhichao Zhao. Ranking on
arbitrary graphs: Rematch via continuous LP with monotone and boundary
condition constraints. In SODA, 2014 (To appear).

Jon Feldman, Nitish Korula, Vahab Mirrokni, S. Muthukrishnan, and Martin
Pal. Online ad assignment with free disposal. In WINE, pages 374-385, 2009.

184

[34]

[35]

Alvin E. Roth, Tayfun Sonmez, and M. Utku Unver. Pairwise kidney exchange.
Working Paper 10698, National Bureau of Economic Research, August 2004.

Matthias Poloczek and Mario Szegedy. Randomized greedy algorithms for the
maximum matching problem with new analysis. In FOCS, pages 708-717,
2012.

Gagan Goel and Pushkar Tripathi. Matching with our eyes closed. In FOCS,
pages 718-727, 2012.

Richard M. Karp, Umesh V. Vazirani, and Vijay V. Vazirani. An optimal
algorithm for on-line bipartite matching. In STOC, pages 352-358, 1990.

Gagan Goel and Aranyak Mehta. Online budgeted matching in random input
models with applications to adwords. In SODA, pages 982-991, 2008.

Benjamin Birnbaum and Claire Mathieu. On-line bipartite matching made
simple. SIGACT News, 39(1):80-87, 2008.

Gagan Aggarwal, Gagan Goel, Chinmay Karande, and Aranyak Mehta. Online
vertex-weighted bipartite matching and single-bid budgeted allocations. In
SODA, pages 1253-1264, 2011.

Aranyak Mehta, Amin Saberi, Umesh Vazirani, and Vijay Vazirani. Adwords
and generalized on-line matching. In FOCS, pages 264-273, 2005.

Kamal Jain, Mohammad Mahdian, Evangelos Markakis, Amin Saberi, and
Vijay V. Vazirani. Greedy facility location algorithms analyzed using dual
fitting with factor-revealing LP. J. ACM, 50(6):795-824, 2003.

Martin E. Dyer and Alan M. Frieze. Randomized greedy matching. Random
Struct. Algorithms, 2(1):29-46, 1991.

Chinmay Karande, Aranyak Mehta, and Pushkar Tripathi. Online bipartite
matching with unknown distributions. In STOC| pages 587-596, 2011.

Mohammad Mahdian and Qiqi Yan. Online bipartite matching with random
arrivals: an approach based on strongly factor-revealing LPs. In STOC, pages
597-606, 2011.

Gagan Goel and Pushkar Tripathi. Matching with our eyes closed. CoRR,
abs/1306.2988, 2013.

Jon Feldman, Aranyak Mehta, Vahab Mirrokni, and S. Muthukrishnan. Online
stochastic matching: Beating 1 — 1/e. In FOCS, pages 117-126, 2009.

Bahman Bahmani and Michael Kapralov. Improved bounds for online stochas-
tic matching. In ESA, pages 170-181, 2010.

185

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]
[62]

Vahideh H. Manshadi, Shayan Oveis Gharan, and Amin Saberi. Online
stochastic matching: online actions based on offline statistics. In SODA, pages
1285-1294, 2011.

Bernhard Haeupler, Vahab S. Mirrokni, and Morteza Zadimoghaddam. Online
stochastic weighted matching: improved approximation algorithms. In WINE),
pages 170-181, 2011.

Karsten Neuhoff, Julian Barquin, Maroeska G Boots, Andreas Ehrenmann,
Benjamin F Hobbs, Fieke AM Rijkers, and Miguel Vazquez. Network-
constrained cournot models of liberalized electricity markets: the devil is in
the details. Energy Economics, 27(3):495-525, 2005.

Wei Jing-Yuan and Yves Smeers. Spatial oligopolistic electricity models with

cournot generators and regulated transmission prices. Operations Research,
47(1):102-112, 1999.

Christopher J Day, Benjamin F Hobbs, and Jong-Shi Pang. Oligopolistic com-
petition in power networks: a conjectured supply function approach. Power
Systems, IEEE Transactions on, 17(3):597-607, 2002.

Mariano Ventosa, Alvaro Baillo, Andrés Ramos, and Michel Rivier. Electricity
market modeling trends. Energy policy, 33(7):897-913, 2005.

Andrew F Daughety. Cournot oligopoly: characterization and applications.
Cambridge University Press, 2005.

Steven A Gabriel, Supat Kiet, and Jifang Zhuang. A mixed complementarity-
based equilibrium model of natural gas markets. Operations Research,
53(5):799-818, 2005.

Annex to the green paper: A European strategy for sustainable, competitive
and secure energy. Brussels, 2006.

David M Kreps and Jose A Scheinkman. Quantity precommitment and
Bertrand competition yield Cournot outcomes. The Bell Journal of Eco-
nomaics, pages 326-337, 1983.

Nirvikar Singh and Xavier Vives. Price and quantity competition in a differ-
entiated duopoly. The RAND Journal of Economics, pages 546-554, 1984.

Martin J Osborne and Carolyn Pitchik. Price competition in a capacity-
constrained duopoly. Journal of Economic Theory, 38(2):238-260, 1986.

Harold Hotelling. Stability in competition. Springer, 1990.

Jonas Héckner. A note on price and quantity competition in differentiated
oligopolies. Journal of Economic Theory, 93(2):233-239, 2000.

186

[63]

[64]

[65]

[66]

[68]

Xavier Vives. Oligopoly pricing: old ideas and new tools. The MIT press,
2001.

Rahmi Ilkilig¢. Cournot competition on a network of markets and firms. Tech-
nical report, Fondazione Eni Enrico Mattei, 2009.

Moshe Babaioff, Brendan Lucier, and Noam Nisan. Bertrand networks. In
Proceedings of the Fourteenth ACM Conference on Electronic Commerce, EC
13, pages 33-34, New York, NY, USA, 2013. ACM.

Edmund Eisenberg and David Gale. Consensus of subjective probabilities:
The pari-mutuel method. The Annals of Mathematical Statistics, 30(1):165—
168, 1959.

Nikhil R Devanur, Christos H Papadimitriou, Amin Saberi, and Vijay V Vazi-
rani. Market equilibrium via a primal-dual-type algorithm. In Foundations of
Computer Science, 2002. Proceedings. The 43rd Annual IEEE Symposium on,
pages 389-395. IEEE, 2002.

Nikhil R Devanur and Vijay V Vazirani. An improved approximation scheme
for computing arrow-debreu prices for the linear case. In FST TCS 2003:
Foundations of Software Technology and Theoretical Computer Science, pages
149-155. 2003.

Kamal Jain. A polynomial time algorithm for computing an arrow-debreu mar-
ket equilibrium for linear utilities. SIAM Journal on Computing, 37(1):303—
318, 2007.

Nikhil R Devanur and Ravi Kannan. Market equilibria in polynomial time for
fixed number of goods or agents. In Foundations of Computer Science, 2008.
FOCS’08. IEEE 49th Annual IEEE Symposium on, pages 45-53. IEEE, 2008.

James B Orlin. Improved algorithms for computing fisher’s market clearing
prices: computing fisher’s market clearing prices. In Proceedings of the 42nd
ACM symposium on Theory of computing, pages 291-300. ACM, 2010.

Mehdi Ghiyasvand and James B. Orlin. A simple approximation algorithm
for computing arrow-debreu prices. Oper. Res., 60(5):1245-1248, 2012.

Nicole Immorlica, Evangelos Markakis, and Georgios Piliouras. Coalition for-
mation and price of anarchy in cournot oligopolies. In Internet and Network
Economics, pages 270-281. Springer, 2010.

Amos Fiat, Elias Koutsoupias, Katrina Ligett, Yishay Mansour, and Svet-
lana Olonetsky. Beyond myopic best response (in cournot competition). In
Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 993-1005. STAM, 2012.

187

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

Simon P Anderson and Régis Renault. FEfficiency and surplus bounds in
cournot competition. Journal of Economic Theory, 2003.

Rabah Amir. Cournot oligopoly and the theory of supermodular games.
Games and Economic Behavior, 1996.

Paul Milgrom and John Roberts. Rationalizability, learning, and equilibrium
in games with strategic complementarities. FEconometrica: Journal of the
Econometric Society, 1990.

Nikolai S Kukushkin. Cournot Oligopoly with” almost” Identical Convex Costs.
Instituto Valenciano de Investigaciones Econémicas, 1993.

Jorgen W Weibull. Price competition and convex costs. Technical report,
SSE/EFI Working Paper Series in Economics and Finance, 2006.

YB Zhao and JY Han. Two interior-point methods for nonlinear p,(7)-
complementarity problems. Journal of optimization theory and applications,
102(3):659-679, 1999.

Lars Thorlund-Petersen. Iterative computation of cournot equilibrium. Games
and Economic Behavior, 2(1):61-75, 1990.

Charles D Kolstad and Lars Mathiesen. Computing cournot-nash equilibria.
Operations Research, 39(5):739-748, 1991.

Koji Okuguchi and Ferenc Szidarovszky. On the existence and computation of
equilibrium points for an oligopoly game with multi-product firms. Annales,
Univ. Sci. bud. Roi. Fotvos Nom, 1985.

Lars Mathiesen. Computation of economic equilibria by a sequence of linear
complementarity problems. In Economic equilibrium: model formulation and
solution, pages 144-162. Springer, 1985.

FA Campos, J Villar, and J Barquin. Solving cournot equilibriums with varia-
tional inequalities algorithms. Generation, Transmission € Distribution, IET,
4(2):268-280, 2010.

Stephen Poythress Boyd and Lieven Vandenberghe. Convex optimization.
Cambridge university press, 2004.

Donald M Topkis. Minimizing a submodular function on a lattice. Operations
research, 1978.

Maria-Florina Balcan, Avrim Blum, Jason D. Hartline, and Yishay Mansour.
Reducing mechanism design to algorithm design via machine learning. Journal
of Computer and System Sciences, 74(8):1245 — 1270, 2008. Learning Theory
2005.

188

[89]

[90]

[95]

[96]

[97]

[98]

[99]

[100]

Richard Cole and Tim Roughgarden. The sample complexity of revenue max-
imization. In Proceedings of the 46th Annual ACM Symposium on Theory of
Computing, STOC 14, pages 243252, New York, NY, USA, 2014. ACM.

Peerapong Dhangwatnotai, Tim Roughgarden, and Qiqi Yan. Revenue max-
imization with a single sample. In Proceedings of the 11th ACM Conference
on Electronic Commerce, EC 10, pages 129-138, New York, NY, USA, 2010.
ACM.

Justin Hsu, Jamie Morgenstern, Ryan M. Rogers, Aaron Roth, and Rakesh
Vohra. Do prices coordinate markets? CoRR, abs/1511.00925, 2015.

Jamie Morgenstern and Tim Roughgarden. The pseudo-dimension of nearly-
optimal auctions. In NIPS, page Forthcoming, 12 2015.

Venkatesan Guruswami, Jason D Hartline, Anna R Karlin, David Kempe,
Claire Kenyon, and Frank McSherry. On profit-maximizing envy-free pric-
ing. In Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 1164-1173. STAM, 2005.

Rajesh Chitnis, Graham Cormode, MohammadTaghi Hajiaghayi, and
Morteza Monemizadeh. Parameterized streaming: maximal matching and
vertex cover. In Proceedings of the 26th Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 1234-1251. SIAM, 2015.

M. Cheung and C. Swamy. Approximation algorithms for single-minded envy-
free profit-maximization problems with limited supply. In Foundations of
Computer Science, 2008. FOCS "08. IEEE 49th Annual IEEE Symposium on,
pages 35—44, Oct 2008.

Ning Chen, Arpita Ghosh, and Sergei Vassilvitskii. Optimal envy-free pricing
with metric substitutability. SIAM Journal on Computing, 40(3):623-645,
2011.

Ning Chen and Xiaotie Deng. Envy-free pricing in multi-item markets. ACM
Trans. Algorithms, 10(2):7:1-7:15, February 2014.

Patrick Briest and Piotr Krysta. Buying cheap is expensive: Approximabil-
ity of combinatorial pricing problems. SIAM J. Comput., 40(6):1554—1586,
December 2011.

Parinya Chalermsook, Julia Chuzhoy, Sampath Kannan, and Sanjeev Khanna.
Improved hardness results for profit maximizations pricing problems with un-
limited supply. In Proceedings of APPROX, 2012.

L. S. Shapley and M. Shubik. The assignment game i: The core. International
Journal of Game Theory, 1:111-130, 1971. 10.1007/BF01753437.

189

[101]

102]

103]

[104]

[105]

[106]

[107]

[108]

Sushil Bikhchandani and John W. Mamer. Competitive Equilibrium in an Ex-
change Economy with Indivisibilities. Journal of Economic Theory, 74(2):385—
413, June 1997.

Hu Fu, Nicole Immorlica, Brendan Lucier, and Philipp Strack. Randomiza-
tion beats second price as a prior-independent auction. In Proceedings of the
Siaxteenth ACM Conference on Economics and Computation, EC 15, pages
323-323, New York, NY, USA, 2015. ACM.

Zhiyi Huang, Yishay Mansour, and Tim Roughgarden. Making the most of
your samples. In Proceedings of the Sixteenth ACM Conference on Economics
and Computation, EC ’15, pages 45—60, New York, NY, USA, 2015. ACM.

Rajesh Chitnis, Graham Cormode, Hossein Esfandiari, MohammadTaghi Ha-
jlaghayi, Andrew McGregor, Morteza Monemizadeh, and Sofya Vorotnikova.

Kernelization via sampling with applications to dynamic graph streams. pages
13261344, 2016.

Andrew McGregor. Finding graph matchings in data streams. In Approzima-
tion, Randomization and Combinatorial Optimization. Algorithms and Tech-
niques, pages 170-181. Springer, 2005.

Michael Kapralov, Sanjeev Khanna, and Madhu Sudan. Approximating
matching size from random streams. In Proceedings of the 25th Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 734-751. STAM, 2014.

Hossein Esfandiari, Mohammad T Hajiaghayi, Vahid Liaghat, Morteza Mone-
mizadeh, and Krzysztof Onak. Streaming algorithms for estimating the match-
ing size in planar graphs and beyond. In Proceedings of the 26th Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 1217-1233. SIAM, 2015.

Marc Bury and Chris Schwiegelshohn. Sublinear estimation of weighted
matchings in dynamic data streams. arXiv preprint arXiv:1505.02019, 2015.

190

	List of Figures
	Introduction
	Overview
	Selling Tomorrow's Bargains Today
	Edge-Weighted Oblivious and Online Matching
	Network Cournot Competition
	Market Pricing for Data Streams

	Selling Tomorrow's Bargains Today
	Introduction
	Buyer-selected Packs
	Coordinator-selected Packs
	Examples
	Our results
	Related work

	Profit Maximization in Buyer-selected Packs Model
	Regret Minimization in Buyer-selected Packs Model
	Approximate-optimality via sampling
	Approximating Regret Function After Sampling

	Coordinator-selected Packs Model
	Conclusion

	Edge-Weighted Oblivious and Online Matching
	Introduction
	Our Results
	Related Work

	Preliminaries: Matching Coverage as an Analysis Technique
	Edge-Weighted Oblivious Matching Problem with a Bounded Number of Distinct Weights
	Partitioning V ()2 into Batches
	Edge-Weighted OM: Running Unweighted Aun on Each Batch

	Edge-weighted Online Bipartite Matching with Free Disposal and Bounded Online Degree
	The Hardness of Edge-Weighted Online Bipartite Matching without Free Disposal
	Conclusion

	Network Cournot Competition
	Introduction
	Example
	Related Work
	Results and techniques

	Notations
	Cournot competition and potential games
	Finding equilibrium for cournot game with general cost and inverse demand functions
	Marginal profit function
	Non-linear complementarity problem
	Designing a polynomial-time algorithm
	Price Functions for Monotone Marginal Revenue Function

	Algorithm for Cournot Oligopoly
	Polynomial time algorithm
	Proof of correctness

	Conclusion

	Market Pricing for Data Streams
	Introduction
	Our Results
	Related Work

	Pricing problem: Maximizing Social Welfare
	Pricing problem: Maximizing Revenue
	Improving Space Efficiency While Approximating Social Welfare
	Improving Space Efficiency While Approximating Optimum Revenue
	A Hardness Proof for Social Welfare Maximization Problem
	A Hardness Proof for Revenue Maximization Problem
	Conclusion

	Bibliography

