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Optomechanical system, a hybrid system where mechanical and optical de-
grees of freedom are mutually coupled, is a new platform for studying quantum
optics. In a typical optomechanical setup, the cavity is driven by a large amplitude
coherent sate of light to enhance the effective optomechanical coupling. This system
can be linearized around its classical steady state, and many interesting effects arise
from the linearized optomechanical interaction, such as the dynamical modification
of the properties of the mechanical resonator and the modulation of the amplitude
and phase of the light coming out the of cavity. When the single-photon optome-
chanical coupling is comparable to the optical and mechanical loss, we must also
keep the nonlinear interactions in the hamiltonian, which make it possible to study
optomechanically induced nonlinear phenomena such as photon-blockade, Kerr non-

linearity, etc.



In this thesis, we study quantum optics with optomechanical systems both in
the linear and nonlinear regime, with emphasis on its applications in force sensing
and environmental engineering. We first propose a mirror-in-the-middle system and
show that when driving near optomechanical instability, the optomechanical inter-
action will generate squeezed states of the output light. This system can be used
to detect weak forces far below the standard quantum limit. Subsequently, we find
that this particular driving scheme can also lead to enhanced optomechanical non-
linearity in a certain regime and by measuring the output field appropriately. We
study the photon-blockade effect and discuss the conditions for maximum photon
antibunching. We then focus on thermal noise reduction for mechanical resonators,
by designing a system of two coupled resonators whose damping is primarily clamp-
ing loss. We show that optomechanical coupling to the clamping region enables
dynamical control over the coupled mechanical resonator. This leads to the counter-
intuitive outcome: increasing optical power simultaneously reduces the temperature
and linewidth of the mechanical mode, in contrast to direct optomechanical cooling.
We also consider the Brillouin scattering induced optomechanical interaction in ring
wave-guide resonators where phonon scattering via impurities is present. We find
that it is possible to realize chiral transport behavior of phonons by modifying the
phonon environment with optomechanics. We study a simple few-mode theory and
it can explain experimental data well. Finally, we study a continuum multi-mode
theory and calculate the phonon Green’s function using a diagrammatic perturba-
tive expansion, showing that a decrease in the phonon diffusion constant is possible

with increasing optical pump power.
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Chapter 1: Introduction

Light, in the language of modern quantum physics, has a particle-wave duality.
In both the particle theory and the wave theory, it is possible to show that there
is a pressure exerted on a surface that is exposed to light. Back in 1619, Johannes
Kepler put forward the concept of radiation pressure to explain why the tail of a
comet always points away from the Sun [1]. In the work of James Clark Maxwell
on electromagnetism [2], he shows the property of momentum of light and thus that
light can also exert pressure on a surface. The first measurement of the pressure of
light on a solid body was made by Pyotr Lebedev in 1901 [3], which also became the
first quantitative confirmation of Maxwell’s theory. In the 21st century, the study of
radiation pressure induced effects [4-7], especially in the context of quantum physics,
is still very important for many purposes, such as ultra-sensitive measurement, as
in Laser Interferometer Gravitational-Wave Observatory (LIGO) [8], and exploring
the modification and control of mechanical motion with light field, for instance,
optomechanical cooling [9-11], the generation of optomechanical entanglement [12]
and quantum coherent state transfer [13,14].

On the other hand, we have also seen dramatic progress in atomic, molecular

and optical (AMO) physics in the past two decades, such as the optical cooling and



trapping of neutral atoms [15] to nano-Kelvins to form Bose-Einstein condensates
(BEC) [16,17], the trapping of charged ions for quantum information processing [18],
and the study of cavity quantum electrodynamics (cavity QED) [19] and circuit
quantum electrodynamics (circuit QED) [20]. The quest for achieving quantum
control has now been extended to macroscopic objects and their “classical” degrees
of freedom, namely mechanical motion. This is useful for controlling thermal noise
for mechanics-based devices and thus improving ultimate sensitivity limits, as in the
case of LIGO, where even thermal motion of the end mirrors can cover the signal
from gravitational waves. Another important application is in quantum information
storage and processing, as mechanical resonators are relatively easy to fabricate and
to scale up.

The pressure of light when acting on a mechanical object can lead to the so-
called “optomechanical coupling” between optical degrees of freedom and mechanical
degrees of freedom. In a typical optomechanical setup, such as a Fabry-Perot cavity
with one freely vibrating end mirror, the motion of the end mirror is modified
due to the presence of the radiation pressure, and the amplitude and phase of
light coming out the of cavity is also modulated at the same time because of the
change in cavity length due to mirror motion. Understanding and using this type of
mutual coupling, especially in the quantum regime where the coupling is stronger
than optical /mechanical damping and thermal dephasing is negligible, in the hybrid
optical-mechanical system, are the main goals of the field of quantum optomechanics.
In recent years, quantum optomechanics has received substantial theoretical and

experimental interest [21-24], as evidenced by advances such as ground state cooling



of mechanical resonator [25-27], the generation of squeezed states of light [28-30]

and the study of single-photon nonlinear optics in various optomechanical platforms

31-36].

1.1 Optomechanical coupling

Before the formal description of a typical optomechanical system and the in-
troduction of the concept of optomechanical coupling, let us look at some real op-

tomechanical devices built in labs, as shown in Fig. 1.1 below. Optical cavities and
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Figure 1.1: (a) Optomechanical microdisk cavity [37] and (b) Optomechanical pho-

tonic/phononic crystal [38].

mechanical resonators are the two basic ingredients for a typical optomechanical
system. In Fig. 1.1(b), the waveguide is modified to provide both an optical cavity
and also a mechanical resonator, where optical fields and mechanical motion, in the
form of breathing modes or other deformations, interact with the optical boundary
conditions.

The optical fields are usually electromagnetic fields (ranging from microwave

to telecom to infrared to visible light) confined in cavities. Because of the boundary



condition set by the cavity, there are many resonant modes that are separated in
frequency and also have different mode profiles. In the language of quantum optics,
the electric field in a cavity (as a particle in a box) can be written in the following

second-quantized form [39-41]:

E(I‘, t) = Z ékaakG_iwkt+ikT + h.C., (1]_)
k

where k is the wavevector, éy is the polarization, V' is the volume of the cavity,
€x = \/Z)":“; is the quantum strength of the electric field, and ay is the annihilation
operator. For a specific cavity mode with frequency w,, there is also a corresponding
loss rate k, because EM fields may leak out of the cavity or be absorbed by the cavity
medium. The quality factor of this mode is thus defined as Q. = w./k.

The other part of the story is the mechanical resonator. In the simplest sce-
nario, it is just a cavity mirror that is attached to a spring such that it is free
to oscillate. The motion of the cavity mirror is characterized its displacement x
from equilibrium position xy and its corresponding conjugate momentum p, which
can be further described by a single quantum harmonic oscillator using annihilation
operator a and creation operator af. More generally, however, the dynamics of a
mechanical resonator is described by a space- and time- dependent displacement
field u(r,t) in the framework of continuum mechanics. If one is interested in the
equation of motion for the global amplitude z(t) of the motion, one can utilize a
suitably normalized dimensionless mode function u(r, t), such that the displacement
field would be z(t) = u(r,t). Then the temporal evolution of u(r,t) can be described

by the canonical simple equation of motion of a harmonic oscillator of effective mass



THD iy 4 iz alt) = Falt) (12)

where w,, is the mechanical resonant frequency, v is the mechanical damping rate,
and Fi(t) is the total external force acting on the mechanical resonator. The
mechanical quality factor Q,, = w,, /7.

A generic optomechanical system consists of an optical cavity where light
bunches back and forth between the end mirrors, while one end mirror is attached
to a spring and is free to oscillate, as shown in the Fig. 1.2 below:

Optical cavity Mechanical
oscillator

Yy
A

Figure 1.2: A typical optomechanical system where one end mirror of an optical
cavity is attached to a spring and thus can oscillate as a harmonic oscillator. The
displacement of the mechanical oscillator changes the total length of optical cavity,

which further leads to a shift in the resonant frequency of the optical mode.

We can now calculate the radiation pressure exerted on the right end mirror
by the light fields, or photons inside the cavity. The photons get reflected by the

moving end mirror and transfer twice of its momentum Ak to the mirror per round



trip time 7., so the total radiation pressure is given by:

T T
8 ot 29 _ p¥eqta, (1.3)

Fraa = 2Rk =
d T, ¢ 2L/c L

The work done by the photons is W = Fi,qx, and the change in the total photon

energy is thus d&2 = —W, which translates into the interaction energy
Lt
Hint = —hwcza Q. (14)

Alternatively, we can also find that the energy of the photons as

We

H = hw.(z)a'a = hmcﬁa ~ hw.(1 — z/L)a'a, (1.5)
so the interaction energy
Hip = —hwc%aTa = —hwchLpf a'a(b+b") = —hgoa'a(b + b7). (1.6)

which is the same as the previous expression. The single-photon optomechanical
coupling rate is gy = wer,pe/L, which quantifies the interaction strength between
a single photon and a single phonon. A full quantum mechanical description of
the quantum dynamics of the vacuum field coupled with an oscillating boundary

(mirror) in a one-dimensional cavity is presented in [42].

1.2 Brownian motion and input-output formalism

Mechanical resonators and optical fields are open systems that subject to noise,
which is fluctuation and dissipation introduced by the environment due to exchange
of energy and momentum through friction or cavity loss. This can be described by

the interaction between the mode of interest and an continuum of environmental



degrees of freedom, as in the Caldeira-Leggett model [43], which eventually leads
to damping and dephasing of the mode of interest. These dissipative phenomena
are also related to the concept of Brownian motion, which was studied by Einstein
in one of his 1905 papers [44]. A Brownian particle of mass m experiences random

kicks from surrounding particles, which leads to friction, with coefficient 7, as shown

in Fig. 1.3.

Figure 1.3: Brownian motion of a particle (large circle) as a result of random scat-

tering with surrounding small particles (small circle).

The equations of motion of the Brownian particle are:
r = p/m, (1.7a)
p = —p+E1), (1.7b)

where £(t) is a random force because of the random kicks. This is the Langevin
equations for Brownian motion. The effects of the fluctuating force can be summa-
rized by giving its first and second moments, as time averages over an infinitesimal

7



time interval:
€@#) =0,  (E@EEF)) =2Bs(t—1). (1.8)

We can integrate the p equation and get

i) =00+ [ dte-Vg(r) (19)

The first term gives the exponential decay of the initial momentum, and the second
term gives the extra momentum produced by the random noise. Assuming that
the random force £(t) is not correlated with the initial momentum of the Brownian
particle, and using the correlation function in the equation above, we can calculate

the mean squared momentum over this classical noise as

(p*(t)) = e "p*(0) + g(l —e ) (1.10)

In the long time limit (¢ — o0), the exponentials drop out, and this quantity ap-
proaches B/~. Alternatively, we can find mean squared momentum using the equal
partition theorem p?/2m = kpT/2, since the Brownian particle must be in a thermal

equilibrium state at long times. This leads to the relation
B = mvykgT. (1.11)

This result is known as the fluctuation-dissipation theorem [45]. It relates the
strength of the random noise or fluctuating force to the magnitude of the friction
or dissipation. It expresses the balance between friction, which tends to drive any
system to a completely “dead” state, and noise, which tends to keep the system

“alive.” This balance is required to have a thermal equilibrium state at long times.



We now consider a system of a single-mode field with frequency v and annihi-
lation operator a interacting with a reservoir of a large number of degrees of freedom
with closely spaced frequency v, and annihilation operator by, which is quite similar
to Brownian motion. The system-reservoir hamiltonian, under the rotating-wave

approximation (RWA) is [39]:
H =hva'a+ > hublby + 1> ge(bla+ alby) (1.12)
k k
The Heisenberg equations of motion are

a = —iua—ingbk, (1.13a)
k

by = —ivghy, —igra, (1.13b)
We first integrate the reservoir equation

¢
br(t) = e ™ b, (0) — igk/ dt' e~ =g (t) (1.14)

0

and then substitute this solution into the field equation

a= —iua—Zgi/ dt’ e~ et=t) —ngke witp (0 (1.15)
k

As in the Wigner-Weisskopf theory of spontaneous emission [46], the summation

over k yields a ¢ function and thus

¢
Zgi/ dt'e™ " g (1) ~ ga(t) (1.16)
k O

with k = 27g*(v)D(v). We can further define

am(t) = —— nge witp, (0 (1.17)



This input field may be shown to satisfy the commutation relations [ain(t), al (t )] =

d(t —t'). Then the equation for a becomes:
. . R
G = —iva—Za+ VKay,. (1.18)

Similarly, we can also find a solution by specifying a final condition rather than an
initial condition for the by fields [41]. This is related to the reservoir fields leaving
the cavity instead of coming inside the cavity. The cavity output field ay is related

to the input field and fields inside the cavity by

Uin + Gous = VK0, (1.19)

which is essentially the boundary condition for optical fields, as shown in figure

below.
K
LAVAVAVAVA WAVAVAVAVoY
Ain
a <€
<€ >
>
Aout

Figure 1.4: Input-output representation of a single-sided cavity.

1.3 Optomechanical cooling and heating

The hamiltonian for an optomechanical system is given by

H = hw.a'a + hw,b'b — hgoata(b + b1 (1.20)

10



The optical cavity is usually driven at certain laser frequency wy that is near the
cavity resonance, with detuning A = w; —w,. Because of the interaction, the cavity
field a can be split into a “classical” coherent state with amplitude o = (a) and
quantum fluctuations:

a=a+da (1.21)

We can move to the frame rotating with the driving frequency by applying a unitary
transformation U = exp(—iwra'at) to the hamiltonian and replace the cavity field
with the above expression a'a — (a* + da')(a + da). In the first term of the
hamiltonian, the ]04|2 term is a constant and can be neglected immediately, while
the term proportional to a cancels a term in the driving hamiltonian. In the last
term of the hamiltonian, the |0z]2 term can be removed by shifting the position of
the mechanical oscillator, and the da'da term is neglected because it is of second

order in the quantum fluctuations. The hamiltonian thus becomes
H = —hAda'da + hwnmb'b — hgo(a*da + ada®) (b + bh). (1.22)

Without loss of generality, we can assume « to be real, which can be done by
choosing an appropriate phase of the driving laser. So we get a linearized interaction

hamiltonian of the form:
Hyy = —hgoa(da + 5aT)(b + bT) = —hg(da + 5aT)(b + bT) (1.23)

where we defined the pump enhanced optomechanical coupling strength g = gopa.
The diagram for this interacting system is shown below.

The linearized hamiltonian gives us a simple way to understand the dynamics
of the coupled optomechanical system, since it is always possible to exactly solve

11



optical field mechanical resonator

—A

Figure 1.5: Linearized interaction between optical field and mechanical motion.

the linear dynamics, in principle. However, it is also very helpful to look at certain
special cases of the hamiltonian, e.g. A = +w,,, where we can make the rotating
wave approximation to simplify the interaction hamiltonian. When A = —w,, (red-
detuned laser), the beam splitter term —Ag(dab’ + da’h) becomes resonant while the
two-mode squeezing term —hg(da'b’ + dab) is rotating at frequency 2w,, so can be
neglected in the sideband resolved regime when w,, > k and in longer time scales.
The physical meaning of the beam splitter interaction is that a cavity photon is cre-
ated from the driving photon by absorbing a phonon, and vice versa. Similarly, when
A = w,, (blue-detuned laser), the two-mode squeezing term —hg(da'b’ + dab) be-
comes resonant, which means a cavity photon a is created and a phonon are created
from the driving photon at the same time, and vice versa. This parmetric/squeezing
process is illustrated in the Fig. 1.6.

The analysis is very similar to the laser cooling (heating) of trapped ions.
Actually, we can easily solve the dynamics by writing down the Heisenberg-Langevin
equations of the optical and mechanical degrees of freedom. Instead of using operator

b, we now use the x and p, since it is more appropriate describe the “classical”

12



WL

— [0, m) —1[0,7)

Figure 1.6: (a) Energy levels of optomechanical system and transitions when the
driving laser frequency is red-detuned A = —w,, from the cavity resonance. The
blue transition is from the beam-splitter interaction and is resonant, while the red-
transition is from the two-mode squeezing interaction and is off resonance. (b)
Phonon absorption process from beam-splitter interaction when A = —w,,, and (c)

Phonon creation process from two-mode squeezing interaction when A = w,,.
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dynamics of the mechanical motion. The equations of motion follows:

0 = iAa— ga G+ VRam, (1.24a)
T = p/m (1.24Db)
p = —mwic—yp+Glatal) + Fy. (1.24¢)

The p equations is simply the Brownian motion with an additional optical bath
without the rotating wave approximation. Moving to frequency domain, we can

find the modified susceptibility of the mechanical oscillator:

1 1
100\ — 2 2 2¢%w,,
X W) m{%” wonwt g (A+wy+mp+wA—wy—mm]}
(1.25)
where w is the Fourier frequency.

The g% term shows the modifications to the resonance frequency and damping

rate of the mechanical oscillator because of the linearized coupling to optical fields,

with
2
off 9" W, A+w A—w
= wy, 1.26
Wi () T [(A+w)2+/<o2/4+ (A—w)2+/£2/4] (1.26a)
2
eff g Wm R K
= — 1.26b
W) = v+ hA+wP+MM (A—wF+#M} (1.26b)
For example, when near the original resonance frequency w = w,, and A = —w,,,

we get wl = w,, — ¢*/2w,, and ¥*T = 7 + 4¢?/k, which is the optical spring
effect [47,48] and the broadening of the mechanical linewidth, which eventually

leads to the cooling of the mechanical oscillator [25-27].
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1.4 Quantum measurements and force sensing

In classical physics, the dynamics of an object is deterministic, which can be
described by Hamilton’s equations of motion, and thus there is a definite trajectory
in phase space given the initial condition. The continuous measurement of the
position and momentum is possible, in principle. A fundamental difference between
quantum physics and classical physics is the Heisenberg uncertainty relation: there is
no definite trajectory for the motion of an object. This means that the uncertainties
of a pair of conjugate variables, such as position and momentum, are bounded by

the Planck’s constant:

Ax-Ap > h/2 (1.27)

We now consider the following scenario [49]: we want to continuously monitor
the position of particle. We first make a position measurement of the particle by
shining a photon onto it with frequency v, wavelength A = ¢/v and a corresponding
momentum p = hv/c. Suppose at time t1, we measure the particle’s position with

an error Azl then the corresponding perturbation of its motion is given by

measure’

APpertury = B/2A7} o cire- After a time 7 = t5 — ¢4, the perturbation in momentum
will lead to an extra uncertainty in the position Azaqq = AP,erturb7/m. The mo-

mentum of the particle is inferred from these two position measurements at different

times: P = m®=*. The total error is thus given by

1/2

AP =

313

[(Axllneasure>2 + (Ax?neasure>2 + (AIadd>2] (128)
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This leads to
AP Z APSQL =\ hm/27’ (129)

Similarly, the standard quantum limit for position is

Az > Azgqr, = v/ hr/2m (1.30)

For force measurement, if the force lasts for a time 7, then

> APSQL 1

F = —+/hm/27 (1.31)
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Figure 1.7: Uncertainty introduced by a quantum measurement sets a fundamental
limit on the precision of a measurement process. (a) The standard quantum limit
for force sensing using optical cavity. (b) A squeezed state (green ellipse) has less

uncertainty in one quadrature than a coherent state (red circle).

If we are going to measure the position of a mechanical oscillator using an
optomechanical system by analyzing the amplitude and phase of the optical fields
coming out of the cavity, then there are two limits on the measurement precision:
photon shot noise and quantum backaction. The photon shot noise could be reduced
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by increasing optical pumping power, since it is related to the phase measurement
precision, and is thus inversely proportional to the average photon number in the
cavity: Af# o 1/4/n. But at the same time, this introduces additional quantum
fluctuations to the position of the mechanical oscillator, since the radiation pressure
is increasing as the photon number fluctuation increases: An o y/n. A compromise
of these two noise leads to the corresponding standard quantum limit for position
measurement precision [21], and it is reached when these two noise are equal. As
shown in Fig. 1.7.

To achieve measurement sensitivity below the standard quantum limit, we may
use non-classical states of light to perform the measurement, for example, squeezed
states. With squeezing light, the variance (uncertainty) in one quadrature can be
made smaller than that of a classical coherent state by a factor of e™", while the
variance in the other quadrature is larger by at least a factor of e”, where is the
squeezing parameter, such that the Heisenberg uncertainty relation holds. If the
information we want to measure is encoded in this particular quadrature, then it is

possible to beat the sensitivity set by the standard quantum limit.

1.5 Optomechanical nonlinearities

There are some important concepts in classical nonlinear optics [50], such as
sum frequency generation, four-wave mixing, Kerr effect (intensity-dependent refrac-
tive index), etc. In general, the optical response of these effects can be described by

their corresponding nonlinear material polarization, in addition to the usual linear
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term:
P(t) =eo |XVE(t) + XD E(t) + XD E () + - - (1.32)

The different types of nonlinearity are summarized in the following equations:

sum frequency generation:  P(w; + ws) = 260X P EL E, (1.33a)
four-wave mixing:  P(w; 4 wy — ws) = 6eox P By Fy E (1.33b)

Kerr effect:  PMY(w) = 360y (w + w — w) |E(w)]* E(w)
(1.33¢)

These can also be written in the language of quantum physics, using some

effective interaction hamiltonian

H = hglasalal +h.c.) (1.34a)
H = hglasasalal +h.c) (1.34Db)
H = hx®(ala)? (1.34¢)

In optomechanics, quantum nonlinearity at the single quanta level is only
important when the singe-photon optomechanical coupling rate gy is comparable to

the mechanical damping rate v and the optical loss rate k. We identify two regimes:

e Strong coupling regime: g = agy > 7, k. In this regime, we will be able to see
interesting quantum dynamics above classical dynamics. Another important
parameter is the “Q - f” product, which is a direct measure for the degree of
decoupling from the thermal environment. Specifically, Q.- f = Qm-wpn /27 >
kgT/h is the condition for neglecting thermal decoherence (dephasing) over
one mechanical period, since we have w,, > ny in this case.
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e Single-photon strong coupling regime: gg > v, k. In this regime, higher order
nonlinear interactions between mechanical and optical degrees of freedom are
not negligible. Again, the “Q)- f” product is crucial in order to neglect thermal

decoherence.

One major implication of strong single-photon nonlinearity is the nonlinear
energy shift of photon energies, because of an effective photon-photon interaction.
This eventually leads to the photon-blockade effect [32], which is of great impor-
tance in making single-photon source for quantum computation and also in quan-
tum nonlinear optics. Suppose there is an effective third-order nonlinearity H =
woala — gn(a’a)? in the system, the energy levels become E,, = H |n) = nwy —n2gu,
as shown below: When driving the system with a laser with frequency wy = wg— gu,
it will excites the ground state |0) to the first excited state |1), but the subsequent
excitation from the first excited state |1) to the second excited state |2) will be
off-resonant by an amount 2g, because of the nonlinear frequency shift —n?gy
for different levels. If the nonlinearity is strong enough compared to the optical
linewidth, g1 > &, then it will make the |2) state less populated, and the system is
mostly in the one photon state [1), as shown in Fig. 1.8. This effective “two-level”
system can be used as a qubit or single photon transistor for quantum information

processing purposes.
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Figure 1.8: Energy level for a system with Kerr nonlinearity. The non-equal-distance
energy shift makes the second photon excitation off resonance when the first photon

excitation is on resonance.
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1.6  Outline of the thesis

The outline of this thesis is as follows. In Chapter 2, we propose a coupled
two-mode mirror-in-the-middle optomechanical system and show that when driving
the cavity near optomechanical instability, the optomechanical interaction will gen-
erate squeezed states of the output light, by an amount determined by the strength
of the driving field. Taking into other type of noise and the quantum efficiency of
detectors into account, we estimate the maximum amount of squeezing to be 23
dB. This system could be used to detect weak forces far below the standard quan-
tum limit. Subsequently, in Chapter 3, we find that this particular driving scheme
can also lead to enhanced optomechanical nonlinearity in certain regime by measur-
ing the output field appropriately. We discuss the photon-blockade mechanism and
present numerical simulations for the two-photon correlation functions. We also dis-
cuss the feasibilities of our scheme and do a case study in optomechanical crystals.
In Chapter 4, we focus on thermal noise reduction for mechanical resonators, by
designing a system of two coupled resonators whose damping is primarily clamping
loss limited. We show that optomechanical coupling to the clamping region enables
dynamical control over the coupled mechanical resonator. This leads to the counter-
intuitive outcome: increasing optical power simultaneously reduces the temperature
and linewidth of the mechanical mode, in contrast to direct optomechanical cooling.
In Chapter 5, we consider the Brillouin scattering induced optomechanical interac-
tion in microsphere wave-guide resonators where phonon scattering via impurities

is also present. We find that it is possible to realize chiral transport behavior of
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phonons by modifying the phonon environment with optomechanics, recovering the
result of Chapter 4 in a chiral system. Inspired by our theoretical work, our collab-
orators did an experiment and observed signatures of phonon chiral transport, the
details of which is given in Appendix D. We also come up with a simple few-mode
theory and it can explain experimental data well. Finally, in Chapter 6, we study
a continuum multi-mode theory and calculate the phonon Green’s function using a
diagrammatic perturbation expansion, showing that chiral transport of phonons is
possible in a large bandwidth, and the numerical result also suggests a decrease in

the phonon diffusion constant with increasing optical pump power.
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Chapter 2: Squeezing in a coupled two-mode optomechanical system

for force sensing below the standard quantum limit

2.1 Introduction

Dramatic progress in coupling mechanics to light [21-23, 51] suggests that
such devices may be used in a wide variety of settings to explore quantum effects
in macroscopic systems. Furthermore, such systems can be exquisitely sensitive to
small perturbations, such as forces induced either by acceleration as in accelerometer
[52] or by, e.g., coupling to surfaces or fields as in atomic force microscopy [53]. For
such force measurements, a high quality factor ((,,) mechanical oscillator acts as a
test mass, transducing a force into a time-dependent displacement of the oscillator
[4,49]. By using interferometric techniques to monitor the position of the oscillator,
one can infer the force via optical signals. However, the radiation pressure coupling
between the mechanical mode and optical mode has three consequences: photon
shot noise, quantum backaction and dynamical backaction [21,54]. The dynamical
backaction modifies the oscillator dynamics [47] and makes laser cooling [10, 55]
or amplification of phonons [56] in the mechanical system possible. Photon shot

noise and quantum backaction, the former decreases with increasing input laser
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power while the latter increases with increasing input laser power, introduce two
sources of noise on the displacement readout of the oscillator motion. An optimal
compromise between these two noise sources leads to the standard quantum limit
(SQL) in force sensing [49].

The SQL, however, is itself not a fundamental limit. By using squeezed states
of light [57], employing quantum nondemolition (QND) measurement [58,59], or by
cavity detuning [60], the SQL can be surpassed. In this work, we show that in a
coupled two-mode optomechanical system, if we drive it appropriately, the interac-
tion between cavity photons and the mechanical oscillator will generate squeezed
states of the output light. Measuring an appropriate quadrature of the output light
field, we would get fewer fluctuations than that of the vacuum state, which makes
it possible to detect weak forces far below the SQL. Therefore, no squeezed state
of light input is needed, which makes it easier to realize in experiment. Further-
more, compared with [59], we do not have to modulate the optomechanical coupling
strength to realize single quadrature QND measurement. Finally, since we pump
and probe different resonant optical modes, the effective optomechanical coupling
is enhanced, and thus the pump power for achieving the best sensitivity is lowered

substantially.

2.2 Model: coupled two-mode cavity optomechanics

We consider a high finesse Fabry-Pérot cavity with a dielectric mirror in the

middle [61,62] [Fig. 2.1(a)]. The end mirrors of the FP cavity are fixed, while
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Figure 2.1: (a) A symmetric mirror-in-the-middle optomechanical system comprising
a Fabry-Perot cavity of length 2L with a high reflectivity mirror mounted in the
middle and coupled to a mechanical oscillator. Displacements of the middle mirror
(via mechanical oscillations) couple the two normal modes a (red) and b (blue) as
the left-right symmetry is broken. (b) Normal mode frequencies weq, + (green) as a
function of middle mirror displacement . (¢) Transmission spectrum of the three-
mirror cavity, showing pairs of normal modes. We drive mode a strongly (long red

line) and detect mode b (short blue line).
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the middle mirror can vibrate along the optical axis of the cavity at a mechanical
frequency w,, with effective mass m. With the presence of the middle mirror, the
FP cavity is divided into two sub-cavities, denoted by left (L) cavity and right (R)
cavities. The middle mirror has a nonzero transmission, which allows the exchange
of light between these two subcavities and thus leads to an effective coupling between
the left and right cavity modes [63]. Further, the coupling will shift the resonant
frequencies of two coupled cavity modes and leads to the so-called normal mode
splitting effect [64,65].

Following [62, 66], the normal mode splitting in the presence of the middle
mirror can be calculated by assuming a transfer matrix with a high reflectivity
rq. For simplicity, we assuming the middle membrane to be exactly at the middle
point of the FP cavity initially, dividing the cavity into two subcavities with the

same length L, and the normal mode splitting when the middle mirror is at a new

c
position z is given by {2 = Zarccos(|7"d| cos(2kx)) [Fig. 2.1(b)], where ry is complex

amplitude reflectivity of the middle mirror, k£ is the wave vector of the incoming
field and x is the displacement from the middle point of the FP cavity.

The hamiltonian of the cavity fields in this three-mirror system is
Hope = h(we+ fr)alap + h(w. — fa:)aTRaR — hg(alag + a;aL), (2.1)

where w, is the resonance frequency of the subcavities with the middle mirror exactly
in the middle (z = 0), f = (Oweav/07)|,_, is the shift of cavity resonant frequency
per unit length evaluated at © = 0, and ar(ag) is the left (right) cavity mode
annihilation operator. Here only the linear order frequency shift is considered, since
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the displacement z is much smaller than the cavity length L. The last term describes
the coupling between left /right cavity modes with strength g. In the high reflectivity
limit (|r4] — 1), g = |ta|lc/2L and f = —w./L, where t, is the amplitude transmission

coefficient and c is the speed of light in vacuum.

2.3 Heisenberg-Langevin equations and system dynamics

We look only in a narrow spectral range around a nominal pair of normal modes
a = (ap+ag)/v2and b = (a;—ag)/v/2. We also drive mode a strongly at frequency
wr, and move to the rotating frame with respect to the pump laser [39]. The cavity
field is coupled to fields outside the cavity through the ends mirrors, while we assume
the mechanical oscillator is coupled to a thermal bath through clamping losses. The
classical and quantum fluctuations of the environmental degrees of freedom will
introduce damping to the cavity field and mechanical oscillator [40,41], as required
by the fluctuation-dissipation theorem [45]. In the Markovian approximation, the
Heisenberg-Langevin equations for mechanical and optical degrees of freedom are,

in the high temperature limit, as follows:

r = p/m, (2.2a)
- 2 hwe 1y 4 ot

po= —mwpr—pt— (a'b+b'a) + Fy,, (2.2b)
a = —i(A.—g)a—ka+ i%bx + E 4 V2Ka;, (2.2¢)
b = —i(A.+ g)b — kb + i%ax +V2kKbj,. (2.2d)

In the equations above, v is the damping of the mechanical oscillator, x is the
damping of the cavity, and A, = w. — wy, is the cavity detuning. F is the pump
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strength which is related to input laser power P, and cavity damping x by |E| =
\/m. Qin, bin are the vacuum fluctuations of the two cavity modes. Fj, is
the force acting on the oscillator, and it has two parts: an external force F,,; acting
on the oscillator, which is also the force to be detected [Fig. 2.1(a)]; the Brownian
stochastic force, or thermal fluctuating force Fj,, which leads to damping of the
oscillator.

The steady state of the system is (x) =0, (p) =0, (b) = =0, (a) = a =
E/li(A.—g)+k]. Following [67,68], we linearize the equations of motion around the
steady state and study the stability of this solution by applying the Routh-Hurwitz
criterion [69], which at positive effective detuning A = A.+ g > 0 is simplified to a

constraint on pump strength,
a? < mw? L*(k* + A?)/2RAW? = af. (2.3)

This suggests that the steady state we found is the only stable solution at low power.

Writing z, p, a, b in terms of steady state values ((z), etc.) and fluctuations (z, etc.),

We We fuw

and neglecting terms of order fl;j, fdi’, TELB, then the fluctuation of mode a

decouple, and the equations of motion become

T = p/m, (2.4a)
p = —mwix—yp+hGDb+b)+ Fy, (2.4Db)
b = —iAb— kb+iGz 4 V2kby, (2.4¢)

where we choose « to be real and define the effective optomechnical coupling G =
wea/ L. For convenience, we have removed the tilde of the fluctuating variables. We
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find that the pumped, coupled two-mode model is reduced to an effective single-
mode model [70], where the cavity consist of a fixed partial transmitting mirror
and movable perfect reflecting mirror and the optomechanical coupling strength is
determined by .

We then define the quadratures of mode bas X = (b+b)/v/2, Y = (b—b")/iv/2,
move to frequency domain by Fourier transform, and solve a set of linear equations.

We find

YIeNr
[(k — iw) Xin (W) + AYin(w)]

r(w) = MWE(@+XW%

K —iw)? + A2
(2.5)
where x(w) is the susceptibility of the optomechanical system to force,
-1
2hG2A/m
x(w) =< m |w? —w? —iyw — T A (2.6)

From the expression above, we immediately identify an effective, frequency-dependent
mechanical resonant frequency w!, and an effective damping 4’ which are shifted from
the original ones. The shift in resonant frequency is the “optical spring” effect [47],
while the shift in damping leads to cooling or heating of the oscillator, depending
on the sign of detuning [21,22]. The cavity field fluctuations enter the equation of
motion for oscillator Eq. (2.5) as an additional fluctuations force, which is identified

as the shot noise fluctuations of radiation pressure force.
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2.4 Force detection sensitivity

Within the input-output formalism [41], the output field quadratures we mea-
sure are related to the field quadratures inside the cavity by X, (w) = V2 X (w) —
Xin(w) and Yo (w) = vV2rY (w) — Yin(w). We consider a homodyne measurement

of the signal [41,71]
S(w) = sinbfX,u(w) + cos 0¥ (w) (2.7)
= Xr(W)Fin(w) + xx (@) Xin(w) + Xy (W) Yin(w),
where 6 is an experimentally adjustable phase, which determines the measured
quadrature. Here the signal is written in terms of three inputs (force input Fj,,
quadrature fluctuations X;, and Y;,) and corresponding susceptibilities. The force

and field susceptibilities are:

2v/kG[Asind + (k — iw) cos 0]

xr(w) = (i) 1 A2 X(w) (2.8a)
4hkG?*[Asin 6 + (k — iw) cos 0] (k — iw)
Xx(w) = [(k —iw)? + A?)2 x(w)
(k? + w? — A?)sinf — 2kA cos 0
(k —iw)? + A2 ’ (2.8b)
4hrG?*Asinb + (k — iw) cos O] A
Xr(w) = [(k —iw)? + A2)? x(w)
26Asinf + (k* + w? — A?) cos
(= i) 1 A2 : (2.8¢)

To calculate the sensitivity to the external force F,;, we define the effective

force noise

m Fezt=0 ’
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and its quantum noise spectral density is Spp(w) = [ dw'(F(w)F(w')). The vacuum
radiation input noise b;, is delta correlated and the thermal fluctuating force is

approximated as white noise thus is also delta correlated, so we have

Xx (W) — ixy (W) [°
xr(w)

1

and the square of the corresponding force detection sensitivity n(w) is given by its

symmetric part [54]: n(w) = 3[Srr(w) + Spr(—w)].

2.5 DC force sensing optimization

We now focus on the DC (w = 0) force sensing regime. To get the best
sensitivity, we first optimize the function n(w = 0) = Spr(w = 0) for o and then
optimize for §. We find that for the optimal pump strength o2, the second term goes
to zero as A sin 0+~ cos @ — 0, which corresponds to a backaction free point. At first
sight, it seems that yp approaches zero as Asinf + kcosf — 0, and the sensitivity
diverges. However, if we choose the pump strength appropriately, then not only
can the divergence at 6y = — arctan(x/A) be avoided, but also the sensitivity can

achieve its optimal value. The optimal pump strength is given by

2Kk Asi
5 2(1 K s1n(9+/-icos<9)’ (2.11)

a,=ay(l-— R
where aq is the threshold pump strength defined in Eq. (2.3). At this point, the
effective mechanical frequency w!, — 0 as 6 — 6y, so xr is still finite. We then
try to find out the behavior of the sensitivity near the critical angle 6,. To ensure

that the pump strength does not exceed the threshold value and that the effective
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mechanical frequency is positive, we let the angle 6 approaches 8y from the positive
side, that is 8 = 6y + 06, with 0 < 60 < 1. We note that, if § approaches 6y from
the negative side, we can replace the minus sign in Eq. (2.11) with a plus sign, and

the result will be similar. In the vicinity of 6y, the pump is approximated as

o =aj(l— %“59). (2.12)

At the optimal pump strength and optimal angle, the total sensitivity is found:

A K
n(w = 0) ~ 2mykpT + hmw?, (R + Z) £, (2.13)

with the dimensionless parameter ¢ defined by ¢ = 660 - 2k/A. This result implies
that thermal noise limited detection can be achieved by choosing the critical angle
0y appropriately. The expense for achieving the best sensitivity is that we have
to pump the system at a power close to the threshold value, thus increasing the
possibility of destabilizing the system. The ultimate sensitivity for force detection
is limited by how strong the thermal noise is and how close we can pump the system
near its instability point. The result also suggests that we could further improve the
sensitivity by choosing A = 2x. Then we look at the input laser power, and find
that if A. = g, the power is minimized. Along with the condition A = 2k, we have

A. = g = K, and the optimal pump power is

Pt =~

5 L\?
where Q). = w./k is the quality factor of the cavity. Considering an optomechanical
system with m = 5.36 x 1071Y Kg, w,, = 27 x 130 kHz, cavity length L = 2.50 x

1072 m, pumping laser wavelength A = 1.55 um, and cavity finesse of I = 20000
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[72], we find that for £ = 0, P,y = 0.816 mW, and the circulating power P =
Pt F'/2m = 2.56 W. The single photon optomechanical coupling goym = wezzpr/L =
21 x 8.77 Hz, where xzpp is the zero point fluctuation of the displacement of the
middle mirror. The force sensitivity is /7 ~ /Amw2,¢ = € x 1.94 x 107N /v/Hz.

For small &, attonewton force sensitivity could be achieved with current devices.

2.6 Bandwidth for optimal performance

In practice, we need to understand the behavior of n(w) at low but nonzero
frequencies to determine the bandwidth for force detection. We note that at nonzero
frequencies, the asymmetry of the quantum noise spectral density Spr(w) is very
small, thus we could use the approximation n(w) ~ Spp(w). A full analysis of the
bandwidth is only possible numerically, so here we present a simple but illuminating
approximation method. The argument is the following: at nonzero frequencies, in

order to keep the 60 dependence in Eq. (A.13), we require |w cos 0| < Asin 0+ x cos 0,

()

Thus the bandwidth is approximately [1 + (A/k)?] £k. Neglecting the thermal noise

which is equivalent to

lw| < % ER. (2.15)

term, we plot the DC sensitivity for different values of ¢ in Fig. 2.2(a), and the
sensitivity at low signal frequencies for different values of k, £, A/k in Fig. 2.2(b),
2.2(c), 2.2(d) respectively. We find that the bandwidth shown in the numerical
result is in good agreement with Eq. (2.15). Thus we could use this formula to

estimate the bandwidth at low frequencies for a given set of parameters.
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Figure 2.2: (a) Sensitivity at DC as a function of A/k for different values of £
(numerics shown in plot). At A/2k, the minimum value is achieved. In the following
figures, we choose w,, = 27 x 10° Hz, k = 0.2w,,, A = 2x and £ = 0.01 as the
base values to plot the sensitivity as a function of frequency. The bandwidth is the
frequency range where the best sensitivity is maintained. (b) Bandwidth dependence
on k, where wy, is fixed and k varies and the ratio x/w,, is shown in plot. In
the resolved sideband regime the bandwidth increases with « linearly, while in the
unresolved regime, it does not increase much. (c¢) Bandwidth dependence on &,
which is approximately linear. (d) Bandwidth dependence on A/k , where & is
fixed and A varies. The dependence is approximately in the form /1 4 (A/k)? and

suggests a narrower bandwidth than our estimate Eq. (2.15).
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2.7 Squeezing spectrum of the cavity output

Finally, we study the squeezing spectrum of the output signal S(w), which is
given by S(w) = [dw'(S(w), S(w')) [41,73]. Using the noise correlation relations,
we have

3(w) = 2myksT [xr(@) + 5 box () = i @) (2.16)

At DC, we can minimize it by choosing the optimal angle and pump strength,

1+ (%)2] £2. (2.17)

where ny, = kgT'/hw,, is the number of thermal phonon and @,, = w,,/7v is the

obtaining

~_nthA 1
S—m;(1—5)+§

quality factor of the mechanical oscillator. For A = 2k, S = 2(1 — &)ng/Qum + £2.
Nano-mechanical oscillators of high quality factor and low phonon number have
now been fabricated by many groups, which makes it possible to reduce the ther-
mal noise term to a very small value. By driving the system near the threshold
(€ = 0), squeezing (S < 1) in the signal we measure could be realized. This is the
optomechanical analog of the squeezing in the output field from an optical para-
metric oscillator (OPO) [39]. Similarly, choosing § — 7/2 + 6, we calculate the
squeezing spectrum of a signal 7/2 out of phase and find that the optical noise term
is proportional to 1/£2, which is consistent with the Heisenberg uncertainty relation.

In all the analysis above, however, we have not yet taken into account the

quantum noise X/, (w) introduced when measuring the field quadrature S(w). Con-

sidering a measurement efficiency P < 1, then the actual signal we measure is
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S’ (w) = VPS(w) + V1= PX! (w). We find the modified sensitivity to be 1/(w) =
n(w) + (1 — P)/2P|xr(w)]*. Assuming that the optimization at a? and 6y is still
valid, then the sensitivity at DC is 7/(0) = n(0) + hmw?2,(1 — P)/(1 =€) - k/A, and
the corresponding squeezing spectrum is S = S + (1 — P)/2, in the limit P — 1.
Thus, a homodyne measurement efficiency of 99% will limit the squeezing to 23 dB

(decibel).

2.8 Conclusion

Our approach to squeezing for improved force sensing may also have direct
application in related topics, including atomic force microscopy, magnetic resonance
force microscopy, and even in quantum transduction via mechanics as recently sug-
gested [74]. Furthermore, more complicated cavity mode structures, such as those
of higher orbital angular momentum, may provide additional methods for achiev-
ing this outcome in single-side cavities, as the fundamentals of our approach are
simply having two well isolated, near-by cavity modes that both interact with the

mechanical degree of freedom.
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Chapter 3: Quantum nonlinear optics near optomechanical instabil-

1ties

3.1 Introduction

Recent years have seen dramatic progress in realizing deterministic interac-
tions between single photons, which has profound implications for future optical
technologies [75-78]. The most striking success has been achieved with cavity quan-
tum electrodynamics (cQED) [79-86], where photons inherent the saturation of a
single two-level atom due to strong interactions between the atom and the cavity
field. Alternative approaches have been explored based on slow-light-enhanced Kerr
nonlinearites [87-89], single dye-molecules [90], strong photon interactions mediated
by Rydberg atoms [91-94], enhanced nonlinearities in plasmonic systems [95,96] and
atoms coupled to wave guides [97-100].

Optomechanical systems, where light and mechanical motion are coupled by
radiation pressure (21,24, 26,27, 101-103], are a promising approach to realizing
strong photon interactions. Unfortunately no experiment has yet managed to reach
the single-photon strong coupling regime. Recently it was noted that, in the weak

coupling regime, there are still signatures of optomechanical nonlinearity [33-35];
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however, strong coupling is required to achieve significant nonlinear quantum effects
and deterministic photon interactions with optomechanics [31,32,104, 105].

In this article, we show that it may not be necessary to reach the quantum
strong coupling regime in order to obtain large single-photon nonlinearities. Instead,
in two-mode optomechanical systems with strong side-band resolution, the nonlin-
earity can be enhanced to the single-photon level by driving the system near an
instability. In particular, as the strength of the driving field increases, the frequency
of one of the optomechanical normal modes approaches zero and the associated har-
monic oscillator length becomes large [106]. The increased quantum fluctuations
associated with this mode result in an enhanced nonlinear interaction. We show
that when the mechanical mode is sideband resolved with respect to the cavity, the
enhancement in the nonlinear coupling can exceed the dissipation by an amount
scaling with the sideband resolution w,,/x, where w,, is the mechanical frequency
and & is the cavity linewidth. We demonstrate that this results in enhanced photon-
photon interactions by calculating the equal time, two-photon correlation function
g?(0) for weakly incident probe light. The presence of anti-bunching ¢®(0) < 1
in the cavity output field indicates the onset of photon blockade and, in this case,
significant two-photon nonlinearity. We infer a new parameter P = giw,,/r* (go is
single-photon optomechanical coupling), whose largeness is the relevant quantity for
determining the strength of the nonlinearity. We find that in current devices based
on optomechanical crystals, our approach could increase the observable antibunch-
ing by more than an order of magnitude.

In section 3.2, we describe the system using an effective hamiltonian and show
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that after diagonalization, the nonlinear interaction is strongly enhanced. In section
3.3, we take dissipation into account using the master equation and determine the
conditions for realizing strong quantum nonlinearity. Subsequently, in section 3.4,
we discuss the photon-blockade mechanism and present numerical simulations for
the two-photon correlation functions. In section 3.5, we discuss the feasibilities of

our scheme and do a case study in optomechanical crystals.

3.2 Model

The system we consider is shown in Fig. 3.1(a). It consists of a high finesse
optical cavity that has two spatially separated, degenerate optical modes (ar,ar)
at frequency w,. coupled at a rate J through a mirror with near perfect reflection
[107]. Both optical modes are also coupled to a common mechanical mode (c)
through radiation pressure with single-photon optomechanical coupling rate gy. In
the symmetric-antisymmetric mode basis a = (ay + ag)/V/2, b = (ar — ar)/V/2 the

Hamiltonian is (b = 1):
H = (w.—J)a'a+ (we+ )b+ wpcle — go(a'd + bla)(c+ ). (3.1)

In addition, there is also a dissipative interaction of the cavity and mechanical
modes with their environment, with a conservative term V = /k(ai,(t)a’ + h.c.)
and damping x (described below). The two cavities are assumed to have identical
damping rates.

In the presence of a strong drive a;,(t) = ain++v/k &pe_i“’t there is an an effective
linear coupling between the antisymmetric mode and the mechanical mode, and
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Figure 3.1: (a) Schematic of the coupled two-mode system. Displacements of the
middle mirror (via mechanical oscillations) couple the symmetric mode a (red) and
antisymmetric mode b (blue) as the left-right symmetry is broken. (b) Normal
modes of the coupled harmonic oscillator bilinear hamiltonian for A, = 5w,,, with
blue (green) line representing the higher (lower) energy branch b (d). As pump power
increases, the energy of the lower branch decreases, the effective potential becomes
flat and the associated harmonic oscillator length becomes larger. (c¢) Energy scales

for the pump, probe and cooling modes.
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also a residual nonlinear coupling between the mechanical mode and both optical
modes. The Hamiltonian in the rotating frame for the pump displaced oscillator

states (@ — a + a)) becomes [24]
H = Aga'a+ Apb'b 4 wycte — Go(b+ b (c+ ) — go(a'd + bla)(c + c1)(3.2)

where A, is the detuning of mode a (b) with respect to the pumping laser and
Go = goa = gooypk/ (A, —ik/2) is the pump-enhanced linear coupling. By choosing
an appropriate phase of the pump, we can make G real. In what follows, we make
the further assumptions that A, > wyy, such that the parameter n = w,, /Ay is much
smaller than 1. In this regime the hybridized polariton modes Eq. (3.4)-(3.5) retain
mostly their original photonic or mechanical character, reducing the deleterious
effect of optical loss on the ‘mechanical’ mode. We give the full expressions in
Appendix B.

The first four terms in H are bilinear in the oscillator modes and can be

diagonalized to give the normal modes (see Appendix B)
Hy = Ajata + (Ay + 0)b'b + wnCd'd, (3.3)

with the normal mode frequencies given in terms of the parameters § ~ r2w,,n/2
and ¢ = V1 —r2 to first order in 1. We defined the rescaled driving amplitude
r = 2Go/vVwmAy. As 7 — 1 the frequency of the lower branch goes to zero and the
mode effectively becomes a free particle, leading to enhanced quantum fluctuations
in this mode, as shown in Fig. 3.1(b). For r > 1, the normal mode frequency

becomes imaginary signifying the onset of the instability. For 0 <r <1 and n < 1,
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the normal mode operators are, surprisingly

b~ b—g¢mc+ay (3.4)
d =~ L(c—cT)jLE( +et)+ S mb — b (3.5)
2V/C 2 2 ' '

In this regime, b is mostly optical while d is mostly mechanical, to O(r,/7). Including

the nonlinearity, we can reexpress the normal-ordered Hamiltonian to first order in

n:

H = Hm—g%m@+ade+ﬂ)—g% iga+wxf+dﬂ+2m@43®

Near the instability, ¢ < 1, the effective optomechanical coupling go/+/C is strongly
enhanced. This approach is distinct from simply choosing a low frequency mechani-
cal oscillator to begin with because the mass and frequency of a mechanical oscillator
(of the same shape and material) are usually related to each other by w,, o< v/1/m,
so that the stiffness mw? remains constant. As a result, the optomechanical cou-
pling gy, which scales with the intrinsic position fluctuations x,,¢ = \/m, will
typically increase with frequency. This back-action induced softening has the ben-
efits of combining small mass and low frequency, so the effective coupling can be

enhanced substantially.

3.3 Nonlinear interactions and dissipations

In the normal mode basis, H contains five distinct nonlinear interactions:
blad + h.c., a'bd+ h.c., a'dd+ h.c., add+ h.c., (a+ a)dd. (3.7)
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When the frequency of the d mode is small, these nonlinear terms will destabilize
the system towards large mode occupation, which, together, with the cavity induced
decay will contaminate any few photon effects. To keep the system far in the stable
regime, we require go/v/C, gor/1/(? < W, which further constrains A, and ¢. In
addition, the mechanical mode must be close to the ground state, below we show
how this can be achieved with optomechanical cooling for the normal mode when
the heating rate 44 (defined below) is much less than . All together, to have a large

effective single photon optomechanical nonlinearity we require

Y L k< go/ /<K wml. (3.8)

This can be satisfied for large A, and small 74+ when

2
p=50%m . (3.9)

K2 K
Thus the condition for single photon nonlinearities is relaxed from gy > x to P > 1.
To treat the dissipation we use the master equation for the density matrix p

of the three-mode system
5 = —ilH. p) = (Dla] + D[bl)p — (30 + VDI + n D)), (3.10)

where D[A]p = 1/2{ATA, p} — ApAT for any operator A, 7, is the mechanical
heating rate, and 7y, is the thermal occupation of the mechanical mode in the
absence of the coupling to the cavity. In the normal mode basis, the jump operator
for the cavity and mechanical modes become b — b+ \/W (d—i— dT) /2 and ¢ — (d+
d")/2+/C++/C(d—d") /2, respectively, implying that dissipation of both cavity mode
b and mechanical mode c results in added noise on the d mode. Near the instability
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¢ < 1, the downward transitions (emission) and upward transitions (absorption) in

the d mode occur at the respective rates

Y =gk + 22 (20m + 1+ 20), (3.11)

Since 7, — 7 = Ym < 74, the absorption terms will tend to excite the d mode to
high occupation numbers roughly given by ng ~ v4/(v, — ) [24].

A natural way to overcome this difficulty is to add optomechanical cooling
to the d mode. As shown in Fig. 3.1(c), we consider using another pair of cavity
modes e, f separated by the cavity free spectrum range (FSR) to induce sideband
cooling of the d mode. Driving mode e enhances the coupling between mode f
and the mechanical mode ¢ by an amount «., the steady state amplitude of e.
Moving to the optomechanical normal mode basis, we get the additional terms in
the hamiltonian:

Acete + Apfff — Dan(f + f1)(d + d). (3.13)

V¢

We see that the coupling is further enhanced by 1/+/¢ because of the increase of
harmonic oscillator length. Similar to the usual single-mode optomechanical cooling,
when Ay = w,,,(, the d mode is cooled by the f mode [24] and the system quickly

reaches steady state.

3.4 Photon-blockade and numerical simulations of ¢2(0)

The nonlinear terms will have the strongest effect when one of the interactions
in Eq. (3.7) is tuned into resonance. Here we focus on the resonant interaction
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Figure 3.2: (a) Dotted line shows ¢?(0) of the b mode as a function of P with
go =K (s0 P =wy/k), a. = 0.1 and 5 = 0.02x. We restrict the mode occupations
to be less than 4. When P > 40, ¢*(0) roughly scales as 1/P (black line). The
black square represents the value of g?(0) obtained in Ref. [34] when w,,/k — oo.
For comparison, the ¢g?(0) in Ref. [32], when gy = k, increases linearly with PZ.
(b)The level diagram of the system when the interaction b'ad becomes resonant.
The probe field drives the lower energy state of the first excited state on resonance.
(¢) Evolution of the equal time, two-photon correlation function g®(0) (red lines)
and the population in the d mode ng = <d*d> (blue lines), after the probe field is
turned on (P = 500, gy = K, 1y, = k/VP and £ = 0.02x). Dotted lines show the
result for a, = 0 indicating cooling on d is OFF, while solid lines are for a, = 0.1

indicating cooling is ON.
45



bfad, which has the resonance condition: Ay = A, + w,,¢ (Here Ay = Ay + § is the
energy of the normal mode b). In the occupation number basis |n,, 7, n4), the 2-fold
degeneracy of the first excited state is broken by ¢, and the 3-fold degeneracy of the

second excited state is broken by v/6¢n due to the 3-body interaction bfad + h.c.:

|07 ]-a0> & |]-707 1>7 Aw : j:gnl

\/>gn1

10,2,0) <290 11,1, 1) <225 12,0,2), Aw : 0, £v/6gm

with g = go/v/C. Since b has a strong overlap with the antisymmetric cavity
mode, we can optically probe it as illustrated in Fig. 3.1(a). Similar to the Jaynes-
Cummings nonlinearity in cQED system [79], when probing the b mode at frequency
wp, = Ay — g with strength 5, we can observe a photon-blockade effect because
of the anharmonicity of the ladders, which is shown in Fig. 3.2(b). The signature
of the photon blockade will be in the antibunching of the output light, i.e., when
g?(0) < 1, where ¢?(0) is the equal time, two-photon correlation function defined

by
@) <lfr )bl (7 + £)b(T + £)b(T))
(bt (T)b(7) >2

for a given evolution time 7. Fig. 3.2(a) shows that, for optimal parameters described

g (3.14)

below, the minimum value of ¢(®(0) ~ 1/P, thus the system exhibits a strong single
photon nonlinearity even when gy < k.

Fig. 3.2(c) shows the typical evolution of ¢?)(0) with 7 obtained from numer-
ical simulation of the master equation. The initial condition has all modes in the
vacuum state. Without cooling the system reaches a quasi-steady state with strong
antibunching before it is eventually pumped to states with a finite population in d
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as shown by the dashed blue line in Fig. 3.2(c). However, in the presence of cooling
the d mode occupation remains small and the system reaches a steady state with

strong antibunching.
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Figure 3.3: (color online). Contour plots of the minimum ¢ (0) in steady state
versus the experimental control parameters Ay = A;/k and ¢. (a) P = 100, w,,/k =

P; (b) go/k = 0.1, wy,/k =500, P =5 and a, = 21/C.

To achieve single photon blockade using the scheme illustrated in Fig. 3.2(b),
we also need to satisfy the inequalities given in Eq. (3.8), which requires optimization
of the system parameters. After rescaling by x and taking the resonance condition
Ay = A, + wp(, there are four independent parameters: (P, w,,/k, Ag/k, (). P and
wm /K are device-dependent parameters we cannot tune, while A;/x and ¢ can be
controlled by tuning the frequency and amplitude of the strong pumping laser. A
simple theoretical analysis can be done for f; < k by neglecting quantum jumps in
the master equation (see Appendix C for details). This gives the scaling in the quasi-
steady state regime g2(0) ~ &%/g? + g2 /w?,¢?, which is optimized when ¢ ~ 1/v/P
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and ¢ (0) ~ 1/+/P. Numerical simulations of the master equation, however, show
that the optimal antibunching scales as 1/P, as seen in Fig. 2(a) and in the full
contour plots of ¢(®(0) versus A; and ¢ shown in Fig. 3. This anomalous scaling is
caused by pumping into the dark states |0,0,n). The region of the parameter space
for optimal performance is roughly given by Aj/x > P? and 1/ VP < ¢ < 1. These
results demonstrate that near the instability, the figure of merit for observing the

photon blockade is P > 1 and not simply go/k > 1.

3.5 Experimental considerations and case study

There is an additional constraint that, in order to use the resonant b'ad interac-
tion term, the photon tunneling rate J must be much smaller than the mechanical
frequency w,,. For the membrane in the middle setup, these conditions may be
challenging to achieve due to the high reflectivity required for the membrane. This
could be circumvented by instead utilizing the a'dd nonlinearity, which has no such
requirement. One can also consider using differential modes in ‘zipper’ optomechan-
ical crystals [108], where the photon tunneling rate can be tuned over a wide range
by controlling the separation between the two cavities.

Finally, successfully working near the instability requires the classical power
fluctuations in the pump laser to be small enough to prevent the system from crossing
the instability. More precisely, the amplitude fluctuations in the pump must be less
than the instability parameter ¢ (defined below Eq. (3.3)), which has an optimum

value greater than 1/ V/P; thus, for P less than 10, this requires stabilizing the
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pump power below the 5% level, which is readily achievable.

Case study — Experimentally these effects could be observed for systems with
strong sideband resolution w,, > k and relatively large single photon optomechan-
ical coupling gy ~ k. Hybrid photonic-phononic crystals are a promising route to
realize both these constraints [27], as are mechanical membranes placed in the mid-
dle of a high-finesse optical cavity as illustrated in Fig. 3.1(a) [101]. State of the
art photonic-phononic crystals have achieved optomechanical coupling go/27 above
1 MHz [109,110] and mechanical frequency w,,/2m ~ 10 GHz [111]. Optical quality
factors as high as nine million have also been reported in silicon photonic crystal
cavities, which gives cavity decay rate of k/2m ~ 20 MHz [112]. In such a case with
go/k = 0.1 and w,,/xk = 500, P can be as large as 5 in current devices. Fig. 3.3(b)
shows the full range of antibunching obtainable for this P, in the optimal case we
find that it can be as small as 0.8, more than an order of magnitude improvement
compared to what would be expected away from the instability ~ 0.99 [35]. To
satisfy the condition v < K, we need wy,/4CA, < 1 and 7,,74,/2¢ < K, which
imply Ay > wy,/4¢ and 1y, < 2(K/Vm. This gives an minimum requirement on
the Q - frequency product: Q,, - wp/27 > Wy, /2(k - kT /h, which requires cryogenic
temperatures. In principle, room temperature operation is possible for mechanical

oscillators at frequencies above 10 GHz and quality factors above 10°.
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3.6  Conclusion

We have presented a scheme to realize few-photon interactions in strongly
driven, two-mode optomechanical systems. Our approach suggests a new figure of
merit for realizing strong optomechanical coupling and demonstrates that current
devices, previously thought to have weak coupling, may be able to be pushed into
the regime of strong single-photon nonlinearity. This would allow one to achieve de-
terministic entanglement of light in optomechanical systems, which has far-ranging

applications in quantum information science.
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Chapter 4: Cooling a harmonic oscillator by optomechanical modifi-

cation of its bath

4.1 Introduction

Recent years have seen dramatic experimental and theoretical progress in op-
tomechanics [21,24], ranging from ground state cooling [27] and squeezing [113,114]
to quantum nonlinear optomechanics [31-36]. These advances rely upon improve-
ments in optomechanical coupling, particularly the single phonon-single photon cou-
pling rate, and upon increasing mechanical quality factor, which enables lower heat
loads and corresponds to higher sensitivity and longer quantum coherence times.
However, the longer-term target of single photon nonlinear optics with optomechan-
ical systems remains out of reach. Furthermore, for many sensing applications, the
thermal noise remains a fundamental limit for relevant resonator designs, regardless
of progress in the use of quantum correlations [107,113,114], as typically the signal
to be sensed is transduced to a force on the mechanical system which is in competi-
tion with the quantum Brownian motion-induced Langevin force from the thermal
bath.

In the present work, we shall focus on thermal noise reduction for mechan-
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ical resonators, utilizing the standard tool box provided by optomechanics. This
is crucial for improving the signal-to-noise ratio of mechanical devices, operating
either in the classical regime or in the quantum regime. We are motivated by re-
cent advances in phononic-band gap engineering as a principle for improved quality
factor [110,111,115] — but here, we engineer a dissipative band-gap dynamically via
the optomechanical interaction, rather than a constant bandgap during fabrication.
Specifically, we introduce a generic coupled-oscillator model to describe mechanical
systems whose damping is primarily via elastic wave radiation through the boundary,
i.e., clamping loss. We then consider how optomechanical coupling to the clamping
region enables dynamical control over the coupled mechanical resonator. This leads
to the counterintuitive outcome: increasing optical power simultaneously reduces
the temperature and linewidth of the mechanical mode, in contrast to direct op-
tomechanical cooling. After introducing this model, we describe a specific resonator
design that enables testing of these concepts using current techniques, and analyze
the regime in which clamping losses are likely to dominate, finding that a low tem-

perature and high mechanical frequencies our approach may find wide application.

4.2 Toy model

We consider a toy model of two coupled quantum harmonic oscillators with
annihilation operators a and b, resonant frequencies w, and wy,, and a coupling
strength between them A. FEach harmonic oscillator is also coupled to its own heat

bath at temperature T, and T, with rates 7, and 7,. In addition, optomechanical
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cooling is introduced to oscillator b via coupling to a red detuned optical mode ¢

Yo
MNARAAL T

Figure 4.1: Schematic of the coupled harmonic oscillator system, with optomechan-

with frequency w,. and damping k, as shown in Fig. 4.1.

T, \/\/\73\/\6 A

ical cooling on oscillator b. We are interested in the regime where a couples weakly

to its heat bath, which means v, < X, 7.

The effective Hamiltonian of the three mode system when pumped with a laser

follows immediately (with & = 1, and neglecting the weak nonlinear correction):

Hyg = —Acc+weala+wb'd+ Ma+a)(b+ b

—ago(b+ b (c+ch). (4.1)

where a = E/(iA—£/2) is the pump-induced coherent state in the optical cavity and
assumed to be real without loss of generality (by choosing an appropriate phase for
the pump strength E), gy is the quantum optomechanical coupling, and A = w, —w,
is the detuning of the pump laser. We consider w, ~ w, ~ —A, and include
mechanical damping of a and b with rates ~,, 7, and optical loss with rate s [24].
Under the rotating wave approximation, the Heisenberg-Langevin equations in the

input-output formalism are as follows:

¢ = ilc— gc + iagob + VK, (4.2a)
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0 = —iwea— %a — A + \/Fatin, (4.2b)
b = —iwyb— %b — iAa + i goC + v/ Vobin- (4.2¢)

This set of linear equations can be solved by moving to the frequency domain. We

successively solve for ¢(w), then b, then a. For example, c¢(w) = %‘ We

immediately set ¢ &~ -1 (iZb+vTc;y) in the sideband-resolved limit with |A +w| <

ago

/2 where I' = 4|agy|?/k is the optically-induced damping of mode b. Continuing,

we find
X, b(w) = —ida + /Yobin + ivTei, (4.3a)
where x, = [—i(w — wp) + ( +1)/2] " (4.3b)

is the susceptibility of mode b for A = 0.
Finally, we find for mode a

Xo '@ = alin — XA <\/%bin + z'\/fcin> (4.4a)

1

with y, = [—i(w — W) +7a/2 + Xb)\Q] B (4.4D)

Examining these equations, we see that mode a’s resonant response, as described
by the susceptibility y,, have a frequency and damping that depend, via A%y, upon
the properties of the optomechanically damped mode b. Specifically, examining the

real and imaginary components, we have

A2 (w — wp)
A , 4.5
= L aR TP o
A2y, +T
Y = Yot (e + 1) (4.5b)

(w—wp)? + (1 +T)?/4
Let us examine the particular scenario when the cooperativity between a and

b satisfies C,, = % > 1 and 7’;—? > Cq. This corresponds to the intrinsic
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damping of mode a being dominated by its coupling through b to b’s bath, while
simultaneously being able to examine b’s response as broader than a’s. We will
further focus on |wp, — wy| < % + I', as provides the maximum modification of

damping. This allows us to expand w) ~ w, and v, ~ =, + [, with ', = %’fF

When the optomechanical damping of mode b increases, the linewidth of mode a

becomes narrower, and eventually reaches its intrinsic damping v,. We finally get

Valin + 14 /T yﬁfir bIn + 4 /F 7 +F Cin
(4.6)

i(w—wy)+ (Ve +Ta)

This regime (damping of a primarily via mode b, which in turn is damped
optically by a sideband-resolved coupling to mode ¢) lets us examine the effective
temperature. Specifically, using the input noise correlations of by, in the frequency

domain,

<b§n(w)bm(w')> = Ad(w+ W) (4.72)
<bin(w)bjn(w')> = (A+1)dw+) (4.7b)

(e"/#5T _ 1) is the average phonon occupation number of a harmonic

where n. =1/
oscillator of frequency w when it is in thermal equilibrium with a heat bath at
temperature 1. We have the same for a;, and ¢;,, and we assume T, = T, =
T.=T. The optical frequency is many orders of magnitude higher than mechanical
frequency, so at the same temperature, the photon occupation number of the optical
environment is completely negligible. Now we find the average position fluctuation

neg + 1/2 = ((a + a')?) /2 (since (n|(a + a')? |n) = 2n +1) to be

Yol + Ty <F1b% ﬁ)
Yo+ Ta

Neff =
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where n is evaluated at w,. This expression is also consistent with the result from
detailed balance relation [11]. We can minimize this occupation by a setting the

optomechanical cooperativity Com = '/, of b to

COM%CBME \/1+Caba

which gives

*

N 2

n 1+V1+Cy

Thus in principle even ground state cooling is achievable, if the mechanical oscil-

lator cooperativity Cq, = 1672, Curiously, this cooling arises with reduction of the
linewidth of mode a, with the limiting linewidth v, + I'* = v,4/1 + Ca.

Finally, to confirm these approximations, we numerically examine the same
regime, but without making the rotating wave approximation or any narrowband
approximations — this enables us to include counterrotating terms and their as-
sociated heating. We plot the rescaled position fluctuation spectrum S,,(w) =
fj;o dte™* (z(t)z(0)) and rescaled effective temperature Tog/T below in Fig. 4.2.
We find that when goa, A\ < w,,w, our approximate theory and the exact results

are in agreement.

4.3 Example implementation

To design an optomechanical system that captures the main features of the
toy model, we need three basic components: i) two coupled mechanical resonators;
ii) one resonator is limited by thermoelastic damping, and the other is limited by
clamping loss; iii) optomechanical cooling primarily on the second resonator. With
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Figure 4.2: (a) Rescaled position fluctuation spectrum for different values of optome-
chanical cooperativity Coy, with the mechanical oscillator cooperativity chosen as
Cab = 8; (b) Rescaled effective temperature as a function of Coy for C,, = 50 and

different values of |(w, — ws)| /7e-

these goals in mind, we can design a system that is shown in Fig. 4.3. In this design,
there are two nearly identical quarter-wave mechanical resonators on the left arm
and right arm of a large beam resonator, denoted as ay, and agr. The lengths of the
two arms may not be exactly the same (or the left-right symmetry may be broken
by defects). This asymmetry leads to different resonant frequencies for the two

resonators, with wy, = wy(1 + €) and wr = wy(1 — €), as shown in Fig. 4.3.
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Figure 4.3: (a) Optomechanical design consisting of two similar quarter-wave beam
resonators, nominal length Ly, coupled through a center support region, width w,
containing a photonic crystal optical structure. (b) Simulated symmetric (top) and
antisymmetric (bottom) eigenmodes, € = 0. Insets show the strain deformation of a
single photonic defect (envisioned as part of a “zipper” photonic crystal resonator)
that would lead to a strong strain-induced optomechanical coupling only between
optical and mechanical modes of the same parity. (c,d) As the asymmetry, €, is in-
creased, the antisymmetric and symmetric modes are increasingly coupled, shifting
the simulated eigenfrequencies and clamping losses (red squares, blue circles), con-
sistent with fits to the theoretical model of Eq. (4.1) (black). Simulation parameters
are Ly=20 pm, h=0.3 pum, and w = 0.5 pum, corresponding to wy = 27 x 1.102 MHz
and 7,/2 = 27 x 70 Hz clamping loss for an individual arm fabricated from silicon

nitride.

For the purpose of force sensing, which we are going to discuss later in the
paper, we also include a small atomic force microscope (AFM) tip on the right
arm of the beam structure in our simulation. It has a left and right optical mode
that should hybridize into symmetric and antisymmetric modes that couple to the
corresponding mechanical modes.

To examine the mode structure, we consider coupling between the left and right
sides through the support structure with a strength J. We see that symmetrical
coupling of az, and ay through the support leads to normal modes a = 1/v/2(ar+ag)
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and b = 1/v/2(a;, — ag), with the former having no clamping loss for ¢ = 0 and the
latter a clamping loss v, &~ J?p (by Fermi’s golden rule). Physically, the symmetric
mode has destructive interference which prevents excitation of support structure
and the associated clamping loss, analogous to the reduction in damping observed
in tuning-fork resonators, which can be seen in Fig. 4.3(d).

Meanwhile, the asymmetry couples a and b together with a rate A\ = ewy. In
addition, there can be some intrinsic damping of mode a via, e.g., thermoelastic
loss with a rate 7,, while we account for most of the damping of b via clamping
loss to the quasi-mode with rate 7,. Under the rotating wave approximation, the
mechanical parts of the Hamiltonian are the same as those in Eq. (4.1).

We notice that the coupling rate X is proportional to the dimensionless asym-
metry € = |L;, — Lg| /(Lr+ Lg) in the length of the two arms of the beam resonator.
In principal, A could be engineered in a wide range by fabricating resonators of dif-
ferent geometries or by temperature tuning of the length and speed of sound in the
material.

In our proposed structure, the optical modes ¢ and d are the anti-bond and
bond fundamental modes in a “zipper” photonic crystal cavity [116] in the center of
the beam (the support structure), with odd and even parity respectively. As shown
in the simulation in Fig. 4.3(b), the anti-bond optical mode ¢ couples mostly to the
anti-symmetric mechanical mode b, while the bond optical mode d couples mostly to
the symmetric mechanical mode a. Experimentally, mode ¢ can be driven strongly
to achieve the desired optomechanical cooling, and mode d serves as a weak probe

mode in order to make measurements on mode a.
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As the toy model suggests, the damping of oscillator a is assumed very weak
(Va < Y, A), so that the optomechanical cooling of oscillator b could be effectively
“exported” to a through phonon tunneling. This naturally leads us to the ques-
tion: what kind of oscillator design has this property? There are two main sources
of mechanical damping in micro- and nano-mechanical resonators [117]: i) Bound-
ary damping, or clamping loss, e.g elastic wave radiation from the material to its
base through the boundary, and ii) material damping, which includes thermoelas-
tic damping (TED), phonon-phonon interactions. The clamping loss represents the
coupling from a resonator to its base, since phonons are exchanged through the
boundary, while thermoelastic damping is the major contribution to the internal
damping rate of a resonator.

Clamping loss has been studied extensively in the literature [118-121]. For a
beam resonator where the thickness of the beam resonator is much smaller than the
wavelength of the elastic wave propagating in its support, the flexural vibration can
be described using the ideal beam theory. The support of clamping-free (C-F) beam
resonators is usually modeled as semi-infinite and infinite thin-plate, respectively,
with the same thickness as the beam resonator; all the vibration energy of a beam
resonator entering the support structure is considered to be lost. It is the vibrating
shear force that induces this energy loss. In [119], they studied the clamping loss
using elastic wave radiation theory and found the quality factor of clamping-free

(C-F) beam resonators to be:

Qc-r o< (L/h)* (4.9)
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where L is the length of the beam and A is its width.

Secondly, we look at the thermoelastic damping [122,123]. Phonons traveling
through a large elastic material will experience damping due to their nonlinear
interaction with a surrounding bath of phonons. In the diffusive regime where
the mean free path of these thermal phonons is much smaller than the wavelength
of the acoustic mode, the interaction between the phonon mode and the thermal
bath is captured by the material’s thermal expansion coefficient (TEC), defined as
2= which is temperature dependent. According to [124], the quality factor

corresponding to this damping mechanism is given by

Ea*T
Cyp

f(h/ho), (4.10)

-1
QTED -

where E' is the material’s Young’s modulus, T is the temperature, C), is the heat ca-
pacity at constant pressure, and f(h/hg) is a beam geometry function parametrized
by a critical beam width hy.

A detailed numerical estimate of these losses for a specific mechanical resonator
such as SiN is possible, but here we remark that for short beams, the clamping loss,
which grows as h?/L? will always tend to dominate over the thermoelastic damping.
For example, for a resonator with frequency €2/2m = 1 MHz, we have hy = 6.546 mm.
When h < hg, we find f(h/ho) — 5h*/h%, which gives us a very high Qrgp (well
beyond the usual material limits). In Appendix C, we show the numerical result for

quality factor of the two types of damping mechanisms for different parameters.
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4.4 Analysis of force sensing

The proposed scheme for reducing the thermal load of the mechanical oscillator
is useful for force sensing, where thermal noise is a main obstacle towards building
ultra-sensitive force detection devices. In our proposed structure Fig. 4.3(b), the
mechanical mode of interest a couples to anti-bonded weak probe mode d, which
has different parity from the bonded strong pump mode ¢ and also higher frequency.
Measuring the optical output signal S(w) from d allows the sensing of force f(w)

experienced by mechanical mode a, as shown in [107]:

S(w) = xxXain(Ww) + xvYan(w) + xp[Fn(w) + f(w)], (4.11)

with X, Y the quadratures of optical field and y the susceptibilities for optical and
force inputs.

We find that there exist a simple relation between the ultimate sensitivity (in
units of N/v/Hz) for a mechanics based device and its thermal noise level, which

can be calculated as the power spectral density of thermal fluctuating forces:

W) = /Sr \/ / dtet (B () Fin(0)) (4.12)

In the case of our coupled harmonic oscillator system, if oscillator a is used for force
sensing, then we get better sensitivity because of the reduction in its thermal load.

The force on a harmonic oscillator is defined as

(@ —af), (4.13)

so the corresponding fluctuating force in frequency domain can be found from

63



Eq. (4.6)

hmwa Yo
En — - aWin — bin — h .
(w) i1/ [w/va +1 <%+F> c]

(4.14)

Using the noise correlation functions Eq. (4.7), we can calculate its spectral density

in the narrow band limit as

Spr(w) = / Ao’ {| () Fn (o))

hmw, Vo _
= AT ——= )| 2n+1
{7 (%—FF)} 20+ 1)

2
~ |t 4175)2] o
— { + 1+COM ] my.ksT (4.15)
where we recall Com = I'/7, is the optomechanical cooperativity and C,, = %jb

is the cooperativity between a and b. When the optically induced damping rate
I' is large compared to 7,, we have substantial noise reduction and thus improved
sensitivity for the device compared to conventional optomechanical cooling. In the

latter case, we could have the noise floor of Eq. (4.15) but with Con = 0.

4.5 Conclusion

Here we proposed an efficient scheme for cooling a harmonic oscillator by
decreasing dissipation via optomechanical cooling. We studied the practical condi-
tions to realize this cooling scheme, and also identified a realistic optomechanical

design that has the potential to realize it. Potential applications include mechanics
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based force sensing, and other related areas where reducing the thermal load via

non-conventional techniques is need.
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Chapter 5: Chiral phonon theory in 1-d optomechanical systems

5.1 Introduction

The examination of quantum optomechanics, which studies the radiation pressure-
mediated interaction between light and mechanical motion in the quantum regime
[4-7], has become accessible via crucial experimental advances [21,22,24], as evi-
denced by recent results such as the ground state cooling of mechanical resonator
[25-27], the generation of squeezed states of light [28-30], and studies of single-
photon nonlinear optics [31-36] in various optomechanics platforms. An example
optomechanical interaction occurs in Brillouin scattering (BS), where acoustic vibra-
tions are induced by acoustic-optic coupling [125-127], and optomechanical cooling
via Brillouin scattering (BS) has already been demonstrated [128].

In a recent experiment [Appendix D], the chiral behavior of phonons in silica
microsphere resonator were observed. Kim et.al. showed that the linewidth of
phonon propagating in one direction that is optomechanically cooled via forward
Brillouin scattering has been broadened, while the linewidth of phonon propagating
in the opposite direction is narrower. This signature of chiral phonons — broken
symmetry of the scattering properties of forward/backward propagating phonons —

becomes more evident when the input optical power of the control beam is increasing.
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As an analogy to emerging studies of chiral photonics interacting with emitters
[129-131], the observed chiral phonon broken symmetry in microsphere resonator
could be a candidate platform for the study of chiral networks of phononic modes.

Here we introduce a model of loss by considering the high angle elastic scat-
tering between a particular high quality factor (Q) mechanical mode of interest and
a continuum of lossy bulk mechanical modes. We suggest that when the optical
coupling cools the co-propagating high-QQ and bulk mechanical modes, the optical
modification of scattering between these bulk modes and the counter-propagating
high-QQ mode simultaneously improves the quality factor and reduces the thermal
load of this high-QQ mode, leading to the dynamical creation of a cold ‘phononic
shield” [132].

We detail our theoretical model in Section II. We then calculate the linewidth
and effective temperature of phonons using linear response theory in Section III to
explain the key findings of the experiment [Appendix D]. Finally, we fit the linewidth

data of the experimental and estimate some of the key parameters in Section IV.

5.2 Model

5.2.1 Photon-phonon interaction

We consider a model of acousto-optic interaction in a multi-mode whisper-
ing gallery-type resonator that supports co-propagating photon and phonon modes.
Photons from an adjacent waveguide are interfaced with the resonator optical modes

through evanescent coupling. Phonons that occupy a surface acoustic wave resonator
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mode, are annihilated via forward Brillouin scattering process along with the cre-

ation of anti-Stokes scattered photons as shown in Fig. 5.1.

(a) (b)

—\I. 3 A
Microsphere Optical WGMs | Pump
resonator in (W, k) Z| laser 00 (w, k)
v o e
(w, k)
(W, k) .
] anti-Stokes
* scattering
Acoustic WGM v
in @, 3 (@, )
= k

A4

Figure 5.1: (a) The generation of anti-Stokes photon (blue) and absorption of
phonon (red) from a pump photon (green) via forward Brillouin scattering pro-
cess. Due to symmetry, the resonator supports both degenerate pairs of clock-wise
and counter clock-wise photons and phonons. (b) Dispersion relation for phonon

and photons and coherent acousto-optical interaction.

We can use the rotational symmetry of the system to write the displacement

field ¢ and electromagnetic field ¢ as the following forms:

¢ = Z Fam(F) [bgme€™™ + b_gme ™" + H.C.] (5.1)
q,m

U= gem() [ckme™ + cpme ™+ H.C (5.2)
k.m

where f is a mode profile function, b and ¢ are the annihilation operator for phonon
and photons respectively, and ¢, m are the quantum numbers representing different
momentum and angular momentum eigenstates. The interaction between ¢ and

comes from acoustic-optical effect: a change in the susceptibility e of the material
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because of the strain from the displacement, so it can be calculated as

1 Oe
V| &Pro—s|yf 5.3
[y pstot (5.9
where the strain field is related to the displacement field by s = 0.¢, where r is

the radius of the ring, and we take de/Js to be a constant determined by material

properties. In explicit form, the interaction is

1 86 . igr iqr
Vo= 20s dgr;; fam(7)iq (bq,me T = bogme™ )

_,h\/wkwk/ i e i(k—k")r
X Z gk,m(mgk’,m’<r)m [Ck:,mck’,mfe (kK +Ck,mCL,m/€ =K y H.C.|,

k,k! m,m/

(5.4)

where Vol is the effective mode volume. The integral over the exponential factors
gives us a mode-matching condition for different photon-phonon interaction pro-
cesses, e.g. bqvmckmc; . for creating a new photon from annihilating a phonon and

a photon pair.

5.2.2 Quasi-mode picture

We consider two nearby (in frequency) optical modes of the resonator that
couple to the vibrational excitations of the underlying medium, through Brillouin
acousto-optic scattering. Labelling these modes cp (for pump) and ¢ (for the higher

frequency anti-Stokes probe mode), we write the optomechanical interaction
V= Z(bk + b Y iche 4+ Mcfep) + .. chep + .. e (5.5)
k

where )\, describes coupling between these modes, which will naturally account for
quasi-phase matching and other constraints. The terms with elipses in front we

69



neglect due to a lack of phase-matching.
Upon strong optical pumping of the cp mode, we can look at the fluctuation
away from the classical steady state with amplitude «, cp — a + cp, and similarly

for by. Thus, at order a > 1, we find (with a trivial gauge transform of ¢) [21,24]

Vo= adi(by +b,)(c+ch) (5.6)
k

where now \; € R. We define the pump-enhanced coupling Ay = |aAg]|.

Let us single out two high ) mechanical modes representing a time-reversed
pair of interest, which has an intrinsic degeneracy for clockwise (CW) and counter-
clockwise (CCW) propagation, relabeling them a, and a_. These are also coupled
to the by, modes in a quasi-mode theory of mechanical damping. We have ¢ cou-
pled to ay but not to a_, again due to phase matching (momentum conservation).
The scattering of phonons off disorder within the material can mix phonons with
different momenta [133], but we neglect the same-same scattering by, <> a since it
does not break chiral symmetry, and so should be included in the definition of the
achiral modes. The only relevant term is the b, <+ a_ scattering. We now want
to understand the mediated interaction between a_ and ¢ through the coupling the
bulk modes b,.

Moving to the Fourier domain, and adding a weak thermalization of b, modes
with rate n, we have the equations of motion in the rotating wave approximation

(A <0,]A] > k) [39,46,134]:

—ive = iAc — k/2¢ + VECip — ZZ Agby, (5.7a)
k
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—iva_ = —lW,a_ — ZZ o (5.7b)
k
—’il/bk = —iwkbk — 7]/2bk + \/ﬁbk,m — ZAkC — z',uka, (57C)

with v the Fourier frequency, w,, the mechanical frequency, x the optical damping,
i the coupling between a_ and by.

We can solve the by equation, getting

bi.in — 1ALC — iura_
SIS Aebe = i3 A Y i ke
k k

i(wk — V) +7]/2

At
_O‘Z@'( el a_ +VThy, (5.8)
k

where we define a new input field

VT = —iay_ Aw Al (5.9)

wi — V) +1/2 Phsn

We see that the ¢ equation Eq. (5.7a) has a new damping term due to the real

part of the sum over k. Converting the sum to an integral over bath frequencies
>r = | p(w)dw, we can perform the integral within the rotating wave approximation

(allowing us to take the lower bound of frequencies to minus infinity) and recover

)\% = w CU2 1 )
) oy s /”< e ey ey

k

= ap()Aw)?* +P(...) (5.10)
where we have the principal value part of the integral leading to a frequency shift,
while the other component leads to decay of the ¢ mode. This defines A = 2ra?p(v)A(v)?.
We also get a damping of a_, v, = 2mp(v)u(v)?, which leads to the backscatter-
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induced loss of phonons. However, there is a cross term in the damping,

ax = 2r A (v)u(v)p(v) (5.11)

suggesting interference between two decay pathways. We can understand that the
effective ¢ and a_ equations of motion are generated by an effective Hamiltonian

with two imaginary terms for damping:
T
—ir/2ctc — i (\/Kc + yafa_> (\/Kc + 4 /%,a—> /2 (5.12)

That is, damping occurs for a superposition of the ¢ and a_ mode.

5.2.3 Simpler version of the model

This relatively complicated model above can be reduced in the rotating-wave
approximation (RWA), narrowband limit to a much simpler model. Specifically,
let us define a new self-consistent quasi-mode b. We then have for its equation of

motion

—ivh = —ivb —T'/2b+ VTb;, —i(alc + ja_) (5.13)

where we see that the frequency dependence drops out — due to the continuum
nature of the actual by modes. We get the same physics as the above model if we
take v, = %. The continuum model of the quasi-mode also suggests that its damping
rate is large compared to the intrinsic damping rate for phonons: T" > ;.

We can arrive at a simper description of the system by defining the quasi-mode
b from the continuum model and by using the rotating-wave approximation(RWA)

in the narrowband limit. The system supports both degenerate clock-wise (CW)
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and counter clock-wise (CCW) phonons because of rotational symmetry, so we have
the high-QQ mechanical modes a4 and the lossy quasi-modes by, with + stands for
CW mode and — stands for CCW mode. We make the following assumptions based

on the continuum model:

1. phonon backscattering occurs between high-Q mode and the quasi-mode (a; <—
b_, a_ <— by) with strength Vj, and between modes of the same type

(ay <— a_, by <— b_) with strength V.

2. the forward (reverse) optical mode c; () couples to the high-Q mode a; ()
and the quasi-mode by with different weights. The forward optical mode
cy couples to ay via direct optomechanical interaction with strength G = aA
and couples to the quasi-mode with strength agy, and the backward optical
mode c_ couples to a_ with strength S\ and couples to the quasi-mode with

strength [go.

3. the mechanical modes a,_) and by (_) have different damping rates v and T’
with v < I' | but the damping is symmetric between the 4+ modes. We also
assume that I' is in the same order as the optical loss rate x, both of which

are much larger than ~.

A model with these assumptions is shown below in Fig. 5.2(a), and its effective

hamiltonian of the system is given by

Hyg = —Alche; +ce ) +wnm(alay +ala ) +wp(lby +00-) + acl (Aay + goby) + hec.
+8c (Na_ + gob_) + hc. + Vo(alb_ +al by +he) + Vilala +blb +he)
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B3go Vo a

Figure 5.2: Simplified multi-mode theory of optomechanical interaction and phonon

(b) 2

scattering. (a) For each propagating direction, a quasi-mode b and a particular mode
a are coupled to the driving field ¢ with different rates. Phonon back-scattering hap-
pens between the two directions. (b-c): We neglect the phonon scattering between
the same species (the V; lines) and also assume that the optical driving fields couple
to the quasi-mode and particular mode separately, since the driving field is very

strong. With these assumptions, we can break the loop in a into two sub diagrams.

r
—zg( fey+cle)— i%(aimr +ala ) - iE(bib+ +0' b)), (5.14)

where the optical and mechanical loss are modeled by anti-Hermitian hamiltonian.

Here we used a nominal frequency wy, for the quasi-modes b, but when we go to the
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Fourier domain, its frequency dependence will drop out, in the sense that w, — v.
While the dynamics of the system can, in principle, be solved numerically, the
loop structure in this coupled six-mode system will make the result quite complicated
and it is hard for us to interpret the main physics in the system. We assume the gg
parameter is larger than A, such that the optical field couples more strongly to the
bulk modes b.. We can then break the loop into two pieces by cutting the wavy
lines representing V; interactions, both of which consists of two mechanical modes

and two optical modes, as shown in Fig. 5.2(b-c).

5.3 System dynamics

5.3.1 Linear response

We now focus on Fig. 5.2(b) and Fig. 5.2(c) to calculate the linewidth for
forward phonon a, and backward phonon a_. In the experiment [Appendix D], the
reverse pump power is about 10 times smaller than that of forward pump, so we
neglect the effect of reverse optical mode c_ first. For Fig. 5.2(b), as shown in our

toy model, we have

Hyy = —A(chey +cle ) +wnala +wblb,

+ago(chby +bley) + BAa_cl +cla_)

+Vo(al by +bla ) — ig(ciq +cle)
Y I
—z§a*_a_ - z§b1b+. (5.15)
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We write down the Heisenberg-Langevin equations for each mode and transform to

frequency domain to solve the equations.

—ive, = ilAcy — gc+ + VK —iagoby, (5.16a)
—ive_ = ilAc_ — gc_ + VEe™ —ifAa_, (5.16b)
—iva_ = —iWna_ — %a_ +/ya™ —ifAe. —iVoby,
(5.16¢)
. . r n .
—ivb, = —ivb, — §b+ + \/fblf —iagocy — tVoa_.
(5.16d)

As shown before, the frequency dependence of the quasi-mode by drops out in the
Fourier domain. We now proceed to eliminate cy, c_ and b, to understand the

behavior of a_. From the equation for b, Eq. (5.16d) we have

VT —iagoey — iVoa_
r/2

by = (5.17)

plug this into the equation for c;, we have an equation which only relates ¢, and

a_:

VT —iagoey — iVoa

[—i(v + A) + /2] ¢ = VE? —iago Ve (5.18)
This simplifies to
a’gg - ago i  gVo
—q A 2 0 = m__ e _ 5.19
i(v+A)+r/ +F/2 cy ke Z\/f/2+ F/2a (5.19)

From the left hand side of the equation, we see an optomechanical modification to
the damping rate for c¢y. Also, the ¢, mode is effectively coupled to the a_ mode
via the interaction with b,, which means the properties of a_ could possibly be
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modified by a driving field in the opposite direction. We are going to analyze this

in more details in following section. We further define the susceptibility of c, as

k=—i(v+A)+r/2+2a%g3 /T, then

in _ ; ago zin _ agoVo
e Z\E/QbJr g a

K

C+

We now put this optical field back into the b, equation, we get

; . i 1%
\/Eci‘—z 290 bi‘—ago Oq_

b VT — iagy ﬁ/z 2 iV
o r/2
_ 1 1— 042gg bin _ iagO\/Ecin
VT /2 Ti/2) *  TR/2

iVo a’gl
—— 1 — = a_.
r'/2 I'k/2
The equation for c¢_

VR —ifXa
T i rA) r w2

(5.20)

(5.21)

(5.22)

which indicates that c_ is only modified by the coupling to a_. We can put b, and

c_ back into the equation for a_, and get

-1 _ in iBAVE in Voagovk i
X = NV R TR T TR

Vo a2gg .
- ] 200 ) yin
\/f/2 I'k/2

where

62>\2
i(lv+A)+r/2

XZH = iV - wm) + /24 —
LW (2%
r/2 ['%/2

is the susceptibility of a_ to input fiels.

7

(5.23)
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Similarly, for the forward phonon mode a,, we can find its equation of motion

by interchanging a with 3, a, with a_, and ¢, with c_:

-1 _ in ZO[)\\/E in %BQOﬁ in
Yot = VI SR R T TRz

o Z‘/O o 629(2)) in
Nl (1 T3 ) b (5.25)

with &/ = —i(v + A) + /2 4+ 24%¢3 /T and

= iy —wn) /2 4+ 0"\
X 7 m) TIET T A+ R)2
Vo 59
T2 <1 CTH/2 (5:26)

5.3.2 Phonon linewidth

We can define the cooperativities as C, = 4a?¢?/T'k and Cs = 46%¢2/Tk,
which are both dimensionless parameters describing the strength of optomechanical
coupling of the quasi-modes relative to cavity decay rate and mechanical damping
rate.

The modified linewidth of the a1 phonons, as a result of optomechanical cool-

ing/heat, is given by the real part of its susceptibility, so we have

Yar (V) = 2Re(xg, (V)

Nk
= 2
7+(V+A)2+n2/4 (5:27)
+4V02 L 207 (1+Cp)r/2
r I' (v+ A2+ (14Cs)%k%/4]"

and

Ya (V) = 2Re(x; (V)
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B2Nk

= 5.28
T T AR+ 24 (5:28)
+4VOQ B 20 g2 (1+Co)k/2

r ' (v+ A2+ (1+Cy)%k2%/4)°
For the special case of v = —A, we have
40’X\? 4VP K
. = 5.29
e Ty 200
402X\ 4VP 1
= 5.29b
T T 1+Cy (5.29b)
4B8%X\% 4V K
—— 5.29
a- 7 K ' k+4a2g3/T (5:29¢)
48°X%  4VE 1
= : .29d
T I 1+C, (5.29d)

This shows that the phonon linewidth has a strong dependence on the optomechan-

ical cooperativities and thus on the optical driving strength o and £.

5.3.3 Frequency shift

The modification of mechanical linewidth (cooling or heating) can come with a
change in the effective phonon resonant frequency, since a complex term is added to
the phonon susceptibility due to the optomechanical coupling. The change in phonon

frequency is related to the imaginary part of the susceptibility, and is calculated as

S (1) = ?MN (v + A) 2V2 232 g2
Yl T T AR R24AT T T
v+ A
T AR T (11 CoRE/A (530)
o () — ENWHd) | 22y
“ - (w+A2+R24 T T
vEa (5.31)

WA+ (11 Ca)2r2/a
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The maximum frequency shift occurs when v = —A + k/2,

o’ ? 2V C
Swa, (A +R[2) = =42 1+(1ﬁ+cﬂ)2’ (5.32)

B 2VF Ca
dwe (A +rK/2) = —+ T 10 (5.33)

The second term of the frequency shift is of second order, so the main contribu-
tion comes from the first term, which is 1/4 of the optically induced damping rate
40*)X? /K. In [Appendix D], the observed largest optomechanical damping rate is
about 40 ~ 50 kHz , so the frequency shift is at most 12.5 kHz. The cavity linewidth
is 5.2 MHz and the detuning of the anti-Stoke line ranges from 0.2 MHz to 0.7 MHz
at high power, which makes the frequency shift almost negligible.

If the phase matching condition is satisfied, then we expect A ~ —w,,. In
this case, when we look at the frequency shift near original mechanical frequency

VR Wy, we get v+ A ~ 0 and the frequency shift becomes completely negligible.

5.3.4 Effective temperature

Another important feature is the reduction in the effective temperature of the
a_ mode, because of coherent damping. We look at the right hand side of equation
(number) and assume that the optical noise is negligible compared to the thermal

noise. We have the effective noise on a_ as

. Vo 04298 .
m T 1 R bln . 4
Voas T/2 ( Ti/2) ™+ 534

The effective temperature of mode a_ is thus

1 V2 a2g2 2
" = — |41, - =2 T,
" A R 78 L 51




1 4V2 v+ A)? 4 Kk?/4
- [7Ta + = (2 ) /2 2 7rys Lbs
. D v+ AP+ (v/2+ 207G3/T)
(5.35)
When v = —A, we have
1 4V K% /4
T = T, 0 T
- Ya- [7 - T (8/2420%5/T)? b*]
1 4V2 1
= T, +—2——— T, 5.36
Yo [,}/ _+ T (1 +Ca)2 b+:| ( )
We also get similar expressions for the ay mode,
1 4V 1
T = T, + —2>—5=T, |. 5.37
= [ e 237

When the reverse pump [ is much smaller compared to the forward pump «, this
effect is not so significant for the a; mode. In general, we get a correction term
to the effective temperature, which roughly scales as 1/(1 4+ Cy(g))?. We plot the

cooperativity dependence of the linewidth and temperatures below in Fig. 5.3.

5.3.5 Direct back-scattering corrections

We now consider the direct back scattering between a., with strength Vi,
which couples the two systems in Fig. 5.2(b) that we have so far assumed to be

independent. We have the hamiltonian as

H = wa+ala+ +w, ala_ + Vl(ala, + aT_a+)
—i7;+ atay — z’%a* a (5.38)

Because of this coupling, there is an additional correction to the damping rates,

Ya

. . + . i
—WOp = e Gy — 04 — iVia_ + \/Va, 0
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Figure 5.3: Choosing a set of rescaled parameters of w,, = 1, v = 0.001, x = 0.1,

A = 0.001, go = 0.005, I = 0.05, Vy = 0.02 and assuming that the initial thermal

bath temperature 7" is the same for all four modes, we plot Yo, /7, Ya_/7: ij /T

and T /T in (a)-(d) respectively.

—wva_ = —iw, G_ —

Ya_
2

a_ —iViay + /Ya_a"

this directly gives the new V) interaction corrected linewidth

—_— N ViYa_
Yar T TVag (l/ — wa_)Q + 73_/4
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(v —way )2 +72, /4
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Since the the frequency shift for the mechanical resonators depends on the pump
strength, the linewidth of the a_ mode gets smaller when forward pump power
increases. However, there is an exception when v = —A. At this point, the frequency
shifts are zero, and w,,, w,_ stay the same, so there is no change to the phonon

linewidth when varying the pump power from the direct backscattering.

5.4 Experimental results and data fitting

5.4.1 Description of the chiral phonon experiment

A recent experimental test of this theory [Appendix D], considers a whispering
gallery-type resonator with an intrinsic degeneracy for clockwise (CW) and coun-
terclockwise (CCW) propagation for both phonons a4 and photons cy. Photons
occupying the modes in the CW (CCW) direction can be coupled through Brillouin
acousto-optic forward scattering from the CW (CCW) phonons. When pumping
the lower-energy optical mode, anti-Stokes scattering to the higher mode annihilates
phonons in the corresponding direction and leads to unidirectional optomechanical
damping [128]. In the experiment, two optical sources are tuned to the lower fre-
quency optical mode in both the CW and CCW directions, with different pump
power.While one source is used as a strong pump to induce Brillouin cooling, the
function of the second counter-propagating weak source is to merely measure the
modification of the high-Q phonon behavior, and the possibility of chiral behavior.

In the experiment, a striking direction-dependence of the damping rates of the

CW and CCW phonons was observed, as a result of the momentum conservation
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rules described above that underly the Brillouin scattering interaction. The experi-
mental data points are shown in Fig. 5.4 below. Since the relative power of the CW
pump and CCW probe lasers in the experiment is ~ 9 : 1, there is some cooling of
the a_ phonons as well.

In the following, we try to explain the experimental results obtained in [Ap-

pendix D] by fitting the data using the theoretical model of this paper.

5.4.2 Data fitting

First of all, we recall the relation between the amplitudes and pump power is

given by
Py r/2hw 2 P.(k/2)? 2 - ~
2 + -
“ 6%+ Kk2/4 hwk 62+ k2[4 hwk T
2 ~ ~
5 = P_r/2h 2 P_(k/2)? 2 B b

02+ K24 hwk 62+ K24 hwk
where + is for CCW direction, — is for CW direction and the coeffecient n = 2/fuwk.
Also, we consider the case when the reverse pump is much weaker than the forward

pump with a ratio P, /P_ = o?/3? = 9.15, then we can simplify the expression for

the forward linewidth Eq. (5.27) and get

40’X\? 4VP K

a - 5.41
( 4‘/02) 4a® \?
~ |yt +
T K
An)? -
= gt P, (5.42)
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We fit the experimental data for forward phonon linewidth with a linear model of
the following form:

Y+ =Po+p1-T, (5.43)

where z represents the detuning corrected pump power P, in units of W and y
represents the linewidth ~y,, in units of kHz. Least square fitting results are shown
in Fig. 5.4, and fit values are shown in Table 5.1.

The asymmetry between the strength of the forward and backward pump leads
to a qualitatively different result for the backward phonon a_, with its linewidth
given by

482X2  4V? K

. 5.44
r T k4 4a2g3 /T (5.44)

Yoo = VT

The a? term can be large, and it is this term that leads to a substantial linewidth
reduction for the backward phonon as we increase the forward pump power.

For the low power data, the ratio r = a?/3? is fixed at 9.15, but for the high
power data, [ itself is fixed at certain value ;. For data taken under different
conditions, we may have a discontinuous change in the reverse pump power. So we

can use a piecewise function to describe the relation between the two pumps as:

B = (a < ag) &®/r+ (a > ap) sap. (5.45)

We can use a corresponding piecewise function to describe the data for the broadened

linewidth at low power:

y_=qo+q -z, for(x<PF). (5.46)
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This separate fitting for low power data and high power data is shown below
in Fig. 5.4.

The fitting parameters are given below in the Table 5.1. For the forward
propagating direction, the parameter p’ = (po,p1) is quite consistent between low
power and high power data. For the backward propagating direction, the situation is
more complicated. From the lower power data, we can only get enough information
about ¢ and go. At high power, the fitting would nominally take a form (based

upon Eq. (5.44))

q3
gs+x

Y+ =@ + (5.47)

However, fitting g3, g4 as well as By, leads to substantial correlation and likely
overfitting. Instead, we focus on a simpler model at high power to capture the
reduction of linewidth. Specifically, we fix go = gy + apg1 from the low power data,

and set g4 = 0.

5.5 Conclusion

In this article, we present a model for optomechanically induced chiral phonon
behavior. We show that in Brillouin cooling experiments on traveling phonon popu-
lations, the linewidth of CW phonons is increased by the optomechanical interaction
with optical driving fields, while the linewidth of CCW phonons is decreased at the
same time. We also predict the effective temperature of CCW phonon will decrease
by increasing the driving fields, which is in contrast to conventional optomechanical

cooling where phonon linewidth and effective temperature move in different direc-
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Figure 5.4: Red is for CCW phonon and blue is for CW phonon. Upper figure is for
low power data and lower figure is for high power data. Experimental data points

(in circles) are taken from [Appendix D].
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Table 5.1: Fitting parameters

parameter (units) value (low) error (low) value (high) | error (high)
Po = Yerr (kHz) 11.25 (1.42, 21.08) 17.31 (9.33, 25.29)
p1 =4 ?/k (kHz/uW) 0.36 (0.23, 0.49) 0.24 (0.19, 0.29)
qo = 7 (kHz) 12.8 (9.78, 15.83) NA NA
q1 = 4nX\?/kr (kHz /W) 0.029 (—0.012,0.070) NA NA
g3 = V¢ /ngé (kHz - uW) NA NA 2324 (2130, 2517)

tions. This model is able to explain the chiral behavior of phonon transport observed

in a recent experiment [Appendix D].
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Chapter 6: Multi-mode theory of chiral phonons

6.1 Introduction

Optomechanics, in the form of directional light-matter coupling via Brillouin
scattering as a result of momentum conservation, leads to the symmetry breaking of
light propagation [135-139]. These studies suggest new ways of building on-chip op-
tical isolation device, which is important for applications in optical quantum compu-
tation [140,141] and quantum simulations [142]. Similarly, we can imagine that the
directional optomechanical interaction can also leads to the nonreciprocal transport
of phonons. In the presence of phonon-phonon scattering via disorder/impurity,
however, the transport properties of phonons traveling in both directions can be
modified by the optics simultaneously. In a recent paper [Appendix D], actually,
chiral transport of phonons has been observed in a whispering-gallery type micro-
sphere resonator, due to acoustic-optic coupling and phonon scattering via impuri-
ties. Their experiment shows that the linewidth of clockwise and counter-clockwise
phonons is modified in opposite ways at the same time.

A minimal theory for explaining the chiral phonons effect observed in [Ap-
pendix D] is possible with just a few assumptions. We assume that there are two

optical modes (control and probe) and two phonon modes (forward and backward
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propagating) in the system, so Brillouin scattering can be stimulated in the sys-
tem [143, 144] and phonons can backscatter into each other via impurity/disorder
induced scattering. A directional coupling to the optical fields optomechanically
cools phonons in one direction [9,11], while phonons in the other direction do not
experience this optical modification directly because of phase unmatching. When
considering a series of random phonon scattering processes which cause phonon dif-
fusion [133], the asymmetry in the free phonon propagation due to optomechanical
coupling eventually leads to the chiral behavior for phonon transport.

We propose a general multi-mode photon-phonon coupling and phono-phonon
scattering model to show why this chiral transport is possible. In Sec II, we con-
sider a model where multiple phonon modes are coupled to the optical mode at
the same time, with different weights, due to phase matching. We also consider
phonon-phonon scattering via impurity, with the introduction of a random scatter-
ing potential. Subsequently, in Sec III, we use an effective hamiltonian to find the
linear response of phonons. In particular, we consider the case where only a few
phonons are strongly coupled to the optical mode, and we use numerical simula-
tion of the scattering potential to find the linear response function. The result is
in agreement with a toy model of only two phonons and one photon, where the
linewidth for the optically cooled mode is broadening, while the linewidth for the
other mode is narrowing, with the increase of optical power. Finally, in Sec IV, we
use perturbation expansion to calculate the phonon linear response of a multi-mode
coupled system to find the phonon linewidth, and make some connections to the

phonon diffusion.
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6.2 Multi-mode theory of optomechanical interaction and phonon-

phonon scattering

(a) (b) w

— —
@ control photon
— —

Figure 6.1: (a) Schematic of the ring waveguide resonator that supports two counter-

anti-Stokes
photon

propagating optical modes ay,, ag and continuum of phonon modes by, b_q. (b) The
dispersion relation curves for photon (blue line) and acoustic phonon (red curves).
An pump photon is scattered by an incoming phonon and produce a backward
propagating photon at a higher energy. Both momentum and energy are conserved

in this anti-Stokes Brillouin scattering process.

We consider a continuum theory for a quasi one dimensional waveguide res-
onator that supports photons and phonons at the same time. The phonons are
subject to periodic boundary conditions (PBC) and the photons are send into the
waveguide through evanescent coupling to a tapered optical fiber. The probe field

is blue detuned from the control field with A = w, — w,. Brillouin scattering is
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possible by absorbing a phonon and a control photon and subsequently creating an
anti-Stokes probe photon, as shown in Fig. 6.1.

The phonon modes in the waveguide could be understood as the second quan-
tized form of the displacement field of the material. In the quasi-1D limit when
the dimension of the cross section of the waveguide is small compared to the radius
of the ring r¢, the displacement field in the longitudinal direction is described by

u = u(x,t) = u(f,t). The Lagrangian of the system reads:
27ro 2T
L:/‘ Lde= [ £,d0, (6.1)
0 0
where the Lagrangian density is

gzlpwmf—z@mﬂ, (6.2)

2 To
pe is the density per unit angle and Y is the Young’s modulus. The conjugate

momentum is defined as

0Ly
T = o) POy, (6.3)
so the Hamiltonian density is
172 Y
— 10— Lo = = | — + Z(dou)?| . 6.4
Wm0 Lo=1 |+ @] (6.4

We now go to momentum space and expand u, 7 as:
u(f,t) = Y e’ (6.5a)
q
n(0,t) = > mel’. (6.5D)
q
The Hamiltonian is then integrated as

2 T, 1
H = HdO = 27 -9 4 - 92uu_> 6.6
A ;( 2P6 2p9 q4q q ( )
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where Q, = qus = ¢/Y/p = q¢\/Yr0/ps. Since m and u are both hermitian opera-

tors, we have 7r:£ =7_q and uz = u_4. We can then define the following annihilation

operator

/ng . 1
bq = 2hq (uq + Zpe—Qqﬂ'q) . (67&)

The Hamiltonian can be described by a set of decoupled quantum harmonic oscil-

lators, namely phonons modes
Hyhonon = 270 Y _ Qbib,.  (R=1) (6.8)
q

We note that the phonon group velocity v, is assumed constant, because we only

consider the long wavelength phonons in the accoustic branch, as show in Fig. (6.1).
thonon = Z qugbq (69)
q

The electric field of the optical mode in the resonator could be also be expanded

as [39]

hw .
E(t,0) =) 4/ ﬁakez’we +he., (6.10)
k

where € is the susceptibility of the medium, V = 27rgA is the volume of the waveg-
uide, ay, is the annihilation operator for mode k in the Heisenberg picture, and wy, /27

is its frequency. The Hamiltonian of the optical field in second quantized form is

thoton = Zwkazaka (611)
k

which represents a sum of independent quantum harmonic oscillators. Using periodic

boundary conditions, we find that wy = ngc/r.
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The interaction between mechanical motion and electromagnetic field comes
from acoustic-optical effect: a change in the susceptibility of the material because

of the strain from the displacement, so it could be calculated as

1
Hin =~ —8—5\5| roAdo. (6.12)

The strain field is related to the displacement field by s = d,u = Opu/ry and we
take Je/0s to be a constant determined by material properties. In explicit form,

the interaction is

1 8 h\/w Wi
H, = ¢ /ZW Uge quoﬁz Kk [akak’e (kK)o 4 a}t/e(k k)r09+hc] a6

kK’

h O i(k+k' (ko—K'
- 8Z 86 / Z q\/m” b + bT el [akawz(k% 00 4 aga, et 4 h'c'}
TEOS

hwk 86
i Ve 5y D A(baakal, + bialaw) (@)
qkk’

Q

In the last line, the function f(q) represents the momentum and energy conservation
conditions for forward Brillouin scattering (FBS), corresponding to integrating out
0 and assumption of our effective 1D system. In the above calculation, however,
we ignored the imaginary part of the wave vectors, misalignment of the optical and
acoustic transverse modes, both of which give f(g) a finite width in space. Looking
only at the damping term, we have v = Bg¢?, where B is the phonon diffusion
constant. There is also an imaginary term in the photon wavevector, which is related
to the optical loss k. Converting to momentum, we have ¢ = ¢ —i5; and k=k — i

The integration over the spatial coordinate 6 is not a J-function anymore, but should
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be replaced by the following function that has a finite width:

_ T e ¥ +d)rob v/2v + k/c
R e T E= o) (o1

where 0¢g = ¢ — Ak =q— (K' — k).

Consider the following scenario: we drive the control mode a; strongly and
probe the anti-Stokes mode a; with a weak field. We then linearize the hamiltonian
by replacing a; with its steady state amplitude o = £/(—iA + k/2) where the input
field amplitude is related to the input power by & = \/W The hamiltonian

for the interacting system is

H=—-Aa a+ZQ bTb +chc1q Tb — f*(q ) } (6.15)

where a stands for the higher frequency anti-Stokes mode a; and the linearized

hwe , Oe Pk by,
L= ./ . 6.16
€l = g Tt €00s \| A%+ k2/4 (6.16)

We consider the case when the effective detuning of the anti-Stokes mode is close

coupling speed

to the frequency of the phonon band: A = wy, — wy ~ —€,.

What we have neglected is the presence of disorder/defects in the material,
which causes phonon scatterings and thus mix phonons with different momenta. We
model the defects as random fluctuations of the density of the material dp, and this

gives an extra term in the hamiltonian of the system:

2
_ T o0
Hdefect - V Q Q q b—q’)A 5p(9> atd)ro dg

4/)0

= \/Qbe(Spqq
0

2/)
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= =) gurbeb}, (6.17)
qq’

The scattering strength g,, between phonon modes can be calculated numerically
by modeling the density fluctuations dp(f) as a random gaussian function. From
the expression of g, we immediately realize that g4, = 0 for ¢ # 0, which means that

the scattering potential always mixs phonons with different wavevector.

6.3 Linear response theory and random scattering potential simula-
tion

Taking into account optomechanical interaction, phonon-phonon scattering

and dissipation, the total effective hamiltonian of the system thus becomes:

Ha = —Adla+ > Qblb, + > icaq [f(q)a’b, — f*(a)bhal
q q
K 4 i
- Z Yaq'baby — Z§CLTCL —1 zq: Equzbq' (6.18)
qq

The linear response of phonons can be found with the multi-mode effective

hamiltonian using Heisenberg-Langevin equations:

@ = —i(-A—ir/2)a+ Viaw + Y caqf(q)b,, (6.19a)
q
by = —i(Qq —ivg/2)by + ALY — caqf (@)a+1  gygby.  (6.19D)
ql

We can then move to frequency space and get a matrix equation for the mechanical

modes after eliminating the optical mode by solution of Eq. (6.19a). We get

—

Db(w) = —ivThin(w) + Mb(w) + Eb(w). (6.20)
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We define b = [b1,b9, -+ , by, - -]T and the following matrices:

Loy = Yg0qq, (6.21a)
Dyy(w) = (Q —w —17,/2)04q» (6.21b)
Myg() = SHTDID 310 g0, (6.210)

Em = gqq (6.21d)

The optical noise aj, is usually very small compared to the thermal noise b;,, so we

find that

—ivT

E(w) = X(w)(_i\/f)gin(w) = m in(w). (6.22)

S

Since the scattering rate g, is random, we can find a more realistic expression for
the response matrix by taking the ensemble average of many density fluctuation

configurations,

X(w) = <m> . (6.23)

The diagonal element of the response matrix x(w) gives the linear response of each
mode:
by(w) = )‘(qq(w)b;n(w). (6.24)
We first consider the case when the mode spacing of phonons is greater than
phonon damping rate: Agq > ~/v. In this regime, only one particular phonon
mode interacts resonantly with the optical mode, which means the main feature of
the multi-mode theory is captured in a single-mode minimal theory, as described
in Fig. 6.2(a). We can easily write down the Heisenberg-Langevin equations [39—

41] for each mode and solve the equations in frequency domain. From its linear
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response function, we can extract the approximate damping rates for each mode

near resonance W ~ Wy,

492
Y+ & Yot Yopt + . (6.25a)
492
Y- R Y+ ————. (6.25Db)
Yin + ’YOpt

When A & —w,,, the optomechanical damping rate is Yopr ~ 4a?/k in the side-
band resolved regime, where « is the pump enhanced optomechanical coupling rate.
It is clear that when the pump strength « increases, the optomechanical damping
rate Yopt also increases, and this leads to broader linewidth for forward propagating
phonon and narrower linewidth for backward propagating phonon at the same time.

We choose a few phonon modes and run a numerical simulation to directly
calculate the linear response function by taking ensemble average of the random
scattering potential. The numerical result is shown in Fig. 6.2(b), which is in good

agreement with the analytical result for linewidth.

6.4 Perturbation expansion

On the other hand, when the phonon mode spacing is smaller than phonon
damping rate Ag < 7/v, multiple phonons contribute to the interaction process and
the loss in the backward propagating direction is shared among the modes. We first
need to find out the linewidth of different phonon modes and how they depend on
the pump power. In the following section, we setup a formal calculation of linear

response function using perturbation expansion. Our goal is still the valuation of
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Figure 6.2: Linear response of different phonon modes as a function of rescaled
frequency. Green curve represents the response of phonons without the optome-
chanical coupling, red (blue) curve represents the response of backward (forward)

propagating phonon when the optomechanical coupling is turned on.
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the following ensemble averaged propagator:

<m> , (6.26)

which would be able to tell us the frequency shift and modified linewidth of each
phonon mode.
We now expand the denominator up to second order in E:
(D-M—-E)Y' = (D-M)"'+(D-M)"'E(D-M)"
+(D—M)'E(D—-M)'E(D—-M)"1 ...
~ D'+D'MD '+ (D'+D'MD")E(D'+D'MD™)
+ (D*1 + DflMD*I) E (D*1 + DilMDfl) E (D*1 + DflMDfl)
(6.27)
Because of the random property of the scattering potential, only terms with even
number of E have a nonzero ensemble average [133]. We keep only first order terms
in the operator M and second order in E, and get
(D-M-E]") = (D-M)" (6.28)
with
M~M+(ED'EY+(ED'MD'E)+ (MD'ED™E) + (ED'ED™*M)
(6.29)
The first term represents the optomechanical interaction, the second term comes
from the random scattering between free phonons, and the last three terms come
from the scattering of optomechanically damped phonons. We also find near reso-

nance, the last two terms cancel each other, because of the destructive interference
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of two scattering pathways. We also can take high order corrections into account,

with a partial summation we write the result as the following:

M~M+{E E 6.30
+< L > (6.30)

Its meaning becomes obvious. The modification to the free propagation of phonons
has two contributions, the direct optomechanical interaction M and two successive
scatterings £ with a optomechanically modified phonon propagation 1/(D — M) in
between, as shown in the diagram below in Fig. 6.3.

The random Gaussian noise like scattering potential satisfies

<Eq1q2Eq3q4> - U25q1+q3,q2+q4 (6-31)

As noted before, when ¢ = ¢/, we have E,, = 0, since there is no scattering happen-
ing. Because of this reason, we want to avoid a pole when performing summation
or integration. This eventually leads to the asymmetry for forward (¢ > 0) and
backward (¢ < 0) phonons, because of the different poles we choose.

To find the linear response of the phonons, we want to calculate the diagonal
element of the matrix M. We focus on the second term, which in more explicit form

18

<ED _1 ME> = Y (E;Ew) <D _1 M)jk = UQ; <D _1 M>jj .(6.32)

g,k
The corresponding diagram for calculation is also shown in Fig. 6.3. With this result,
it is now much easier to calculate the linear response of phonons, since we get rid

of the ensemble average over the random scattering. In principle, it is possible to
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Figure 6.3: Propagator and perturbation expansion. (a) The phonon propagator
G=(D-M-— E>71 is the sum of optomechanically modified propagator and two
successive scatterings with a modified propagator in between. (b) The diagonal
element of the propagator for backward propagating phonon is the sum of diagonal
element of optomechanically modified back propagator and the diagonal element of
two successive scatterings with en optomechanically modified forward propagator in

between.
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find a analytical form for the above expression, but for our purpose, we perform a
numerical calculation and still get a meaningful result, as shown below in Fig. 6.4.

We see that as the pump power increases, the linewidth of the CCW phonon
keeps narrowing but saturates eventually, while the linewidth of the CW phonon
first narrows when the power is very small, but then keeps growing rapidly after
some critical power. We note that the linewidth versus mode index curve shown
below is not to be confused with the linear response curve plotted in Fig. 6.2(b).
In the linewidth curve, the horizontal axis is the phonon mode index, which is ap-
proximately proportional to its resonance frequency, while in the linear response
curve, the horizontal axis is the probing frequency in the spectrum. The decrease
of the linewidth of back-propagating (CCW) phonon also suggests a decrease of the
diffusion constant material, if we recall the relation between diffusion and phonon
damping v = Bg?. The damping of back-propagating (CCW) phonon mainly comes
from its scattering with disorder/impurity of the material, and it is also not di-
rectly modified by the optics, since the mode-matching function f(q) is near zero,
as shown below. The decrease in diffusion comes from a decrease in the second
term of Fig. 6.3(b), where two scatterings happens with a modified forward phonon
propagator in between.

We can also try to find the exact result for the (D — M)~! matrix. Specifically,
we have M = AP, with P = |¢) (¢| a rank-1 projector and A\ =

N2 :
A —w)—irn/2 with

N? =3 Q2| f(q)]*. This gives the result:

PD'P=gP
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Figure 6.4: Chiral phonon effect. (Lower) We symmetrically choose 51 equally
spaced phonon modes for both ¢ > 0 and ¢ < 0 in the long wavelength linear
dispersion regime. (Upper) By setting the center frequency of phonon to be 1,
phonon mode spacing Ag = 0.0001, cavity linewidth x = 0.01, intrinsic mechanical
damping v = 0.001, detuning A = —1, phonon-phonon scattering U = 0.001, we
plot the linewidth of different phonon modes for different values of optomechanical
coupling c.q = 0,0.1,0.3,0.5,1.0,1.25, 1.5. We see the symmetry breaking for CW
and CCW phonons. The overall feature size is set by the mode-matching function
f(q), which has a width of ~ 20 mode spacing.
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with g = (¢| D™!|¢). Thus the series

Gy=————=D'"4+AD'PD '+ X*D'PD'PD ' + ... (6.33)

=D 4 AD'PD T 4 N2 gD PD T + N3P D' PD T

(6.34)
=Dl (Z(A@”) D'PD™! (6.35)
n=0
1
— D! D'PD! .
T3 (6.36)

Let us take a moment to estimate g. We have, near the resonance in f(q),

92 2 1 . X
o(w) = Zq q|f(q])\|[29q—w—mq/2 ~ 7sz(cu)(,]u\j2|f(qw)|2

where the resonance value €2, = w, and phonon density of states p(2). We have
used the usual delta function description of 1/(x —i€) = mid(z) + P (the Sokhotski-
Plemelj theorem). We only keep the contribution from ¢ near the phase-matching
condition, preventing a second pole for the non-coupled light from contributing. We
remark that ¢ is purely imaginary, and acts to effectively broaden the value s by an
amount & — k = 2N%g = 2mip(w)w?| f(q.)|?.

Let us consider the prefactor (1/A — ¢)~! in more detail. Writing it out, we

have

1 e
1A—g (A—w)—ir/2°

Ui

When the optical power is small, N2 — 0, as expected. As the optical power becomes

large, K > k, and there is an effective increase in the range over which these effects
2 2 ; : N2

can occur. Note that N*?/|f(¢)|* does not change with power, so n — e PRI

In general, the prefactor n is in the positive imaginary part of the complex plane.
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From this result, we can look again at

1

C= 5 3P E

= Gy + Gy EG (6.37)

= Gy + GuE(Gy + GuEG) (6.38)

Putting in the average over disorder, we have

(G) = Gy + Gy (EGyEG) (6.39)

= G/ (G) =1+ (EGyE)(G) (6.41)
1

(G) = G (BGuE) (6.42)

The factorization of the mean value is the key point here, and the only approxima-
tion.

Evaluating this, we have

M =\P+ (ED'E) +

1 -1 -1
1/)\_9<ED PD'E) (6.43)

=M+Xp+3p (6.44)

where Y p is the self-energy term that leads to diffusion in the absence of the optical
field, and X p is the new term that will cancel some of this self-energy, leading to
reduced diffusion.

We look first at the regular diffusion term. We have, using the averaging of

<qu’Ek'k"> = 025q+k,q’+k’a
<ED71E>qk — UQ Z(Dil)qfl%l»k/,k’
k!
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The diagonal nature of D in the plane-wave basis means that ¢ — k = 0 is the only
contribution. Thus the effect is purely diagonal, and given by U? Yo (D e w =
mip(w)U?. This is the loss via diffusion that we expect from disorder.

Averaging over the disorder, we get

~Wyx =(ED'PD'E) = U*Y (D'PD ")y gy

k/

Looking at the modes with ¢ such that f(q) ~ 0, we can neglect the M term
for the diagonal contributions. We can also approximate D' PD~! with terms that
correspond only to those near qo, the ones with f(qo) largest — everything else is
suppressed. That is, we can take P to be a width w approximation to a delta
function near ¢ = qo, which means only terms in the sum with |k’ — ¢o| < w and
l¢ — k + k' — qo| < w contribute. This leads to an effect for a narrow range of
l¢ — k| < w. Working near resonance, D~! is nearly purely imaginary; the product
is thus real and negative. So we expect the overall term to be of order —U?W with
W ~ |g|>. Note that the minus sign, combined with the fact that n is the upper half
plane, means that this effect strictly decreases the diffusion term near the resonance.

We can bound this by noting:
~Wi—gmo = Y (DT'PD ™)y = Te[D™'PD™'] = (¢| D7* |)
k/

We can evaluate this, in principle to g et a (frequency-dependent) contribution. For

2 is a lorenztian of width

specificity, let us consider a simplified case where |qf(q)|
[ about q. = cqw, and maximum of Ag?, where A is a power-dependent unitless

prefactor. We also take p = CL Explicit integration gives

ol

N? = Aw?p— (6.45)



:F/Q—i(w—wc)

W= (raio=a) (047

Looking near resonance, for small p, we recover for k ~ —q., and A = w,,

| Al 1 I | A
_ —ili=
2 (k+ Amw?p)/2 \I'/2 RT

normalized with the laser-free diffusion constant D = wpU?/k?. At high power

g (6.46)

My
DFE?

1

(large A), this further simplifies to

Dy/D~1———
a/ mpl’

That is, the diffusion is reduced, but the reduction is limited by the number of states
that fit in the width of the phase matching, ~ pI'. If only a few states phase match,
the reduction in diffusion could become large.

As an additional note, if we define T5, = ), |k + 0k) (K|, then in general the
noise-averaged D1 PD™! term is given by (¢| D71 T5 D! |¢) with 6k = k — q. For
the lorentzian case considered above, defining § = c,0k, this gives

r
(T +10)(i(we — w) — T/2)(i(we + 6 — w) — [/2)

Wi, =

6.5 Conclusion

We provide a general continuum model of phonon propagation with the pres-
ence of directional optomechanical interaction and random phonon-phonon scatter-
ing via impurities. We perform both numerical simulation of random potential and
perturbative calculation of phonon propagator to find the linear response of the
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phonons. Our result shows an increase of the linewidth of phonons directly couple
to optics and a decrease of the linewidth of phonons propagating in the opposite
direction as optical pump power increases. Furthermore, we see a decrease of the dif-
fusion constant of the material, due to back-scattering to optomechanically modified

phonons.
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Appendix A: Normal mode splitting in the high reflectivity limit

A.1 Normal mode splitting in the high reflectivity limit

The hamiltonian of the cavity fields in this three-mirror system is
Hoy = h(we+ fx)aTLaL + h(w. — fx)a;aR — hg(aTLaR + a;aL), (A.1)

Diagonalizing this coupled left/right mode hamiltonian, we find two new eigenfre-
quencies:

wcav,i(x) =w, =t f2332 + 927 (AQ)

which correspond to the normal mode frequencies of the three-mirror system, and the
difference between these two eigenfrequencies is exactly the normal mode splitting
in Eq. (A.2),

2V fx? 4 g% = %arccos(|rd| cos(2kx)). (A.3)

Matching the left and right hand sides at a small displacement range, we find

g = arccos(|rg|)c/2L and f = —+/|rq| arcsin(|tq])/|talwe/L. In the high reflectiv-
ity limit (|rqy] — 1, |ts) — 0), g = |talc/2L and f = —w./L, which implies that
the coupling constant is proportional to the transmission of the middle mirror and
that the dispersion of the cavity resonant frequency is linear. We have to mention
that the full expression for the resonant frequency shift f is valid at both high and
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moderate reflectivity, as soon as the displacement z is small compared with the
wavelength of the cavity field. But problem rises at moderate reflectivity, because
the normal mode splitting €2 increases as reflectivity decreases, and it approaches
the free spectrum range of the large cavity with length 2L. To avoid the coupling
between multiple cavity modes, we only consider the high reflectivity case, which has
been realized experimentally [72,145]. As studied in [146], photon absorption of the
middle mirror leads to both heating and feedback cooling (through photothermal
forces) effect. Since the middle mirror could be made to be highly reflective (above
99.8%), it may be reasonable to neglect these heating and cooling effects.

To simplify the hamiltonian, we define two new modes a = (ar, + ag)/v/2 and
b = (ar — ag)/Vv2. If we drive mode a strongly at frequency wy, we can move to
the rotating frame with respect to the pump laser, then we have the hamiltonian of
the whole system (vibrating mirror, cavity modes and pump):

2
1
H o= g Sma® 4 BA — g)ata+ (A, + )bl (A4)

—hwc%(cﬁb +b'a) +ihE(a" — a),

where A, = w,. — wy, is the cavity detuning, and E is the pump strength which is

related to input laser power P, and cavity damping k by |E| = \/ P,k /hwy.

A.2 Solve the equations of motion

To solve the reduced Heisenberg-Langevin equations, we define the quadra-

tures of mode b as X = (b + b1)/v/2, Y = (b — b)/iv/2, and move to frequency
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domain by Fourier transform, obtaining the following equations of motion:

—iwz(w) = pw)/m, (A.5a)

—iwp(w) = —mwir(w)—yp(w) + \/EizwcaX(w) + Fin(w),  (A.5b)

—iwX (W) = —kX(W)+ AY (W) + V2 X (w), (A.5¢)
V2wea

—iwY (w) = —kY(w) —AX(w)+ z(w) + V2rY;,(w).  (A5d)

L

From this set of coupled linear equations, we find,

1 —\/chozA )
X(w) = R I z(w) + V26(k —iw) X (W) + V26AY, (w) |
1 -\/Qa)coz . .
Y(w) = A I (k —iw)x(w) + V2k(k — iw)Yi,(w) — \/QHAXm(w)] :

At zero detuning A = 0, X (w) is unchanged, while Y (w) is modulated by oscillator
displacement z(w) [21]. Measuring Y (w) will give us the information about oscillator
displacement. At finite detuning, however, both quadratures are related to oscillator
displacement. Putting the field quadratures back into the equation of motion for

the oscillator, we have

2hG /K
(K —iw)? + A?

z(w) = x(W)Fin(w) +x(w) [(k = iw) Xin(w) + AYin (w)],

(A.6)

with G = w.a/L and yx(w) is the susceptibility of the optomechanical system to

force,
2hG2A/m
(k —iw)? + A?

x(w) =< m |w? —w? —iyw —
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A.3 Force detection sensitivity and optimization

The vacuum radiation input noise b;, is delta correlated and the thermal fluc-
tuating force is approximated as white noise thus is also delta correlated, so we have

the following correlation relations in frequency domain:

(Xl X)) = (Yin()Vinle) = 500+ ), (Asa)
(X ¥in@)) = ~(Vinl@) X)) = 26l +),  (ASD)
(Fypp(w)Fop (W) = 2mykgTo(w + '), (A.8c)

from which we have
2

1 | xx(w) = ixy (w)
SFF((U) = 2m7k3T+§

xr(w)
= 2m~kgT

+1 2h/kG +(/<;—iA)2+w2 sinf — ¢ cos 6 1)
2 |k —iw +iA 2\/kG Asinﬁ—i—(/@—iw)cosﬁx “

2h?KG?
= 2mykgT
mykBL |k —iw + A2
+‘</€—ZA)2 —|—w2\2 m2|w;n2 _w2 —i’Y/CU|2
8kG? |Asinf + (k — iw) cos 6|2
sinf + 7 cos 6 ,

(w2 —w? +iyw) + c.c..

+h( + 1A 4 iw)
g\t " Asin@—i—(/@'—l—iw)cosé’m

(A.9)
The first term is the thermal white noise. The second term proportional to G? comes
the random back action force. The third term proportional to 1/G? is the phase
noise related to position measurement imprecision.
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In the vicinity of §y = — arctan(k/A), 8 = 6y + 00 , and the optimal pump is

approximated as

o? =ad(l— %(59), (A.10)

which leads to an effective mechanical frequency

2hAw?a? /mL? 2K
2 2 c _ 2
w S =wh — arAr me(W. (A.11)
The susceptibilities at DC reduce to
1 A 2K
2 = —(1— =266 A12
x| 2hmw?, KJ( A ) ( %)
.9 2k . 2
x =i = |(F +1)90 (A.12b)

In the limit 60 — 0, the force susceptibility remains finite, while the optical suscep-

tibilities go to zero. So the total sensitivity is given by

A K
n(w = 0) = 2mykpT + hmw?, (ﬂ + K) £. (A.13)

A.4 Effective squeezing hamiltonian

In the absence of dissipation, the effective hamiltonian for the reduced single-
mode dynamics Eq. (2.4) could be written as:

2
1
Hp = 5+ smuw?,a® + KAV — hGa(b+ b). (A.14)

Define a unitary operator U = exp|—ipn; (b + b")] exp[—any(b — b')] = U, Us,, which

satisfies UTU = U;UfUlUQ =1, then

i = UlaU = UJUT2UUy = (14 2hmmy)z + By (b + bY), (A.15a)
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UtpU = UUIpUL U, = p + il (b — b), (A.15b)

p =
b = UWU = UJUIDULU, = b+ (an; — ipmy) + hapma(b— b)), (A15¢)
This guarantees that the commutation relations [Z,p] = ih, [b,b7] = 1, [#,0] =

[Z,b1] = [p, b] = [p,b] = 0 are satisfied. The effective hamiltonian after this unitary
transformation is given by

- 52 1 Y - -
o = UM HgU = 2’; + mel,d + hABD — hGE(b+ ), (A.16)
m

or explicitly

2 2
] _ r m _ ph)2 @ gt 1 2 2.2
Hyg = o Sy (b—0b")*+1 - p(b—0")+ 2mcum(l + 2hmne)
1
—i—imwfn(hm)%b + 012+ mew? (14 2k ) by (b + bY)
+RA [bF — (b = bN)] [0+ hmna (b — 01)] + BA(2*05 + p*n})
+hAN (b + b1 + ihAny (1 + 2hmne)p(b — b") — hGh (b + b')?

—hG2n5(1 + 2hmma)2® — hG(1 + 4hnyng)x(b + b'). (A.17)

We then try to derive the effective squeezing hamiltonian for the system. To
achieve this, we need to eliminate the linear coupling between mechanical mode and

optical mode, which requires the coefficients of p(b — b") and z(b + b') to be zero:

h
z% ihAm (1 + 2hm) = 0, (A.18a)
mw? (1 + 2hmno) iy + hAny — RG (1 + 4hnyns) = 0. (A.18Db)

The unitary transformation U is thus uniquely determined by solving these two

equations. To simplify these equations, we define oy = hny, pg = hng, Ao =
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VR/2mA. After some simple algebra, we find that the above equations reduce to

hl‘o

= A.19
Po A +xd’ ( 2)
w2 — A?

The squeezing of the optical mode in the hamiltonian is

7 Py, 1 ZoP
Hosq = —ﬁ+2mw 22 — Azopo(1 + Oho)—tho (b + b'?). (A.20)

When the pump is strong (thus G = w.a/L is large) or |w? — A?] is small (w,, ~ A),

we assume |xg| > |w’2;g$2\, then zg ~ +xa, and py &~ F/mhA/2 = Fpa. The

squeezing hamiltonian is

Hosy = | FhG/B/2mA + = hwm/A (b? + b1?). (A.21)
When the pump is weak (G small) or |w? — A?| is large, we assume |xq| < | TN A l,
then zg = ZAi2$A = #ﬁy), SO pg &~ —2mAuxy. In this case we can further
choose w,, < A or w,, > A. For w,, < A, we have o ~ — f§2, thus
2 (hG)?
Hosq = —hGxo(b* + b?) ~ — —1 (b* 4 b?), (A.22)
for w,, > A, we have zy ~ mwg , thus
- 1 2 12\ (hG) 2 12
Hosq = Qmw 2 x5 — WGz | (b +0) =~ T (b + "), (A.23)

To conclude: for strong pump or |w? — A?| small, squeezing depends linearly
on G; for weak pump or |w?, — A?| large, squeezing depends on G?. We note that
A = w,, is equivalent to 2k = 29 = w,, if the condition for optimal sensitivity and
optimal pump A, = g = k is satisfied.
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Appendix B: Nonlinear optomechanics

B.1 Diagonalization of the bilinear hamiltonian

The bilinear hamiltonian in the first line of Eq. (3.2) is
Hy = Agata 4+ Ao + wicfe — Go(b+ N (ch + ¢). (B.1)

In this hamiltonian, mode a is already decoupled, so we only need to diagonalize

the coupled harmonic oscillator subsystem b — c. Define the quadrature variables as
X, = (b+0)/V2, Yy=(b—0b")/iV2, (B.2a)
X, = (c+c)/V2, Y.=(c—cl)/iv2. (B.2Db)
They satisfy the commutation relations [X,, Y,] = [ X, Y| =4, [ Xy, X| = [X5, Ye| =

Yy, Xo| =[5, Ye] = 0. We can then rewrite the hamiltonian of the b — ¢ subsystem

as

H, = %Ab(XE +Y7) + %w(Xf +Y2) - 2G X, X... (B.3)
We now rescale the operators X. and Y, according to
Xe = X[\ wm/Dy, Yo=Y/ \/DyJwn, (B.4)
but keep X, and Y, the same

Xy=X, Y, =Y. (B.5)
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In this transformed basis the hamiltonian becomes
1 12 12 1 m /2 /2 Wm -1 1
Hie = 300X +Y7) + 35, AQX +Y) = 260\ [SEXIXL (B.6)
b

We then make an unitary transformation to get the normal mode coordinates that

yields
X a f X
= : (B.7a)
X! -8 « X_
}/b/ « /3 Y+
= : (B.7b)
Y! -0 « Y.

The commutation relations are preserved if a® + 3% = 1 («, 3 are real). So the

hamiltonian of the b — ¢ subsystem is given by

Hyo= 30 (02 + 56% + 18 [omap) X3+ 10, (52 + dho? - 4 [3m0p) X2

HIA, (V24 Y2) + [1Ab2aﬂ( — ) — 2Go, [42(a? - 52)] X, X_.(B.8)
It is diagonal if the cross term X, X _ is zero:

2
AyaB(1 — 22) —2Gy, [ Alo? =) =0, (B.9)

This condition along with o? 4+ 3% = 1 determines o and 8 for the normal modes.

The diagonalized hamiltonian thus becomes

Hye = LA(EX2 +V2) + 10,2 X2 +Y2) (B.10)
with
& =a’+ AgﬁQ + 52 [gmap, (B-11a)
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& =p+ A2a —400\/7045 (B.11b)

In the limit described in the Chapter 3 with w,, < Ay, £ ~ 1 and £ =~ n(.
The diagonalized hamiltonian describes two decoupled harmonic oscillators
HO+ and HO— with effective masses m4 = A;l and effective frequencies wy =

Apéy, so it can be rewritten as

Hbc - H++H_ (B12)

= Y—f+1A*1(A§ )2X? +Y—‘2+1A*1(A§ )2X2
oA, T 2Tl TR T T AT T T A

We can write the wavefunction of the nth eigenstate of HO— (for example) in

position representation:

Un(X_) = \/;n_m(%)m T (VX)) (B.13)

as illustrated in Fig. 3.1(b) for the ground state (n = 0) and the first excited state

(n = 1) for two values of £_.

B.2 Hamiltonian in the normal mode basis

We now focus on the nonlinear interaction term in the hamiltonian (second

line of Eq. (3.2)). We define new squeezed operators

§+ 1
dy =1/ =X —Y B.14
+ 5 ++1 2%, +, ( )

so [de,dl] = 1, [de,d] = 0, and €2X2 + Y? = 2¢6,(dds + 1). The bilinear

hamiltonian H, written in new operators is

Hy=Ajala+w,did, +w dd_. (B.15)
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The new operators written in original operators are:

d. VQ_[ (b+b) = By/2e(c+ )] + [b—b* 5\/70—&],

Q. =ve (B4 +ay/Br(e+ch] + v (8-t +ay /2 (- ).

and the inverse:

b = 2

1
2 [T Na
B t £+Ab + «
,/§+Ab(d++d L)+ o (d+—d+)]+§

Now it is straightforward to write the nonlinear interaction in terms of the normal

(A + D)+ Ve —d)| + 5 | —

(d_+d")++/¢.(d —dT]

mode coordinates:

Ha = —goalble+ch) + e
- CXZ {—%(a—i—a )(dy +dT) f(a —a")(d% - df)
042_62a . . ' 32 g_a_a T o
—|—2 5+§—( +a")(dy +dy)(d- +dl) + \/;( )(d++d+)(d7 d")
§—+(a—aT)(d cd ) de — )+ 20+ at)(d +dl )
- o 2 - Ta-
O;B(a —al)(d* - d?)] . (B.16)

We now look at the simplified expressions of the normal mode operators and
the nonlinear interaction hamiltonian in the regimes of interest. Define tan¢ =
fm o = 25—0, /‘Zm and a = cosf, § = sinf, then the diagonalization condition

Ay

reduces to

tan 26 = r tan 24, (B.17)
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and the normal mode energies become

& = %(1 + tan? ¢) <1 + \/0082 2¢ + r2sin? 2gz5) . (B.18)
We now consider the regime where the mechanical frequency is small compared to
the detuning of mode b and the driving is so strong that r is close to 1. This allows
us to introduce two small parameters 1 = w,, /A, and ¢ = /1 — 2. When n < 1,

tan ¢ ~ sin ¢ < 1, and we have

£, o~ 1T+7%W2 207 =1+ 1r?)2, (B.19a)
o~ V1I—1%w,/A, =(n. (B.19b)

The diagonalized hamiltonian becomes:
Hy = Agala+ (A + 6)b'b + w,,Cd'd, (B.20)
with § = r%w,,n/2 and the new notations for the normal modes are defined as:

b = do~b— g\/ﬁ(c+ ch, (B.21a)

L N S N [
2\/?( )+ —=(c+c")+ \/E(b b). (B.21b)

2 2
The full hamiltonian, including the nonlinear terms, is thus given by Eq. (3.6).

d = d_ =~

B.3 Derivation of ¢?(0) when quantum jumps are neglected

Here we show the standard procedure for calculating the two-photon correla-
tion function ¢2?(0) in the quasi-steady state regime using an effective hamiltonian.
We consider the hamiltonian Eq. (3.1) with antihermitian terms describing the dis-

sipation and weak coherent probe field on the b mode at frequency w, = Ay — gu:

Hyg = (A, —ir/2)a’a+ (Ap —ik/2)b'b + wn(d'd
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—gu(a'b + bTa)(d + d") +iB;(bTe ™»" — be™rt). (B.22)

The term (a + a')(d? + d™ + 2d'd) has been neglected since its strength is weak in
the limit Ay > w,, and it is also far off resonant. Moving to a frame rotating at w,
for the optical fields and using the resonance condition Ay = A, + w,,,(, we get
Hyg = (—wmC —ik/2)ata + (gu — ik/2)bTb + wnCd'd
—gn(a’d + bTa)(d 4 d") +iB5(b" — D). (B.23)

The system evolves according to the effective hamiltonian and we can expand its

quasi-steady state in the following basis:

|¢>ss = |07 07 0> + Cl |07 1’ O> + 62 |17 0’ ]-> + C3 |Oa 17 2>

He4]0,2,0) + ¢5]1,1,1) + ¢6[2,0,2) + ¢7]0,2,2) + ¢5 [200) . (B.24)

Considering the following coupling between basis states

10,1,0) <25 11,0,1) 2% |0, 1,2)

|0 2 0> \[in ’1 > 2gnl |2 O 2>
2gnl ‘O >
\/79111 ‘2 O 0>

and the pumping processes

10,0,0) <=2 10, 1,0) «=25 10,2, 0)

1,0,1) <2 11,1, 1)

0,1,2) <% 10,2, 2) .
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we can then construct the matrix representation of the effective hamiltonian.

The steady state is found using the Schrodinger equation:

0= i ) = Hor 1), (B.25)

Solving this set of algebra equations gives us the steady state |¢) . The ¢*(0) is

calculated using Eq. (3.13) in the limit 5; — 0.
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Appendix C: Damping mechanisms

In [119], they studied the clamping loss using elastic wave radiation theory.

They found the quality factor of clamping-free (C-F) beam resonators:

Q- = [Okﬁlﬁ )} G [ﬂ (C1)

where L is the length of the beam and b is its width. [,, is the mode constant for
the n-th mode, and Y, denotes the mode shape factor. v is the Poisson’s ratio of the
thin-plate which defined as the the negative ratio of transverse to axial strain, and
U is an integral parametrized by z = ¢ /cp, the ratio of the velocities of longitudinal
and transverse waves. The general feature is that the quality factor Q oc (L/b)?,
Taking v = 0.28, we get ¥ = 0.336. Choosing the lowest mode, gives = 0.597,
x = —0.743 and get Qc_r = 2(L/b)>.

Secondly, we look at the thermoelastic damping [122,123]. Phonons traveling
through a large elastic material will experience damping due to their nonlinear inter-
action with a surrounding bath of phonons. If the mean free path of these thermal
phonons is much smaller than the wavelength of the acoustic mode, then sufficient
thermalization occurs to define a temperature locally, even when the system is not in
a state of thermal equilibrium. In this diffusive regime, the interaction between the
phonon mode and the thermal bath is captured by a single macroscopic parameter,
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the material’s thermal expansion coefficient (TEC), defined as a =
temperature dependent. According to [124], the quality factor corresponding to this
damping mechanism is given by

QL — Eo*T (6 6 sinh& +siné
TED 0\ €2 coshé +cos¢ )’

(C.2)
where E' is the material’s Young’s modulus, 71" is the temperature and C), is the heat
capacity at constant pressure. The parameter £ is related to the geometry of the
resonator and is defined as £ = b\/m , Where wy is the frequency of the mode
of interest, k is the thermal conductivity of the material, p is the material density
and b is the width of the beam. We remark that for short beams, the clamping loss,
which grows as b?/L?, will always tend to dominate over the thermoelastic damping,
which only directly depends upon the beam width.

We now seek a numerical estimate of these losses for SiN resonators. As Qrgp
has a quadratic dependence on «, thermal elastic damping might be very sensitive to
changes in temperature. For example, the thermal expansion coefficient for silicon-
nitride (Si3gN,) at room temperature (7' = 300 K) is « = 1.19 x 107% K~!, but at

low temperatures, its value is quite different [?]. Under the Debye model of heat

capacity, the thermal expansion coefficient can be approximated as

o(T) = A (%)3 /0 o ["”"%ﬂ (C.3)

exp(z) — 1]*
We can fit a set of experimental data points {a;, T;} from [?] to study the temper-
ature dependence of thermal expansion coefficient. The result shows that A =
1.18 x 107® K=! and 0p = 1650 K, which implies o = 5.06 x 10712 K= and
C, = 3.02 x 1073 J/(mol - K) at 4.2 K. The Young’s modulus of the material is
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E = 310 GPa. Using these values, we find the £ dependent term in Eq. (C.2)
becomes £2/5 when & — 0 and becomes 6/£* when & — +00. We can also write
the dimensionless parameter £ as £ = b/by where by = \/W. Since thermal
conductivity k scales as heat capacity C,, by is roughly temperature independent.

Assuming wy /27 = 1 MHz, we get by = 6546 pm.

Thermal elastic damping (TED)
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Figure C.1: Estimated contributions to quality factor for thermoelastic damping
at different temperatures and quality factor for clamping loss at different resonator
lengths as a function of the beam width b using parameters for SiN resonators

described in the main text. Shorter beams have more pronounced clamping losses.

Fig. C.1 shows the quality factor for clamping loss and thermal elastic damping
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as a function of the beam width b. We see that at sufficiently low temperature, it
is always possible that Qrgp > Qcr (the upper half of the figure), which means the
system is clamping loss limited. In this regime, the main damping mechanism is
clamping loss. Since destructive interference happens in the symmetric mode a, its

clamping loss rate is also very small, which satisfies the condition v, < v, A.
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Appendix D: Narrowband optomechanical refrigeration of a chiral

bath
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Abstract

The transport of sound and heat, in the form of phonons, is fun-
damentally limited by disorder-induced scattering. In electronic and
optical settings, introduction of chiral transport provides robustness
against such disorder by preventing elastic backscattering. Here we
experimentally demonstrate a path for achieving robust phonon trans-
port even in the presence of material disorder, by dynamically inducing
chirality through optomechanical coupling. We demonstrate dramatic
optically-induced chiral transport for clockwise and counterclockwise
phonons in a symmetric resonator. The phenomenon leads to gain-free
reduction of the intrinsic damping of the phonons, and is surprisingly
also accompanied by a reduction in heat load of the mechanics. This
technique has the potential to improve the thermal limits of resonant
mechanical sensors, which cannot be attained through conventional
optomechanical cooling.

Efforts to harness the optical and mechanical properties of achiral res-
onators are leading to new approaches for quantum noise limited sources
[1-3], preparation of quantum states of matter [4-7], and ultra-high preci-
sion metrology [8-11]. Since all these efforts are aided by long coherence
times for resonant excitations, they are fundamentally limited by structural
disorder, even in systems with high symmetry, and by thermal noise in the
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mechanics. While optomechanical cooling can lower the effective tempera-
ture of a mechanical oscillator it does not modify the heat load, and thus
does not fundamentally modify the contribution of thermal noise [10, 11].
Surprisingly, chiral systems — that break parity symmetry — can provide
improved transport properties, giving rise to unique physics ranging from
nonreciprocal wave propagation to disorder-free transport via the edge states
of quantum Hall systems [12-16]. Indeed, inducing nonreciprocal behavior
by breaking time-reversal symmetry in nominally achiral devices forms the
basis for circulators [17, 18] and recent proposals for optomechanical isola-
tion [14, 16, 19, 20]. Here we consider an approach to dynamically impart
chirality to achiral mechanical systems, which induces disorder-less trans-
port while simultaneously improving the isolation of phonon modes from the
ambient bath, lowering their heat load without added damping.

One particularly simple class of systems for examining chirality are pas-
sive devices having degenerate forward- and backward-propagating modes,
such as ring cavities and whispering-gallery resonators (WGRs). We demon-
strate a new technique for enabling improved coherence properties for phonons,
by integrating induced time-reversal breaking [19] with opto-acoustic cou-
pling in a WGR. Specifically, we show that optomechanical chiral cooling of
phonon modes is possible. This phenomenon leads to induced chiral propa-
gation in the clockwise (cw) and counterclockwise (ccw) phonon modes, re-
sulting in the protection of the phonon pseudo-spins from disorder-induced
scattering. Most notably, while the cw phonon mode experiences conven-
tional optomechanical cooling [4-6, 21-23], the ccw mode is observed to cool
without added dissipation, indicating a new form of optomechanical cooling
that occurs through increased isolation from the thermal bath.

Let us consider a whispering gallery-type resonator with an intrinsic de-
generacy for clockwise (cw) and counterclockwise (ccw) propagation for both
phonons and photons. Our particular structure uses frequency-adjacent op-
tical modes belonging to different mode families, that may be populated
by cw or ccw photons (Fig. 1a), for a total of four optical modes for the
experiment. These optical modes differ in (w, k) space by the energy and
momentum of a propagating high-Q phonon mode in the resonator. Pho-
tons occupying the modes in the cw (ccw) direction can thus only be coupled
through Brillouin acousto-optic scattering from the cw (ccw) phonons, as il-
lustrated. Verification of the Brillouin phase-matching between two optical
modes and a phonon mode can be performed by means of forward Brillouin
lasing [24] and induced transparency measurements [19]. In particular, when
we pump the lower-energy optical mode, anti-Stokes scattering to the higher
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mode annihilates phonons [23] in the corresponding direction and should lead
to unidirectional optomechanical damping. As a result, this system should
exhibit significant optically-induced chirality in the transport of phonons,
which we may hope to observe by its modification of the high-Q mechanical
mode that couples to the light (Fig. 1b). We note that there also exist other
low-Q vibrational excitations of the resonator, i.e. the phonon bath, that
also occupy (w, k) space within the bandwidth of the optical modes. We col-
lectively treat these as a phonon quasi-mode having large dissipation rate.
This quasi-mode acts as a bath for the high-Q mode, while also directly
coupling to the light.

Our experiments are performed with a silica WGR of diameter ~ 150 pm
at room temperature and atmospheric pressure, using a tapered fiber cou-
pler for optical interface in the telecom band (Fig. 2). Direct coupling
between optical modes in cw and ccw directions is negligible. To exam-
ine the potential for modification of the high-Q phonon behavior, and the
possibility of chiral transport of sound, we set up the experiment with two
optical sources tuned to the lower frequency optical mode in the clockwise
(cw) and counter-clockwise (ccw) directions. The role of the cw “pump”
is to induce cooling of the cw propagating phonons, while the role of the
much smaller ccw “reverse probe” is to simply generate optical scattering
from the counter-propagating phonons. The RF beat spectrum generated
between the scattered light and the corresponding source in either direc-
tion provides a direct measure of the phonon mode spectrum (Supplement
Sec. S5). In the experiment, the optical pump and probe sources are both
derived from the same laser and are thus always at identical frequencies.
Throughout the remainder of this work, no pump or probe field is delivered
to the upper optical mode, in order to prevent coherent amplification of the
phonons via Brillouin scattering.

Our first task is to measure the intrinsic damping of the high-Q phonon
mode 7, without any optical pumping. This is traditionally the minimum
measurable phonon linewidth in any optomechanical cooling experiment.
We perform this measurement by detuning the source laser from the optical
resonance such that little to no optomechanical cooling is induced by either
the pump or the probe. The zero-power phonon linewidth ~,, can be calcu-
lated by extrapolating measurements of cw and ccw phonon linewidths 7,
and ~,— using the theoretical model (Egs. S10). A determining parameter
for the optomechanical cooling rate is the detuning A, of the anti-Stokes
scattered light from its optical mode, which we measure directly using the
Brillouin Scattering Induced Transparency [19]. In Fig. 3a we plot linewidth
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measurements of both cw and ccw phonon linewidth as a function of this de-
tuning. We immediately see a striking direction-dependence of the damping
rates of the cw and ccw phonons, that has never previously been reported.
This dramatic chiral damping is a direct result of the momentum conser-
vation rules that underly the Brillouin scattering interaction, and will not
generally be available in traditional single-mode optomechanical systems.
We note also that the relative power of the cw pump and ccw probe lasers
is ~ 9: 1, so there is some cooling of the a_ phonons as well.

As discussed below, the minimum measured linewidth 7, in the above
experiment will be larger than the intrinsic loss rate «. This is because v, =
v+4VZ /T where the second term in Eqn. 2b (below), representing disorder-
induced backscattering to the counter-propagating quasimode, is unavoid-
able. Here, we measure intrinsic damping 7,, to be about 12.5+ 1.0 kHz.
All uncertainties in this manuscript correspond to 95 % confidence bounds
of the fitted value.

We now propose a model that illuminates how the optical coupling to the
quasimodes allows us to change the role this disorder-induced backscatter-
ing plays in the damping and thermalization of the high-Q phonon modes.
Specifically, we incorporate all the essential physics described above and il-
lustrated in Fig. 1c as follows. We define the higher frequency optical modes
Cs, With 0 = + for cw photons and 0 = — for ccw photons. These couple
to the high-Q phonon mode a4 respectively, via direct optomechanical in-
teraction with strength ahg (or Shg), and also couple to the quasi-mode by
with strength agg (or Sgo). In all cases these interactions preserve chirality
0. hp and gg are the bare (single photon/phonon) optomechanical coupling
strengths, while a and 3 are the square root of the intracavity photon num-
ber in cw and ccw direction respectively.

We exclude a simpler model, of two degenerate mechanical modes and no
additional quasi-modes, as it fails to produce two key features of the data.
First, at low pump power, we would see some mode splitting, representing
a breaking of circular symmetry from disorder-induced scattering. Second,
at high pump powers, explored below, the lowest linewidth that the back-
ward mode could achieve would be equivalent to its initial linewidth and
its temperature would be equal to the bath temperature. Optical coupling
to multiple mechanical modes is the next best alternative, and as we show
below, describes these phenomena.

To see the role chirality plays, we now also include the existence of
disorder-induced scattering between a4+ and b+ modes having strength V —
a term that explicitly breaks the chiral symmetry. We can thus represent
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this toy model system with the interaction Hamiltonian expression given by:

Hi = aci(hoaJr + goby) + Bci(hoa, + gob—)
+ Vo(al by +bla_) +hec. (1)

The full Hamiltonian model including the dissipation and detuning terms is
provided in the Supplement. We can now derive the equations of motion for
this system by means of the Heisenberg-Langevin equation (see Supplement
Sec. S3) and extract the susceptibilities of the high-Q phonon modes a.
The corresponding modal linewidths ~y,, can then be obtained as follows.

402h3  4AVE 1

- 2
’YCL+ ’7 + K F 1 + CB’ ( a‘)
4B%R%  AVE 1
= , 2b
Yoo =9+ — T 1+Ca (2b)

The last term in each expression is the disorder-induced modification. Here
K, 7, and I' are the loss rates of the optical modes ¢, the high-QQ phonon
modes a,, and the phonon quasi-modes b, respectively. The parameters
Co and Cg are the quasi-mode optomechanical cooperativities defined as
402g3 /Tk and 43%g2/Tk, respectively.

With zero optical pumping, the model predicts vo4 = Ya— = 7 + 4VZ/T
implying that the minimum measurable phonon mode linewidth in any con-
ventional experiment is greater than the intrinsic loss rate ~, because dis-
order in the system causes loss via elastic backscattering into the bz quasi-
mode. The model also predicts, irrespective of disorder-induced scattering,
that asymmetric optical pump strengths o and 8 will induce chirality in
the transport properties of phonons with ~v,+ # v,— as we saw previously.
Most importantly, we note that the contribution of disorder-induced scat-
tering can be minimized by increasing the cooperativities C, and Cg. In
the particular case where only the cw optical pump is provided (o # 0,
B = 0), 74— will approach the intrinsic loss rate =, indicating a robust-
ness against disorder-induced scattering. This effect has never previously
been reported. In addition to phonon linewidth modification, this model
also predicts a reduction in the effective temperature of the a_ phonon
mode. Considering the effective thermal noise on a_ near resonance given
by \/yal" —i2Vy/VT (1 + Co) b, the effective temperature of mode a_ can
be determined by the weighted sum of each bath’s contribution divided by
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the total damping:

1 ¢ 1
Tsﬁ = %7_ V1o + TOme+ . (3)
Notably, from Eqn. 2b and Eqn. 3 we predict that as the optical pump «
increases, the thermal load on mode a_ will decrease more rapidly than the
concurrent improvement in its linewidth.

We now return to the experimental results, to demonstrate the key
predictions of this model: (i) dissipation associated with disorder-induced
backscattering can be optically inhibited, (ii) the damping rate of ccw phonons
can be brought below the intrinsic damping ~,,, and (iii) the process leads
to a reduction in heat load. Here, we employ an erbium doped fiber am-
plifier (EDFA) to control the cw pump power while keeping the ccw probe
power constant at 12.5 pW. The anti-Stokes Brillouin scattered light in the
resonator is kept close to zero detuning from its optical mode to maximize
cooling efficiency, i.e. |Aa/k| is less than 10 %. Since the ccw probe adds
some optical damping to the ccw phonons, the initial measurement of ~y,_
is at 18 £1 kHz, which is greater than the measured zero-power linewidth
Ym-

When the cw pump power is increased, the added optical damping broad-
ens the cw phonon linewidth 7,4+ (Fig. 3b). The striking feature of this
experiment is that the ccw phonon linewidth ~,_ simultaneously reduces,
i.e. the ccw phonons become more coherent! We verify that the increased
coherence of the ccw phonons is not associated with any gain (Fig. 3c).
In fact, quite the opposite occurs, and the total integrated area under the
phonon spectrum also reduces, indicating a reduction in heat load (i.e. cool-
ing) of the a_ phonons. This heat load reduction occurs more rapidly than
the linewidth improvement, as theoretically predicted.

Since the ccw optical probe was not modified in any way, the optically
induced damping (about 4.5 kHz) from the probe remains constant. The
reduction of the v, linewidth thus indicates that a hidden contribution to
dissipation is being eliminated when the cw pump power is increased. At
the end of the experiment, the measured linewidth v, = 10.5 + 1.7 kHz is
well below the intrinsic damping v,,, = 12.5 £ 1 kHz measured at the start
of the experiment. Subtracting the optical damping from the probe gives an
upper bound to the intrinsic thermalization rate for the mechanical mode
v < 6 kHz.

Our model indicates that the above measured reduction in the phonon
linewidth v, occurs in the disorder-induced scattering contribution to the
intrinsic linewidth. In other words, the ccw propagating phonons achieve
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significant robustness against disorder when the cw propagating phonons
are cooled optically.

Our approach for inducing chiral behavior is, at present, confined to the
narrowband response of a high-Q resonator system. However, such devices
are already in use for metrological applications [8-11] including atomic force
microscopes [25] and quantum-regime transducers [26, 27]. In all these cases,
increasing the quality factor while reducing the heat load of the mechanical
element would lead to a direct improvement in performance. Furthermore,
the modification of phonon transport due to light may have substantial im-
pact beyond current devices, as the ability to dynamically reconfigure the
phononic behavior may change the realm of possibility as currently con-
ceived. Still, robust demonstration of chiral asymmetry and non-reciprocal
behavior remains close, but our work provides a foundation upon which to
build such demonstrations.
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Figure 1: Chiral cooling and modal coupling relationships in a whispering gallery resonator.
(a) Configuration of the two requisite optical modes (with cw and ccw degeneracy) is illustrated in (w, k)
space. Anti-Stokes Brillouin scattering from cw pumping of the lower mode annihilates only cw phonons due
to the strict phase-matching requirement, while ccw phonons remain nominally unaffected. (b) Directional
optical interface to the resonator modes is achieved via tapered optical fiber. Unidirectional optical pumping
results in dramatic chiral damping of the phonons. (c) Model for coupling between the anti-Stokes (higher
frequency) optical modes ¢4, high-Q phonon modes a4, and phonon quasi-modes by in cw and ccw directions.
Light couples to the a4+ and by phonons with different optomechanical interaction strength, while disorder-
induced scattering between phonons occurs with strength V. Details on individual parameters are provided
in the text.
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Figure 2: Experimental setup for optomechanical refrigeration of a chiral bath. We
perform the experiment using a silica whispering-gallery microsphere resonator that is interfaced via
tapered optical fiber. A 1520 nm to 1570 nm tunable external cavity diode laser (ECDL) generates
the cw pump and ccw probe sources. An Erbium-doped fiber amplifier (EDFA) controls the cw
pump power, for both optomechanical cooling [23] and for monitoring the cw phonon spectrum.
An electro optic modulator (EOM) is employed when needed, for measuring the detuning of anti-
Stokes scattered light from its optical mode through an induced transparency measurement [19]. A
variable optical attenuator (VOA) is used to control the ccw probe, which monitors the ccw phonon
spectrum. Fiber polarization controllers (FPC) are used to optimize coupling between the fiber and
resonator in both directions.
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during optomechanical cooling of the cw propagating phonons. The phonon linewidth ~,_ is seen to
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dissipation. (c) Verification of gain-free spectral narrowing (y,— ) and cooling by reduction of heat
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