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Face identification and verification are important problems in computer vision and

have been actively researched for over two decades. There are several applications includ-

ing mobile authentication, visual surveillance, social network analysis, and video content

analysis. Many algorithms have shown to work well on images collected in controlled

settings. However, the performance of these algorithms often degrades significantly on

images that have large variations in pose, illumination and expression as well as due to

aging, cosmetics, and occlusion.

How to extract robust and discriminative feature representations from face im-

ages/videos is an important problem to achieve good performance in uncontrolled set-

tings. In this dissertation, we present several approaches to extract robust feature repre-

sentation from a set of images/video frames for face identification and verification prob-

lems.

We first present a dictionary approach with dense facial landmark features. Each

face video is segmented into K partitions first, and the multi-scale features are extracted



from patches centered at detected facial landmarks. Then, compact and representative

dictionaries are learned from dense features for each partition of a video and then con-

catenated together into a video dictionary representation for the video. Experiments show

that the representation is effective for the unconstrained video-based face identification

task. Secondly, we present a landmark-based Fisher vector approach for video-based face

verification problems. This approach encodes over-complete local features into a high-

dimensional feature representation followed by a learned joint Bayesian metric to project

the feature vector into a low-dimensional space and to compute the similarity score. We

then present an automated system for face verification which exploits features from deep

convolutional neural networks (DCNN) trained using the CASIA-WebFace dataset. Our

experimental results show that the DCNN model is able to characterize the face varia-

tions from the large-scale source face dataset and generalizes well to another smaller one.

Finally, we also demonstrate that the model pre-trained for face identification and veri-

fication tasks encodes rich face information which benefit other face-related tasks with

scarce annotated training data. We use apparent age estimation as an example and de-

velop a cascade convolutional neural network framework which consists of age group

classification and age regression, and a deep networks is fine-tuned using the target data.
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Chapter 1: Introduction

1.1 Motivation

Face recognition is one of the active research areas in computer vision and has a

wide range of practical applications including surveillance, social network, and mobile

authentication [4]. Even though many face recognition algorithms have shown promising

results in controlled settings, unconstrained face recognition is still a challenging problem

due to large variations in pose, lighting, blur, expression and occlusion. Therefore, how to

extract robust and discriminative representation from face images/videos is an important

problem. In this dissertation, we present several approaches to extract robust feature rep-

resentation from a set of images/video frames for face recognition problems. In general,

face recognition can be broadly classified into two major tasks: identification and verifi-

cation. We focus on face identification and verification problems in this dissertation. (i.e.

the purpose of the face identification problem is to determine the subject identity from the

given candidate set, and the face verification problem is to determine whether two face

images belong to the same person or not.)
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1.2 Dictionary-based Video Face Recognition Using

Dense Multi-scale Facial Landmark Features

To handle large face variations in unconstrained settings, many methods have been

proposed to learn an invariant and discriminative representation from face images and

videos. Coates et al. [5] showed that an over-complete representation is critical for

achieving high recognition rates regardless of the encoding methods. In [6], it was shown

that densely sampling overlapped image patches helps to improve the recognition per-

formance. In the first part of the dissertation, we propose a dictionary-based approach

using dense and high-dimensional features extracted from multi-scale patches centered

at detected facial landmarks for video-to-video face identification problem. The idea is

to utilize dictionary learning technique to learn a compact video representation from dis-

criminative high-dimensional dense landmark features extracted from each frame of a

video. Subsequently, dictionary learning is applied to each image set and video indepen-

dently without requiring any extra training data. This approach improves the recognition

performance compared with image-set based recognition approach.

1.3 Landmark-based Fisher Vector Representation for

Video-based Face Verification

For the face verification problem, one usually measures the performance using the

receiver operating characteristic curves (ROC) which is generated based on the ranked

similarity scores from all of the matched and non-matched face pairs. Therefore, besides
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the robust face representation, learning a discriminative distance measure is the other

key component for boosting the performance. In the second part of the dissertation, we

present an approach based on Fisher vector representation (FV) for the face verification

problem. We first extract over-complete local features from patches around facial land-

marks and encodes them using FV into a high-dimensional feature followed by a learned

joint Bayesian metric to project the feature vector into a low-dimensional space and com-

pute the similarity score. Our approach achieves good results on the Point and Shoot

Challenge dataset (PaSC) [7] dataset compared to other methods reported in IJCB 2014

face recognition competition.

1.4 Unconstrained Still/Video-Based Face Verification with

Deep Convolutional Neural Networks

In the third part of the dissertation, since deep convolutional neural networks (DCNN)

have demonstrated top performances on different computer vision tasks, including ob-

ject recognition [8] [9], object detection [10], and face verification [11]. In contrast to

approaches based on high-dimensional feature representation, it has been shown that a

DCNN model can not only characterize large data variations but also learn a compact

and discriminative feature representation when the size of the training data is sufficiently

large. Once the model is learned, it is possible to generalize it to other tasks by fine-tuning

the learned model on target datasets [12]. We also train a DCNN model using a compara-

tively small-scale face dataset - the CASIA-WebFace [13], and compare the performance

of our method with other commercial off-the-shelf face matchers on the new challeng-
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ing IJB-A dataset which contains full variations in pose, illumination, aging, expression,

resolution and occlusion.

1.5 A Cascaded Convolutional Neural Network for

Age Estimation of Unconstrained Faces

Since the pre-trained face DCNN model encodes rich information about faces, we

utilize it to address other face-related tasks for which large-scale annotated datasets are

not readily available. As an example, we consider the task of facial age estimation. We

show that after fine-tuning the DCNN model pre-trained on the CASIA-WebFace to age

estimation task, we could get reasonable performance. In addition, based on the fine-

tuning technique, we propose a coarse-to-fine approach for estimating the facial age from

unconstrained face images. The method consists of three modules. The first one is a

DCNN-based age group classifier which classifies a given face image into age groups.

The second module is a collection of DCNN-based regressors which compute the fine-

grained age estimate corresponding to each age class. Finally, any erroneous age predic-

tion is corrected using an error-correcting mechanism. Experimental evaluations on three

publicly available datasets for age estimation show that the proposed approach is able to

reliably estimate the age; in addition, the coarse-to-fine strategy and the error correction

module significantly improve the performance.

1.6 Contributions

In this dissertation, we make the following contributions:

4



1. We have extensively studied the problem of robust representation for the uncon-

strained face verification problem. We evaluate different approaches from dictio-

nary learning, Fisher vector to deep learning for the unconstrained face verification

problem.

2. We develop an automated system for still/video-based face verification which di-

rectly takes images or videos as input and computes the similarity scores and yield

robust performance to pose, illumination, and other variations.

3. We adapt the face identification/verification deep network to other face-related ap-

plications, such as facial age estimation.

1.7 Organization

The dissertation is organized as follows. In Chapter 2, we briefly review relevant

related works in the literature. In Chapter 3, we present a dictionary-based approach

using dense high-dimensional feature extracted from the patches around facial landmarks

for unconstrained video-to-video face identification problems. In Chapter 4, we propose a

landmark-based Fisher vector representation for video-based face verification. In Chapter

5, we present an automatic face verification system for unconstrained face verification

using deep convolutional neural networks learned from a large-scale face dataset. In

Chapter 6, we present an age estimation approach which finetunes the pre-trained DCNN

model on the face identification to perform age group classification and age regression.

The cascade DCNN model of both age group classification and regression demonstrate

good results. In Chapter 7, we conclude and discuss future research directions.
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Chapter 2: Related Work

Due to a large amount of related works for robust representations to face verification

and face-related application, we briefly review them as follows. In addition, we also

go through relevant works for the face preprocessing which is also important to a face

verification system or other face-related applications.

2.1 Face Preprocessing

A typical face verification system consists of the following components: (1) face

detection and (2) face association across video frames, (3) facial landmark detection to

align faces, and (4) face verification to verify the identity of a subject. In the following

subsections, we briefly discuss the preprocessing modules.

2.1.1 Face Detection

The face detection method introduced by Viola and Jones [14] is based on cascaded

classifiers built using the Haar wavelet features. Since then, a variety of sophisticated

cascade-based face detectors such as Joint Cascade [15], SURF Cascade [16] and Cas-

cadeCNN [17] have demonstrated improved performance. Zhu et al. [18] improved the

performance of face detection algorithm using the deformable part model (DPM) ap-
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proach, which treats each facial landmark as a part and uses the HOG features to simul-

taneously perform face detection, pose estimation, and landmark localization. A recent

face detector, Headhunter [19], shows competitive performance using a simple DPM.

However, the key challenge in unconstrained face detection is that features like Haar

wavelets and HOG do not capture the salient facial information at different poses and

illumination conditions. To overcome these limitations, few deep CNN-based face de-

tection methods have been proposed in the literature such as Faceness [20], DDFD [21]

and CascadeCNN [17]. It has been shown in [12] that a deep CNN pre-trained with the

Imagenet dataset can be used as a meaningful feature extractor for various vision tasks.

The method based on Regions with CNN (R-CNN) [22] computes region-based deep

features and attains state-of-art face detection performance. In addition, since the deep

pyramid [23] removes the fixed-scale input dependency in deep CNNs, it is attractive to

be integrated with the DPM approach to further improve the detection accuracy across

scale [24]. Ranjan et al. [25] proposed a multi-task face detector based on R-CNN which

simultaneously detects fiducial points, head pose, face bounding boxes and gender.

2.1.2 Facial Landmark Detection

Facial landmark detection is an important component for a face verification system

to align faces into canonical coordinates and to improve the performance of verification

algorithms. Pioneering works such as Active Appearance Models (AAM) [26] and Ac-

tive Shape Models (ASM) [27] are built using the PCA constraints on appearance and

shape. In [28], Cristinacce et al. generalized the ASM model to a Constrained Local
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Model (CLM), in which every landmark has a shape constrained descriptor to capture

the appearance. Zhu et al. [18] used a part-based model for face detection, pose estima-

tion and landmark localization assuming the face shape to be a tree structure. Asthana

et al. [29] combined the discriminative response map fitting with CLM. In addition, Cao

et. al. [30] followed the cascaded pose regression (CPR) proposed by Dollár et. al. [31]:

feature extraction followed by a regression stage. However unlike CPR which uses pixel

difference as features, it trains a random forest based on local binary patterns. In gen-

eral, these methods learn a model that directly maps the image appearance to the target

output. Nevertheless, the performance of these methods depends on the robustness of

local descriptors. In [8], the deep features are shown to be robust to different challenging

variations. Sun et al. [32] proposed a cascade of carefully designed CNNs, in which at

each level, outputs of multiple networks are fused for landmark estimation and achieve

good performance. Unlike [32], Kumar et al. [1] uses a single CNN, carefully designed to

provide a unique key-point descriptor and achieve better performance. In addition, Ran-

jan et al. [25] proposed a multi-task face detector based on R-CNN which simultaneously

detects fiducial points, head pose, face bounding boxes and gender

2.1.3 Face Association

The video-based face verification system [33] requires consistently-tracked faces

to capture the diverse pose and spatial-temporal information for analysis. In addition,

there is usually more than one person present in the videos, and thus multiple face images

from different individuals should be correctly associated across the video frames. Several
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recent techniques achieve multiple object tracking by modeling the motion context [34],

track management [35], and guided tracking using the confidence map of the detector

[36]. Multi-object tracking methods based on tracklet linking [37–39] usually rely on

the Hungarian algorithm [40] to optimally assign the detected bounding boxes to existing

tracklets. Roth et al. [38] adapted the framework of multi-object tracking methods based

on tracklet linking approach to track multiple faces; Several face-specific metrics and

constraints have been introduced to enhance the reliability of face tracking. A recent

study [41] proposed to manage the tracks generated by a continuous face detector without

relying on long-term observations. In unconstrained scenarios, the camera can be affected

by abrupt movements, which makes consistent tracking challenging. Du et al. proposed a

conditional random field (CRF) framework for face association in two consecutive frames

by utilizing the affinity of facial features, location, motion, and clothing appearance [42].

Our face association method utilizes the KLT tracker to track the face initiated from the

face detection. We continuously update the face tracking for every fifth frame using the

detected faces. The tracklet linking [39] is utilized to link the fragmented tracklet. We

present a robust face association method based on the existing works of [39, 43, 44]. In

addition, recently developed object trackers [45–47] and face trackers [48, 49] can be

integrated to potentially improve the robustness of face association method. More details

are presented in Section 5.2.1.3
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2.2 Still/Video Face Recognition: identification and verification

General speaking, there are two major components for a face identification/verification

system: (1) robust feature representation and (2) classification model/similarity measure.

Due to significant amount of related works in the literature, we briefly review several

recent relevant works on face identification and verification as follows.

2.2.1 Robust Feature Representation

Learning invariant and discriminative feature representation is the first step for a

face identification/verification system. It can be broadly divided into two categories: (1)

hand-crafted features, and (2) feature representation learned from data.

2.2.1.1 Hand-Crafted Feature

Ahonen et al. [50] showed that Local Binary Pattern (LBP) is effective for face

recognition. Several variants of LBP such as Local Ternary Patterns (LTP) [51] and

three-patch LBP (TP-LBP) [52] have been proposed. Gabor wavelets [53] [54] have

also been widely used to encode multi-scale and multi-orientation information for face

images. Chen et al. [55] demonstrated good results for face verification using the high-

dimensional multi-scale LBP features extracted from patches around facial landmarks.

Ding et al. [56] proposed a new texture descriptor called Dual Cross Patterns (DCP)

and extracted multi-scale DCP from patches around facial landmarks to compose a high-

dimensional feature representation for face recognition.
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2.2.1.2 Feature Representation learned from data

Simonyan et al. [57] and Parkhi et al. [58] applied the Fisher vector (FV) encod-

ing to generate over-complete and high-dimensional feature representation for still and

video-based face recognition. Lu et al. [59] proposed a dictionary learning framework

in which the sparse codes of local patches generated from local patch dictionaries are

pooled to generate a high-dimensional feature vector. The high-dimensionality of feature

vectors makes these methods hard to train and scale to large datasets. However, advances

in deep learning methods have shown that compact and discriminative representation can

be learned using DCNNs trained using very large datasets. Taigman et al. [60] learned a

DCNN model on the frontalized faces generated with a general 3D shape model from a

large-scale face dataset and achieved better performance than many traditional face veri-

fication methods. In contrast, Sun et al. [61] [62] achieved the results surpassing human

performance for face verification on the LFW dataset using an ensemble of 25 simple

DCNN with fewer layers trained on weakly aligned face images from a much smaller

dataset. Schroff et al. [11] adapted a state-of-the-art deep architecture in object recogni-

tion to face recognition and trained on a large-scale unaligned private face dataset with the

triplet loss. Parkhi et al. [63] trained a very deep convolutional network based on VGGNet

for face verification and demonstrated impressive results.This method also achieved top

performances on face verification problems. These works essentially demonstrate the ef-

fectiveness of the DCNN model for feature learning and detection/recognition/verification

problems.
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2.2.2 Classification Model

The classification model for most video-based face recognition algorithms can be

classified into two categories: (1) frame-based and (2) image set-based. In addition,

similarity measure learning is applicable for both still and video face recognition. We

briefly summarize related works as follows.

2.2.2.1 Frame-based Approach

For this category, besides features (e.g., SIFT, LBP) derived from the image inten-

sity data, the temporal (e.g., motion) and spatial-temporal information between cropped

faces in a video is usually utilized and encoded in the model to perform recognition tasks.

For example, Zhou et al. [64] proposed a tracking-and-recognition approach which low-

ers the uncertainties of tracking and recognition simultaneously in a unified probabilistic

framework. Lee et al. [65] learned the nonlinear appearance manifold from face videos

to handle both tracking and recognition in a unified framework. In addition, a Hidden

Markov Model [66] has been also proposed to make use of the temporal information.

However, the performance of these approaches is greatly affected by tracking accuracy.

Poor tracking will introduce background noise into the model and adversely affect the

recognition rates.

2.2.2.2 Image Set-based Approach

In this approach, each face video is transformed into an unordered set of images

which implies no temporal information is used. The set of images for a subject is usually
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represented using a subspace model. Then, recognition is done by measuring the distance

between subspaces. Turaga et al. [67] presented a statistical method for video-based face

recognition which constructed the face subspaces by performing standard PCA for face

videos and using tools from Riemannian geometry of the Grassmann manifold to measure

the distance between two faces. Cevikalp et al. [68] modeled face image sets using affine

or convex hull, and Wang et. al. [69] modeled them using covariance matrix to encode

the underlying manifold structure. Hu et al. [70] improved the affine subspace model by

enforcing the sparsity constraint and used it to measure between-set dissimilarity which

is the distance between sparse approximated nearest points of two image sets. Recently,

Chen et al. [71] used K-SVD [72] to learn a compact and representative dictionary for

each video and made use of the reconstruction errors of test videos using the learned

video dictionaries for face identification and verification tasks. The approach is simple

and efficient, especially suitable for large-scale video-based face recognition.

2.2.2.3 Metric Learning

The similarity measure is the other key component in a face verification system.

Due to the large number of metric learning approaches in the literature, we briefly review

several works on learning a discriminative metric for verification problems. Guillaumin

et al. [73] proposed to learn two robust distance measures: Logistic Discriminant-based

Metric Learning (LDML) and Marginalized kNN (MkNN). The LDML method learns a

distance by performing a logistic discriminant analysis on a set of labeled image pairs

and the MkNN method marginalizes a k-nearest-neighbor classifier to both images of
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the given test pair using a set of labeled training images. Weinberger et al. [74] pro-

posed Large Margin Nearest Neighbor(LMNN) metric which enforces the large margin

constraint among all triplets of labeled training data. Taigman et al. [75] learned the Ma-

halanobis distance for face verification using the Information Theoretic Metric Learning

(ITML) method proposed in [76]. Wolf et al. [77] proposed the one-shot similarity (OSS)

kernel based on a set of pre-selected reference images mutually exclusive to the pair of

images being compared and training a discriminative classifier between the test image

and the new reference set. Kumar et al. [78] proposed two classifiers for face verification:

attribute classifier and simile classifiers. Attribute classifiers are a set of binary classifiers

used to detect the presence of certain visual concepts where visual concepts are defined

in advance. Simile classifiers were trained to measure the similarities of facial parts of a

person to specific reference people. Chen et al. [79] proposed a joint Bayesian approach

for face verification which models the joint distribution of a pair of face images instead of

the difference between them, and the ratio of between-class and within-class probabilities

is used as the similarity measure. Hu et al. [80] learned a discriminative metric within

the deep neural network framework. Huang et al. [81] learned a projection metric over

a set of labeled images which preserves the underlying manifold structure. Schroff et

al. [11] and Parkhi et al. [63] optimized the DCNN parameters based on the triplet loss

which directly embeds the DCNN features into a discriminative subspace and presented

promising results for face verification.
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2.3 Face Related Application: Facial Age Estimation

For the DCNN model, Donahue et al. [12] and Yosinski et al. [82] demonstrated

that the pre-trained DCNN model can be generalized to other vision tasks by fine-tuning it

on the new task. In this dissertation, we focus on finetuning the pre-trained DCNN model

for face recognition to the facial age estimation task. We briefly review the related works

below.

Most of the age estimation methods proposed earlier have focused on using shape

or textural features. These features are then fed to a regression method or a classifier to

estimate the apparent age [83–86].

Holistic approaches usually adopt subspace-based methods, while feature-based ap-

proaches typically extract different facial regions and compute anthropometric distances.

Geometry-based methods [84, 85] are inspired by studies in neuroscience, which suggest

that facial geometry strongly influences age perception [85]. As such, these methods

address the age estimation problem by capturing the face geometry, which refers to the

location of 2D facial landmarks on images. Recently, Wu et al. [86] proposed an age es-

timation method that presents the facial geometry as points on a Grassmann manifold. To

solve the regression problem on the Grassmann manifold, [86] then used the differential

geometry of the manifold. However, the Grassmannian manifold-based geometry method

suffers from a number of drawbacks. First, it heavily relies on the accuracy of landmark

detection step, which might be difficult to obtain in practice. For instance, if an image is

taken from a bearded person, then detecting landmarks would become a very challenging

task. In addition, different ethnic-groups usually have slightly different face geometry,
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and to appropriately learn the age model, a large number of samples from different ethnic

groups is required.

Unlike the traditional methods discussed, the proposed method is based on DCNN

to encode the age information from a given image. Recent advances in deep learn-

ing methods have shown that compact and discriminative image representations can be

learned using DCNN from very large datasets [87]. There are various neural-network-

based methods, which have been developed for facial age estimation [88–90] . However,

as the number of samples for estimating the apparent age task is limited, (i.e. not enough

to properly learn discriminative features, unless a large number of external data is added),

the traditional neural network methods often fail to learn an appropriate model.

Thukral et. al. [91] proposed a cascaded approach for apparent age estimation

based on classifiers using the naive-Bayes approach and a support vector machine (SVM)

and regressors using the relevance vector machine (RVM). However, the difference be-

tween [91] and the proposed approach is that we leverage the rich information contained

in the DCNN model pre-trained using a large-scale face dataset for age estimation. Also,

the proposed error correction module mitigates the influences of the errors made at initial

classification stage.
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Chapter 3: Dictionary-based Video Face Recognition Using

Dense Multi-scale Facial Landmark Features

3.1 Overview

Motivated by the successes of high-dimensional facial features in still-face recogni-

tion [55], sparse representation [92] and dictionary learning for video-based face recogni-

tion [93] [71] [94], we propose a dictionary-based approach using dense high-dimensional

feature for unconstrained video-to-video face identification problems. We first segment

the face videos into K partitions and extract multi-scale features from patches centered

at detected dense facial landmarks. Then, we learn a compact and representative dictio-

nary from dense features for each partition and form a video dictionary for each video

by concatenating sub-dictionaries. Finally, the learned video dictionaries are used for

face identification. Moreover, because the dictionary for each training video is learned

independently during the training phase, our approach can thus be easily parallelized in

training and testing stages. This makes our approach attractive for addressing the large-

scale video-based face recognition problems. Fig. 3.1 gives an overview of our method.
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Figure 3.1: An overview for our video-based face identification system.

3.2 Proposed Approach

In this section, we describe the construction of a video dictionary using high-

dimensional dense facial landmark features and its application to face identification prob-

lems.

3.2.1 Constructing Video Dictionary Using

Dense Multi-scale Facial Landmark Features

The training phase of our method consists of three main stages: video partitioning,

multi-scale landmark feature extraction and video dictionary learning. In what follows,

we describe them in detail.
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Video partitioning: Due to the high variability of faces within a video and face track-

ing accuracy, we find that segmenting a video into different partitions usually improves

recognition accuracy. A K-means clustering type of algorithm is used to segment the

videos [71] [95] which incrementally adds each cropped face into a partition with the

minimum ratio of within-partition similarity over between-partition similarity.

Dense landmarks and multiple-scale features: It was shown in [55] that multi-scale

features centered around facial landmarks contain strong discriminative information and

the recognition performance improves as the dimensionality of the feature vector is in-

creased. We extract multi-scale patches centered at facial landmarks of inner faces (i.e.,

landmarks at eye brows, eyes, nose, and mouth corners. 26 landmarks in total are used

in our work) and concatenate them together to form a high-dimensional feature vector.

With recent progress in face alignment, there are numerous approaches providing accu-

rate and dense facial landmark detection [96] [97]. We adopt [29] because of its excellent

performance on low-resolution and lower-quality face images1. Detected landmarks and

extracted features are shown in Fig.3.2. However, unlike still-face recognition, directly

applying the approach in [55] to video-to-video face recognition is infeasible because the

concatenation of feature vectors extracted from each frames in a video yields extremely

high-dimensional feature vector (i.e., imagine a video with 100 frames can result in a 100

times long feature vector). A compact and representative model has to be learned to re-

move noisy and irrelevant features.

1https://sites.google.com/site/akshayasthana/clm-wild-code.
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Figure 3.2: For illustration purposes, we visualize the single-scale patch image for the
MBGC dataset by assembling all 5 × 5-pixel patches centered at 26 facial
landmarks points together.

Video dictionary: Various algorithms have been proposed in the literature for learning

compact and representative dictionaries. One of the well-known algorithm is the K-SVD

algorithm [72]. For each partition, we apply the K-SVD algorithm to construct a dictio-

nary which not only captures variations caused by changes in pose and illumination but

also reduces temporal redundancy. Let Di
j,k be the dictionary and Gi

j,k = [gij,k,1 gij,k,2 . . .]

be the feature matrix for the kth partition of the jth face video for the ith subject where

each column gij,k,l is the extracted dense multi-scale feature for lth face in the kth parti-

tion of the jth video. In the K-SVD formulation, the dictionary and sparse coefficients

are learned through iteratively minimizing the following reconstruction errors by fixing

Di
j,k and Xi

j,k in turn.

(D̂i
j,k, X̂

i
j,k) = argmin

Di
j,k,X

i
j,k

||Gi
j,k −Di

j,kX
i
j,k||2F s.t. ∀l, ||xl||0 ≤ T0, (3.1)
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where T0 ∈ N is the sparsity constraint and xl is the lth column of sparse coefficient

matrix Xi
j,k. ||·||0 is the zero-norm which counts the number of nonzero entries, and ||·||F

is the Frobenius norm. Finally, the video dictionary Di
j for the jth video of ith subject

can be obtained via concatenating all sub-dictionaries learned from the corresponding K

partitions

Di
j = [Di

j,1 Di
j,2 . . . Di

j,K ]. (3.2)

After the video dictionaries are learned, in the testing phase we first do the same im-

age preprocessing as in training and extract the multi-scale features for each cropped face

image. Then, we perform face identification as discussed in the following subsections.

3.2.2 Face Identification

Let P represent the set of the entire gallery videos (i.e., training videos) and Q

represent the set of the entire query videos (i.e., test videos) where Qm is the mth query

video with m = 1, 2, . . . , |Q|. In addition, the feature vector for lth frame in mth query

video is denoted as qml where l = 1, 2, . . . , |Qm|. The learned dictionary for the pth

gallery videos is denoted as Dp where p = 1, 2, . . . , |P|. The original identification

problem can be converted as finding the gallery video dictionary which produces the

minimum reconstruction error for qml :

p̂ = argmin
p
||qml −DpD

†
pq

m
l ||2, (3.3)

where D†p = (DT
p Dp)

−1DT
p is the pseudo inverse of Dp and DpD

†
pq

m
l is the projection of

qml onto the subspace spanned by the atoms of Dp.
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Then, the final decision is made for Qm through aggregating the voting results from

its frames as

p∗ = argmax
p

Cp, (3.4)

where Cp is the total number of the frames in Qm voting to the pth gallery video. The

subject identity can be decided through the video-to-subject mapping as i = m(p∗).

3.3 Kernel Dictionary-based Video Face Recognition

The faces for each subject usually distribute on a smooth manifold. Nevertheless, in

unconstrained settings, factors such as large pose and illumination changes and occlusion

often make the situations much more complicated than usual, and the faces of all subjects

may thus be not linearly separable to correctly determine the associated subject identities

in the original space. For this reason, we extend our framework through kernelizing our

dictionary model as in [98] to handle the nonlinearity problem.

Let Φ : Rd → H be a nonlinear mapping from d-dimensional space into a higher-

dimensional feature space H. In this chapter, we use the dictionary model D = BA,

where B is the predefined base dictionary which can be selected to include prior knowl-

edge of data and A is the atom representation dictionary which can be modified.

For nonlinear case, let B = Φ(Gi
j,k) since the dictionary lies in the subspace

spanned by the transformed data samples Φ(Gi
j,k) = [Φ(gj,k,1), . . . ,Φ(gj,k,M)] in H

where M = |Gi
j,k|. Then, the dictionary Di

j,k for the kth partition of jth video of ith

subject can be represented as
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Di
j,k = Φ(Gi

j,k)A
i
j,k, (3.5)

Then, substitute Φ(Gi
j,k) for Gi

j,k and (3.5) for Di
j,k in (3.1). The nonlinear dic-

tionary can thus be learned in the feature space H via solving the following optimization

problem.

(Âi
j,k, X̂

i
j,k) = argmin

Ai
j,k,X

i
j,k

||Φ(Gi
j,k)−Φ(Gi

j,k)A
i
j,kX

i
j,k||2F ,

s.t. ∀l ||xl||0 ≤ T0,

(3.6)

Furthermore, since ||U||2F = tr(UTU), the objective function in (3.6) can be rewritten as

||Φ(Gi
j,k)−Φ(Gi

j,k)A
i
j,kX

i
j,k||2F

= ||Φ(Gi
j,k)(I−Ai

j,kX
i
j,k)||2F

= tr((I−Ai
j,kX

i
j,k)

TK(Gi
j,k,G

i
j,k)(I−Ai

j,kX
i
j,k)),

(3.7)

where K(Gi
j,k,G

i
j,k) is the kernel matrix whose (r, s)th entries can be computed by

K(gij,k,r,g
i
j,k,s) = Φ(gij,k,r)

TΦ(gij,k,s).

From this formulation, we observe two points: (1) The kernel matrix K ∈ RM×M is of

finite dimension which ensures the computation is feasible, and (2) K is the Gram matrix

of Φ(Gi
j,k), so we can simply use Mercer’s kernels for K without explicitly knowing the

exact form of the mapping function Φ. This technique is also referred as kernel trick

which is widely used in machine learning to extend the recognition algorithms to handle

data nonlinearity. Commonly used Mercer’s kernels include (1) the polynomial kernel
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K(x,y) = (〈x,y〉+ c)d

where c and d are the bias and degree for polynomial kernel respectively (i.e., linear kernel

is the special case for polynomial kernel where the bias term is equal to 0 and the degree

is equal to 1.), and (2) the Gaussian kernel

K(x,y) = exp(−||x− y||2

σ
),

where σ is the variance for Gaussian kernels.

Likewise, we obtain the nonlinear video dictionary for each subject video through

concatenating learned sub-dictionaries from each partition.

Di
j = [Di

j,1, . . . , Di
j,K ]

= [Φ(Gi
j,1)A

i
j,1, . . . , Φ(Gi

j,K)Ai
j,K ]

= [Φ(Gi
j,1), . . . , Φ(Gi

j,K)]


Ai
j,1 0

. . .

0 Ai
j,K


= Φ(Gi

j)A
i
j

(3.8)

where Φ(Gi
j) and Ai

j are the transformed feature and coefficient matrices for the jth

video of ith subject, and K is the number of partitions.
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3.3.1 Nonlinear Face Identification

Assuming we have P gallery videos in total, we learn a nonlinear dictionary Dp =

Φ(Gp)Ap, for each video where p = 1, . . . , P , and we denote Dp for some Di
j of the jth

video of ith subject in the previous section for simplicity. To find the coefficient vector

of lth frame of mth query video, xml , which has at most T0 non-zero entries and mini-

mizes the reconstruction error between Φ(qml ) and Φ(Gp)Apx
m
l , we solve the following

optimization problem:

min
xml

||Φ(qml )−Φ(Gp)Apx
m
l ||22 s.t. ||xml ||0 ≤ T0. (3.9)

The solution can be efficiently computed by the Kernel Orthogonal Matching Pursuit

(KOMP) approach and the details can be found in [98]. Similarly as the linear case

(3.3), we can decide the label, p̂, of the frame as the one whose corresponding nonlinear

dictionaries produce the minimum reconstruction error.

p̂ = argminp ||Φ(qml )−Φ(Gp)Apx
m
l ||22

= argminpK(qml ,q
m
l )− 2K(qml ,Gp)Apx

m
l + (xml )TAT

pK(Gp,Gp)Apx
m
l

(3.10)

where

K(qml ,Gp) =
[
K(qml ,gp,1),K(qml ,gp,2), . . . ,K(qml ,gp,|Gp|)

]
.

To decide the subject label for a query video, we first aggregate the label decisions

of each frame in Ĉp the same as in (3.4). Finally, the label can be attained through the
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video to subject mapping i = m(p∗) where Ĉp∗ attains the maximum number of frame

votes.

3.4 Experimental Results

To evaluate our approach, we present face identification results on the standard

Honda/UCSD video dataset [65] and another two well-known public datasets for uncon-

strained video-based face recognition: (1) Multiple Biometric Grand Challenge (MBGC)

[99], and (2) Face and Ocular Challenge Series (FOCS) [100]. We perform our experi-

ments following the experimental design described in [71] [101].

3.4.1 Implementation Details

We used the face detector in OpenCV [14] and IVT [102] for face detection and

face tracking respectively to crop the faces from each video. All cropped faces are down-

sampled and normalized to 20 × 20 pixels, and two patch sizes are used for multi-scale

feature extraction: (1) 5 × 5 and (2) 7 × 7 pixels. In addition, we segment K = 3 parti-

tions for each video in the MBGC dataset and the FOCS dataset in all of our experiments.

Prior to dictionary learning, we augment the feature matrix for each partition by adding

more multi-scale patch features which are extracted via shifting the original bounding

boxes of patches by one or two pixels to all directions or rotating them with a small angle.

This helps the partition step in assigning video frames to learn an improved dictionary

and helps in reducing the noise caused by tracking and landmark detection. The same

augmentation is also applied to query videos before recognition. For our kernel-based
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Figure 3.3: The upper row shows the example frames from the MBGC walking sequences
in four different scenarios. Similarly, the bottom row presents the example
frames from the FOCS UT-Dallas walking videos.

approach, we use the polynomial kernel by setting the degree to 2 and bias to 0 for all our

experiments in this work.

3.4.2 Multiple Biometric Grand Challenge

In the MBGC video version 1 dataset (Notre Dame dataset), there are 146 subjects

in total, and videos for each subject are available in two formats: standard definition

(SD, 720 × 480 pixels) and high definition (HD, 1440 × 1080 pixels). It consists of 399

walking sequences where 201 of them are in SD format and 198 in HD, and 371 activity

sequences where 185 in SD and 186 in HD. For the walking sequences as illustrated

in Fig. 3.3, subjects usually walk toward the camera and keep their faces frontal with

respective to it for most of the time and turn their face to the left or right at the end. On

the contrary, the activity sequences contains most non-frontal views for each subject. The

challenge for the dataset includes blurred faces caused by motion, frontal and non-frontal

faces in shadow which also induce face tracking difficulty to crop faces from the video.

We conduct leave-one-out identification experiments on three subsets of the cropped

face images acquired from walking videos and present the identification accuracy in Ta-

ble 3.1. Our proposed method outperforms other approaches. The three subsets are S2,
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S3, and S4, respectively where S2 is the set of subjects who have at least two face videos

available, S3 at least three available, and S4 at least four available (S2: 144 subjects, 397

videos in total, S3: 55 subjects, 219 videos in total, and S4: 54 subjects, 216 videos).

MBGC WGCP SANP DFRV KSRV Ours Ours with kernel
walking videos [67] [70] [71] [101]

S2 63.79 83.88 85.64 86.65 89.17 99.24

S3 74.88 84.02 88.13 88.58 89.04 99.08

S4 75 84.26 88.43 88.89 89.35 99.07

Average 71.22 84.05 87.40 88.04 89.19 99.13

Table 3.1: Identification rate for leave-one-out face identification experiments for the
MBGC walking videos. Our method achieves the best results.

From the table, the proposed approach achieves better results than DFRV which

essentially demonstrates the effectiveness of dense multi-scale facial landmark features.

3.4.3 Face and Ocular Challenge Series

The FOCS UT-Dallas dataset contains 510 walking (frontal-face) and 506 activity

(non-frontal face) video sequences for 295 subjects in the resolution, 720 × 480 pixels.

The sequences were acquired on different days. For the walking sequences, subjects stand

far away from the camera originally, and then walk toward the camera keeping their face

in frontal pose and turn away at the end. For the dataset, we conducted the same leave-

one-out tests on 3 subsets: S2 (189 subjects, 404 videos), S3 (19 subjects, 64 videos), and

S4 (6 subjects, 25 videos) for UT-Dallas walking videos.

The results are shown in Table 3.2. Our approach performs the best when compared

to other competitive methods.
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UT-Dalas PM WGCP SANP DFRV Ours Ours with kernel
walking videos [103] [67] [67] [70] [71]

S2 38.12 53.22 48.27 59.90 61.39 68.81

S3 60.94 70.31 60.94 78.13 79.69 85.94

S4 64 76 68.00 80.00 84.00 88.00

Average 54.35 66.51 59.07 72.68 75.02 80.92

Table 3.2: Identification rate for leave-one-out face identification experiments for the
FOCS UT-Dallas walking videos. Our method achieves the best results.

3.4.4 Honda/UCSD Dataset

Honda MMA AHISD CHISD SANP DFRV Ours Ours with kernel
Set length [104] [68] [68] [70] [71]

50 frames 74.36 87.18 82.05 84.62 89.74 87.18 97.44

100 frames 94.87 84.62 84.62 92.31 97.44 97.44 100

full length 97.44 89.74 92.31 100 97.44 97.44 100

Average 88.89 87.18 86.33 92.31 94.87 94.02 99.15

Table 3.3: Identification rate for the Honda videos. Our dense feature representation with
kernel dictionary achieves the best results.

The third experiments is conducted on the Honda/UCSD dataset. The dataset is the

standard benchmark used in various image-set based face recognition works. There are

59 videos for 20 subjects for the dataset. We follow the same setting used in [70] which

contains three cases based on the available maximum number of cropped faces per video:

(1) 50 frames, (2) 100 frames, and (3) all available frames. The results are presented in

Table 3.3. Our approach with the linear kernel works comparable with the approach, and

the kernelized one achieves the best results. One possible reason is due to the small size

of this dataset.
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3.5 Summary

In this chapter, we demonstrated that the proposed dictionary approach with dense

facial landmark features is effective for unconstrained video-based face identification. Ex-

periments using the Honda/UCSD, MBGC, and FOCS datasets show that high-dimensional

features extracted from multi-scale patches centered around the detected dense facial

landmarks provide strong discriminative information upon different pose and illumina-

tion conditions among subjects, and video dictionaries provide an efficient and feasible

way to utilize the high-dimensional features for large-scale unconstrained video-based

face recognition.
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Chapter 4: Landmark-based Fisher Vector Representation for

Video-based Face Verification

4.1 Overview

To handle large variations in pose, expression and illumination, extracting invariant

and discriminative representation from face images/videos is an important issue. Chen

et al. [55] have shown that the high-dimensional multi-scale Local Binary Pattern (LBP)

descriptors extracted from local patches centered at each facial landmarks have strong

discriminative power for the still-face recognition problem. However, directly applying

this idea to videos is infeasible because of the high dimensionality of the feature rep-

resentation. On the other hand, the Fisher Vector (FV) representation is one of many

bag-of-visual-word encoding methods, originally proposed for object recognition prob-

lem and subsequently shown to work well for face verification problems [57] [58]. Even

though FV descriptors are compact for videos, their dimension is still high and increases

linearly with the number of components in the Gaussian Mixture Model (GMM). More

components in GMM representation usually allow FVs to encode more discriminative

information from image and video data. However, having many mixture components

may be impractical for large face databases. Motivated by the successes of these two
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Figure 4.1: An overview for our landmark-based Fisher vector video-based face verifica-
tion algorithm.

approaches, we propose a landmark-based FV representation for video-based face ver-

ification. Instead of learning the mixture model from the dense features of the whole

face, we fit a Gaussian model for each landmark with multi-scale dense features extracted

from patches centered at each landmark. In this way, we can greatly reduce the num-

ber of mixture components and the dimensionality of the FVs while preserving sufficient

discriminative power.

4.2 PROPOSED APPROACH

Our method can be divided into two stages: training and testing stages. For train-

ing, we use the well-known “Label Face in the Wild” (LFW) dataset [105]. First, we

apply preprocessing steps to detect faces, facial landmarks and to normalize the face im-
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ages/videos. Then, we extract multi-scale dense SIFT features around each landmark and

learn a Gaussian model for each landmark using the mean and diagonal sample covari-

ance of the features. After feature extraction, we perform the FV encoding and train a

similarity measure using the augmented face pairs (i.e. we generate positive and nega-

tive pairs using the identity information available in the unrestricted setting of LFW). For

testing, we use the learned metric on our proposed feature representation to compute the

similarity of each test pair of the face images/videos. Fig. 4.1 presents an overview of our

method. In the following subsections, we describe in detail each step used in training and

testing stages.

4.2.1 Preprocessing

Before performing feature extraction and metric learning steps, we apply the fol-

lowing preprocessing steps to normalize the face data:

Landmark detection: We perform landmark detection for face alignment and for landmark-

based feature representation. Approaches proposed in [29] and subsequent work [106]

are adopted because of their computational efficiency and excellent performance on low-

resolution and lower-quality face images/videos. We use the detected landmarks to align

each face into the canonical coordinates using similarity transform. After alignment, the

face image resolution is 63 × 80 pixels, and the distance between centers of two eyes is

about 10 pixels.
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Figure 4.2: The first row shows the original image before preprocessing. The second row
is the image after illumination normalization. The final row demonstrates the
facial landmarks and patches used in this chapter.

Illumination normalization: Local block-wise illumination normalization approaches,

such as self-quotient image (SQI) [107] which divides each pixel value by the weighted

average of its neighborhood, have shown better illumination normalization performance

for face recognition than histogram equalization which enhances the dynamic range by

adjusting the intensity distribution of the entire image. Therefore, we adopt the SQI

approach proposed by Tan et al. [51] which takes the Gamma correction, difference of

Gaussian filtering, masking, and contrast equalization into consideration for image nor-

malization. The normalized results are presented in Fig. 4.2.

4.2.2 Landmark-based Fisher vector face representation

In this subsection, we show how to extract the proposed landmark-based FV face

representation (LFRV) and to apply metric learning on the extracted representation to

compute the face similarity of a pair of face images/videos.
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Fisher vector encoding: Fisher vector is one of bag-of-visual-word encoding methods

which aggregates a large set of local features into a high-dimensional vector. In general,

the FV is extracted by fitting a parametric generative model for the features and encoding

them using the derivatives of the log-likelihood of the learned model with respect to the

model parameters. As in [108], a Gaussian mixture model (GMM) with diagonal covari-

ances is used here. In addition, the first-and second-order statistics of the features with

respect to each component are computed as follows:

Φ
(1)
ik =

1

N
√
wk

N∑
p=1

αk(vp)

(
vip − µik

σik

)
(4.1)

Φ
(2)
ik =

1

N
√

2wk

N∑
p=1

αk(vp)

(
(vip − µik)

2

σ2
ik

− 1

)
(4.2)

αk(vp) =
wk exp[−1

2
(vp − µk)

TΣ−1k (vp − µk)]∑K
i wi exp[−1

2
(vp − µi)

TΣ−1i (vp − µi)]
, (4.3)

where wk, µk, Σk = diag(σ1k, ...,σdk) are the weights, means, and diagonal covariances

of the kth mixture component of the GMM. Here, vp ∈ Rd×1 is the pth feature vector and

N is the number of feature vectors. The parameters can be learned from the training data

using the EM algorithm. αk(vp) is the weight of vp belonging to the kth mixture compo-

nent. The final FV, Φ(I), of an image I is obtained by concatenating all the Φ
(1)
k and Φ

(2)
k s

into a high-dimensional vector Φ(I) = [Φ
(1)
1 ,Φ

(2)
1 , ...,Φ

(1)
K ,Φ

(2)
K ], whose dimensionality

is 2Kd where K is the number of mixture components and d is the dimensionality of the

extracted features.

In this work, we use the dense SIFT features as local features. To incorporate spatial

information, we augment each extracted SIFT feature with the normalized x and y coor-
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dinates [109] [57] as [axy,
x
w
− 1

2
, y
h
− 1

2
]T where axy is the SIFT descriptor at (x, y), and

w and h are the width and height of the image, respectively. (i.e. For K, we use 49 and

128. For d, it is 130 after augmentation.) In addition, FV is further processed with signed

square-rooting and L2 normalization as suggested in [108] for improved performance.

Dense landmark features extraction: We extract dense root-SIFT features at three

scales from 16 × 16-pixel patches centered at each facial landmark of inner faces with a

scaling factor of
√

2 (i.e., 49 landmarks are used here). For training, we aggregate the ex-

tracted features around each landmark and take the mean and diagonal sample covariance,

Σk = diag(σ1k, ...,σdk), to fit a Gaussian for each landmark as follows:

µk =
1

Nk

Nk∑
p=1

vp, wk =
1

K
, σik =

1

Nk − 1

Nk∑
p=1

(vip − µik)
2,

whereNk and vp are respectively the number of features and SIFT features extracted from

the patch centered at kth landmark. The fitted Gaussians are illustrated in Fig. 4.3.

For testing, we aggregate the extracted features with augmented spatial information

into a feature matrix, F ∈ R130×NF for each frame, where NF is the total number of

aggregated features. Because some patches overlaps, we take the union of them to remove

the duplicate features. Detected landmarks and patches for feature extraction are shown

in Fig. 4.2. Then, we perform FV encoding for each frame within a video and average all

the FVs into one for each video. (i.e. the other choice is to use pooling.)
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(a) (b) (c) (d)

Figure 4.3: (a) and (b) illustrate the GMM with 49 components learned from 49 facial
landmarks and from the whole image, respectively. (c) and (d) show the
GMM with 128 components learned from the neighborhood regions of 49
facial landmarks using EM algorithm and learned from the entire image re-
spectively.

4.2.3 Joint Bayesian Metric Learning

The joint Bayesian method has been shown good performance for face verification

task [79] [110]. Instead of modeling the difference vector between two faces, the ap-

proach directly models the joint distribution of feature vectors of both ith and jth images,

{xi,xj}, as a Gaussian. Let P (xi,xj|HI) ∼ N(0,ΣI) when xi and xj belong to the same

class, and P (xi,xj|HE) ∼ N(0,ΣE) when they are from different classes. In addition,

each face vector can be modeled as, x = µ + ε, where µ stands for the identity and ε

for pose, illumination, and other variations. Both µ and ε are assumed to be indepen-

dent zero-mean Gaussian distributions, N(0,Sµ) and N(0,Sε), respectively. Then, the

covariances for intra-class, ΣI , and for inter-class, ΣE , can be derived as follows

ΣI =

 Sµ + Sε Sµ

Sµ Sµ + Sε

 ,ΣE =

 Sµ + Sε 0

0 Sµ + Sε

 . (4.4)
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It was shown in [79] that the log likelihood ratio of intra- and inter-classes, r(xi,xj),

which has a closed-form solution can be computed as follows:

r(xi,xj) = log
P (xi,xj|HI)

P (xi,xj|HE)
= xTi Mxi + xTj Mxj − 2xTi Rxj (4.5)

where

M = (Sµ + Sε)
−1 − (F + R) (4.6) F + R R

R F + R

 = Σ−1I . (4.7)

where M and R are negatively semi-definite matrices. The equation can be written as

(xi− xj)
TM(xi− xj)− 2xTi (R−M)xj . Instead of using the EM algorithm to estimate

Sµ and Sε, we optimize the closed-form distance in a large-margin framework with hinge

loss. However, directly learning M ∈ RD×D and R ∈ RD×D are intractable because

of the high dimensionality of FVs where D = 2Kd. Thus, we let M = HTH and

B = (R −M) = VTV where H ∈ Rr×D and V ∈ Rr×D and choose r = 128 � D in

our work. We solve the following optimization problem

argmin
H,V,b

∑
i,j

max[1− yij(b− (xi − xj)
THTH(xi − xj) + 2xTi VTVxj), 0] (4.8)

where b ∈ R is a threshold, and yij is the label of a pair: yij = 1 if person i and j are the

same and yij = −1, otherwise. For simplification, we denote (xi−xj)
THTH(xi−xj)−

2xTi VTVxj as dH,V(xi,xj). In addition, H, V, and b can be updated using a stochastic

gradient descent algorithm as follows and are equally trained on positive and negative
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pairs in turn:

Ht+1 =


Ht, if yij(bt − dH,V(xi,xj)) > 1

Ht − γyijHtΨij , otherwise,

Vt+1 =


Vt, if yij(bt − dH,V(xi,xj)) > 1

Vt + γyijVtΓij , otherwise,

bt+1 =


bt, if yij(bt − dH,V(xi,xj)) > 1

bt + γbyij , otherwise,

(4.9)

where Ψij = (xi − xj)(xi − xj)
T , Γij = xix

T
j + xjx

T
i , and γ is the learning rate for H

and V, and γb for the bias b. We perform whitening PCA to the extracted features and

initialize both H and V with r largest eigenvectors. Note that H and V are updated only

when the constraints are violated. The training and testing algorithms are summarized in

Algorith 1 and Algorithm 2, respectively.

4.3 EXPERIMENTAL RESULTS

We present face verification results using the receiver operating characteristic (ROC)

curves on three public datasets for unconstrained video-based face recognition: (1) Point-

and-Shoot Challenge (PaSC) [7], (2) Multiple Biometric Grand Challenge (MBGC) [111],

and (3) Face and Ocular Challenge Series (FOCS) [100].
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Algorithm 1 LFVR TRAIN

Input: (1) Training images and labels for positive and negative pairs from LFW dataset
[105] (2) patch size around each landmark, Wp, and (3) maxIter iterations.

Output: (1) Model parameters of Gaussians, µi, Σi, and wi for i = 1...K, and (2)
projection matrices learned from metric learning, H and V.

1: Perform face and landmark detection for each training images.
2: Apply SQI to perform illumination normalization.
3: Extract multi-scale dense root-SIFT features from patches centered at each landmark

and augment them with normalized x and y coordinates.
4: Learn µi, Σi, and wi for each landmark i = 1...K and fit a Gaussian using the

mean and diagonal sample covariance of the extracted feature around ith landmarks
as model parameters, and let each component share the same weight, 1

K
.

5: Perform FV encoding to the feature vectors.
6: Apply stochastic gradient descent using the training positive and negative face pairs

in turn to optimize (4.8) until the maxIter iteration is reached to learn H and V.

Algorithm 2 LFVR TEST

Input: (1) Model parameters of Gaussians, µi, Σi, and wi for i = 1...K, (2) target and
query videos, {T}Nti=1 and {Q}Nqi=1, (3) projection matrices H and V to measure face
similarity between a pair of images/videos, and (5) patch size around each landmark,
Wp.

Output: Similarity matrix, S.
1: Perform face detection and tracking for each target and query videos.
2: Perform landmark detection and align each face for all cropped faces of target and

query videos.
3: Apply SQI to perform illumination normalization.
4: Extract multi-scale dense root-SIFT features from patches centered at each landmark

and augment them with normalized x and y coordinates.
5: Aggregate the extracted features from each landmark and remove duplicates.
6: Perform FV encoding to feature vectors of frames of a video using the learned µi,

Σi, and wi for i = 1...K. and average all of them as the final descriptor.
7: Apply the learned joint Bayesian metric to each testing pair of faces to get the face

similarity matrix, S.
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4.3.1 Implementation details

For preprocessing, we used OpenCV [14] and IVT [102] for face detection and face

tracking respectively to perform face cropping. Then, we perform landmark detection us-

ing [29] [106] and perform similarity transform for face alignment. The image resolution

after alignment is 63 × 80 pixels, and the distance between the centers of two eyes is

about 10 pixels. The popular LFW still-face dataset and its label data (i.e. same pairs and

different pairs) are used to learn the GMM and similarity measure. In addition, root-SIFT

feature descriptors [112] are extracted using 16 × 16-pixel patches with 1-pixel stride on

the face image. We repeat the extraction process at three scales with a scaling factor of

√
2. Before GMM learning, the features are first decorrelated by PCA to satisfy the diag-

onal covariance assumption of the GMM. When training the Gaussians, we aggregate the

root-SIFT features with a 8 × 8-pixel patch centered at a landmark and use the mean and

diagonal sample covariance of them as the Gaussian model parameters for the landmark.

We also augment the training set with mirrored images. In testing stage, we aggregate

the root-SIFT features within a 16 × 16-pixel patch centered at each landmark for error

tolerance, and apply the FV encoding of the union of all features from the patches of all

the landmarks. For better performance, the improved Fisher vector (IFV) [108] is used

here, and the IFV is obtained by applying signed square-rooting and L2 normalization

steps. Finally, the LFVR representation is of dimension 12740 where K = 49 and d =

130. On the other hand, after applying the projection matrices, H and V, learned from

joint Bayesian metric learning, the dimensionality of the features reduces to 128 × 2 =

256. In addition, we take the average of all the FVs extracted from each frame of a video
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as our video descriptor.

4.3.2 Point-and-Shoot Challenge

The PaSC is an evaluation challenge with 1401 videos of 265 people acquired with

handheld cameras when subjects are involved in activities with non-frontal head pose and

different illumination conditions. There are two types of experiments: (1) video-to-video

and (2) still-to-video. In the video-to-video experiment, a person in a query video is com-

pared to a set of target videos. Both target and query videos are from the same pool of

1401 videos. For the still-to-video experiment, the person in a query video is to be com-

pared with a large set of still face images (4688 face image in total). The performance

is evaluated with face verification at a false accept rate of 0.01 and the associated ROC

curves.

The handheld videos consist of 1401 videos of 265 people acquired at the University of

Notre Dame using five different handheld video cameras. The resolution for the videos

ranges from 640 × 480 to 1280 × 720. Videos are acquired at six locations for a combi-

nation of different indoor and outdoor settings. The sample frames are shown in Fig. 4.4

which shows the challenging conditions due to variations of pose and illumination condi-

tions for the PaSC dataset. We present the performance results of our approach for both

tasks in Table 4.1 and in Fig. 4.5. From the table and the ROC curves, we see that our

approach achieves better performance at FAR=0.01 for both tasks as compared with the

results reported on the IJCB competition [7] (i.e. our approach ranked 3rd as compared

with the results in the recent FG competition [113] in May, 2015. The top performer
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Figure 4.4: The upper row shows the sample frames of PaSC in four different scenarios.
Each image/video is captured at different distance from camera. The last row
shows the cropped face images are from still images of PaSC which demon-
strate lighting, motion blur, and poor focus in point-and-shoot images.

used DCNN feature with manifold distance computed from image sets and achieved 0.59

verification rate at FAR=0.01 for the handheld video scenario. The method that placed

second also used landmark-based feature vector based on a new texture descriptor, Dual-

Cross Patterns [56], and they achieved 0.38). In Table 4.1, LFRV49 is used to denote

the face that has 49 detected landmarks in our method. In addition, to boost the perfor-

mance of our method, we also trained the GMM using the EM algorithm but only using

the SIFT features within the regions surrounding to landmarks. We denote it as LFRV128.

We also denote the traditional FV trained using the EM with the features over the entire

faces as FV49 and FV128 for 49 and 128 components, respectively. The learned GMMs

for LFRV49, FV49, LFRV128, and FV128 are illustrated in Fig. 4.3.
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Group Algorithm Exp. 1 Exp. 2

ADSC LBP-SIFT-WPCA-SILD 0.09 0.23
CpqD ISV-GMM 0.05 0.11
SIT Eigen-PEP 0.26 0.24
Ljub PLDA-WPCA-LLR 0.19 0.26
CSU LRPCA Baseline 0.08 0.10
Ours FV49 0.2583 0.2365
Ours LFVR49 0.2957 0.2749
Ours FV128 0.3095 0.2728
Ours LFVR128 0.3408 0.3152

Table 4.1: Face verification rates [7] at FAR = 0.01 for the unconstrained video-to-video
(Exp. 1) and video-to-still (Exp. 2) tasks.
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Figure 4.5: (a) shows the ROC curves for the uncontrolled video-to-video face verifica-
tion task of the PaSC dataset where the target and query videos are from the
same set, and (b) shows the ROC curve for still-to-video task where still im-
ages are the target set and videos as query. The figure also shows our approach
achieves better results at FAR=0.01 than previous state-of-the-art methods re-
ported in IJCB 2014 competition for both tasks.

4.3.3 Multiple Biometric Grand Challenge

In the MBGC dataset, there are 146 subjects in total, and videos are available in two

resolutions: standard definition (SD, 720 × 480 pixels) and high definition (HD, 1440 ×
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1080 pixels). It consists of 399 walking sequences where 201 of them are in SD and 198

in HD, and 371 activity sequences where 185 in SD and 186 in HD. Fig. 4.7 shows the

sample frames. For the walking sequences, subjects usually walk toward and keep their

faces facing the camera for most of the time and turn their faces sideways at the end. The

main challenge of the dataset comes from blur caused by motion, frontal and non-frontal

faces with shadows which also lead to difficulty in tracking the faces in the video.

We also compare the verification results of the proposed method with DFRV [71]

and the manifold-based method, WGCP [67]. These methods produced favorable results

compared to several manifold and image set-based methods. As a result, we use them as

the baseline algorithms. We perform verification experiments on the subsets of S2, S3,

and S4 from the walking sequences where S2 is the set of subjects who have at least two

face videos available, S3 at least three available, and S4 at least four available (S2: 144

subjects, 397 videos in total, S3: 55 subjects, 219 videos in total, and S4: 54 subjects, 216

videos). The verification results are shown in Fig. 4.6 and Table 4.2. It can be seen from

this figure that the proposed approach achieves better results than DFRV, WGCP, and the

one based on FV with the same number of components as our LFRV method. The results

essentially demonstrate the effectiveness of dense multi-scale facial landmark features.

4.3.4 Face and Ocular Challenge Series

In addition to the MBGC dataset, we tested our approach on another challenging

dataset, FOCS. The FOCS UT-Dallas dataset contains 510 walking and 506 activity video

sequences for 295 subjects with the resolution, 720 × 480 pixels. The sample frames are
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Figure 4.6: (a) and (b) show the ROC curves of face verification for subsets of S2, S3, and
S4 for MBGC dataset where target and query videos are from the same set.
(c) and (d) for the FOCS dataset. For these figures, we compare the results of
LFVR of 49 (i.e. in (a)(c)) and 128 (i.e. in (b)(d)) components with DFRV
and their FV counterparts using the same number of components respectively.
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Figure 4.7: The upper row is the sample frames of MBGC walking sequences in four
different scenarios, and the bottom row shows the sample frames from FOCS
UT-Dallas walking videos.

shown in Fig. 4.7. The sequences were acquired on different days. For walking se-

quences, subjects initially stand far away from the camera, and then walk toward the

camera while keeping their faces facing the camera and turn away at the end. We con-

ducted the same verification tests as we did for MBGC subsets: S2 (189 subjects, 404

videos), S3 (19 subjects, 64 videos), and S4 (6 subjects, 25 videos) for UT-Dallas walk-

ing videos. The verification results are shown in Fig. 4.6 and Table 4.2. As in the MBGC

case, the FOCS results also show that our proposed LFRV works more effectively than

FV whose GMM is trained over the entire face. However, we can find from the results

of both MBGC and FOCS that the performance of LFVR128 is worse than LFVR49. One

possible reason is that the resolution of detected faces in these two datasets is smaller than

PaSC (i.e. about the half on average.) After alignment, the face images become blurred

with fewer textural details. Thus, the performance saturated earlier when increasing the

number of GMM components.
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MBGC WGCP DFRV FV49 FV128 LFVR128 LFVR49

[67] [71] [57] [57] Ours Ours

S2 0.27 0.26 0.45 0.42 0.45 0.58

S3 0.22 0.22 0.40 0.38 0.40 0.45

S4 0.22 0.22 0.40 0.38 0.40 0.45

FOCS WGCP DFRV FV49 FV128 LFVR128 LFVR49

S2 0.33 0.36 0.38 0.39 0.65 0.74

S3 0.29 0.34 0.38 0.37 0.61 0.75

S4 0.18 0.21 0.29 0.28 0.51 0.65

Table 4.2: it shows the verification rates of each algorithm at FAR=0.1. Our LFVR49

achieves the best results.

4.4 Summary

In this chapter, we proposed a landmark-based Fisher vector representation for

video-based face verification problems. Our experimental results demonstrate that if the

landmarks are available, we should always utilize them. In addition, our approach greatly

reduces the training time to learn a GMM and the dimensionality for the final feature

representation while achieving better performance than the original Fisher vector coun-

terpart.
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Chapter 5: Unconstrained Still/Video-Based Face Verification with

Deep Convolutional Neural Networks

5.1 Overview

Many algorithms have been shown to work well on images and videos that are

collected in controlled settings. However, the performance of these algorithms often de-

grades significantly on images that have large variations in pose, illumination, expression,

aging, and occlusion. In addition, for an automated face verification system to be effec-

tive, it also needs to handle errors that are introduced by algorithms for automatic face

detection, face association, and facial landmark detection.

Existing methods have focused on learning robust and discriminative representa-

tions from face images and videos. One approach is to extract an over-complete and

high-dimensional feature representation followed by a learned metric to project the fea-

ture vector onto low-dimensional space and then compute the similarity scores. For ex-

ample, high-dimensional multi-scale local binary pattern (LBP) [55] features extracted

from local patches around facial landmarks and Fisher vector (FV) [57] [114] features

have been shown to be effective for face recognition. Despite significant progress, the

performance of these systems has not been adequate for deployment. However, given the
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availability of millions of annotated data, faster GPUs and a better understanding of the

nonlinearities, DCNNs are providing much better performance on tasks such as object

recognition [8] [9] [115], object/face detection [10] [24] [116] [117] [118], face verifica-

tion/recognition [11] [63]. It has been shown that DCNN models can not only characterize

large data variations but also learn a compact and discriminative representation when the

size of the training data is sufficiently large. In addition, it can be generalized to other

vision tasks by fine-tuning the pre-trained model on the new task [12].

In this chapter, we present an automated face verification system. Due to the robust-

ness of DCNNs, we build each component of our system based on separate DCNN mod-

els. Modules for detection and face alignment use the DCNN architecture proposed in [8].

For face verification, we train two DCNN models trained using the CASIA-WebFace [13]

dataset. Finally, we compare the performance of our approach with many face matchers

on the IJB-A dataset which are being carried out or have been recently reported [119].

The proposed system is fully automatic and yields comparable or better performance than

other existing algorithms when evaluated on IJB-A and CS2 datasets. Although the IJB-

A dataset contains significant variations in pose, illumination, expression, resolution and

occlusion which are much harder than the Labeled Faces in the Wild (LFW) datasets, we

present verification results for the LFW dataset too.

50



neg

posanchoranchor

neg

pos

Learning

(3) Face Alignment

(2) Face Association

(4) Face Verification

(1) Face Detection

Image Pyramid 

Level 7

Level 1

3

3

C

C

256

256

256

max
5
pyramid 

Level 7

Level 1 Level 1

norm
5
pyramid 

Level 7

(5) Root-filter DPM

Component 1

Component C

Detected Face 

in the image

256

Detection 

Scores Level 7

Level 1

For each 

pyramid level l

(output Layer is max
5
)

(1/16th spatial resolution of 

the image)

(2) Deep Pyramid CNN

(1) Color Image Pyramid
(3) Max5 Feature Pyramid (4) Norm5 Feature Pyramid (6) DPM Score Pyramid

(7) Detector Output

Tracking results

Video 

frames

Tracklet

Linking

Face 

Tracker

Face 

Detector

Track Creation 

and Updating

�����_��� = 5


�����_��� ≠ 5


[	… 	]���∗�

Deep Descriptor NetworkGlobal Shape Indexed

Features 

Learning Linear 

Projection ��

�
�

DCNN-S Face model

neg

posanchoranchor

neg

pos

Learning

������

Triplet Similarity Embedding DCNN-L Face model

Triplet Similarity Embedding

Figure 5.1: An overview of the proposed DCNN-based face verification system.

5.2 Proposed Approach

The proposed system is a complete pipeline for performing automatic face verifi-

cation. Given a still image or a video, we first pass it through the face preprocessing

modules: (1) face detection to localize faces in each image and video frame, (2) we asso-

ciate the detected faces with the common identity for videos and (3) align the faces into

canonical coordinates using the detected landmarks. Finally, we perform face verification

to compute the similarity between a pair of images/videos. The system is illustrated in

Figure 6.2. The details of each component are presented in the following sections.

5.2.1 Face Preprocessing

In this subsection, we introduce each face preprocessing modules used in this cap-

ture as follows.

51



5.2.1.1 Face Detection

All the faces in the images/video frames are detected using a DCNN-based face de-

tector, called the Deep Pyramid Deformable Parts Model for Face Detection (DP2MFD)

[24], which consists of two modules. The first module generates a seven level normalized

deep feature pyramid for any input image of arbitrary size, as illustrated in the first part

of Figure 6.2. The same CNN architecture as Alexnet [8] is adopted for extracting the

deep features. This image pyramid network generates a pyramid of 256 feature maps at

the fifth convolution layer (conv5). A 3 × 3 max filter is applied to the feature pyramid

at a stride of one to obtain the max5 layer. Typically, the activation magnitude for a face

region decreases with the size of the pyramid level. As a result, a large face detected

by a fixed-size sliding window at a lower pyramid level will have a high detection score

compared to a small face getting detected at a higher pyramid level. In order to reduce

this bias to face size, we apply a z-score normalization step on the max5 features at each

level. For a 256-dimensional feature vector xi,j,k at the pyramid level i and location (j, k),

the normalized feature xi,j,k is computed as:

xi,j,k =
xi,j,k − µi

σi
, (5.1)

where µi is the mean feature vector, and σi is the standard deviation for the pyramid

level i. We refer to the normalized max5 features as norm5. Then, the fixed-length fea-

tures from each location in the pyramid are extracted using the sliding window approach.

The second module is a linear SVM, which takes these features as inputs to classify
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(a) (b)

(c)

Figure 5.2: Sample detection results on an IJB-A image using the deep pyramid method.

each location as face or non-face, based on their scores. A root-only DPM is trained on

the norm5 feature pyramid using a linear SVM. In addition, the deep pyramid features

are robust to not only pose and illumination variations but also to different scales. The

DP2MFD algorithm works well in unconstrained settings as shown in Figure 5.2. We

also present the face detection performance results under the face detection protocol of

the IJB-A dataset in Section 5.3.

5.2.1.2 Facial Landmark Detection

Once the faces are detected, we perform facial landmark detection for face align-

ment. The proposed facial landmark detection algorithm, local deep descriptor regression

(LDDR) [1], works in two stages. We model the task as a regression problem, where
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beginning with the initial mean shape, the target shape is reached through regression. The

first step is to perform feature extraction of a patch around a point of the shape followed

by linear regression as described in [120] [30]. Given a face image I and the initial shape

S0, the regressor computes the shape increment ∆S from the deep descriptors and updates

the face shape using (5.2).

St = St−1 +W tΦt(I, St−1) (5.2)

The CNN features (represented as Φ in 5.2) carefully designed with the proper number

of strides and pooling (refer to Table 5.1 for more details), are used as the features to

perform regression. We use the same CNN architecture as Alexnet [8] with the pretrained

weights for the ImageNet dataset as shown in Figure 5.3. Then, we further fine-tuned it

with AFLW [121] dataset for face detection task. The fine-tuning step helps the network

to learn features specific to faces. Furthermore, we adopt the cascade regression, in which

the output generated by the first stage is used as an input for the next stage. The number of

stages is fixed at 5 in our system. The patches selected for feature extraction are reduced

subsequently in later stages to improve the localization of facial landmarks. After the

facial landmark detection is completed, each face is aligned into the canonical coordinate

using the similarity transform and seven landmark points (i.e., two left eye corners, two

right eye corners, nose tip, and two mouth corners).
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Stage 1 Input
Size

(pixels)

conv1 max1 conv2 max2

Stage 1 92× 92 4 2 1 1
Stage 2 68× 68 3 2 1 1
Stage 3 42× 42 2 1 1 2
Stage 4 21× 21 1 1 1 1

Table 5.1: Input size and the number of strides in conv1, max1, conv2 and max2 layers
for 4 stages of regression.
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Figure 5.3: The DCNN architecture used to extract the local descriptors for the facial
landmark detection task [1].

5.2.1.3 Face Association

Because there are multiple subjects appearing in the frames of each video of the IJB-

A dataset, performing face association to assign each face to its corresponding subject is

an important step to pick the correct subject for face verification. Thus, once the faces in

the images and video frames are detected, we track multiple faces by integrating results

from the face detector, face tracker, and a tracklet linking step. The second part of Figure

6.2 shows the block diagram of the multiple face tracking system. We apply the face

detection algorithm in every fifth frame using the face detection method presented in
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Section 5.2.1.1. The detected bounding box is considered as a novel detection if it does

not have an overlap ratio with any bounding box in the previous frames larger than γ.

The overlap ratio of a detected bounding box bd and a bounding box btr in the previous

frames is defined as

s(bd,btr) =
area(bd ∩ btr)

area(btr)
. (5.3)

We empirically set the overlap threshold γ to 0.2. A face tracker is created from a detec-

tion bounding box that is treated as a novel detection. We set the face detection confidence

threshold to -1.0 to select the bounding boxes of face detection of high confidence. For

face tracking, we use the Kanade-Lucas-Tomasi (KLT) feature tracker [44] to track the

faces between two consecutive frames. To avoid the potential drift of trackers, we update

the bounding boxes of the tracker by those provided by the face detector in every fifth

frame. The detection bounding box bd replaces the tracking bounding boxes btr of a

tracklet in the previous frame if s(bd,btr) ≤ γ. A face tracker is terminated if there is

no corresponding face detection overlapping with it for more than t frames. We set t to 4

based on empirical grounds.

In order to handle the fragmented face tracks resulting from occlusions or unreli-

able face detection, we use the tracklet linking method proposed by [39] to associate the

bounding boxes in the current frames with tracklets in the previous frames. The tracklet

linking method consists of two stages. The first stage is to associate the bounding boxes

provided by the tracker or the detector in the current frame with the existing tracklet in

previous frames. This stage consists of local and global associations. The local associa-

tion step associates the bounding boxes with the set of tracklets, having high confidence.
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Figure 5.4: Sample results of our face association method for videos of JANUS CS2
which is the extension dataset of IJB-A.

The global step associates the remaining bounding boxes with the set of tracklets of low

confidence. The second stage is to update the confidence of the tracklets, which will be

used for determining the tracklets for local or global association in the first stage. We

show sample face association results for some videos from the CS2 dataset in Figure 5.4.

5.2.2 Face Verification based on Deep Convolutional Neural Networks

After face preprocessing, we come to our core modules to perform the face verifi-

cation task which is based on deep convolutional neural network. We give the details for

learning the representation and similarity measure as follows.

5.2.2.1 Deep Convolutional Face Representation

In this chapter, we train two deep convolutional networks. One is trained using tight

face bounding boxes (DCNNS), and the other using large bounding boxes which include

more contextual (DCNNL) information. In Section 5.3, we present results which show

that both networks capture discriminative information and complement each other. In ad-
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dition, the fusion of two networks does significantly improve the final performance. The

architectures of both networks are summarized in Tables 5.2.

Stacking small filters to approximate large filters and building very deep convolu-

tional networks reduces the number of parameters but also increases the nonlinearity of

the network in [122] [9]. In addition, the resulting feature representation is compact and

discriminative. Therefore, for (DCNNS), we use the same network architecture presented

in [87] and train it using the CASIA-WebFace dataset [13]. The dimensionality of the in-

put layer is 100×100×3 for RGB images. The network includes ten convolutional layers,

five pooling layers, and one fully connected layer. Each convolutional layer is followed

by a parametric rectified linear unit (PReLU) [123], except the last one, conv52. More-

over, two local normalization layers are added after conv12 and conv22, respectively, to

mitigate the effect of illumination variations. The kernel size of all filters is 3 × 3. The

first four pooling layers use the max operator, and pool5 uses average pooling. The feature

dimensionality of pool5 is thus equal to the number of channels of conv52 which is 320.

The dropout ratio is set as 0.4 to regularize Fc6 due to the large number of parameters

(i.e. 320 × 105481 .). The pool5 feature is used for face representation. The extracted

features are further L2-normalized to unit length before the metric learning stage. If there

are multiple images and frames available for the subject template, we use the average of

pool5 features as the overall feature representation.

1The list of overlapping subjects is available at http://www.umiacs.umd.edu/˜pullpull/
janus_overlap.xlsx
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Conv12 Conv22 Conv32 Conv42 Conv52

Figure 5.5: An illustration of some feature maps of conv12, conv22, conv32, conv42, and
conv52 layers of DCNNS trained for the face identification task. At upper lay-
ers, the feature maps capture more global shape features which are also more
robust to illumination changes than conv12. The feature maps are rescaled to
the same size for visualization purpose. The green pixels represent high acti-
vation values, and the blue pixels represent low activation values as compared
to the green.

On the other hand, for DCNNL, the deep network architecture closely follows the

architecture of the AlexNet [124] with some notable differences: reduced number of pa-

rameters in the fully connected layers; use of Parametric Rectifier Linear units (PReLU’s)

instead of ReLU, since they allow a negative value for the output based on a learnt thresh-

old and have been shown to improve the convergence rate [123].

The reason for using the AlexNet architecure in the convolutional layers is due to

the fact that we initialize the convolutional layer weights with weights from the AlexNet

model which was trained using the ImageNet challenge dataset. Several recent works

( [125], [126]) have empirically shown that this transfer of knowledge across different

networks, albeit for a different objective, improves performance and more significantly

reduces the need to train using a large number of iterations. To learn more domain spe-

cific information, we add an additional convolutional layer, conv6 and initialize the fully

connected layers fc6-fc8 from scratch. Since the network is used as a feature extractor,
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Name Type Filter Size/Stride #Params

conv11 convolution 3×3 / 1 0.84K
conv12 convolution 3×3 / 1 18K
pool1 max pooling 2×2 / 2

conv21 convolution 3×3 / 1 36K
conv22 convolution 3×3 / 1 72K
pool2 max pooling 2×2 / 2

conv31 convolution 3×3 / 1 108K
conv32 convolution 3×3 / 1 162K
pool3 max pooling 2×2 / 2

conv41 convolution 3×3 / 1 216K
conv42 convolution 3×3 / 1 288K
pool4 max pooling 2×2 / 2

conv51 convolution 3×3 / 1 360K
conv52 convolution 3×3 / 1 450K
pool5 avg pooling 7×7 / 1

dropout dropout (40%)
fc6 fully connected 10548 3296K
loss softmax 10548

total 5M

The architectures of DCNNS .

Name Type Filter Size/Stride #Params

conv1 convolution 11×11 / 4 35K
pool1 max pooling 3×3 / 2
conv2 convolution 5×5 / 2 614K
pool2 max pooling 3×3 / 2
conv3 convolution 3×3 / 2 885K
conv4 convolution 3×3 / 2 1.3M
conv5 convolution 3×3 / 1 885K
conv6 convolution 3×3 / 1 590K
pool6 max pooling 3×3 / 2

fc6 fully connected 1024 9.4M
dropout dropout (50%)

fc7 fully connected 512 524K
dropout dropout (50%)

fc8 fully connected 10548 5.5M
loss softmax 10548

total 19.8M

The architecture of DCNNL.

Table 5.2: The architecture for both DCNNS and DCNNL.

the last layer fc8 is removed during deployment, thus reducing the number of parame-

ters to 15M. When the network is deployed. the features are extracted from fc7 layers

resulting in a dimensionality of 512. The network is trained using the CASIA-WebFace

dataset [13]. The dimensionality of the input layer is 227× 227× 3 for RGB images.

In Figure 5.5, we show some feature activation maps of the DCNNS model. At

the upper layers, the feature maps capture more global shape features which are also

more robust to illumination changes than Conv12 where the green pixels represent high

activation values, and the blue pixels represent low activation values compared to the

green.

5.2.2.2 Triplet Similarity Embedding

To further improve the performance of our deep features, we obtain a low-dimensional

discriminative projection of the deep features, called the Triplet Similarity Embedding
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(TSE) that is learnt using the training data provided for each split of IJB-A. The output

of the procedure is an embedding matrix W ∈ Rn×M where M is the dimensionality

of the deep descriptor (320 for DCNNS and 512 for DCNNL) and we set n = 128, thus

achieving dimensionality reduction in addition to an improvement in performance.

In addition, for the triplet similarity embedding approach, the objective was two-

fold (1) to achieve as small dimensionality as possible for both networks (2) to obtain

a more discriminative representation in the low dimensional space which means to push

similar pairs together and dissimilar pairs apart in the low-dimensional space. For learn-

ing W, we solve an optimization problem based on constraints involving triplets - each

containing two similar samples and one dissimilar sample. Consider a triplet {a, p, n},

where a (anchor) and p (positive) are from the same class, but n (negative) belongs to a

different class. Our objective is to learn a linear projection W from the data such that the

following constraint is satisfied:

(Wa)T · (Wp) > (Wa)T · (Wn) (5.4)

In our case, {a, p, n} ∈ RM are deep descriptors which are normalized to unit

length. As such, (Wa)T · (Wp) is the dot-product or the similarity between a, p under

the projection W. The constraint in (5.4) requires that the similarity between the anchor

and positive samples should be higher than the similarity between the anchor and negative

samples in the low dimensional space represented by W. Thus, the mapping matrix W

pushes similar pairs closer and dissimilar pairs apart, with respect to the anchor point. By

choosing the dimensionality of W as n ×M where n < M , we achieve dimensionality
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reduction in addition to better performance. For our work, we fix n = 128 based on cross

validation.

Given a set of labeled data points, we solve the following optimization problem:

argmin
W

∑
a,p,n∈T

max(0, α + aTWTWn− aTWTWp) (5.5)

where T is the set of triplets and α is a margin parameter chosen based on the valida-

tion set. In practice, the above problem is solved in a Large-Margin framework using

Stochastic Gradient Descent (SGD) and the triplets are sampled online. The update step

for solving (5.5) with SGD is:

Wt+1 = Wt − η ∗Wt ∗ (a(n− p)T + (n− p)aT ) (5.6)

where Wt is the estimate at iteration t, Wt+1 is the updated estimate, {a, p, n} is the

triplet sampled at the current iteration and η is the learning rate which is set to 0.01 for

the current work.

More details regarding the optimization algorithm can be found in [127]. At each

iteration, we sample 1000 instances from the whole training set to choose the negatives.

Since the training set is relatively small for the datasets considered in this experiment, the

entire training set is held in memory. Going forward this could be made efficient by using

a buffer which will be replenished periodically, thus requiring a constant memory require-

ment. The computational complexity of each iteration is O(M2), that is, the complexity
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varies quadratically with the dimension of the deep descriptor. The technique closest to

the one presented in this section, which is used in recent works ( [63], [11]) computes the

embedding W based on satisfying the distance constraints given below:

argmin
W

∑
a,p,n∈T

max{0, α + (a− p)TWTW(a− p)− (5.7)

(a− n)TWTW(a− n)} (5.8)

To be consistent with the terminology used in this chapter, we call it Triplet Distance

Embedding (TDE). It should be noted that the TSE formulation is different from TDE,

in that, the current work uses inner-product based constraints between triplets to optimize

for the embedding matrix as opposed to norm-based constraints used in the TDE method.

To choose the dimensionality, we test the values 64,128,256 using a 5 fold validation

scheme for each split. The learning rate is chosen as 0.02 and is fixed throughout the

procedure. The margin parameter is chosen as 0.1. We find from our experiments that

lower margin works better but since we perform hard negative mining at each step, the

method is not particularly sensitive to the margin parameter.

In general, to learn a reasonable distance measure directly using pairwise or triplet

metric learning approach requires huge amount of data (i.e.,, the state-of-the-art approach [11]

uses 200M images). In addition, the proposed approach decouples the DCNN feature

learning and metric learning due to memory constraints. To learn a reasonable distance

measure requires generating informative pairs or triplets. The batch size used for SGD is

limited by the memory size of the graphics card. If the model is trained end-to-end, then
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only a small batch size is available for use. Thus, in this work, we perform DCNN model

training and metric learning independently. In addition, for the publicly available deep

model [63], it is also trained first with softmax loss and followed by finetuning the model

with verification loss with freezing the convolutional and fully connected layers except

the last one to learn the transformation which is equivalent to the proposed approach.

5.3 Experimental Results

In this section, we present the results of the proposed automatic system for both

face detection and face verification tasks on the challenging IARPA Janus Benchmark A

(IJB-A) [128], its extended version Janus Challenging set 2 (JANUS CS2) dataset, and

the LFW dataset. The JANUS CS2 dataset contains not only the sampled frames and

images in the IJB-A, but also the original videos. In addition, the JANUS CS2 dataset2

includes considerably more test data for identification and verification problems in the

defined protocols than the IJB-A dataset. The receiver operating characteristic curves

(ROC) and the cumulative match characteristic (CMC) scores are used to evaluate the

performance of different algorithms for face verification. The ROC curve measures the

performance in the verification scenarios, and the CMC score measures the accuracy in

closed set identification scenarios.

5.3.1 Face Detection on IJB-A

The IJB-A dataset contains images and sampled video frames from 500 subjects

collected from online media [128], [129]. For the face detection task, there are 67,183
2The JANUS CS2 dataset is not publicly available yet.
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faces of which 13,741 are from images and the remaining are from videos. The locations

of all faces in the IJB-A dataset have been manually annotated. The subjects were cap-

tured so that the dataset contains wide geographic distribution. Nine different face detec-

tion algorithms were evaluated on the IJB-A dataset [129], and the algorithms compared

in [129] include one commercial off the shelf (COTS) algorithm, three government off

the shelf (GOTS) algorithms, two open source face detection algorithms (OpenCV’s Vi-

ola Jones and the detector provided in the Dlib library), and GOTS ver 4 and 5. In Figure

5.7, we show the precision-recall (PR) curves and the ROC curves, respectively corre-

sponding to the method used in our work and one of the best reported methods in [129].

From the results, we see that the face detection algorithm used in our system outperforms

the best performing method reported in [129] by a large margin. In Figure 5.8 (b), we

illustrate typical faces in the IJB-A dataset that are not detected by DP2MFD, and we can

find the faces to be usually in very extreme conditions which contain limited information

for face verification. However, in Figure 5.8 (a), we also show that the DP2MFD algo-

rithm can handle very difficult faces but relatively reasonable as compared to those in 5.8

(b). As shown in Figure 5.6, our DP2MFD algorithm also achieves top performance in

the challenging FDDB benchmark [130] for face detection with a large performance mar-

gin compared to most algorithms. Some of the recent published methods compared in the

FDDB evaluation include Faceness [20], HeadHunter [19], JointCascade [15], CCF [131],

Squares- ChnFtrs-5 [19], CascadeCNN [17], Structured Models [132], DDFD [21], NDP-

Face [133], PEP-Adapt [134] and TSM [135]. More comparison results with other face

detection data sets are available in [24]. Since the CS2 dataset has not been released to

public, we are not able to provide comparisons with other existing face detectors.
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Figure 5.6: Face detection performance evaluation on the FDDB dataset.
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Figure 5.7: Face detection performance evaluation on the IJB-A dataset. (a) Precision vs.
recall curves. (b) ROC curves.
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(a)

(b)

Figure 5.8: (a) shows the difficult faces in the IJB-A dataset that are successfully detected
by DP2MFD, and (b) shows faces that are not detected by DP2MFD. From
the results, we can see that DP2MFD can handle difficult occlusion, partial
face, large illumination and pose variations.
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5.3.2 Facial Landmark Detection on IJB-A

In this section, we evaluate the performance of the facial landmark detection method

used in this work on the IJB-A dataset for the performance evaluation. For the training

data, we take 3148 images in total from the LFPW [136], Helen [137] and AFW [135]

datasets and test on IJBA-A dataset. The subjects were captured so that the dataset con-

tains wide geographic distribution. The challenge comes through the wide diversity in

pose, illumination and resolution. Our method produce 68 facial landmark points follow-

ing MultiPIE [138] markup format. We evaluate the performance using the Normalized

Mean Square Error and average pt-pt error (normalized by face size) vs fraction of im-

ages plots of different methods. Since IJB-A is annotated only with 3 key-points on the

faces (two eyes and nose base) by human annotators, the interoccular distance error was

normalized by the distance between nose tip and the midpoint of the eye centers. In

Figure 5.9, we present a comparison of our algorithm with [135], [139] and [140]. For

the Helen dataset, we show the performance of 49-point and full 68-point results in Ta-

ble 5.3. Our deep descriptor-based global shape regression method outperforms the above

mentioned state-of-the-art methods in both high-quality (Helen) and low-quality (IJB-A)

images. Samples detected landmarks results are shown in Figure 5.10. More evaluation

results for landmark detection other standard data sets may be found [1]. Once the

facial landmark detection is completed, we choose seven landmark points (i.e. two left

eye corners, two right eye corners, nose tip, and two mouth corners) out of the detected

68 points and apply the similarity transform to warp the faces into canonical coordinates.
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Method 68-pts 49-pts

Zhu et al. [135] 8.16 7.43
DRMF [139] 6.70 -
RCPR [141] 5.93 4.64
SDM [142] 5.50 4.25

GN-DPM [143] 5.69 4.06
CFAN [144] 5.53 -
CFSS [145] 4.63 3.47

LDDR 4.76 2.36

Table 5.3: Averaged error comparison of different methods on the Helen dataset.
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Figure 5.9: Average 3-pt error (normalized by eye-nose distance) vs fraction of images in
the IJB-A dataset.
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Figure 5.10: Sample facial landmark detection results.

5.3.3 IJB-A and JANUS CS2 for Face Verification

For the face verification task, both IJB-A and JANUS CS2 datasets contain 500

subjects with 5,397 images and 2,042 videos split into 20,412 frames, 11.4 images and

4.2 videos per subject. Sample images and video frames from the datasets are shown

in Figure 5.11. (i.e., the videos are only released for the JANUS CS2 dataset.) The

IJB-A evaluation protocol consists of verification (1:1 matching) over 10 splits. Each

split contains around 11,748 pairs of templates (1,756 positive and 9,992 negative pairs)

on average. Similarly, the identification (1:N search) protocol also consists of 10 splits,

which are used to evaluate the search performance. In each search split, there are about

112 gallery templates and 1,763 probe templates (i.e. 1,187 genuine probe templates and

576 impostor probe templates). On the other hand, for the JANUS CS2, there are about

167 gallery templates and 1,763 probe templates and all of them are used for both iden-

tification and verification. The training set for both datasets contains 333 subjects, and
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the test set contains 167 subjects without any overlapping subjects. Ten random splits

of training and testing are provided by each benchmark, respectively. The main differ-

ences between IJB-A and JANUS CS2 evaluation protocols are that (1) IJB-A considers

the open-set identification problem and the JANUS CS2 considers the closed-set identi-

fication and (2) IJB-A considers the more difficult pairs which are the subsets from the

JANUS CS2 dataset.

Figure 5.11: Sample images and frames from the IJB-A (top) and JANUS CS2 datasets
(bottom). Challenging variations due to pose, illumination, resolution, oc-
clusion, and image quality are present in these images.

Unlike the LFW and YTF datasets, which only use a sparse set of negative pairs

to evaluate the verification performance, the IJB-A and JANUS CS2 both divide the im-

ages/video frames into gallery and probe sets so that all the available positive and negative

pairs are used for the evaluation. Also, each gallery and probe set consist of multiple tem-

plates. Each template contains a combination of images or frames sampled from multiple

image sets or videos of a subject. For example, the size of the similarity matrix for JANUS

CS2 split1 is 167 × 1806 where 167 are for the gallery set and 1806 for the probe set (i.e.

the same subject reappears multiple times in different probe templates). Moreover, some

templates contain only one profile face with a challenging pose with low quality imagery.

In contrast to LFW and YTF datasets, which only include faces detected by the Viola

71



Jones face detector [14], the images in the IJB-A and JANUS CS2 contain extreme pose,

illumination, and expression variations. These factors essentially make the IJB-A and

JANUS CS2 challenging face recognition datasets [128].

(a) (b)

Figure 5.12: The performance evaluation for face verification tasks of (a) DCNNS and
(b) DCNNL of before finetuning, with finetuning, and with finetuning and
triplet similarity embedding for the JANUS CS2 dataset under Setup 3 (semi-
automatic mode). Fine tuning is done only using the training data in each
split.

5.3.4 Performance Evaluations of Face Verification on IJB-A and JANUS

CS2

To take different situations into account, we have considered three modes of evalu-

ations, manual, automatic and semi-automatic modes. This enables the handling of cases

where we are unable to detect any of the faces (i.e., the failure of face detection.) in the

images of the given template and also to compare the performance with the one using the

metadata provided with the dataset. We describe the setups of performance evaluation in

details as follows:

• Setup 1 (manual mode): Under this setup, we directly use the three facial land-
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(a) (b)

(c)

Figure 5.13: (a) and (b) show the face verification performance of the fusion model for
JANUS CS2 and IJB-A (1:1) verification, respectively, and (c) shows the
face identification performance of the fusion model for IJB-A (1:N) identi-
fication for all the three setups. Fine tuning is done only using the training
data in each split.
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marks and face bounding boxes provided along with the datasets.

• Setup 2 (automatic mode): In this setup when we get a video we use the face

association method to detect and track the faces and to extract the bounding box

to perform fiducial detection. If it is an image, we perform detection and facial

landmark detection independently. For every image or frame in a template in which

we are unable to detect the target person, we are unable to compare the template

with others and thus assign all the corresponding entries for the template in the

similarity matrices to the lowest similarity scores, -Inf.

• Setup 3 (semi-automatic mode): In this setup if we are able to detect the target

person in an image then we follow setup 2. Otherwise, we follow setup 1 to use

the metadata of the dataset for the faces which are not detected and tracked by our

algorithms.

To evaluate the performance of two networks individually, we present the ROC

curves of DCNNS and DCNNL of the Setup 3 (i.e., semi-automatic mode) for the JANUS

CS2 dataset in Figure 5.12. As shown in the figures, the performances are consistently

improved for both networks after fine-tuning the models previously trained using CASIA-

WebFace dataset on the training data of JANUS CS2. Triplet similarity embedding (TSE)

further increase the performance for both networks, especially for the TAR number at

the low FAR interval. For all the results presented here, fine tuning is done using only

the training data in each split. The gallery dataset is not used for parameter finetuning

or for triplet similarity embedding. Then, we perform the fusion of the two networks by

adding the corresponding similarity scores together and demonstrate the fusion results of
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all the three setup for the verification task of both JANUS CS2 and IJB-A in Figure 5.13

(a) and (b), respectively. In Figure 5.13 (c), we present the CMC curve for the IJB-A

identification task. From Figure 5.13, it can be seen that even the simple fusion strategy

used in this work significantly boosts the performance. Since DCNNS is trained using

tight face bounding boxes (DCNNS) and DCNNL using the large ones which includes

more context (DCNNL), one possible reason for the performance improvement is that

the two networks contain discriminative information learned from different scales and

complement each other. In addition, the figure also shows that the performance of our

system in Setup 2 (the automatic mode) is comparable to Setup 1 (the manual mode) and

Setup 3 (the semi-automatic mode). This demonstrates the robustness of each component

of our system.

IJB-A-Verif DCNN (setup 1) DCNN (setup 2) DCNN (setup 3) DCNNm (setup 1) DCNNm (setup 2) DCNNm (setup 3)

FAR=1e-2 0.834 ± 0.036 0.844 ± 0.026 0.846 ± 0.029 0.863 ± 0.02 0.885 ± 0.014 0.889 ± 0.016
FAR=1e-1 0.956 ± 0.008 0.95 ± 0.005 0.962 ± 0.007 0.966 ± 0.05 0.954 ± 0.003 0.968 ± 0.005

IJB-A-Ident DCNN (setup 1) DCNN (setup 2) DCNN (setup 3) DCNNm (setup 1) DCNNm (setup 2) DCNNm (setup 3)

Rank-1 0.915 ± 0.011 0.907 ± 0.011 0.922 ± 0.011 0.916 ± 0.009 0.923 ± 0.01 0.942 ± 0.008
Rank-5 0.969 ± 0.007 0.955 ± 0.007 0.975 ± 0.006 0.971 ± 0.007 0.961 ± 0.006 0.98 ± 0.005
Rank-10 0.982 ± 0.005 0.965 ± 0.005 0.987 ± 0.001 0.981 ± 0.005 0.969 ± 0.004 0.988 ± 0.003

IJB-A-Ident DCNN (setup 1) DCNN (setup 2) DCNN (setup 3) DCNNm (setup 1) DCNNm (setup 2) DCNNm (setup 3)

FPIR=0.01 0.618 ± 0.05 0.64 ± 0.043 0.631 ± 0.041 0.639 ± 0.057 0.646 ± 0.055 0.654 ± 0.001
FPIR=0.1 0.799 ± 0.014 0.806 ± 0.012 0.813 ± 0.014 0.816 ± 0.015 0.827 ± 0.012 0.836 ± 0.01

Table 5.4: Results on the IJB-A dataset. The TAR of all the approaches at FAR=0.1 and
0.01 for the ROC curves (IJB-A 1:1 verification). The Rank-1, Rank-5, and
Rank-10 retrieval accuracies of the CMC curves and TPIR at FPIR = 0.01 and
0.1 (IJB-A 1:N identfication). We also show the results before and after media
averaging where m means media averaging.

Besides using the average feature representation, we also perform media averaging

which is to first average the features coming the same media (image or video) and then

further average the media average features to generate the final feature representation. We
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CS2-Verif DCNN (setup 1) DCNN (setup 2) DCNN (setup 3) DCNNm (setup 1) DCNNm (setup 2) DCNNm (setup 3)

FAR=1e-2 0.913 ± 0.008 0.91 ± 0.008 0.922 ± 0.007 0.92 ± 0.01 0.922 ± 0.008 0.935 ± 0.007
FAR=1e-1 0.98 ± 0.004 0.967 ± 0.003 0.984 ± 0.003 0.981 ± 0.003 0.968 ± 0.003 0.986 ± 0.002

CS2-Ident DCNN (setup 1) DCNN (setup 2) DCNN (setup 3) DCNNm (setup 1) DCNNm (setup 2) DCNNm (setup 3)

Rank-1 0.9 ± 0.01 0.896 ± 0.008 0.909 ± 0.008 0.905 ± 0.007 0.915 ± 0.007 0.931 ± 0.007
Rank-5 0.963 ± 0.006 0.954 ± 0.006 0.969 ± 0.006 0.965 ± 0.004 0.959 ± 0.005 0.976 ± 0.004

Rank-10 0.977 ± 0.006 0.965 ± 0.004 0.981 ± 0.003 0.977 ± 0.004 0.967 ± 0.004 0.985 ± 0.002

Table 5.5: Results on the JANUS CS2 dataset. The TAR of all the approaches at FAR=0.1
and 0.01 for the ROC curves. The Rank-1, Rank-5, and Rank-10 retrieval
accuracies of the CMC curves. We report average and standard deviation of
the 10 splits. We also show the results before and after media averaging where
m means media averaging.

IJB-A-Verif [146] JanusB [119] JanusD [119] DCNNbl [147] NAN [148] DCNN3d [149]

FAR=1e-3 0.514 ± 0.006 0.65 0.49 - 0.785 ± 0.028 0.725
FAR=1e-2 0.732 ± 0.033 0.826 0.71 - 0.897 ± 0.01 0.886
FAR=1e-1 0.895 ± 0.013 0.932 0.89 - 0.959 ± 0.005 -

IJB-A-Ident [146] JanusB [119] JanusD [119] DCNNbl [147] NAN [148] DCNN3d [149]

Rank-1 0.820 ± 0.024 0.87 0.88 0.895 ± 0.011 - 0.906
Rank-5 0.929 ± 0.013 - - 0.963 ± 0.005 - 0.962
Rank-10 - 0.95 0.97 - - 0.977

IJB-A-Verif DCNNpose [150] DCNNm (setup 1) DCNNm (setup 2) DCNNm (setup 3) DCNNtpe [151] TP [152]

FAR=1e-3 - 0.704 ± 0.037 0.762 ± 0.038 0.76 ± 0.038 0.813 ± 0.02 -
FAR=1e-2 0.787 0.863 ± 0.02 0.885 ± 0.014 0.889 ± 0.016 0.9 ± 0.01 0.939 ± 0.013
FAR=1e-1 0.911 0.966 ± 0.05 0.954 ± 0.003 0.968 ± 0.005 0.964 ± 0.01 -

IJB-A-Ident DCNNpose [150] DCNNm (setup 1) DCNNm (setup 2) DCNNm (setup 3) DCNNtpe [151] TP [152]

Rank-1 0.846 0.916 ± 0.009 0.923 ± 0.01 0.942 ± 0.008 0.932 ± 0.001 0.928 ± 0.01
Rank-5 0.927 0.971 ± 0.007 0.961 ± 0.006 0.98 ± 0.005 - -
Rank-10 0.947 0.981 ± 0.005 0.969 ± 0.004 0.988 ± 0.003 0.977 ± 0.005 0.986 ± 0.003

Table 5.6: Results on the IJB-A dataset. The TAR of all the approaches at FAR=0.1, 0.01,
and 0.001 for the ROC curves (IJB-A 1:1 verification). The Rank-1, Rank-5,
and Rank-10 retrieval accuracies of the CMC curves (IJB-A 1:N identfication).
We report average and standard deviation of the 10 splits. All the performance
results reported in [119], Janus B (JanusB-092015), Janus D (JanusD-071715),
DCNNbl [147], DCNN3d [149], NAN [148], DCNNpose [150], DCNNtpe [151],
and TP [152]. The systems have produced results for setup 1 (based on land-
marks provided along with the dataset) only. In addition, we also compare
the performance of the recent work, DCNNtpe [151] where the performance
difference mainly comes from the better preprocessing module and improved
metric, [25].
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show the results before and after media averaging for both IJB-A and JANUS CS2 dataset

in Table 5.4 and in Table 5.5. It is clear that media averaging significantly improves the

performance.

Tables 5.6 and 5.7 summarize the scores (i.e., both ROC and CMC numbers) pro-

duced by different face verification methods on the IJB-A and JANUS CS2 datasets, re-

spectively. For the IJB-A dataset, we compare our fusion results (i.e., we perform fine-

tuning and TSE in Setup 3.) with DCNNbl (bilinear CNN [147]), DCNNpose (multi-pose

DCNN models [150]), [148], DCNN3d [149], template adaptation (TP) [152], DCNNtpe

[151] and the ones [119] reported recently by NIST where JanusB-092015 achieved

the best verification results, and JanusD-071715 the best identification results. For the

JANUS CS2 dataset, Table 5.7 includes, a DCNN-based method [146], Fisher vector-

based method [57], DCNNpose [150], DCNN3d [149], and two commercial off-the-shelf

matchers, COTS and GOTS [128]. From the ROC and CMC scores, we see that the fu-

sion of DCNN methods significantly improve the performance. This can be attributed

to the fact that the DCNN model does capture face variations over a large dataset and

generalizes well to a new small dataset.

In addition, the performance results of Janus B (Jan-usB-092015), Janus D (JanusD-

071715), DCNNbl and DCNNpose systems have produced results for setup 1 (based on

landmarks provided along with the dataset) only.
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CS2-Verif COTS GOTS FV [57] DCNNpose [150]

FAR=1e-3 - - - -
FAR=1e-2 0.581±0.054 0.467±0.066 0.411±0.081 0.897
FAR=1e-1 0.767±0.015 0.675±0.015 0.704±0.028 0.959

CS2-Ident COTS GOTS FV [57] DCNNpose [150]

Rank-1 0.551 ± 0.003 0.413 ± 0.022 0.381 ± 0.018 0.865
Rank-5 0.694 ± 0.017 0.571 ± 0.017 0.559 ± 0.021 0.934

Rank-10 0.741 ± 0.017 0.624 ± 0.018 0.637 ± 0.025 0.949

CS2-Verif DCNN3d [149] DCNN (setup 1) DCNN (setup 2) DCNN (setup 3)

FAR=1e-3 0.824 0.81 ± 0.018 0.823 ± 0.013 0.83 ± 0.014
FAR=1e-2 0.926 0.92 ± 0.01 0.922 ± 0.008 0.935 ± 0.007
FAR=1e-1 - 0.981 ± 0.003 0.968 ± 0.003 0.986 ± 0.002

CS2-Ident DCNN3d [149] DCNN (setup 1) DCNN (setup 2) DCNN (setup 3)

Rank-1 0.898 0.905 ± 0.007 0.915 ± 0.007 0.931 ± 0.007
Rank-5 0.956 0.965 ± 0.004 0.959 ± 0.005 0.976 ± 0.004

Rank-10 0.969 0.977 ± 0.004 0.967 ± 0.004 0.985 ± 0.002

Table 5.7: Results on the JANUS CS2 dataset. The TAR of all the approaches at FAR=0.1,
0.01, and 0.001 for the ROC curves. The Rank-1, Rank-5, and Rank-10 re-
trieval accuracies of the CMC curves. We report average and standard devi-
ation of the 10 splits. The performance results of DCNNpose have produced
results for setup 1 only.
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5.3.5 Labeled Face in the Wild

We also evaluate our approach on the well-known LFW dataset [105] using the

standard protocol which defines 3,000 positive pairs and 3,000 negative pairs in total and

further splits them into 10 disjoint subsets for cross validation. Each subset contains

300 positive and 300 negative pairs. It contains 7,701 images of 4,281 subjects. We

compare the mean accuracy of the proposed deep model with other state-of-the-art deep

learning-based methods: DeepFace [60], DeepID2 [62], DeepID3 [153], FaceNet [11], Yi

et al. [13], Wang et al. [146], Ding et al. [154], Parkhi et al. [63], and human performance

on the “funneled” LFW images. The results are summarized in Table 5.8. It can be

seen that our approach performs comparable to other deep learning-based methods. Note

that some of the deep learning-based methods compared in Table 5.8 use millions of

data samples for training the model. In comparison, we use only the CASIA dataset for

training our model which has less than 500K images.

Method #Net Training Set Metric Mean Accuracy ± Std

DeepFace [60] 1 4.4 million images of 4,030 subjects, private cosine 95.92% ± 0.29%
DeepFace 7 4.4 million images of 4,030 subjects, private unrestricted, SVM 97.35% ± 0.25%
DeepID2 [62] 1 202,595 images of 10,117 subjects, private unrestricted, Joint-Bayes 95.43%
DeepID2 25 202,595 images of 10,117 subjects, private unrestricted, Joint-Bayes 99.15% ± 0.15%
DeepID3 [153] 50 202,595 images of 10,117 subjects, private unrestricted, Joint-Bayes 99.53% ± 0.10%
FaceNet [11] 1 260 million images of 8 million subjects, private L2 99.63% ± 0.09%
Yi et al. [13] 1 494,414 images of 10,575 subjects, public cosine 96.13% ± 0.30%
Yi et al. 1 494,414 images of 10,575 subjects, public unrestricted, Joint-Bayes 97.73% ± 0.31%
Wang et al. [146] 1 494,414 images of 10,575 subjects, public cosine 96.95% ± 1.02%
Wang et al. 7 494,414 images of 10,575 subjects, public cosine 97.52% ± 0.76%
Wang et al. 1 494,414 images of 10,575 subjects, public unrestricted, Joint-Bayes 97.45% ± 0.99%
Wang et al. 7 494,414 images of 10,575 subjects, public unrestricted, Joint-Bayes 98.23% ± 0.68%
Ding et al. [154] 8 471,592 images of 9,000 subjects, public unrestricted, Joint-Bayes 99.02% ± 0.19%
Parkhi et al. [63] 1 2.6 million images of 2,622 subjects, public unrestricted, TDE 98.95 %
Human, funneled [146] N/A N/A N/A 99.20%

Our DCNNS + DCNNL 2 490,356 images of 10,548 subjects, public cosine 98% ± 0.5%
Our DCNNS + DCNNL 2 490,356 images of 10,548 subjects, public unrestricted, TSE 98.33% ± 0.7%

Table 5.8: Accuracy of different methods on the LFW dataset.
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5.3.6 Comparison with Methods based on Annotated Metadata

Most systems compared in this chapter produced the results for setup 1 which is

based on landmarks provided along with the dataset only (i.e., except DCNNtpe.). For

DCNN3d [149], the number of face images is augmented along with the original CASIA-

WebFace dataset by around 2 million using 3D morphable models. On the other hand,

NAN [148] and TP [152] used datasets with more than 2 million face images to train the

model. However, the networks used in this work were trained with the original CASIA-

WebFace which contains around 500K images. In addition, TP adapted the one-shot

similarity framework [155] with linear support vector machine for set-based face verifi-

cation and trained the metric on-the-fly with the help of a pre-selected negative set during

testing. Although TP achieved significantly better results than other approaches, it takes

more time during testing than the proposed method since our metric is trained off-line and

requires much less time for testing than TP. We expect the performance of the proposed

approach can also be improved by using the one-shot similarity framework. As shown

in Table 5.6, the proposed approach achieves comparable results to other methods and

strikes a balance between testing time and performance. In a recent work, DCNNtpe [151],

adopted a probabilistic embedding for similarity computation and a new face preprocess-

ing module, hyperface [25], for improved face detection and fiducials where [25] is a

multi-task deep network trained for the tasks of gender classification, fiducial detection,

pose estimation and face detection. We plan to incorporate hyperface into the current

framework which may yield some improvement in performance.
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5.3.7 Run Time

The DCNNS model for face verification is trained on the CASIA-Webface dataset

from scratch for about 4 days and for DCNNL, it takes 20 hours to train on the same

face dataset which is initialized using the weights of Alexnet pretrained on the ImageNet

dataset. The two networks are trained using NVidia Titan X with cudnn v4. The running

time for face detection is around 0.7 second per image. The facial landmark detection and

feature extraction steps take about 1 second and 0.006 second per face, respectively. The

face association module for a video takes around 5 fps on average.

5.4 Open Issues

Given sufficient number of annotated data and GPUs, DCNNs have been shown to

yield impressive performance improvements. Still many issues remain to be addressed

to make the DCNN-based recognition systems robust and practical. We discussed design

considerations for each component of a full face verification system, including

• Face detection: In contrast to generic object detection task, face detection is more

challenging due to the wide range of variations in the appearance of faces. The

variability is caused mainly by changes in illumination, facial expression, view-

points, occlusions, etc. Other factors such as blurry images and low resolution are

prominent in face detection task.

• Fiducial detection: Most of the datasets only contain few thousands images. A

large scale annotated and unconstrained dataset will make the face alignment sys-
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tem more robust to the challenges, including extreme pose, low illumination, small

and blurry face images. Researchers have hypothesized that dee-per layers of con-

vnets can encode more abstract information such as identity, pose, and attributes;

However, it has not yet been thoroughly studied which layers exactly correspond to

local features for fiducial detection.

• Face association: Since the video clips may contain media of low-quality images,

the blurred and low-resolution image makes the face detection not reliable. This

may lead to performance degradation of face association since a face track will not

be initiated due to the missing of face detection. Besides, abrupt motion, occlusion,

and crowded scene can lead to performance degradation of tracking and potential

identity switching.

• Face verification: For face verification, the performance can be improved by learn-

ing a discriminative distance measure. However, due to memory constraints limited

by graphics cards, how to choose informative pairs or triplets and train the network

end-to-end using online methods (e.g., stochastic gradient descent) on large-scale

datasets is still an open problem.

5.5 Summary

We presented the design and performance of our automatic face verification sys-

tem, which automatically locates faces and performs verification/recognition on newly

released challenging face verification datasets, IARPA Benchmark A (IJB-A) and its ex-

tended version, JANUS CS2. It was shown that the proposed DCNN-based system can not

82



only accurately locate the faces across images and videos but also learn a robust model for

face verification. Experimental results demonstrate that the performance of the proposed

system on the IJB-A dataset is much better than a FV-based method and some COTS and

GOTS matchers.
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Chapter 6: A Cascaded Convolutional Neural Network for

Age Estimation of Unconstrained Faces

6.1 Overview

Besides face recognition, we would like to utilize the trained DCNN model for other

face-related analysis, and we focus on apparent age estimation in this chapter. Tradition-

ally, the problem is tackled through pure classification or regression approaches. In this

chapter, we present a cascaded approach which incorporates the advantages of both clas-

sification and regression approaches. Given an input image, we first apply the age group

classification algorithm to obtain a rough estimate and then perform age group specific

regression to obtain an accurate age estimate.

Like other facial analysis techniques, age estimation is affected by many intrinsic

and extrinsic challenges, such as illumination variation, race, attributes, etc. One may

define the age estimation task as a process of automatically labeling face images with the

exact age, or the age group (age range) for each individual. It was suggested in [156] to

differentiate the problem of age estimation along four concepts:

• Actual age: real age of an individual.

• Appearance age: age information shown on the visual appearance.
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Figure 6.1: Estimated age on sample images from [2]. Our method is able to predict the
age in unconstrained images with variations in pose, illumination, age groups,
and expressions.

• Apparent age: suggested age by human subjects from the visual appearance.

• Estimated age: recognized age by an algorithm from the visual appearance.

The proposed cascaded classification and regression approach for apparent age es-

timation is based on a deep convolutional neural network. Our method consists of three

main stages: (1) a single coarse age classifier, (2) multiple age regressors, and (3) an

error correcting stage to correct the mistakes made by the age group classifer. Since the

number of samples for apparent age estimation is limited, we exploit a DCNN model

pretrained for large-scale face identification task and finetune the model for age group

classification and age regression tasks. This strategy is effective since the face recogni-

tion model trained on the CASIA-WebFace dataset [13] (i.e. it consists of 10,575 subjects

and 494,414 images.) encodes rich information reflecting large variations in facial ap-

pearances due to aging and variations in pose, expression and illumination.
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1st: Age Group Classifier
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Figure 6.2: An overview of the proposed age cascade apparent age estimator.

The contribution of this chapter is to propose the age error correction module which

mitigates the common disadvantage of coarse-to-fine approaches. Typically, the errors

made at the initial classification stage cannot be recovered by the regressors at the fol-

lowing stage. In this work, we set up the baseline algorithm which is based on the pro-

posed regression algorithm in Section 6.2.6 and study how the coarse-to-fine strategy and

the error correction module improve the prediction performance. Figure 6.2 presents an

overview of the proposed age estimation method.

The rest of the chapter is organized as follows: The proposed approach is presented

in Section 6.2 with a concrete example. Experimental results are provided in Section 6.3,

and Section 6.4 concludes the chapter with a brief summary and discussion.

6.2 Proposed Method

Figure 6.2 shows an overview of our CNN-based cascaded age estimation method.

Our approach consists of three main components: (1) age group classifier, (2) age re-
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gressor to predict the relative age with respect to each age group mean, and (3) apparent

age error correction. Given a face image, we first apply the age group classifier to get

a rough estimate of the age range from the image. Then, we choose the corresponding

age regressor based on the classification results to predict the relative age with respect to

the predicted group mean and combine them to get the apparent age estimate. Then, we

utilize the characteristic of the classification plus regression framework to design an age

error correction scheme to correct age classification and regression errors. Finally, the

algorithm outputs the final age estimate for the given input image. In what follows next,

we will describe each of these component in detail.

6.2.1 Face Preprocessing

In our work, all the face detection and facial landmark detection are handled using

the open source library dlib [14] [157]. Three landmark points (the center of the left eye,

the center of the right eye, and the nose base) are used to align the detected faces into the

canonical coordinate system using the similarity transform.

6.2.2 Deep Face Feature Representation

We use the DCNN model with the architecture similar to the one proposed in [13]

which is pretrained for the face-identification task with softmax loss using the CASIA-

WebFace dataset [13]. The CASIA-WebFace dataset consists of 10,575 subjects and

494,414 images. The architecture is composed of 10 convolutional layers, 5 pooling

layers and 1 fully connected layer. In our work, we use PReLU [123] instead of ReLU
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as the nonlinear activation function and data augmentation to train the network. The in-

put is a color image of aligned faces of dimension 100 × 100 × 3. The details of this

architecture are given in Table 6.1. We do net surgery on this network (i.e., we cut off

the part after pool5 layer.) and use its pretrained weights on the CASIA-WebFace dataset

to finetune on the age group dataset and apparent age estimation dataset to perform age

group classification and relative age regression with respect to each age group.

6.2.3 Age Group Classifier

Inspired by the Viola and Jones face detection algorithm [14], we quantize the hu-

man age into several age groups (e.g. 0-7, 8-14, 15-23, etc.) which is an easier problem

than directly performing classification or regression for the whole age range which re-

quires a large amount of training data. To train the age group classifier, we remove the

original fully connected layer, add the PReLU units and the fully connected layer with 512

outputs and finetune it on the the Images of Groups [158], Adience [159] and FGNet [160]

datasets to obtain the DCNN-based age group classifier.

6.2.4 Apparent Age Regressor Per Age Group

To train the age regressor for each age group, we prepare the training data by split-

ting each training sample into the corresponding age group based on its ground truth age,

and then subtract the mean of that group. The regressors are trained in two ways. The first

one is to extract the pool5 features and use them to train the regressors with a large batch

size. The other is to train the regressor through end-to-end network finetuning but with
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a smaller batch size. (i.e., Similarly, we keep the part before pool5 layer and add fully

connected layers.) Since the pool5 feature in the face identification task is followed by the

fully connected layer with 10,575 output corresponding to the number of subject in the

CASIA-WebFace dataset, the pool5 features should contain strong discriminative infor-

mation from all the face images to classify a large number of subjects in the training data.

In addition, we also adopt a novel loss function called, the Gaussian Loss, which takes

the a rough age (i.e. the age is represented as a mean and a standard derivation instead of

the exact age) as input and is robust for apparent age estimation. The role of the new loss

function in learning the nonlinear regression method is discussed in Section 6.2.6.

For the pre-training of DCNN face representation model, we use the standard batch

size 128 for the training phase. The initial negative slope for PReLU is set to 0.25 as

suggested in [123]. The weight decay rates of all the convolutional layers are set to 0, and

the weight decay of the final fully connected layer to 5e-4. In addition, the learning rate is

set to 1e-2 initially and reduced by half every 100,000 iterations. The momentum is set to

0.9. Finally, we use the snapshot of 1,000,000th iteration as our pretrained model. For the

finetuning of the age group classifier, we use the learning rate, 1e-4, for the convolutional

layers and 1e-3 for the fully connected layers with 100,000 iterations. For training each

age regressor, we first extract all the 320-d feature vectors for each age group and feed

them at once into the age regressor network. We train it with 30,000 iterations using the

learning rate, 1e-2, and momentum, 0.9. For the end-to-end finetuning of the regressors,

we use batch size, 128, with the learning rate, 1e-4, for the convolutional layers and 1e-3

for the fully connected layers. The 120,000th models are used for each age regressor.

Data augmentation is performed by randomly cropping 100 × 100 regions from a 128 ×

89



128 box and horizontally face flipping.

6.2.5 Age Error Correction

In practice, the age group classifier will make errors and these errors significantly

affect the final age estimation results for the second stage regressors. To handle these

errors, we employ an error correcting approach. When we train the regressor for each

age group, we also include the training examples from the neighboring age group. For

example, given 3 age groups, (1) 8-14, (2) 15-21, and (3) 22-28, if we want to train the

age regressor for the first age group, besides the training samples with ages ranging from

8 to 14 years old, we also add the training samples from its neighboring group (i.e., we

added the samples from ±2 groups for the experiments.), that is the second age group.

Thus, when the classifier mistakenly assigns the subject to the neighboring age group, the

regressor is able to predict a large enough value and correct the error caused by the age

group classifier. Furthermore, to take the classifier error into consideration, we also add

the misclassified samples to augment the training samples of all the regressors in between

the true and wrong groups to increase the chance of correcting the imprecise age estimate

so that it is close to the ground truth through our error correction scheme. The detailed

step-by-step illustration for the age error correction scheme and other components will be

presented in the following subsection. The pseudo code for our age correction approach

is given in Algorithm 3.
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Name Type Filter Size/Stride #Params

Conv11 convolution 3×3×1 / 1 0.84K
Conv12 convolution 3×3×32 / 1 18K

Pool1 max pooling 2×2 / 2

Conv21 convolution 3×3×64 / 1 36K
Conv22 convolution 3×3×64 / 1 72K

Pool2 max pooling 2×2 / 2

Conv31 convolution 3×3×128 / 1 108K
Conv32 convolution 3×3×96 / 1 162K

Pool3 max pooling 2×2 / 2

Conv41 convolution 3×3×192 / 1 216K
Conv42 convolution 3×3×128 / 1 288K

Pool4 max pooling 2×2 / 2

Conv51 convolution 3×3×256 / 1 360K
Conv52 convolution 3×3×160 / 1 450K

Pool5 avg pooling 7×7 / 1

Dropout dropout (40%)

Fc6 fully connection 10575 3305K

Cost softmax

total 5015K

Table 6.1: The base architecture of DCNN model used in this chapter [13] to finetune on
the age group classification and ∆age regression for each age group.
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Algorithm 3 AGE ESTIAMTION ALGORITHM
Input: (a) Input face image, I , (b) maxIter iterations, (c) age group classifier, G0, and age re-

gressor per age group, A0, A1, . . . , AN−1 where N is the number of age groups and both age
group classifier and age regressors are all DCNN-based models.

Output: Predicted apparent age, â.
1: g` = G0(I), where g` is the predicted age group label.
2: For i = 0 to N-1
3: ∆ai = Ai(I).
4: End For
5: â = mean(g`)+∆ag` .
6: // Age estimation error correction
7: For i = 0 to maxIter - 1
8: ĝ` = L(â), where L(·) returns the age group label of â.
9: IF ĝ` = g`

10: Return â
11: ELSE
12: â = mean(ĝ`)+∆aĝ`
13: End IF
14: g` = ĝ`
15: End For
16: Return â

6.2.6 Non-linear Regression

We use a 3-layer neural network to learn the age regressor for each age group.

The number of layers is determined experimentally to be 3. The regression is learned by

optimizing the Gaussian loss function as follows [2]. The Gaussian loss function is useful

since the apparent age labels are usually not exact.

L =
1

N

i=N∑
i=1

1− e
− (∆xi−µi)

2

2σ2
i , (6.1)

where L is the average loss for all the training samples, ∆xi is the predicted shift in age

from the mean of the corresponding age group. µi is the ground truth shift in age and

σi is the standard deviation in age increment for the ith training sample. The network
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parameters are trained using the back-propagation algorithm [161] with batch gradient

descent. The gradient obtained for the loss function is given by (6.2). This gradient is

used for updating the network weights during training using back-propagation.

∂L

∂∆xi
=

1

Nσ2
(∆xi − µi)e

− (∆xi−µi)
2

2σ2
i . (6.2)

We apply dropout [162] after each fully connected layers to reduce the over-fitting due to

the limited number of training data. The amount of dropout applied is 0.4, 0.3 and 0.2 for

the input, first and second layers of the network respectively. The dropout ratio is applied

in a decreasing manner to cope up with the decrease in the number of parameters for the

deeper layers. Each layer is followed by the (PReLU) [123] activation function except

the last one which predicts the age. The first layer is the input layer which takes the 320

dimensional feature vector obtained from the face-identification task. The output of this

layer, after the dropout and PReLU operation, is fed to the fist hidden layer containing 320

hidden units. Subsequently, the output propagates to the second hidden layer containing

160 hidden units. The output from this layer is used to generate a scalar value that would

describe the apparent age. Figure 6.3 depicts the 3-layer neural network used.

6.2.7 A Toy Example

To illustrate the end-to-end pipeline of the proposed age estimation algorithm, we

present a toy example below. In this example, we use the 3 age group setting for the age

group classifier where (1) the first age group is from 8 to 14 years, (2) the second 15 to 21,

and (3) the third 22 to 28. The age regressor will predict ∆age with respect to the mean
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Figure 6.3: The 3-layer neural network used for estimating the increment in age for each
age group.

age of its corresponding group. For example, the regressor for the first age group takes

charge of predicting the real value ranging from -3 (i.e. 8 - 11 = -3, where 11 is the mean

age of the first group) to +3 (i.e. 14 - 11 = 3). Now, given a face image with ground truth

age 27 years old, ideally the predicted age group label should be 3 after passing the image

into the age group classifier. Then, we will use the third age regressor to predict its ∆age

which should ideally predict the value as +2 and then we can estimate the apparent age as

25 + 2 = 27 by combining the results of the age group classifier and its corresponding age

regressor where 25 is the group mean for the third age group. However, as mentioned in

Section 6.2.5, in practice, if the age group classifier makes mistakes, the age estimation

results will be wrong. To handle this error, we do the age error correction as described in

Section 6.2.5. Now, given another face image with ground truth age 14, incorrectly being

classified into third age group, we augment the misclassified samples when we train the

regressor. Thus, it can be expected that the ∆age should be negative enough, say -5, and

as a result, the age estimation will be 25 - 5 = 20 which is still wrong but falls in the range

of the second group. Then, we can pass the image again to the second group regressor to
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get a new estimate, say 18 - 4 = 14. We stop correcting the error when the predicted age

and the previous predicted age falls in the same group or reach the maximum number of

iterations. That is, we will pass the image to the first regressor again and it will predict 11

+ 3 = 14 and then we stop. Otherwise, we continue to perform the correction.

The proposed age estimation algorithm is summarized in Algorithm 3. The execu-

tion orders for both the classification and regression parts are written in parallel, and thus

it runs in one age group classification plus N ∆age regression simultaneously in total.

The maximum number of iterations is preset to avoid looping.

6.3 Experimental Results

We evaluate the proposed method on two publicly available datasets: Adience [159]

and FG-Net [160]. Both datasets include unconstrained images of individuals which are

labeled by their actual biological ages. In addition to these two datasets, we present

results on the ICCV 2015 Chalearn ’Looking at people-Age Estimation’ challenge dataset

[2]. The main difference between this dataset and Adience and FG-Net datasets is that

Chalearn includes unconstrained images of individuals labeled by their apparent ages.

6.3.1 Datasets

Adience dataset [159] consists of 26, 580 unconstrained images of 2, 284 subjects

in 8 age groups (0-2, 4-6, 8-13, 15-20, 25-32, 38-43, 48-53, 60+). The standard five-fold,

subject-exclusive cross-validation protocol is used for testing (i.e., we merge 0-2 and 4-6

into one for the experiments of Challenge and FG-Net datasets.)
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FG-Net aging dataset [160] contains a collection of 1, 002 images of 82 subjects,

where each image is annotated with true age.

Images of groups [158] consists of 28, 231 faces in 5, 080 images. Each face is

annotated with a label corresponding to one of the seven age groups; 0-2, 3-7, 8-12, 13-

19, 20-36, 37-65, 66+ .

Chalearn Workshop Challenge dataset is the first dataset on apparent age es-

timation containing annotations. The dataset consists of 2, 476 training images, 1, 136

validation images, and 1, 087 test images, which were taken from individuals aged be-

tween 0 to 100. The images are captured in the wild, with variations in pose, illumination

and quality. Figure 6.4 shows the distribution of the ’Chalearn Looking at People’ Chal-

lenge dataset across the different age groups. It is evident from this figure that most of

the data are distributed around the age group of 20-50, while there are very few samples

in the range of 0-15 and above 55. The remaining data consists of the test set which has

not been released publicly.

6.3.2 Experimental Details

For the first stage of age classification, we augmented the training set with the

training splits of Adience [159], FG-Net [160] and Images of groups [158] datasets. To

evaluate on the FG-Net, we train the seven regressor networks and then pass them through

our proposed error correcting mechanism to predict the final age. Although the recently

released IMDB-WIKI dataset [163] contains a large collection of images with ages, the

number of the images for the young and old age groups is much smaller than other groups
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Figure 6.4: Training data distribution of ICCV-2015 Chalearn Looking at People Appar-
ent Age Estimation Challenge, with regard to age groups.

and some of the annotations for the dataset are noisy. Due to these factors, we confine

the age group ranges to the ones defined by Adience [159] and focus on those previosly

well-labelled datasets for the proposed approach. The study of the influences by different

ranges of age group intervals is left for future work. All the models were trained using

Caffe [164]. We also compare the performance of our proposed method with a recently

proposed geometry-based method [86], which is referred to as Grassmann-Regression

(G-LR).

6.3.3 Results

To evaluate the performance of age classification algorithm, we conduct experi-

ments on the Adience dataset [159], by following the 5 fold cross validation protocol

described in [165]. From Table 6.2, it can be seen that our approach achieve better per-

formance than the previous state-of-the-art methods. In addition, we also visualize what

the neurons of DCNN model actually learn after fine-tuning on facial age group dataset
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using deepDraw [3]. From the figure 6.5(a) and (e), we can clearly see the appearance

and shape of children and the elder. This demonstrates that the DCNN model does adapt

the representation for age after fine-tuning. One thing worth noticing is that the accuracy

for exact age group classification is around 53%, but the 1-off accuracy is 88.45% (i.e.,

1-off means the predicted label is within the neighboring groups of the true one, and 2-off

means ± 2 groups). The results demonstrate the need of our error correction module to

make the coarse-to-fine strategy to work better.

Method Exact 1-off

Best from [159] 45.1± 2.6 79.5± 1.4
Best from [165] 50.7± 5.1 84.7± 2.2

Ours 52.88± 6 88.45± 2.2

Table 6.2: Age estimation results on the Adience benchmark. Listed are the mean accu-
racy ± standard error over all age categories. Best results are marked in bold.

After age group classification, we evaluated the performance of the proposed method

following the protocol provided by the Chalearn ’Looking at People’ challenge dataset to

further investigate how the coarse-to-fine strategy and error correction mechanism help

the age estimation. The error is computed as follows:

ε = 1− e−
(x−µ)2

2σ2 , (6.3)

where x is the estimated age, µ is the provided apparent age label for a given face image,

average of at least 10 different user opinions, and σ is the standard deviation of all (at least

10) gauged ages for the given image. We evaluate our method on the validation set of the

challenge [2], as the test set annotations are not available for performing analysis. Our
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(a) (b) (c) (d)

(e) (f) (g)

Figure 6.5: We visualize the results for the fine-tuned DCNN model on age group classi-
fication using deepDraw [3]. (a) age from 0 to 6 years old, (b) 8 to 13, (c) 15
to 20, (d) 25 to 32, 38 to 43, (e) 48 to 53, and (e) 60+. From the figures, we
can clearly see the shape and appearance of children from (a) and of the elder
from (e). It demonstrates that the DCNN model does adapt the representation
for age after fine-tuning.

baseline approach is to perform age estimation by a single deep regressor (as described in

Section 6.2.6) on top of all the DCNN features. From Table 6.3, it shows that the coarse-

to-fine strategy improves the prediction results of the baseline approach, and the error

correction module further significantly boosts the performance which also demonstrates

that the error correction module effectively fixes the errors made by the age classification

step. In addition, we also show that the results of end-to-end finetuning on the training

data of the challenge data for both baseline and our approach outperform the ones which

are trained separately. (i.e., For the results of baseline with end-to-end finetuning, we

use the 500,000th model which are trained with the same batch size and learning rate for

the proposed approach.) Some prediction sample results from this dataset are shown in

Figure 6.6.
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Method Gaussian Error

G-LR [86] 0.62
Baseline 0.39
Our method
without error correction

0.382

Our method
with error correction

0.355

Baseline
with end-to-end finetuning

0.312

Our method
with end-to-end finetuning and error correction

0.297

Table 6.3: Performance comparison on the Chalearn Challenge dataset.

Figure 6.6: Age estimates on the Chalearn Validation set. The incorrect age obtained
without using the self correcting module is shown in blue, while the corrected
age is given in red.

100



By looking at the images, we can infer that our method is robust to pose and resolu-

tion changes to a certain extent. It fails mostly for extreme illumination and extreme pose

scenarios. On further inspection of the Chalearn challenge dataset, we observe the the

first stage classification fails to classify correctly when the images have attributes such as

hats, glasses, microphone, etc. However, the proposed error correcting mechanism makes

it robust to such artifacts. The performance of our method can be improved considerably

if we train using large-scale age labeled data.

Finally, we further evaluate the proposed method with end-to-end finetuning on the

FG-Net dataset (i.e., For FGNet, we set σ = 2 for Gaussian loss.). Since the training of

DCNN is computationally intensive, a fair amount of time is needed to complete the full

leave-one-person out (LOPO) evaluations. Thus, we chose to compromise and show a re-

sult that demonstrates the performance level as compared to other methods. We randomly

chose 73 subjects and used their images as the training data and the rest for testing. Table

6.4 shows the empirical evaluation of our method compared with several other methods

proposed in recent years (i.e., Since the test protocol is different from LOPO used for

other methods, the results of the proposed method are not directly comparable to oth-

ers but only as an empirical performance evaluation.). From this table, it can be seen

that our method performs comparable to other state-of-the-art age estimation methods.

The approach with error correction module performs much better than the one without

considering neighboring samples for error correction during training.
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Reference Method Training/Testing method Result (MAE)
Luu2009 [166] 2 stage SVR in AAM subspace 802 training 200 test images 4.37
Ylioinas2013 [167] LBP Kernel Density Estimate LOPO 5.09
Geng2013 [168] Label Distribution (CPNN) LOPO 4.76
Chen2013 [169] Cumulative Attribute SVR LOPO 4.67
El Dib2010 [170] Enhanced Biologically -Inspired features LOPO 3.17
Han2013 [160] Component and holistic BIF LOPO 4.6
Hong2013 [171] Biologically InspiredAAM LOPO 4.18
Chao2013 [172] Label-sensitive learning LOPO 4.38

Ours proposed method Classification+Regression 890 train , 112 test 4.8
Ours proposed method Classification+Regression+Error Correction 890 train , 112 test 3.49

Table 6.4: Performance comparison of different age estimation algorithms on the FG-Net
aging database using mean absolute error(MAE). Since the training of DCNNs
is computationally intensive, the evaluation of the proposed approach does not
follow the full LOPO protocol. The results are for an empirical evaluation to
show the performance level of the proposed approach.

6.3.4 Runtime

All the experiments were performed using NVIDIA GTX TITAN-X GPU and the

CuDNN library on a 2.3Ghz computer. The first stage training for the classification task

took approximately 8 hours whereas training for the second stage took approximately 8

hours per regressor. The system is fully automated with minimal human intervention.

The end-to-end system takes about 2.5 seconds per image for age estimation, with only

0.8 seconds being spent in age estimation given the aligned face while the remaining time

being spent on face detection and alignment.

6.4 Summary

For this chapter, we proposed a cascaded classification-regression framework to

perform unconstrained facial apparent age estimation. The proposed approach estimates

the apparent age in a coarse-to-fine manner. The age group classifier gives the rough

age estimate, the regressor per age group gives the fine-grained age estimate, and the age
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error correcting module fixes incorrect prediction. Our experimental results demonstrate

the effectiveness of the proposed approach, especially when only a limited number of

training data available in the target domain.

Although our age classifiers and regressors are all based on DCNN, our frame-

work is generic and can be extended to other non-DCNN models. In addition, the same

classification-regression framework can be also applied to other vision problems, such as

head pose estimation.
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Chapter 7: Conclusion and Directions for Future Work

In this dissertation, we proposed several approaches to learn robust representations

for the face recognition task, including (1) dictionary learning and sparse representation,

(2) dense local feature aggregation based on Fisher vector, and (3) deep learning based

on deep convolutional neural network. We have thoroughly evaluated each approach and

developed an automated system for face verification based on deep convolutional neu-

ral networks which yield much better performance against large pose, illumination, and

other variations than state-of-the-art methods. Furthermore, we also demonstrated that

the learned model for face recognition can be adapted to other face-related task without

as many annotation data as face recognition (facial age estimation) and can still yield

satisfactory performance.

We also outline several possible directions in which the problems addressed in this

dissertation can be further explored.

1. A Real-time End-to-End Face Verification System: The automated system de-

veloped in the dissertation, it is the result of direct combination of different com-

ponents. However, Liu et al. [118] proposes an single-shot object detector (SSD)

based fully convolutional neural network in real-time performance (i.e. for a 300×

300 image, it can reach more than 40fps.) We have already developed a multi-task
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face detector based on SSD which is able to detect five-point fiducial points, face

bounding boxes, and head pose. Sample results are shown in Figure 7.1. Further-

more, it is possible to combine it with supervised transformer network [173] which

jointly learns fiducial points and the canonical coordinates of the aligned face along

with the DCNN model proposed in this dissertation for designing a real-time end-

to-end face verification. It not only makes the training of a face verification algo-

rithm easier but also has a practical value for visual surveillance, especially for a

Pan-Tilt-Zoom camera network which usually requires real-time vision modules to

steer the cameras to the target.

2. Landmark-based Deep Convolutional Network for Face Verification: Although

the DCNN model achieves promising results for face verification, it is based on a

holistic face. In order to effectively handle pose variations, it is useful to incorpo-

rate the local feature model (e.g., Fisher vector). Chen and Zheng et al. [174] has

combined deep convolutional features with Fisher vector for face verification. The

other potential direction is to utilize the fiducial points detected by multi-task face

detector to develop a deep-fusion network which fuses the deep features around

each fiducial points into a pose-robust representation for faces.

3. Robust Objective Function to Train a DCNN Model on Large-scale Noisy Dataset:

Due to the prevalence of the deep learning, more and more large-scale datasets are

available for training the DCNN model for different tasks. (e.g., the MS-Celeb-1M

dataset [175] for face recognition contains 99,892 identities from the 1M celebrity

list and 8,456,240 images in total. Although there are a lot of face images, there are
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also a lot of label errors in the dataset.) Directly training the model on them usually

yields lower performance. It is thus interesting and important to develop a robust

objective which can not only handle the dataset noise but also learn a meaningful

representation at the same time. This could save a lot of time and efforts in cleaning

the datasets.

4. Utilize Motion Information for Video-based Face Related Tasks: Motion infor-

mation is not fully explored in this dissertation since we use the average pooling to

aggregate the features across frames which may have already loose a lot of motion.

However, motion information is definitely important for facial expression analysis.

It is interesting to explore the role of motion for face-related applications.

(a) (b)

Figure 7.1: Sample results for our multi-task single shot face detector.
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