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While mobile devices offer new opportunities to gain independence in everyday 

activities for people with disabilities, modern touchscreen-based interfaces can present 

accessibility challenges for low vision and blind users. Even with state-of-the-art 

screenreaders, it can be difficult or time-consuming to select specific items without 

visual feedback. The smooth surface of the touchscreen provides little tactile feedback 

compared to physical button-based phones. Furthermore, in a mobile context, hand-

held devices present additional accessibility issues when both of the users’ hands are 

not available for interaction (e.g., on hand may be holding a cane or a dog leash). 

To improve mobile accessibility for people with visual impairments, I 

investigate on-body interaction, which employs the user’s own skin surface as the input 

space. On-body interaction may offer an alternative or complementary means of mobile 

interaction for people with visual impairments by enabling non-visual interaction with 



  

extra tactile and proprioceptive feedback compared to a touchscreen. In addition, on-

body input may free users’ hands and offer efficient interaction as it can eliminate the 

need to pull out or hold the device.  

Despite this potential, little work has investigated the accessibility of on-body 

interaction for people with visual impairments. Thus, I begin by identifying needs and 

preferences of accessible on-body interaction. From there, I evaluate user performance 

in target acquisition and shape drawing tasks on the hand compared to on a touchscreen. 

Building on these studies, I focus on the design, implementation, and evaluation of an 

accessible on-body interaction system for visually impaired users.  

The contributions of this dissertation are: (1) identification of perceived 

advantages and limitations of on-body input compared to a touchscreen phone, (2) 

empirical evidence of the performance benefits of on-body input over touchscreen input 

in terms of speed and accuracy, (3) implementation and evaluation of an on-body 

gesture recognizer using finger- and wrist-mounted sensors, and (4) design 

implications for accessible non-visual on-body interaction for people with visual 

impairments. 
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Chapter 1: Introduction 

1.1. Motivation 

Mobile phones play an important role in our current society. These devices not only 

enable basic communication (e.g., phone calls, text messages), but also provide 

productivity- and entertainment-related functionalities. Furthermore, for people with 

disabilities, mobile devices may offer new opportunities to gain greater independence 

in everyday activities [1,72]. However, while screen reader software (e.g., Apple 

VoiceOver1, Google Talkback2) has contributed to the wide adoption of touchscreen 

devices for users with visual impairments (VI users) [137], basic tasks such as locating 

specific items on modern touchscreen-based smartphones can still be inaccessible or 

time-consuming with limited tactile feedback from the input controls [19,44,53,75].  

Compared to using the touchscreen, on-body interaction, which employs the 

user’s own body as an always-available input surface (e.g., [27,39,43,69]), may provide 

an alternative or complementary means of mobile interaction for people with visual 

impairments. On-body interaction could be particularly compelling for VI users who 

use screenreaders and thus do not need pull out the device to see the visual output of 

the screen—an action that in itself takes 4.5 seconds on average [11]. Moreover, 

because the input is performed on the user’s own body, there is no need to hold an 

additional device, which may be particularly beneficial in a mobile context if the user 

is holding a cane or dog leash. Moreover, research with sighted users has shown that 

                                                 
1 http://www.apple.com/accessibility/ios/voiceover 
2 https://support.google.com/accessibility/android/answer/6283677?hl=en&ref_topic=3529932 
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the tactile feedback from one’s own body can offer more efficient non-visual 

interaction for sighted participants compared to the smooth surface of a touchscreen 

[38]. This on-body tactile benefit is likely to be at least as useful for blind users, who 

have greater tactile acuity than sighted users [20,32,34,63,116].  

While on-body interaction is potentially beneficial for VI users, little work has 

explored this prospect or how to design and implement such interaction to be accessible 

specifically for VI users. Instead, almost all studies of on-body interaction have focused 

on supporting sighted users, either with visual output (e.g., projecting visual interface 

elements such as buttons on the skin) [40,42,43,76,117] or for non-visual use 

[27,39,69]. While Gustafson et al. [38] identified the possible performance benefit of 

on-body interaction for VI users, this potential remains largely unexplored, as they 

collected data from only one blind participant.  

1.2. Dissertation Objectives and the Thesis Statement 

To support accessible mobile computing for VI users, I have investigated on-body 

interaction. The objectives of the dissertation include: (1) identification of perceived 

advantages and limitations of on-body input compared to a touchscreen device, (2) 

assessment of performance benefits of on-body input over touchscreen input in terms 

of accuracy and speed, (3) implementation and evaluation of an on-body gesture 

recognizer using finger- and wrist-mounted sensors, and (4) design implications for 

accessible non-visual on-body interaction for people with visual impairments. My work 

toward these objectives shall demonstrate the overarching thesis of this dissertation:  
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On-body interaction can provide an alternative or complementary means of 

accessible mobile computing for visually impaired users, with improved speed 

and accuracy as compared to touchscreen interaction. 

1.3. Approach and Overview 

Towards the objectives of the dissertation outlined above, we first explored on-body 

gestures created by 13 sighted and 11 VI participants to understand the characteristics 

of on-body gestures preferred by VI users and whether those characteristics differed 

from sighted users (Chapter 3). We asked participants in both the sighted and VI groups 

to create a set of gestures, and we categorized those gestures based on attributes such 

as the location at which the gesture was performed or whether the gesture was static or 

included motion. The findings, though preliminary, suggested that VI users might have 

a greater tendency than sighted users to create location-specific gestures (e.g., pointing 

to a specific finger for different tasks) and static gestures, which motivated the need to 

design on-body interaction specifically for VI users.  

Building on this preliminary result, we conducted a more in-depth user study 

with 12 low vision and blind participants [84] to investigate the design of and subjective 

response to non-visual on-body interaction (Chapter 4). Here, the focus was on 

understanding participants’ preferences for different on-body input locations (e.g., 

palm, forearm, neck and face) and to compare on-body input to touchscreen phone 

input both with one-handed and two-handed interaction. We asked participants to 

create gestures for different locations on their body, and then to complete basic mobile 

tasks (e.g., item navigation/selection) with either one or two hands on a touchscreen 

phone or on the participant’s hand. These basic mobile tasks employed location-
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independent input, that is, taps or swipes that could be theoretically performed 

anywhere, rather than location-specific input. The results revealed that the face/neck 

area was the least preferred location for on-body gestures mainly because touching at 

that location may be seen as socially inacceptable, while locations on the hands were 

considered to be the most discreet and natural. Further, for the location-independent 

input tested here, on-body input was considered to be especially useful for contexts 

where one hand is busy (e.g., holding a cane or dog leash).  

After identifying formative user needs and preferences for on-body interaction, 

we designed a controlled lab study [85] to examine the impact of on-body interaction 

on VI users’ input performances (Chapter 5). Eleven blind and 12 sighted participants 

completed non-visual target pointing and gesture drawing tasks (e.g., circle, triangle) 

on both a touchscreen phone and on their own palm. The results showed that users were 

able to point to targets on their hand faster and more accurately than on the touchscreen, 

and that shapes drawn on the hand had higher recognition rates than those drawn on 

the phone (with the implication being that the shapes were more consistent on the hand). 

The findings confirmed the performance benefit of on-body input over touchscreen 

input for VI participants, extending previous pointing input results with only sighted 

participants [38] both to this new user group and to the more complex shape-based 

gestures.  

Following the design and performance studies, we investigated a novel 

approach to recognizing on-body gestures using wearable sensors (Chapter 6). Camera-

based sensing techniques have been widely explored as images can provide rich 

contextual information (e.g., [39,40,76]). However, for people with visual impairments, 
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the use of a camera often leads to issues such as out-of-frame (e.g., gesturing finger is 

beyond the camera) or occlusion (e.g., gesturing finger is not visible/hidden by other 

objects) (e.g., [3,129]). Thus, we employed a finger-mounted camera, along with other 

sensors (e.g., accelerometer, gyroscope) to collocate touch, sensing and feedback (i.e., 

tactile feedback from their own skin). Furthermore, this approach can extend the input 

space to anywhere the finger can reach and increase the input vocabulary as it can 

classify not only the gesture, but its performed location, which we call location-specific 

gestures (e.g., tapping on wrist versus tapping on thigh). As a collaborative work, my 

main contribution was to implement a location-specific on-body gesture recognizer 

with the non-optical sensors, while my colleague focused on the camera-based sensing. 

The recognizer was trained with both temporal and descriptive features from inertial 

motion unit (IMU) and infrared (IR) sensor values using a frame-based support vector 

machine (SVM). To evaluate our approach, we collected on-body gesture examples 

from 24 people using the full set of sensors, and conducted an offline performance 

evaluation on the recognition accuracy with different sensor combinations. The results 

demonstrated that our finger-mounted input sensing system is feasible for supporting 

24 location-specific gestures with the average accuracies of 86.2% with non-optical 

sensors, and 86.3% with the camera alone, which increased to 94.9%, when all sensors 

were used. The algorithms developed here also form the basis of the real-time sensing 

system (not a contribution of this dissertation) used for the next study. 

As for the final work, we focused on microinteractions. Microinteractions are 

single-purpose interactions that can be completed within only a few seconds with 

minimal effort [9], such as dialing a number or adjusting volume. Supporting efficient 
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interaction is desirable; however, even basic interactions such as typing may take a 

longer time for people with visual impairments particularly for touchscreen devices 

(e.g., [15,19]). As such, the inefficiency can lead many to forgo security features (e.g., 

passcode) [14], or may contribute to concerns about safety [2,135]. Thus, we conducted 

an online survey with 134 respondents (78 who had visual impairments) and a semi-

structured interview to understand the barriers for microinteractions, and how wearable 

devices are perceived, and whether they may be able to reduce the overall interaction 

time by eliminating the need for device retrieval [11] for visually impaired users 

compared to sighted users. Moreover, we conducted a design probe study with 12 blind 

participants using a real-time on-body interaction system (Chapter 7) to evaluate 

different types of interaction designs for supporting microinteractions. The results 

revealed nine microinteractions (e.g., activating voice input, responding to a text 

message) that would be most valuable to be supported for users with visual impairments 

compared to sighted people. The findings also showed that the perceived benefits of 

smartwatches, specifically, for microinteraction may not outweigh the limitation of the 

small, watch-sized touchscreen. Furthermore, although having to learn the location for 

each of the specific microinteractions was considered to be a drawback, we found that 

all participants liked the idea of location-specific on-body gestures for its efficiency.  

1.4. Organization of the Dissertation 

The rest of this dissertation is organized as eight chapters. In Chapter 2, we discuss a 

literature review related to my thesis. Chapter 3 explores usable on-body gestures for 

people who have visual impairments and how these gestures differ from those of 

sighted participants. Chapters 4 and 5 present controlled lab studies of non-visual, on-
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body interaction for people with visual impairments in terms of preference and 

performance. Chapter 6 addresses the implementation of an on-body input sensing 

system using finger-mounted sensors. Next, Chapter 7 focuses on the accessibility of 

microinteractions on mainstream mobile and wearable devices for people with visual 

impairments, and compares three different real-time on-body interfaces to support 

accessible microinteractions. Finally, Chapter 8 describes possible future research 

projects that can extend the current scope of this dissertation.  
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Chapter 2: Related Work 

In this chapter, I provide an overview of mobile and wearable technologies in terms of 

accessibility for people with visual impairments, as well as detailed discussion of the 

subjective and technical challenges that are most relevant to my dissertation 

contributions. This chapter begins with a general background on mobile accessibility 

for users with visual impairments (Section 2.1). Section 2.2 describes various studies 

related to on-body interaction both in terms of sensing on-body input and design 

implications. Section 2.3 reviews projects on gestural interfaces using wearable sensors, 

which may offer many of the desirable features for VI users such as hands-free and 

quick access to physical devices. Finally, Section 2.4 summarizes this chapter.  

2.1. Accessible Mobile Computing for People with Visual 

Impairments  

While mobile phones had traditionally been used as a communication device, they have 

evolved to serve users with a wide range of functionalities (e.g., music player, camera, 

route navigation), and are thus often compared to a “Swiss Army Knife” [35,107]. 

Especially for people with visual impairments, mobile technology can play an 

important role for increasing independence and safety [51,102]. However, modern 

mobile devices with touchscreens may have accessibility issues [66,75,102,135], 

weakening the advantages of possessing mobile devices due to a high dependency on 

visual cues and the smooth surface that may introduce additional challenges compared 

to physical button-based phones. 

To improve touchscreen accessibility, most widely adopted techniques 
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synthesize speech output upon a user’s touch. The Talking Fingertip Technique [120], 

for instance, provided auditory description of touched items on a kiosk touchscreen for 

users who need nonvisual access while scanning and finding specific items with their 

fingers. Adding on to speech feedback, gestural interfaces were proposed for blind 

users to allow location-independent input, allowing the user to perform a gesture (e.g., 

swipe, tap) anywhere on the screen instead of having to touch their finger to a specific 

region [36,50]. Slide Rule [50], for example, supported multi-touch gestures that can 

be performed anywhere on the screen, and found that these gestures were more efficient 

than tapping spatially designated regions (e.g., top right corner), similar also to the 

approaches demonstrated by Sánchez and Aguayo [105] and Mobile Speak Pocket3. 

NavTouch [36] adopted directional gestures with a single finger for blind users to 

navigate the target character on a touchscreen for text entry. Commercial products have 

also employed location-independent gestures accompanied with screenreading 

software, such as iOS’s VoiceOver4 and Android’s Talkback5. For instance, a left-to-

right flick gesture will move a cursor to the next item, regardless of the spatial location 

of the input. While these gesture-based interfaces are widely disseminated, touchscreen 

gestures may not be usable [53], or are at the very least challenging to learn for visually 

impaired users [86].  

As opposed to gestural interfaces, researchers have also investigated tactile 

enhancements for the spatial layout of the graphical user interface of the touchscreen 

touchscreen (e.g., [52,60,75]). Touchplates [52], for example, allows blind users to 

                                                 
3
 http://www.humanware.com 

4 https://www.apple.com/accessibility/ios/voiceover/ 
5 https://support.google.com/accessibility/android/#topic=3529932 
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interact with large touchscreens by offering tactile feedback with a physical guide 

overlaid on the smooth screen for various layouts such as keyboard and maps (see 

Figure 2.1a). With physical overlays that provide tactile guidance for users to easily 

distinguish one control to another, spatial-layout based interfaces may enable more 

efficient interaction than location-independent gestural interfaces on a touchscreen 

device, while location-independent gestures were found to be faster than location-

specific gestures on a touchscreen when no extra tactile feedback was given in Kane et 

al. [50]. For instance, McGookin et al. [75] compared both gesture-based and overlaid 

location-based interaction (as in Figure 2.1b) for a touchscreen MP3 player, and 

showed that location-independent gestures were less accurate and slower to complete 

basic digital music player operations (e.g., adjusting volume) compared to location-

specific input on a button-shaped overlaid control panel. Of course, faster interaction 

may be possible for spatially stable items (e.g., keypads on QWERTY keyboard, 

marking menu items [57]) once users develop spatial memory of the interface layouts, 

as less time will be required for searching.  

In this dissertation, I demonstrate the potential of on-body interaction for 

    
A physical overlay with a QWERTY keyboard layout A physical overlay with a QWERTY keyboard layout A physical overlay with a QWERTY keyboard layout A physical overlay with a QWERTY keyboard layout 

on a large touchscreen.  on a large touchscreen.  on a large touchscreen.  on a large touchscreen.      

    
Raised paper control panel overlaid on Raised paper control panel overlaid on Raised paper control panel overlaid on Raised paper control panel overlaid on 

touchscreentouchscreentouchscreentouchscreen----based MP3 player.based MP3 player.based MP3 player.based MP3 player.    
Figure Figure Figure Figure 2222....1111. Examples of physical overlays to increase tactile feedback of touchscreen devices.. Examples of physical overlays to increase tactile feedback of touchscreen devices.. Examples of physical overlays to increase tactile feedback of touchscreen devices.. Examples of physical overlays to increase tactile feedback of touchscreen devices.    
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supporting non-visual access to mobile computing, compared to a touchscreen device 

in terms of subjective responses (Chapters 4 and 5), and task performance (Chapter 5). 

Moreover, we conducted an online survey and a semi-structured interview (Chapter 7) 

to understand how on-body interaction can be better designed by reflecting on 

participants’ responses on their touchscreen devices including both smartphones or 

smartwatches. Then we designed, implemented and evaluated three different on-body 

interfaces focusing on the impact of both gestural and spatial interactions with a real-

time system to understand design implications specific for VI users.  

2.2. On-Body Interaction: Appropriating Skin as an Input Surface  

On-body interaction has the same advantages as most wearable devices; it enables 

hands-free interaction and discreet use, and it can also allow quick information access 

by eliminating the device retrieval time. Moreover, with extra tactile and proprioceptive 

feedback from users’ own body, it can allow accurate and fast performance under eyes-

free conditions [27,38,39,69]. In this regard, various studies have been conducted to 

understand design implications focusing on the range of on-body input vocabulary, and 

to investigate input sensing techniques. However, except for one study by Gustafson et 

al. [38], the work discussed in this section has focused on sighted users rather than 

visually impaired users, who may have different preferences and needs.   

In terms of studying input vocabulary for on-body interaction, Weigel et al. 

[128] investigated characteristics of different skin input modalities and preferred on-

body input locations for different applications. They found that users prefer to use 

touchscreen gestures over other modalities such as scratching or squeezing the skin. 

They also showed that users may prefer different locations for different input types 
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(e.g., handwriting on palm, keyboard on forearm) while their hand is the most preferred 

location in general. Other studies focused only on touch input, investigating to what 

extent users are capable of consistently pointing to a specific region at various locations 

on the body [27,39,40,69,119,126,136], where each region can served as a distinct input. 

Lin et al. [69], for example, examined the forearm as an input surface, and showed that 

sighted participants without visual cues were able to segment the area into six regions 

for pointing without overlapping. PalmRC [27] investigated nine regions on the palm 

and fingers, and found that participants were able to point to five landmarks on the 

palm with the average accuracy of 94-98% in a eyes-free manner. Furthermore, 

Gustafson et al. [38] revealed that the extra tactile feedback from users’ palms enables 

faster target pointing performance for blind-folded sighted participants compared to a 

smooth surface such as a touchscreen. While a number of researchers have investigated 

the eyes-free on-body interaction for sighted users, the findings from these studies may 

not directly apply to VI users who have different needs and preference (e.g., as is 

already known for touchscreen gestures [53]). The benefits of tactile feedback from the 

skin may be even greater for blind users for whom tactile acuity has been found to be 

higher than it is for sighted users [20,32,34,63,116]. However, little work has studied 

the performance advantages of appropriating skin as an input surface for people with 

visual impairments, except for Gustafson et al. [38], which included one blind 

participant.  

In terms of sensing on-body input, a wide range of approaches have been 

explored, including cameras ([23,27,39,40,126]), IR [61,80–82], ultrasonic 

rangefinders [68,69], bio-acoustics [43], magnetic fields [24], electromyography (EMG) 
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[74], and capacitive sensors [68,74,106,127]. While these approaches are promising 

and have inspired our own work, each is limited in some way by its sensor types and 

placement. First, the interaction space is often constrained by the sensing range. 

Although widely used, cameras mounted on the upper body [27,39,40,117], for 

example, restrict the interaction space to a pre-defined region within the camera’s field 

of view, which would be also problematic for people with visual impairments as aiming 

the camera can be challenging without visual feedback (e.g., [3,129]). Moreover, 

optical [23,126] and non-optical [43,61,68,81,127] sensors mounted on one arm or 

hand to detect gestures performed by the other similarly limit the on-body interaction 

space to a relatively small area, and cannot easily be scaled to other body locations 

without requiring additional sensors. Furthermore, prior work focuses either on input 

localization or detecting two-dimensional (2D) input position within a specific region 

and, therefore, cannot support location-specific gestures, which requires both. For 

example, Skinput [43] and PUB [69] can localize touch input on various locations on 

body using either bio-acoustics or ultrasonic range-finding. However, these systems 

cannot recognize gestures in 2D space such as directional swipes. In contrast, systems 

such as FingerPad [24], PalmGesture [126], and SenSkin [81] can estimate x and y 

coordinates of on-body input, enabling more complex gestures like shapes. However, 

these methods require sensors affixed on or near the interaction surface in order to 

achieve such precision, and they therefore cannot easily be extended to multiple 

locations.  

We investigated characteristics of on-body input preferred by VI users in 

general (Chapters 3 and 4) based on subjective responses, and studied performance-
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based design implications (Chapter 5). To reliably support location-specific gestures 

and to implement accessible on-body interaction for people with visual impairments, 

we explored a finger-, and wrist-mounted sensors rather than sensing using hardware 

mounted on the target input surface or on some central body location (Chapter 6). 

Finally, for Chapter 7, we directly compared a gesture-based interaction with spatial 

interactions with two different levels of resolutions–dense locations on palm, and 

locations spread across different body parts.   

2.3. Finger-mounted Devices for Gestural Input 

A number of wearable devices have been studied for supporting gestural input, varying 

the mounting locations and sensor types (e.g., [23,41,55,70,76,112,117]). Some 

researchers studied body-mounted cameras for recognizing whole hand gestures (e.g., 

[23,70,112]), or tracking the fingertip [39,40,76]. Gesture Pendant [112], for example, 

uses a wearable camera around the chest to control a home automation system such as 

adjusting the room lighting or volume with hand gestures. PinchWatch [70] also 

deployed a camera on the chest (or ear or belt), supporting one-handed interaction to 

allow users to quickly switch their visual attention from their primary task for a brief 

moment, using different thumb-based pinching gestures.  

Others explored wrist- or finger-mounted sensors [10,25,41,49,134]. 

Abracadabra [41], for example, uses magnetometers to support wireless, unpowered 

input for tracking the two-dimensional spatial location of the hovering finger to interact 

with small mobile devices such as smart watches. Similarly, Nenya [10] employed a 

magnetic ring worn on a finger, together with a 3-axis magnetometer for eyes-free 

discreet interaction. An accelerometer is also examined in Magic Ring [49] which can 
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recognize six different gestures including rotating direction, and up/down direction and 

distance of each finger movement for controlling appliances.  

Often, finger-mounted cameras were also examined for supporting efficient 

interactions with a user’s surroundings (e.g., [23,78,98,134]). For example, EyeRing 

[78] used a finger-mounted camera to leverage the pointing gesture to interact with 

physical objects in the environment such as money identification. Magic Finger [134] 

also uses a micro RGB camera and an optical flow sensor instrumented on the user’s 

finger. It can detect not only the x and y movements and contact but it can also recognize 

different materials by discriminating textures from the scanned images on contact for 

supporting tasks such as checking appointments or muting a call. While a finger-

mounted camera can be used for identifying different parts of the user’s body, little has 

been explored except for two input locations on the body (e.g., thumb and hand skin) 

in Magic Finger [134].  

While wearable devices can be perceived positively by VI users [135], and 

observers [96], most work on wearable cameras for people with visual impairments has 

focused on aiding visual tasks such as way-finding (see surveys [26,103,124]) or 

object/character recognition for reading assistance ([110,113]). For instance, OrCam 

[89] has a small camera attached to a pair of glasses, and it allows users to activate 

speech by performing a pointing gesture on texts or an object.  

In this dissertation, I implemented and evaluated finger-mounted sensors for 

recognizing different on-body gestures (Chapter 6), and investigated how current 

mobile devices provide accessible interaction for people with visual impairments, and 

how wearable devices, including on on-body interaction, can be designed to support 
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non-visual interaction for mobile computing (Chapter 7). Furthermore, when 

investigating the accessibility of wearable devices for VI users, I focused on 

“microinteractions [10]”, the interactions that are designed to be completed within a 

short period of time with minimal effort (e.g., dialing a number or adjusting the volume), 

which wearable devices are often designed for (e.g., [11,70,78,134]).  

2.4. Summary 

While on-body interaction is potentially beneficial for VI users as a means of accessible 

mobile computing complementing touchscreen-based interaction, little work has 

investigated the prospect. Toward this dissertation, I investigated design implications 

for supporting non-visual on-body interaction for VI users based on the assessment of 

the subjective preferences (Chapters 3 and 4), and performance (Chapter 5). Then I 

designed and implemented an accessible on-body interaction system for VI users with 

a finger-, and wrist-mounted sensors as a replacement of body-mounted or hand-held 

devices (Chapter 6). Finally, I investigated how to employ this finger-mounted on-body 

sensing system to support blind users in completing microinteractions—that is, brief 

interactions that are typically seen as a strength of wearable computing devices (e.g., 

[11,70,112]) in Chapter 7.    
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Chapter 3: Usable On-Body Input for People With Visual 

Impairments  

3.1. Motivation and Introduction 

For early prototyping of new gesture-based interfaces, understanding the unbiased 

interaction behavior of users without having to be concerned about reliable gesture 

recognition or technical limitations can be useful. As such, Wobbrock et al. [131] 

proposed a user-defined gesture protocol to elicit users’ natural input—specifically, to 

understand what gestures users would expect to be able to use for tabletop interaction—

and the research team asked non-technical users to create gestures using their own 

intuitive gestures. This user-defined gesture protocol has since been applied in variety 

of contexts such as three-dimensional motion gestures [104], flexible display [59], and 

multi-touch marking menus [65]. Moreover, this protocol may be used to capture the 

differences in gesture preference or usability between different user groups. For 

instance, Kane et al. [104] explored user-defined gestures created on a touchscreen by 

both sighted and blind users, and found that each user group has different gesture 

preferences (e.g., blind people created significantly more gestures using the edge of the 

screen than did sighted people).  

As a preliminary study for understanding the challenges and opportunities of 

applying on-body interaction for people with visual impairments, we conducted a 

single-session lab study with 24 participants (13 sighted, 11 blind and low vision) 

where they were asked to create gestures for ten mobile actions, following a user-

defined gesture protocol. The goal was to explore and compare preference for different 
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types of on-hand gestures between the two groups of participants. The two main 

research questions were:  

• What gesture characteristics do visually impaired users prefer for on-body 

interaction? 

• How do on-body interaction preferences of visually impaired users differ from 

those of sighted users? 

3.2. Experimental Methodology 

To understand the accessibility challenges and opportunities of on-body interaction, 

focusing on the differences in gesture preference and characteristics between users with 

or without visual impairments, we conducted a single session study both with sighted 

and visually impaired users. The study was designed to capture emergent preferences 

for on-hand gestures by asking participants to create their own gestures for ten mobile 

actions—similar to a user-defined gesture protocol [39] but with a more exploratory 

goal. 

3.2.1. Participants 

We recruited 24 participants: 13 who reported having no visual impairments (sighted; 

6 female), and 11 with visual impairments (VI; 6 female) where eight VI participants 

were blind since birth, while the remaining three had low vision. Sighted participants 

were on average 28.5 years old (SD = 5.9) versus 39.9 (SD = 11.8) for VI participants. 

In terms of smartphone experience, all sighted participants own touchscreen phones, 

while three VI participants were not touchscreen phone owners. All participants 

reported using their phone at least once every few hours, with the exception of one VI 
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participant who used it once a day. We recruited via campus e-mail lists and local 

organizations that serve people with visual impairments. Participants were 

compensated for their time. 

3.2.2. Procedure 

Participants were instructed to imagine a device worn on their chest that can sense 

gestures when their two hands are in contact. They were asked to do so for ten mobile 

actions (e.g., answering a phone call, returning to home screen) that were selected to 

cover a range of mobile actions from Ruiz et al. [53]. For each action, the name and a 

brief description were read aloud by the experimenter. Then, each participant was asked 

to create a gesture for the described action. During the task we did not provide feedback 

on the quality of the gestures or on whether the hypothetical system would be able to 

recognize them (following [131]). For each action shown in Table 3.1, the name and a 

brief description was read aloud by the experimenter in a random order. Then, we asked 

participants to evaluate each gesture. Think-aloud protocol was used throughout the 

task. Since our goal was exploratory, we selected the mobile actions in Table 3.1 not 

 Category Sub-Category Action Name     
Action System/Phone Answer A Phone Call 

Dial A Phone Number 

Check Current Time 

Volume Up 

Volume Down 

Application Open Selected Item 

Navigation System/Phone Return To Home Screen 

Open An E-mail App 

Application Move To Next Item 

Move To Previous Item 

Table Table Table Table 3333....1111. . . . Mobile actions for userMobile actions for userMobile actions for userMobile actions for user----define gesture task, grouped by category.define gesture task, grouped by category.define gesture task, grouped by category.define gesture task, grouped by category.    
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necessarily to be comprehensive, but to cover a range of motion gesture categories as 

identified Ruiz et al. [104]. A brief discussion period concluded the session. 

3.2.3. Data and Analysis 

All sessions were video recorded and later analyzed to identify characteristics of each 

gesture; participants’ comments and quotes were also transcribed. We collected 240 

gestures (10 gestures × 24 participants), and two subjective 7-point Likert ratings for  

each gesture. Each gesture was categorized based on its characteristics for the analysis. 

We applied non-parametric test such as Mann-Whitney U test.  

3.3. Results 

For self-evaluation of gestures, we used metrics from Wobbrock et al. [131]. For 

identifying types of gestures created by participants, we adapted existing gesture 

taxonomies for surface and three-dimensional (3D) gestures [5,131] to accommodate 

on-body gestures, and categorized into two dimensions: relationship between the hands 

(on-hand vs. mid-air gestures), and movement (static vs. dynamic), as shown in Figure 

3.1. 

OnOnOnOn----HandHandHandHand MidMidMidMid----AirAirAirAir 

DynamicDynamicDynamicDynamic StaticStaticStaticStatic DynamicDynamicDynamicDynamic StaticStaticStaticStatic 

 
(a) One hand sliding (a) One hand sliding (a) One hand sliding (a) One hand sliding 
down the side of the down the side of the down the side of the down the side of the 

other hand.other hand.other hand.other hand. 

    
(b) Pressing center of the (b) Pressing center of the (b) Pressing center of the (b) Pressing center of the 

palm to press 5 as if there is palm to press 5 as if there is palm to press 5 as if there is palm to press 5 as if there is 
a numbera numbera numbera number    pad.pad.pad.pad.    

 
(c) Hands moving (c) Hands moving (c) Hands moving (c) Hands moving 

downward as one hand downward as one hand downward as one hand downward as one hand 
grabs the other in a fist.grabs the other in a fist.grabs the other in a fist.grabs the other in a fist. 

 
(d) One hand in a phone (d) One hand in a phone (d) One hand in a phone (d) One hand in a phone 

shape, placed on top of the shape, placed on top of the shape, placed on top of the shape, placed on top of the 
other fist.other fist.other fist.other fist. 

Figure Figure Figure Figure 3333....1111. Examples of dynamic and static gestures that are . Examples of dynamic and static gestures that are . Examples of dynamic and static gestures that are . Examples of dynamic and static gestures that are performed on hand vperformed on hand vperformed on hand vperformed on hand versusersusersusersus    midmidmidmid----air. Corresponding air. Corresponding air. Corresponding air. Corresponding 
actions are (a, c) volume down, (b) dial a phone number, and (d) place a phone call.actions are (a, c) volume down, (b) dial a phone number, and (d) place a phone call.actions are (a, c) volume down, (b) dial a phone number, and (d) place a phone call.actions are (a, c) volume down, (b) dial a phone number, and (d) place a phone call. 
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3.3.1. Quality of Self-Defined Gestures  

After the creation of each gesture, participants were asked to provide ratings for two 7-

point Likert-scale questions: (1) Easiness: “The gesture I picked is easy to perform.”, 

and (2) Good Match: “The gesture I picked is a good match for its intended purpose.” 

Both user groups gave high ratings for both metrics with the average ratings of 6.3 (SD 

= 1.1), and 5.74 (SD = 1.4) for Easiness and Good Match, respectively. Since our main 

focus is to explore differences between two participant groups, no in-depth 

comparisons were conducted for the ten actions; descriptive statistics are shown in 

Table 3.2. 

3.3.2. On-Hand Versus Mid-Air Gestures  

One-handed gestures that uses the other hand as a reference (e.g., swiping a finger on 

the opposite palm as on a touchscreen), namely on-hand gestures, was more popular 

than mid-air gestures, which involve both hands equally (e.g., two stacked fists) for 

    ActionActionActionAction    EasinessEasinessEasinessEasiness    Good MatchGood MatchGood MatchGood Match        
MeanMeanMeanMean    SDSDSDSD    MeanMeanMeanMean    SDSDSDSD    

Answer A Call 6.63 0.77 6.00 1.18 
Dial A Phone Number 5.42 1.41 5.67 1.55 
Check Current Time 6.58 1.06 5.96 1.46 
Volume Up 6.17 1.40 5.83 1.46 
Volume Down 6.42 1.21 5.83 1.49 
Open Selected Item 6.54 0.88 5.79 1.28 
Return To Home Screen 6.42 1.14 5.71 1.49 
Open an E-mail App 6.08 1.06 5.50 1.22 
Move to Next Item 6.5 0.93 5.58 1.38 
Move to Previous Item 6.25 1.03 5.54 1.18 

Table Table Table Table 3333....2222. The mean and standard deviations (. The mean and standard deviations (. The mean and standard deviations (. The mean and standard deviations (SDSDSDSD) for ratings on Easiness and Good Match in 7) for ratings on Easiness and Good Match in 7) for ratings on Easiness and Good Match in 7) for ratings on Easiness and Good Match in 7----point Likert point Likert point Likert point Likert 
scales (1 = scales (1 = scales (1 = scales (1 = strongly disagreestrongly disagreestrongly disagreestrongly disagree, 7 = , 7 = , 7 = , 7 = strongly agreestrongly agreestrongly agreestrongly agree))))    for the gesture created for each of the 10 actions (for the gesture created for each of the 10 actions (for the gesture created for each of the 10 actions (for the gesture created for each of the 10 actions (NNNN    = = = = 

24242424))))....    
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both user groups (see Figure 3.1 for examples). Roughly two thirds of the gestures were 

on-hand gestures for both user groups: 72.3% of total gestures on average (SD = 34.9%)  

for VI participants, 66.2% (SD = 30.0%) for sighted participants. The difference was 

not statistically significant by a Mann Whitney U test.  

3.3.3. Static Versus Dynamic Gestures  

Gestures were also categorized into dynamic or static depending on whether the 

gestures involved movement or not. While roughly half of the gestures created by VI 

participants were static, with on average 46.4% (SD = 20.1), only 28.5% (SD = 18.6) 

of gestures were static on average for sighted participants. A Mann Whitney U test 

showed that the tendency to create static gestures was significantly greater for VI 

participants than sighted participants (U(22) = 29.00, Z = -2.51, p = .013). 

3.3.4. Location-Specific Versus Non-Specific Gestures  

We further categorized gestures into location-specific (e.g., pointing specific fingers) 

and location-independent (e.g., a left-to-right swipe anywhere on the palm). While 

more than half (M =52.7%, SD=22.8) of the gestures created by VI participants were 

location-specific, only the average portion was 16.2% (SD=18.5) for sighted 

participants. Mann Whitney U showed that the difference was statistically significant 

(U(22) = 131.0, Z = 3.49, p < 0.001). Note that all location-specific gestures were 

performed on hand, where the majority of these gestures were static (74.4%).  

3.3.5. Subjective Feedback for On-Hand Interaction  

Both participant groups reported high interest in on-hand interaction in general. Almost 

all of the sighted participants (11 out of 13) were positive, although they would prefer 
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having visual feedback like on their phone. Two participants with low vision (with 

20/200, 20/200) felt similarly. The remaining participants (including two participants 

with 20/800 and 20/3000 vision) from the VI group, however, highly valued the 

potential of on-hand interaction. For example, P24 commented that, “If I have a choice 

of both [on-hand interaction and touchscreen phone interaction], I would choose this 

[on-hand]. It’s more natural for me because I see with my hand”.   

3.4. Discussion 

Here we discuss our findings, although preliminary, and address the limitations of the 

study. 

3.4.1. Using Hand as a Touchscreen of the Phone 

For both sighed and VI user groups, when they were asked to create gestures while two 

hands in contact, on-hand gestures were dominant where they perform a gesture on the 

other hand (especially on the palm) as if on a touchscreen of their phone. The findings 

confirmed the recommendation from Kane et al. [53] and Rico et al.’s [101] to 

reproducing layouts (either virtual or physical) or interfaces similar to existing 

interfaces they use, which were also demonstrated in other studies on on-body 

interaction (e.g., [27,39,40]). Moreover, as shown in Gustafson et al. [10], enabling the 

user’s hand to behave like a smartphone can relieve the learning curve as users can 

transfer their mental model of the standard phone interface (e.g., app layouts) to their 

hands. Thus, supporting the palm as one of the input locations for allowing 

touchscreen-like gestures that users are already familiar with is recommended when 

designing on-body interaction. 
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3.4.2. Supporting Various Input Locations for VI Users  

Our findings indicate that VI users may favor gestures performed at specific locations 

and landmarks (e.g., tapping a specific finger or knuckles) on their hand more than 

sighted users do, although further investigation is needed as there was a restriction on 

the gestures that both hands be touching as was required in this study. Besides the 

preference, gestures at a specific location may provide performance benefits over 

gestures that are insensitive to input locations (e.g., a directional swipe anywhere on 

the palm) with extra tactile feedback as shown in McGookin et al. [75]. Furthermore, 

beyond the tactile cues for users to locate users’ fingers to specific regions, supporting 

locations with distinctive physical landmarks on the body may be desirable for VI users, 

similar to how edge-based gestures were preferred in Kane et al. [53].  

3.5. Limitations 

While the goal is to directly compare the differences in the preferences between sighted 

and VI user groups, the participants we recruited may not be representative due to 

random recruitment with a small sample size. Moreover, the two user groups were not 

matched in terms of their age; the participants in blind user group are about 10 years 

older on average than those in sighted user group. This age gap may have contributed 

to differences in terms of the types of gestures each user group created since older 

adults’ usage of and familiarity with technologies differ from that of younger people 

[58,109]. Furthermore, we required that participants touch their hands together while 

creating gestures, but without this constraint, the gestures would likely have been 

different—particularly, for example, one may expect to see more mid-air gestures. 

Furthermore, although our focus was on understanding the design implications of on-
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body interaction for supporting mobile computing, the characteristics of gestures we 

collected would be different if the participants were asked to create gestures for actions 

in different applications (e.g., manipulating objects in virtual or augmented reality, 

documenting on a desktop).  

3.6 Conclusion 

In this work, we conducted an exploratory study to understand usable on-body gestures 

for people with visual impairments. The findings from this preliminary study suggest 

that VI participants may have different preferences for on-body gestures than sighted 

participants as well as lead to the following design implications for VI users, namely, 

(1) supporting on-hand gestures similar to gestures performed on touchscreen mobile 

phones, and (2) supporting various locations as input surfaces for mapping different 

tasks.  

 Findings from this study suggested the need for designing on-body interactions 

specifically for VI users, whose preferences may be different from those of sighted 

participants. This motivates our next study, which focuses on VI users only, in terms 

of subjective feedback on different on-body input locations (e.g., forearm, neck and 

face) and their perception of on-body interaction as opposed to touchscreen. 
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Chapter 4: Design of and Subjective Responses to On-Body 

Input for People With Visual Impairments  

4.1. Introduction and Motivation 

The study in the previous chapter showed that on-hand gestures were preferred over 

mid-air gestures, and that there could be potential needs for designing on-body 

interaction particularly for people with visual impairments (e.g., location-specific 

gestures). However, the study is limited as we did not explore on-body input locations 

beyond hand, and on-body interaction was not compared with touchscreen-based 

interaction. Thus, we conducted a more in-depth study.  

While most of the other researchers have explored the focused area (e.g., hand 

or forearm) as an input space (e.g., [27,39,40]), here, we explored on-body input 

preferences across five different locations on the user’s body (e.g., palm, neck and face). 

In addition, we collected subjective responses comparing touchscreen and on-hand 

interaction given different hand availability (one versus two hands), which simulates 

mobile contexts (e.g., one hand holding a cane). Moreover, as most wearable devices 

are designed for both private and public use, we examined whether the interaction is 

perceived to be acceptable by others in social contexts. The primary goal of the study 

was to gain more comprehensive insights into the design of accessible on-body input 

for people with visual impairments, reflecting users’ needs, concerns and preferences. 

We had two main research questions:  

• How visually impaired users respond to on-body interaction? 

• How should on-body interaction be designed for visually impaired users? 
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To answer these questions, we conducted a lab study with 12 participants with visual 

impairments. This study included two tasks: (1) user-defined on-body gesture creation 

to investigate what locations and gestures are preferred (e.g., touchscreen-style, 

location-specific), and what factors affect these preferences, and (2) a comparison 

between touchscreen and on-hand interaction with different hand counts (one versus 

two hands) to comparing subjective responses to on-body input versus mobile 

touchscreen input.  

4.2. Experimental Methodology 

To investigate the design of and subjective response to on-body interaction for people 

with visual impairments, we designed a single-session lab study consisted of two tasks. 

For the first task, we adapted a method employed by Weigel et al. [128] to examine 

gesture preferences at different on-body locations, and to evaluate these locations on 

factors such as social acceptability, comfort, and ease of use. The second task was 

designed to compare subjective responses to on-body input versus mobile touchscreen 

input, we implemented an on-hand sensing system that controls the VoiceOver 

software on an Apple iOS device and asked participants to complete basic mobile tasks 

with both on-hand input and a touchscreen smartphone. 

4.2.1. Participants 

Twelve people with visual impairments (6 male, 6 female) participated in the study 

with the average age of 44.3 (SD = 12.9, range 23–62). Nine participants were totally 

blind; six were born blind while the rest became blind later in life (years post onset: M 

= 22.8, SD = 14.4, range 3–42). Three participants had low vision. While nine 
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participants used touchscreen phones on a regular basis, the remaining three had feature 

phones. Participants reported using their phone at least once every few hours, with the 

exception of one participant who used it once a day.  

4.2.2. Apparatus 

For the second task, we made a lightweight ring including a color marker on the top 

and a capacitive touch sensor on the bottom as shown in Figure 4.1. In addition, we 

built a custom sensing system consisting of a tracking and a touch-detection module 

running on a laptop with an Intel Core i5 processor. A Logitech Webcam C930e was 

attached to a desk for tracking the x, y location of the color marker on the participant’s  

gesturing finger. For touch detection, we ran another software on an Arduino Leonardo 

board using the SoftwareSerial and CapSense libraries. The laptop communicated 

timestamped finger locations to the Arduino software, which combined them with the 

touch state to classify the users’ gestures. Finally, the Arduino converted the sensed 

gestures to VoiceOver keyboard shortcuts and sent them via Bluetooth to an iPhone 4S.  

(a) Experiment setupExperiment setupExperiment setupExperiment setup 

 

(b) A fingerA fingerA fingerA finger----worn worn worn worn touch sensortouch sensortouch sensortouch sensor 
Figure Figure Figure Figure 4444....1111. On. On. On. On----hand input sensing system used in Task 2. Participants wore a lightweight ring that included hand input sensing system used in Task 2. Participants wore a lightweight ring that included hand input sensing system used in Task 2. Participants wore a lightweight ring that included hand input sensing system used in Task 2. Participants wore a lightweight ring that included 

a color marker (tracked by a a color marker (tracked by a a color marker (tracked by a a color marker (tracked by a camera) and capacitive touch sensor. This ring could be placed so as not to camera) and capacitive touch sensor. This ring could be placed so as not to camera) and capacitive touch sensor. This ring could be placed so as not to camera) and capacitive touch sensor. This ring could be placed so as not to 
cover the fingertip.cover the fingertip.cover the fingertip.cover the fingertip.    
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4.2.3. Procedure 

The study began with the first task with the goal to identify types of gestures (e.g., 

tapping, pinching) and locations that users would prefer for on-body interaction. 

Following a user-defined gesture protocol [128,131], we asked participants to create 

on-body gestures for five mobile actions (e.g., opening a selected app) at each of five 

different on-body locations: same hand (the same hand as the gesturing hand), other 

hand-palm (the palm of the other hand), other hand-back (the back of the other hand), 

forearm, and neck and face area. The mobile actions were chosen to cover a range of 

common mobile tasks and the locations were selected from Weigel et al. [128] but we 

focused on those where the skin would likely be exposed. The second task was designed 

to compare touchscreen and on-hand input varying number of available hands. The task 

was set up as a 2 × 2 within-subjects design, with factors of device (touchscreen phone 

vs. hand) and hand count (one vs. two) as illustrated in Figure 4.2. It began with brief 

training on basic iOS VoiceOver gestures including: horizontal flick to navigate left 

and right, double tap to open/activate selection, and pressing the home button (or, for 

on-hand input, a long press) to return to the home screen. For each condition, 

PhonePhonePhonePhone HandHandHandHand 

OneOneOneOne----handedhandedhandedhanded TwoTwoTwoTwo----handedhandedhandedhanded OneOneOneOne----handedhandedhandedhanded TwoTwoTwoTwo----handedhandedhandedhanded 

    

Figure Figure Figure Figure 4444....2222. The four input methods varying device (phone . The four input methods varying device (phone . The four input methods varying device (phone . The four input methods varying device (phone vs.vs.vs.vs.    hand), and hand count (one hand), and hand count (one hand), and hand count (one hand), and hand count (one vs.vs.vs.vs.    two) for Task 2.two) for Task 2.two) for Task 2.two) for Task 2.    
Participants were instructed to use their thumb for oneParticipants were instructed to use their thumb for oneParticipants were instructed to use their thumb for oneParticipants were instructed to use their thumb for one----handed condition, and the index finger for twohanded condition, and the index finger for twohanded condition, and the index finger for twohanded condition, and the index finger for two----handed handed handed handed 

condition. condition. condition. condition.     
 



 30

participants performed the same set of basic mobile actions (e.g., navigating through 

apps, opening a selected item). At the end of each condition, participants’ subjective 

responses were collected in terms of ease of use, physical comfort, social acceptance 

and openness to perform inputs in different contexts. Participants were also asked to 

vote for their most and least preferred conditions at the end of each task.  

4.2.4. Data Analysis 

Because the work is exploratory, we did not have specific hypotheses. For subjective 

ratings, we specify which statistical tests we used throughout the Results section. In 

general, however, because the normality assumption of parametric tests may not hold 

for the 5-point rating scale data that we collected, we used non-parametric tests: 

Friedman tests, repeated measures ANOVAs with Aligned Rank Transform (ART) 

[130], and, for pairwise comparisons, Wilcoxon signed ranks tests. Bonferroni 

adjustments were used to protect against Type I error for all posthoc pairwise 

comparisons. For qualitative data, observation notes on gesture characteristics were 

recorded during the sessions and later categorized. We also conducted a qualitative 

analysis of the think-aloud data and other participant comments. 

4.3. Results 

We examined gesture creation strategies, location preferences for on-body input, and 

perceived trade-offs between touchscreen phone and on-body input depending the 

number of available hands. 
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4.3.1. Gesture Creation Strategies 

During the gesture creation process for the first task, we collected 300 gestures (5 

gestures × 5 locations × 12 participants). For all participants across all body locations, 

directional swipe was the most commonly used gesture for navigating to a previous or 

next item. For the other mobile actions, however, participants created a wider variety 

of gestures. Participants used the four following strategies to create their on-body 

gestures (Table 4.1): varying a common touchscreen gesture (e.g., swipe, single tap, 

double tap), varying the number of fingers (e.g., one vs. two), using specific body 

landmarks (e.g., pointing to a fingertip vs. palm), and varying which fingers were used 

(e.g., index vs. middle). Table 4.1 shows the number of participants who used each 

strategy while creating a set of gestures at each on-body location. All participants 

employed more than one common touchscreen gesture at each location (i.e., varying 

the “basic gesture” in Table 4.1), except for with the same hand location, where two 

 

 

 Basic gestureBasic gestureBasic gestureBasic gesture 
Number of Number of Number of Number of 

fingersfingersfingersfingers 
Specific Specific Specific Specific fingersfingersfingersfingers 

Specific Specific Specific Specific 
landmarkslandmarkslandmarkslandmarks 

Same handSame handSame handSame hand 10 7 4 10 

Other handOther handOther handOther hand----palmpalmpalmpalm 12 7 3 7 

Other handOther handOther handOther hand----backbackbackback 12 9 3 7 

ForearmForearmForearmForearm 12 9 1 4 

Neck and FaceNeck and FaceNeck and FaceNeck and Face 12 6 4 11 

Table Table Table Table 4444....1111. Four strategies for creating distinct gestures by . Four strategies for creating distinct gestures by . Four strategies for creating distinct gestures by . Four strategies for creating distinct gestures by varying (left to right): the basic gesture itself varying (left to right): the basic gesture itself varying (left to right): the basic gesture itself varying (left to right): the basic gesture itself 
((((e.g.,    taps or swipes), number of fingers, landmarked used, or the gesturing finger (taps or swipes), number of fingers, landmarked used, or the gesturing finger (taps or swipes), number of fingers, landmarked used, or the gesturing finger (taps or swipes), number of fingers, landmarked used, or the gesturing finger (e.g.,    thumb or index), thumb or index), thumb or index), thumb or index), 

and the number of participants who used a given strategy at each onand the number of participants who used a given strategy at each onand the number of participants who used a given strategy at each onand the number of participants who used a given strategy at each on----body location (body location (body location (body location (NNNN    = 12). Multiple = 12). Multiple = 12). Multiple = 12). Multiple 
strategies could be used for each location.strategies could be used for each location.strategies could be used for each location.strategies could be used for each location.    
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participants used only variations of a single tap gesture. The least frequent strategy was 

to vary which fingers were used; only six participants created distinct gestures by 

switching their fingers. 

As found in the previous study in Chapter 3, touchscreen-like gestures and 

specific landmarks were most frequently observed. While gestures varying number of 

fingers was also recurrent, varying specific finger were less common. We did not find 

clear differences between different on-body locations. 

4.3.2. On-body Location Preference 

The location of a gesture on the body had an impact on the reported ease of use, physical 

comfort, and social acceptability of that gesture. Overall, of the five locations, the 

majority of participants favored other hand-palm (8 responses). Same hand and other 

hand-back also received two votes each. The neck and face was the least preferred 

location by 10 participants, while same hand received two votes. This overwhelming 

selection of neck and face as least preferred is particularly interesting given that its raw 

scores on ease of use and physical comfort were higher than same hand (Figure 4.3). 

This result suggests that the social unacceptability of face and neck overrode ease and 

Figure Figure Figure Figure 4444....3333. . . . Average ratings for ease of use, comfort, and social acceptance for the onAverage ratings for ease of use, comfort, and social acceptance for the onAverage ratings for ease of use, comfort, and social acceptance for the onAverage ratings for ease of use, comfort, and social acceptance for the on----body body body body 
locations; locations; locations; locations; 5555----point scalepoint scalepoint scalepoint scale    ((((1111----leastleastleastleast, 5, 5, 5, 5----mostmostmostmost)))). Error bars are standard error. Locations on the other . Error bars are standard error. Locations on the other . Error bars are standard error. Locations on the other . Error bars are standard error. Locations on the other 

hand (both palm and back) consistently fared wellhand (both palm and back) consistently fared wellhand (both palm and back) consistently fared wellhand (both palm and back) consistently fared well    ((((NNNN    = 12).= 12).= 12).= 12).    
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comfort concerns. participants most preferred other hand-palm. We also examined on 

predicted use under physical constraints and for specific tasks.  

4.3.2.1. Ease of Use 

Figure 4.3 shows the rating scale results for ease of use, comfort, and social 

acceptability. The other hand-palm location received the highest average rating at 4.8, 

while the same hand received the lowest rating at 3.2. A Friedman test showed there 

was a significant effect of on-body location on ease of use (χ2
(4,N=12) = 10.46, p = .033). 

After a Bonferroni adjustment, no posthoc pairwise comparisons with Wilcoxon 

signed-rank tests were significant. When participants were asked to choose both the 

easiest and most difficult locations to use, other hand-palm was selected as easiest by 

5 participants, followed by other hand-back (3 participants). The most common reasons 

for choosing locations on the other hand were that it was natural, offered a relatively 

wide input space compared to same hand, and that it was similar to using a mobile 

phone. For example: “I can use my palm as a touchpad. It has enough space to perform 

any gesture.” (P11). In contrast, eight participants chose the same hand as the most 

difficult location to use, mostly because they found the interaction unfamiliar, for 

example: “I’m not used to it. It’s different.” (P4). 

4.3.2.2. Physical Comfort 

In terms of physical comfort, participants were again positive about other hand-palm 

and other hand-back, giving them mean ratings of 4.5 and 4.4 out of 5, respectively; 

see Figure 4.3. As with ease of use, the same hand was perceived to be least 

comfortable, at 3.2. A Friedman test showed that the impact of location on physical 
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comfort was statistically significant (χ2
(4,N=12) = 10.24, p = .037). After a Bonferroni 

adjustment, no posthoc pairwise comparisons were significant. 

In terms of the single most comfortable location, other hand-palm received the 

highest number of votes (7/12). For least comfortable, six participants chose face and 

neck and five chose same hand. The most common reasons for finding the face and 

neck to be uncomfortable were that it is relatively far from where hands natural rest, 

and that it is curved; three participants preferred flat surfaces for performing gestures. 

For same hand, participants were concerned they would be limited in the number of 

gestures they could comfortably perform, for example: “You don’t have the freedom to 

move around. The movements and gestures would be limited” (P12). 

4.3.2.3. Social Acceptance 

For social acceptance, other hand-palm and other hand-back again fared well, 

receiving the highest ratings at 4.6 and 4.4 out of 5, respectively; face and neck was 

considered to be unacceptable (Figure 4.3). A Friedman test showed that there was a 

statistically significant impact of location on social acceptability (χ2
(4,N=12) = 30.31, 

p < .001); again, due to the Bonferroni adjustment, no posthoc pairwise comparisons 

were significant. 

Other hand-palm was selected as the single most socially acceptable location 

by 8 participants, who appreciated that it allows for discreet use thanks to its similarity 

with everyday activities, for example: “It doesn’t draw a lot of attention” (P2). Not 

surprisingly, all participants considered the face and neck to be the least socially 

acceptable, most commonly because it attracts too much attention, or interferes with 
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other activities. For example, P1 said: “You would be considered as rude or have bad 

manners [if gesturing on face] during conversations.” 

We further investigated social acceptability in terms of place of use and 

audience (Tables 4.2 and 4.3). All three hand input locations had high acceptance rates 

regardless of place—private, crowded public, non-crowded public, and workplace; 

across the four places their average acceptance rates ranged 85–96%. The forearm had 

a somewhat lower acceptance rate (M = 71%), while the face and neck was generally 

unacceptable except in private. In terms of audience—alone, partner, friends, family, 

colleagues, and strangers—again, the neck and face had a much lower acceptance rate 

than other on-body locations. It was also interesting to note that forearm was again 

considered to be not as acceptable as the hand locations. One participant even said, 

while scrubbing his forearm: “They may say I might have fleas” (P12). 

 PrivatePrivatePrivatePrivate    Crowded Crowded Crowded Crowded 
publicpublicpublicpublic    

NonNonNonNon----crowded crowded crowded crowded 
publicpublicpublicpublic    WorkplaceWorkplaceWorkplaceWorkplace    Acceptance Rate (%)Acceptance Rate (%)Acceptance Rate (%)Acceptance Rate (%)    

M (SD) 
Same handSame handSame handSame hand    12 9 11 9 85.5 (12.5) 
Other handOther handOther handOther hand----palmpalmpalmpalm    12 10 12 12 95.8 (8.3) 
Other handOther handOther handOther hand----backbackbackback    11 8 12 10 85.4 (14.2) 
ForearmForearmForearmForearm    11 6 9 8 70.8 (17.3) 
Neck and faceNeck and faceNeck and faceNeck and face    9 1 4 3 35.4 (28.4) 

Table Table Table Table 4444....2222. Number of participants who would perform on. Number of participants who would perform on. Number of participants who would perform on. Number of participants who would perform on----body gestures in different contexts, with body gestures in different contexts, with body gestures in different contexts, with body gestures in different contexts, with 
average acceptance rates average acceptance rates average acceptance rates average acceptance rates across places (across places (across places (across places (NNNN    ====    12).12).12).12).    

 

 AloneAloneAloneAlone    PartnerPartnerPartnerPartner    FriendsFriendsFriendsFriends    FamilyFamilyFamilyFamily    ColleaguesColleaguesColleaguesColleagues    StrangersStrangersStrangersStrangers    Acceptance rate (%)Acceptance rate (%)Acceptance rate (%)Acceptance rate (%)    
M (SD) 

Same handSame handSame handSame hand    12 11 12 12 10 8 90.3 (13.4) 
Other handOther handOther handOther hand----palmpalmpalmpalm    12 12 12 12 12 10 97.2 (6.8) 
Other handOther handOther handOther hand----backbackbackback    12 12 12 11 11 9 93.1 (9.74) 
ForearmForearmForearmForearm    11 10 9 9 7 5 70.8 (18.1) 
Neck and faceNeck and faceNeck and faceNeck and face    9 8 6 8 3 1 48.6 (26.6) 
Table Table Table Table 4444....3333. Number of participants who would perform on. Number of participants who would perform on. Number of participants who would perform on. Number of participants who would perform on----body gestures in front of different audiences, with body gestures in front of different audiences, with body gestures in front of different audiences, with body gestures in front of different audiences, with 

average acceptance rates across audiences (average acceptance rates across audiences (average acceptance rates across audiences (average acceptance rates across audiences (NNNN    ====    12).12).12).12).    
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4.3.2.4. Physical Constraints 

We expected that pose (seated, standing, or walking) and whether one hand is holding 

a cane or dog leash would be critical factors affecting on-body input for people with 

visual impairments. Table 4.4 shows the number of participants who were willing to 

perform gestures at each on-body location under these physical constraints. With two 

hands free, the majority of participants were willing to perform gestures at all on-body 

locations, whether seated, standing, or walking. For one hand holding a cane or leash, 

however, only the same hand location was popular, with nine participants willing to 

use same hand whether they were seated, standing, or walking. For two hands free, the 

responses suggest that participants may be less likely to want to make on-body gestures 

while walking than seated or standing, although further work is needed to confirm this 

possibility. 

 TwoTwoTwoTwo----hands freehands freehands freehands free    OneOneOneOne----hand busyhand busyhand busyhand busy    Acceptance rate (%) Acceptance rate (%) Acceptance rate (%) Acceptance rate (%)     
M (SD) Seated Standing Walking Seated Standing Walking 

Same handSame handSame handSame hand    11 10 9 9 9 9 79.2 (7.0) 
Other handOther handOther handOther hand----palmpalmpalmpalm    12 12 8 2 3 3 55.6 (38.6) 
Other handOther handOther handOther hand----backbackbackback    11 12 8 3 5 5 61.1 (30.1) 
ForearmForearmForearmForearm    10 9 7 1 3 3 45.8 (30.6) 
Neck and faceNeck and faceNeck and faceNeck and face    10 8 6 6 4 4 52.8 (19.5) 

Table Table Table Table 4444....4444. Number of participants who would perform on. Number of participants who would perform on. Number of participants who would perform on. Number of participants who would perform on----body gestures under different physical body gestures under different physical body gestures under different physical body gestures under different physical 
constraints, with average acceptance rates across constraints (constraints, with average acceptance rates across constraints (constraints, with average acceptance rates across constraints (constraints, with average acceptance rates across constraints (NNNN    ====    12).12).12).12).    

    
 HandHandHandHand----

writingwritingwritingwriting    KeyboardKeyboardKeyboardKeyboard    Number Number Number Number 
padpadpadpad    SketchingSketchingSketchingSketching    TouchpadTouchpadTouchpadTouchpad    Acceptance Acceptance Acceptance Acceptance rate (%)rate (%)rate (%)rate (%)    

M (SD) 
Same handSame handSame handSame hand    2 0 5 2 7 26.7 (23.1) 
Other handOther handOther handOther hand----palmpalmpalmpalm    9 6 10 7 11 71.7 (17.3) 
Other handOther handOther handOther hand----backbackbackback    7 4 8 5 11 58.3 (22.8) 
ForearmForearmForearmForearm    6 5 7 6 9 55.0 (12.6) 
Neck and faceNeck and faceNeck and faceNeck and face    0 2 3 1 7 21.7 (22.5) 

Table Table Table Table 4444....5555....    Number of participants who would perform different types of input at each onNumber of participants who would perform different types of input at each onNumber of participants who would perform different types of input at each onNumber of participants who would perform different types of input at each on----body location, body location, body location, body location, 
with average acceptance rates across types of input (with average acceptance rates across types of input (with average acceptance rates across types of input (with average acceptance rates across types of input (NNNN    ====    12).12).12).12).    
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4.3.2.5. Input Type 

To understand how participants would want to use each on-body location, we asked 

about five input types previously evaluated with sighted users by Weigel et al. [128]; 

see Table 4.5. Other hand-palm was seen as particularly flexible for supporting a range 

of input types. It was the most popular for handwriting, keyboard, number pad, and 

sketching, and was tied with other hand-back for touchpad-style input (e.g., taps, 

swipes). Same hand and face and neck were the least likely to be used; for example, no 

one was willing to use the same hand as a keyboard. 

4.3.3. Touchscreen Versus On-hand Input with Different Number of Hands 

For Task 2, we examined the subjective preference for phone versus on-hand input for 

different number of hands. Overall, the preferences differ depending on whether both 

hands are available or not. Again, we also collected responses on predicted use under 

physical constraints.  

4.3.3.1. Overall Preference and Perceived Trade-Offs 

The majority of the participants preferred the two-handed on-phone condition (8 

responses); three preferred one-handed on-hand input, while one preferred two-handed 

on hand input. The least preferred condition was one-hand with the phone (8 responses). 

Below, we summarize participants’ perceived advantages and disadvantages for 

touchscreen versus on-hand input.  

While conventional touchscreen input (two-handed) was overall the most 

preferred, perhaps due to its familiarity, participants valued the advantages of on-hand 

interaction as well. A primary reason was that it allowed the phone to be safely stowed 

away, for example: “You don’t have to take out iPhone, you don’t have to worry about 
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getting it wet” (P8). Some participants also commented that eliminating the need for 

the screen positively impacted ease of access and efficiency. For example, P9 said: 

“You can just go right to your hand, you don’t have to take the phone out. It could 

eliminate the screen.” Related, P7 commented on the aesthetic feel of the on-hand 

interaction, saying that it feels better not to have to interact with a piece of metal or 

glass. 

All participants appreciated one-handed input for mobile computing because it 

can be important to have a hand free. For one-handed use, the on-hand input won out 

over the phone. One hand made it difficult to hold the phone and control it at the same 

time. P6, for example, commented that there was increased risk of dropping the phone, 

while P3 said: “[It’s] very uncomfortable, certain gestures can be mistaken for other 

gestures.” In comparison, two-handed use was considered easier, more accurate, and 

more stable. Four participants also noted that two hands allow for a greater variety of 

gestures. For example: “It’s easier because I have a free hand to maneuver the phone… 

do whatever you want to gesture” (P11). 

In general, all 12 participants felt it would be difficult to use their phone with 

both hands at times, particularly when they are walking. For example, P11 said: “I have 

to stop walking and do the gestures and continue walking, or I have to wait until I get 

to the place where I can use it.” However, only six participants expressed the same 

concern with two-handed on-hand input. At the same time, even on-hand input with 

one hand was not always considered to be good, with five participants commenting on 

physical limitations of using the thumb for input with the one-handed use case. Two 
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participants did not wish to interact with their phone at all when walking because of 

safety. 

4.3.3.2. Ease of Use, Comfort, and Social Acceptability 

Ratings on ease of use, comfort, and social acceptance are shown in Figure 4.4. To 

assess the effect of device and hand count on ease of use ratings, we ran a two-way 

repeated measures ANOVA with ART. The interaction effect between input methods 

(on-phone, on-hand) and number of hands was statistically significant (F1,11 = 37.66, p 

< .001, η2 = .77). Posthoc pairwise comparisons using Wilcoxon signed rank tests 

showed that the phone was easier than the hand for two-handed use (Z = -2.31, p = .021). 

The opposite was true for one-handed use, with on-hand input being easier than the 

phone (Z = -2.36, p = .018). There was also a significant main effect of hand count 

(F1,11 = 16.01, p = .002, η2 = .59) but the main effect for device was not significant.   

Physical comfort ratings mirrored the ease of use results. A two-way repeated 

measures ANOVA with ART revealed a statistically significant interaction effect 

between input location and hand count (F1,11 = 63.15, p < .001, η2 = .852). Again, 

posthoc pairwise comparisons using Wilcoxon signed rank tests showed that 

participants felt more physically comfortable using two hands on the phone (Z = -2.77, 

 
Figure Figure Figure Figure 4444....4444. . . . Average ratings for ease of use, comfort, and social acceptance for Task 2; 5Average ratings for ease of use, comfort, and social acceptance for Task 2; 5Average ratings for ease of use, comfort, and social acceptance for Task 2; 5Average ratings for ease of use, comfort, and social acceptance for Task 2; 5----

point scalepoint scalepoint scalepoint scale    ((((1111----leastleastleastleast, 5, 5, 5, 5----mostmostmostmost)))). Error bars a. Error bars a. Error bars a. Error bars are standard error re standard error re standard error re standard error ((((NNNN    = 12).= 12).= 12).= 12).    
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p = .006), but that on-hand interaction was more comfortable for one-handed use (Z = 

-3.07, p = .002). There was no statistically significant main effect of input method, 

however, there was a main effect of number of hands (F1,11 = 49.65, p < .001, η2 = .82). 

Social acceptance ratings were high across all four conditions, ranging on 

average from 4.5 to 4.8 out of 5. A two-way repeated measures ANOVA with ART 

revealed no significant main or interaction effects of device and hand count on these 

ratings. While we asked about use of the input methods in different places and in front 

of different audiences as with Task 1, no clear trends emerged based on either 

contextual factor.  

Table 4.6 shows the popularity of the four input conditions under different 

physical constraints—that is, seated, standing, or walking, and two hands free versus 

one holding a cane or dog leash. These results again reflect the trade-offs between on-

hand and phone input when only one hand is free. While the two-handed input 

conditions were both popular when two hands are free and the participant is seated or 

standing, these numbers quickly drop off for walking, and drop even further when only 

one hand is available. One-handed on-hand input, however, was perceived to be the 

most versatile, with 10 or 11 participants out of 12 willing to use it regardless of the 

physical constraints. 

 
 

TwoTwoTwoTwo----hands Freehands Freehands Freehands Free    OneOneOneOne----hand Busyhand Busyhand Busyhand Busy    Acceptance rate (%)Acceptance rate (%)Acceptance rate (%)Acceptance rate (%)    
M (SD))))    Seated Standing Walking Seated Standing Walking 

Phone OnePhone OnePhone OnePhone One    6 6 6 6 6 6 50.0 (0.0) 
Phone TwoPhone TwoPhone TwoPhone Two    12 12 8 1 2 2 51.4 (43.0) 
Hand OneHand OneHand OneHand One    11 11 10 10 11 11 88.9 (4.3) 
Hand TwoHand TwoHand TwoHand Two    10 9 5 0 0 0 33.3 (39.1) 
Table Table Table Table 4444....6666. . . . Number of participants who would use onNumber of participants who would use onNumber of participants who would use onNumber of participants who would use on----body input body input body input body input under different physical constraints, under different physical constraints, under different physical constraints, under different physical constraints, 

with mean acceptance rates across constraints (with mean acceptance rates across constraints (with mean acceptance rates across constraints (with mean acceptance rates across constraints (NNNN    ====    12).12).12).12).    
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4.4. Discussion 

Reflecting on our findings from the study, we provide design implications for 

accessible on-body interaction for people with visual impairments. 

4.4.1. Creation of Gesture Sets 

The user-defined gestures created in Task 1 strengthened the suggestion from Chapter 

3.4.1 to utilize the basic gestures that are now well-established with modern 

touchscreens (e.g., tap vs. swipe) when designing on-body interactions for mobile 

computing. Varying the number of fingers and using specific landmarks on the body 

can broaden the set of distinguishable gestures. Again, as mentioned in Chapter 3.4.2, 

landmarks, in particular, such as pointing to different parts of the hand, may be useful 

for rapid mode switching or to respond to a notification (as is done in Imaginary Phone 

[39]). Finally, participants rarely varied their gesturing finger (e.g., index vs. thumb), 

which mirrors touchscreen input preferences by sighted users [131]. 

4.4.2. Dominance of Hands for On-Body Input Locations 

The results from Task 1 showed that the hand-based locations (e.g., other hand-palm) 

were better received by participants than the forearm or face and neck areas. This 

finding contrasts Weigel et al.’s [128] that the forearm to be the easiest and most 

comfortable location to use; note that their participants did not have any visual 

impairments, and they did not consider social acceptability when investigating on-body 

input location preferences. Supporting hand-based locations as the input surface for on-

body interaction for people with visual impairments would allow more discreet and 
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natural interaction compared to the relatively socially unacceptable forearm or 

face/neck locations. 

4.4.3. Consideration of Physical Constraints  

Relatedly, blind mobile phone users often have one hand busy with a cane or dog leash. 

Support for one-handed input is thus critical for supporting accessible information 

access on the go, a need that came out in participant comments. An issue that two 

participants commented on was that they hold their cane with their dominant hand, 

which was the same hand we had tested in our study. A system to support people with 

visual impairments would need to either allow for input on the same hand while also 

holding the cane or would need to easily support switching control to the non-dominant 

hand temporarily. 

4.4.4. Social Acceptability 

As found in our prior research on mainstream wearable devices [135], social 

acceptability plays an important role for on-body input for people with visual 

impairments. Our Task 1 findings suggest that participants prioritized social 

acceptability over ease of use and physical comfort by choosing the neck and face 

location as least preferred even while input on one hand was considered relatively hard 

to use and uncomfortable. Although a recent study showed that observers were more 

understanding of a device which is often socially unacceptable (namely, Google Glass) 

if it is used to support a person with disability [96], people with disabilities themselves 

may not feel comfortable using a device that would attract unwanted attention [111]. 

Thus, a careful consideration is needed to allowing discreet use.  
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4.4.5. Complementary Input Techniques for Always-Available Interaction  

The preference for input locations depended on the number of hand availability in Task 

2; the touchscreen input was preferred when two hands are free, while on-body input 

was preferred for one-handed interaction. This suggests that on-body input would be 

especially more desirable as a complement to the phone when both hands are available. 

A downside of one-handed on-body input as identified by some participants is that it 

does not offer the same kind of input flexibility as other locations. Even so, as a 

complementary form of input, it could be used to support a specific set of tasks more 

easily and quickly than pulling out and using a phone (e.g., controlling navigation 

instructions, notifications, and audio). 

4.4.6. Importance of Hands-On Experience 

Two-handed on-body input, namely other hand-palm, was more preferred than one-

handed on-body input (same hand), in Task 1, when various on-body locations were 

compared amongst others. However, participants’ preferences changed to being more 

positive about one-handed on-body input than two-handed on-body input, in Task 2, 

after they had hands-on experience with the actual prototype for on-body interaction, 

compared against smartphone interaction. This change highlights the importance of 

having users interact with working systems rather than assigning too much weight to 

subjective responses collected in the largely imaginary scenarios that the user-defined 

gestures method traditionally employs (e.g., [128,131]).  
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4.5. Limitations 

In terms of limitations, the primary shortcoming is the disparity in how familiar 

participants were with touchscreens versus on-body input in Task 2, likely leading to a 

bias toward the touchscreen input; a multi-session study with more in-depth tasks with 

the interactive system could partly address this issue. Moreover, having to grasp the 

phone for one-handed on-phone conditions in Task 2 may also have affected results; 

for example, users who need to interact using only one hand may employ other 

solutions such as securing the phone with a hand strap or a belt clip. Additionally, while 

on-body input is meant to support mobile information access, we conducted the study 

in a controlled lab setting and participants were seated while using the system. Different 

contexts of use may impact participants’ reactions to the input. Finally, while most past 

work on wearable and on-body input has focused on sighted users, we did not include 

sighted users in our study. A direct comparison would be useful to understand the 

differences between sighted and visually impaired users’ needs. 

4.6. Conclusion  

The findings from this study provided a better understanding of how to design 

accessible on-body input for people with visual impairments compared to the previous 

exploratory study. The results confirmed the tendency (already seen in Chapter 3) to 

create gestures that are commonly used for touchscreen devices. Also, we found that 

the palm-side of the other hand is the most preferred location for on-body input because 

of its natural and discreet use, while the neck and face area is the least preferred location. 

The findings also suggest that users prioritize social acceptability over ease of use and 
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physical comfort. Lastly, we observed that input performed on the hand was preferred 

to touchscreen input for one-handed use when performing location-independent 

gestures for basic mobile tasks (e.g., menu navigation), while it was the opposite when 

two hands were available.  

The prior study in Chapter 3 and this study provide insight into the subjective 

responses to and the design of on-body interaction for VI users. However, the question 

of how on-body interaction impacts input performance compared to touchscreen 

interaction for VI users remains unanswered. We address this question in the next 

chapter with a controlled lab study.   
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Chapter 5: A Performance Comparison of On-Hand Versus On-

Phone Nonvisual Input by Blind and Sighted Users  

5.1. Motivation and Introduction 

Focusing on subjective feedback, findings in Chapter 4 showed that blind and low-

vision participants reacted positively to the idea of on-body input, in particular 

preferring the hand to a touchscreen phone for location-independent gestures when only 

one hand is free (e.g., when the other hand holds a cane or dog leash). The hand as an 

input surface was also considered to be more discreet and natural than other body 

locations. 

While most studies of on-body interaction have included visual output 

[40,42,43,76,117], only a smaller number have investigated non-visual use with sighted 

users [38,39,69]. Gustafson et al. [38], for example, assessed non-visual pointing 

performance and found that sighted users could point to targets more precisely on their 

hand than on a touchscreen phone. These on-body tactile benefits may be even stronger 

for users with visual impairments, for whom tactile acuity has been found to be greater 

than it is for sighted users [20,32,34,63,116]. However, this performance question 

remains unexplored, as [38] only collected data from one blind participant. Thus, we 

conducted a study to answer the following main research questions:  

• Does on-hand input outperform touchscreen input? 

• Is there any performance difference between blind and sighted users? 
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To assess the performance of on-body input with blind users, we designed and 

conducted a study comparing non-visual input on the hand versus on the phone with 

12 sighted and 11 blind participants. Compared to the simple location-independent 

gestures (e.g., press-and-hold, swipe right) that we previously studied in Chapter 4, 

here, we focused on absolute pointing and more complex gestures involving two hands. 

Absolute pointing, pointing to a specific location on the hand or phone, could result in 

highly efficient interaction if it is accurate. This study included two tasks, the first of 

which was a controlled pointing task with 20 target locations on the hand or phone, 

based on the Gustafson et al.’s study [38]. The second task moved beyond pointing, by 

comparing input of more complex shape gestures on the hand and phone (e.g., a circle 

and a ‘+’ sign) in terms of performance and subjective feedback.  

5.2. Experimental Methodology 

To assess the performance of non-visual on-body input compared to input on a flat 

surface for blind and sighted users, we designed and conducted a single-session study 

with 23 participants (11 blind). Our study includes two non-visual tasks. The first task 

builds on Gustafson et al.’s [38] work with sighted users by (1) including blind 

participants, and (2) examining a more thorough set of target locations per participant 

(20 vs. 5)—this latter difference allows for an analysis of input performance based on 

location. In designing the study tasks, our goal was to make each condition as realistic 

as possible while still conducting a controlled performance experiment. This 

motivation underlies many of our study decisions, such as using the hand’s natural 

landmarks to configure pointing targets rather than having targets of uniform size. 
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5.2.1. Participants 

Participants were recruited via campus e-mail lists and local organizations that serve 

people with visual impairments. In recruiting participants, we addressed two limitations 

commonly seen in studies comparing visually impaired and sighted users: variation in 

vision levels of the visually impaired group and an age discrepancy between the two 

groups. Twelve sighted (7 female, 11 right-handed) and 11 totally blind (5 female, 8 

right-handed) individuals participated in this study. 6  Sighted participants were on 

average 51.8 years old (SD = 11.9, range 26-67) versus 52.4 years old (SD = 10.8, range 

33-67) for blind participants. Six of the blind participants had become blind later in life 

(years post onset: M = 31.0, SD = 16.7), while five were born blind. All participants 

had touchscreen phone experience, and they were compensated for their time.  

5.2.2. Apparatus 

As shown in Figure 5.1, the custom experimental system consisted of a Logitech 1080p 

HD webcam C930e, touch sensors connected to an Arduino Leonardo board, and 

                                                 
6 Four more participants (1 sighted) were initially recruited but excluded from analysis because they were unable to 

learn the target-naming scheme in the pointing task even after training. 

   

Figure Figure Figure Figure 5555....1111. . . . Experimental setup showing the camera and approach used to stabilize (a) the Experimental setup showing the camera and approach used to stabilize (a) the Experimental setup showing the camera and approach used to stabilize (a) the Experimental setup showing the camera and approach used to stabilize (a) the phone or (b) phone or (b) phone or (b) phone or (b) 
nonnonnonnon----dominant hand during tasks, and corresponding target locations (c, d). At the start of each trial, dominant hand during tasks, and corresponding target locations (c, d). At the start of each trial, dominant hand during tasks, and corresponding target locations (c, d). At the start of each trial, dominant hand during tasks, and corresponding target locations (c, d). At the start of each trial, 

participants tapped on the square touchpad on the right side of the stand. The entire setup was participants tapped on the square touchpad on the right side of the stand. The entire setup was participants tapped on the square touchpad on the right side of the stand. The entire setup was participants tapped on the square touchpad on the right side of the stand. The entire setup was 
reversible for leftreversible for leftreversible for leftreversible for left----handed participants.handed participants.handed participants.handed participants.    
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tracking software running on a laptop with an Intel Core i5 processor and OSX 10.9.4. 

To ensure data consistency across the hand and phone conditions, we used this tracking 

setup for both interfaces rather than using the native touchscreen sensing on the phone. 

The main software was written in C++ and used the OpenCV library for image 

processing. The system: (1) tracked the pointing finger, (2) detected touch on the phone 

or hand, (3) automatically generated pointing targets, (4) provided audio feedback upon 

touch, and (5) included a conductive touchpad for participants to tap at the start of each 

trial.  

5.2.2.1. Stabilizing the Phone and Hand 

We affixed the phone or non-dominant hand to a stand to ensure that it did not move 

and the camera angle remained steady during study tasks. The stand itself was angled 

for comfort, based on feedback from pilot participants. Cutouts in the stand allowed 

the participant to hold the phone, which was attached to the stand by Velcro (Figure 

5.1a). For the hand, Velcro straps fastened the wrist and thumb to the stand. To prevent 

curling of the fingers—which would impact the size and shape of targets—the fingers 

rested on slightly angled foam wedges and the fingernails were secured to the foam 

using small pieces of Velcro tape (Figure 5.1b). This allowed the upper (input) side of 

the hand to be completely bare, so as not to hinder tactile feedback. The rotation of the 

phone or hand could be adjusted to be comfortable for each participant during an 

initialization step. Finally, the entire setup was reversible, to support both left- and 

right-handed participants. 
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5.2.2.2. Finger Tracking and Touch Detection 

Unlike previous studies that used depth information alone to track the fingertip and 

detect touch (e.g., [27,39,42]), we found such an approach to be insufficient for precise 

measurements. Instead, we combined a color marker for x, y tracking with a separate 

lightweight touch sensor on the pointing finger (Figure 5.2). The color marker was 

placed 5 mm down from the tip of the participant’s finger. The x, y coordinates of the 

touched point were determined by image moments of the camera frame after filtering 

colors and removing noise. The touch sensor consisted of conductive thread that was 

shielded from the user’s skin with 3mm-wide non-conductive tape. It connected to an 

Arduino Leonardo board running software that used the CapSense library to detect 

changes in capacitance from touching the pointing finger to the user’s non-dominant 

hand. For the phone condition, conductive fabric covered the screen, allowing for the 

same touch detection approach.  

 

(a) Top view. 
 

(b) Bottom view. 
Figure Figure Figure Figure 5555....2222. Finger. Finger. Finger. Finger----worn touch sensor.worn touch sensor.worn touch sensor.worn touch sensor.    

 (a) Targets on the palm. 
 (b) Targets on the fingers.  (c) After configuration. 

Figure Figure Figure Figure 5555....3333. Configuring targets for the hand condition for a right. Configuring targets for the hand condition for a right. Configuring targets for the hand condition for a right. Configuring targets for the hand condition for a right----handed user. See main text for detail.handed user. See main text for detail.handed user. See main text for detail.handed user. See main text for detail.    
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For the phone, a researcher clicks the corners of the input area, which is then split 

evenly into columns and rows. For the hand, we laid out 20 targets where the five rows 

start at the fingertips and do not cover the bottom half of the palm. The choice to include 

20 targets (5 rows × 4 columns) on both the phone and the hand follows Gustafson et 

al. [38], and is based on smartphone home screens that typically lay out icons in 5 or 6 

rows × 4 columns. A set of reference points is used to maximize the use of natural 

landmarks by aligning targets with fingertips, phalanges of the fingers, thumb versus 

palm, webs between fingers, and border with the wrist. As shown in Figure 5.3, points 

from p1 to p6 segment the palm from the fingers and thumb; p7 is the outer join between 

palm and wrist. For the thumb, this segmentation also requires extending E2E1FGGGGGGGGGH and 

demarcating its intersection with the edge of the palm (p8). To automatically generate 

palm targets, E2E8 and E6E7 are each divided into four equal segments, the top two of 

which delineate the two rows of the palm. These rows are in turn divided into columns 

based on the finger webs, but with equal widths at the bottom; the outside two cells are 

also adjusted to reach the edge of the hand (compare Figure 5.3a to Figure 5.3b).  

Finally, to generate finger targets, the researcher selects the fingertips (e.g., p9) 

and, on the line segment from the midpoint of the finger base (e.g., E2E3IIIIIII) to the tip, 

selects the natural divisions between phalanges (e.g., p10 and p11). The targets are then 

automatically generated as shown in Figure 5.3c. In pilot studies, participants regularly 

pointed to the very top of the finger, which meant that the pointing finger would be 

touching, yet above the non-dominant hand’s finger. To support this common 

interaction, we extended the height of the top row targets on the hand by 50% of the 

width of the target. 
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5.2.3. Procedure 

Participants completed both the pointing and shape-drawing tasks for one interface 

condition (hand or touchscreen), followed by the other interface condition. The order 

of presentation for hand versus phone was fully counterbalanced within each 

participant group; the pointing task always preceded the shape-drawing task. To ensure 

non-visual performance, sighted participants were blindfolded during the tasks. Each 

session lasted two hours. The touch sensor was placed on the index finger of the 

participant’s dominant hand, and the hand and phone were affixed to the stand as 

described above (see Figures 5.1a and 5.1b). 

5.2.3.1. Pointing Task 

Participants first explored the names and locations of targets by running their pointing 

finger over the hand or phone. Based on touch-and-explore interfaces, the system read 

each target aloud as it was touched. The selection of a target occurred on finger lift-up. 

For each trial, participants tapped on the starting touchpad to reposition their hand, and 

to initiate timing and cause the instruction to be read aloud. Upon a correct selection, a 

chime sound played from the laptop; no audio feedback was provided for incorrect 

selection. For example, if a participant makes a contact, the name of the touched 

location will be read aloud. Then participants can either lift up their finger to confirm 

the location or keep browsing for the correct target location depending on the current 

target. As brief practice, participants performed one random practice trial before 

beginning the main task.  

Participants then performed three blocks of 20 trials as a learning phase and 

another three blocks as a trained performance phase (120 trials in total). Each block 
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included the 20 locations in Figures 5.1c and 5.1d, presented in random order. 

Participants were asked to find the target location as quickly and accurately as possible. 

They were allowed to retry the trial if they realized they had misunderstood where the 

location was after hearing the target name, for example, pointing to D1 instead of A1, 

or if they needed to have the target name to be repeated. After the task, participants 

provided subjective feedback on ease, accuracy and speed.  

5.2.3.2. Shape Drawing Task 

Participants drew five shape gestures: circle, equilateral triangle, square, plus sign (+), 

and equal sign (=). This set was chosen to cover a variety of characteristics such as 

curviness/straightness of lines, length of lines, shape closure, and angle between two 

strokes (e.g., parallel, perpendicular). Beforehand starting the task, a brief verbal 

description of each gesture was given and participants were allowed to explore a raised 

physical guide for each shape (geometric shapes or mathematical symbols may not be 

familiar to all blind participants [6,48]). Participants then completed six blocks of trials 

including one practice and five test blocks, where each block consisted of the five 

shapes presented in random order (25 trials in total). As with the pointing task, 

participants tapped on the starting touchpad to begin each trial. Participants were asked 

to take as much time as they needed to draw the shape accurately and consistently on 

their palm. For feedback, a brief, high-pitched sound played at every touch-down or 

touch-up event. 

5.2.3. Experimental Design and Hypotheses 

For the pointing task, the study used a 2 × 2 × 2 mixed factorial design, with user Group 

as a between-subjects factor (levels: sighted vs. blind), Interface as a within-subjects 
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factor (levels: hand vs. phone), and Phase as a within-subjects factor (levels: learning 

vs. trained). For the shape drawing task, the study used a 2 × 2 mixed factorial design, 

with Group as a between-subjects factor and Interface as a within-subjects factor. 

We derived the following hypotheses based on the findings from Gustafson et 

al. [38] that sighted users were faster at pointing on their hand than on a phone when 

visual cues are absent, and a number of studies that show blind individuals have higher 

tactile acuity than sighted individuals [20,32,34,63,116]: 

• H1: The hand is faster for pointing than the phone. 

• H2: The hand is more accurate for pointing than the phone.  

• H3: The pointing performance benefits (speed and accuracy) of the hand are 

greater for blind participants than for blindfolded sighted participants.  

• H4: The hand results in more accurate shape gestures than the phone (compared 

to an ideal reference shape). 

• H5: The hand results in more consistent shape gestures than the phone when 

gestures are redrawn repeatedly.  

• H6: The shape-drawing benefits (accuracy and consistency) of the hand are 

greater for blind participants than for blindfolded sighted participants.  

5.2.4. Data and Analysis 

For both tasks, the system continuously logged timestamped x, y coordinates and touch 

status for the index finger. For the target pointing task, we collected data from six 

blocks of 20 trials from 23 participants for both phone and hand conditions. To reduce 

the influence of outlier trials, we removed 58 trials that were three standard deviations 

above and below the mean per participant. There were 16 miss-recorded trials, leaving 
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a total of: 6×20×23×2-58-16 = 5446 trials. For the shape drawing task, five blocks of 

5 trials for two interfaces were collected from 23 participants, for a total of: 5×5×2×23 

= 1150 trials.  

We specify which statistical tests were used throughout the results. In general, 

we apply paired t-tests and repeated measures ANOVAs for pointing accuracy and 

speed. Wilcoxon signed-rank tests and repeated measures ANOVAs with Aligned 

Rank Transform (ART) [130] were used for subjective ratings, and for shape accuracy 

and consistency, which violated the normality assumption of the parametric tests. For 

posthoc pairwise comparisons (t-tests or Wilcoxon signed-rank tests), Holm’s 

sequential Bonferroni adjustments were used to protect against Type I error [45]. 

Finally, the audio recordings were analyzed to thematically group participants’ 

comments and open-ended responses.  

5.3. Results 

We assessed accuracy, speed and subjective measures, as well as conducting a 

secondary analysis of performance across target locations on the phone and the hand 

for the pointing task and preliminary recognition rates that could be achieved with a 

gesture recognizer for the shape-drawing task.  

5.3.1. Pointing Task 

We report on the primary performance measure of selection time, which encompasses 

both speed and accuracy, and a secondary measure of the accuracy of only the first 

point of contact. We also examine performance based on target size and location. 
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5.3.1.1. Target Selection Time 

Selection time per trial was defined as a comprehensive performance measure that 

includes an implicit time penalty for errors. It was calculated from the starting signal 

(when the participant tapped the start touchpad) until a finger up event occurred on the 

correct target location (Figure 5.4a). This measure is impacted both by proprioception, 

as the participant moves their pointing finger through the air, and by tactile feedback, 

after the finger touches down and moves on the surface of the opposite hand. 

Supporting H1, the average selection time on the hand was 3.59s (SD = 0.77), which 

was faster than the 3.98s for the phone (SD = 0.72). A 2 × 2 × 2 (Group, Interface, 

Phase) repeated measures ANOVA found that the difference was statistically 

significant, by main effect of Interface (F1,21 = 7.17, p = .014, η2 = .25). Participants 

also improved significantly between the learning and trained phases (main effect of 

Phase: F1,21 = 102.18, p < .001, η2 = .83). As shown in Figure 5.4a, the average time in 

the learning phase was 4.13s per target (SD = 0.75), compared to only 3.45s per target 

in the trained phase (SD = 0.60). No other main or interaction effects were significant. 

        (a) Selection time (sec.)               (b) First contact success rate (%) 
Figure Figure Figure Figure 5555....4444. Average selection time (a), and average first contact . Average selection time (a), and average first contact . Average selection time (a), and average first contact . Average selection time (a), and average first contact success rate (b) for the learning and success rate (b) for the learning and success rate (b) for the learning and success rate (b) for the learning and 

trained phases of the pointing task (trained phases of the pointing task (trained phases of the pointing task (trained phases of the pointing task (NNNNsightedsightedsightedsighted    = 12; = 12; = 12; = 12; NNNNblindblindblindblind    = 11). Error bars indicate 95% confidence = 11). Error bars indicate 95% confidence = 11). Error bars indicate 95% confidence = 11). Error bars indicate 95% confidence 
intervals.intervals.intervals.intervals.    Sighted particpants were blindfolded during the task.Sighted particpants were blindfolded during the task.Sighted particpants were blindfolded during the task.Sighted particpants were blindfolded during the task.    
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Although we had expected to see greater performance advantages on the hand for blind 

participants than for blindfolded sighted participants, no support was found for H3.  

5.3.1.2. First Contact Success Rate 

While selection time, above, encompassed both speed and overall pointing accuracy, 

we also isolated first contact success rate as the percentage of trials where the 

participant’s first touch point landed within the bounds of the target (see Figure 5.4b). 

This secondary measure of accuracy relies solely on proprioception. Because selection 

occurs on lift up, these rates are not comparable to standard error measures, but do 

provide insight into one aspect of performance efficiency. Supporting H2, the hand was 

more accurate than the phone, with an average accuracy of 57.0% (SD = 12.8) across 

groups, compared to 34.8% for the phone (SD = 14.4). A 2 × 2 × 2 repeated measures 

ANOVA (Group × Interface × Phase) revealed that this difference was significant, by 

a main effect of Interface (F1,21 = 57.6, p < .001, η2 = .73). Accuracy also improved 

significantly from the learning phase to the trained phase, jumping from 42.8% (SD = 

11.9) to 48.9% (SD = 12.9) by main effect of Phase (F1,21=12.38, p = .002, η2 = .37). 

Finally, although we had hypothesized that the performance advantages of the hand 

would be greater for blind participants than for blindfolded sighted participants (H3), 

no other main or interaction effects were significant. 

5.3.1.3. Impact of Target Location and Size 

As a secondary analysis, we computed selection time and first contact success rate for 

each target on the hand and phone. To reflect more experienced use, this analysis 

includes only the trained phase data. As well, because of the lack of performance 
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differences between the blind and blindfolded sighted user groups above, we combined 

data from the two.  

As Figure 5.5 shows, while performance was generally better on the hand than 

on the phone, there was also a greater range in results across targets. The fingertips, for 

example, appear to be particularly fast and accurate. To broadly compare the impact of 

different target locations on selection time and first contact success rate, we grouped 

the targets by row and by column, and conducted one-way repeated measures ANOVAs 

with the following single factors for each device (hand and phone): Rows (5 levels: 

from fingertip to palm) and Columns (4 levels: left to right / index to baby finger). We 

report only posthoc pairwise comparisons that were significant at p < .05 after a Holm-

Bonferroni adjustment. 

Compared to the phone, the performance of each target on the hand could be 

affected more by its location because some location might have more distinctive 

landmarks than other locations (e.g., fingertip vs. palm). For the hand, rows and 

columns both significantly impacted speed (Rows: F4,88 = 7.396, p < .001, η2 = .252; 

Columns: F3,66 = 4.359, p = .007, η2 = .165). For rows, the fingertips and the top row 

 

Figure Figure Figure Figure 5555....5555. . . . Heat maps for average selection time (left; sec.), and first contact point accuracy (right; %) Heat maps for average selection time (left; sec.), and first contact point accuracy (right; %) Heat maps for average selection time (left; sec.), and first contact point accuracy (right; %) Heat maps for average selection time (left; sec.), and first contact point accuracy (right; %) 
per target in the pointing task, averaged across participants (with per target in the pointing task, averaged across participants (with per target in the pointing task, averaged across participants (with per target in the pointing task, averaged across participants (with SDSDSDSD    in parentheses) (in parentheses) (in parentheses) (in parentheses) (NNNN    = 23). The = 23). The = 23). The = 23). The 

fingertips resulted in partfingertips resulted in partfingertips resulted in partfingertips resulted in particularly strong performance results.icularly strong performance results.icularly strong performance results.icularly strong performance results.    
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on the palm (fourth row overall) offered a speed advantage. Pairwise comparisons 

showed that participants were significantly faster pointing to the fingertips than to the 

second, third and fifth rows, and were faster with the fourth row than the fifth row. For 

columns, the third column was slower than the rightmost column. Similarly, rows and 

columns both significantly impacted first contact success rate (Rows: F4,88 = 21.13, p 

< .001, η2 = .490; Columns: F3,66 = 4.037, p = .011, η2 = .155). Similar to the selection 

time results, pairwise comparisons showed that the fingertips (top row) were more 

accurate than all other rows, and the fifth row was less accurate than all other rows. For 

columns, the third column was less accurate than the first two.  

For the phone, different rows did not significantly impact speed, but columns 

did (F3,66 = 5.431, p = .002, η2 = .198). Posthoc pairwise comparisons showed that the 

outer edges were the fastest—the leftmost column was significantly faster than the 

middle two columns. No significant effects were found for first contact success rate. 

The more marked performance differences across locations for the hand could be due 

at least partly to variation in target size across location, a decision that we had purposely 

made to ensure that the hand condition was realistic and made use of physical 

landmarks. Hands also varied from one participant to the next in size and shape. To 

investigate the relationship between target size on the hand and the measures of 

selection time and first contact success rate, we computed Pearson’s correlation 

coefficients for each measure. Although statistically significant due to the large sample 

size (23 participants × 20 targets), the correlation between target size and speed was 

negligible in magnitude (r = -.026, n = 460, p < .001). However, a moderate positive 

correlation was found between target size and first contact success rate (r = .424, n = 
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460, p < .001). While our study design does not allow us to isolate the impact of target 

size on the performance measures, these results suggest that size may play some role. 

5.3.1.4. Subjective Feedback 

In terms of overall preference, 9 out of 12 sighted participants preferred the hand to the 

phone, while blind participants were more evenly split, with 6 votes for hand and 5 for 

phone. This trend could be due to blind participants’ familiarity with non-visual 

interaction with a touchscreen phone, since all of them had a smartphone. For example, 

one blind participant, B7, said: “I'm more familiar with the phone, I've been an iPhone 

user for almost two years”. Participants also rated the hand and the phone in terms of 

subjective ease, accuracy and speed using 5-point scales (5 is best); see Figure 5.6. For 

each measure, we ran a 2 × 2 repeated-measures ANOVA with ART. Blind participants 

reported generally higher ease and speed ratings compared to sighted participants, 

perhaps due to their comfort level with non-visual interaction. Significant main effects 

of Group on ease (F1, 21 = 8.57, p = .008, η2 = .29) and speed (F1, 21 = 5.80, p = .025, 

η2 = .22) were observed. No other main or interaction effects were significant. 

 
Figure Figure Figure Figure 5555....6666. Average subjective ratings for ease, accuracy, and speed for the pointing task (. Average subjective ratings for ease, accuracy, and speed for the pointing task (. Average subjective ratings for ease, accuracy, and speed for the pointing task (. Average subjective ratings for ease, accuracy, and speed for the pointing task (NNNNsightedsightedsightedsighted    = 12; = 12; = 12; = 12; 

NNNNblindblindblindblind    = 11). Error bars indicate 95% confidence intervals.= 11). Error bars indicate 95% confidence intervals.= 11). Error bars indicate 95% confidence intervals.= 11). Error bars indicate 95% confidence intervals.        
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5.3.1.5. Summary 

The speed results support H1 and confirm Gustafson et al.’s [38] conclusion that the 

hand allows faster target pointing than the phone for non-visual use. Furthermore, we 

extended this result to show that it applies to blind users who already have experience 

with non-visual interaction. We also found support for H2, which provides new insight 

on first touch location accuracy, showing that it is higher on the hand than the phone 

(likely due to proprioceptive differences). No support was found for H3 that the 

performance benefit is greater for the blind group than the sighted group. Per-target 

analysis revealed that target location impacted pointing performance, particularly on 

the hand (e.g., fingertips vs. palm). Finally, though not conclusive, sighted users may 

have a stronger preference than blind users for the hand compared to the phone for non-

visual pointing input. 

5.3.2. Shape-Drawing Task 

To explore the feasibility of supporting non-visual gestural input, we computed gesture 

recognition rates based on the drawn shape gestures. We also assessed geometry-based 

accuracy and consistency measures of the gestures. 

 

Figure Figure Figure Figure 5555....7777. Average . Average . Average . Average recognition rate for the shape drawing task for both within and between participants recognition rate for the shape drawing task for both within and between participants recognition rate for the shape drawing task for both within and between participants recognition rate for the shape drawing task for both within and between participants 
((((NNNNsightedsightedsightedsighted    = 12; = 12; = 12; = 12; NNNNblindblindblindblind    = 11). Error bars indicate 95% confidence intervals.= 11). Error bars indicate 95% confidence intervals.= 11). Error bars indicate 95% confidence intervals.= 11). Error bars indicate 95% confidence intervals.    Sighted participants were Sighted participants were Sighted participants were Sighted participants were 

blindfolded during the task.blindfolded during the task.blindfolded during the task.blindfolded during the task.    
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5.3.2.1. Recognition Rate 

Consistency and accuracy are important for shape gestures because they will ultimately 

impact recognition rates for a gesture recognizer. To assess the practicality of shape 

gestures on the hand versus touchscreen, we applied the $N multi-stroke recognizer, 

which is meant for fast prototyping of shape-based gestures and does not require many 

training examples [8]. Recognition rates were calculated twice: (1) 5-fold cross-

validation within a single participant by training on four gesture examples and testing 

on the remaining one, and (2) across participants in the same user group by testing on 

each participant after training on the rest. The results are summarized in Figure 5.7.  

For the recognition rates we ran a 2 × 2 × 2 (Group, Interface, Training Set). 

Overall, the hand resulted in significantly higher recognition rates than the phone 

(F1,21 = 13.61, p = .001, η2 = .39), and gestures created by blindfolded sighted 

participants were more accurately recognized than blind participants’ gestures (F1,21 

= 7.09, p = .015, η2 = .25). As one would expect, for Training Set, rates were 

significantly higher if training was personalized within each participant as compared to 

the user group as a whole (F1,21 = 150.00, p < .001, η2 = .88). No other main or 

interaction effects were significant. 

5.3.2.2. Geometry-based Accuracy and Consistency Measures 

While the recognition rate analysis indirectly requires that gestures be accurate and 

consistent, we also explicitly examined geometry-based accuracy and consistency of 

the shapes collected. Accuracy was defined as the absolute difference between the 

drawn shape and an ideal shape (e.g., a perfect square). For the circle, equilateral 

triangle, and square, we calculated this difference for aspect ratio, the ratio of width to 
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height (ideally 1), and closure [53], the Euclidian distance between the start and end 

points of the gesture (ideally 0). For the plus and equal signs, we calculated the angle 

between the two strokes (ideally 90° for ‘+’ and 0° for ‘=’) and the length ratio of the 

shortest stroke to the longest stroke (ideally 1, which represents equal length). 

Consistency for each of these measures was defined as the standard deviation across 

the five test trials each participant drew per shape. Finally, we also looked at the area 

of the minimum bounding box and consistency of that size. 

The results are inconclusive regarding these accuracy and consistency measures. 

Examining the raw means for accuracy measures shown in Table 5.1, all measures are 

closer to the ideal shape on the phone than on the hand if compared within the blind 

group or the sighted group. This trend is contrary to H4 and H6, although 2 × 2 (Group 

× Interface) repeated measures ANOVAs with ART for each measure revealed no 

significant main or interaction effects. For the consistency measures, the same analyses 

revealed a few significant effects, although no clear picture emerged. The significant 

effects were: main effect of Interface on consistency of size (F1,21 = 9.89, p = .005, 

η2 = .32), interaction effect between Group and Interface on consistency of size 

    BlindBlindBlindBlind    SightedSightedSightedSighted    
Phone:Phone:Phone:Phone:    M (SD) Hand:Hand:Hand:Hand:        M (SD) PhonePhonePhonePhone: : : :     M (SD) HandHandHandHand:  :  :  :  M (SD) 

AccuracyAccuracyAccuracyAccuracy    Aspect ratioa 0.36 (0.22) 0.39 (0.33) 0.28 (0.11) 0.30 (0.08) 
Closurea (px) 30.17 (15.59) 34.84 (18.60) 25.95 (12.75) 28.96 (14.60) 
Angleb (°) 7.77 (3.37) 11.29 (5.66) 8.11 (4.90) 10.81 (5.57) 
Length Ratiob 0.20 (0.11) 0.25 (0.17) 0.14 (0.08) 0.16 (0.04) 

ConsistencyConsistencyConsistencyConsistency    Aspect Ratioa 0.17 (0.07) 0.14 (0.05) 0.24 (0.20) 0.27 (0.25) 
Closurea (px) 11.26 (12.14) 7.02 (8.12) 6.58 (3.92) 8.43 (6.74) 
Angleb (°) 4.59 (3.49) 4.18 (3.28) 2.81 (2.01) 6.70 (6.43) 
Length Ratiob 0.10 (0.07) 0.12 (0.13) 0.07 (0.06) 0.08 (0.04) 
Sizeab (px2) 3751(7838) 3407 (5536) 1000 (1178) 2157 (1216) 

Table Table Table Table 5555....1111. Accuracy and consistency measures for Task 2. Accuracy is computed as the absolute difference . Accuracy and consistency measures for Task 2. Accuracy is computed as the absolute difference . Accuracy and consistency measures for Task 2. Accuracy is computed as the absolute difference . Accuracy and consistency measures for Task 2. Accuracy is computed as the absolute difference 
between the raw measure and an ideal shape, and consistency is the standard deviation across each between the raw measure and an ideal shape, and consistency is the standard deviation across each between the raw measure and an ideal shape, and consistency is the standard deviation across each between the raw measure and an ideal shape, and consistency is the standard deviation across each 

participant’s five test trials per shape. Smaller numbers are participant’s five test trials per shape. Smaller numbers are participant’s five test trials per shape. Smaller numbers are participant’s five test trials per shape. Smaller numbers are better. better. better. better. The metrics with The metrics with The metrics with The metrics with ‘a’‘a’‘a’‘a’    were uwere uwere uwere used for circle, sed for circle, sed for circle, sed for circle, 
triangle, and square.triangle, and square.triangle, and square.triangle, and square.    The metrics with mark The metrics with mark The metrics with mark The metrics with mark ‘b’‘b’‘b’‘b’    were uwere uwere uwere used for sed for sed for sed for the restthe restthe restthe rest. (. (. (. (NNNNsightedsightedsightedsighted    = 12; = 12; = 12; = 12; NNNNblindblindblindblind    = 11).= 11).= 11).= 11).    
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(F1,21 = 5.85, p = .025, η2 = .22), and interaction between Group and Interface on shape 

closure (F1,21 = 5.56, p = .028, η2 = .21). It is unclear whether the results would change 

with a larger sample size. 

Finally, participants created bigger gestures on their hand than on the phone 

(e.g., Figure 5.8). A 2 × 2 repeated measures ANOVAs with ART revealed a significant 

main effect of Interface on size (F1,21 = 19.15, p < .001, η2 = .48). No other main or 

interaction effects were significant. 

5.3.2.3. Subjective Feedback 

In terms of overall preference for shape gestures, 7 out of 12 sighted participants 

preferred the hand to the phone, compared with only 4 out of 11 blind participants. 

These trends are similar to the first task. Participants who preferred the hand valued its 

tactile feedback. For example, B7 said: “You can feel where you started and where you 

ended. You may have more control to draw the shape.” In contrast, the flatness of the 

phone was the most popular reason for favoring it over the hand, mentioned by 4 

sighted and 7 blind participants. For example, B2 said: “phone is sort of drawing on a 

paper, because it's flat. [Because of the] valleys and peaks, I never know if the square 

on the hand was really a square.” 

  
(a) Phone (b) Hand 

Figure Figure Figure Figure 5555....8888. Examples of circles on the phone and on the hand by blind participant B5. The. Examples of circles on the phone and on the hand by blind participant B5. The. Examples of circles on the phone and on the hand by blind participant B5. The. Examples of circles on the phone and on the hand by blind participant B5. The    rectangles rectangles rectangles rectangles 
show the minimum bounding box for each shapeshow the minimum bounding box for each shapeshow the minimum bounding box for each shapeshow the minimum bounding box for each shape,,,,    and and and and the starting point of each strokethe starting point of each strokethe starting point of each strokethe starting point of each stroke    is marked withis marked withis marked withis marked with    a a a a 

dotdotdotdot. The . The . The . The sizes of the shapes are larger on the hand.sizes of the shapes are larger on the hand.sizes of the shapes are larger on the hand.sizes of the shapes are larger on the hand.    
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Participants also rated the two interfaces on ease, accuracy and consistency using 5-

point scales (5 is best), as shown in Figure 5.9. For each rating, we ran a 2 × 2 repeated-

measures ANOVA with ART but no main or interaction effects were significant.  

5.3.3. Summary 

The speed results support H1 and replicate Gustafson et al.’s [38] conclusion that the 

hand allows faster target pointing than the phone for non-visual use. Furthermore, we 

extended this result to show that it also applies to blind users who already have more 

experience with non-visual interaction. We also found support for H2, which provides 

new insight on first touch location accuracy, showing that it is higher on the hand than 

the phone, and that it varies based on location of the target—targets on the fingers were 

more accurate than on the palm. No support was found for H3.  

While the geometric analyses were inconclusive and did not provide support 

for H4-H6, the gesture recognition rate results provided indirect evidence that the hand 

results in more consistent and/or accurate gestures than the phone. These recognition 

rate findings thus provide some support for H4 and H5. Subjective preference trends 

 

Figure Figure Figure Figure 5555....9999. Subjective ratings for ease, accuracy, and consistency for shape drawing task (. Subjective ratings for ease, accuracy, and consistency for shape drawing task (. Subjective ratings for ease, accuracy, and consistency for shape drawing task (. Subjective ratings for ease, accuracy, and consistency for shape drawing task (NNNNsightedsightedsightedsighted    = 12; = 12; = 12; = 12; 
NNNNblindblindblindblind    = 11). Error bars indicate 95% confidence intervals.= 11). Error bars indicate 95% confidence intervals.= 11). Error bars indicate 95% confidence intervals.= 11). Error bars indicate 95% confidence intervals.    
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were similar to the pointing task, with more sighted than blind participants preferring 

the hand. 

5.4. Discussion 

Our findings both replicate and broaden Gustafson et al.’s [38] study of non-visual 

pointing performance by sighted users on the hand versus a phone. Most importantly, 

we extended their results to blind users, showing that on-body input offers an 

alternative to the touchscreen phone as a means of accessible mobile interaction. Our 

results also show that the location of the first touchdown on the hand is more likely to 

be within the intended target’s bounds than it is on the phone. This finding suggests 

that proprioception even before the hands touch is partly responsible for the 

performance advantage of the hand.  

5.4.1. Difference Between Sighted Versus Blind Users 

Because blind individuals have higher tactile acuity than sighted individuals 

[20,34,63,116], we had expected that the performance benefits of the hand would be 

particularly noticeable for the blind participant group. However, there was no 

difference for the pointing task, possibly due to the difference between tactile acuity is 

simply too small to matter (e.g., the tactile grating detection and 2-point gap 

discrimination studies [34,116] showed differences of 0.33mm and 0.37mm, 

respectively). Moreover, for shape drawing task, blind users had significantly lower 

recognition rates than sighted users, which may be due to differences in spatial 

cognition ability (e.g., [93,118]) or even simply due to lower familiarity with the shapes 

that were used [6,48].  
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Another somewhat contrary trend, though not statistically significant, suggests that 

sighted participants were more likely than blind participants to prefer the hand to the 

phone. This could be due to blind participants having more experience and familiarity 

with non-visual interaction on touchscreen devices, since all blind participants owned 

a smartphone. Further work is needed, however, to confirm whether these preferences 

would remain unchanged with more realistic or longer-term use of on-body interaction.  

5.4.2. Pointing on Fingers and Shape Drawing on Palm 

Despite perhaps not being more beneficial for blind users than sighted users, our 

findings suggest that pointing to targets on the hand is a viable and efficient input 

technique for accessible mobile computing. In designing future on-hand interfaces, the 

fingertips, which are known for high acuity (e.g., [25,115]), would be good locations 

for frequently needed shortcut commands as participants were faster and more likely 

to touch down immediately within a target’s bounds in these regions than in other areas. 

In addition, pointing performance differs depending on which finger the target is 

located (e.g., index or ring finger), and should be taken into account when placing 

targets. As with the advantage of the fingertips, these differences across fingers may be 

at least partly due to known acuity differences (e.g., [63,123]). In terms of drawing 

shapes, palm may offer better gesture recognition accuracy than on the phone. As such, 

future work should explore the potential for accessible finger-specific or shape-based 

gestural shortcuts. 
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5.5. Limitations 

When designing the target layout for the pointing task, our focus was to maximize the 

role of natural landmarks of the hand. We thus adapted the target layout to each 

participant’s hand to provide a more realistic, ecologically valid assessment of on-hand 

input performance than could be achieved by replicating the rectangular shape of a 

phone on the hand. As a result, and as must have also been the case in [38], the average 

target size on the hand was bigger than the phone: 6.31cm2 (SD = 2.19) on average 

compared to 4.03cm2. Although we attempted to mitigate this difference by using a 

relatively large phone, further work is needed to clearly separate the impacts of size 

and other layout factors from tactile and proprioceptive feedback. 

Another limitation is that we may have found different results had we provided 

more training for each task, considering that on-hand input was new to participants. It 

may also be useful to examine potential differences between early-blind (who became 

blind at birth or a young age) and late-blind individuals, to control visual experience in 

assessing performance on spatial tasks [32,64]. Tactile acuity is also affected by factors 

such as age [34], so a matched pair design that takes age into account could offer more 

experimental power in future work.  

To reduce input variability and facilitate accurate sensing, we stabilized the 

hand and phone during data collection. A more realistic scenario would allow both 

hands to move freely and could uncover additional issues such as the need to keep the 

hands within the camera’s field of view. 
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Finally, due to random recruitment, our participants might not be representative of the 

population for each user group. Thus, further investigation would be needed with a 

representative sample to accurately reflect the entire population.  

5.6. Conclusion  

Although the benefit of on-body input for blind users might not be greater than for 

sighted users for non-visual interaction, the results from this study confirmed the 

findings from Gustafson et al. [38] that users can benefit from on-body interaction for 

a non-visual target pointing task, compared to smooth touchscreen. We also extended 

this finding to blind users. Furthermore, our findings show that the hand offers better 

first touch location accuracy and results in higher shape gesture recognition rates than 

the phone—a new contribution compared to [38]. Furthermore, the findings from this 

study allowed us to gain insights for designing non-visual on-body interaction.   

We now turn from investigating interaction design and input performance 

questions with on-body interaction to how to accessibly sense such interaction for VI 

users.  
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Chapter 6: Sensing Location-Specific On-Body Gestures Using 

Finger- and Wrist-Worn Sensors 

6.1. Motivation and Introduction 

To enable on-body interaction, researchers have explored a variety of approaches such 

as using body-mounted cameras [23,27,39,40,117,126] and capacitive sensors 

[68,74,106,127]. However, the interaction space is often constrained by the placement 

and range of the sensor, thus not feasible for supporting location-specific gestures that 

are found to be preferred by VI participants for on-body interaction (Chapters 3 and 4). 

For example, Skinput [43] can detect simple touches at a variety of locations, but cannot 

recognize more complex gestures. In contrast, FingerPad [24] and PalmGesture [126] 

can sense shape gestures performed on the fingertip or palm, but cannot easily be 

extended to multiple locations. Moreover, while camera-based sensing techniques are 

common for on-body input because optical images can offer rich contextual 

information, capturing in-focus images without occlusion or framing issues is often 

challenging for people with visual impairments, who may require assistance (e.g., 

[3,129]).  

To support complex gestures at multiple body locations and to provide an 

accessible on-body input sensing approach for VI users, we employed finger- and wrist-

mounted sensors. Mounting sensors on the gesturing hand enables collocation of touch, 

sensing and feedback (i.e.., tactile feedback from the user’s skin), and it may also 

prevent out-of-frame (e.g., gesturing finger is beyond the camera) or occlusion issues 

(e.g., gesturing finger is not visible/hidden by other objects) that can occur with hand-
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held or body-mounted cameras. Furthermore, this approach can extend the input space 

beyond limited locations such as the palm, and support contextual location-specific on-

body input (e.g., tapping the wrist to check the current time, swiping on the ear to 

dismiss an incoming call), which will also increase input vocabulary by combining 

input locations and gestures compared to having only location-independent gestures. 

The main research question we had was:  

• To what extent can we reliably support on-body input sensing using finger-, and 

wrist mounted sensors? 
To answer this question, we investigated a finger-based, multi-sensor approach to 

detect location-specific on-body gestures. We developed a physical prototype included 

(i) a finger-worn multi-sensor package with two infrared (IR) reflectance sensors, an 

inertial measurement unit (IMU), and a small camera with an adjustable LED for 

illumination; and (ii) a wrist-worn IMU as would be found in a smartwatch. Then, we 

collected on-body input data from 24 participants to evaluate the effectiveness of the 

sensors individually and in combination. The dataset includes: (i) a set of eight basic 

gestures (e.g., taps, swipes) at three of the above locations that offer a large surface 

area (palm, wrist, thigh) for a total of 24 location-specific gestures; and (ii) the same 

eight gestures performed only on the palm, but at three different speeds.  

6.2. Prototype Hardware 

Our physical prototype consists of two wearable components: (i) a multi-sensor 

package worn on the finger with two IR sensors, an inertial measurement unit (IMU), 

and a small camera with an adjustable LED for illumination; and (ii) a wrist-worn 

microcontroller with its own IMU—which was intended to simulate the sensing that a 
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smartwatch can provide. The finger-based sensors were mounted on three laser-cut 

rings and positioned to avoid impeding the user’s sense of touch.  

For the segmentation of the start and end of gestural input, the two IR sensors7 

(each 2.9mm × 3.6mm × 1.7mm) were used with the sensing range of ~2–10mm. As 

shown in Figure 6.1, these sensors were mounted on the sides of the front-most ring, 

approximately 5mm from the fingertip to avoid interfering with tactile sensitivity. For 

the gesture recognition, two IMUs8 were used to investigate the role of sensor position 

(finger vs. wrist) on performance. These were mounted on the user’s hand: one below 

the camera on the index finger and one on the wrist. The IMUs provide motion 

information at ~190 Hz with nine degrees of freedom—each contains a three-axis 

accelerometer, gyroscope, and magnetometer. A small (6mm diameter) CMOS camera9 

was also used to collect 640 × 640 px images at 90 fps. For consistent lighting, a bright 

LED (3mm diameter) was mounted below the camera lens. The IR and IMU sensors 

                                                 
7
 Fairchild Semiconductor QRE113GR 

8
 Adafruit Flora LSM9DS0 

9
 Awaiba NanEye GS Idule Demo Kit 

 

Figure Figure Figure Figure 6666....1111. Our prototype hardware, consisting of a finger. Our prototype hardware, consisting of a finger. Our prototype hardware, consisting of a finger. Our prototype hardware, consisting of a finger----mounted multimounted multimounted multimounted multi----sensor package (camera, inertial sensor package (camera, inertial sensor package (camera, inertial sensor package (camera, inertial 
motion unit, andmotion unit, andmotion unit, andmotion unit, and    infrared reflectance sensors) and a wristinfrared reflectance sensors) and a wristinfrared reflectance sensors) and a wristinfrared reflectance sensors) and a wrist----mounted microcontroller and additional inertial mounted microcontroller and additional inertial mounted microcontroller and additional inertial mounted microcontroller and additional inertial 

motion unit.motion unit.motion unit.motion unit.    
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were connected to a microcontroller10 mounted on a Velcro wristband, and the camera 

and microcontroller were connected to a desktop computer via USB cables. 

6.3. Input Recognition 

To recognize localized on-body interaction, we developed a four-stage approach: Stage 

1 – touch segmentation, Stage 2 – feature extraction, Stage – 3 location classification, 

and Stage 4 – gesture classification. For the touch segmentation stage, we used only IR 

sensor readings, while we explored features from all types of sensors for the rest of the 

stages. 

6.3.1. Stage 1: Input Detection and Segmentation 

We first segmented the input stream by detecting touch-down and touch-up events 

using IR sensor readings. The IR values represent distance from the touch surface 

(lower values are closer). While for real-world use, a segmentation approach would 

need to identify these touch events within a continuous stream of data, here the 

segmentation was done within a bounded trial that contains a single gesture. Based on 

experiments with pilot data, we developed a straightforward threshold-based approach; 

within a trial, a touch-down event is defined as an IR value lower than the threshold, 

while a touch-up event is the opposite. To be conservative, we segment the entire touch 

gesture from the first touch-down event in the trial to the last touch-up event. The 

threshold (θ) was set as below: 

O = P 0.9 ∗ RSTUV  WX YWZ[\] RS WY ^Y]_
 min(0.9 ∗ RSTUV` , 0.9 ∗ RSTUVa )  bcℎ]efWY] 

                                                 
10

 Sparkfun Arduino Pro Micro (5V/16MHz) 
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For a single IR sensor, for example, the threshold was set to 90% of the maximum IR 

values observed across the input stream. 

Figure 6.2 shows the IR sensor readings for a swipe-right gesture on the thigh, 

illustrating why two sensors are needed for segmentation. With this left-to-right 

movement, the left sensor detects the touch first, but if used alone would segment the 

end of the gesture prematurely because of the direction of the gesture and shape of the 

surface. We crop each input stream to include only those sensor readings and video 

frames that lie between the touch-down and touch-up event timestamps. 

6.3.2. Stage 2: Feature Extraction 

We extracted static orientation and visual features for localization, and motion features 

for gesture classification. 

6.3.2.1. Features for Input Localizations 

To extract static features for localization, we first determined the video frame that has 

the maximum focus in the segmented sequence, where the focus is defined as the total 

number of pixels extracted using a Canny edge detector [22], tuned with a small 

aperture (g = 3) and relatively low thresholds (h̀ = 100, ha = 50). We then used the 

timestamp of this video frame to extract static features from the IMU and IR sensors. 

 
Figure Figure Figure Figure 6666....2222. An example of left and right IR . An example of left and right IR . An example of left and right IR . An example of left and right IR sensor readings during a swipesensor readings during a swipesensor readings during a swipesensor readings during a swipe----right gesture performed on right gesture performed on right gesture performed on right gesture performed on 

the thigh. Dashed lines indicate automatically segmented start and end times.the thigh. Dashed lines indicate automatically segmented start and end times.the thigh. Dashed lines indicate automatically segmented start and end times.the thigh. Dashed lines indicate automatically segmented start and end times.    
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For the IMUs, we computed the orientation of users’ finger and wrist, estimated by 

applying a Madgwick filter [71] on a sequence of raw accelerometer, magnetometer, 

and gyroscope readings. For the camera, we extracted texture features using local 

binary patterns (LBP), a common choice due to computational efficiency and 

robustness to changes in illumination (see [79,88]). Finally, features were extracted 

from IR sensor values for localization.  

6.3.2.2. Motion Features for Gesture Classifications 

For gesture classification, we extracted the following motion features from the sensor 

readings within the segmented timeframe.  

IMU and IR. We used three preprocessing steps on the raw IMU and IR sensor 

readings, including smoothing, normalization, and resampling. We first smoothed the 

raw values using a Gaussian filter (σ =13, optimized based on pilot data) to reduce the 

effect of sensor noise, and then normalized the smoothed sequence by subtracting the 

mean and dividing by the standard deviation of the sequence. To obtain a fixed length 

sequence and improve robustness across different speeds, we resampled the sensor 

readings at 50 equally spaced discrete time steps, as in [133]. These values, however, 

were still sensitive to small variations in speed and orientation. Thus, as in [133], for 

each IMU and IR sensor we compute summary statistics for sets of 20 samples at 10-

step increments (i.e., four windows): mean, minimum, maximum, median, and absolute 

mean. Finally, for the 50 resampled accelerometer, magnetometer, and gyroscope 

readings, we computed x-y, x-z, and y-z correlations (also as in [133]). As a result, 79 

features for each IMU and 70 for each IR sensor were extracted, which we used 

individually or concatenated together when classifying gestures. 
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Camera. We also extracted 2D motion feature vector from the full segmented sequence 

of camera video frames, estimated using a template-matching approach; matched 

against the successive two frames using a sliding window to compute the normalized 

cross-correlation [67]. Then, to reduce the impact of tracking noise, we smoothed the 

motion estimates by applying a moving average (window size = 10). We then re-

sampled 50 points from this temporal sequence of motion vectors and computed 

statistics as with the IMU and IR sensor readings to obtain a fixed-length vector of 840 

features for use in gesture classification. 

6.3.3. Stage 3: Location Classification 

For localization, we relied primarily on static visual features from the camera as well 

as IMU and IR reflectance sensor values. We classified the image using a support 

vector machine (SVM), commonly used in texture classification (e.g., [28,56,134]), 

that was trained on the computed texture features. We used a ia kernel, which is known 

to perform well with LBP histograms [4]. 

During the classification, we resolved ambiguities using a sensor fusion 

approach. We combined predictions from the static visual features from a video frame 

with predictions from the IMU orientation and IR reflectance features with the same 

timestamp as that frame. Since the scales, lengths, and types of these feature vectors 

were all very different, we instead trained a separate SVM with a Gaussian kernel on 

the non-visual features rather than concatenating the features for use with a single 

classifier. To robustly combine the predictions from two disparate classifiers, we first 

tuned the SVMs to output normalized probability predictions for each class using Platt 

scaling, as is standard [95]. We concatenated these predictions into a single feature 
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vector, which we then used to train a third sensor fusion classifier that automatically 

learned how to prioritize sensors based upon prediction confidence and location class. 

Inspired by [62], we used a feedforward neural network for this sensor fusion classifier. 

Our network had one fully connected hidden layer for flexibility of functional 

representation, and a softmax output layer to allow for multiclass output; it is trained 

using resilient backpropagation [73].  

6.3.4. Stage 4: Gesture Classification 

Individual support vector machine (SVM) gesture classifiers were trained for each of 

the locations where gestures are performed. Thus, once a location was predicted in 

Stage 4, the gesture was classified using the matching SVM. Each SVM was trained 

using all of the computed IMU, IR, and camera-based motion features concatenated 

into a single feature vector as in [133]. In our experiments, we combined features in 

various combinations (see Results). As with texture, SVM classifiers are commonly 

used for classifying gesture features because they are robust and efficient for problems 

with high dimensionality. We used a linear kernel with feature weights that were tuned 

to maximize performance across all participants. We trained three location-specific 

SVMs (palm, wrist, and thigh) to classify the gestures shown in Figure 6.3: tap, swipe 

up, swipe down, swipe left, swipe right, circle, triangle, and square.  

 
Figure Figure Figure Figure 6666....3333. . . . Participants were asked Participants were asked Participants were asked Participants were asked to to to to perform these eight gesturesperform these eight gesturesperform these eight gesturesperform these eight gestures    on three different body locations on three different body locations on three different body locations on three different body locations 

(palm, wrist, and thigh) or (palm, wrist, and thigh) or (palm, wrist, and thigh) or (palm, wrist, and thigh) or on palm on palm on palm on palm with three different speedwith three different speedwith three different speedwith three different speed    levelslevelslevelslevels    (slow, medium, fast).(slow, medium, fast).(slow, medium, fast).(slow, medium, fast).    
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6.4. Data Collection 

To evaluate the accuracy of our finger- and wrist-mounted sensing system and the 

effectiveness of the sensors individually and in combination, we first collected input 

data from 24 participants including a set of eight basic gestures (e.g., taps, swipes) as 

shown in Figure 6.3 at three different locations that offer a large surface area (palm, 

wrist, thigh), and the same eight gestures performed only on the palm, but at three 

different speed levels (slow, medium, fast).  

6.4.1. Participants 

Twenty-four right-handed participants (16 female) were recruited via campus e-mail 

lists and word of mouth. Their average age was 28.9 (SD=7.95, range 19–51). 

Participants were compensated $25 for their time. 

6.4.2. Apparatus 

For data collection, participants wore the prototype described earlier in Chapter 6.2. 

We selected ring sizes to fit the participant’s finger and adjusted positioning to ensure 

a consistent sensor range. A custom application in C# was written to display task 

prompts and a live feed from the finger-worn camera to assist with framing the target 

locations. Sensor readings from the IMU and IR sensors and video frames from the 

camera were logged along with timestamps and manual touch location and gesture 

labels to use as our ground truth. The raw data readings along with timestamps were 

saved to a log file and accompanying video file. Velcro straps were used on the upper 

arm to prevent the USB cables from interfering with the participants’ range of motion. 

The focus of the camera was adjusted prior to the data collection. 
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6.4.3. Procedure 

The procedure began with a brief demographic questionnaire, and lasted up to 90 

minutes. After a brief demographic questionnaire and instrumentation of the hardware 

prototype, three types of on-body input were collected for each participant in the 

following order: (1) location-specific touches, (2) location-specific gestures, and (3) 

gestures with various speed levels.  

6.4.3.1. Location-specific Touches 

Participants made static touches (i.e., touch and hold the finger down) at 15 locations 

including locations on the palm, fingers, ear, shoulder and thigh. Each trial began with 

a visual prompt of the target location shown on the monitor along with an audio alert. 

Participants were asked to hold their finger down and visually confirm on the monitor 

that they were pointing to the correct location. The experimenter confirmed that the 

location was correct and the image was in focus, then pressed a button to mark the 

current timestamp and trigger the start of the next trial. Participants completed 10 

blocks of trials, where each block consisted of a different random permutation of the 

15 locations (150 trials in total). In total, this dataset includes 3600 location-specific 

touches, across all participants. 

6.4.3.2. Location-specific Gestures 

We defined a set of eight basic gestures: tap, swipes in the four cardinal directions, and 

shape-based circle, square, and triangle gestures (Figure 6.3). Participants performed 

these gestures at three body locations: the palm, wrist, and thigh. These locations were 

selected because they have a relatively large input area, thus allowing for more complex 

gestures, and, practically speaking, they are easy to access and unobtrusive [33,97,125]. 
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As with the first task, participants completed 10 blocks of trials, where each block 

consisted of a different random permutation of the 24 gesture and location 

combinations (240 trials in total). In total, this dataset includes 5,760 location-specific 

gestures across all participants. 

6.4.3.3. Gestures With Various Speed Levels 

To assess robustness across different gesture articulation speeds, participants 

performed the set of eight gestures on their palm at three different speeds: fast, medium, 

and slow. Participants performed 10 blocks of trials per speed, with each block 

consisting of a different random permutation of the eight gestures (240 trials in total). 

At the beginning of each of the three speed levels, the tester demonstrated all eight 

gestures at that speed and guided the participant through a brief practice session to 

ensure consistency. The order of presentation for speed levels was fully 

counterbalanced across participants. In total, this dataset includes 5,760 gestures, 

varying speed across all participants.  

6.5. Experiment and Results 

We evaluated our on-body input sensing system with the collected data for location-

specific gesture classification, along with a robustness analysis across gesture speeds, 

with a brief verification that both IRs are better for segmentation than either IR alone. 

We use classification accuracy (% correct) to measure performance. All experiments 

use leave-one-out 10-fold cross validation to train and evaluate our algorithms. For the 

location-specific gesture classification, we compare sensor combinations using paired 

t-tests and use a Holm-Bonferroni adjustment to protect against Type I error [45]. 
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6.5.1. Location-Specific Gesture Classification 

To explore how well different sets of sensors can be used to recognized basic touch 

input performed at different locations, we conducted the same experiment with 

location-specific on-body gestures with 24 classes (3 locations × 8 gestures) to explore 

the performance of each sensor combination. The results are shown in Figure 6.4. This 

analysis includes all four stages of our Input Recognition approach, but does not require 

geometric verification in Stage III because the thigh, palm and wrist are coarse-grained 

locations.  

The highest accuracy of 94.9% was achieved by combining all sensors (SD = 

2.9). As with the touch localization, above, the camera is the best single sensor 86.3% 

(SD = 7.7), but in general adding more sensors improves accuracy. The camera alone 

is more accurate than the IR sensors or the wrist-based IMU (IMUwrist) alone, although 

there is no statistically significant difference between the camera and finger-based IMU 

(IMUfinger), at 80.6% (SD=8.3). The accuracy comparisons among different sensor 

combinations that are statistical significant is shown in Table 6.1. 

    
Figure Figure Figure Figure 6666....4444. Classification accuracy of location. Classification accuracy of location. Classification accuracy of location. Classification accuracy of location----specific gestures for different sensor combinations specific gestures for different sensor combinations specific gestures for different sensor combinations specific gestures for different sensor combinations averaged averaged averaged averaged 

across 24 participants,across 24 participants,across 24 participants,across 24 participants,    showing that the camera (C) is necessary but not sufficient for gesture showing that the camera (C) is necessary but not sufficient for gesture showing that the camera (C) is necessary but not sufficient for gesture showing that the camera (C) is necessary but not sufficient for gesture 
classification. Legend: IR = infrared reflectance, F = IMUclassification. Legend: IR = infrared reflectance, F = IMUclassification. Legend: IR = infrared reflectance, F = IMUclassification. Legend: IR = infrared reflectance, F = IMUfinfinfinfingergergerger, W = IMU, W = IMU, W = IMU, W = IMUwristwristwristwrist, C = camera). Means are , C = camera). Means are , C = camera). Means are , C = camera). Means are 

marked by ‘marked by ‘marked by ‘marked by ‘×’×’×’×’.  .  .  .      
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Overall, camera-based combinations are best for accurate location-specific gesture 

classification than combinations without the camera (see Table 6.2 for detail 

comparisons), though there is flexibility in what specific set of IR or IMU sensors are 

combined with it. With only two sensors involved, the camera plus either the finger- or 

wrist-worn IMU are the most accurate options, with accuracies rising significantly 

compared to the camera alone, to 91.7% (SD=4.2) and 92.5% (SD=4.1), respectively. 

These two camera-based combinations are also better than any other pairs of sensors. 

With three sensors involved, the camera-based options are all significantly more 

accurate than the combination of IR plus the two IMUs; no statistically significant 

 Comparison t23 d M (SD)1 M (SD)2  

 Single sensors  

 C vs. IR 21.01 4.26 86.3 (7.7) 50.4 (9.1)  

 F vs. IR 13.53 3.54 80.6 (8.3) 50.4 (9.1)  

 W vs. IR 13.49 3.28 78.0 (8.1) 50.4 (9.1)  

 C vs. W 4.71 1.05 86.3 (7.7) 78.0 (8.1)  

 Best single sensor (C) vs. two sensors  

 C vs. C+W -5.03 -1.03 86.3 (7.7) 92.5 (4.1)  

 C vs. C+F -4.17 -0.90 86.3 (7.7) 91.7 (4.2)  

 C vs. W+IR* 3.56 0.74 86.3 (7.7) 80.8 (7.0)  

 Two-sensor combinations  

 C+W vs. W+IR 9.15 1.95 92.5 (4.1) 80.8 (7.0)  

 C+F vs. W+IR 7.50 1.82 91.7 (4.2) 80.8 (7.0)  

 C+F vs. C+IR 7.02 1.23 91.7 (4.2) 84.9 (6.8)  

 C+F vs. F+IR 6.87 1.41 91.7 (4.2) 83.8 (7.0)  

 C+W vs. C+IR 6.84 1.38 92.5 (4.1) 84.9 (6.8)  

 C+W vs. F+IR 6.72 1.55 92.5 (4.1) 83.8 (7.0)  

 C+W vs. F+W 5.70 1.25 92.5 (4.1) 85.1 (7.5)  

 C+F vs. F+W 4.41 1.11 91.7 (4.2) 85.1 (7.5)  

 Best 2-sensor combination (C+W) vs. 3 sensors  

 C+W vs. F+W+IR 5.28 1.19 92.5 (4.1) 86.2 (6.4)  

 C+W vs. C+F+W -4.38 0.58 92.5 (4.1) 94.5 (3.1)  

 C+W vs. C+W+IR -4.05 0.31 92.5 (4.1) 93.6 (3.7)  

 Three-sensor combinations  

 C+W+IR vs. F+W+IR 5.95 1.45 93.6 (3.7) 86.2 (6.4)  

 C+F+IR vs. F+W+IR 5.85 1.37 93.3 (3.8) 86.2 (6.4)  

 C+F+W vs. F+W+IR 7.48 1.69 94.5 (3.1) 86.2 (6.4)  

    Table Table Table Table 6666....1111. Statistically significant . Statistically significant . Statistically significant . Statistically significant comparisons between sensors combinations for locationcomparisons between sensors combinations for locationcomparisons between sensors combinations for locationcomparisons between sensors combinations for location----
specific gestures. specific gestures. specific gestures. specific gestures. Analysis included 37 total comparisons within the groups listed above (Analysis included 37 total comparisons within the groups listed above (Analysis included 37 total comparisons within the groups listed above (Analysis included 37 total comparisons within the groups listed above (e.g.,    all all all all 

pairs of single sensors). Holmpairs of single sensors). Holmpairs of single sensors). Holmpairs of single sensors). Holm----Bonferroni adjustment applied.Bonferroni adjustment applied.Bonferroni adjustment applied.Bonferroni adjustment applied.    All displayed results are significant All displayed results are significant All displayed results are significant All displayed results are significant 
at at at at pppp    < .001, except those marked< .001, except those marked< .001, except those marked< .001, except those marked    ‘‘‘‘****’’’’    ((((pppp    = .002).= .002).= .002).= .002).    Legend: IR = infrared reflectance, F = IMULegend: IR = infrared reflectance, F = IMULegend: IR = infrared reflectance, F = IMULegend: IR = infrared reflectance, F = IMUfingerfingerfingerfinger, W , W , W , W 
= IMU= IMU= IMU= IMUwristwristwristwrist, C = camera). , C = camera). , C = camera). , C = camera). The mean and standard deviation for each pairwise comprisons are also The mean and standard deviation for each pairwise comprisons are also The mean and standard deviation for each pairwise comprisons are also The mean and standard deviation for each pairwise comprisons are also 

presented (marked presented (marked presented (marked presented (marked ‘1’‘1’‘1’‘1’    for the former, and for the former, and for the former, and for the former, and ‘2’‘2’‘2’‘2’    for the latter in the order that is presnted in first for the latter in the order that is presnted in first for the latter in the order that is presnted in first for the latter in the order that is presnted in first 
columncolumncolumncolumn).).).).    
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differences are found between the camera-based combinations. Furthermore, the three-

sensor combination with the highest accuracy, camera plus both IMUs (M = 94.5, SD 

= 3.1), is not significantly different from including all four sensor options.   

6.5.2. Robustness to Variation in Gesture Speed 

To evaluate the robustness of our approach to differences in gesture articulation speed, 

we compared gesture classification accuracy for individual sensors with the speed-

varied dataset (8 gestures on the palm at 3 different speeds). The average duration of 

slow gestures is 2.8s (SD = 0.8), medium is 1.8s (SD = 0.5), fast is 1.2s (SD = 0.2). Our 

findings show that the accuracies from the IMUs are relatively robust to different 

speeds (> 93%); however, the camera and IR accuracies both drop as speed increases. 

Descriptive statistics are shown in Table 6.3. A 4 × 3 two-way repeated measures 

ANOVA with factors of Sensor Type (4 levels: IR, finger IMU, wrist IMU, and camera) 

and Speed (3 levels: Slow, Med, Fast) reveals a significant interaction effect between 

the two factors (F6,276 = 17.75, p < .001, η2 = .14). This result confirms that the different 

Comparisons t23 d w/ camera w/o camera  

Singer non-optical sensor with or without the camera 

IMUfinger 7.36 1.69 91.7 (4.2) 80.6 (8.3) 

IMUwrist 12.0 2.26 92.5 (4.1) 78.0 (8.1) 

IR 25.2 4.29 84.9 (6.8) 50.4 (9.1) 

Two non-optical sensors with or without the camera 

IMUfinger + IMUwrist 7.00 1.64 94.5 (3.1) 85.1 (7.5) 

IMUfinger + IR 8.30 1.69 93.3 (3.8) 83.8 (7.0) 

IMUwrist + IR 10.49 2.14 93.6 (3.7) 80.8 (7.6) 

Three non-optical sensors with or without the camera 

IMUfinger + IMUwrist + IR 7.85 1.23 94.9 (2.9) 86.2 (6.4) 

Table Table Table Table 6666....2222. Average accuracies for 24 . Average accuracies for 24 . Average accuracies for 24 . Average accuracies for 24 locationlocationlocationlocation----specific gesture classification of sensor different sensor specific gesture classification of sensor different sensor specific gesture classification of sensor different sensor specific gesture classification of sensor different sensor 
combinations with or without the camera (combinations with or without the camera (combinations with or without the camera (combinations with or without the camera (tttthe values within the parenthesis indicate the standard he values within the parenthesis indicate the standard he values within the parenthesis indicate the standard he values within the parenthesis indicate the standard 

devications). The last two columns show the results of paired tdevications). The last two columns show the results of paired tdevications). The last two columns show the results of paired tdevications). The last two columns show the results of paired t----tests withtests withtests withtests with    HolmHolmHolmHolm----BonferroniBonferroniBonferroniBonferroni    adjustments. adjustments. adjustments. adjustments. 
All displayed results are significant at All displayed results are significant at All displayed results are significant at All displayed results are significant at pppp    < .001< .001< .001< .001    ((((NNNN    = 24= 24= 24= 24))))....    
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sensors were impacted to differing degrees by the variation in speed. As suggested by 

Table 6.3, there were also significant main effects of Sensor Type (F3,69 = 37.13, p 

< .001, η2 = 0.42) and Speed (F2,46 = 25.32, p < .001, η2 = 0.22).  

6.5.3. Touch Segmentation 

To investigate the potential benefit of one versus two IR sensors on touch segmentation, 

we compare localized gesture classification performance (24 classes) under four 

conditions: using the full input stream for a given trial (none), and using touch 

segmentation with only the left, right, or both IR sensors; we trained and tested only on 

finger-mounted IMU sensor sequence to control other variables. Accuracy with both 

IRs is 80.6% (SD=8.3), much higher than none (M=59.5, SD=11.0), left IR (M=59.3, 

10.9), and right IR (M=59.3, SD=11.0). These three comparisons are statistically 

significant, confirming our choice to include both IRs: none (t23 = -10.99, p < .001, d = 

-2.21), left (t23 = -11.02, p < .001, d = -2.24), and right (t23 = -11.18, p < .001, d = -

2.23).  

6.5.4. Summary 

We were able to achieve 94.9% recognition accuracy across 24 classes of location-

specific gestures (8 gestures × 3 locations) at best with sensor fusion. When only single-

sensor was used, the accuracy with a finger-mounted IMU was not significantly 

different from the camera alone. However, with multi-sensor combinations, the 

SpeeSpeeSpeeSpeed IR (%) Finger IMU (%) Wrist IMU (%) Camera (%) 

Slow 89.4 (9.1) 97.1 (3.0) 94.3 (6.5) 98.0 (2.6) 

Med 85.9 (9.3) 97.9 (1.9) 93.6 (7.9) 96.3 (3.1) 

Fast 74.7 (15.3) 94.9 (3.9) 93.2 (4.9) 82.8 (11.8) 

Table Table Table Table 6666....3333. . . . Mean (Mean (Mean (Mean (SDSDSDSD) of gesture classification accuracy ) of gesture classification accuracy ) of gesture classification accuracy ) of gesture classification accuracy (%) per sensor type and speed. Compared to (%) per sensor type and speed. Compared to (%) per sensor type and speed. Compared to (%) per sensor type and speed. Compared to 
the IMUs, the IR and camera were negatively affected by speed (the IMUs, the IR and camera were negatively affected by speed (the IMUs, the IR and camera were negatively affected by speed (the IMUs, the IR and camera were negatively affected by speed (NNNN    ====    24).24).24).24).    
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inclusion of the camera is necessary for higher accuracy for input localization, although 

IMU sensors might outperform the camera when it comes to recognizing gestures 

performed at fast speed. 

6.6. Discussion 

Our experiments demonstrate the feasibility of sensing location-specific on-body 

gestures using a multi-sensor finger-worn approach. Here, we reflect on the 

implications of our findings.  

6.6.1. A Broader On-Body Input Vocabulary 

Our work increases the input vocabulary of on-body interaction over existing 

approaches to sense on-body input, which support either input at only one location or 

only simple input at multiple locations. Our experiments, for example, we show how 

sensor fusion can be used to accurately discriminate three body locations and eight 

basic gestures—resulting in 24 distinct gestural inputs. In terms of information entropy, 

a number n of successive location-specific gestures from a set of possible input m is 

log2 mn. As such, a single location-specific gesture from a set of 24 input vocabulary 

(8 gestures × 3 locations) can convey approximately 4.58 bits (log2 24 1), while a 

location-independent gesture from one of the eight gestures can only convey about 3 

bits (log2 8 1 ) of information. A large input vocabulary should allow an expert user to 

complete a wide range of efficient and non-visual interaction tasks. Having flexibility 

in the types and locations of gestures that are supported should also enable new intuitive 

mappings between input and functionality—for example, a user could gesture on their 

wrist to check the time or set an alarm, or tap their ear to answer or dismiss a phone 
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call. As well, our experiments suggest that the IMUs are particularly robust to 

differences in gesture articulation speed and, indeed, are able to distinguish between 

three different speeds with high accuracy (at least on the palm). Thus, our approach 

could also support speed-based gestures such as distinguishing between flicks versus 

slower swipes.  

The exact input vocabulary for location-specific on-body interaction will, of 

course, depend on what locations can be accurately recognized. While further work is 

required to fully understand what locations at each of these levels of granularity will 

be robustly detectable, our results already suggest that our finger-worn multi-sensor 

approach should be able to support interactions that require multiple input areas within 

a small space, such as text or numeric entry (e.g., by tapping different locations on palm 

or fingers). 

6.6.2. Comparing the Impact of Sensors 

A key contribution of this work is not only to demonstrate the feasibility of using a 

finger-worn multi-sensor approach for location-specific input but also to characterize 

the benefits of the individual sensors—camera, IMU and IR. Moreover, while finger-

worn cameras have been explored to some extent for input tasks, very little work has 

examined the combination of camera and other sensors. Magic Finger [134] is an 

exception, but as noted earlier, uses a camera for texture detection and an optical mouse 

sensor to detect optical flow, but does not combine the two input streams.  

While the finger- and wrist-worn IMUs appear to contribute to localization, 

with a more realistic task where the user’s body pose changes, the advantage of the 

camera for localization would likely only become more prominent for all of our 



 87

experiments. When detecting not just touch location but also classifying more complex 

gestures, the addition of at least one finger-worn or wrist-worn IMU is also needed, 

with the combination of camera plus one of these IMU achieving over 90% accuracy 

over 24 classes. While adding more sensors (other IMU, IR) further improves location-

specific gesture recognition accuracy by 2–3%, each additional sensor increases size, 

weight, power requirements and overall design complexity—all critical factors in 

wearable systems. The camera plus one IMU offers a minimal combination that may 

be sufficient for some applications. Future work should explore other types of sensors 

(e.g., electromyography or bio-acoustic) and combinations as well as algorithmic 

improvements for achieving high and robust accuracy. For example, one possibility is 

to apply other sensor fusion approaches, such as the HMM employed by Botential [74], 

or to deploy state-of-art camera-based sensing technologies such as a part-based model 

approach (e.g., [100]). 

6.7. Limitations 

Our experiments have several limitations that should be addressed in future work. Our 

dataset consists of input examples under controlled conditions, so classification 

accuracy with more realistic use will need to be assessed, including changes in body 

pose and use during movement (e.g., walking, riding in a vehicle). Moreover, our 

simple threshold-based segmentation approach made use of holistic knowledge of each 

trial and was applied only to individual trials with artificial tuning, which cannot be 

directly applied to a real-time system with continuous input streams. In addition, 

although the purpose of the study is to assess the feasibility of our finger-mounted 

sensor-based on-body input sensing approach, because all the participants were sighted 
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and recruited from a campus, the study lacks representation of our target user group, 

namely people with visual impairments. Participants were also shown a live feed of the 

video camera, which was useful for ensuring the correct location of touches during the 

localized touch-and-hold input task for the system evaluation purpose. Without this 

feedback, however, users or the system will need to learn to accommodate the offset 

between the location visible to the camera and the user’s perceived touch location. 

Finally, while we proposed and focused on a finger-mounted sensor-based approach as 

a solution to resolve challenges that users with visual impairments might face when 

using a camera (e.g., out-of-focus, out-of-frame), employing state-of-art techniques in 

computer vision for recognizing hand gestures (see survey [99]) would also be useful 

to consider to address the open issue with more realistic constraints. 

6.8. Conclusion  

We introduced and investigated a new finger-based, multi-sensor approach to detecting 

location-specific on-body gestures. Our findings not only highlight the feasibility of 

our approach (95% accuracy at detecting 24 location-specific gestures), but also 

characterize the utility of the camera, IR, and IMU sensors. The importance of the 

camera sensor for localizing input is critical, but to also achieve high gesture 

recognition accuracy requires the addition of at least a finger- or wrist-worn IMU. The 

expanded vocabulary size of on-body input afforded by location-specific gestures has 

the potential to support efficient interaction for expert users, intuitive task-based 

interactions, and relatively fine-grained input for body areas that have distinctive visual 

features (e.g., fingertips and palm). Having demonstrated the feasibility of a finger- and 

wrist-worn approach to sensing location-specific on-body gestures, the next chapter 
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now turns to the question of how to employ such interaction to support blind users in 

completing microinteractions—that is, brief interactions that are typically seen as a 

strength of wearable computing devices (e.g., [11,70,112]). 
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Chapter 7: Supporting Accessible Microinteraction Through 

On-Body Interaction 

7.1. Motivation and Introduction 

Microinteractions are brief interactions that are designed to be completed within a very 

short period of time with minimal effort (e.g., less than four seconds) [10], and, as such, 

are particularly useful during multi-tasking (e.g., using the device on the go) [90,91]. 

Examples include checking the time, answering a phone call, or reading a new text 

message. Support for microinteractions is seen as a primary strength of wearable 

computing devices (e.g., [11,70,112,119]) and as such microinteractions are a 

promising application area for accessible on-body interaction. For users with visual 

impairments, in particular, designing efficient wearable support for microinteractions 

could be particularly desirable because interaction time for VI users is generally longer 

than that of sighted users [15,51] and incurs a greater cost when using the device in 

mobile context [2,111,135]. However, no studies have investigated how to support 

microinteractions for VI users beyond money identification or barcode scanning [78].  

To first identify the needs, barriers and strategies for supporting 

microinteractions for people with visual impairments compared to sighted people, we 

conducted an online survey with 56 sighted and 61 VI screenreader users. We focused 

on uncovering the usages of current hand-held smartphones, and soliciting perceived 

advantages and limitations of a smartwatch and of on-body input to learn design 

implications for supporting wearable, accessible microinteractions. Following this 

survey, we then conducted interview and design probe sessions with 12 VI screenreader 



 91

users more specifically focused on supporting microinteractions through on-body input. 

The design probes included three different real-time on-body interface 

implementations that allowed us to explore user responses to location-independent 

gestures versus location-specific gestures. In Chapters 3 and 4, we had predicted that 

VI users would prefer location-specific gestures, but those chapters did not include use 

and comparison of location-specific and location-independent on-body interaction 

implementations. The design probes were implemented using the real-time version of 

the system we developed in Chapter 6. The main questions we seek to answer are: 

• What are the most useful tasks to be supported as microinteractions for 
users with visual impairments, and do these differ from microinteractions 
for sighted users? 

• How should on-body interaction be designed to support microinteractions for 

people with visual impairments?  

7.2. Experimental Methodology 

This section describes both the survey and in-person study session method.  

7.2.1. Online Survey 

We designed and conducted an online survey to collect responses from both sighted 

and people with visual impairments in terms of mobile and wearable device use, 

primarily focusing on existing use and perceptions of smartphones and smartwatches, 

but also soliciting open-ended feedback on the idea of on-body interaction. The main 

questions here include: (1) What are the most common current microinteractions used 

by VI and sighted users? (2) What tasks, if any, are not supported as microinteractions 
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for VI users but would be valuable to support as such? (3) To what extent do VI users 

versus sighted users perceive wearable devices (specifically, a smartwatch) to enable 

microinteractions compared to the smartphone? (4) How do people react to the idea of 

on-body interaction and what are the foreseen potential use cases? 

7.2.1.1. Participant Recruitment and Survey Platform 

We recruited smartphone owners through email lists, university bulletin boards, 

organizations working with people with visual impairments, social networking sites, 

and word of mouth. The survey was hosted on SurveyMonkey and was designed to 

take up to 20 to 25 minutes for screenreader users. Participants could opt into a draw 

for a $100 Amazon gift certificate after the completion of the survey.  

7.2.1.2. Survey Outline 

The survey consisted of 32-36 questions depending on the participants’ level of vision 

and an additional 24 questions for smartwatch owners. Questions included general 

background (e.g., age, gender, level of vision), current mobile and wearable technology 

use if applicable (e.g., device type, frequency of use), perceived tradeoffs between 

smartphone and smartwatches, and estimated time needed for each of a set of 

microinteractions in Table 7.1 that are common with mobile or wearable devices [9,94]. 

Task LabelTask LabelTask LabelTask Label    Task DescriptionTask DescriptionTask DescriptionTask Description    
Alarm Set an alarm or timer 
App Launch Find and open a specific app 
Calendar Check your calendar for an overview of the day's schedule 
Clock Check the current time 
Music Pause a music player 
Navigation Set a destination to get navigation directions 
Phone Dial a phone number 
Read Msg. Read a text message that is two sentences long 
Respond Msg. Respond to a text message with a two-word reply 
Weather Check the weather 

Table Table Table Table 7777....1111. . . . A list of ten specific microinteractions examined in online survey.A list of ten specific microinteractions examined in online survey.A list of ten specific microinteractions examined in online survey.A list of ten specific microinteractions examined in online survey.    The tasks are The tasks are The tasks are The tasks are 
alphabetically sorted by task label in asending order.alphabetically sorted by task label in asending order.alphabetically sorted by task label in asending order.alphabetically sorted by task label in asending order.    
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At the end, we also asked participants’ opinions of on-body interaction and potential 

use cases for such interaction. In case participants were not familiar with smartwatches 

or on-body interaction, we provided brief descriptions: 

Smartwatch description: A smartwatch offers many of the same features as a 
smartphone, but has a smaller screen the size of a large watch face. Smartwatches 
often include a camera, speaker, microphone, and sensors that can track 
information like the number of steps you've taken. 
On-body interaction description: Imagine a small wearable device such as a 
wristband or a ring that is able to sense when you do taps, swipes or other 
gestures on the surface of your body. This device would be paired with a small 
speaker for audio output or with a projected image on your arm or hand and 
would allow you to do many of the same actions as you can do on a smartphone 
or smartwatch. For example, you could do taps and swipes on your bare palm in 
the same way you usually use the touchscreen on a phone or smartwatch. You 
could also make tap or make other gestures at specific locations on your body, 
such as the wrist, a fingertip, or ear to do a specific action (e.g., check the time, 
answer a phone call, change a song's volume). 

 

7.2.1.3. Data and Analysis 

A total of 147 responses were collected during a one-month period from August 17th to 

September 17th, 2016. The dropout rate was 8.8%, leaving 134 completed surveys from 

56 participants who had normal or corrected-to-normal vision and 78 participants who 

reported visual impairments (our analysis focuses on the 61 of these participants who 

used screenreaders). The median completion time was 10.5 minutes for sighted 

participants, and 22.0 minutes for participants with visual impairments. We followed 

an iterative coding process [47] for seven open-ended responses such as identifying the 

types of tasks that are frequently completed within a short period of time (namely ten 

seconds) and the perceived tradeoffs of smartphones versus smartwatches. Two 

researchers developed initial codebooks for each question. Three to four iterations were 

completed per question, where each researcher independently coded a randomly 

selected subset of 20-40 responses, Cohen’s kappa was computed to assess interrater 
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reliability for each code, and codes were refined. After the final iteration, the average 

kappa score across all codes was 0.87 (SD = 0.12, range 0.53 to 1.0). The worst 

performing code was “Other/general” for the general reactions to the on-body 

interaction scenario.  

In our analysis below, we summarize data from sighted participants separately 

from that of participants with visual impairments. We further exclude 17 VI 

participants who reported not using a screenreader software on their phone for “most 

of the time” or “always”, as we are primarily interested in screen reader users. We ran 

Chi-square tests of association using contingency table analysis for close-ended 

questions to assess whether there is a significant relationship between user group and 

specific tasks on their smartphones. 

7.2.1.4. Participants Demographics 

As mentioned above, of the 134 completed responses, 78 participants reported having 

a visual impairment, while 56 did not (sighted participants). Of the VI participants, 61 

(VIaudio participants) reported using a screenreader on their phone “most of the time” 

or “always”: one had vision from 20/70 to 20/200, 13 were legally blind at best 20/200, 

17 were blind with some light perception, and 30 were totally blind. The remaining 17 

VI participants (VIvisual participants) relied more on visual feedback from the screen, 

for example, using a screen magnifier: eight had vision from 20/70 to 20/200 and nine 

were legally blind at best 20/200. While the median age of VI participants was 45-54 

for both VI user groups, that of sighted participants was 25-34. The VIaudio user group 

included 38 female participants (22 male, and 1 Other), and 9 of the VIvisual participants 
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were female (7 male, and 1 Other). For the sighted user group, 30 were female (26 

male).   

7.2.2. Interview and Design Probe Study 

We designed a two-hour single-session study consisting of semi-structured interview 

questions followed by use of three on-body interfaces as design probes. Compared to 

the survey, these sessions allowed us to collect in-depth qualitative data and responses 

based on use of a real-time system. 

7.2.2.1. Participants 

We recruited a total of 12 participants (7 female) through local organizations working 

with people with visual impairments. As shown in Table 7.2, all participants were blind 

or had low vision, and reported using a screenreader all the time, except for P11 who 

used a screenreader “most of the time”. The average age was 46.2 (SD = 12.0, range 29 

– 65) and all participants had owned a smartphone for more than a year. One participant 

(P10) reported having a fitness tracker. P5 had smartwatch for a year, but reported that 

IDIDIDID    AgeAgeAgeAge    GenderGenderGenderGender    Visual impairmentVisual impairmentVisual impairmentVisual impairment    Screen readerScreen readerScreen readerScreen reader    Screen magnifierScreen magnifierScreen magnifierScreen magnifier    Voice inputVoice inputVoice inputVoice input    
P1 50 Male Blind Always N/A Some of the time 
P2 35 Female Light perception only Always N/A Some of the time 
P3 41 Male Low vison Always N/A Rarely 
P4 61 Female Blind Always N/A Always 
P5 38 Male Low vision one eye; 

none in other Always Some of the time Some of the time 
P6 56 Male Light perception only Always N/A Most of the time 
P7 65 Male Blind Always N/A Most of the time 
P8 41 Female Light perception only Always N/A Always 
P9 56 Female Blind Always N/A Most of the time 
P10 51 Female Blind Always N/A Rarely 
P11 29 Female Low vison Most of the time Some of the time Most of the time 
P12 31 Female Light perception only 

one eye; none in other Always N/A Most of the time 
Table Table Table Table 7777....2222. . . . DDDDemographics emographics emographics emographics of participants of participants of participants of participants for for for for the the the the inininin----person study.person study.person study.person study.    
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he barely used it. The remaining participants reported not having any wearable device. 

Participants were compensated $30 for their time and additional $30 for the travel costs. 

7.2.2.2. Design Probe Interfaces 

To learn design implications for supporting microinteractions through on-body input, 

we designed three different on-body interfaces for menu navigation for people with 

visual impairments: location-independent gestures (LIany), location-specific gestures on 

palm (LSpalm), and location-specific gestures at parts of the body (LSbody). In addition to 

sparking discussion on using on-body input to support accessible microinteractions, 

these three implementations allowed us to evaluate with a real-time system the 

prediction from Chapters 3 and 4 that users would prefer location-specific gestures to 

location-independent gestures for on-body input. 

All three interfaces versions supported 16 microinteractions with two-level 

hierarchy menu as shown in Table 7.3. The main items in the top level were: “Clock”, 

Main Main Main Main MMMMenuenuenuenu    SubSubSubSubmmmmenuenuenuenu    DescriptionDescriptionDescriptionDescription    

ClockClockClockClock    
Time Check the current time 
Alarm**** Check the next alarm 
Timer**** Check the time remaining 
Stopwatch Check the time elapsed 

Daily Daily Daily Daily 
SummarySummarySummarySummary    

Date Check today’s date 
Calendar**** Check the next event 
Weather**** Check the current temperature 

NotificationsNotificationsNotificationsNotifications    
Summary Check the notification summary (e.g., “1 miss phone call and 2 

new messages”) 
Missed phone call**** Check missed phone call (e.g., “A missed phone call from Alice”) 
New message #1 Check new message (e.g., “A new messge from Bob”) 
New message #2**** Check new message (e.g.,“A new message from Charlie”) 

Health and Health and Health and Health and 
Activities Activities Activities Activities     

Distance  Check the miles traveled 
Steps****  Check the number of steps taken 
Calories Check the calories burnt 
Heart rate**** Check the heart rate 

Voice Voice Voice Voice IIIInputnputnputnput****    None Activate voice input 
Table Table Table Table 7777....3333. We used two. We used two. We used two. We used two----level highrarchical menu for the study. level highrarchical menu for the study. level highrarchical menu for the study. level highrarchical menu for the study. There are five main menu items, and each There are five main menu items, and each There are five main menu items, and each There are five main menu items, and each 
of the main menu contained 3of the main menu contained 3of the main menu contained 3of the main menu contained 3----4 submenu items except for “4 submenu items except for “4 submenu items except for “4 submenu items except for “Voice InputVoice InputVoice InputVoice Input”, which has no submenu item. A ”, which has no submenu item. A ”, which has no submenu item. A ”, which has no submenu item. A 

total of 16 microinteractions were supported by our system. total of 16 microinteractions were supported by our system. total of 16 microinteractions were supported by our system. total of 16 microinteractions were supported by our system. The mark ‘*’ indicates thatThe mark ‘*’ indicates thatThe mark ‘*’ indicates thatThe mark ‘*’ indicates that    the submenu was the submenu was the submenu was the submenu was 
used for ouused for ouused for ouused for our task.r task.r task.r task.    
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“Daily Summary”, “Notifications”, “Health and Activities”, and “Voice Input”. Each of 

the main menu contained submenu items except for “Voice Input”. The interfaces were 

designed as follows: 

LIany simulated the gestures used in VoiceOver or TalkBack, which allows 

users swipe left and right on any surface of body to navigate back and forth through a 

list of menu items, which would be time-consuming to navigate a long list of menu 

items [50].  

LSpalm included five specific locations on the palm that mapped to the top-level 

items as shown in Figure 7.1a; the top-level menu items were arbitrarily mapped to the 

five locations. Users could either point directly to a location to select that item (similar 

to the interaction evaluated in Chapter 5), or could “explore by touch”, as supported 

    
(a) Five locations on the left palm for (a) Five locations on the left palm for (a) Five locations on the left palm for (a) Five locations on the left palm for LSLSLSLSpalmpalmpalmpalm: : : : upupupup    ––––    
NNNNotifications, otifications, otifications, otifications, left left left left ––––    CCCClock, lock, lock, lock, rightrightrightright    ––––    DDDDaily aily aily aily SSSSummary,ummary,ummary,ummary,    
downdowndowndown    ––––    HHHHealth and ealth and ealth and ealth and AAAActivities, and ctivities, and ctivities, and ctivities, and centercentercentercenter    ––––    VVVVoice oice oice oice 

IIIInput.nput.nput.nput.    

    
(b) Five locations across body for (b) Five locations across body for (b) Five locations across body for (b) Five locations across body for LSLSLSLSbodybodybodybody::::    palmpalmpalmpalm    ––––    
NNNNotifications, otifications, otifications, otifications, outer wrist outer wrist outer wrist outer wrist ––––    CCCClock, lock, lock, lock, inner wristinner wristinner wristinner wrist    ––––    

DDDDaily aily aily aily SSSSummary,ummary,ummary,ummary,    thighthighthighthigh    ––––    HHHHealth and ealth and ealth and ealth and AAAActivities, and ctivities, and ctivities, and ctivities, and 
earearearear    ––––    VVVVoice oice oice oice IIIInput.nput.nput.nput.        

Figure Figure Figure Figure 7777....1111. The mapping between location and pre. The mapping between location and pre. The mapping between location and pre. The mapping between location and pre----defined microinteractions used in this study: (a) defined microinteractions used in this study: (a) defined microinteractions used in this study: (a) defined microinteractions used in this study: (a) 
completely arbitrary locations on palm used for completely arbitrary locations on palm used for completely arbitrary locations on palm used for completely arbitrary locations on palm used for LSLSLSLSpalmpalmpalmpalm, and (b) semi, and (b) semi, and (b) semi, and (b) semi----contexual locations across different contexual locations across different contexual locations across different contexual locations across different 

body parts forbody parts forbody parts forbody parts for    LSLSLSLSbodybodybodybody    for rigfor rigfor rigfor righthththt----handed participants. For lefthanded participants. For lefthanded participants. For lefthanded participants. For left----handed participants, the other side of the body handed participants, the other side of the body handed participants, the other side of the body handed participants, the other side of the body 
was used.was used.was used.was used.    

 



 98

by TalkBack and VoiceOver, where the user searches for an item by sliding their finger 

across the surface of their palm, hearing each item read aloud.  

LSbody is also location-specific, but unlike LSpalm, it maps each menu item to a 

location across the full body and the mappings are more contextual rather than arbitrary; 

for example, as shown in Figure 7.1b, tapping the wrist checks the time.  

For all three interfaces, double-tapping activated the currently selected item for 

(again following interaction in VoiceOver and TalkBack), and to access the submenu 

items, users would first need to find and select the top-level menu item. Once the top-

level menu item is selected, navigating the submenu items were the same for all three 

interfaces.  

7.2.2.3. Apparatus 

We implemented these three interface designs on top of a real-time system based on 

the sensing hardware and algorithms described in Chapter 6. The wearable hardware 

here included a camera11, an IMU12, and a pair of IR reflectance sensors13 mounted on 

the user’s index finger via a 3D printed ring and Velcro strips. The IMU and IR sensors 

were connected to a wristband containing an Arduino microcontroller14, which was in 

turn connected (along with the camera) to a desktop computer15. Speech feedback was 

provided through a pair of speakers using the Microsoft .Net speech synthesis libraries. 

This prototype was intended primarily to allow us to explore possible on-body 

                                                 
11

 Awaiba NanEye GS Idule Demo Kit 

12
 Adafruit Flora LSM9DS0 

13
 Fairchild Semiconductor QRE113GR 

14
 Sparkfun Arduino Pro Micro (5V/16MHz) 

15
 Dell Precision Workstation T7910 (CPU: Intel Xeon, 8-core, 2.1Ghz, GPU: NVIDIA GeForce GTX 750Ti) 
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interaction designs, and we envision a future system that is much smaller and self-

contained. 

7.2.2.4. Procedure 

The procedure began with a background questionnaire, followed by a semi-structured 

interview (~20 minutes). The interview covered the same themes as the survey with 

additional questions related their use of devices with different input methods. After the 

interview and a short break, we transitioned to design probe, which consisted of using 

the three interfaces described above. First, we provided a short overview of the system 

as a whole, then started collecting images from nine different locations on their body 

(see Figure 7.1) to adaptively train the system. Following a short introduction and 

guided practice with each of the interface designs, we asked participants to complete a 

set of basic tasks (~5 minutes). The order of the three interfaces was fully 

counterbalanced. All interfaces had five applications in the main menu including: Clock, 

Daily Summary, Notifications, Health and Activities, and Voice Input that are 

commonly used on a smartwatch [94], and each of these had 3-4 sub-menu items except 

for Voice Input. Participants were asked to find and open one of the sub-menu items 

first by finding and opening the main menu item with each of the given interface, then 

by navigate between sub-menus by location-independent swiping.  

 

 

 

 

 

 

 

 

For each interface, participants completed two tasks from each of the five main 

menu, for a total of 10 tasks; these were randomly ordered. Examples of tasks included 

finding and opening Alarm under Clock, Weather under Daily Summary, and Steps 

under Health and Activities. After a short description of each task, each task was 

completed after the text-to-speech signal saying “Begin”. After using each of the three 
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interfaces participants rated the following (in 7-point scale) and provided open-ended 

comments on their experience: 

• Efficiency – How efficient do you think it is to use?  
• Easiness – How easy do you think it is to use? 
• Use in public – How comfortable would you feel using this version in 

public?  
Finally, the session concluded with a semi-structured interview (~15 minutes) on 

subjective feedback comparing the three conditions.  

7.2.2.5. Data and Analysis 

Open-ended responses were audio recorded and transcribed for analysis. For questions 

asking about specific tasks (e.g., “What tasks do you think it would be useful to do on 

a smartwatch, if any?”), we used the same codebook developed already for the online 

survey. Other questions were analyzed by one researcher based on themes of interest 

[21] (e.g., one-handed use of the phone, interaction on-the-go), while allowing for new, 

emergent themes. For the subjective ratings of the three on-body interfaces, we used 

Friedman tests because the normality assumption of parametric tests may not hold for 

the 7-point rating scale data we collected. Holm’s sequential Bonferroni adjustments 

were used to protect against Type I error [45] for all posthoc pairwise comparisons. 

7.3. Results 

Here I present the findings from the online survey and the in-person sessions. As for 

the online survey, the responses are summarized to understand the differences in 

smartphone and smartwatch usage by the two user groups of primary interest: sighted 

users and VIaudio users (i.e., screenreader users), together with the findings from the 
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interview. For the design probe study, I summarize the perceived trade-offs between 

three interfaces we examined based on qualitative analysis.  

7.3.1. Mobile and Wearable Devices: Ownership and Frequency of Use 

As required, all participants had smartphones. While the mobile operating systems for 

their smartphone devices was evenly split between iOS and Android for sighted 

participants (29 iOS, 30 Android, 3 Windows, and 2 Other), there were more iPhone 

than Android phone owners in the VIaudio user group (59 iOS, 8 Android, and 1 Other) 

for online survey participants, and 11 iOS and one Android phone user (P5) for the 

interview participants, confirming previous studies including ours [13,135,137]; note 

that some participants reported having multiple devices. In general, participants tended 

to use their smartphone and smartwatch (if they owned one) frequently. A majority of 

the online survey participants overall reported using their phone at least once an hour, 

but broken down by group, this was true for 65.6% of the VIaudio group and for 75.0% 

of the sighted group. As for the participants from the interview, all but two participants 

(P4, P10) reported the same. A total of 13 online survey participants (9 sighted, 4 

VIaudio) reported owning a smartwatch, and one interview participant (P5) reported that 

he once had a smartwatch for a year, but barely used it.    

7.3.2. Identification of Useful Microinteractions  

To identify mobile tasks that are most valuable to be supported for VI users as 

microinteractions compared to sighted users, we examined how the device use of VI 

participants differs from that of sighted users.   
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7.3.2.1. Frequently Used Microinteractions on Smartphones 

We asked what tasks participants frequently do on their phone in about 10 seconds or 

less (open-ended)—these are tasks that would be particularly important to support as 

microinteractions. The most frequently reported tasks were related to immediate 

updates such as checking notifications, time or weather across both user groups: 

managing email (76.9% in general, where 82.2% of this response was specifically for 

checking for new emails), managing messages (72.6% in general, where its 62.4% was 

checking for new messages), checking weather (31.6%), time (29.9%) and social media 

updates (24.8%). But Chi-square tests revealed that the ratio of participants was 

significantly different between two user groups for managing phone calls such as 

answering or making a call (χ2
(1) = 9.25, p = .002, φ = .28), and checking the weather 

(χ2
(1) = 5.16, p = .023, φ = .21). While the percentage of VIaudio participants who 

reported the frequent use of phone calls is 34.4%, it was only 10.7% for sighted group. 

Also, a higher proportion of VIaudio participants (41.0%) check the weather more 

frequently than sighted participants (21.4%). The responses from the interview 

participants were similar to survey responses: managing phone calls (N=9 of 12), 

managing text messages (N=7), and checking the weather (N=4). But looking up 

information using voice search was also dominant (9 responses each). To sum up, tasks 

related to notifications, communications (namely email, text messages, and phone 

calls), time, weather, and voice input are the top five most frequent microinteractions 

that VI participants are currently using on their phone, which should be supported 

through on-body interaction as well.    
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7.3.2.2. Useful Tasks on Different Devices  

To understand what tasks would be useful to be supported as microinteractions through 

wearable devices (e.g., on-body interaction), we examined what types of tasks that 

people would like to do on a smartphone versus a smartwatch. We asked participants 

(Q1) what tasks they think are especially useful on a smartwatch, and (Q2) what tasks 

they would prefer to do on their phone instead of on a smartwatch.  

As found in [94], although their responses were collected from sighted 

participants only, the top five responses across both user groups for the first question 

were checking the time, health and fitness tracking, managing text messages (mostly 

for checking for new messages), GPS navigation, and notifications. As for the second 

question, the top five responses across both user groups also included managing emails, 

and text messages (but more for reading and responding rather than just checking new 

messages), phone calls, entertainment (e.g., watching Neflix, playing games), and text 

entry. No significant differences were found between the two user groups for either 

question.  

However, a greater percentage of VIaudio participants (27.9%) showed a strong 

preference for using their phone for tasks in general than sighted participants (12.5%), 

responding that they would prefer to do everything on their phone rather than on a 

smartwatch. This relationship between strong preference for the phone and user group 

was found to be significant (χ2
(1) = 4.23, p = .040, φ = .19). Confirming the sentiment 

from VI survey respondents, one third of interview participants (N=4 of 12) also 

reported that they would like to do everything on their phone as they consider a 

smartwatch as a redundant device; P6 specified, “Honestly, I looked into it 
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[smartwatch]. Honestly, I haven't seen anything where the smartwatch is going to help 

me justify purchasing one. Everything that the smartwatch does I can do with my 

iPhone, including counting steps. And I did that too by the way. It's another app. I use 

everything, I really do. Since the Smartwatch requires that you still have to have your 

iPhone? I see no advantage. If and when you don't have that requirement I could see 

the smartwatch becoming potentially helpful”. Unlike a prior study that showed 

positive attitude of VI users towards wearable devices in general [135], this finding 

suggests that VI users are less interested in using a smartwatch than sighted users. More 

specific perceptions of smartwatches compared to smartphones are examined in 

Section 7.3.5. 

At the very end of the survey, we also asked what tasks would be useful to 

support through on-body interaction. The top five responses across two user groups 

were the tasks that do not necessarily require visual feedback, with the exception of 

managing text messages: phone calls (34.0%), checking the time (29.2%), device 

settings such as adjusting the volume (16.0%), controlling a media player (19.8%) and 

managing text messages (18.9%; mostly for reading). The differences in the response 

ratio between the two user groups were not significantly different for all coded 

responses with Chi-square tests, except for checking notifications (9.8%) and 

composing text messages (7.8%); no VI users listed these microinteractions. In terms 

of general comments, a greater percentage of VIaudio participants responded that they 

would like to do anything that they can do on their phone via on-body interaction 

(10.9%, N=55) whereas only 3.9% for sighted participants expressed a similar 

sentiment (N=51); although the differences in proportion was not found to be 
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significant by the user group. Note that the question was optional that not every 

participant responded.     

7.3.2.3. Use of Voice Input 

Motivated by findings from previous studies that show voice input is more popular for 

VIaudio users than sighted users [13,135], we examined how speech input is being used 

for microinteractions by these two user groups. Confirming the prior findings, while 

36.1% of the VIaudio participants reported that they use voice input (e.g., Apple Siri, 

Google Now) “most of the time” or “always”, the same responses were reported only 

8.9% from sighted participants. A Chi-square test found a significant association 

between user group and reported use of voice input (χ2
(4) = 34.55, p < .001, φ = .54).  

As for the participants from the interview, as shown in Table 7.3, seven 

participants (of 12 total) reported using voice input either “most of the time” or 

“always”, while three participants reported using voice input “some of the time”. The 

remaining two reported that they rarely use voice input. Four participants reported that 

they would use voice input for everything if possible, and five participants said that 

they liked using voice input because it is faster than manual input, confirming the 

finding in [13]. 

We further asked participants to specify for which if any of the ten 

microinteractions (see Table 7.1) they use voice input, and the top five tasks are shown 

in Table 7.4. In general, among the participants who reported using voice input, more 

percentage of VIaudio participants use voice input for various tasks than sighted users, 

and Chi-square tests found that the associations between user group and reported use 

of voice input were significant for “Phone Calls” (χ2
(1) = 11.41, p = .001, φ = .35), and 
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“Respond to a Message” (χ2
(1) = 13.93, p < .001, φ = .39), which conflicts prior findings 

[13] where the number of participants who use voice input for text messages were 

almost the same across two user groups. Similarly, the most frequent tasks the interview 

participants do with voice input were text entry (N=8 of 12), making phone calls and 

voice search (reported by N=7 for each).  

7.3.3. Barriers for Enabling Accessible Microinteractions  

Tasks on a touchscreen device require longer interaction time for users with visual 

impairments compared to sighted users in general [15,51]. As such, to identify tasks 

that would be particularly more valuable to be supported for VI users as 

microinteractions, we asked participants to report on the durations for device access 

time (from device retrieval to replacement), and device usage time (e.g., completion 

time for ten specific mobile tasks such as dialing a phone number) and assessed the 

time difference between sighted and VIaudio participants. Furthermore, we examined 

situational barriers (e.g., interaction on-the-go, one-handed use) that VI users often 

encounter as these would prevent efficient interactions. 

Task Label: DescriptionTask Label: DescriptionTask Label: DescriptionTask Label: Description    SightedSightedSightedSighted    VIVIVIVIaudioaudioaudioaudio    
Alarm: Set an alarm or a timer 52.9% 75.9% 
Navigation: Set a destination to get navigation directions 52.9% 56.9% 
Phone Calls: Dial a phone number 38.2% 79.3% 
Respond to a Message: Respond to a text message with a two-
word reply 38.2% 70.7% 
Weather: Check the weather 32.4% 56.9% 

Table Table Table Table 7777....4444. The percentanges of top five tasks that participants use voice input for within each group . The percentanges of top five tasks that participants use voice input for within each group . The percentanges of top five tasks that participants use voice input for within each group . The percentanges of top five tasks that participants use voice input for within each group 
((((NNNNsightedsightedsightedsighted    = 34, = 34, = 34, = 34, NNNNVIaudioVIaudioVIaudioVIaudio    = 58) sorted by the percentages of responses for sighted participants in decending = 58) sorted by the percentages of responses for sighted participants in decending = 58) sorted by the percentages of responses for sighted participants in decending = 58) sorted by the percentages of responses for sighted participants in decending 
order, which shows the georder, which shows the georder, which shows the georder, which shows the general trend that more percentages of VIneral trend that more percentages of VIneral trend that more percentages of VIneral trend that more percentages of VIaudioaudioaudioaudio    participants use voince input than participants use voince input than participants use voince input than participants use voince input than 

sighted participants.sighted participants.sighted participants.sighted participants.        
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7.3.3.1. Duration from Device Retrieval to Replacement  

We first examined whether the time taken from retrieving the device (e.g., from a 

pocket or a purse) to putting it way (device replacement) is different across two user 

groups. The duration was broken down into multiple steps as in Ashbrook et al. [11], 

and the reported duration of each step that are shown in Figure 7.2. Overall, sighted 

participants reported being faster than VIaudio participants for each step in accessing 

their phones. Chi-square tests revealed that there is a statistically significant association 

between user group and reported durations for “Unlocking the Phone” (χ2
(2) = 7.29, p 

= .026, φ = .25); the associations for other steps were not significant.  

While the percentages of participants who reported that unlocking the phone 

takes less than five seconds was 85.7% for sighted user group, it was only 65.6% for 

VIaudio group. Instead, more VIaudio participants responded for “Between 5 and 20 

seconds”, at 31.1% compared to sighted participants at 10.7%. This result confirms 

    
Figure Figure Figure Figure 7777....2222. . . . Percentages of reported duration breakdowns for each step from device retrieval to Percentages of reported duration breakdowns for each step from device retrieval to Percentages of reported duration breakdowns for each step from device retrieval to Percentages of reported duration breakdowns for each step from device retrieval to 

replacement within each group (replacement within each group (replacement within each group (replacement within each group (NNNNsighted sighted sighted sighted = 56, and = 56, and = 56, and = 56, and NNNNVIVIVIVIaudioaudioaudioaudio    = 61). The mark ‘*’ indicates that the association = 61). The mark ‘*’ indicates that the association = 61). The mark ‘*’ indicates that the association = 61). The mark ‘*’ indicates that the association 
between the user group and the duration for the step was significant with a Chibetween the user group and the duration for the step was significant with a Chibetween the user group and the duration for the step was significant with a Chibetween the user group and the duration for the step was significant with a Chi----square test using a 2 square test using a 2 square test using a 2 square test using a 2 ××××    3 3 3 3 

contingency table. VIaudio participants reported slower compeletion time for unlcontingency table. VIaudio participants reported slower compeletion time for unlcontingency table. VIaudio participants reported slower compeletion time for unlcontingency table. VIaudio participants reported slower compeletion time for unlocking their phone than ocking their phone than ocking their phone than ocking their phone than 
sighted participants.sighted participants.sighted participants.sighted participants.    
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prior finding from Azenkot et al. [14] that entering a 4-digit passcode by blind 

participants took 7.52 seconds. Further, we asked participants whether they had set up 

a passcode for their phone as it would impact the time taken for unlocking the phone. 

The percentage of participants who said “yes” to this question was 80.4% for sighted 

participants, and 68.9% for VIaudio user groups. A Chi-square test revealed that these 

ratios were also not significantly different across the two user groups, showing that this 

impact can be ignored when comparing device unlocking time.   

Similarly, eight out of 12 participants (75%) from the in-person study reported 

that they have set up a passcode. Six of the eight participants reported that they prefer 

using the fingerprint scanner not only because it is easier (N=4) and faster (N=2) than 

entering a passcode, but also because it prevents from others hearing or seeing their 

passcodes (5 and 1 responses, respectively), confirming the VI users’ concern of 

entering a passcode while using a screenreader in [14]. Meanwhile, the remaining 

participants have not set up a passcode because entering a passcode is slow (N=2), or 

they did not care to set it up (N=2). The results from our data confirms the findings in 

prior studies [14,51], and suggests that supporting authentication as a microinteraction 

that prevents eavesdropping would be useful for VI users. 

7.3.3.2. Device Usage Time for Microinteractions 

We also asked participants close-ended questions on how long each of the ten 

microinteractions takes on their phone (see Figure 7.3). Similar to the results above, 

sighted participants reported being faster than VIaudio participants for all types of 

microinteractions. We conducted Chi-square tests, and the relations between user group  
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and the reported time breakdowns were found to be significant for the following four 

tasks: “Clock”, “Calendar”, “Navigation”, and “Respond Msg.” (see Table 7.5 for 

details). Regardless of the user group, a majority of participants reported that they can 

complete “check the current time” within five seconds while more sighted participants 

reported faster duration than VIaudio participants; 94.6% and 78.7% respectively. In 

    
Figure Figure Figure Figure 7777....3333. Percentages of reported duration breakdowns on smartphones within each group for both VI . Percentages of reported duration breakdowns on smartphones within each group for both VI . Percentages of reported duration breakdowns on smartphones within each group for both VI . Percentages of reported duration breakdowns on smartphones within each group for both VI 
and sighted participants, sorted by the percentage of the sighted participants for “Less than 5 seconds” in and sighted participants, sorted by the percentage of the sighted participants for “Less than 5 seconds” in and sighted participants, sorted by the percentage of the sighted participants for “Less than 5 seconds” in and sighted participants, sorted by the percentage of the sighted participants for “Less than 5 seconds” in 
decending order (decending order (decending order (decending order (NNNNsightedsightedsightedsighted    = 56, = 56, = 56, = 56, NNNNVIaudioVIaudioVIaudioVIaudio    = 61).= 61).= 61).= 61).    This This This This graph illustrates that sighted users tended to provide graph illustrates that sighted users tended to provide graph illustrates that sighted users tended to provide graph illustrates that sighted users tended to provide 

shorter task times than VIshorter task times than VIshorter task times than VIshorter task times than VIaudioaudioaudioaudio    users across the 10 microinteractions. Tusers across the 10 microinteractions. Tusers across the 10 microinteractions. Tusers across the 10 microinteractions. The mark ‘*’ indicates that the he mark ‘*’ indicates that the he mark ‘*’ indicates that the he mark ‘*’ indicates that the 
association between the user group and the duration for the task was significant with a Chiassociation between the user group and the duration for the task was significant with a Chiassociation between the user group and the duration for the task was significant with a Chiassociation between the user group and the duration for the task was significant with a Chi----squaresquaresquaresquare    test test test test 

using a 2 using a 2 using a 2 using a 2 ××××    4 contingency table.4 contingency table.4 contingency table.4 contingency table.    
 
Task Label: DescriptionTask Label: DescriptionTask Label: DescriptionTask Label: Description    χχχχ2222(2)(2)(2)(2)    pppp    φφφφ    NNNNsightedsightedsightedsighted    NNNNVIVIVIVIaudioaudioaudioaudio    
Clock: Check the current time 6.57 .037 .24 56 59 
Calendar: Check your calendar for an overview of the 
day's schedule 

10.84 .004 .34 39 56 

Navigation: Set a destination to get navigation directions 15.14 .001 .38 46 57 
Respond Msg.: Respond to a text message with a two-
word reply 

15.84 < 
.001 

.37 55 58 

Table Table Table Table 7777....5555. . . . For all ten microinteractions, the percentages For all ten microinteractions, the percentages For all ten microinteractions, the percentages For all ten microinteractions, the percentages of VIof VIof VIof VIaudioaudioaudioaudio    participants who reported for “less than 5 participants who reported for “less than 5 participants who reported for “less than 5 participants who reported for “less than 5 
seconds” was less than that of sighted participants. These are four tasks whose associations of user group seconds” was less than that of sighted participants. These are four tasks whose associations of user group seconds” was less than that of sighted participants. These are four tasks whose associations of user group seconds” was less than that of sighted participants. These are four tasks whose associations of user group 

and reported time breakdown for each task were found to be significant by Chiand reported time breakdown for each task were found to be significant by Chiand reported time breakdown for each task were found to be significant by Chiand reported time breakdown for each task were found to be significant by Chi----square test resulsquare test resulsquare test resulsquare test results with 2 ts with 2 ts with 2 ts with 2 ××××    
3 contingency tables.3 contingency tables.3 contingency tables.3 contingency tables.    
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addition, tasks that require long interaction time even for sighted participants (namely 

“Calendar”, and “Navigation”) also showed significant relation between user group 

and completion time. 

 Most of all, the greatest gap was found for “Respond Msg.”, where the 

percentage of sighted participants who reported the completion time to be less than five 

seconds was 55.4%, which was almost twice more than VIaudio group (23.0%). This 

confirms prior findings that text entry is one of the time-consuming tasks on a 

touchscreen-based interaction for users with visual impairments (e.g., [19,31,87]). 

Overall, the results suggest the duration gap is greater between sighted and VIaudio 

participants for the tasks that are either extremely simple or complex, or the task that 

involves text entry. 

7.3.3.3. Situational Barriers  

As Abdrolrahmani et al. [2] found that using a mobile device while walking on with a 

cane is a major concern for VI users, we asked how participants use their phone while 

walking during the interview, as an opportunity to solicit design considerations for 

supporting accessible on-body interaction for VI users. Confirming the prior findings 

in [2], eight participants (of 12 total) said that that they do not use the phone while 

walking due to safety. For example, P8 said, “See, when I'm walking, I have to use my 

cane, so I don't even be on the phone. To me, that's almost like driving and being on 

the phone. The fact [that I] don't have any sight, just lightness, and that's not enough 

to tell me what's in front... […] I gotta use my cane and use my sounds at all times. So, 

I gotta hear, listening to stuff, and feeling with my cane, so I really don't have time to 

mess with the phone walking. To me, that'll put a blind person in danger. […] Safety 
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comes first, and the phone is not that important, when it's me walking by myself”. Half 

of the participants mentioned that they do not take their phone out while walking 

(where they can still use their phone with a headphone for answering a call or using 

voice command), and four of them specified that they are concerned of their phone 

being stolen. P10 said, “Because I think it's a little bit of fear that somebody will come 

out and grab my phone and run away. [The phone is] Usually in my pocketbook. And 

now, I have something that I could put it on my neck. But, I usually don't do it. I just 

want to keep it safe, it [holding the phone in public] is kind of an advertisement that 

you have a cellphone”.  

In terms of one-handed interaction, while nine of twelve participants said that 

it is very important to be able to use one hand while walking on a street, only four of 

them reported that they were comfortable using the phone with one hand; others stated 

that using the phone with one hand is physically challenging (4 participants), or it 

increases the chance of dropping the phone (4 participants), thus they typically secure 

the phone with one hand and use the other hand for gestures, or do not use the phone 

at all when both hands are not available as mentioned above. This again confirms the 

findings with the issue of one-handed interaction on-the-go for VI users when 

interacting with hand-held mobile devices [2,135], including the findings in Chapter 4.  

7.3.4. Strategies for Quick Access to Apps  

To examine whether and how VI users employed app layout customization to support 

quick interactions, we asked interview participants if they had rearranged their app 

icons on their phone to find and open some apps more quickly than others. Seven of 12 

participants responded “yes”. They had rearranged the icons to specific pages, and four 
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of them also placed their icons in folders. P6, for example, had three pages where he 

would place commonly used apps on the first page (home screen) without folders, his 

second page contains multiple folders (e.g., blindness-related, news, travel), and the 

last page has all the apps he has installed but not yet tried to be assigned to one of the 

folders in the second page.  

Unlike these participants, the other five participants had not customized the 

location of app icons. Still, they had general idea where their icons are located. P8 said 

“I've never done that [rearranging the icons]. I just figured that once they're there, 

they're there. […] Like I have four pages on my phone, no, six pages. So I know what 

basically a lot of which page some of that stuff is on. Like, my metro access, easy pay, 

my metro access reservation, that's on page four. My bible gateway, where I read my 

bible, that's on page two. Things like that. So, just working with it more and more, you 

remember where a lot of it is, on which page”. This finding suggests that VI users get 

benefits of the spatial layout of the interface regardless of whether they customized it 

or not. The findings indicate the VI users’ interests in customizing their interface as 

well as their use of spatial mapping for quick access.  

7.3.5. Perceived Smartwatch Advantages and Limitations 

We further asked about the perceived advantages and limitations of smartwatches to 

learn design implications from a mainstream wearable device for supporting on-body 

interaction, and the results confirmed findings in [139]. As shown in Table 7.6, besides 

“Other”, the top three advantages provided were “Quick/easy access”, 

“Small/lightweight”, and “Portability” for both user groups. As for the interview 

responses, six out of 12 participants liked that smartwatches provide quick and easy 
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access without pulling out the phone because it is always worn on their wrist. For 

example, P1 said, “Since they [smartwatches] are wearable, they’re just on me. The 

information is also in my hand, instead of my pocket or elsewhere on the table so that 

makes it more and more readily accessible”. The next frequently reported advantage 

was that a watch can free their hands (reported by five participants), especially while 

walking. P12 mentioned that, “'Cause a lot of times, one hand is my cane and then one 

hand is my daughter, so hands-free would be.. [showing two thumbs up]”. Next 

prominent advantage was its portability; four participants said that the watch is easy to 

carry with less chance of losing or dropping. Three participants reported aesthetic part 

of the watch as one of the advantages. 

In terms of limitations, the most prominent responses for both groups were 

“Small size” followed by “Low processing power”, which also included limited 

capacity or storage. However, while the third most-frequent response was “Sound-
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Table Table Table Table 7777....6666. . . . Perceived advantages and limitations of smartwtches. The percentages of participants Perceived advantages and limitations of smartwtches. The percentages of participants Perceived advantages and limitations of smartwtches. The percentages of participants Perceived advantages and limitations of smartwtches. The percentages of participants 
who responded to each question within each group, sorted by the popularity of responses who responded to each question within each group, sorted by the popularity of responses who responded to each question within each group, sorted by the popularity of responses who responded to each question within each group, sorted by the popularity of responses for the for the for the for the 

sighted group from most to least populasighted group from most to least populasighted group from most to least populasighted group from most to least popular r r r (Advantages: (Advantages: (Advantages: (Advantages: NNNNsightedsightedsightedsighted    = 50, = 50, = 50, = 50, and and and and NNNNVIaudioVIaudioVIaudioVIaudio    = 49; Limitations: = 49; Limitations: = 49; Limitations: = 49; Limitations: 
NNNNsightedsightedsightedsighted    = 53, and = 53, and = 53, and = 53, and NNNNVIaudioVIaudioVIaudioVIaudio    = 53). While the responeses were versy similar acorss uwer groips, = 53). While the responeses were versy similar acorss uwer groips, = 53). While the responeses were versy similar acorss uwer groips, = 53). While the responeses were versy similar acorss uwer groips, 

participants from only VIaudio commented on soundparticipants from only VIaudio commented on soundparticipants from only VIaudio commented on soundparticipants from only VIaudio commented on sound----related issues.related issues.related issues.related issues.    
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related issues” (e.g., low volume, not being able to pair with/plug in a headphone) for 

VIaudio, none of the sighted participant mentioned this as a limitation of a smartwatch. 

Similarly, small size of the touchscreen was a concern for most interview participants 

(N=8); five of them specified that small screen makes input difficult (e.g., text entry, 

gestures for menu navigation). P1 responded “because it [phone] has wider space so I 

can find the lay out of the keyboard, and I'll have a wider area of navigation between 

the letters and the keys. But in the case of smart watch, it's much, much smaller, so it 

will be compact and difficult to look at each letter.” Sound-related issues were again 

mentioned by three participants from the interview—they were concerned about the 

low volume of the sound. P10 specified “The speaker on the phone. Like for iPhone 

it's big, the phone is big, so you can have the speaker is big. And for a smart watch, 

how big will be the speakers? It can speak maybe a tiny voice?[…] Because it will be, 

for somebody who is hard of hearing, that if it's a noisy place, how do you hear what 

your phone is saying, or what your watch is saying? 'Cause I think that will be my 

challenge, too”.  

7.3.6. Trade-Offs Among Design Probes  

To learn design implications for supporting microinteractions through on-body 

interaction for VI users, the in-person sessions compared three design probes based on 

qualitative responses. We collected subjective ratings for efficiency, easiness, and use 

in public for the 12 participants and the results are shown in Figures 7.4 and 7.5. 

Separate Friedman tests to assess the impact of the different interfaces on the efficiency, 

easiness, and use in public ratings were not significant (i.e., the data in Figure 7.4), but 

vote counts in Figure 7.5 suggests an affinity for the LIany and LSpalm interfaces 
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compared to the LSbody interface. Participants’ open-ended responses also provide 

insight into tradeoffs between the three design probes.  

Overall, all participants like the idea of interacting with different locations on 

their body for different tasks. However, as shown in Figure 7.5, the LIany interface, 

which deployed location-independent gestures, had the highest vote counts for 

efficiency and easiness, mainly because it did not require participants to learn the 

mapping between the locations and applications. At the same time, seven participants 

considered LIany to be slower than LSpalm as they have to swipe and listen for each of 

the selected items. While the overall preference was almost equally split between LIany 

    
Figure Figure Figure Figure 7777....4444. Average subjective ratings for three design probes in terms of efficie. Average subjective ratings for three design probes in terms of efficie. Average subjective ratings for three design probes in terms of efficie. Average subjective ratings for three design probes in terms of efficiency, easiness and use in ncy, easiness and use in ncy, easiness and use in ncy, easiness and use in 

public. The gestures were performed anywehre on body (public. The gestures were performed anywehre on body (public. The gestures were performed anywehre on body (public. The gestures were performed anywehre on body (LILILILIanyanyanyany), ), ), ), five locations on only on palm (five locations on only on palm (five locations on only on palm (five locations on only on palm (LSLSLSLSpalmpalmpalmpalm), and ), and ), and ), and 
five locations across the whole body (five locations across the whole body (five locations across the whole body (five locations across the whole body (LSLSLSLSbodybodybodybody). Error bars indiciate standard errors (). Error bars indiciate standard errors (). Error bars indiciate standard errors (). Error bars indiciate standard errors (NNNN    = 12).= 12).= 12).= 12).    
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and LSpalm. All participants except P8 were concerned with having to interact all over 

the body instead of at a single location with LSbody, and as a result were worried about 

socially acceptability, as reflected in Figure 7.5. Here I present the subjective responses 

in detail. 

7.3.6.1. Learning Curve Versus Efficiency 

We examined the trade-offs between location-independent gestures (LIany) and 

location-specific gestures (LSpalm and LSbody), focusing on efficiency and learning curve. 

As mentioned earlier, all participants commented that they liked having different 

locations mapped for different applications, mainly because directly interacting with 

specific locations is faster than swiping (7 responses).  

We further looked into responses for each of the location-specific interfaces in 

detail. For LSpalm, for example, five participants valued the feature that allowed 

participants to touch their finger down and move the finger to explore different 

locations on palm until they found each target application (called “explore by touch”), 

which supports even novice interaction. In this regard, P5 stated that “So someone 

who's new to it, I think they can pick it up relatively simple. I think the browsing part 

and being able to also open the apps but then I can go back the center of my phone and 

still browse through that. So, I like the look, how it's set up, I think that was pretty 

good”. For LSbody, five participants considered the locations were easy to learn and 

remember, while two of them considered LIany to be more difficult to learn as the menu 

orders are less intuitive.  

On the other hand, half of the participants considered having to learn and 

remember the specific locations as one of the drawbacks for location-specific gestures 
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(LSpalm and LSbody). In comparison, participants for the LIany interface may be lower as 

they did not have to learn the mapping between the location and the applications.  

7.3.6.2. Availability of Input Locations  

Six participants liked LIany for being able to perform input anywhere on their body, 

which provides more options when one location is not available (e.g., one hand holding 

a cane). P12, for example, said that “If I could do it with either hand, me holding my 

cane, I would choose number three [LIany]. Because I have my cane in my left hand and 

I could always tap my other side. Or wherever or even tap anywhere. If I had a cane 

and I would have to stop walking to do the second one [LSpalm]. Because I would have 

to hold my cane then stop and feel around my hand. Number three, I mean number one 

[LSbody]... It would only be convenient if I stop walking. I think”. At the same time, she 

was concerned about her entire body becoming a touch-sensitive input surface, as it 

would increase the chance of unintentional input.  

7.3.6.3. Touching Palm Versus Across the Body  

When two LS interfaces are compared, all participants except one (P8) preferred the 

LSpalm over the LSbody interface due to social acceptability. Participants reported not 

feeling comfortable using the LSbody interface in public, concerning how they might be 

seen by others. Less dominant, but seven participants also mentioned another drawback 

for the LSbody interface that it requires too much movements; they did not like having 

to go all over the body. Instead, they wished to have a single location as in LSpalm. For 

instance, P12 said that “If it's on this one [palm], it's easy to search through. Because 

if it's not here, it's somewhere in this area. But if you have it on your wrist and then 

your palm and on your ear, you gotta remember which on you need to touch. Because 
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if I'm late for work and I'm feeling my palm trying to get the clock and I'm like oh man 

it's not there, it's on my wrist. It's more convenient. More convenient to either rolling 

on your arm or tap once on your leg and double tap and things like that”. Meanwhile, 

remaining participants liked the physically distinctive locations of the LSbody interface 

compared to the LSpalm interface, as the locations on the palm are too condensed.   

7.3.7. Attitude Towards On-body Interaction 

To examine the general attitude towards on-body interaction for VI users and how it 

differs from sighted users, we asked participants from both online survey and in-person 

study what they think about the idea of on-body interaction after providing a brief 

description specified in Section 7.2.1.2. The responses from the online survey are 

summarized in Table 7.7. Participants across both user groups were mostly concerned 

with sensing accuracy and robustness for preventing accidental/unintended input 

(“technical challenges”: 10.5% to 24.1%). But the next most concern was different 

        SightedSightedSightedSighted    VIVIVIVIaudioaudioaudioaudio    

Co
nc

ern
s

Co
nc

ern
s

Co
nc

ern
s

Co
nc

ern
s     

Technical challengesTechnical challengesTechnical challengesTechnical challenges    24.1%    10.5% 
Learning curveLearning curveLearning curveLearning curve    11.1%    7.0% 
Social acceptabilitySocial acceptabilitySocial acceptabilitySocial acceptability    3.7% 12.3% 
PrivacyPrivacyPrivacyPrivacy    3.7%    5.3% 
Form factorForm factorForm factorForm factor    3.7%    3.5% 
Display qualityDisplay qualityDisplay qualityDisplay quality    3.7%    1.8% 
Carrying multiple devicesCarrying multiple devicesCarrying multiple devicesCarrying multiple devices    1.9%    5.3% 

Ex
pe

cta
tio

ns
Ex

pe
cta

tio
ns

Ex
pe

cta
tio

ns
Ex

pe
cta

tio
ns     Larger input/output spaceLarger input/output spaceLarger input/output spaceLarger input/output space    11.1%    0.0% 

Quick/easy accessQuick/easy accessQuick/easy accessQuick/easy access    9.3% 5.3% 
Wider range of inputWider range of inputWider range of inputWider range of input    9.3% 0.0% 
AccessibilityAccessibilityAccessibilityAccessibility    5.6% 5.3% 
HandsHandsHandsHands----freefreefreefree    3.7% 0.0% 

Ot
he

r
Ot

he
r

Ot
he

r
Ot

he
r     PositivePositivePositivePositive    29.6% 38.6% 

NegativeNegativeNegativeNegative    7.4% 12.3% 
Misc. or no responsesMisc. or no responsesMisc. or no responsesMisc. or no responses    3.6% 6.6% 

Table Table Table Table 7777....7777. Attitude towards on. Attitude towards on. Attitude towards on. Attitude towards on----body interaction, sorted by the total number of responses of sighted body interaction, sorted by the total number of responses of sighted body interaction, sorted by the total number of responses of sighted body interaction, sorted by the total number of responses of sighted 
participants from largest to smallest (participants from largest to smallest (participants from largest to smallest (participants from largest to smallest (NNNNsightedsightedsightedsighted    = 54, and = 54, and = 54, and = 54, and NNNNVIaudioVIaudioVIaudioVIaudio    = 57). Note that, the responses coded as = 57). Note that, the responses coded as = 57). Note that, the responses coded as = 57). Note that, the responses coded as 
““““PositivePositivePositivePositive” and “” and “” and “” and “NegativeNegativeNegativeNegative” under “” under “” under “” under “OtherOtherOtherOther” are general comments without specific reasons such as “Great!” ” are general comments without specific reasons such as “Great!” ” are general comments without specific reasons such as “Great!” ” are general comments without specific reasons such as “Great!” 

or “Not a good idea.”, thus do not add up to 100%.or “Not a good idea.”, thus do not add up to 100%.or “Not a good idea.”, thus do not add up to 100%.or “Not a good idea.”, thus do not add up to 100%.    
    



 119

across user groups: it was learning and getting familiar with the new interface for 

sighted participants (“learning curve”: 11.1%) while it was “social acceptability” for 

the VIaudio group (12.3%). Moreover, participants from the sighted group provided 

more various expectations that none of VIaudio participants mentioned such as “larger 

input/output space”, “wide range of input”, and “hands-free”. The percentages of all 

coded responses were not different across the user groups, except for “Larger input 

space”, and “Like the location-specific gestures” where the percentage of VIaudio group 

was zero.  

We also asked interview participants what they thought about the idea of on-

body interaction before having participants interact with the design probes. The 

majority of participants (N=9 of 12) showed a positive attitude towards on-body 

interaction with more various reasons than from the survey. The most frequent reasons 

were quick and easy access by not having to pull out the phone (N=7), and hands-free 

interaction (N=4). Three participants mentioned that they like the idea of having 

different locations mapped for different tasks, which was found to be preferred in 

Chapters 3 and 4. But again, three participants showed their concern of social 

acceptability when performing gestures on their body in public.  

We then compared the responses to how participants felt after gaining hands-

on experience with the design probes. All participants liked the idea of mapping 

specific locations of their body for opening specific apps, regardless of their most 

preferred design (i.e., regardless of whether they had preferred LSbody or not). Eight 

participants mentioned that at least one of the design probes was just like using their 

phone, half of the participants said that they liked on-body interaction as it could leave 
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their hands free, and five participants liked the fact that they did not have to pull out 

their phone. However, overall, most responses were the same as they had been before 

using the real-time system, but new concerns related to form factors arose, particularly: 

having to carry multiple devices (four responses), and speaker and sensor locations 

(three responses). P12, for example, said that “So will you still have like the head the 

earphones or will you do like a Bluetooth? Or how would that work? […] You don't 

want to have a boom box on your shoulder”. Two participants (P3 and P10) commented 

that they would no longer have to worry about their phone being stolen. P3, for example, 

said “Especially when you provide a more secure way of having a smart device 

computing, a system that's way more secure. No one is going to rob you for your hand”. 

While all participants could see the value of on-body interaction, three 

participants reported that they would like to use a physical object rather than their body 

(P1, P7, and P9). For instance, P1 said that “They [smartphone and watches] are 

machines and I can work upon whenever I'm, whatever task I want to do. But on the 

body itself it's strange and body has completely different purposes and I feel I don't 

want to mix between the nature's activities and what I would do with the machines. And 

I leave my body just for natural things”. 

7.3.8. Summary 

Based on the online survey and interview results, we were able to identify important 

tasks to be supported as microinteractions for VIaudio participants, and learn 

implications for designing on-body interaction by reflecting on the use of smartphones 

and expected use cases and perception of smartwatch and on-body interactions.   
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The most dominant microinteractions used across both sighted and VI user groups were: 

managing phone calls such as answering and making calls, checking notifications, 

checking the current time, checking the weather, and activating voice input. Specific to 

voice input, we confirmed that more VI participants use voice input than sighted 

participants, especially more frequently for phone calls and responding to text 

messages. Our results also showed that VIaudio participants reported slower completion 

time than sighted participants, especially for the tasks whose reported completion time 

for sighted participants were either extremely short or extremely long, or required text 

entry. In terms of perceived advantages and limitations, we found that a higher 

percentage of VIaudio group from the survey were more negative towards smartwatches 

than sighted participants, while there was no significant difference for on-body 

interaction.  

 From the design probe study, we found perceived trade-offs among the three 

interfaces. Although some participants liked LIany for not having to learn any location 

mapping, LIany was considered to be less efficient than LSpalm where they could directly 

point to certain locations instead of performing several swipes. When comparing LSpalm 

and LSbody, although some participants liked the contextual mapping of LSbody (e.g., 

tapping wrist for checking time), most participants preferred LSpalm because a set of 

condensed input locations on the palm were more efficient and less socially acceptable 

than having to go all over the body. Regardless of the trade-offs, all participants liked 

the idea of location-specific gestures.  



 122

7.4. Discussion  

Here, I reflect on the implications of our findings, focusing on how on-body interaction 

can be designed to support microinteraction for people with visual impairments.   

7.4.1. Microinteractions Specifically for VI Users  

We identified nine tasks that would be valuable to support as microinteractions for 

screenreader users. The first five tasks were from frequently used tasks which include 

(1) answering and making calls, (2) checking notifications, (3) checking the current 

time, (4) checking the weather and (5) voice input. Based on the responses for specific 

use of voice input, additional four tasks were identified: (6) setting an alarm or timer, 

(7) responding to text messages, (8) getting navigation directions and (9) voice search 

to look up information. Especially for the tasks #7 and #8, special attention is needed 

when designing them as microinteractions since more percentage of VIaudio participants 

reported slower completion time than sighted participants.   

7.4.2. Use of Voice Input for Enabling Microinteractions 

As found in previous studies [13,135], our data confirmed that voice input is more 

popular for VI users than sighted users. However, unlike the finding from Azenkot et 

al. [13], we found that more VIaudio participants use voice input for tasks that involve 

text/numeric entry such as dialing a phone number and responding to a text message, 

compared to sighted participants. Additionally, “voice search” was a common response 

from interview participants as found in [13]. Furthermore, voice input was considered 

to be faster for five interview participants compared to manual input, and four showed 

strong preference, stating that they would use voice input if possible. Considering the 
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results from our study and prior finding that showed how text entry is challenging on a 

touchscreen for users with visual impairments (e.g., [19,31,87]), these results suggest 

that VI users might use voice input strategically to relieve the inefficiencies of 

touchscreen-based screenreader interaction for a wide range of microinteractions. Thus, 

as identified earlier, voice input is critical to include in any wearable device that is 

designed to support microinteractions.  

While voice input alone can be used for supporting microinteraction, voice 

input may not be always available in noisy environment or in front of others due to 

privacy concerns [2,13,135]. As such manual input is still needed with the wearable 

device (e.g., in an on-body interface) to complement voice input, for example, to 

support frequently used voice commands like setting an alarm or for something private 

(e.g., “call Darling”). 

7.4.3. On-Body Interaction as a Complementary Means of Mobile Computing 

Both sighted and VI participants considered a smartwatch to be additional device to 

carry that has limited or redundant capability with possibly increased input difficulties 

due to the small touchscreen. In contrast, only VI participants were concerned of sound-

related issues of smartwatches (e.g., volume not being loud enough). Contradicting a 

prior study that concluded VI users have a positive attitude towards wearable devices 

in general [135], our participants with visual impairments showed more negative 

attitude towards a smartwatch than sighted participants. This suggests the issue of 

sound quality may be the cause of the VI participants’ negative perception of a 

smartwatch. On-body interaction, in contrast, overcomes this limitation of 

smartwatches by providing an enlarged input area (e.g., palm or forearm). Furthermore, 
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on-body interaction offers many of the same wearable device advantages of the 

smartwatch, such as quick access and hands-free interaction—both of which are 

desirable for people with visual impairments, particularly in a mobile context where 

their hand is occupied for holding a cane (see Chapter 4). In addition, because users are 

interacting with their own body, concern about their phone being stolen is eliminated. 

As such, on-body interaction may be more ideal for supporting microinteractions than 

a smartphone or a smartwatch for users with visual impairments.  

7.4.4. Combination of Location-Independent and Location-Specific Gestures 

We found that each of the design probes we compared was perceived to have its own 

advantages and limitations. Thus, here I list each of the strength and weakness as 

implications for designing on-body interaction for users with visual impairments.     

7.4.4.1. Reduce the Learning Curve for Location-Specific Gestures 

Having to learn the location where each application is mapped was found to be the 

main drawback of location-specific gestures. While some participants commented that 

the location mapping made sense and help them learn the interface at ease for LSbody, 

most of the mapping were arbitrary especially for LSpalm. One way to reduce the 

learning curve is by transferring an interface layout that users are already familiar with, 

as users can recall the spatial mapping of the layout [37,39]; for example, users can 

interact on specific locations on their body (e.g., palm, forearm or thigh) while 

imagining that the applications on their phone are mapped. Supporting the “explore by 

touch” feature would also reduce the learning curve as it allows novice users can 

eventually learn the mapping as they use the interface over time. However, to maximize 



 125

the benefit from explore by touch feature, applications would need to be closely 

mapped in a single area as in LSpalm.  

Supporting input customization would be another option, which participants 

expressed the interest from the design probe study. By enabling end-user customization 

the cost of learning location-specific gestures can be reduced as user-defined gestures 

are easier to remember than pre-defined gestures [77], although appropriate assistants 

(e.g., mixed-initiative feedback) might be necessary for a robust accuracy [83]. Input 

customization would also relieve the concern of social acceptability as users can choose 

locations that they feel are discreet and are comfortable using in public.    

7.4.4.2. Support Multiple Options for Input Locations  

Location-specific gestures may allow faster interaction as users can directly point to 

certain locations instead of performing several swipes. However, as commented by 

participants, it may temporarily be impossible to interact with a specific location, which 

means there would be no way for users to access certain apps. For example, when 

walking on a street with a cane, users may not be able to interact with the palm 

(location-specific palm-based interaction) because it requires two hands–one hand to 

perform gestures and the other hand to serve as an input surface (Chapter 4 and our 

prior study [135]). Also, interacting with the thigh would be problematic as the legs 

would be continuously moving while walking. In this regard, location-independent 

gestures may be a better option; however, as pointed out by one participant, it would 

also increase the chance of accidentally activating the system as the whole body would 

become touch sensitive. Thus, using both location-specific and location-independent 
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gestures in combination would complement the trade-offs between location-specific 

and location-independent gestures with increased input flexibility than using either one.    

7.5. Limitations  

The primary limitation of the survey is that the data is all self-reported. Also, because 

the survey was conducted online, we likely had a bias toward technology savvy users. 

Moreover, because most participants had no experience with a smartwatch and it is 

highly unlikely that they had used on-body interaction either, their projections of these 

wearable devices might not necessarily be indicative of what users would experience 

in practice. Thus, an interview study on users who actually own smartwatches would 

be more useful for investigating the perception of smartwatches that are based on actual 

use. Furthermore, while gender may play a significant role in wearable technology 

acceptance [18,97], the visually impaired and sighted groups had different age and 

gender distributions. Thus, a follow up study is needed for direct comparisons of the 

two groups.  

Regarding the design probe study, the subjective feedback might be different 

with a more practical form factor that is smaller and self-contained as opposed to our 

physical prototype. Moreover, although we stressed that our system is an early 

prototype to explore the possibility of on-body interaction, the training process may 

have negatively impacted participants’ opinions. Also, the differences in amount of 

training example required and input recognition accuracy across design probes and 

participants might have affected users’ responses differently. For example, the average 

number of training examples required varied from 9.08 (thigh) to 14.75 (inner wrist) 

for input locations, 8.22 (P3) to 17.56 (P5) for participants. Thus, robust recognition 
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accuracies across the interfaces and participants would have been ideal. Furthermore, 

while we only had a two-level menu hierarchy with five main menu items where each 

of them had none to four sub-menus, users’ subjective ratings may be different with a 

different layout or a greater number of items, as is the case for mouse-based visual 

search time in a menu [16,46]. As such, a future work is needed to thoroughly compare 

the task performance time with different menu lengths and layouts.  

7.6. Conclusion  

Our results demonstrate how current microinteractions that are designed to be quick 

and simple are still time-consuming for people with visual impairments, and that the 

perceived benefits of having smartwatches for microinteraction may not be greater than 

the limitation of a small-sized touchscreen, which makes input more difficult compared 

to the screen on smartphones. Although participants with visual impairments were less 

positive about smartwatches than sighted users, they were generally positive about the 

idea of on-body interaction, as a small input space would be no longer be an issue while 

providing the advantages that a smartwatch can offer (e.g., quick access, hands-free 

interaction). Furthermore, we also found that participants liked location-specific on-

body gestures while they considered having to learn the location mapping to be a 

drawback. Thus, examining to what extent input customization or transferring already 

familiar interface layout relieves the learning curve would be an interesting future work.
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Chapter 8: Conclusion and Future Work 

As I stated in the Introduction (Chapter 1), the goal of this research was to support 

accessible mobile computing for users with visual impairments through on-body 

interaction as an alternative or complement to touchscreen interactions. The specific 

objectives of the dissertation included: (1) identification of perceived advantages and 

limitations of on-body input compared to a touchscreen phone, (2) assessment of 

performance benefits of on-body input over touchscreen input in terms of accuracy and 

efficiency, (3) implementation and evaluation of an on-body gesture recognizer using 

finger-, and wrist-mounted sensors, and (4) design implications for accessible and 

efficient non-visual on-body interaction for people with visual impairments.  

To achieve these objectives, I have demonstrated that users with visual 

impairments have a greater tendency than sighted users to create location-specific 

gestures (e.g., pointing to a specific finger for different tasks) and static gestures by 

exploring on-body gestures created by 13 sighted participants and 11 VI participants 

(Chapter 3). Building on this preliminary result, I have also found that on-body input 

was considered to be especially useful for contexts where one hand is busy (e.g., 

holding a cane or dog leash) when compared to mobile phone with touchscreen 

(Chapter 4). Moreover, I have empirically confirmed the performance benefit of on-

body input over touchscreen input for participants with visual impairments, extending 

previous pointing input results with only sighted users [38] both to this new user group 

and to the more complex shape-based gestures (Chapter 5). Following the design and 

performance studies, I have implemented an on-body gesture recognizer based on 

finger- and wrist-mounted sensor values for supporting location-specific gestures, and 
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with offline performance evaluations, demonstrated that our finger-mounted input 

sensing system is feasible for supporting 24 location-specific gestures with the 

accuracies of 94.9% (Chapter 6). Finally, I have identified nine tasks that would be 

important to be supported as microinteractions for people with visual impairments 

through on-body interaction, and investigated design implications of on-body 

interaction for enabling microinteraction, focusing on location-specific gestures 

(Chapter 7).  

8.1. Design Implications  

Here I summarize design guidelines for supporting accessible on-body interaction for 

people with visual impairments from lessons learned throughout this dissertation. 

These guidelines should inform further work on on-body interaction with people with 

visual impairments. Because they have been derived from lab studies alone, they will 

need to be confirmed in long-term field studies. 

8.1.1. Using the Hand as a Default Input Location  

For supporting non-visual mobile computing through on-body interaction, the hand 

location may offer a number of advantages as an input surface over other locations (e.g., 

forearm, wrist, thigh), regardless of users’ level of vision. Here, I summarize the 

advantages. 

8.1.1.1. Familiar Experience as Smartphone-based Interaction 

The hand, especially the palm side, can provide a familiar experience to users, which 

can also reduce the learning curve. In Chapter 3, when participants were asked to create 

any two-handed gestures (with the hands touching) for mobile actions, such as 
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returning to the home screen or opening a selected application, we observed that they 

had a high tendency to perform gestures with one hand on the palm of the other hand 

as if they were using the touchscreen of their phone. Furthermore, based on the 

subjective responses from Chapters 4 and 7, this mimicking behavior can reduce 

learning cost for users. When interacting with their hand, they can transfer their 

knowledge of the spatial layout of the actual phone (called transfer learning) to their 

hand as if they are holding an imaginary phone (conceptualized as called imaginary 

interface) [39].  

8.1.1.2. More Socially Acceptable Than Other Input Locations 

The hand location can offer interaction that is easy to access and is discreet compared 

to other body locations such as the wrist, ear, thigh, or neck and face areas. More 

importantly, interacting with the hand was considered to be more socially acceptable 

than the other input locations we examined (Chapters 4 and 7). Considering the finding 

from Chapter 4, which suggested that users may more concerned about social 

acceptability of on-body interaction than about having high ease of use and physical 

comfort, the hand-based location will likely be preferred by users especially in public 

settings.  

8.1.1.3. Performance Benefits Over Touchscreen Input for Non-Visual Interaction 

The hand location can enable better performance than a smooth touchscreen of the 

phone when visual cues are absent. The palm was found to be faster and more accurate 

performance for target pointing, and more consistent and accurate for shape drawing 

than on a touchscreen of a phone for participants with visual impairments and 

blindfolded sighted participants (Chapter 5). For target pointing, specifically, 
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participants outperformed if the targets were located on the tips of the finger than other 

locations on the fingers or on the palm. As such, for people with visual impairments or 

even for sighted people under eyes-free conditions, we recommend using the palm as 

an input surface for on-body interaction as opposed to a smooth touchscreen of the 

phone for better performance.  

8.1.2. Supporting Always-Available Interaction 

On-body interaction can support always-available input for people with visual 

impairments especially in mobile contexts when one of the hands is busy holding a 

cane or dog leash.  

8.1.2.1. Supporting One-Handed Interaction 

While one-handed interaction was found to be a desirable feature for people with visual 

impairments, especially in a mobile context, participants reported that it is physically 

challenging to use a single hand to secure the phone and perform gestures at the same 

time on a hand-held smartphone. As such, users would often postpone the use of their 

devices or stop walking to interact with their phone (Chapters 4 and 7), as revealed in 

prior studies [2,135]. In contrast, one-handed interaction can easily be supported with 

on-body input since it can free users’ hands without having to hold and secure the 

physical device. Thus, on-body interaction can serve as a complementary means of 

mobile computing for people with visual impairments for supporting interaction on the 

go when both hands are not available.  

8.1.2.2. Supporting Multiple Input Locations and Modes 

A downside of on-body interaction is that depending on the input locations used, not 

all input locations will be available at all times. For example, while the palm has several 
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advantages as mentioned above, physical access can be limited when holding a cane as 

both hands are needed to interact with the location. The thigh location may also be 

problematic in practice as legs would be constantly moving while walking. In this 

regard, supporting multiple input locations or location-independent gestures, where 

gestures are not restricted to their performed locations, and thus can be performed 

anywhere on the body, should be considered to enable always-available interaction.  

8.1.3. Enabling Location-Specific Gestures  

Gestures performed on specific locations or landmarks on users’ body (namely 

location-specific gestures) were preferred by people with visual impairments in general 

(Chapters 3, 4 and 7). However, careful considerations will be needed when designing 

location specific gestures for on-body input.  

8.1.3.1. Combining Location-Independent and Location-Specific Gestures 

As mentioned earlier, location-independent gestures allow always-available input as 

gestures can be performed anywhere on the user’s body. Moreover, as opposed to 

location-specific gestures, less learning will be required for location-independent 

gestures if item navigations can be done with directional swipes (e.g., a left-to-right 

swipe) as users do not need to memorize the mapping between the locations and their 

corresponding items. In contrast, location-specific gestures may offer faster interaction, 

especially when the mapped locations are close together, since users can directly go to 

specific locations instead of several swipes once users become familiar with the 

interface. Although further investigation is needed as our study only included a 

relatively small set of five locations in Chapter 7, the perceived trade-offs between the 

two types of on-body gestures suggest that each gesture type would complement the 
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other. Thus, enabling both location-independent and location-specific gestures is 

recommended for supporting both novice and expert users similar to how iOS and 

Android support both gesture-based navigation as well as exploration by touch. 

8.1.3.2. Location-Specific Gestures With Customization 

Appropriate on-body input locations may vary depending on users’ preference or 

mental models. For example, some people might favor tapping their ears to activate 

voice input. That would allow them to memorize the mapping between the location and 

the application at ease, while others would tap their specific locations on the palm to 

invoke the same functionality because of its discreetness and easy access. One solution 

would be enabling end-user customization to meet these various mapping preferences, 

which would also reduce the learning curve as user-defined gestures are found to be 

more memorable than pre-defined gestures [77]. However, creating distinctive gestures 

in the perspective of the on-body input recognizer for achieving high accuracy would 

be challenging for users, as has been shown for touchscreen gesture customization [83]. 

As such, technical feedback should be provided when supporting end-user input 

customization for location-specific gestures. 

8.1.4. Supporting Microinteraction 

While on-body interaction may provide more efficient and always-available interaction 

for non-visual mobile computing for people with visual impairments as opposed to a 

touchscreen, some tasks might be better performed with other input devices. Text entry, 

for instance, would be faster with a physical keyboard (either braille or QWERTY) 

than a virtual keyboard on a smartphone or on the user’s own skin surface. Voice input 

is also highly efficient for some tasks, such as searching for a specific item such as an 
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app or contact information. In this regard, the goal of designing on-body interaction 

should not be to replace but to augment or complement other possible input methods 

by supporting a set of microinteractions that are most amenable to on-body input. For 

example, on-body input can be useful when voice input does not work well in a noisy 

environment, or when the privacy becomes a concern.  

8.2. Summary of Contributions 

The work I present in this dissertation makes several contributions: 

• The potential and challenges of on-body input for people with visual 

impairments:  

� Identification of perceived advantages and disadvantages of on-body input 

compared to a touchscreen phone (Chapters 4 and 7). 

� Empirical evidence showing the performance benefits of on-body input 

over touchscreen input in terms of speed and accuracy (Chapter 5).  

• Design implications of non-visual, on-body interaction specifically for people 

with visual impairments:  

� A characterization of the preferences for different on-body input locations 

(Chapter 4). 

� Empirical evidence that there is a measurable difference between 

subjective usability ratings for on-body interaction and touchscreen 

interaction for different hand availabilities: one versus two hands (Chapter 

4). 

• Investigation of an on-body input sensing system using finger-mounted sensors:  
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� Implementation of an on-body gesture recognizer based on finger-mounted 

sensors such as accelerometer, gyroscope and magnetometers (Chapter 6). 

� An offline evaluation of the on-body gesture recognition accuracy 

comparing different input conditions such as choice of sensors and sensor 

placement (Chapter 6). 

• Design and evaluation of on-body interaction for supporting accessible 

microinteractions: 

� Identification of the challenges people with visual impairments face with 

microinteractions and whether these differ from sighted users (Chapter 7). 

� Design guidelines based on the comparison of three different on-body 

interaction design prototypes for supporting microinteractions (Chapter 7). 

� Perceived trade-offs between on-body interaction versus mainstream 

mobile and wearable technologies (Chapter 7). 

8.3. Future Work 

With the investigations and designs presented in this dissertations, I have demonstrated 

that on-body interaction can provide an alternative or complementary means of 

accessible mobile computing for visually impaired users, with improved speed and 

accuracy as compared to touchscreen interaction. From here I have several directions 

for continued research aiming to support a wider range of users and applications.   

8.3.1. Re-Implementation of On-Body Input Systems  

To either solicit subjective feedback from participants or to demonstrate the technical 

feasibilities, the on-body input sensing systems I implemented and used throughout the 
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dissertation did serve the purpose as research prototypes. However, to increase the 

flexibility and extensibility for future work of on-body interaction for people with 

visual impairments, the sensing techniques and the form factor has to be improved. 

 In terms of sensing techniques, because the data was collected and tested 

immediately while participants were seated still in our studies, the accuracy of our 

current on-body input sensing approach is likely to be dropped down, requiring longer 

calibration in realistic contexts. Also, even a finger-mounted camera-based approach 

may not be free from out-of-frame issues when the input location is narrow or near the 

edge (e.g., fingertip, wrist), or when the pointing angle of the finger is parallel to the 

input surface instead of with some angle (e.g., a contact made with a finger pad rather 

than the tip of the finger). Thus, the re-implementation of a robust sensing algorithms 

considering users’ various input postures and locations would be necessary to compete 

with current mainstream devices (e.g., touchscreen-based sensing). Although, they may 

not be directly applied for supporting on-body interaction, leveraging state-of-art 

camera-based sensing approaches for recognizing hand gestures in general (see survey 

[99]) would be a good starting point for the next step.   

The importance of designing on-body input sensing to be streamlined and not 

bulky (unlike our prototype system) is also important for a wide adoption of on-body 

interaction as users with visual impairments tend to prefer mainstream devices that are 

accessible rather than specific assistive devices that may stand out and incur social 

stigma [111]. Moreover, tactile enhancement on input locations on the body would be 

useful for supporting accessible on-body interaction, especially for the locations that 

are tactilely less distinctive than others (e.g., specific segments of fingers versus 
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specifics location on forearm). To provide tactile feedback for users to find specific 

location precisely at ease, I plan to investigate into on-skin sensing techniques such as 

conductive on-body stickers [127] or tattoos [54].  

8.3.2. Further Evaluation 

Current qualitative evaluations of on-body interaction have only provided the results 

from single-session controlled lab settings or an online survey. Thus, the collected 

responses might not necessarily be indicative of what users would experience or 

perceive in practice. For example, while many of the questions were related to 

smartwatches for the online survey in Chapter 7, only 13 participants (out of 117) 

owned a smartwatch. As such, interviewing smartwatch owners would offer more rich 

and realistic data than what I have collected. Moreover, as for evaluating on-body 

interaction, field studies would allow me to observe and study their actual usage and 

subjective feedback over time, focusing on social acceptability and interaction on-the-

go. To be specific, I am interested in studying the perspective of people, both onlookers 

and bystanders as in [96,97], of using on-body interaction in varies contexts (e.g., at a 

library, walking on a street). Furthermore, I plan to investigate the usability of location-

specific gestures in depth. Along with the qualitative analysis I have done in Chapter 

7, I would like to assess users’ performance on different body locations, comparing 

location-independent and location-specific gestures in terms of speed and recall rate. 

Examining failure cases or the cause of low performance would also be valuable to get 

insights for achieving inclusive design. Further, while the location-specific gestures we 

examined involved tapping gesture only in Chapter 7, I plan to include more complex 
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gestures (e.g., geometric shapes, multi-finger swipes), or even mid-air three-

dimensional gestures for a comparison.  

8.3.3. Extension to Other Applications  

Although my dissertation has focused primary on supporting accessible mobile 

computing through on-body interaction, I would like to expend this research to 

authentication and text entry, which were found to be slower in prior studies and, 

confirmed in my study as well.  

As for authentication, location-specific on-body input can be used as an 

authentication approach like fingerprint identification could also easily be incorporated 

if using our camera-based sensing approach, as shown in our prior study [114] and 

Chapter 6. For example, simply tapping a thumb can unlock the phone by extracting 

the fingerprint while users are performing a tap, which would be faster than having to 

enter a 4-digit passcode, which takes about 7.5 seconds [14]. Moreover, this approach 

would be more secure because it can prevent aural eavesdropping that is problematic 

for screenreader users, where the passcode would be spoken out loud in front of others 

[12,17,30].  

Also, I would like to investigate how on-body interaction can be designed to 

support text entry. Handwriting-based text entry has been explored by several on-body 

interaction studies (e.g., [23,126]), however, symbolic gestures are not preferred by 

blind people [53]. Thus, instead of handwriting, I would like to study on-screen braille 

and QWERTY keyboard-based input methods that are location-specific (e.g., [29] or 

soft keyboard) versus location-independent, where the keyboard layout adaptively 

changes based on the relative typing locations (e.g., [29] or a braille keyboard 
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supported by iOS VoiceOver) to learn design implications for supporting text entry 

though on-body interaction.  

8.3.4. Extension to Other User Groups  

Although I used the term “people with visual impairments,” the focus of this 

dissertation has been supporting people who have little or no functional vision, which 

is only less than 10% of people with visual impairments; most of them have some 

functional vision [138]. As such, audio output was provided for the demonstrations of 

on-body interaction rather than visual output. However, for people with any level of 

functional vision, including people with low vision and sighted people, might prefer 

visual feedback than other modes of output. On the other hand, for deafblind users, 

neither audio nor visual feedback would be accessible. Thus, different modes of output 

should be supported for different users. Furthermore, I would like to investigate how 

always-available input enabled by on-body interaction can support situation 

impairments (e.g., hands or visual channels being occupied like driving), which users, 

both with and without disabilities, would experience more often as computing devices 

will be used in more diverse situations with a wide adoption of wearable technologies 

[108]. Overall, deploying ability-based designs principles [132] to understand specific 

design requirements for each of the user groups with different needs would eventually 

lead to a universal design [121,122]. 

8.3.5. One Customized Interface for Multiple Systems 

Lastly, I plan to investigate end-user input customization as a continuation of my earlier 

work [83] to lower the barriers for learning and using technologies. The gestures 



 

140 
 

customized by the users for themselves have several advantages over pre-defined 

gestures: improving memorability [77] and offering quick access to information [92]. 

Gesture customization may also be used to improve the accessibility introduced by the 

design choices of certain interfaces for people with different needs [7]. Having these 

benefits, the custom on-body gestures would be useful to be supported as a part of 

Global Public Inclusive Infrastructure (GPII) 16 , specifically for Automated 

Personalization Computing Project (APCP). For instance, one set of gestures can be 

performed on users’ own bodies instead of physically interacting with an input device 

for any new or different interface that users encounter, without having to learn or switch 

to different types of input modes for different interfaces (e.g., public kiosks, home 

appliances).  

8.4 Final Remarks 

In this dissertation, I have demonstrated the following thesis statement: 

On-body interaction can provide an alternative or complementary means of 

accessible mobile computing for visually impaired users, with improved speed 

and accuracy as compared to touchscreen interaction. 

I have shown that participants with visual impairments have a positive attitude towards 

on-body interaction in general mainly because of quick access and ability to keep the 

hands freer than when using a smartphone. While a smartwatch can also offer these 

two benefits, more VI participants were negative about it due to its small touchscreen. 

                                                 
16

 This Project is being led by Trace Center (directed by Dr. Gregg Vanderheiden) in the iSchool at the University 

of Maryland, College Park. 
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Furthermore, in terms of performance of on-body interaction compared to touchscreen-

based interaction, I have shown that VI participants were faster and more accurate for 

target pointing tasks, and more consistent for shape drawing tasks on their hand, than 

on a smooth screen of a phone.  

 I have demonstrated the advantages of on-body interaction, in terms of both 

qualitative feedback and empirical performance gain over touchscreen interaction, in 

support of mobile computing for people with visual impairments. However, for on-

body interaction to truly support accessible mobile computing, it needs to become a 

mainstream technology, rather than an assistive technology which is used by only 

people with visual impairments. Without widespread adoption of on-body interaction, 

it may stand out and incur social stigma [111]—this concern of social acceptability was 

raised by a number of participants in my study. Thus, based on the lessons I have 

learned from people with visual impairments throughout this dissertation, I plan to 

continue this research with the goal of supporting on-body interaction as a mainstream 

technology for a wider range of users, with and without disabilities. It will also be 

important to determine how on-body interaction fits into a larger ecosystem of mobile 

computing technologies to best complement the strengths of devices such as 

smartphones, smartwatches, other emerging wearable devices.  
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