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With the increasing availability and impact of data in our lives, we need to make 

quicker, more accurate, and intricate data-driven decisions. We can see and interact 

with data, and identify relevant features, trends, and outliers through visual data 

representations. In addition, the outcomes of data analysis reflect our cognitive 

processes, which are strongly influenced by the design of tools. To support visual and 

interactive data exploration, this thesis presents a systematic and minimalist approach. 

First, I present the Cognitive Exploration Framework, which identifies six distinct 

cognitive stages and provides a high-level structure to design guidelines, and 

evaluation of analysis tools. Next, in order to reduce decision-making complexities in 

creating effective interactive data visualizations, I present a minimal, yet expressive, 

model for tabular data using aggregated data summaries and linked selections. I 

demonstrate its application to common categorical, numerical, temporal, spatial, and 

set data types. Based on this model, I developed Keshif as an out-of-the-box, web-

based tool to bootstrap the data exploration process. Then, I applied it to 160+ 



 

 

datasets across many domains, aiming to serve journalists, researchers, policy makers, 

businesses, and those tracking personal data. 

Using tools with novel designs and capabilities requires learning and help-seeking 

for both novices and experts. To provide self-service help for visual data interfaces, I 

present a data-driven contextual in-situ help system, HelpIn, which contrasts with 

separated and static videos and manuals. Lastly, I present an evaluation on design and 

graphical perception for dense visualization of sorted numeric data. I contrast the 

non-hierarchical treemaps against two multi-column chart designs, wrapped bars and 

piled bars. The results support that multi-column charts are perceptually more 

accurate than treemaps, and the unconventional piled bars may require more training 

to read effectively. 

This thesis contributes to our understanding on how to create effective data 

interfaces by systematically focusing on human-facing challenges through minimalist 

solutions. Future work to extend the power of data analysis to a broader public should 

continue to evaluate and improve design approaches to address many remaining 

cognitive, social, educational, and technical challenges.  
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Chapter 1. Introduction 

“Engineers solve technical problems that are well behaved. Designers build and 

innovate solutions to wicked problems, human-messy problems. And on the 

(computer) mouse, the engineers did a really good job of making the little switches 

and the things that control the wires and send the information to the computer 

screen to show the pointer where it should go. (…) But, will people like it? Should 

you press the button once or twice? Should it make a noise when you do that or not? 

That's all part of the human experience. So we tried hundreds of different mice, and 

hundreds of different definitions of how the interaction between the person and the 

computer would go. Because that's a human experience. You cannot analyze that; 

you cannot sit down with an equation and figure that out. You have to go into this 

place called the future we haven't been yet, where computers are friendly, and talk to 

the user (…) and see what happens. And that's how we build our way forward.” 

Dave Evans 

The Diane Rehm Show, WAMU, October 3rd 2016 

 

The surrounding inspiration of this PhD thesis is that data analysis, as well as our 

everyday lives, can be profoundly shaped by human-based design. The utility of any 

tool, or process, that we use depends not only on its internal technology and 
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capabilities, but also on the psychological, educational, social, and aesthetical 

context within which it operates. I argue that data analysis is a process that is no 

different. To be able to truly understand data, we face not only computational and 

algorithmic challenges, but also cognitive, educational, and even cultural ones. 

Designing the process of bringing data to life, or creating a data dialogue, 

compliments designing the algorithms. Neither can survive alone. In addition, to use 

data as a form of communication, or even to draw a conceptual picture implicitly 

lingering in our minds, data presentations need to appeal to our eyes as well as our 

mind. 

For decades, the information visualization researchers have been developing new 

techniques, the practitioners have been working to satisfy client needs and develop a 

culture, and the public has been getting more literate through data-driven journalism 

and so many everyday interactions with data (information). Yet, we have more work 

to do to enable rapid, effective, and expressive visual data exploration. Specifically, 

in a human-centered context, innovation is not merely adding new capabilities and 

techniques, but also re-shaping the processes to meet the needs of today, and to 

prepare for a positive vision of the future. The only way to build a timeless sculpture 

is to remove the excess material, and the imagination of the artist defines what 

would remain, the core purpose of the material. Similarly, innovation in data and 

human based design can remove such extraneous material, the complexities, with a 

new vision for functionality, aesthetics, purpose, and value. 
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Motivated by the growing importance of making effective data driven decisions, 

and improving data literacy, for a broad public, and the inspirations of human-

centered approaches to problem solving, this thesis presents (i) a framework to 

understand cognitive aspects of visual data exploration, (ii) a minimal yet expressive 

model to enable rapid tabular data exploration, (iii) the implementation on this 

model, Keshif, which has been applied in over 150 settings, (iv) a contextual, in-situ 

help system design for providing training in visual data interfaces, and (v) an 

evaluation of alternative visual designs for dense display of numeric datasets. 

1.1 Motivation 

This thesis is motivated to contribute towards more rapid, effective, and expressive 

visual data exploration. The need for rapidness reflects the essence of time. The 

throughput of data-driven knowledge from a dataset depends on making quick 

observations and a fluid dialogue to support the process. The need for effectiveness 

reflects the essence of analytical thinking and accuracy in analysis. Given many 

alternative ways to explore a dataset, there are many potentially misleading paths to 

inaccurate assessments, or roadblocks to reach specific targeted outcomes. The need 

for expressiveness reflects the essence of depth and richness of exploration 

outcomes. The tools and techniques should not only provide a singular view of the 

data, but a range of views each of which can answer new questions. However, taken 

together, rapidness, effectiveness, and expressiveness are goals that can oppose each 
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other. Expressiveness can increase the time to make effective decisions, and 

rapidness can lower the depth and accuracy of assessments of data. The approach of 

this thesis is finding a balance, and generating new value through by not sacrificing 

along one dimension while improving among another dimension, recognizing that 

this is not a zero-sum setting. 

Specifically, this thesis decomposes this higher motivation into multiple 

chapters. These motivations can also be linked together based on targeting various 

stages and factors of the Cognitive Exploration Framework (See Section 3.5). First, 

we need to have a clear understanding of the cognitive aspects of data exploration 

(Chapter 3). Second, we need to develop new, refined models that would create new 

environments that offer rapid, effective, and expressive exploration (Chapter 4). We 

need to implement new tools based on these models, and study how people use these 

them (Chapter 5). Third, we need to enable expressiveness for revealing deeper 

relations and information within richer data sources (Chapter 6). Fourth, we need to 

consider how people can be trained, and how they can receive help, so that they are 

able to quickly learn and effectively apply data analysis and explorations under 

various conditions and datasets (Chapter 8). Last, but not least, we need to evaluate 

alternative visualizations by their characteristics in graphical perception and design; 

to empirically find those that would be more effective under targeted settings 

(Chapter 9).  
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1.1.1 Motivation for a Cognitive Focus on Data Exploration 

The value of data can be measured by the knowledge we can extract from it. Visual 

tools support exploration for knowledge discovery by creating an interactive 

dialogue with data. To evaluate the role of cognition, we focus on the role of a data 

explorer whose primary goal is to understand data by developing and answering 

questions. This is in contrast to consuming pre-extracted knowledge from a data 

presentation (such as a news story), communicating results [62], or designing 

specific interfaces and data exploration spaces for other users [16]. 

Visualization can amplify people’s ability to comprehend data [26]. However, 

using visual tools for data analysis also requires other cognitive activities, such as 

forming analysis goals and interaction plans. Barriers to effective cognition can lead 

us to fruitless paths, inaccurate or false knowledge, lost time, or even the 

abandonment of exploration because of confusion and frustration. Existing work in 

modeling visualization or cognitive activities in exploration tend to be frameworks 

that focus on system components [26], [31], [60], empirical results from specific 

tools and study setups [54], [80], [84] or surveys [85]. Little work has focused on a 

comprehensive analysis of the cognitive aspects of visual data exploration. 

1.1.2 Motivation for a Visual and Interactive Model for Data Exploration 

Visual data exploration can be performed using visualization design environments 

(VDEs) (such as Tableau [136], Lyra [123], iVisDesigner [115]) that enable 
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constructing custom visualizations and interactions based on rich visual grammars, 

interactive features, and data pipelines. VDEs are also designed to support 

explanatory tasks, such as storytelling and interactive infographics. As a result, 

VDEs typically define a highly expressive, yet vast and complex query and 

configuration space that requires users to make many decisions to create effective 

data views. This process demands high cognitive effort, requires knowledge and 

experience, and reduces exploratory speed, affecting both novices [54] and experts 

[16]. Extended discussions of related work in multi-dimensional data analysis, and 

their limitations in the context of this thesis, are presented in Section 2.3. 

1.1.3 Motivation for Set-Typed Data Exploration 

Many real-world data collections consist of elements with multiple attributes. Some 

of these attributes may take multiple categorical values; for example, movies may 

have multiple genres, recipes have multiple ingredients, students take multiple 

courses, and publications typically have multiple keywords and authors. These 

multi-valued categorical attributes are commonly referred as set-typed since they 

implicitly describe set memberships over elements.  

Set-typed data has recently received considerable attention in the field of 

information visualization, with visual representations based on linear lists of set 

intersections [88], radial node-link diagrams [3], and element matrix compositions 

[121]. However, common between these and other visual set exploration approaches 
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in the literature is that: (i) they scale to a relatively small number of sets; (ii) they are 

optimized for particular set exploration tasks; and (iii) they either do not support 

other element attributes beyond set membership, or the visualization and interaction 

is designed differently and ad-hoc for other attributes, decreasing consistency. 

1.1.4 Motivation for Integrated Contextual Help System Design 

Using computer applications effectively can be demanding for both first-time and 

experienced users. While user interface improvements, better interaction models, and 

increased familiarity have made applications easier to use, using new interfaces and 

learning new concepts always pose challenges [131]. In practice, users today expect 

to use new applications immediately with no or minimal training, and to learn and 

troubleshoot as they go.  

In particular, designing self-instructional interfaces for data science tools faces 

many challenges because of the overall complexity of data analysis. Even a visual 

data interface, such as Tableau, Spotfire, or Keshif, which are based on interactive 

visualizations of data to aid sensemaking, must guide experts in translating their 

analytical knowledge into actual tool features. This step is even more challenging for 

casual users or novices, who have a limited vocabulary of data analysis, yet are 

increasingly consuming or searching for data-driven answers in their everyday lives. 

However, traditional help materials based on static datasets and fixed application 

settings cannot match the rich context of a live data analysis environment, and thus 
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require the user to translate the abstract information into their task at hand. 

Integrated help systems have the potential to provide this crucial help and training 

guidance. Specifically, data interfaces constitute an unprecedented opportunity for 

data-driven contextualization where the features of the underlying dataset, such as 

variable types or distributions, and analysis settings, such as chart types and data 

selections, can be used to guide the user to learn the tool and perform data analysis. 

1.1.5 Motivation for Dense Visualization of Numeric Data  

Lists of numeric measurements for specific items—such as country populations, 

smartphone prices, or university acceptance rates—are ubiquitous. The sorted bar 

chart visualizes this data with perceptual effectiveness and simplicity. However, it 

can only show a few dozen records given standard constrained screen sizes. How can 

we visualize more records—such as 150 countries, 75 tablets, or 300 universities—

in a chart, while maintaining perceptual accuracy for data comprehension? Among 

potential solutions, (i) larger screen spaces for charting may not be available, (ii) 

interaction, such as scrolling or focus+context, are not supported in ubiquitous print 

and image medium, and (iii) aggregation of underlying data prevents observing 

records individually. In addition, there currently exists no detailed evaluation of 

alternative visualizations and their graphical perception performance targeting this 

data setting and context. 
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1.2 Contributions 

The contributions of this dissertation are as the following: 

 (Chapter 3) We developed the Cognitive Exploration Framework to present a 

comprehensive structured overview of the cognitive activities and challenges 

in visual data exploration. The framework can be linked to many design 

guidelines in data analysis, and can be used for evaluation of data analysis 

tools as well. This framework is built upon, and extends, existing literature in 

visual data sensemaking, cognition, and barriers. The results are presented at 

BELIV 2016 [153]. 

 (Chapter 4) We developed a visual model for data exploration that reduces 

decision making in data exploration, and achieves minimalism while 

maintaining expressibility. We describe the visual, interactive, and analytical 

components of this framework, and describe its application to multiple 

common data types. 

 (Chapter 5) We implemented a web-based data exploration tool called Keshif 

based on the proposed framework. The implementation allows creating data 

browsers using graphical authoring, or using a simple API. The browsers can 

be embedded, edited and shared easily. Based on our user evaluation with 

visual data analytics novices, short training and a casual setup, Keshif can 

lead to rapid data exploration performance as measured by the volume and 
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depth of data-driven insights. Our study results and performance are 

comparable to, and on par with, existing studies using advanced tools or 

novel prototypes with more skilled audiences. 

 (Chapter 6) We present a focused design and development for analysis of set-

typed (multi-value categorical) data, called AggreSet. This technique has 

advantages in visual scalability, consistency, and expressiveness compared to 

the state of the art. The results are published at TVCG as part of InfoVis 

2015 proceedings [154]. 

 (Chapter 8) We present the design of a new contextual in-site (integrated) 

help system for visual data interfaces (HelpIn), with the goal to advance upon 

rapid help seeking and learning of data interfaces. HelpIn takes advantage of 

active data, and query, visualization states, and includes multiple modes 

targeting different use cases in help. Our approach clarifies the use of context 

for both help seeking and help presentation. 

 (Chapter 9) We present a detailed evaluation, both in design and in graphical 

perception performance, for visualization of dense sorted numeric data. We 

present a novel visualization technique, called Piled Bars, which is an 

extension of the wrapped bars technique, with advantages in data encoding 

properties. The evaluation details the perception accuracy in three 

complimentary tasks (comparison, ranking, overview), as well as various 

practical use cases and alternatives of the studies alternative techniques. 
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Next, we describe the contributions of each chapter in more detail. 

1.2.1 Cognitive Exploration Framework 

The Cognitive Exploration Framework for visual data exploration (CEF) is a 

structured overview of six cognitive stages in data exploration. The factors of 

decision-making, existing knowledge and motivation are also identified in relation to 

cognitive activities. By its comprehensive coverage of cognitive activities, the 

framework can be used to improve and evaluate the design of exploratory tools. We 

demonstrate the rhetorical power of CEF by using it to categorize a large number of 

concrete design guides with respect to stages of cognition. In order to use CEF as a 

lens to evaluate tools, we propose an observational study approach that focuses on 

identifying failures and challenges in open-ended exploration instead of performance 

on benchmarked tasks or insights [122]. 

1.2.2 A Minimal Yet Expressive Model for Data Exploration 

To streamline and unify the visualization authoring and data exploration workflow 

for tabular data, and to reduce complexities and decision-making costs, we propose 

the aggregate summaries and linked selection model. Data records are aggregated in 

attribute summaries with visual design based on data type. Our model reduces the 

search space for choosing visual data encodings by automating visual representations 

based on data type and semantics using perceptually effective, non-overlapping 

visual encodings. Thus, the user makes fewer decisions on data representation 
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compared to VDEs, leaving more cognitive resources to reach data-driven insights, 

and reducing required visual analytics knowledge. The model defines an interactive 

overview-to-detail flow for visual exploration using three linked selection 

interactions: (i) highlighting (rapidly previewing record groups), (ii) filtering 

(focusing on a record group), and (iii) comparison (locking selection of record 

groups). Despite its minimalism, the model is expressive (enables rich data 

exploration) by its applicability to common data types (categorical, numerical, 

temporal, and spatial (Table 1)), and its support for measure functions for aggregates 

(count, sum, average) and visual scale modes (absolute, part-of). The model achieves 

scalability in record count by explicit aggregation, and its minimalism enables rapid 

learning. 

Design and Implementation of Keshif: Data Exploration Environment 

Based on this model, we designed and implemented Keshif, an open-source, web-

based data exploration tool for tabular data, available online at www.keshif.me. Raw 

data is visualized by authoring a Keshif browser by inserting attribute summaries, 

the record display (showing records individually), and calculating custom attributes. 

This authoring can be done using graphical interface, as well as using the minimal 

JavaScript API of Keshif. Data is then interactively explored through Keshif’s 

unified, consistent linked selections. By enabling authoring within exploration, the 

two processes are merged in the single environment.  

http://www.keshif.me/
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Keshif further specializes summaries based on data semantics for tasks such as 

categorical sorting, flexible range selections, and navigation (scroll, pan, zoom). To 

enable exploration of spatial records or self-referencing attributes (networks), the 

record display can show records on a geographical map or as a node-link diagram, in 

addition to list views. Keshif browsers are defined with a compact configuration, 

which can be forked to enable collaboration. Browsers can be publicly shared on the 

web with a unique URL, or embedded into existing web pages using basic JavaScript 

and CSS programming, which also can be used to customize the browsers. As a 

result, Keshif provides an out-of-the-box tabular data exploration solution to enable 

rapid data exploration. 

We present an evaluation of data exploration process from raw data with visual 

analytics novices in a casual, unguided setting given short training using the insight-

based methodology. The results support that Keshif and its model for data 

exploration enable rapid learning, authoring, and discovery flow, averaging close to 

two insights shared per minute. We also validate the design through 160+ Keshif 

browsers on public datasets across many disciplines, enabled by the underlying 

generic model and its implementation. 

1.2.3 AggreSet: Set-Typed Data Exploration Technique 

AggreSet is a novel set exploration technique that solves set-exploration challenges 

noted above through an integrated design of linked visualizations of multiple data 
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dimensions with rapid selection, filtering, and comparison (Figure 12). It addresses 

the challenges presented in the Section 1.1.3 as the following: (i) To improve 

scalability, AggreSet uses a matrix-based visualization for set relations. Scalability 

in the number of sets is achieved by the non-overlapping and zoomable nature of the 

set-matrix. Scalability in the number of elements is achieved by aggregation. (ii) 

Based on an analysis of set-typed data exploration and design guidelines, AggreSet 

is designed to achieve richness of supported tasks, design efficiency, and 

consistency. (iii) AggreSet embeds the set-matrix in a multi-view layout consisting 

of histogram-based visualizations that are brushed and linked in a design that does 

not differentiate between set-typed and multivariate attributes. Specifically, 

AggreSet achieves improved scalability, richness, consistency, and enables rapid set-

typed data exploration through a new matrix-based design for visualizing sets: 

Scalability: AggreSet supports concurrent analysis on numerous sets (50+) and 

many aggregated elements (100,000+) across multiple dimensions. Its scalability 

comes from non-overlapping visualizations of aggregations over elements, and a 

scrollable and zoomable matrix view for visualizing relations between sets. 

Richness: AggreSet supports a plethora of tasks for exploring relations in set-typed 

attributes and elements with minimal visual and interaction components. Its multi-

view and linked design enables higher-order analysis (e.g. intersection of three or 

more sets), surpassing the limitations of static 2D set-matrix layouts. 
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Consistency: The visual and interaction design of AggreSet is consistent across all 

attribute types; i.e. it does not differentiate between aggregates for sets, set-degrees, 

set-intersections and other attributes, when applicable. 

Rapid exploration: The user can observe many relations on tightly coupled 

visualizations without performing explicit state changes that slow down interaction. 

Our visual and interaction design encourages an overview-to-detail exploration. 

Matrix design for set relations: AggreSet’s set-matrix visualizes set-specific 

relations: empty, identical and sub-sets. It also presents a new set similarity metric, 

and a new method for set ordering to perceptually emphasize intersections of set 

groups. 

1.2.4 HelpIn: Data-Driven Contextual In-Situ Help System 

To improve help and training for visual data interfaces, we present HelpIn, a 

contextual data-driven in-situ help system. With contextual integration of help 

instructions using visual callouts, superimposed labels, and dynamic annotation into 

a live visual data interface, such as in Figure 1, HelpIn responds to active data and 

application context, and reduces the physical distance of help material to the 

interface, targeting to weaken the split-attention effect [51]. The features od data, 

visualizations, and queries, as well as application and task history, is used to help the 

user to quickly find help material of interest (help seeking) by contextual filtering 

and ranking, as well as to comprehend dynamic narrative answers. We introduce five 



 

16 

 

 

 

modes of help-seeking across the pull/push model (help initiated by the user vs. 

system) [67]: contextual help on pointed interface elements (Point Learn), topic 

listing, overview, guided tour, and notifications. In addition, while updating interface 

design can outdate fixed screenshots or videos, HelpIn allows help material to be 

adjusted in small pieces during development, enabling iterative maintenance. 

We evaluated HelpIn in comparison to its stripped-down version with non-

contextual topic index and non-integrated answers using shared instructional 

material. While our participants showed similar progress on given tasks across the 

help system conditions, the Point & Learn mode was found the most useful in their 

feedback, and lead to higher task completion performance while also increasing time 

spent on help. Given high quality help instructions, the preference across static vs. 

integrated topic answers were split across on individual level. We also report on 

help-seeking behaviors for visual analytics, including when, for what, and how. 

1.2.5 Evaluation of Multi-Column Bar Charts and Treemaps 

Relating to the graphical perception aspects of visual data exploration (and the 

visualization assessment stage of the Cognitive Exploration Framework, and 

guidelines thereof), this thesis also focuses on dense data visualizations for sorted 

numeric data to enable both overviews of all records, and comparisons across 

records. Figure 31 shows treemaps [71], wrapped bars [47], and piled bars that meet 

these goals. We considered treemaps (TM) because of their common use [17], [143], 
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[159] for presenting large numbers of records without hierarchical structure, 

although the technique was originally designed with hierarchical structures in mind 

[71]. Visualization tools such as Tableau also include treemaps as a suggested plot 

for a numeric attribute, which leads to its adaptation in various dashboards [35]. We 

considered wrapped bars (WB) and piled bars (PB), which are multi-column dense 

bar charts. Wrapped bars, to our knowledge first introduced by Stephen Few [47], 

use multiple columns to improve the compactness of the visual representation. Based 

on this design, we refined wrapped bars into the piled bars technique by using a 

shared baseline for all columns, which visually aligns all record bars, and improves 

on the data encoding resolution. However, this step introduces overlaps across bars 

along a row, which we separate visually using a gradient rendering approach. This 

thesis contributes a detailed analysis of the three designs, and discusses the use of 

color and bi-directional axis for visualizing negative values and grouped records, as 

well as showing record labels. 

In addition, the thesis reports on the graphical perception performance of the 

alternative techniques through crowdsourced human experiments, comparing them 

on three complimentary tasks: comparison, ranking, and overview. In terms of data 

assessment accuracy, the results suggest that piled bars > wrapped bars > treemaps 

for comparison task (given a strong outline highlight stimulus); wrapped bars > 

piled bars > treemaps for ranking task; and wrapped bars ≅ piled bars > treemaps 

for overview task. The experiments with weaker mark-type stimulus for comparison 
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task show that piled bars may not be interpreted correctly with limited training given 

its significantly lower accuracy performance. We also discuss the effects of column 

layout and data density on the perception performance. 

We developed a JavaScript library to generate the studied chart designs and 

figures in this paper and the experiments, called chubuk.js, which is available as 

open source at github.com/adilyalcin/chubuk.js. The experiment data, setup and 

results are also publicly available at github.com/adilyalcin/chubuk.exp. 

1.3 Evaluations 

Developing human-centered design and evaluation techniques without actually 

getting humans to use it and influence the process would be like walking in the dark 

without a compass. We won’t know how much progress we are really making, we 

won’t know when we reach our destination, and we won’t even know if our compass 

is well calibrated! Therefore, while we have our guidelines to act as our compass to 

our goals, we need to have people to illuminate our path, confirm progress and 

direction, and better understand our environment. 

We evaluated each of our proposed contributions using targeted user studies 

under various settings. To evaluate the application of Cognitive Exploration 

Framework to detect cognitive barriers and activities, we used Keshif as the 

exploration tool and analyzed various challenges across the size stages proposed. To 

evaluate the exploration model on aggregate data summaries and linked selections, 

http://www.github.com/adilyalcin/chubuk.js
http://www.github.com/adilyalcin/chubuk.exp
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we used insights gained by our participants to measure progress. To evaluate the in-

depth exploration of set-typed data, we conducted expert reviews and a short-term 

case study. These evaluations, all enabled by the extensive implementation of Keshif 

(Chapter 5), are described in detail in Chapter 7. We present the evaluations of 

HelpIn, and alternative visualization designs for the dense visualization of numeric 

data in their respective chapters, Chapter 8 and Chapter 9. 
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Chapter 2. Background 

 

“A common risk in academic research is getting too caught up in our hammers 

(powerful solution techniques) and losing track of the nails (the problems that need 

solving).” 

David R. Karger  

in “The Semantic Web and End Users: What's Wrong and How to Fix It” [74] 

 

This thesis builds upon a body of decades-long research and practice on data 

visualization, interaction, interface design, computation, and psychology. In this 

section, we give an overview of the background and related work that influenced and 

provided the motivation for the contributions presented thereafter. Additional 

references are cited in the throughout this thesis as necessary. 

1.1 Sensemaking and Data Visualization 

Sensemaking is an iterative process of gathering and representing information, 

developing insights through manipulation, and producing knowledge [139]. The 

information visualization reference model [26], [31] models visualization pipeline 

from a system point-of-view as transitions between data, analytical abstraction, 

visualization abstraction, and view. A nested model [101] can be used to evaluate 
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such systems. Yet, these approaches are not based on cognitive processes in visual 

exploration. Information foraging [111] describes information search behavior using 

an analogy with animals hunting and gathering food. However, it does not model the 

data interfaces, interaction, and the analytical process. The data/frame theory of 

sensemaking [79] argues that sensemaking is composed of cycles of (i) elaborating a 

mental frame, (ii) preserving a frame, and (iii) reframing. While it models a 

reasoning process, it does not model the concrete roles of interaction and 

visualization, and cannot explicitly guide on supporting these processes. 

2.1 Cognition for Sensemaking 

Higher mental processes such as attention, language use, memory, perception, 

problem solving, and thinking, are the focus of cognitive psychology [49]. Cognition 

is therefore closely related to sensemaking and data visualization. Card et al. [26] 

define externalized cognition as the use of an external object to reduce mental effort 

and memory demands when performing a task. David Kirsh [78] extends the role of 

external representations into rearrangement, persistence, independence, 

reformulation, and natural encoding, the use of multiple representations, 

construction, and simplification of control. In a reverse perspective, Liu and Stasko 

[94] describe mental models as the internal, structural, behavioral, and functional 

analogues of external visualization systems. They argue that interaction primarily 

enables external anchoring, information foraging, and cognitive offloading. 
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Distributed cognition models transitions across cognitive representations, and can be 

applied to infovis [92]. Walny et al. [145] studied data-sketching as an external 

representation of data understanding. Their analysis focuses on finalized sketches as 

the artifacts, and not on the cognitive activities explaining how the participants 

created or iterated upon these sketches. While these studies aim to explain the tools 

as external representations helping cognition, they are primarily explanatory. We 

aim to close the gap between theory and practice by building a comprehensive and 

actionable framework, demonstrating its link to design, and its use for evaluating 

tools. 

Shrinivasan [132] presents an analytical reasoning framework with three 

components, data/knowledge/navigation, which can be supported by special-purpose 

views in tools. Van Wijk’s model of visualization [149] includes perception, 

knowledge, and exploration as user-level constructs. Green et al. [55] argues these 

constructs are cognitive processes informing each other. We focus on data 

exploration using a holistic model covering a wide range of cognitive activities. We 

identify six cognitive stages, which encompass perception as an assessment activity, 

and discuss the cognitive influence of knowledge and motivation factors. 

2.2 Barriers and Costs in Visual Data Exploration 

Generalizing our everyday interactions with the physical world, Norman’s gulfs of 

execution and evaluation [104] is a simple, effective, and widely adopted model. 
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However, it does not fully explain visual data exploration, which involves deep 

analytical thinking and interaction with abstract data interfaces. Lam [85] presents a 

framework of seven interaction costs, based on a survey of usability problems 

reported in 484 papers. Our framework builds upon these works by decoupling 

cognitive and physical activities, and exclusively focuses on the cognition. Amar and 

Stasko [5] discuss two forms of analytical gaps: worldview gap (what is shown ↔ 

what needs to be shown to draw a straightforward representational conclusion), and 

rationale gap (perceiving a relationship ↔ being able to explain the confidence and 

the usefulness of it). Cognitive stages extend beyond analytical gaps, and aim to 

clarify the ambiguous definitions across cognitive activities. 

The behavior of novices can reveal barriers that may be reduced or hidden 

because of existing skills. Grammel et al. [54] performed an observational study on 

how novices construct information visualizations. While their study suggests barriers 

in visualization construction, it does not reflect interactive autonomous data 

exploration since a mediator (Wizard of Oz) created visualizations using verbal 

descriptions of the participants. Kwon et al. [84] studied behavior of novices to 

identify visual analytics road-blocks. They gave participants pre-defined tasks and 

offered guidance, creating a partially explorative process and limiting the extent of 

reported roadblocks. Lee et al. [86] identified five cognitive activities in the 

sensemaking of unfamiliar charts: encounter, construct, explore, question, and 

flounder. However, the explorer would avoid creating unfamiliar visualizations [54]. 
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Decision making as a cognitive activity, and its costs and factors, are well-

formed within psychology [125]. Yet, decision costs lack a focused discussion in 

analytics community. Heer et al. [62] discusses “constraining the parameter space 

that users have to explore”, yet only considering visualizations. Dou et al. [40] 

studied constrained interactions on solving a math game, with empirical results 

suggesting that constraints can increase performance. 

2.3 Techniques for Multivariate Data Interfaces 

In this section, we present an overview of existing techniques and practices for 

multi-variate data interfaces. This thesis focuses on challenges regarding exploration 

of multi-variate data, and the proposed design and implementation solutions build 

upon a collection of best practices and with comparison to the state of the art. 

2.3.1 Visualization Design Environments (VDEs) 

Visualization design environments, such as Tableau [136], enables visualization 

specification through graphical user interfaces by drag-and-drop on visual encoding 

shelves. The abstractions in Lyra [123] and iVisDesigner [115] include marks, drop-

zones, connectors, handles and data pipelines. However, data ↔ visual encoding 

task is one of the bottlenecks for infovis novices [54]; they commonly prefer 

familiar, simple visualizations such as bar and line charts. Kwon et al. [84] also 

notes that “failure to choose appropriate views” is a roadblock for novices. To 

improve data exploration process, systems can show recommended visualizations 
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based on data types and intended tasks based on a visualization model. 

Recommendations may be a short list of suggestions, such as Tableau’s Show Me 

[95] that uses a rule-based design on selected attribute types on its visual query 

model VizQL, or a fully automated approach [120]. The context of use can also be 

considered [53]. Another example is Voyager [151], a faceted browser that generates 

and recommends alternative data visualizations. However, it does not support 

querying data, its visualizations are static, and its visual model does not consider 

semantics, such as spatial view of categorical regions. In contrast to defining a 

grammar for flexible visualizations, recommending visualizations, and allowing 

customizations, the proposed exploration model (Chapter 4) and its implementation 

(Chapter 5)  (i) use a set of fixed visual representations and interactions designed to 

support accurate graphical perception in statistical graphics [32] and to facilitate a 

rapid data exploration flow, (ii) give the user the control of selections of attributes 

and data queries, and (iii) provide semantic visual alternatives. 

2.3.2 Single-Chart Visualizations and Templates 

Chart templates offer a generalized solution for data visualization. They require 

explicit selection of the chart template (among available options), followed by 

specification of data ↔ visual encodings on the template slots. ManyEyes [144] was 

among the first platforms to offer visualization templates as a web service for many 

chart types, also supporting data upload, hosting, and commenting. Spreadsheet 



 

26 

 

 

 

software (e.g. Microsoft Excel, Google Sheets) also offers charting with templates 

and data specifications. However, templated charts present a bottleneck for novices 

by requiring visual decisions upfront, and inappropriate decisions may lead to 

ineffective data views. 

2.3.3 Coordinated Multiple Views 

Effective data exploration requires multiple perspectives (views) that the user 

interactively controls. Coordination on interaction (such as by brushing and linking) 

enables observing data relations across views. Roberts [118] provides a survey on 

CMVs. Snap-together [105] treats coordination as database join queries. Improvise 

[146] provides a rich, customizable coordination model on shared objects and 

dependencies. These systems target high flexibility, expert users, a wide range of use 

cases and patterns. Their graphical design is based on many menus and configuration 

options. The targeted audience of such systems is commonly developers rather than 

the public. As Roberts [118] notes, “Concurrently they (developers) need to decide 

how the information will be aggregated or abstracted and finally work out how the 

user interacts with the system.” Novice audiences are particularly disadvantaged 

from these shortcomings. The notion that “theoretically any operation can be 

coordinated between multiple views” [19], [118], [146] does not consider the 

increased costs on usability, discoverability, learnability, and decision making for 

querying relations in the data. 
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2.3.4 Domain Specific Systems 

Domain-specific systems present design solutions, guidelines, and case studies based 

on a detailed analysis of domain requirements. Examples include energy portfolios 

[22], online communities [82], funding portfolios [96], temporal transactions [93], 

and literature surveys [12]. Domain specific systems can assume or emphasize 

specific properties or relations within their domain, yet potentially limit 

generalizations, i.e. transfer of solutions across datasets and domains. For example, 

SurVis [12] focuses on literature datasets including keywords citations. In contrast, 

we generalize exploration of self-referencing attributes as node-link charts, 

exploration of categories as sorted histograms, and offer a unified interaction model. 

2.3.5 Foundations 

Faceted browsing [157], which is based on query previews [56], has become a 

ubiquitous model of organizing and browsing tabular datasets. Dynamic queries [1] 

enable querying data using interface elements such as sliders, buttons and maps. Our 

solution builds on a tight integration of visual representation and interaction, 

extending the design basis of [1], [142], [157] for rich exploration by including rich 

visualizations supporting multiple selections, aggregate measures, and scale modes.  

2.3.6 Web-based Visualization Tools for Charting and Publishing 

Exhibit [68] allows constructing faceted data interfaces using XML specifications. 

Likewise, Keshif is easy to deploy, while also providing richer exploratory features 
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and a graphical authoring. VisGets [39] provides an exploratory interface for time 

(histogram), location (bubble map) and tags (word clouds) in document collections. 

Compared to our system, it does not define a generalized visualization and 

interaction model, does not support selections to enable side-by-side comparisons, 

and does not support graphical authoring. Its user evaluation is limited to self-

reported usability. In contrast, we present user evaluations using multiple 

methodologies, including cognitive barriers and data-driven insights with mixed 

qualitative and quantitative analysis. 

2.3.7 Set-typed Data Visualization 

This section presents a review of the related work on set visualization based on a 

categorical approach of visualization types from a recent survey [4]. We refer the 

reader to this survey for a more thorough analysis. After presenting AggreSet, the 

proposed technique in Section 6.6, we present a focused comparison and discussion 

of selected recent techniques. 

Euler Diagrams: Sets can be drawn as enclosing boundaries around elements, 

generating Euler diagrams. Given few set and element counts, Euler diagrams are 

powerful and can intuitively demonstrate set concepts. However, scalability is an 

issue. Proposed improvements, such as untangling [116], cannot avoid the inherent 

visual complexity beyond a few hundred elements and only a few sets, especially 
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when the sets are densely intersecting. An extensive survey of Euler diagrams is 

presented by Rodgers [119]. 

Overlays: Sets can also be overlaid on existing visualizations that define element 

positions (layout) by other attributes [2], [33], [38], [99]. Isocontours are commonly 

used to enclose elements within sets. Their scale is limited by the element count 

when elements are not aggregated. Elements appearing in many sets also increase 

visual overlaps and complexity as in Euler diagrams. 

Node-Link and Chord Diagrams: Node-link diagrams visualize set relationships 

by mapping sets to nodes and set-pair (second degree) intersections to edges. Visual 

scalability is primarily influenced by the set (node) count and link sparseness (edge 

count). Circular layouts (chord diagrams) position set nodes along a circle to bring a 

spatial structure visually. To allow for richer set exploration on such diagrams, 

RadialSets [3] is based on an interactive circular layout with degree histograms on 

the set nodes, and uses edges to represent intersections of two or more sets. 

RadialSets is included in our focused comparison. The design of AggreSet follows 

previous studies that have shown that when graphs (connected entities) are bigger 

than twenty nodes, matrix-based visualization performs better than node-link 

diagrams on many tasks [50]. 

Matrix-Based Diagrams: A matrix layout is made of rows and columns that list 

values of a data type. Co-occurrence matrices use the set list on both axes, and cells 

show set pair intersections. Intersections metrics, such as element count, are 
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commonly visualized using color (heatmaps). The resulting visualizations are non-

intersecting and easy to read. However, such matrices hide information about higher-

order set intersections [87]. AggreSet improves on the set-matrix design with its 

interactive, multi-dimensional approach. Matrix-based diagrams can also be built 

using different data dimensions for rows and columns. ConSet [76] uses a matrix 

with rows from elements and columns from sets. Since elements are not aggregated, 

its matrix view is not scalable by element count. Among the other approaches, UpSet 

[88] and OnSet [121] are discussed in a focused comparison (Section 6.6). 

2.4 Help and Documentation Systems 

As using new or rich interfaces can be a demanding task for users with a variety of 

backgrounds, the design of effective help systems and documentation is an integral 

part of human-computer interaction research. In this section, we summarize the 

motivating related work, existing approaches, and the differences of our 

contributions. 

2.4.1 Motivating Work 

The principles of minimalist documentation [27] motivates the design and 

contributions of our work: (i) getting started fast, (ii) training on real tasks (and real 

data), (iii) reading in any order, (iv) coordinating system and training, (v) using the 

situation (context), (vi) exploiting prior knowledge, and (vii) supporting reasoning 

and improvisation. While our implementation also aims to (viii) support error 
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recognition and recovery, as well as (ix) develop optimal training designs, we do not 

claim contributions on these principles. Our design and contributions also reflect 

Caldwell and White’s help-system design goals [25] of navigability, consistency, 

relevance, coherence, conciseness, reuse, and fidelity, while we do not aim to 

guarantee completeness. Earlier studies have empirically shown that physical and 

temporal separation of information sources undermine learning, i.e. the split-

attention effect [51]. Our design of HelpIn enables rapid switching between 

consulting help and using the interface (analyzing data) [8], while avoiding 

interference with the main interface use, and remaining unobtrusive while the user 

focuses on the original task [127]. We aim to guide the user through complex 

operations by demonstration in the context of the user’s own interface [57]. Our 

integration of help into the data interface also reflects the guideline of showing 

instead of telling [10], and advances the state of the art in visual data representations 

to support contextual and integrated help. 

2.4.2 Basic Interactive Techniques 

Help topic indices are commonly used to offer alphabetical, hierarchical, and search-

based access to help. However, empirical studies suggest that users often avoid using 

both paper and online help manuals, and are frustrated by navigation, terms of 

indexing, and level of explanations [106]. As a common UI pattern, tooltips 

(callouts) are simple snippets that offer brief information next to a UI component on 
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demand (such as on mouse hover). However, they generally present static (non-

contextual) descriptive information, and they are not indexed for navigation. Guided 

tours use a sequence of tooltips as a fixed, step-by-step introduction to various 

interface components and tasks; however, they cannot provide help on-demand and 

on targeted questions. Overlays with multiple tooltips can describe multiple 

components at once (for example [160]). A multi-layered approach [73] can 

structure help material from simple (on first-use) to complex (on continued use). In a 

similar fashion, training wheel strategy [29] blocks complex actions and error states 

on introductory use. Automated wizards aim to complete specific tasks on behalf of 

the user with minimal interruption. This contrasts with teaching how to carry out 

data analysis under different datasets and a rich range of configurations. 

2.4.3 Video-based Training 

Videos can introduce multiple interface features in a recorded sequence, often using 

voice-over explanations. The research on video-based training commonly aims to 

allow navigation by video-content. In order to provide a content-annotated timeline, 

Tools cape [77] uses crowdsourcing to extract annotations, and Waken [11] 

identifies events and interface components by image processing. Nguyen and Lie 

[103] propose controlling the video playback by making the videos partially 

interactive within the captured video frame, while Pongnumkull et al. [113] propose 

synchronizing a tutorial video to a live interface when the user aims to achieve the 
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same task on video. However, videos fundamentally present a fixed linear flow using 

static material that cannot adjust to active application. Users can become disengaged 

in a video training for reasons including long segments, abstract conceptual 

information, inconsistencies within and compared to other documentation, or 

extensive zooming [112]. Future changes in interface design can outdate existing 

videos. Therefore, producing and maintaining high-quality videos remains 

demanding, and video materials are limited in supporting integrated and contextual 

help. 

2.4.4 Context-aware Help Systems 

AmbientHelp [98] uses a secondary monitor to continuously and ambiently present 

help material (videos and manuals) outside of the primary work monitor, with 

relevance detected using most recent user actions. Targeting web-search 

applications, Ekstrand et al. [41] propose context-profiles including recently used 

tools, actions, and open interface components. HelpIn, on the other hand, provides 

descriptions of data elements with an interpretation of actual live data. Myers et al. 

[102] focus on answering why and why-not questions in user interfaces. Their query 

model can extract topics from pointed elements or recent actions, and present 

answers with textual description and relevant interface components highlighted. Yeh 

et al. [158] use screenshots to overlay the help on the interface directly. However, 

image-targeting rules can result in false positives/negatives, and is not robust to 
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changes in interface design. Also, this system cannot be aware of the full application 

state or underlying data, or control the application. A key distinguishing element of 

HelpIn is that it provides descriptions of live data with explanations of how to 

interpret and act on that data in context of the data interface itself. 

2.4.5 Help and Training for Visual Data Interfaces 

Existing studies on visualization help commonly focus on providing training for a 

single visualization design or technique. Recently, Kwon and Lee [83] studied the 

effectiveness of different learning approaches for scatterplots (static, video, and 

interactive). Other recent approaches include converting visualizations to natural 

language descriptions of data features and potential insights, such as recent 

Wordsmith [161] and Narratives [162] tools developed for dashboards created with 

Tableau software. While HelpIn also features customized narrations, these come in 

response to help seeking rather than detecting and presenting potential insights. Our 

method also enables finding relevant help topics rather than insights. To our 

knowledge, there is no comprehensive, integrated, and responsive help system 

developed for rich visual data interfaces as in the scope of our work. 

Closely tied to help and training, literacy and knowledge have received attention 

in visual data analytics community. For assessing visualization literacy, Boy et al. 

[21] propose a principled approach based on Item Response Theory. In the Cognitive 

Exploration Framework [153], knowledge is modeled to influence cognitive 
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activities in visual data exploration, as a dynamic construct that can be extended with 

new knowledge of data and of the application over use. These discussions on visual 

literacy and sensemaking further motivate our work towards improving help for data 

interfaces. 

2.5 Visualization Design for Dense Numeric Data 

Increasing data density is among Tufte’s visualization guidelines [141]. Another 

goal of effective visualization design is graphical perception accuracy, requiring a 

careful design process, and evaluation of alternative designs. 

Fekete et al. [45] demonstrated the use of treemaps to visualize up to a million 

records on large screens. Under such settings, many records occupy a few pixels, and 

the visualization primarily supports perceiving overviews of record groups, and 

comparison across records with larger size. In this thesis, the aim is high legibility of 

each value in the chart, thus avoiding large data scales in a limited chart area. Kong 

et al. [81] compared the perceptual performance of treemaps to single-column bar 

charts in a hierarchical setting with up to 8,000 records at the leaf-level in a 

600x400 pixel chart size. They reported, “As data density increases, treemaps 

become faster than bar charts while exhibiting equivalent accuracy.” This effect may 

be due to the tiny size of single-column bars at dense displays that makes them 

harder to observe, which could be mitigated by using multiple columns. Their study 

did not consider the use of treemaps in a non-hierarchical setting, and tasks for data 
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overview. Therefore, the study in this thesis contrasts to existing studies with its 

motivation, data types, and inclusion of visual overview and ranking tasks. 

Among the techniques for dense information visualization, horizon charts 

 [46] display time-series data in a compact chart height using a 

refined filled line chart. They divide the numeric data axis into equal sized bands, 

and collapse the bands while adjusting the color darkness per band. The chart height 

is reduced in the order of the number of bands while trends can still be observed. 

Heer et al. [63] studied perception of horizon charts and identified the effect of 

banding and chart height on estimation accuracy and speed. Javed et al. [70] 

discussed design alternatives to visualize multiple time series in a limited area, 

including braided charts , and assessed perceptual performance with  lab 

experiments. Fuchs et al. [48] evaluated alternative glyph designs for time series data 

in small multiple settings, where each glyphs represents dense temporal data. 

Evaluating the graphical perception of visualization design has a long history in 

the field of statistical graphics. The comparison task used by Cleveland and McGill 

in 1984 [32] has become an established method to assess graphical perception. 

Talbot et al. [138] extended their results on bar chart perception to better understand 

the reasons for performance differences across aligned and nonaligned bars, and the 

effects of separation and distracting bars. Perceptual studies have been extended to a 

crowdsourced methodology by Heer et al. [61]. Their results were aligned with 

results in lab settings, albeit with more variance. The uncontrollable display size and 
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viewing distance across crowdsourced participants can be balanced by recruiting 

more participants from a wide online population than traditional lab settings with 

few participants. Following other recent studies [21], [134] and targeting casual use 

of the studied charts, we used online crowdsourcing for our graphical perception 

experiments. 
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Chapter 3. Cognitive Exploration Framework 

 

“The best design gets out of the way between the viewer’s brain and the content.” 

Edward Tufte 

 

We begin the contributions of this thesis by presenting the Cognitive Exploration 

Framework for visual data exploration, which offers a structured basis for 

understanding cognitive activities, design guidelines, and evaluating data analysis 

and exploration tools. The design of the visual data exploration model (Chapter 4) 

and its implementation Keshif (Chapter 5), the contextual help system HelpIn 

(Chapter 8), as well as our perceptual evaluation on dense visualizations of sorted 

numeric data (Chapter 9) builds upon the foundations of the cognitive activities and 

design guidelines proposed in this chapter.  

In this chapter, we first describe the six orthogonal cognitive stages of visual data 

exploration, as well as three factors into these activities. We then present how the 

framework can be used to categorize a large number of design guidelines. Lastly, we 

propose an evaluation approach that focuses on cognitive barriers and activities, 

revealing challenges on all six stages of the framework, as well as opportunities for 

improving the design of tools. The results from our user study using this approach is 

presented in Section 7.1. This chapter concludes with discussions and remarks on 
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how the framework was constructed, implications of the framework for future design 

guidelines, our reflections on the process and the results on our evaluation, and effort 

levels across cognitive stages. 

3.1 The Framework 

We present the Cognitive Exploration Framework (CEF in short) (Figure 1), which 

identifies six cognitive stages in visual data exploration as a combination of two 

activities—planning and assessing—across data analysis, visualization, and 

interaction. Cognitive barriers are impediments that can be observed, categorized 

and studied across these orthogonal cognitive stages. In addition, the framework 

identifies the factors of decision costs, existing knowledge and motivation, which 

interact with cognitive stages to influence the exploratory process and outcomes. 
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3.1.1 The Six Cognitive Stages 

We describe the cognitive stages using arguments in existing literature below, and 

show them in exploratory flow in Figure 1. 

1. Planning Data Analysis: Form goals [29], determine domain parameters [1], 

characterize task and data [36]. 

2. Planning Interaction: Form system operations [29], translate queries to attributes 

[14], execute appropriate interactions [28]. 

3. Planning Visualization: Design visual mappings / encodings [36] [14], choose 

appropriate views [28]. 

 

Figure 1- The cognitive exploration framework with six stages (shown within blue boxes) and three 

factors: decision-making, motivation, and existing/new knowledge (shown in red text). 
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4. Assessing Interaction: Evaluate state-change [29], adapt mental model to views 

[28], the gulf of evaluation [37]. 

5. Assessing Visualization: Perceive / interpret visualizations [28], visual-cluttering 

and view-change costs [29]. 

6. Assessing Data Analysis: Reason about outcomes, observe trends, generate 

hypotheses, make predictions, assess uncertainty [1], and build confidence. 

The framework defines visualization as the purposefully organized 

representation of data in an abstract visual language. Interaction is the 

communication between the data and the explorer through the data interface. It 

encompasses all elements beyond the visual data encoding, such as control panels, 

buttons, and multiple views. Therefore, in the framework, the notion of visualization 

strictly relates to the visual representation of data, and does not cover any 

interactivity. 

In terms of activities in data exploration, CEF identifies two activity groups—

planning and assessing—that apply across data analysis, interaction, and 

visualization. Planning activities involve consciously setting goals, making 

decisions, and identifying courses of individual actions to be taken to reach goals. 

Assessment activities evaluate the courses of actions taken, data visualizations 

(through perception), the changes in the interface, and also include reasoning on 

whether the analytical goals have been answered based on available data, or not. The 

Cognitive Exploration Framework models execution, such as by mouse or touch, as 



 

42 

 

 

 

a physical, non-cognitive stage that follows planning interaction, and leads to 

cognitive assessment stages. It is therefore left out of the scope of cognitive analysis. 

In Cognitive Exploration Framework, exploration flows from data analysis 

planning to analytical data assessment to generate knowledge (insights). This is a 

cyclic and dynamic flow, i.e. exploration can continue with new paths influenced by 

insights obtained. If a path does not lead to knowledge, or if the explorer is stuck, 

s/he may retreat to produce new plans or change goals, although time would be lost 

and motivation may be reduced. The explorer may also act without a purposeful 

plan, such as selecting a data subset out of curiosity, and reach insights by observing 

relations revealed by these actions. Therefore, while the path ideally starts with a 

well-defined data analysis plan, we recognize it can also be driven by serendipitous 

interactions. 

Next, we discuss three factors that influence the presented model of cognition. 

3.1.2 The Factor of Decision Making 

Increasing options in the exploratory process needs to be assessed not only by what 

they may enable (richer insights), but also by their cognitive costs. Given many 

options to choose from, making a decision is harder, and a decision is less likely to 

be optimal [125]. For example, finding the most effective visualization can be 

overwhelming given the combination of chart types, glyph types, color, and other 

visual encodings, especially for novices [54] but also for experienced designers [16]. 
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Avoiding a decision also can be costly. Kobsa reported that Spotfire users tended to 

use scatter-plot, its default visualization, (therefore avoiding chart decision) when 

another chart would better fit [80]. 

Cognitive Exploration Framework generalizes decision costs in data exploration 

across all planning activities in visualization, interaction, and data analysis. We 

argue that the options faced in the process of exploration directly influence the 

decision costs and therefore the cognitive activities. While the examples given above 

relate to decision factors in visualization, decision-making also applies to data 

analysis (such as identifying which questions to follow, and which selections to 

make), and interaction (such as selecting across two alternative actions that may 

produce the same high-level outcome, or the sequence of actions). Every decision is 

likely to have a positive, or negative, outcome in the exploratory process. CEF 

recognizes and emphasizes the factor of decision making as a potential cost of the 

cognitive activities in the process of data exploration. 

3.1.3 The Factor of Existing/New Knowledge 

The explorer does not only process the data and its interface; s/he also has existing 

knowledge about the data domain, interface, and visualizations. This knowledge can 

help across all cognitive stages. For example, recalling personal experiences can 

help forming new queries, and assessing results in a broader context [86]. As the 

explorer gains more skills, the plans and assessments can improve. However, 
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existing knowledge is limited, non-universal, and varying across people. In addition, 

knowledge is dynamic, i.e. there is learning during exploration and use of the tool. 

The explorer iteratively uses, builds, and evaluates knowledge constructs [79]. S/he 

does not only learn about the explored data, but also about the interface, interactions, 

and visualizations, which can lead to more effective use of the tool over time. 

3.1.4 The Factor of Motivation 

What are the driving forces of the explorer to engage in data exploration? Cognitive 

Exploration Framework identifies potential answers as the motivation factor. 

Motivation can follow the curiosity, such as to understand the data content and 

features. Being in the flow is another motivational construct. The flow—the balance 

between the challenge of a task and user skills—can apply within the context of 

interface use [13] and visual analysis [55]. Creativity is also motivating, and is 

applicable to data analysis (finding goals), interaction (combining features of the 

interface), and visualization (finding new forms to see new data perspectives). 

Emotions can also be motivating. Harrison et al. [59] found that emotion (affect) 

priming can influence perception of visualization. We propose that this result can 

apply to a wider range of activities in data exploration. Positive mood can increase 

motivation, and therefore exploration success. 
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3.2 Design Guides from the Perspective of Cognitive Stages 

In visual data exploration, the data interface becomes the communicative channel 

between the cognition (mind) and the data. Supporting cognition (and reducing 

barriers) is therefore most related to the design of the tool interfaces rather than their 

computational models. In turn, what is the relation between design and the cognitive 

stages? How can the cognitive barriers be reduced by principled design? To answer 

these questions, we contribute a new categorization of 29 concrete and common 

design guides by linking them across six orthogonal stages of the Cognitive 

Exploration Framework. This section can be used to guide and improve the design 

of data exploration tools. The wide range of principles covered supports the 

rhetorical power of the CEF, which creates an orthogonal space for analyzing 

cognitive activities. 

The selection of design guides is based on the existing practices and literature. 

Although we aimed to present a wide coverage and effective exemplars for each 

stage, offering a complete list of guides is impossible, and an extensive list is out of 

our scope. These guides should not be taken as rules of design, but rather directions 

to consider in designing tools to better support cognitive activities. 
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3.2.1 Guides for Planning Data Analysis 

 Promote overview-to-detail exploration [129]. Starting with the data 

overview helps the explorer build a high-level mental model. Reveal detailed 

relations by interaction progressively. 

 Show only relevant exploratory paths. Promote never-ending exploration 

[43]. Prevent queries leading to zero results [56]. Systematic yet flexible 

discovery [110] enumerates exploratory paths to suggest unexplored areas 

and communicate progress. 

 Make exploration steps easily reversible [43]. This motivates action and 

reduces decision costs. 

 Provide traces of exploration paths. To form new goals, the explorer may use 

action histories [64]. 

3.2.2 Guides for Planning Interaction 

 Use direct manipulation [43], [130]. This reduces the cognitive distance 

between planning and execution through a continuous representation or 

metaphors of objects in the interface. 

 Integrate interface with visualizations [43], [55]. This promotes visual 

coherence in a single immersive environment. Scented widgets [150] suggest 

designs on merging visualizations with interface elements such as dynamic 
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query widgets [128]. Legends can also be designed as interactive widgets 

[117]. 

 Show only relevant interaction options. Design to provide context; reveal 

interactions relevant to the selected object. Design based on the context; 

reveal contextual interfaces only when the explorer interacts with relevant 

object (e.g. show action icons on mouse-over). 

 Indicate affordances of visual objects clearly [43]. Use visual cues to suggest 

interactivity [20]. 

 Design to fit the cognitive and conceptual model of the explorer. Allow 

searching for concrete data values, expose con-text of data attributes and 

their semantic relations, and support partial specification of exploration paths 

[54]. 

 Make every step useful and pleasing [43]. An action should not lead to a 

confusing, ineffective interface. 

3.2.3 Guides for Planning Visualization 

The primary means to support cognition in planning visualization is reducing the 

visualization parameters and options, starting with showing sensible defaults [64]. 

 Show only appropriate visualization options for the underlying data types and 

intended tasks. Recommendations may be a short list of suggestions; such as 

Tableau’s “show me” feature [95], which uses a rule-based design on 
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selected attribute types, or a fully automated approach [120]. The context of 

use can also be considered [53]. 

 Support alternative visualizations to reveal relations that cannot be explored 

with existing views. Alternatives should be functional and add minimum 

decision costs. For example, given cities and their populations, an ordered list 

would reveal the cities with most/least populations, a histogram would reveal 

the population distribution, a map would reveal the spatial context, and a line 

chart would reveal temporal changes. 

A common practice in visualization design is templating, in which the explorer 

selects a chart type first, and then decides which attributes to map to template 

parameters: axes, color, size, and so on. However, using visualization templates can 

impede cognitive activities because they require the explorer to understand the tem-

plate parameters to make effective mappings [54]. Thinking is restructured to the 

terms of the template parameters from the terms of exploratory goals, potentially 

creating a mismatch of mental representations. Templates can be richer than fixed 

chart types such as flexible shelf-based systems [136] that construct a parameterized 

visualization space. We argue that revealing systematic parameters of a visualization 

design space should not be the basis of constructing visualizations for exploration. 

3.2.4 Guides for Assessing Interaction 

 Make system status clearly visible [104]. 
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 Link multiple views on interaction [118]. Having multiple views increases 

the cognitive load with more visual information to digest. Linking views 

reveals relations between data representations, and can improve mental 

models. Linking should be consistent and intuitive. 

 Provide real-time feedback after interaction [43]. A visual feedback delay, as 

short as 500ms, can decrease exploration activity and data coverage [90]. 

 Animate transitions between interface states [43]. Avoid abrupt changes and 

provide a sense of direction. 

3.2.5 Guides for Assessing Visualization 

 Use effective visual encodings. Graphical perception studies [32] report how 

accurately and rapidly we perceive data graphics across different encodings. 

 Use appropriate scales, grids, labels, legends [62].  

 Aim to reduce visual complexity. Avoid overlapping glyphs since they are a 

basic form of visual complexity.  

 Avoid duplicate representations. Duplication of the same data point may 

increase cognitive efforts, as it requires understanding relations across 

multiple glyphs of the same data. Each additional glyph also takes screen 

space, which is a limited re-source that should be carefully used. 

 Aggregate data, when it cannot effectively fit in limited screen space, and to 

provide overviews. 
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 Show conceptual data domain. For example, use matching icons (as glyphs 

or isographs) and matching colors for categories [126] where appropriate. 

Show uncertainty [5] when data has an uncertainty measure. 

 Animate transitions of data glyphs [65]. 

 Use available screen space effectively. Adapt the visualizations based on 

display size. 

3.2.6 Guides for Assessing Data Analysis 

 Provide multiple views (perspectives) of data [55], [118]. One visual 

representation cannot show all aspects of rich data. Simultaneously observing 

multiple views can reveal relations across individual views. 

 Provide analytical models for statistical analysis. Without tool support, the 

explorer may not be able to accurately evaluate their findings using statistical 

methods such as hypothesis testing with significance [5]. 

 Show the semantic context of data [54], such as description of data attributes, 

categories, and data values. 

3.2.7 Guides across Cognitive Stages 

 Aim for consistency. Inconsistencies in visualization, interaction, or interface 

design make it harder to form goals and action sequences, make decisions, 
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perceive data, and the interface state. Therefore, consistency can influence 

both planning and assessing stages across multiple artifacts. 

 Aim for minimalism. Make design as little as possible [97], [141], [163]. 

Showing only relevant paths and options in context of active state is a form 

of minimalism, which can support cognition for planning. Minimalism can 

also present complex systems as having fewer components that are easier to 

evaluate, thus supporting cognition for assessment.  

3.3 An Evaluation Approach to Detect Cognitive Barriers and 

Activities 

The success of data exploration depends on cognitive activities, and the cognitive 

barriers faced within these activities. The goal of the proposed evaluation is to better 

understand the behavior of the analyst/explorer, and to use this understanding to 

reduce barriers by improvements in design. In this section, we discuss how cognitive 

activities can be observed per each stage in evaluating an exploration tool, and how 

the framework provides a high-level structure to this evaluation. The goal is not to 

describe evaluation of a specific design guide, or a single stage of cognition, such as 

visualization perception, which require different setups. We don’t aim to present 

new guidelines, or a comprehensive analysis of an existing tool. Rather, we present a 

new evaluation approach, which can be considered as a specialization of usability 

testing, as a lens that focuses on and reveals barriers to cognitive activities. 
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We argue that detecting cognitive barriers requires focusing on failures, such as 

lack of goals, not being-in-flow, ineffective plans, and invalid insights. This is in 

contrast to the common practice of searching for success stories of our tools. Using 

benchmark tasks on fixed datasets does not facilitate autonomous, self-driven 

exploration. Furthermore, it may fail to motivate participants with a wide range of 

interests and background, or alienate them. We suggest that, the participants should 

express their interests in selecting data domain and their exploration goals, in order 

to improve their motivation and success. Furthermore, to expose all cognitive 

activities clearly, participants should be encouraged to interact with the tool directly 

without guidance by the facilitator. In contrast, usability studies commonly focus on 

physical execution problems and surface-level software use activities with pre-

defined, benchmark tasks. Their goal does not include revealing the cognitive 

processes of the user. To summarize, the proposed study protocol aims to position 

participants as explorers, aiming to discover meaningful data-driven knowledge in 

an open-ended setting to answer their own questions based on their interests. 

Revealing cognitive activities in depth requires moving beyond basic 

observations. For example, the explorer may want to sort a list alphabetically, 

interact with various interface components to find this feature, and then give up and 

change her goal. Detecting such a process as a negative outcome is instrumental to 

under-standing cognitive activities, especially when such tasks may not be explicitly 

enumerated. How can such failed actions and goals be observed by the analyst or 
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some algorithm? Software logs [58], eye tracking [135], and brain scans [6] have 

some, yet limited, power in describing reasoning and exploration processes. 

Alternatively, encouraging verbal communication and analyzing the discourse can 

allow observing parts of the cognitive processes [44].  

As the basis of the proposed protocol, we suggest that cognitive activities can be 

revealed with the facilitator observing the exploration process for potential 

challenges, asking for clarifications, prompting for more communication based on 

exploratory stages and reasoning behind actions of the participant. These 

interventions should be minimal and focused on cognitive activities, not a test of 

knowledge or a measure of success. Surveys and others forms of external cognition 

can also facilitate communication of cognitive processes. Our position is that, taken 

together, observations, interventions, surveys and external cognitive methods can 

lead to identification of a rich set of cognitive activities in data exploration. 

We applied this suggested protocol to the evaluation of Keshif, the tool presented 

within this thesis. The results are presented and discussed in Section 7.1. 

3.4 Discussion on the Cognitive Exploration Framework 

3.4.1 Construction of the Framework 

We presented the Cognitive Exploration Framework to provide a comprehensive 

overview of cognitive activities, the role of design in cognition, and how barriers to 

cognition can be the focus of evaluation of tools. To construct the framework, we 
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iteratively identified and refined various arguments about cognition and barriers in 

related literature (see Section 2) as well as my own experiences in evaluation and 

design. For example, the gulf of execution and evaluation [104] models physical or 

lower-level cognitive activities, while Lam [85] focuses on interaction-related 

usability problems, which are integrated to our framework after separating physical 

execution stages. The framework is further enriched and supported by other 

arguments such as positioning of analytical gaps and activities [5], and results from 

empirical user studies [16], [54], [84]. Overall, we had noticed similar themes across 

taxonomies and empirical studies stated in different perspectives. We hope that the 

six-stage orthogonal overview of cognitive activities of CEF and its relation to 

design and evaluation will provide a concrete, lean basis to understand and improve 

how we cognitively explore and analyze data. 

3.4.2 Implications for Design Guides 

The overview of design guides suggests that existing literature provides many 

guidelines and discussions for interaction and visualization design. However, high-

level data analysis and planning are cognitive activities with further opportunities for 

more results and guidelines with new focused studies. One of the challenges is 

identifying how people reason about data, and plan for data analysis steps. Another 

challenge is evaluating high-level outcomes of exploration and cognitive planning 

activities. Equipped with better models for cognition and evaluation methods that 
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expose new metrics and processes, new improvements and guides may be made 

achieved. The results and examples from our user evaluation support that high-level 

cognitive activities can be analyzed qualitatively by observing failures in user 

behavior and verbal feedback. The framework can be used to target and analyze 

specific cognitive stages to propose new guidelines or experimental studies. 

3.4.3 Reflections on Cognitive Evaluation of Exploratory Tools 

To detect cognitive barriers, we designed and ran a user experiment (Section 7.1) 

with an open-ended exploratory setting, allowed the participants to choose a dataset 

and exploratory goals of their interest to increase motivation, and applied brief 

interruptions to encourage the participants to communicate their exploratory process 

and their negative emotions/experiences in a safe environment. While insight-based 

methodologies [122] focus on the success stories to quantify the observed value of a 

tool, a principled way to understand failures reveal opportunities for improvement. 

Our evaluation is a reflection of the open-ended data exploration approach, aiming 

for the unknown and intangible in the process of exploratory cognition and 

generating qualitative, rather than quantitative, value. We have shown that the 

Cognitive Exploration Framework can be applied in practice to detect and categorize 

observed barriers on cognition effectively, although we did not create CEF on 

empirical results from the particular study reported in this dissertation. 
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The proposed study design can be replicated or modified to study cognition in 

more depth. While we used think-aloud protocol and discourse analysis along with 

actions observed in video and notes taken by the facilitator, this approach has its 

own limitations, especially for achieving comprehensiveness. This qualitative 

analysis can be coupled with other forms of behavior tracking, such as software logs 

and eye movements, to add quantitative support for detecting cognitive activities. 

Using pair analytics protocol [9], the cognitive stages can be distributed across 

subject matter expert (high-level cognition in data analysis) and visual analytics 

expert (low-level cognition in interaction and visualization). 

In retrospect, we observed that the participants rarely used the cards, one of the 

strategies employed to encourage communication of cognitive stages, to express 

their emotional and exploration state. While external anchoring may be beneficial to 

reveal more activities, the participants were either immersed in their data 

exploration, or not paying attention to the cards that were displayed on the table next 

to the study laptop. Embedding these feedback mechanisms on the interface of the 

tool may make them more prominent. The benefit of such external mechanisms can 

be studied further to detect if they lead to more communication. As the study 

included a small number of participants, we used the survey as a way to collect more 

feedback from the participants rather than to build a semi-quantitative analysis. 

Selected quotes reported in Section 7.1 include feedback during the completion of 
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post-exploration survey. We suggest the use of post-exploration surveys to create 

opportunities to gather more feedback about the experience of the participants. 

Since our goal was to find exemplar barriers in this preliminary study, we did not 

fully transcribe the sessions, which require higher effort and resources. Having more 

participants, full transcriptions, and multiple passes over the recorded material may 

reveal more cognitive activities in the use of a studied tool. 

3.4.4 Effort Differences across Cognitive Stages 

Do all cognitive stages require the same mental effort? Daniel Kahneman [72] 

argues that our cognitive activities are two-folded: system-1 (thinking fast) and 

system-2 (thinking slow). System-1 is how we make quick decisions, take short- 

cuts, apply our cognitive biases, etc. It is less deliberate and more spontaneous. 

System-2 is how we engage in a more effortful thinking, be more analytical, evaluate 

facts, and even actions of system-1. We argue that the stages of planning and 

assessing data analysis requires higher cognitive efforts as a slow thinking activity, 

and that fast thinking activities include perception of visualizations, evaluation of 

interface and planning for low-level actions respectively. Future research may 

investigate the differences of effort in cognitive activities under various settings. 

3.5 Outline of the Thesis 

The structure and motivation for the rest of this thesis is also supported by the 

Cognitive Exploration Framework (Figure 2). The aggregate summaries and linked 
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selections model (Chapter 4) aims to support rapid tabular data exploration by 

reducing decision-making costs by presenting a minimal visualization and 

interaction basis. Its implementation and extension Keshif (Chapter 5) is also 

designed to follow many design guidelines mentioned in Section 3.2 to lower 

barriers in assessing interaction and visualization. We present interaction and 

visualization strategies on set-typed data in AggreSet (Chapter 6). Next, We focus on 

the knowledge component, as related to interaction planning and assessment, and 

propose a contextual help system for visual data interfaces  (Chapter 8). Last,  we 

focus on perception (assessing visualization) for dense numeric data, and present a 

new chart design, Piled Bars, and detailed evaluation across alternative designs 

(Chapter 9). 

 

 

Figure 2- The outline of the thesis based on the Cognitive Exploration Framework. 

 



 

59 

 

 

 

Chapter 4. Aggregate Summaries and Linked Selection Model 

for Visual and Interactive Data Exploration 

 

“Design is the conscious effort to impose a meaningful order.” 

Victor Papanek 

in “Design for the Real World: Human Ecology and Social Change” [108] 

 

To streamline and unify the visualization authoring and data exploration workflow 

for tabular data, we propose the aggregate summaries and linked selection model 

(Figure 2). This model provides a minimal yet expressive design basis to enable 

rapid visual and interactive data exploration. Data record attributes are summarized 

by aggregating records and measuring group characteristics. The visualization design 

of aggregates is based on the attribute data type (Table 1), and support absolute and 

part-of-active scale encoding of measured aggregate characteristics. This model 

reduces the search space for choosing visual data encodings by automating visual 

representations based on data type and semantics using perceptually effective, non-

overlapping visual encodings. Thus, the user makes fewer decisions on data 

representation compared to visualization design environments, leaving more 

cognitive resources to reach data-driven insights, and reducing required visual 

analytics knowledge. The model defines an interactive overview-to-detail flow for 
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visual exploration using three linked selection interactions: (i) highlighting (rapidly 

previewing record groups), (ii) filtering (focusing on a record group), and (iii) 

comparison (locking selection of record groups). Despite its minimalism, the model 

is expressive (enables rich data exploration) by its applicability to multiple common 

data types (categorical, numerical, temporal, and spatial (Table 1)), and its support 

for measure functions for aggregates (count, sum, average) and visual scale modes 

(absolute, part-of). The model achieves scalability in record count by explicit 

aggregation, and its minimalism enables rapid learning. 

The data model is designed for common tabular data: records with attributes 

(categorical or interval). Categorical data may be single or multi valued (set-typed) 

[33], and may describe spatial regions. Interval data may be numeric or timestamp. 

New attributes can be calculated per record using existing attributes, such as to 

split/parse text values and to compute weighted averages from a list of numeric 

attributes.  
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4.1 Aggregate Summaries Model 

Given an attribute of a dataset, a summary extracts attribute values of all records, 

and aggregates records by their value, either as discrete categories or as interval 

(range) bins (Table 1). The aggregate measure metric computes a numeric 

characteristic of the aggregated record group, either (i) count (e.g. count of car 

accidents), (ii) sum (e.g. total injured people in accidents), or (iii) average (e.g. 

average car speed in accidents). Count, the default metric, provides a familiar faceted 

data overview [34]. Sum and average metrics use the record values of a chosen 

numeric attribute (e.g. the number of injured people, or the car speed). Median and 

 

Figure 3- The aggregate summaries and linked selection model creates a data↔human interface. Data 

consists of records with attributes. Attributes are summarized to aggregates, which measure group 

characteristics. Three linked selection modes provide the exploratory dialogue with records and 

aggregates. Highlighting precedes filtering and comparison. 
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percentile characteristics of a record group can be shown by the percentile 

aggregations on numeric summaries upon selection of the group. Thus, our model 

achieves expressiveness by revealing a wide range of group statistics on multiple 

attribute types. 

4.2 Linked Selection Model 

The model defines three selection interactions for three complementary tasks: 

highlighting, filtering, and comparison. Highlighting allows rapidly previewing 

characteristics of the records in the selected aggregate. Filtering focuses on records 

within the selected aggregate by removing the records outside of the selection. It is 

an explicit, permanent selection compared to the highlighting selection for preview. 

Filtering criteria can be refined incrementally using multiple summaries and 

selections. Group comparison allows comparing characteristics of multiple record 

groups side-by-side by locking a highlight selection. Without compare-selection, 

comparing distributions across multiple selections would require memorization over 

time and higher mental effort. Thus, compare-selection allows capturing and storing 

a selection state to facilitate group-wise and side-by-side comparison of records. In 

practice, we limit the number of compared selections to three in order to 

accommodate capabilities of human perception. To model the exploration process, 

highlight selection precedes (previews) all filtering and comparison selections. With 
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the total selection representing all the records, our model allows exploration of 

distributions of six record groups concurrently. 

  

Data Type Glyph Visualization 

Category 

Bar 

(Category) 

Absolute Scale                Part-of Scale 

    
Encoding →  Length (Width) 

Position Category order, next to category label 

Time 

Line 

(Interval range bin) 

Absolute Scale                Part-of Scale 

     
Encoding ↑ Length for measure value.  

↔ Line connects bins.  

Area-fill for non-compare selections. 

Position Interval Range 

Number 

Bar 

(Interval range bin) 

Absolute Scale                   Part-of Scale 

 
Encoding ↑  Length (Height) 

Position Interval Range 

Percentile 

(Distribution) 

Block 

(Percentile range) 

 

 
 

Distribution of a numerical attribute. Simple alternative to box-

plots without visualization of outliers. 

Percentiles are independent of scale mode. 

Encoding Color: Four fixed percentile ranges with 10% steps. Darker color 

towards the median (50%). 

Position The percentile ranges of the selected records 

 (Table continues on the next page) 
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Data Type Glyph Visualization 

Set Pair 

(Multi-Value 
Category) 

Disc 

 

Absolute Scale                Part-of Scale 

     
Encoding Filtered: ◎ Circular area.   

Highlighted: Arc area (0°-360°)  

Compared: Arc border (0°-360°) 

Total: None.  

Exists: Cell background color.  

Strength: Circle color (part-of scale). 

For details, see AggreSet [33]. 

Position Set-pair location on grid. Small glyph size. 

Spatial Area 

Region (Map) 

 

 
 

In part-of scale, color is scaled from 0% to the maximum % 
value of all (filtered) regions. 

Encoding Color: [0 - max(distribution)]. 

Visualizes one distribution by color mapping. 

Default is filtered selection.  

Highlight-selection takes precedence when enabled. 

Position Geographically defined. Fixed shape and size. 

No-Value 

(Missing) 

Icon  
Aggregates records with no-value in summary. 

Encoding Color (0-max(filtered)) 

Position Fixed (Lower-left corner of summary). 

All 

Records 

(Global) 

Bar 

(Full width) 

 

 

Encoding → Length (Width) 

Position Fixed (Top of the browser) 

Table 1- Visual encodings for aggregations across multiple data types and selections. The visual 

encodings are designed to minimize overlaps, support accurate graphical perception, enable fluid 

interaction, and achieve scalability and consistency. 
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4.3 Visual Data Encoding 

 

Aggregates visualize measured values by color-coding the selected record 

distributions (Total , Filtered , Highlighted , Compared   ) (Table 1). 

Measured values are visually encoded based on the aggregate glyph type, such as by 

length, color, or area on a quantitative scale with two alternatives: absolute scale and 

part-of scale (Table 2). Absolute scale constructs a scale that is shared across all 

aggregates in the summary. Part-of scale constructs a scale per-aggregate that 

encodes highlighted/compared measure value as percentage of filtered value. 

Comparisons are side-by-side along a shared axis. Filtered selection distribution is 

emphasized by setting the maximum range of the axis on filtered selection. 

Highlighted and compared values are within the scale limits when count and sum 

measure functions are used, as the subset of records measure less than the filtered set 

of records. However, this relation does not hold under average measure. In our 

design for this case, the measure scale is updated to cover values of compare 

Measure 

Function 

Measure 

Summary 

Relation across 

selection values 

(distributions) 

Measure Scale 

Absolute (Shared scale in 

summary) 

Part-of (Scale per aggregate) 

Count NA Total ≥ Filtered 
Filtered ≥ Highlighted 

Filtered ≥ Compared 

0->max(filtered value 

of aggregates in summary) 

0->filtered value of aggregate. 

Presented in percentage (0-100%) Sum (Total) 
Numeric 
Attribute Average 

NA 
0->max(filtered/compared 

value of aggregates) 
Not applicable, not well defined 

Table 2- Properties of three measure functions and two measure scale modes. 
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selection, but not of highlight selection since frequent scale updates on rapid 

highlighting can be distracting. 
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Chapter 5. Keshif – The Implementation of The Exploration 

Model 

“Real artists ship.” - Steve Jobs 

 

Based on the proposed data exploration model, I implemented Keshif 1, an open-

source, web-based data exploration tool for tabular data, available online at 

www.keshif.me. Raw data is visualized by authoring a Keshif browser (examples 

shown in Figure 3, Figure 4, Figure 5, Figure 6) by inserting attribute summaries, the 

record display (showing records individually), and calculating custom attributes. 

Data is then interactively explored through Keshif’s unified, consistent linked 

selection model. To enable exploration of spatial records or self-referencing 

attributes (networks), the record display can show records on a geographical map or 

as a node-link diagram, in addition to list views. Summaries are further specialized 

on data semantics for tasks such as categorical sorting, flexible range selections, and 

navigation (scroll, pan, zoom), as summarized in Table 4. Keshif browsers are 

defined with a compact JSON-like configuration, which can be forked to enable 

collaboration. Browsers can be publicly shared on the web with a unique URL, or 

                                                 

 

1 Keşif (keshif) means discovery and exploration in Turkish. 

http://www.keshif.me/
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embedded into existing web pages using basic JavaScript and CSS programming, 

which also can be used to customize the browsers. As a result, Keshif provides an 

out-of-the-box tabular data exploration solution to enable rapid data exploration. 

  



 

69 

 

 

 

 

 

 

 

 

 

 

  

 

F
ig

u
re

 
4

- 
T

h
is

 
K

es
h
if

 
b

ro
w

se
r 

en
ab

le
s 

ex
p

lo
ra

ti
o

n
 
o

f 
fa

ta
l 

tr
af

fi
c 

ac
ci

d
en

ts
 
in

 
2

0
1

3
 
in

 
th

e 
U

n
it

ed
 
S

ta
te

s.
 
S

el
ec

te
d

 
at

tr
ib

u
te

s 
ar

e
 

su
m

m
ar

iz
ed

 u
si

n
g
 d

at
a 

ag
g
re

g
at

io
n

s,
 m

ea
su

ri
n
g
 t

h
e 

to
ta

l 
n
u

m
b

er
 o

f 
fa

ta
li

ti
es

. 
V

is
u
al

iz
at

io
n
s 

sh
o

w
 d

at
a 

d
is

tr
ib

u
ti

o
n

s 
o

f 
th

re
e

 l
in

k
ed

 

se
le

ct
io

n
s 

(
,

,
),

 a
n
d

 a
re

 
m

in
im

al
 a

n
d

 e
ff

ec
ti

v
e 

p
er

 a
tt

ri
b

u
te

 d
at

a 
ty

p
e.

 T
h
is

 
v
ie

w
 
sh

o
w

s 
b

ar
, 

li
n
e,

 
m

ap
, 

a
n
d

 p
er

ce
n
ti

le
 c

h
ar

ts
. 

A
cc

id
e
n
ts

 o
n
 S

ta
te

 H
ig

h
w

a
y
 o

r 
U

.S
. 

H
ig

h
w

a
y
 (

ro
u
te

 c
at

e
g

o
ri

es
) 

ar
e 

se
le

ct
ed

 b
y
 f

il
te

ri
n
g

 
. 

R
o

ad
w

a
y
 a

cc
id

en
ts

 a
re

 s
el

e
ct

ed
 b

y
 l

o
ck

in
g

 

, 
an

d
 r

o
ad

si
d

e 
ac

ci
d

en
ts

 a
re

 s
el

ec
te

d
 b

y
 h

ig
h
li

g
h
ti

n
g
 

 o
n
 m

o
u
se

-o
v
er

. 
T

h
is

 b
ro

w
se

r 
an

d
 e

x
p

lo
ra

to
ry

 v
ie

w
 c

an
 b

e 
ea

si
ly

 a
n
d

 r
ap

id
ly

 

au
th

o
re

d
 f

ro
m

 r
a
w

 d
at

a 
u

si
n
g
 t

h
e 

g
ra

p
h

ic
al

 i
n

te
rf

ac
e;

 s
a
v
ed

, 
sh

ar
ed

, 
an

d
 e

m
b

ed
d

ed
 i

n
to

 e
x
is

ti
n

g
 w

eb
 p

ag
es

. 

 



 

70 

 

 

 

 

 

 

 

 

  

 

F
ig

u
re

 5
- 

K
es

h
if

 d
at

a 
b

ro
w

se
r 

sh
o

w
in

g
 t

h
e 

U
.S

. 
S

u
p

re
m

e 
C

o
u
rt

 n
o

m
in

ee
s.

 S
ca

le
s 

sh
o

w
 p

ar
t-

o
f 

(%
) 

re
la

ti
o

n
s.

 T
h
e 

se
t 

m
at

ri
x
 [

3
3

] 
sh

o
w

s 

re
la

ti
o

n
s 

ac
ro

ss
 p

o
si

ti
o

n
s 

th
at

 t
h
e 

n
o

m
in

ee
 s

er
v
ed

 i
n
 b

ef
o

re
 t

h
e 

n
o

m
in

at
io

n
. 

N
o

m
in

ee
s 

th
at

 s
er

v
ed

 i
n
 U

.S
. 

C
o

u
rt

 o
f 

A
p

p
ea

ls
 a

re
 h

ig
h
li

g
h

te
d

 
 

b
y
 m

o
u
se

-o
v
er

. 
T

h
e 

m
ap

 v
ie

w
 u

se
s 

co
lo

r-
co

d
in

g
 t

o
 s

h
o

w
 t

h
e 

p
er

ce
n
ta

g
e
 o

f 
n
o

m
in

ee
s 

se
rv

ed
 i

n
 t

h
e 

se
le

ct
ed

 p
o

si
ti

o
n

 a
m

o
n
g

 a
ll

 c
a
n
d

id
at

es
 

fr
o

m
 t

h
at

 s
ta

te
. 

S
o

m
e 

st
at

e
s 

d
o

 n
o

t 
h
av

e 
a 

n
o

m
in

ee
 (

g
ap

s)
. 

S
o

m
e 

st
at

es
 h

a
v
e 

n
o

n
e 

(0
%

) 
th

a
t 

se
rv

ed
 i

n
 s

e
le

ct
ed

 p
o

si
ti

o
n
 (

d
as

h
e

d
 r

eg
io

n
s)

. 



 

71 

 

 

 

 

 

 

 

  

 

F
ig

u
re

 6
- 

K
es

h
if

 d
at

a 
b

ro
w

se
r 

sh
o

w
in

g
 r

ap
id

ly
 g

ro
w

in
g
 c

o
m

p
a
n
ie

s 
o

f 
2

0
1

4
 b

y
 w

w
w

.i
n
c.

co
m

 u
si

n
g
 t

h
re

e 
ac

ti
v
e 

co
m

p
ar

e
-s

el
ec

ti
o

n
s.

 T
h
e 

to
ta

l 

re
v
en

u
e 

is
 t

h
e 

ag
g
re

g
at

e 
m

ea
su

re
, 

se
le

ct
ed

 u
si

n
g
 t

h
e 

p
o

p
u
p

 p
an

el
 o

n
 t

h
e 

to
p

 l
ef

t 
co

rn
er

. 
T

h
is

 p
an

el
 i

s 
re

v
ea

le
d

 u
p

o
n
 c

li
ck

in
g
 t

h
e 

g
lo

b
al

 

su
m

m
ar

y
 t

e
x
t 

ar
ea

, 
a 

n
at

u
ra

l 
in

te
ra

ct
io

n
. 

T
h
e 

co
m

p
a
n
ie

s 
ar

e 
fi

lt
er

ed
 

 o
n
 t

h
re

e 
in

d
u
st

ri
e
s:

 h
ea

lt
h
, 

en
er

g
y
, 

IT
 s

er
v
ic

es
. 

E
ac

h
 i

n
d

u
st

ry
 i

s 
th

e
n

 

se
le

ct
ed

 f
o

r 
co

m
p

ar
is

o
n
. 

In
 t

h
e 

re
co

rd
 d

is
p

la
y
, 

co
m

p
an

ie
s 

th
at

 f
al

l 
in

to
 r

es
p

ec
ti

v
e
 i

n
d

u
st

ri
es

 (
p

er
 c

o
m

p
ar

e 
se

le
c
ti

o
n
s)

 a
re

 a
u
to

m
at

ic
a
ll

y
 c

o
lo

r-

co
d

ed
 

 
 

. 

http://www.inc.com/
http://www.inc.com/


 

72 

 

 

 

 

 

 

Figure 7- Browsers are authored using drag-and-drop from available attributes panel to create 

summaries in four browser panels (left, right, middle, bottom), or to list records individually. In this 

view, US Gross Sales is dragged and placed between Creative Type and IMDB Rating summaries. The 

browser layout is adjusted to reveal drop zones across all panels and between summaries. 

 

Figure 8- Exploring BirdStrikes dataset. The aggregate measure function is the average of cost. 

Medium size birds are highlighted . The highlight selection shows the average damage per each 

aggregate related to medium-size birds. The average cost is not steady over time, and chart reveals no 

correlation between all birds and medium size birds. 
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Figure 9-Alternative record display views. Top) List view with custom content and styling. Polsinelli 

(a record) is highlighted. Summaries on the left reveal its characteristics with consistent color use: 

Business Prod. & Services, unknown (∅ ) number of workers, $300M revenue. Bottom Left) Map 

view shows US counties and the number of machine guns they received from military. In the map 

view, records can be selected spatially into flexible aggregates. Counties within the black rectangle 

are selected by filtering (click+drag), and orange counties within orange box are selected by 

highlighting (shift+drag). Bottom Right) Node-link view based on citations between papers from the 

InfoVis conferences [13]. Node color shows the number of citations to the paper. Papers of InfoVis 

conference are highlighted with orange border. 
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5.1 Data Browser with Record Display 

Keshif data browser builds the data exploration space around attribute summaries 

and a record display that shows records individually either as a list (row / grid), on a 

map if the records define spatial boundaries, or as a node-link diagram if the records 

are explicitly inter-connected (such as references across publications) (Figure 8). The 

visual encodings are summarized in Table 3. All attributes of a record can be viewed 

in a pop-up window by clicking  in the list view, or the region/node in map/node-

link views. The header panel summarizes the complete dataset and visualizes the 

selection characteristics using the global aggregate. All active selections are shown 

as breadcrumbs in the header panel, encoded by color and icons for a quickly 

accessible overview of the data selection (exploration) state. 

 

The active aggregate measure function and the scale mode are shared across all 

summaries to provide a consistent interface. The controls are mapped to conceptual 

visual elements, aimed to minimize control-specific UI components. The aggregate 

measure is set by clicking to global aggregate (Figure 5); the scale mode is set by 

Record 

View 

Organize by 

(numeric attribute) 
Filtered-Out Records Highlight / Compare Encoding 

List Sort Removed Fill color 

Map Fill Color Transparent Border color 

Node-Link Fill Color Removed Border color 

Table 3- The form and visual encoding used by the record display for visualizing individual records. 

List view is the default. Map view is supported if the records have a spatial component. Node-link 

view is supported if the records have an attribute that refers to other records. The form of record 

display can be switched during exploration.  
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clicking on the measure scale axis. In contrast to Tableau [136] and Voyager [151] 

where record count is shown along record attributes, Keshif clearly distinguishes 

record count as an aggregate measure function. Measure labels can be shown in 

absolute or percentage values under count and sum measure functions. For example, 

an aggregate of 343 female employees among 870 (filtered) employees can be 

labeled as 39%, providing a quick percentage-overview of the record groups (Figure 

8, Left). Clicking # - % icons on the chart corner changes this mode. 

5.2 Design Specifics 

This section presents specialization details of the layout (browser), visualization 

(summaries), and the interaction (linked selection) design of Keshif. 

5.2.1 Layout Design 

The Keshif browser layout is designed to avoid overlaps across summaries and the 

record display, and to simplify layout configuration. The browser defines four panels 

(left, right, middle, bottom) that can include multiple stacked summaries. The 

summary height is automatically distributed across all summaries in a panel. The 

individual summaries can be collapsed to their header (Figure 5, # of Workers), 

which opens more space for other summaries in the panel. The record display is 

positioned in the middle, perceptually binding selections across all summaries 

positioned around it. The browser header panel holds the global summary and 
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selection breadcrumbs. This constrained design minimizes decisions on the layout 

and positioning to speed up data exploration. 

 

5.2.2 Attribute and Summaries by Data Type 

The summary design is further specialized on data type and semantics as 

summarized. Table 4 presents an overview of the specializations. An attribute 

summary can support alternative data semantics by adjusting its visual form with the 

setting controlled by a button that demonstrates the context. In our implementation, 

categorical attributes that define spatial boundary definitions (such as countries) can 

be shown as a list  (to emphasize sorted ranks), or on a map  (to emphasize 

spatial distributions). The icons in summary header allow controlling the mode. The 

Summary Form Navigation 

Categorical 
List Scroll (1D) 

Map Pan & Zoom (2D) 

Interval 

Histogram Zoom to filtered range 

Zoom to total range 

(Fine vs. coarse bins) 
Line 

Set-Pair Matrix Pan & Zoom (2D) 
 

Summary Form Specialization 

Categorical 

List 

Sorting: Automated re-sorting after filtering to 

emphasize most relevant first.  
Multiple sorting options, custom category 

ordering, and inverse sorting are supported.  

♦ Label text search under many 

categories.  
♦ Multiple logics for selection (And/

/ ). And is only applicable to 

multi-valued categorical attributes. See 

AggreSet [33] for details. 
Map Select records by spatial query (rectangle) 

Interval 
Histogram 

♦ Linear/log scale binning, based on data 

distribution, can be changed in UI.  

♦ Supports percentile chart.  
♦ Supports unit names (10 mg, $100, etc.) 

♦ Bin range is based on value range 

(min/max) and summary width.  

♦ Flexible range queries to select 
records beyond fixed ranges.  

♦ Filtered range is always visible. Line ♦ Only linear-scale binning (horizontal axis). 

Set-Pair Matrix 
♦ Visualizes set-pair strength & subset relations (design on data-semantic) 

♦ Connected (next) to categorical list summary with synchronized scrolling navigation. 

Table 4- Specializations on summary and form types reflect data types, semantics, and tasks. 



 

77 

 

 

 

relations in multi-value categorical attributes are revealed in set-pair matrix [154] 

using . By default, the percentile chart is not visible in numeric summaries to keep 

the interface minimal. It can be shown using the summary configuration pop-up 

panel (Figure 7 – Cost summary), which also allows adjusting the binning to linear 

or log scale if applicable. 

Existing attributes of a raw dataset may need to be transformed or reformatted 

for effective representation and analysis. Keshif allows specifying calculated 

attributes as functions that return a new value given a record and its attributes. This 

provides a highly flexible customization pipeline to describe units of analysis, and 

can support pre-processing stages such as converting values (e.g. “10k” to 10,000 

and “20M” to 20,000,000, i.e. strings to numbers). In Figure 3, the Day of Week 

summary is extracted from the Date attribute. In Figure 4, the services held by the 

nominees are combined to a simple list merged from multiple attributes, each of 

which define the location of a service if the service had been held. This allows 

summarizing the service types in a compact form instead of summarizing them 

individually. Calculated attributes can also be used to lookup/merge external tables. 

For example, in a publication browser, a calculated attribute for Countries of Authors 

can return the list of countries of all authors of a paper by a lookup on the author 

table that stores the author country. Calculated attributes also enable defining rich 

HTML markup for individual records in the record display (Figure 8, Left). Keshif 

interface also supports common data transformation shortcuts in its graphical 
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interface, such as (i) extracting month, hour or week-of-day from a time attribute, (ii) 

extracting the set-degree from a set-typed attribute, and (iii) splitting categories into 

multiple values by tokenization, such as splitting “A;B;C” on “;” to generate the 

categorical list [“A”, “B”, “C”]. 

5.2.3 Pointer Based Linked Selection Design 

Keshif implements a pointer (mouse) based interaction design for selecting records 

and record groups. Mouse-over on an aggregate  sets the highlight-selection. 

Clicking on an aggregate  sets the filter-selection, an explicit action compared to 

mouse-over. Compare-selection  can be set by clicking on  that appears on a 

highlighted aggregate. Alternatively, shift+click on a highlighted selection sets 

comparison as well, and enables comparison of aggregate designs that may not 

reveal a lock icon by design, such as no-value or map region aggregates. To enable 

flexible interval selections (beyond fixed bins), shift+mousemove, 

click+mousemove, and shift+mousemove+click along horizontal axis set highlight, 

filter, and compare selections respectively. The aggregate measure text label color 

also reflects which distribution it displays. Activating highlight selection sets the text 

label to orange. Mouse-over on a compare selection, on the breadcrumb or charts, 

updates the labels to show the values. All visual encoding transitions (such as length, 

color, and size changes) are animated. Categories are resorted with staged 

animations after filtering to show most frequent/relevant on top. 
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Selecting a record by mouse-over reveals its attribute values in all summaries 

(Figure 8, Left), a doubly linked selection that highlights the record on demand 

within the context of distributions of all records. In the node-link view, mouse-over 

selection of a record also highlights its neighboring records. To avoid unintentional 

triggering of highlight-selection (and visual flickering) on mouse-move across the 

screen, we added a delay that is linear to mouse speed, activated above a threshold. 

Slower, deliberate mouse moves immediately enable highlighting, while fast moves 

respond with a minor delay. 

5.3 Authoring Data Browsers 

Enabling out-of-the-box data exploration requires easily importing new datasets into 

the exploration environment. In Keshif, data browsers can be authored / created after 

importing a dataset using two approaches: using JavaScript API (which also serves 

as a storage/exchange format), or the graphical interface, which supports drag drop 

interaction. Authoring is designed as a mode that can be enabled during exploration, 

as well as after data import, so that exploration process can be enriched with 

modifying the data summaries within the browser. 

Keshif, including its API, is primarily designed to let the user define what is 

being visualized and explored, not how. This is in contrast to grammars of 

visualization such as Vega Lite and ggplot, which have a compositional approach to 

create a range of chart designs. It also contrasts with chart templating approaches 

https://vega.github.io/vega-lite/
http://ggplot2.org/
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such Excel, Raw, Datamatic, and Quadrigram, since Keshif automates the 

visualizations and interaction, and the data dialogue is driven by the user based on 

key exploratory tasks rather than selecting charts and mapping data to template 

parameters. 

Lastly, customizations of Keshif browsers are most commonly aimed to express 

metadata, such as ordinal categories and unit names of numeric attributes (such as 

km, or $), as well as basic data transformations such as parsing time components 

from a text field, and splitting a text field into multiple categories by a delimiter. The 

API currently does not aim to store exploration state, such as specific selections. We 

created a descriptive, concise API for Keshif browsers that support the common 

needs we identified on 160+ public datasets. 

5.3.1 Graphical Authoring 

Authoring enables converting raw data to an explorable form in data browsers, as 

well as modifying existing browsers to explore different perspectives of data. In 

graphical authoring mode, the available attributes panel (Figure 6) shows the 

attributes that do not appear in the data browser. Each attribute includes a small 

visualization thumbnail showing its distribution overviews with category count, or 

interval range. To organize the attributes, they are sorted by data type first 

(categorical, numeric, and time), and then by distribution characteristics. Attributes 

can be added to, removed from, and moved across four panels in the browser by 

http://raw.densitydesign.org/
http://datamatic.co/
http://www.quadrigram.com/
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drag-and-drop. To simplify the arrangement (a non-exploratory task) for rapid 

exploration, double-clicking on an available attribute adds its summary on a panel 

chosen based on the data type (such as categorical: left, interval: right, time: bottom), 

and remaining panel space. Calculated attributes can be defined in a popup panel 

with title and function body written in JavaScript, and evaluated live. 

5.3.2 Programmatic Authoring (API of Browser Configuration) 

The JavaScript API of Keshif (Figure 9) enables flexible, customizable, and 

persistent configuration of data browsers. The format of this configuration is 

minimalistic, and can be easily learned and used by web programmers. The API has 

a single entry-point: instantiation of a kshf.Browser object with a browser 

configuration, which describes the data source, the list of summaries (position, 

name, function, and other configurations such as sorting of categorical data or unit 

name for integer values), and the record display (including sorting options, record 

view, etc.). Multiple browsers can be added to a single web-page by instantiating 

multiple kshf.Browser objects. Figure 9 demonstrates functional customizations for 

key objectives including loading custom data (such as GeoJSON of a country, an 

XML file, or even BibTeX entries for literature surveys), describing a data feature to 

summarize (such as extracting months from a Date attribute), and describing HTML 

components of how a component should be rendered (such as merging multiple 

attributes, with custom styling). While the visual and interaction design is tightly 
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controlled and not aimed to be end-user configurable, these callbacks provide key 

flexibility so that Keshif can fit many data sources, domains, and settings of analysis. 

In addition, Keshif browser configuration can be serialized to/from JSON objects. 

To handle custom callback functions in a configuration, we convert these functions 

to strings on export, and evaluate functions as string definitions using JavaScript 

eval function on configuration load.  

The end-user API documentation is available at 

github.com/adilyalcin/Keshif/wiki. 

http://github.com/adilyalcin/Keshif/wiki
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5.3.3 Sharing and Collaboration 

To enable saving, hosting, loading, and editing browser configurations easily as 

JSON objects, we implemented a GitHub Gist-based storage and authentication, 

similar to the blockbuilder.org and bl.ocks.org services. Gist configuration are stored 

 

Figure 10- Keshif configuration for an avalanche accidents dataset. This browser can be accessed at 

keshif.me/demo/AvalancheAccidents. The full source of the web-page is available at  

github.com/adilyalcin/Keshif/blob/master/demo/AvalancheAccidents.html 

 

https://gist.github.com/
http://blockbuilder.org/
http://bl.ocks.org/
http://keshif.me/demo/AvalancheAccidents
https://github.com/adilyalcin/Keshif/blob/master/demo/AvalancheAccidents.html
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and loaded using unique IDs, such as keshif.me/gist/?82d0d3caed8e93ea5ff8, with 

code hosted at gist.github.com/82d0d3caed8e93ea5ff8. This allows easy version-

control and forking of browser configurations. Our Gist integration also can manage 

custom CSS style files along with browser configuration. 

5.4 Implementation 

Keshif is implemented as a cross-platform tool based on modern web standards of 

JavaScript, HTML and CSS. As a strictly client-side tool, Keshif is a lightweight 

system that does not require a server installation or maintenance. Datasets can be 

loaded from cloud services that host spreadsheets (such as Google Sheets) or 

documents (such as CSV or JSON files on Google Drive or Dropbox), in addition to 

files hosted at a local server, or uploaded from local computer (non-persistent). 

Essentially, a Keshif browser can be built on any data resource that a web browser 

can access, and Keshif does not control data authentication and security protocols of 

the data sources, which can be set up using the cloud services.  

Keshif’s client-side basis puts a practical limit on the data volume that can be 

loaded into browser’s memory, while a demonstration with 220k+ records is 

available as a NYC bike-trip data browser (See Figure 11). This dataset, with 8 

active summaries, can be interactively browsed (queried without significant delay, 

about 500ms to 1 seconds in filtering performance, faster for highlight selection) in 

Macbook Pro (Retina, Mid 2012) with 2.3Ghz Intel Core i7 processor and 8 GB 

http://keshif.me/gist/?82d0d3caed8e93ea5ff8
https://gist.github.com/82d0d3caed8e93ea5ff8
http://keshif.me/demo/nycbiketrips


 

85 

 

 

 

1600 Mhz DDR3 memory with NVIDIA GeForce GT 650M GPU running on 

MacOS Sierra operating system. The performance significantly depends on the 

browser (type and version, including JavaScript runtime), operating system, and 

hardware. In addition, the query execution speed is related linearly to the selected 

number of records, and the number of aggregates they appear in, as Keshif currently 

implements a linear pass over each element, and checks if they meet the query 

condition for each potential filter, and propogate selection changes to each aggregate 

that the record appears in. Therefore, making selections of an aggregate that has 50k 

records responds slower compared to an aggregate with 10k records. In this dataset, 

filtering queries can take to complete and start refreshing the charts. 

 

Our implementation emphasizes a lean, minimalist approach as well. To keep 

our development stack minimal and have full control over the implementation and 

 

Figure 11- NYC Bike-Trips Data on Keshif (available at http://keshif.me/demo/nycbiketrips ) 

 

http://keshif.me/demo/nycbiketrips
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user interface design, we opted not to use frameworks such as React and Angular, or 

even jQuery. The only core dependency of the current Keshif implementation is D3, 

which is used to bind custom data structures to page components, create 

visualizations, and update these components interactively. We implemented our own 

internal aggregation and cached computations, since Keshif support query models 

not supported by off-the-shelf tools like Crossfilter. The JavaScript code is 

developed and maintained under a single file, keshif.js. In addition, Keshif uses 

Leaflet to render interactive maps, and PapaParse to load and parse CSV files when 

necessary. Keshif browser styling is implemented using less, a CSS preprocessor, 

which simplifies hierarchical styling and cross-browser compatibility. Our current 

unminified JavaScript implementation is over 11kLOC (460KB), and less stylesheet 

is over 4k LOC (138KB). Keshif also uses FontAwesome, which provides a clean, 

consistent, and familiar icon design for many actions and objects in Keshif interface. 

Furthermore, we implemented most animations using CSS3 transitions instead of 

using d3.transition(), making it more concise, simpler to develop and maintain. We 

used CSS flexbox display model to implement flexible and responsive layout 

components. Since rendering records individually (in record display) can hurt 

rendering performance given large datasets, we implemented an infinite scrolling 

strategy, creating page DOM elements conservatively and dynamically on scroll and 

filter. 

https://facebook.github.io/react/
https://angularjs.org/
https://jquery.com/
http://d3js.org/
http://square.github.io/crossfilter/
https://github.com/adilyalcin/Keshif/blob/master/keshif.js
http://leafletjs.com/
http://www.papaparse.com/
http://lesscss.org/
http://fontawesome.io/
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5.5 Discussion 

In the design and development of Keshif, our end goal is to lower barriers in generic 

tabular data exploration in order to reach more insights (knowledge) from raw data 

in a short time. The barriers are higher for novices in data analytics with lesser 

existing knowledge to make good decisions in visualization and interaction. Our user 

study with novices in short-term data exploration (Section 7.2) suggests high 

performance using Keshif, with the volume, range and characteristics of insights 

comparable to skilled users on advanced tools as reported in other studies. 

In contrast to existing visualization and charting environments that emphasize 

flexibility on design and support for non-exploratory tasks, we instead focused on 

building an immersive data exploration environment with extended best practices 

and refined design. Our implementation automates the aggregated visualization and 

linked selection interaction model that addresses the reported limitations, preferences 

and cognitive processes of the users [54]. Our integrated design extends upon 

effective and common techniques such as the overview-to-detail flow for 

information seeking [1], faceted browsing [157], coordinated multiple views [118] 

with brushing and linking. Specifically, we introduced a linked selection model 

composed of three complimentary selections (highlighting, filtering, and 

comparisons), aggregated visualizations including global overviews, no-value 

aggregations and semantic alternatives, and scale and measurement modes on 

aggregations for alternative high-utility views into data. 
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We argue that the effectiveness of the resulting data exploration space follows 

our design motivations in data exploration, and our basis in effective principles and 

techniques for visualization and interaction. By focusing on a core set of features 

seamlessly integrated to provide an expressive and consistent exploration space, the 

end-system is both greater and different than the sum of its individual components, 

following gestalt principles. Therefore, our contribution also lies in the definition 

and demonstration of the combination of our systematic components. Furthermore, 

our implementation advances the state-of-the-art in web-based visualization 

engineering as an open source tool used by thousands of visitors and hundreds of 

developers as of the time of submission. 

While this dissertation reflects the refined design of our solution, we had 

considered and iterated on alternatives some of which were found to be limited or 

inferior. All selection and visualization states (such as measure function and scale 

modes) are shared across all summaries to create a consistent and easy-to-control 

interface, which is in contrast to flexible coordination models which require more 

training and decision making. For visualizing compared selections, we chose side-

by-side rather than stacked designs since stacking only works when selected record 

groups are exclusive, therefore not applicable for multiple selections across 

summaries or in a multi-valued categorical summary. We avoided categorical 

wordclouds because of their limitations in perceptual accuracy, well-defined 

ordering, and use of size encoding, compared to bar charts. Scatterplots and ||-coords 
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present challenges in scalable overviews. Our focus on univariate visualizations 

implies that Keshif achieves multivariate exploration with synchronized interactive 

views rather than multiple variables visualized in a single chart. 

We presented the aggregate glyph designs for visualization on selected common 

data types rather than a design basis applicable to a wide range of chart types. We 

did not aim to provide generalizations for exploratory visualizations, although we 

present components and design features that can be applied to new data types and 

semantics. For example, spatial points (lat-long) can be aggregated on a map using 

the circular glyphs of set-pair matrix. Our design can be extended to support 

aggregate hierarchies to represent categorical hierarchies, and merge aggregates for 

higher-level overviews. 

Lastly, we modeled exploration process to start with raw data, and have not 

proposed models to capture the process of exploration directly. The raw data is 

converted to a dashboard through its metadata, including attribute descriptions 

(which are shown on mouse-over on ) and codebooks (converting integer codes to 

string labels, as commonly used in some datasets). The source of the data can be 

linked on the browser using  icon, which can be manually adjusted to link to a 

page including data dictionary or detailed source information. However, beyond 

these supporting features to provide links and descriptive information on data, 

Keshif does not aim to provide a data dictionary or reflect the process of how data 

was collected. It also does not aim to support editing data. While data quality or 
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coverage issues can be exposed visually through creating dashboards quickly, it does 

not offer views specifically focusing on detecting potential data issues. Supporting 

automated data quality checking with integrated visual reporting in the system may 

be a part of the future extensions of Keshif. 

5.6 Limitations 

In this section, we identify some of the limitations of the proposed exploration model 

and its implementation, Keshif, through multiple perspectives: Limitations of data 

model (what kind of data types are supported, not supported, and cannot be 

supported), form factor (what kind of devices can be used), collaboration (what kind 

of collaborative tasks are (not) supported), skills (how user skills influence the 

outcomes), data size (the limits of data size in our implementation), and chart types 

(what kind of charts may (not) be supported). We also contrast the goal of 

minimalism, to achieving expressiveness, discoverability, and visual complexity, 

which can be opposing goals when considered together. 

5.6.1 Data Model 

Our data model is strictly tabular, and a Keshif browser presents a single record type 

(table), where each record ideally presents a single observation (an event, entity, 

person, etc.). Calculated attributes enable linking to additional tables to merge 

multiple datasets. This data model design is consistent and minimal, yet places 

limitations on the supported data structures. For example, raw data in aggregated 
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forms cannot be explored with full flexibility in selections, and spatio-temporal 

datasets that describes observations across multiple dimensions do not lead to 

effective attribute summarizations in our design. 

5.6.2 Form Factor (Display size and input devices) 

Keshif is designed for desktop/laptop form factors with pointer-based 

(mouse/touchpad) interaction. It does not aim to scale to small (mobile) displays or 

large displays effectively. Showing multiple charts in a small screen with linked 

selections and brushing may not be an optimum design approach for small screens. 

Likewise, large spaces would present different interaction requirements and 

opportunities, as well as the need to scale charts into larger form factors which can 

be observed from both a short and far distance. Keshif is also not designed for rich 

touch interaction. Some buttons and selection targets are smaller than recommended 

sizes for touch interaction, and we did not discuss alternative inputs with multi-

touch, such as zooming or more advanced dragging capabilities. Future work can 

focus on design extensions for a wider range of display and input characteristics. 

5.6.3 Collaboration 

Our problem space models the user as an individual with a motivation to understand 

tabular datasets. While browsers can be forked, refined, and shared, we do not 

propose a model for synch or asynch collaboration in data exploration. Our model 

does not present solutions for provenance of insights or interface use. Based on our 
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focus on exploratory process of data understanding rather than data presentation, 

Keshif is not designed to support custom annotations, or exporting charts. 

5.6.4 Required Skills for Customized Authoring 

While Keshif offers a graphical interface for authoring and exploration, features such 

as calculated attributes, API customizations and custom data loading callbacks target 

a more skilled audience (such as with some web development experience). While 

informal feedback from some external users with novice coding skills noted that 

Keshif API can be learned and used through example browser configurations, we are 

looking forward to extending graphical features for authoring and calculations, while 

maintaining Keshif’s lean and clean design. 

5.6.5 Data Size 

Keshif is currently implemented as a client-side tool that runs on a web browser 

locally. While the lack of a server query backend limits scalability in practice 

because of computational limitations, it also makes Keshif easy to deploy, maintain, 

and integrate with existing data sources and web pages. The aggregated 

visualizations of Keshif can support larger datasets by design given appropriate data 

backends that support aggregated and flexible queries. The future work to offload 

computation from client to server side includes development of remote and scalable 

data backends, incremental data transmission, and rapid query models. 
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5.6.6 Chart Types 

Previous section includes discussions regarding the chart types selected and the 

visualization designs. To clarify the limitations, we do not represent the multiple 

selections and aggregate glyphs approach as a full grammar that would automatically 

support data types and use cases beyond those presented or discussed. For example, 

summarizing multiple measurements of a single variable is not supported, such as, 

given a list of cities with various indicators, Keshif currently cannot summarize 

population over time as a single, interactive, integrated chart. Current model would 

only be able to summarize population of cities at a single time-point using a 

histogram. Showing multiple selections on time-series data while supporting 

different aggregation modes (count/sum/average), data types and visualization 

settings is a challenge not addressed in this dissertation. However, extending the 

model to lat-long data types with dynamic spatial aggregations is possible, and the 

model can also be extended to support bi-variate analysis with additional effort, as 

an extension of the set-matrix design already presented as a scalable basis for 

scatterplot-like relations across two variables.  

Bi-variate analysis in a single chart is also supported only for multi-valued 

categories in Keshif. Generalized charting solutions include scatterplots or heatmaps 

with two axis using different attributes. Data summaries in Keshif are designed to 

aggregate data, and be scalable. For example, scatterplots would not scale to 

different input sizes or conform to the idea of ‘summarizing’ the data. However, the 
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record display can be extended to support a scatterplot view (where each record is a 

point), or alternative charts where each record is presented only once (such as 

parallel coordinates, or bump charts). Adding such “features” would require 

considering how it would be enabled and used in the exploratory process without 

violating the minimalist and systematic design basis of the work presented in this 

thesis. 

5.6.7 Minimalism vs. Expressiveness 

As noted in the motivations (Section 1.1), minimalism and expressiveness can be 

opposing goals. When one wants to make a system more expressive, it is generally 

achieved through adding new features, which may not be aligned cohesively with 

existing features, and reduce its minimalism, usability, and learnability. The 

proposed model, and its implementation Keshif, aims to achieve minimalism through 

connected components, consistency, and minimal UI. It targets core, common data 

types, and core data analysis tasks, such as comparison, ranking, filtering, and 

observing trends, using alternative measurements within record groups 

(aggregations). The features are designed to work together seamlessly, rather than as 

isolated parts of an amalgamation of various charts and analysis options. 

The limitation of expressiveness includes not only data model and collaboration, 

but also other tasks such as data presentation, and the possible data queries. For 

example, while SQL might be used to query a database in very flexible ways by 
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chaining and merging different selections, the proposed model only presents a 

single, fully synchronized query model. Other visualization or data preparation tools 

such as Tableau can include more flexible ways to formulate new data properties 

using data not only from each row, but by using metrics from all the dataset and 

visual structure to enrich data visualizations, such as generating Perato charts. These 

example functions include ranking, running count/sum/average, window 

count/sum/average and combinations thereof. We did not propose a fully flexible, 

all-generalized model to transform and re-purpose data into new formats. However, 

by using full JavaScript specifications, we enabled various transformations for data 

attributes per record. The selections and linking strategy of Keshif is also single-

purposed, as such cannot be as flexible as Snap-together [105] and Improvise [146]. 

5.6.8 Minimalism vs. Discoverability 

Another point of friction across different goals is between minimalism and 

discoverability. Reducing icons, and revealing options only on certain interactions 

(such as revealing locking icon after highlight selection (mouse-over), or changing 

aggregate metrics through a single, shared icon) may lead to a design for which the 

features are harder to discover. We have observed these limitations in our user 

studies with novice users of Keshif (See Sections 7.1 and 7.2 for examples). These 

limitations in discoverability was among the factors that lead us to design an 

integrated help system, most relevantly its Guided Tour mode (See Section 8.3.4) 



 

96 

 

 

 

and Topic Listing mode (See Section 8.3.2). However, the capabilities of Keshif still 

require some learning investment, and using it effectively requires analytical 

thinking. Having a menu-less approach where data becomes the interface is a 

passionate goal. Yet, with increasing expressiveness, discoverability can become a 

new profound barrier to in-depth data analysis. Making the current design easier to 

discover is one of the future design challenges. 

5.6.9 Minimalism vs. Visual Complexity 

While Keshif aims to achieve a systematic minimalism, we have observed that the 

visualizations and interactions it enables may be visually complex or confusing for 

some audiences and some settings. One source of complexity is the multi-selection 

visualization glyph design of Keshif. Having up six colors on a single aggregate 

glyph representing different selections (Table 1) can be confusing to first-time users. 

To limit the impact of this complexity factor, Keshif starts the exploration process 

from the overview (total selection), and any future selections are enabled explicitly 

by mouse-over or clicking, giving full control to the user.  

Another contributor to complexity is the frequent animated updates on mouse-

over. While we implemented a thresholded delay to selection while the mouse is 

moving to prevent highly frequent updates, the highly interactive nature of making 

selections, where every action might lead to a change in the interface, can be 

confusing to some users, as we have observed on various occasions through 
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feedback. One way to counter this observed complexity effect is to offer limiting 

highlight selection, or increasing its delay threshold, for novice audiences. This 

would decrease the rapidness of data exploration through quickly observing multiple 

sub-groups by moving the mouse, however with benefits to readability. 

The perception of visual complexity also depends on the viewer, their domain 

knowledge, and motivation. For example, a data browser with ten charts describing 

various aspects of the data may have high utility for a domain expert who would like 

to explore relations across multiple attributes simultaneously through linked 

selections. However, such an interface may be too busy or distracting for a casual 

person who may not wish to see all these trends, and they may gradually increase 

complexity as they prefer. The ideal situation would be to bootstrap their exploration 

with few selected basic attributes (summaries), and encourage exploration of other 

attributes afterwards. This example also points to the complexity introduced by 

having multiple simultaneous and highly connected charts on a data dashboard. One 

way to reduce complexity would be to enable expanding one chart to a full-size to 

cover the browser, and limit exploration across multiple summaries. This may 

simplify (limit) the data presented on the screen, and can also allow seeing more 

details in a single chart (such as a larger map, or an extended multi-column list). 

Lastly, we have developed HelpIn (Chapter 8) to counter the complexity of the 

interface by offering live, contextual, integrated descriptions to help readability of 

the data interface, charts, and various interactions. One limitation is that this help-
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based approach is based on existing design of the tool, and does not make it 

inherently simpler or more effective, but aims to close the gaps with additional 

features. While we argue that getting help, and training, for a data interface/tool is 

crucial for effective use, we also recognize that the first goal should be to create a 

better designed interface rather than providing help when discoverability, usability, 

and confusion issues arise. 
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Chapter 6. AggreSet – Set-Typed Data Exploration Technique 

 

“Every doorway, every intersection has a story.” 

Katherine Dunn 

 

AggreSet specializes the proposed data exploration model to meet the challenges of 

set-typed data exploration. In this section, we present features of set-typed data, the 

detailed design of AggreSet, and how it makes set-typed data explorable. 

6.1 Features of Set-Typed Data 

Set-typed data implicitly define relations between sets (A, B) based on their 

intersection (Q=AB). Figure 10 orders intersection in increasing strength: disjoint 

sets, partial subsets, proper subsets and identical sets. Revealing these relations are 

among set visualization goals. Disjoint relation (Q=) represents empty intersection. 

It is very common in sparsely connected sets. Identity relation (A=B=Q) represents 

the strongest connection. It requires both sets to contain the same elements. Proper 

subset relation is the strongest relation when sets have different number of elements. 

One set subsumes the other, i.e. all elements that appear in the smaller set are also in 

the larger set (AB, Q=A or BA, Q=B). In datasets, many set-pairs are in partial 
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relation. The sets have some shared items, and each set has some unique element 

compared to the other (Q≠, A\B≠, B\A≠). 

 

To model relations between sets, we define the strength of a set pair {A,B} on a 

continuous scale from disjoint (0) to subset (1), computed as |AB|/min(|A|,|B|). The 

set-pair intersection gets stronger as the sets share more elements, and the strength 

reaches one when the sets share all the elements they can share. This metric presents 

a normalized context to set-pair relations, a form of similarity, and is an alternative 

to characterisation by element count, an absolute value on an unbounded scale. 

In contrast, the Jaccard Index, a common set-relation metric, normalizes the 

intersection size of two sets with their union size (|AB|/|AB|), also ranging from 

0 (disjoint) to 1 (identical). However, this metric produces an unbalanced 

distribution since high values (toward equity) are much less likely to occur than 

strength metric (toward subset-ness) given varying set sizes. There are also other 

similarity metrics representing deviation from expected values using statistical 

inference assuming a marginal independence between sets [3], [88]. Such metrics 

return positive or negative values depending on whether the observed element count 

is higher or lower than expected. Deviation results can be compared relatively across 

 

   a) Disjoint                    b) Partial (weak)         c) Partial (strong)    d) Proper Subset     e) Identity 

Figure 12- Relations between two sets based on shared elements. 

ASD 
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sets and their intersections, while the strength metric is meaningful in absolute form 

(subset-ness) as well as for comparison.  
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6.2 Set Exploration Modeling 

Set exploration is conceptually non-trivial; there are many tasks that involve 

intersections and relations between multiple sets and other element attributes [4]. To 

support a rich and comprehensive ability to explore set-typed data, we present a new 

modeling for data representations, low-level actions, and high-level tasks. This data 

and low-level action model is shown in Figure 11 below.  

 

 

Figure 13- Our set exploration model for data and low-level actions. Elements are mapped to 

aggregates, and actions are defined across data types. A set-typed attribute is decomposed into three 

forms of element aggregates: set-list, set-degree, and set-intersection. This model distinguishes the 

explicit set-list from set-intersections, and allows for exploration using set-degrees directly. Given a 

group of elements/ aggregates, you can Find an element/ set with some characteristic, or Analyze the 

group overview to detect the range of values and patterns. Given an element, you can Retrieve the 

aggregates that include the element. Given a selection of one or more aggregates, you can Select the 

elements that satisfy the selection. We do not differentiate how selection is actualized (i.e. highlighting 

or filtering). Lastly, given a selected element group, Sync is a global action from all elements to all 

aggregates to reflect underlying element characteristics. Sync action generalizes Retrieve for selected 

elements to enable Analysis within all aggregates. Sequencing these low-level actions on set list, 

degree and intersections allows expression of complex queries by creating flexible type-agnostic paths. 
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To exemplify the execution of this model, let me consider a movie dataset where 

each movie (element) has multiple genres (sets), an average rating, and a country of 

origin. What are the genres, the countries, and the range of ratings in the dataset 

(Analyze within aggregates)? What are the genres and the rating of the movie Wall-

E (Retrieve)? What are the two most common genres (Analyze within genres, 

Find)? How many genres does a movie have at most (the maximum genre degree) 

and what is the degree distribution? (Analyze within genre degrees). Such overview 

reveals basic patterns. Then, exploration expands through selections. What are the 

drama movies? Movies that have at least three genres? Movies with highest ratings? 

Such exploration commonly starts with a Select, is followed by Sync that retrieves 

and aggregates selected element attributes, in order to Analyze data characteristics in 

multiple data dimensions. What is the rating distribution of children’s movies (genre 

to rating)? What are the common genres of high-rated movies (rating to genres)? 

What other genres do documentary movies have (genre to genres - set relation)? 

Which genres have more multi-genre movies (genre degree to genres)? Which genre 

pairs are more common, which genre pairs include no movies (empty intersections), 

and which genres always appear together (are subsets) (Analyze within set 

intersections)? We can then compare different selections. How do ratings compare 

across horror vs. documentary movies (Select horror  Sync, repeat for 

documentary and Analyze for comparison within rating)? We can expand our 
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inquiry by looking at intersections of multiple genres. AggreSet supports all such 

queries through its single aggregate-based exploration modelling. 

Many exploratory questions depend on the Select action based on some criteria. 

Rich data exploration is only possible through flexible selection models, ideally with 

ease of expression. Selection for set-typed data can include multiple attributes (high-

rated drama movies) and multiple set values can be selected using different 

modalities (family and comedy movies without action), representing intersection ( 

- and), union ( - or), and complement (\ - not).  

Comparison of data characteristics under different selections is a more complex 

form of exploration. To support comparisons across different element selections, 

SelectSyncAnalyze pipeline needs to be executed under each selection, and the 

resulting distributions need to be saved and visualized. Exploratory comparison then 

follows visualizations of multiple distributions. 
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Figure 17- Character co-occurrences in Les Miserables. This dataset has 82 subset relations. Top: 

The circle area maps the number of chapters both characters occurs in. Intersections with few 

chapters appear small and are hard to observe. Bottom: The circles are full and color denotes the 

character relation strength by the chapters they occur in together. The border is shown when one 

character always appears with the other character. For example, all of Feuilly’s chapters (7) also 

include Bossuet, who appears in 16 chapters. This suggests a proper-subset relationship, and the border 

is half. When two characters always appear together, their border is full (not visible in this cross 

section). We can also observe that while intersection of Madame Thenardier was one of the largest in 

number of chapters , it is not one of the strongest . 
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6.3 Set-typed Data Exploration with AggreSet 

Set-typed data exploration with AggreSet encourages the overview-to-detail flow of 

the information seeking mantra [1]. Its approach can be explained in four levels with 

increasing depth and richness. (i) AggreSet displays sets as a linear list, aggregates 

elements within sets, and visualizes the distribution of elements. It orders sets with 

larger element counts first by default (Figure 16, and Figure 17-a). By selecting a 

specific set, the user can interactively explore (highlight, filter, compare) 

distributions of elements of the selected set, also revealing its intersections. (ii) 

AggreSet summarizes the set-degree of elements. Selections on this dimension can 

be used to reveal higher-order set relationships (e.g. intersections of >3 sets) (Figure 

13). (iii) AggreSet introduces the set matrix to visualize the distributions in set-pair 

intersections and set relations (strength) using circle glyphs. The interaction design 

(highlight, filter, compare) seamlessly extends to this matrix. (iv) Intersections 

beyond second degree (set-pairs) are explored through selections. At all levels, the 

result list can show all, or filtered, elements (Figure 17), and other categorical and 

numeric attributes are presented with the same core design as set dimensions. 

AggreSet uses element aggregation to scale on element count by design. Element 

are aggregated per set, per set-degree and per set-pair intersection, as modeled in 

Figure 11. Since set-pair aggregation is independent of the set order, the set matrix 

uses half of the matrix, and therefore avoids visual duplication. The intersections of 

a set are captured along two set-lines, one vertical and one horizontal. For example, 
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in Figure 12, action movies are selected and two orange lines in matrix pass through 

the intersections of this set. The rows/columns are also highlighted when a cell is 

selected (pointed) in the matric (Figure 16). The empty half of the matrix displays 

set labels (for easy identification of sets involved in intersection circles) and visual 

legend for matrix. 

 

To explore a high number of sets that cannot fit within the linear and matrix view 

on a limited screen size, AggreSet matrix supports scrolling and panning, as shown 

 

Figure 18- Record types (sets) compromised in 284 large-scale data breaches (elements).  11 

Breaches with log and password record types are selected using result-preview. The large circle size 

shows these two record types were commonly compromised together. 3rd order intersections (’s of 3 

sets) are shown on the set-list histogram. For example, email is commonly associated with the 

selected breaches (9 out of the 11 with password and log), and  neither medical nor financial 

records were stolen with passwords and logs. We can also observe intersections of 4 record types. 

About 35% of email and address breaches also had password and log leaks . 
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in Figure 12, Figure 13, and Figure 14. Scrolling is a fluid interaction to observe 

limited parts of the dataset, compared to explicitly selecting active sets one-by-one 

such as applied in Upset [88], [121]. When the set-list is scrolled, the set matrix 

follows along its diagonal line so that for all the sets visible on the list, their 

intersections are also visible on the set-matrix. The intersections involving sets that 

do not appear in the set-list are outside the diagonal. AggreSet allows these 

intersections to be explored by panning the matrix view by mouse drag. Notice that 

the sets below the view cannot have any intersections within the matrix view by 

design. In addition, panning reduces the unused portion of the set-matrix view. 

AggreSet also supports adjusting the matrix cell size (zooming -  button) to make 

the circles easier to read, or to show more set-pair intersections in a single view 

Figure 17. 

AggreSet enables exploration beyond set-pair relations by selection across set 

dimensions. Figure 16 shows that the result-preview selection on a set-pair enables 

analysis of intersections of three and four sets visually. Set-degree selection also 

enables higher order analysis. For example, to analyze intersections that involve 4 or 

more sets, one can filter to elements with degree 4+, as shown in Figure 13. 

Likewise, selection by an exact set degree will show set relations unique to 

intersections that only involve as many sets. Quickly iterating through different set-

degrees by result-preview can provide a quick overview of higher order relations 

within the data. 
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6.4 Details on Visual Encoding Design 

In the set-matrix, the result-preview is visualized with a sweeping arc on circles with 

12 o’clock alignment, producing a pie chart with single pie . Our design uses a 

sweeping arc (instead of radius mapping) to emphasize part-of relations within 

intersections.  (¼),  (½), and  (¾) serve as easily recognizable visual anchors 

for comparison of previews to (filtered) element count. If radius mapping by area is 

used to reflect selection areas, such ratios are harder to perceive, such as  (¼),  

(½), and  (¾). We notice that the visual distance between circles and the lack of a 

shared basis can be limiting factors for effective comparisons across set intersections 

within the matrix. The compare-selection visual encoding is an outline on the arc-

swept circle, as shown in Figure 12. The 12 o’clock base line is not highlighted so 

that the line connecting from center to the arc is only used to show the value. 

The strength of the relation, as defined in Section 6.1, is mapped to the circle 

color and border (Figure 15). Lighter color visualizes a weaker relation than darker 

color (  vs. ). The circle border visualizes subset relations. A full border ( ) 

shows the identity relation, while a half-border ( , ) shows the proper subset 

relation. The edge connecting the half-circle (upper or right) directs to the larger set. 

When the sets are ordered by element count, the containing set always appears above 

since it is larger. Yet, this property may not hold for other ordering approaches and 

the visual state encodes the direction. The total number of subset relations is also 

shown below the set-matrix, next to the total number of intersecting set pairs. To 
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maintain design consistency, AggreSet re-computes the set strength metric after 

filtering. The relative-mode can be engage by clicking the  button on the set 

matrix summary. The strength button changes to  when relative-mode is 

enabled, describing the visualization of the strength relation with its gradient, and the 

blue border at the strong end. This design is limited for analysis of hierarchies of 

subsets, although hierarchies can be traced using the set matrix step by step. 

When all circles (non-empty intersections) are scaled to full-size in the relative-

mode, the disjoint-sets (of empty space) become visually more distinctive. The 

matrix layout creates a spatial context for observing sparseness of set intersections. 

In the absolute mode with varying circle size, AggreSet uses the grey cell 

background to help the viewer distinguish the small circles (few elements) from 

empty intersections (cells). Some sets may also be disjoint from all others (like 

disconnected network nodes). To distinguish such isolated sets, AggreSet removes 

their grid-lines, suggesting that there is no line to follow to uncover set-relations. 

This design reduces chart ink and makes existing lines easier to perceive. 

6.5 Perceptual Set Ordering for the Set Matrix 

The Gestalt principles state that our perception is influenced by similarity, 

continuation, closure, and proximity. Jacques Bertin says “simplification is no more 

than regrouping similar things” [15]. Characteristics of set visualizations and 

visually emphasized patterns therefore depend on the set order. To reveal patterns 
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among sets that are closely related, AggreSet includes a perceptual set ordering 

method aimed for the set-matrix layout. Figure 17 shows that ordering sets on 

element count may create salt and pepper pattern within the set matrix, and 

perceptual ordering can improve visual structure by placing connected sets along the 

diagonal. 

Matrix reordering methods have been long studied [89]. Greedy heuristics and 

clustering are commonly used approximate solutions since ordering optimization is 

NP-complete in the general case given #sets! combinations. In AggreSet, set 

ordering is solved once as an approximate global layout optimization, since both 

matrix axes use the same order. AggreSet translates set ordering to the Minimum 

Spanning Tree (MST) problem by using sets as nodes, and set-pair intersections as 

undirected edges. The edge weight between two sets for MST is the total 

dissimilarity in their relation to all sets, such that ΑΒ=ΧΑ∩Χ−B∩Χ, where 

Α,Β,Χ∈𝕌. The intersection size 𝛼∩𝛽 is used as the visual characteristic of the set-

pair, i.e. the metric to optimize the matrix layout. To reduce the number of edges to 

be processed, only intersecting set-pairs, such that Α∩Β≠∅, are considered. This 

edge weight is defined for the MST algorithm to optimize the layout globally, and is 

not exposed visually otherwise. 

To generate MST(s) of the set-intersection graph, we used Kruskal’s algorithm, 

which greedily inserts edges with smaller weight (higher set similarity) to MST(s). 
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We generate the linearized set ordering by a breadth-first traversal of MST(s), 

starting with the largest tree in terms of the number of nodes (sets). To have a 

consistent linearization with larger sets within a tree appearing before smaller ones, 

larger nodes need to be traversed first. To achieve this, we modified Kruskal’s 

algorithm such that when two nodes are connected, the node (set) with more 

elements becomes the new root. Our open-source implementation provides more 

details. 



 

115 

 

 

 

 

 

a) A zoomed-out view sorted by 

decreasing element (neighbor 

country) count. This view 

emphasizes countries with more 

neighbors. Notice the salt-

pepper pattern in the set-matrix. 

 

(b) Countries are reordered 

using a perceptual set ordering 

approach. The new ordering 

follows their geographical 

closeness, for many countries, 

and forms visual clusters along 

the diagonal.  

 

(c) A group of 13 countries is 

focused by adjusting the matrix 

zoom. In this group, Serbia has 

the most neighbors, and is 

selected by mouse-hover. This 

selects the neighbors of Serbia, 

and the preview shows the 

neighbors of those countries. 

Figure 19- Exploring country neighborhood relations. The list aggregate number shows the number of 

neighbors per each country (set).  
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6.6 Comparison of AggreSet and Other Set Visualization Techniques 

This section presents a focused comparison of recent set exploration techniques, 

including AggreSet. Table 5 presents the comparison summary. 

 

 AggreSet UpSet RadialSets OnSet 

S
cS

a
le

 # Elements Aggr. Aggr. Aggr. 100s 

# Sets 50+ 20-50 30-40 N 

#  (Intersections) (#Row)2 #Row (#Set)2 N 

D
a

ta
 

Elements      

Sets      

Degrees   Group, filter   

Attributes      

 Degree 2-4+ N 2-4+ N 

 as Cell Row Arc/Circle Set 

A
ct

io
n

s Retrieve     

Analyze Sets & Elements Sets & Elements Sets & Elements Element focused 

Synchronize    Partial 

F
ea

tu
re

s 

 Yes hierarchy    

 In-context Remove   

    \ Mixed Mixed Mixed Rich 

Similarity     

Compare Dist. 1-to-many Tabular Color No 

Higher-Order Preview, filter Visible Choose 2-4 Drag & drop 

D
es

ig
n

 

 

Matrix-View Set x Set Set x  N/A Elements 

Element Aggr.     

Overlapping   Yes Yes 

Animated     

Highlight-Select Hover, brush Within matrix only   
 

Table 5- A comparison of interactive set exploration approaches. Scale group shows practical 

limitations in scale per data type. Sets shows active number of sets.  shows number of intersections 

that can be visible on the screen. Data group shows the data dimensions explicitly shown. In 

Degrees, “Filter, Group” shows that degree is not a primary data type; it is explored by grouping and 

filtering in separate interface. Actions group shows low-level actions. Partial sync means not all 

components in the interface are connected. Features enable higher-order and set-specific exploration. 

 shows whether subsets are explicitly visualized; 1 denotes subset hierarchies are not explicit.  

(empty sets) can be highlighted in-context, or can be removed from display. Similarity of set-pairs 

includes deviation from expected values. Comparison of distributions can be enabled as 1-to-many, 

in tabular form, or using color mapping. Higher-Order shows how intersections of many sets are 

explored. Design group lists design guidelines. Matrix row shows the matrix view construction.  
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UpSet [88] uses a combination matrix and table layout. In the matrix view, columns 

are (active) sets, rows are all possible intersections of these sets, and cells show the 

intersecting sets per row. Per each row (intersection), the tabular view shows the 

cardinality, deviation, and summary attribute statistics using sortable columns. Since 

UpSet explicitly shows all set intersections, it is effective for analysis of high-degree 

intersections as well as attribute characteristics per each intersection. UpSet answers 

--/ set queries by selecting and grouping intersections that satisfy the query. 

Grouping and sorting features for intersections extend its linear basis of design, yet 

these features apply view transformations that may not be intuitive on first use. As 

the active set count increases (more sets are inserted to the view), the combinatorial 

growth in number of rows and the widened matrix view reduces its visual scalability. 

Targeting sparsely connected sets, UpSet can reduce the number of rows by 

removing empty intersections. Set-attribute filtering is visually separated from 

filtering other attributes, while AggreSet uses the same selection modalities across 

data dimensions. UpSet does not visualize element degrees explicitly, although it 

offers a range filter and grouping by degree. In its element view, it also does not 

explicitly show, or link to, set memberships. Overall, when set exploration needs to 

focus on all possible set intersections and their characteristics given some chosen 

sets, the interactive tabular view of UpSet provides a rich visual exploratory space. 

RadialSets [3] is based on the circular layout node-link diagram design, thus has the 

scalability limitations by intersecting edges. The distribution of element degrees is 
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explicitly visualized by length encoding for each set (node), and revealed upon 

selection for set intersections (links). RadialSets can also visualize intersections of 

three or more sets using circular glyphs as hyper-edges. The positions of these 

glyphs are optimized to visually reduce overlaps, or placed in layers sorted by glyph 

sizes. Thus, understanding higher degree set relations relies either on tracing 

overlapping edges, or on selecting glyphs to see contributing sets. RadialSets also 

supports mapping other attribute characteristics to the color of set-intersection 

glyphs, allowing high-level overviews of differing characteristics of set 

intersections. 

OnSet [121] visualizes elements as cells within set matrices. A matrix can represent 

a single set, or a set combination. Elements are located at the same cell positions 

across matrices, and can be spatially grouped by bounding boxes. OnSet matrices 

should be large enough to hold all elements, limiting scalability on element count. 

Sets can be dropped and merged with direct manipulation. Merge queries support -

-\ modalities with hierarchical compositions. When a matrix represents a set 

combination, cell (element) opacity/color shows the number of sets, of the 

combination, that the element appears under. Yet, the sets of the elements are not 

directly available. To visualize similarity across set matrices, OnSet supports a node-

link diagram. This layer is visually limited in the number of (large) matrices because 

of occlusions. OnSet relies on pan-and-zoom interaction on a 2D zoomable canvas to 

explore non-trivial number of sets and relations. However, element context can be 
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lost when zoomed out, and controlling the canvas can make the canvas space more 

complex to navigate and understand [14]. Its matrix design depends on the viewer’s 

ability to understand which elements are located at which cells across matrices. Yet, 

element ordering and grouping structure is not explicit, and finding a specific 

element across multiple matrices with many rows and columns is a non-trivial task. 

AggreSet supports a high number of sets, visualizes all set dimensions explicitly, 

enables the tasks consistently across data dimensions and attributes, supports rich, 

high-level exploratory goals, and avoids major design problems that may affect 

scalability and usability. It can be used to express the set exploration tasks proposed 

by Alsallakh et al. [4] through selections of five data dimensions (elements, set-list, 

set-degree, set-intersection and other attributes), except the three tasks relating to 

creating new sets from specific element selections, and analysis of inclusion (subset) 

hierarchies. AggreSet is also different from other multi-view visualization systems 

[118] with its novel combination of set-matrix view with element aggregations, set-

exploration specific features (such as set-pair strength and perceptual set ordering), 

and interaction design with preview, filter, and compare models. The limitations of 

AggreSet can be discussed as the following: 

(i) Higher-order relations: Exploring relations beyond set-pair are not 

immediately visualized and such exploration requires selection. In our overview-to-

detail approach, this is presented as the final (fourth) level. Since explicitly 

visualizing higher-order relations increases the number of visualized data items, 
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placing this information on demand through interaction allows our design to visually 

and seamlessly scale to overviews of more sets.  

(ii) Set intersection: Element attribute characteristics cannot be shown within the 

set visualizations directly, while UpSet and RadialSets support such cases. Relations 

between sets and other attributes are explored through explicit selections in the 

minimalist design that consistently applies in both directions (set  attribute). 

(iii) Data density: When aggregation glyphs are small, the visual mappings (size 

and color) can be hard to distinguish, especially for circles in the matrix view. To 

mitigate this problem, matrix zooming can be used to enlarge the glyphs, a tradeoff 

between space and number of data points. In addition, result-preview and set-pair 

strength uses the same visual channel (color) in matrix view, with the dominant 

being orange preview. While the strength is occluded on the circle, it is still available 

in the set-list view, right side of the matrix, in % value. This also highlights how set-

list and set-matrix support one another. 

(iv) Scalability: Given a laptop/desktop display (1280×800 pixels or more), 

AggreSet can accommodate on the order of 50 sets. Zooming out shrinks set and cell 

visualizations, and allows showing more data in a fixed display size. Panning allows 

exploring areas outside the visible matrix viewport. Perceptual ordering can improve 

the visual structure along the diagonal for some set relations and reduce information 

outside of the visible matrix area. Scaling to hundreds of sets with dense relations is 
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still not practical, which would require techniques for aggregating sets and their 

intersections. 
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Chapter 7. User Evaluations of Keshif 

 

"In my experience, users react very positively when things are clear and 

understandable. That's what particularly bothers me today: the arbitrariness and 

thoughtlessness with which many things are produced and brought to market. Not 

only in the sector of consumer goods, but also in architecture, advertisement. We 

have too many unnecessary things everywhere." 

  Dieter Rams 

 

In this chapter, we present user evaluations and applications of Keshif, which also 

include the underlying data exploration model, the set-typed data exploration 

technique AggreSet, and the evaluation based on Cognitive Exploration Framework 

presented in Chapter 3. 

First, we describe two studies that include open-ended, self-driven data 

exploration, starting from raw data, authoring browsers, and exploring and 

communicating observed findings, and challenges. The first study of this kind 

focuses on the evaluation approach based on the Cognitive Exploration Framework, 

and aims to understand challenges of exploration using the proposed tool. The 

second study follows the insight-based methodology. Taken together, they present a 

complimentary overview: one of the barriers, and the other on the insights gained.  
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Then, we describe evaluations based on pre-defined browsers, and focusing on 

exploratory process rather than authoring. This evaluation is focused on the 

capabilities and usability of AggreSet, the set-based data exploration technique. We 

present an expert review, and a short case study with two domain experts in 

educational data analysis. 

Finally, we present a summary of the public use of data browsers available on 

www.keshif.me, and other use cases with applications through collaborations in 

different organizations, and external use. 

7.1 Evaluation of Cognitive Barriers with Data Analytics Novices 

This study focuses on the application of the proposed user evaluation for cognitive 

activities and barriers (Section 3.3). Keshif was selected as the tool to demonstrate 

the protocol and gather input from the evaluation. As such, the goal was not to 

evaluate Keshif, but to evaluate the protocol and demonstrate the use of Cognitive 

Exploration Framework. Still, the observations from this study also shined light on 

the challenges of the first-time Keshif users, some of which were addressed in the 

follow-up research activities, such as improved design and providing part of the 

motivation for the help system. The recruitment of data analytics novices and the 

open-ended, exploratory and unguided nature of this study protocol are shared with 

the follow-up insight-based evaluation of Keshif. In this perspective, the study also 

http://www.keshif.me/


 

124 

 

 

 

provided early input about the behavior of novices, although the participants were 

asked to communicate different thoughts (challenges instead of insights).  

This study was performed on early fall of 2015. At the time, Keshif did not have 

an option to modify the measure metric, the only option being the count metric. 

Other features of the tool, including authoring, were similar to otherwise described 

in this thesis. 

7.1.1 Study Design 

To detect cognitive activities and barriers in exploration, we designed a casual 

setting with a 15-minute exploration per dataset, and 5-minute training for using the 

tool. As existing knowledge and extensive training can reduce the barriers that the 

evaluation aims to detect, we aimed to recruit novices in data analysis, and offered 

limited training. The participants chose two multivariate, tabular datasets they would 

like to explore given five options: movies, traffic accidents, passengers of the 

Titanic, Lego sets, and foodborne disease outbreaks. The record (row) count ranged 

from 3.2k to 30k, and the attribute (column) count ranged from 8 to 16. 

To encourage communication on exploration and emotional states, we also 

implemented an external strategy using printed cards. One group of cards described 

exploratory process: (i) “I am trying to find a question.” (Planning data analysis) (ii) 

“I am trying to answer a question.” (Planning interaction & visualization) (iii) “I 

have an insight.” (Assessing data analysis). Another group of cards focused on 
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negative emotions: “I feel...” (i) confused, (ii) undecided, (iii) lost, (iv) bored, and 

(v) frustrated. The use of cards was not mandatory; the participants could talk on 

their observations and challenges without picking or pointing to cards. 

Procedures and data collection. At the beginning of the study, the participants 

completed a background survey 2 on demographics (age, sex), existing knowledge in 

data analysis, visualization, and computer use/interaction, and overall motivation in 

data exploration, using a talk-aloud protocol. Then, they were trained with a 5-

minute video tutorial 3, which described the tool features while demonstrating data 

analysis, and 20-slide printout 4 for future reference. After the training video, the 

facilitator presented the cards, and asked the participants to think aloud while 

exploring data, and use the cards if appropriate. To gain familiarity with the tool and 

the study process, the participants explored the training dataset for 5 minutes. Then, 

they explored two datasets of their interest, 15 minutes each. The facilitator 

answered questions about the tool based on the training material. While we 

encouraged self-driven exploration without external tasks, the participants could pick 

among five sample questions per dataset 5. After each dataset, the participants 

                                                 

 

2 docs.google.com/forms/d/e/1FAIpQLSd58tfmam5dw9ARW1tf4AKo3MDSZ_wiFyANqxuY0i2urqCH9g  

 
3 https://www.youtube.com/watch?v=3Hmvms-1grU  

 
4 docs.google.com/presentation/d/1beCw3KiFjWLdVfgp8EICFPNPiuu2UzX8PFbcirJFQVw  
5 docs.google.com/document/d/1HqK0fJOw2KSA_M59YxQj9PRLqftoHen8bc4yK1Wg5-c/  

https://docs.google.com/forms/d/e/1FAIpQLSd58tfmam5dw9ARW1tf4AKo3MDSZ_wiFyANqxuY0i2urqCH9g/viewform
https://www.youtube.com/watch?v=3Hmvms-1grU
https://docs.google.com/presentation/d/1beCw3KiFjWLdVfgp8EICFPNPiuu2UzX8PFbcirJFQVw/edit
https://docs.google.com/document/d/1HqK0fJOw2KSA_M59YxQj9PRLqftoHen8bc4yK1Wg5-c/edit
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completed a survey 6 that encouraged recalling both positive and negative 

experiences, using ten Likert-scale questions based on [107]. The screen and the 

audio in the room were recorded during participation in the study. To detect the 

cognitive barriers, I watched the videos and took note of the problems faced by the 

participants, and their relevant verbal feedback, including feedback based on the 

surveys. I then classified them across the six cognitive stages. 

Participants. We recruited participants using public message boards. The 

participants were non-experts in data visualization and analysis. The study included 

pilot-sessions with two participants and reported-sessions with three participants (P1, 

P2, P3). P1 was a male student in biology, age 18-24. P2 was a female professional 

in finance, age 40-49. P3 was a female student in food science, age 18-24. All 

participants were familiar with basic chart types (bar-charts, histograms, line-charts, 

maps), and none were familiar with advanced chart types (scatterplots, treemaps, 

node-link diagrams and ||-coords) by name. The self-reported computer skills were 

novice (P1, P3), intermediate (P2), and none advanced. All participants had 

experience with Excel, including basic visualizations, data entry (P1), formulations 

(P2), and none had experience with other data tools. Their motivation to join the 

study was curiosity (P1, P2, P3), and earning money (P2); $10 for their 1-hour 

                                                                                                                                          

 

 
6 docs.google.com/forms/d/e/1FAIpQLSeVdSGdQ1VaWeLabVeDUWxRddUbdB9lPVhs7AXu59K4FGiBQA  

https://docs.google.com/forms/d/e/1FAIpQLSeVdSGdQ1VaWeLabVeDUWxRddUbdB9lPVhs7AXu59K4FGiBQA/viewform
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participation. While this reflects the demographics of the study location, a university 

campus, their data analysis experience were none (P1) or infrequent (P3), only P2 

noting to frequently analyze data “to figure out the yield on investments.” The 

participants were interested in the following domains: movies (P2, P3), traffic 

accidents (P1), foodborne outbreaks (P1, P3) and Titanic passengers (P2). Per each 

participant, the use of sample questions to bootstrap exploration was: P2-none, P3-1 

question, and P3-multiple questions. 

Next, we demonstrate the application of the Cognitive Exploration Framework 

for tool evaluation using the proposed protocol. We report exemplar barriers faced 

by the participants. 

7.1.2 Barriers in Planning Data Analysis 

Talking about his experience, P1 noted, “Maybe I felt like I had too much control, 

but I wasn’t ready for it”, and added, “I wasn’t quite able to figure out what I wanted 

to figure out.” He stated he was overwhelmed at points (by multiple views), noting, 

“It’s just a lot to take in. A lot of different elements to consider… I don’t understand 

how to put (a lot of information) together.” P2 set some serendipitous goals, “Let me 

see (filter) Clint Eastwood and see what happens.” When picking sample questions, 

P1 noted on his motivation, “I want to find something… that I’d personally want to 

get the answer to.” In addition, to save the limited time, P1 did not want to pick 

questions that looked complicated to answer. Goals were also constrained by the 
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content of data. P3 said, “(the data) doesn’t have enough criteria to give you a 

definite answer”, as she wanted to relate diseases from fish consumption to fish 

production per state. To address the information overload, the tool can be designed 

to offer simplified authoring interfaces, or to encourage step-by-step guided 

exploration. Sample goals can be provided from simple to complex as the user gets 

familiarity using the tool. 

7.1.3 Barriers in Planning Interaction 

After getting stuck in a question, P1 noted, “The computer doesn’t really know the 

question that I have (…) I am confused about how to go by answering that question, 

or if the method I’m using is actually the right way.” P3 was confused after an 

ineffective sequence of actions—filtering, locking, and selecting the same histogram 

bin—where she noted, “I don’t know what exactly I’m trying to do.” Participants 

also updated interaction plans and goals given the design and limitation of the tool. 

To search for specific values, P2 first wanted to alphabetically sort categories and 

records (not supported), then she used text search, a more appropriate strategy. 

When P2 wanted to sort few movies by year, which could be achieved using sorting 

dropdown, she hovered the cursor over movies to automatically highlight their year 

within summaries. Being satisfied with this approach, she discarded her original 

sorting plan. We also observed some learning challenges with contextual interfaces. 

P3 wanted to resort categories in reverse, however was not able to easily find the 
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sorting button because it was hidden by default, and shown only on mouse-over in 

categories. She later suggested, “If I had more practice with this, I would definitely 

be in more control.” 

To address the change-of-plan observation under sorting goal, we updated the 

design of the tool to include a sorting button within the summary in addition to the 

sorting option combobox. The tool can also be improved to identify repeated actions 

to reason about user intent, and suggest relevant actions to help the user plan for 

interaction. This idea is among those explored in the help system component of this 

dissertation (Chapter 8). 

7.1.4 Barriers in Planning Visualization 

With the selected tool, activities related to planning visualization include aggregate 

selection modes (highlight, compare, filter) and part-of/absolute mode. This 

contrasts to the charting tools that would require more careful planning to construct 

effective visualizations. Therefore, barriers in this stage were not frequently 

observed. In trying to find the most common food outbreak in different months, P3 

filtered through multiple months, while highlighting would be more effective. 

Another barrier was that participants could not plan to execute part-of scale mode 

change, as no participant in our study used part-of scale. This may reflect that their 

questions may not have required such views, but also suggests that the limited 

knowledge about how this mode could be used effectively. The tool design may be 
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improved to communicate and clarify the use of part-of scale mode to answer related 

questions. 

7.1.5 Barriers in Assessing Interaction 

Failing to consider filtering selections correctly was a common barrier leading to 

false conclusions about general, or targeted, populations. After unfiltering a 

selection, P1 said, “I forgot that I had still filtered everything for the norovirus.” 

When P2 wanted to analyze survivors of the Titanic, she highlighted non-survivors 

and reached a wrong conclusion about their ages. She realized and corrected her 

mistake shortly after. P3 interpreted the full bar length in a filtered summary to 

support her misunderstanding that the complete dataset was selected. P3 also 

misinterpreted how selections are linked across summaries, saying, “If I lock (this 

bar), there’s no way I could compare to (another summary) because they are two 

different things.” Overall, tracking multiple selection states was found to be a non-

trivial task for the novices in our experiment. The tool can be updated to offer 

simplified interactivity to reduce confusion on dynamic selection changes. 

7.1.6 Barriers in Assessing Visualization 

P1 was confused about what the numbers represent upon selection, saying “Is this 

number representing fatal accidents, or just accidents or is it drunk vs. non-drunk... 

Ok, I didn‘t realize there are two different colors.” P2 tried to understand linked 

highlighting selections by hovering on different bars, observing numbers, and 
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making connections. P3 had trouble observing exact filtering range within the line 

chart because of its design. The rounding of histogram end-points also leads to 

wrong interpretations. With maximum duration of movies at 157 minutes, the high 

end-point of histogram was rounded to 300 minutes, an anomaly of the log scale 

used. With this view, P3 interpreted there were movies up to 300 minutes. Real 

maximum value could be observed by sorting movies in decreasing duration. We 

later improved the design of our tool by placing the maximum-tip on the scale to the 

real maximum value, instead of the maximum of the histogram bin range that may 

exceed true maximum. Filtering range can be more explicitly revealed in interval 

summaries, and information about what each number presents in the interface can be 

revealed dynamically. 

7.1.7 Barriers in Assessing Data Analysis 

Understanding data semantics was a common challenge. P2 asked, “How do I find 

the definition of vote count?” and later removed this summary from the browser. P3 

asked, “What is ’ethnic style, unspecified’ (as food type)? That could be anything.” 

and then noted, “This doesn’t really affect the program, it’s just the data itself.” 

Notice that these comments to not reflect to either visualization or the interaction 

design, and relates to data concepts related to analysis. Unexpected findings raised 

suspicions, with participants concluding, “if I’m interpreting right (P1)”, and “if I’m 

reading right (P2)”. Acknowledging an inappropriate strategy to reach answers, P1 



 

132 

 

 

 

said, “I am merely associating these numbers with the question that I have.” When 

only 10-20 outbreaks were selected after filtering, P3 concluded about statistical 

trends and did not discuss limitations of their significance. No participant recognized 

that some summaries did not include all records, e.g. there were movies without 

rating information. Another issue was potentially misleading inferences across 

summaries. When the filtered movies had high-ratings, and kids movies were 

common, P3 inferred that kids movies had high ratings based on univariate 

distributions, without querying further to confirm her intuition.  

To address assessment challenges in data analysis, providing contextual 

information about metadata would be helpful. Warnings can be presented when few 

records remain to make statistical conclusions, or missing records can be highlighted 

explicitly. 

7.1.8 The Factor of Existing/New Knowledge 

Our participants were non-experts in visual data analytics. We further limited 

training and asked a casual short-term use to limit the factor of knowledge. We 

observed this approach influenced the experience and feedback of our participants. 

P1 said, “It’s been a while since I looked at charts… You have to re-familiarize 

yourself with all the information it represents.” P2 “felt discouraged, just in the very 

beginning, as I was getting used to the tool.” P3 added “You never really learn it 
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until you actually try to do it.” These feedbacks point to the active learning 

experience of the participants during the use of the tool. 

  



 

134 

 

 

 

7.2 Insight-based Evaluation with Data Analytics Novices 

In this section, we present an insight-based evaluation [122] of Keshif with visual 

analytics novices in a short-term, casual, open-ended data exploration study with 

short training. The goal is to understand insight characteristics and the exploration 

process, and how the proposed model relates to the process. We aimed to recruit 

visual analytics novices as they are most impacted by barriers in specifying visual 

encodings and unconventional visualizations, thus would benefit more from a 

streamlined exploration flow. The participants of this study used only the graphical 

interface of Keshif (not the API) to explore the data by authoring (creating and 

adjusting) data browsers. Thus, our participants did not use the JavaScript 

programming. Our results are comparable to the evaluation of Voyager [151] at 

high-level, showing that less-skilled participants could reach insights rapidly using 

Keshif, comparable to participants with more skills using tools that are more 

sophisticated. 

7.2.1 Study Design 

Participants. We recruited 6 participants using public message boards (4 female, 2 

male, 5 aged 18-24 (4 of them students, all outside computer or information science 

departments), 1 aged 40-49). Participants were not skilled in visual data exploration, 

and had not received formal training on visualization. None had used Tableau or 

similar visual analytics environments. All had used Excel before. The five younger 
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participants had created charts and analyzed data with Excel, and other tools they 

had used include SPSS (3), Stata (2), and Graphpad (1), showing their background in 

statistical analysis. They had not analyzed the studied datasets before, they were not 

domain experts, and they had not used Keshif before. 

Datasets. We used two datasets (movies and bird strikes) for the study, also used in 

the evaluation of Voyager [151]. They are chosen for real-world interest to a general 

audience, of similar complexity and data types. The movies dataset includes 3,201 

movie records with 15 attributes (7 categorical, 1 temporal, 8 numeric), including 

title, director, genre, sales figures, and IMDB / Rotten Tomatoes ratings. The bird 

strikes dataset is a redacted version of the FAA wildlife airplane strike database with 

10,000 records and 14 attributes (8 categorical, 1 spatial region, 1 temporal, 4 

numeric). 

Training. The sessions began with a 6-minute video tutorial using a dataset on 5,000 

companies, followed by a warm-up exploration of this dataset for 6 minutes. The 

participants were also provided with 23-page printed slides on the video training. 

The facilitator answered questions about tool features based on what is covered on 

the training material. 

Study Procedure. We asked participants to explore a given dataset, and specifically 

to “get a comprehensive sense of what the dataset contains and verbally note 

interesting patterns, trends or other insights”. Their exploration started with the data 

imported to an empty Keshif browser. The participants performed an unguided, self-
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driven exploration without explicit tasks for 15 minutes for each of the two datasets 

in a think-aloud protocol. Half of the participants explored the movies dataset first, 

while the other half explored the bird strikes dataset first. After exploring a dataset, 

participants completed a survey focusing on insight-based metrics. Participants also 

completed a survey on demographics and data analytics experience. 

We did not ask the participants to formulate any questions before the 

exploration, as doing so might have biased them toward premature fixation on those 

questions. However, we encouraged (i) changing the axis mode, (ii) changing the 

measure function, (iii) using compare selections, and (iv) using the map view (if 

available) so that they could form richer goals and reach wider insights. In our pilot 

studies, we observed these features were not utilized by novices in self-driven 

exploration. We did not enforce these recommendations so the participant remained 

in full control. Per the think-aloud protocol, the facilitator encouraged 

communication by asking questions such as “What are you thinking right now?” and 

“Can you explain in more detail?” when communication stopped or the feedback 

was vague. 

Each study session took at most an hour. The participants were compensated 

with $10 cash. All sessions were held in a university lab using Google Chrome on a 

Macbook Pro with a 15-inch retina display, and a mouse for interaction. During the 

studies, the screen and the audio were captured. Surveys results on exploration 

experience and participant background are also part of the data collection. 
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The evaluation shares the structure of Voyager’s study [151] in terms of datasets 

and the open-ended exploration task. However, (i) we recruited visual analytics 

novices instead of experienced participants, (ii) we limited exploration to 15 minutes 

per dataset instead of 30 minutes (a more casual use), (iii) we provided shorter 

explicit training (6 vs. 10 minutes), and (iv) we followed insight-based evaluation 

with think-aloud protocol instead of using bookmarked charts. Our protocol and 

analysis provide a thorough analysis of the exploration outcomes. We did not 

compare Keshif and Voyager side-by-side because the tools differ in visualization 

model, supported tasks, charts, and insights. For example, Voyager does not support 

interactive linked selections, and map views. Visualizations in Keshif are always 

aggregated, and do not include scatterplots and its variations. Keshif does not model 

data exploration as exploration of alternative chart types, but of aggregated 

summaries with linked selections. 

7.2.2 Insight Coding 

To detect the insights, I transcribed the verbal feedback of the participants. Using the 

transcripts, I identified statements that presented an insight on the data content as a 

single, cohesive proposition. I did not consider statements at a strictly visual level as 

an insight (such as “there is a peak”), unless participant related it to the data content. 

I also did not consider restatement of a previous insight as a new insight. Then, I 

coded attributes of each insight using two passes on the transcripts and the video 
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captures. In the second pass, I extended insight categorizations, and confirmed 

existing codes. I also noted hypothesis statements as a question or an explanation of 

a trend that can neither be con-firmed nor denied within the dataset. A hypothesis 

commonly relates to participants prior experience and knowledge. The insight 

coding results are accessible and explorable as a Keshif browser at bit.ly/1Vbs40c. 

I coded each insight on its insight-based characteristics and the interface state at 

the time of insight.  

▶ Text: What is the insight? (transcription) 

▶ Time: When was it noted? (seconds elapsed)  

▶ Correctness: Was it correct?  

▶ Feature: Was it describing a fact, min/max, distribution, comparison or 

correlation?  

▶ Data types directly relevant to the insight (summary type (categorical, 

numerical, time, map), individual record, etc.).  

▶ Selection state (the number of filtered, highlighted, compared summaries)  

▶ Measure function (count, sum, average)  

▶ Measure label (absolute, percent-age)  

▶ Axis mode (absolute, part of)  

▶ Dataset  

▶ Participant ID  

▶ Dataset order (First or second).  

http://bit.ly/1Vbs40c
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Next, we describe the insight categories and the data features they reflect. 

 Fact describes a property of a record, an aggregation, or a basic observation that 

does not describe a trend. Examples include “84 of them are causing minor 

damage”, “That was Delta Airlines”, and “it is an adventure movie”. 

 Min/Max describes the most/least common feature in the data. Examples include 

“B737-300 cause the most bird strikes”, “Dramas typically make between 20 and 

300M”, and “[Movies were released] Mostly during this time period, between 

2004 and 2007.” 

 Distribution focuses on the variations and trends within a data attribute. 

Examples include “So, the comedy movie ratings.... it is kinda spread out, they 

are not that consistent.”, and “It has a large variety of genres, from drama to 

action, horror.” 

 Comparison describes two or more specific aggregates, records, or selections. 

Examples include “[Beloved] has a higher Rotten Tomatoes rating than it does 

IMDB rating.”, “[After filtering] All of a sudden Dallas falls way down”, and 

“So the average cost, is, I guess it's around the same [as the overall trend].” 

 Correlation describes relations across attributes in a dataset. The relation may 

be based on a subset of the data. For example, “not many of that (highest 

grossing) were rated R” relates gross sales with the R rating, describing a trend. 

“It looks like they gave pretty good scores to original screen plays” is another 

example. 
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The verbal statements may not reveal the details of observations and analytical 

thinking of the participant in the think-aloud protocol. Overall, the expectation from 

the participants is not articulation of the complete exploration state, but sharing 

important aspects of the insight clearly. While encoding insight correctness, we had 

a permissively positive basis. For example, when the participant noted, “the most 

strikes are in Pittsburgh region” on a filtered data, we consider it correct, even 

though the filtering criterion is not stated. An incorrect statement example is 

“Portland has all their hits being the one species of bird”, because Portland has a 

variety of birds contributing to its bird-strikes. Some statements were encoded as 

partially correct when the trends could not be easily confirmed, or statements were 

vague. Examples include “Comedies make that much out of that much money”, and 

“the worldwide sales (…) definitely move”. Facts on personal experience are not 

coded for correctness. The confidence in the insights is assessed using post 

exploration survey. 

The coding of the interface state (selections and visual modes) enables 

understanding how the tool is used and at which stages the insights were 

obtained/shared. However, the insight may not relate to all such states. For example, 

when there are multiple compare selections, the insight may describe one 

distribution rather than a comparison across multiple distributions. Lastly, an insight 

might relate to multiple data types. For example, “Comedy was one of the top 

grossing in the US” relates to both genre (categorical) and numeric (gross sales), 
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while describing a min/max feature. The data type of an insight would be noted as 

“map” if the map view were used to describe the location in the insight. 
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7.2.3 Analysis and Results 

The temporal overview and characteristics of the insights of our study participants is 

shown in Figure 18. Our participants reached 35 to 90 insights in total across two 

sessions, with ~2 insights/minute on average. During the studies, we noticed that 

personal differences were a big factor in the variances. To quote the participant with 

the lowest number of insights (F): “I personally would have gained more from this 

experience if I was asked to perform specific tasks. (…) I'm not one who necessarily 

feels inclined to just play on my own. Some people are, some people aren't.” 

Therefore, each individual may not be inclined to reach data insights or perform well 

when unguided, a challenge in broadening public use of data exploration. 

In comparison, Voyager [151] reports 12.5 bookmarked charts in average per 30-

minute data exploration session by skilled participants using the same datasets (and 

10 charts in average for a drag-and-drop visual specification). Studying the effect of 

display size across two conditions (targeting large displays), Reda et al. [114] report 

about ~1.2 insights/minute. Their participants were mostly computer science 

graduate students. Liu and Heer’s study [90] on the effect of 500ms interaction 

latency using imMens [91] system with 16 participants skilled in visual analytics (R 

and Tableau) report a throughput of ~1.9 insights/minute, based on observations or 

generalizations on two datasets explored 30 minutes each. The participants in this 
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study had no visual analytics experience, and achieved a high insight throughput 

with short training. 

Insights of the participants most commonly described the min/max features in 

the data attributes (34%). 79% of these insights were on categorical data, suggesting 

that auto-sorting influenced the exploration process. 24% of the insights included 

simple facts, 38% of which were on individual records (an individual movie). 

Correlations were also common (22%), as they also include statements that relate 

two attributes by first selecting an aggregate on one, and observing the trends in the 

other. Comparisons were the least common type of insights (14%). Note that an 

insight may have multiple types. 28% of the coded insights had more than one 

feature. The analysis shows the variation in the types of insights shared by our 

participants. Arguably, their experience in statistical analysis (through course and 

personal work) may have guided them to look for and report detailed insights, even 

though they were not skilled in visual analysis. 

The participants had insights most frequently under the default settings that 

create a familiar faceted interface with absolute record counts and basic 

distributions. 96% of the insights were made under absolute axis mode, 92% were 

made with absolute measure label, and 90% were made under the count aggregate 

measure. Remarkably, the participant with the most insights (E) used the default 

settings throughout. In contrast, 78% of the insights, a high ratio, were reported with 

some active data selection. Highlighting was active for 34% of the insights, and 
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filtering was active for 55%. However, comparison was less common, only 18% 

across all insights. 

Our results show that non-default, less familiar settings for expressive richness 

are more likely to lead to incorrect statements. Insights made under average or sum 

measures were incorrect 24% and 20% of the times respectively, compared to only 

5% for the default count measure. A substantial difference in accuracy was observed 

for compare selection as well. 35% of the incorrect or partially correct insights had 

at least one compare selection at the time the insight was shared, another significant 

trend in our data. The compare selection on locking interaction is an unfamiliar 

design compared to filtering and highlighting actions, which may explain the lower 

accuracy under its use. 

 

 

Figure 21- Post-exploration survey results focusing on the self-evaluation of data exploration 

experience. Each question includes 12 responses, across six participants on each dataset they explored. 

The color shows agreement, and the answers are aligned on neutral response, and sorted by mostly-

positive agreements first. 
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The survey results are summarized in Figure 19. Participants collectively agreed 

they could reach more insights given more time using Keshif. Participants also 

positively noted they could observe detailed relations and trends, although not 

comprehensively. The least positive feedback was the perceived value of their 

insights. This follows that the participant’s familiarity in the domains received the 

strongest negative ratings, as lower familiarity with datasets or domains is likely to 

lower the value of insights for the participant. The confidence and value in 

exploration also reflect (low) confidence in data samples. Participant C noted, “I 

didn't know where the list came from, how the data was collected (…) I don't know 

how much value they have to me, because I don't know how much I can trust them 

[dataset].” Participants responded more positively to their exploration being 

influenced by what they learn, rather than being targeted. The responses to 

comfortable usability of Keshif were among the positive feedback as well. 

Our results suggest a learning affect over time with improvement of outcomes 

and satisfaction. More insights were reported in the second session compared to the 

first (194 vs. 160). Survey results (Figure 19) show that participants were more 

comfortable in using Keshif in the second session as well (4.3 vs. 5.3 average on 7-

point Likert scale answers). 
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7.3 Evaluation of AggreSet 

To evaluate the design of AggreSet, I conducted user studies with two 

complementary approaches. First, I conducted expert reviews to identify strengths 

and weaknesses of AggreSet as observed by visualization experts using multiple 

datasets. Expert reviews in visualization have been shown to help detect usability 

and design issues, and yield qualitative results [140]. Second, I conducted a case 

study where domain experts analyzed complex data, with the aim of uncovering the 

usability and usefulness of AggreSet and analysis strategies. In both evaluations, I 

collected qualitative feedback on usability and design features during the studies and 

in semi-structured post-study interviews. In both cases, I used the feedback to 

improve AggreSet design as presented in this dissertation, and to identify future 

work. 

7.3.1 Expert Review 

We recruited three visualization experts (senior researcher P., graduate student D., 

and industry professional F.) and asked for their honest feedback in 1.5-hour 

sessions. We first used the movie dataset to demonstrate set exploration in multiple 

dimensions and set-pair strength. We followed with the Les Miserables characters 

dataset to demonstrate subset relationships and perceptual set ordering. We 

encouraged the participants to think aloud, and interrupt at any point to ask 
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questions, make, and share observations. The following summarizes some of their 

comments and observations. 

Before introducing the matrix view, we asked D. which movie pair would have 

the biggest intersection, to which he replied, “I cannot tell, I don’t have the 

overview. If I knew which ones to compare, I’ll use (selection), but I don’t know. You 

need other ways to see which pairs are most interesting”. With genre matrix enabled 

and high-rated movies previewed, he said, “The drama and war (movies) seems to be 

very good… I immediately found (the intersection). Now I want to see the release 

date of war and drama, and 4-star rating”. By filtering and selection, he found some 

movies he liked. This exemplifies the utility of set-matrix view. 

The participants also developed strategies to effectively explore data using 

AggreSet. F. noted, “The bar chart serves as a key to the matrix.” He continued, 

“For navigation, you have the matrix,… the 2D space you are maneuvering in… For 

interpretation, it is good to look back at the bar chart… That is two of them 

complementing each other”. Upon selecting a genre-pair intersection and analyzing 

the selections for a while, F. said, “You are actually showing, out of the intersection 

of 2 things, multiple set of intersections… It is a little bit of a mind-bender”. D. 

commented likewise upon selecting comedy, “In other views, it tells me the 

percentage of comedy in those overlaps of the other movies… I am comparing three 

basically”.  
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When explaining the potential complexity of the interface, F. said, “It is a lot of 

information. Once the person masters it, and then they have at their fingertips a lot 

of information in a very little space. It is just that getting there takes some effort. I 

understand you are trying to minimize that effort so that the user can quickly master 

the way to interpret this chart”. This follows our suggestion that intersection 

characteristics should be queried after the set-list and set-degree, as part of overview-

to-detail exploration. As F. notes, “When you hover with your mouse on top of the 

matrix, showing (previewing) those intersections is when it is a little overwhelming”. 

Commenting on matrix readability, F. also said, “Interacting with the matrix on the 

horizontal level and on the vertical level (for a single set), that takes some time. It is 

not something that comes to you immediately, like differences in (strength) colors 

do”. 

The participants found the zoomed-out matrices dense overall; visualizations on 

small circles were not easy to observe. However, D. added, “This makes sense. I 

start with the overview, and then I drill down to the area… It helps me… because I 

have made some observation based on the high-level small pie chart. I want to 

confirm, so I will drill down and see exactly how it looks like.”  

The relative mode with percentage distributions was favored among all 

participants; P said, “I like this (percentage) view better for doing… complex 

queries”. Subset relations were found the most complex concept, although the 

participants could understand the relation and encoding through some exploration. 
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At the start, F. noted, “I am trying to understand why (circles) have outline… Three 

states: Total outline, half outline, and no outline.” After exploration, F said, “This is 

one that I think some teaching aid would be great.” And P. said, “I like that I was 

able to do it, but it was hard.” 

We implemented several changes to our design following the expert reviews: (i) 

An earlier design visualized set similarity (strength) by mapping to circle size. This 

made understanding circle-size mapping harder as it overloaded the element-count 

mapping. We updated AggreSet design to use color-coding for strength metric as 

suggested, and to use circle size for element count only. (ii) We noted that color-

coding was ineffective with varying and small circle sizes with the cell background. 

Thus, in relative-mode (strength), we chose to use full-size circles and remove cell-

background. (iii) Relative-mode and strength metric are linked together, effectively 

encoding strength as a relative set-pair metric. This simplified AggreSet while 

making it easier to understand and use. (iv) An earlier design used a 3-second mouse 

point-wait to select an aggregate for comparison. D. stated,  “Hovering means I am 

thinking, it doesn’t mean I want to compare”, and P. said, “I’d like to turn it off 

when I don’t want it.” Users converted to using their hands to point things instead of 

using mouse, changing their behavior to overcome the issues with the specific 

design. We then designed an explicit control using , which also visually reveals the 

selected aggregate. (v) An earlier visual design for comparing distributions (black 

lines) was an enclosing section ( ), which suggested stacked-charts semantics for 
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some users when previews were enabled ( ), thus complicating the visual 

language of AggreSet. We changed the bordered design in favor of a simple bar 

extending from the baseline ( ). 

7.3.2 Case Study 

I conducted a case study with two assistant deans of the undergraduate studies 

department of a large public university analysing student degree and course 

enrollment data. First, the participants had access for a few months to a version of 

the visualization without the set matrix, but with histograms and the data preview 

and selection. This allowed them to look at categorical and numerical aspects of the 

multivariate student records, including set-typed data using set-lists and set-degrees. 

They used the tool a few times on their own during this period. After we developed 

the set matrix design, we performed data exploration including the matrix view in a 

1.5hr session with the two participants together. The aim was to capture the 

cognitive and reasoning processes of novice visualization users with rich data in a 

limited time using AggreSet. Thus, we used pair analytics [9]. The participants 

collaboratively formed questions, observed data, and generated insight. I acted as 

“driver”, demonstrating features (from set-list overview to set-matrix detail) and 

expressing their queries. 

First, the participants analyzed 175,000 students and the degrees they received, 

along with their birth year and gender to provide context. 131 most common majors 
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with at least 100 students were the sets over students (elements). (i) Early in the 

exploration, the participants wondered why there were multiple majors on “Math”. 

The driver performed a search within the degree-list to select all majors with “Math” 

(a  query by text input). The resulting visualizations supported their hypothesis that 

one of the “Math” sets was “Applied Math”. (ii) When the driver previewed the 

Economics selection, they observed the other degrees received by students in 

Economics. (iii) They wanted to explore students who did not receive a degree. First, 

they tried to generate hypotheses about their distribution trends and what the data 

represents, such as whether the declared yet unfinished degrees were included in the 

reported numbers. Upon selecting 0-degree students, they noticed these students 

were younger, suggesting many were possibly still taking courses. To improve their 

outlier analysis, they wished for more data context in the browser, such as entry term 

and majors declared. Upon selecting students with 1-degree, they noted, “Those 

(selected) are all the people that earned 1 degree… (The rest) are the ones with 

double majors”. (iv) The driver then enabled relative mode. Upon selecting females, 

they noted, “67% of the sociology students are female. It makes more sense this 

way”. Upon selecting 1-degree students again, they noted some majors had very few 

students with multiple majors, enriching their knowledge of the more demanding 

majors. 
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Next, the driver showed the major (set) matrix. One participant immediately 

pointed out “this means there are more people that have accounting and finance. The 

bigger gray circle means there is more people”. When the driver asked about any 

trends they detected, one said “All those double majors with X… Department of X 

would be very interested to see this”. Since only a limited number of majors could be 

shown at once, one asked, “Does it ever get wider this way?” suggesting outside the 

triangle, at which point the driver panned the set-matrix. They explored various 

departments and their intersections through rapid result previews. Then, the driver 

enabled major-pair strength visualization. First, enlarged circles made it easier for 

them to see intersecting majors, as it was a stronger cue than the gray cell 

background in the default view. One noted, “Darker color means a higher percentage 

than the one next to it (lighter)”, while the other complimented this statement by 

saying, “When we looked at that gray view, it was actual numbers.” After further 

discussion, they concluded, “While there are a lot of marketing and finance 

(students), there is more accounting in finance, of the total numbers.” Few students 

received three or more degrees, limiting exploration of higher-order intersections in 

this dataset. 

Next, they analyzed 4,300 students and the 83 most-registered courses (Figure 

20). They noticed that few students took 50 or more courses. Note that the sets 

(courses) are densely connected, and the set-degree distribution has a wide range. By 

selecting those students, they explored their majors and courses, and generated 
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insights regarding degree programs, and potential effects of course count on student 

success. They also noted “This isn’t showing courses they are taking above what 

they would have needed”. They needed a new form of set-summary that would show 

the additional courses the student is taking compared to declared major 

requirements, a more complex data setup. When the matrix view was shown, they 

noted large pair intersections of some common core courses (such as English), as 

well as courses that are prerequisites to others. Noting of their previous experience 

analyzing this data without the matrix view, one said, “This view would have 

allowed us to do what we wanted to do more easily than what we did. What courses 

they take, and what they take together”. When the strength metric was enabled, they 

noticed courses that had consistent colors among all its intersections, which meant 

that they had no strong relationships with others. They went on to analyze common 

properties among students that did not take some specific courses.  
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7.4 Applications over Multiple Domains 

In this section, we describe how data authoring and exploration using Keshif aims to 

fit in a workflow of data analysis / exploration, how it is applied over multiple data 

domains with real-world datasets, and its impact and external use so far. 

7.4.1 Sample Use Case Scenario for Data Journalism 

We present a use case scenario for data journalism using an existing dataset. The 

goal is to give a clear demonstration of a sample, supporting workflow using Keshif, 

and various tasks it supports to enable data exploration and sharing. 

A local newspaper wants to run a story on the homicide victims in the city to 

inform its readers and policy makers. The journalists track ten years of reported 

cases, describing the location, motive of the murderer, police investigation status, as 

well as the name, age, gender and race of the victim in a spreadsheet. They add the 

neighborhood of each homicide using its point-location in data pre-processing to 

reveal spatial trends as a regional overview. They also generate a GeoJSON file 

describing the neighborhood boundaries, indexed by neighborhood name. Then, to 

explore this structured data rapidly, they import it into Keshif. 

Keshif first reveals the number of homicide victims (2,294) and the list of 

attributes with simple distribution previews. Interested in demographics, the 

journalists add age and sex summaries, which immediately reveal that 20-40 age is 

the most common range (1.4k), and that this population is significantly male (2.0k). 
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They change measure labels to percentages, and note that 62% was between ages 20-

40, and 89% were male. To analyze if female victims had different characteristics, 

they filter to female, and notice that only 44% were between ages 20-40. The change 

of distribution shows that the age of female victims were higher overall. They 

confirm this observation by clearing the filtering, opening percentile chart of age, 

and highlighting the female victims. Using the distributions in a simple 1D chart 

with color-coding, they note that the median age of male victims was 26, while the 

median age of female was 31. They take a note of these numbers for their news 

story. 

Next, the journalists are interested to see temporal trends in motives. They 

quickly preview most common motives by mouse-move: arguments, drugs, 

retaliation and robbery, and observe their temporal trends. Knowing that the city had 

been taking measures to reduce drug violence, they highlight drugs again, and find 

out that over ten year period, the number of drug homicides decreased 84% (49→8). 

However, they also notice an overall decreasing trend in homicides. Therefore, they 

lock-select drug related homicides for comparison, and change to part-of scale. This 

reveals that the relative ratio of drug related offenses dropped 21%→8%, a smaller, 

yet still significant 62% decrease. They note these trends may be due to the new drug 

policies and policing in the city. 

They save the homicide victims browser with selected attributes, and share the 

link with another colleague. When she opens the link, she notices they may have not 



 

158 

 

 

 

looked at manner of homicide, and its relation to neighborhoods. She adds the 

neighborhood summary and changes to map view to study spatial trends. She also 

adds manner summary, noticing that shooting was the largest motive by far (1.8k 

victims), followed by stabbing (246). To explore patterns, she moves the mouse 

across motives and observes changes on the map. She quickly notices homicides 

with stabbing have a different distribution than the overall: Central regions of the 

city have more victims of stabbing. She sends a note to her colleagues, along with a 

link of the updated browser to reproduce the result. 

Collecting many insights over the process, along with other resources from 

public officials, interviews and high-profile cases, the journalists are ready to write 

their story. They create simple annotated charts with constrained interactions to 

highlight the individual trends they observe, and link them in their story. They 

embed the Keshif browser in the end of their report to make it freely explorable. 

They invite readers to look at their own neighborhood and to find the information 

valuable to them in Keshif browser. This sample workflow is based on the example 

at http://www.keshif.me/demo/dc_homicides, and can be reproduced live and online. 

http://www.keshif.me/demo/dc_homicides
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7.4.2 Public Web-based Data Exploration at www.keshif.me  

I have created public Keshif browsers for 160+ datasets across many domains 

including journalism, surveys, transportation, cities, food, finance, entertainment, 

politics, and personal data, some of which are discussed and showcased in this paper. 

Figure 21 shows a screenshot from the collection of public data explorers made 

available online at www.keshif.me. The range of datasets demonstrates the 

generalizability and flexibility of our model and implementation. While importing, 

studying, and testing many tabular datasets with a wide range of data characteristics, 

structure and formats, we incrementally refined Keshif’s design, features, and 

implementation over three years. These sample public data browsers are created and 

maintained using the JavaScript API by the lead author of this paper. 

 

Figure 23- A Keshif browser that displays the list of public Keshif demos (sample datasets) on 160 

datasets available at www.keshif.me.  

 

http://www.keshif.me/
http://www.keshif.me/
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In one-year period, data browsers on keshif.me have been visited 100k+ times by 

50k+ users in 62k+ sessions based on Google Analytics. Keshif source code 

repository on GitHub has been starred 400+ times, and forked 100+ times at the time 

of this writing. The browsers have been shared on social media posts 440+ times in 

the recent year as tracked by AddThis web service. The project page includes a list 

of mentions and references to Keshif, including paper citations, research proposals, 

talks, resources, and interviews.  

7.4.3 Other Use Cases 

In addition the targeted user evaluations and high-level overview of applications of 

Keshif above, I have worked with multiple partners and organizations across 

different domains to enable visual data exploration in new and emerging datasets. 

Below is a summary of these efforts. 

- I collaborated with course coordinators and instructors at the Department of 

Communication to help them analyze course consistency across multiple sections 

and years of offerings. Our approach enabled them to explore course structure, 

student success, and grading and feedback practices. A paper published at the annual 

meeting of the National Communication Association was recognized as the Basic 

Course Division Top Paper [7].  

- I collaborated with the National Socio-Environmental Synthesis Center 

(SESYNC) in their “Data to Motivate Synthesis” program, which aimed to provide 

http://www.keshif.me/
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tools to build improved capacities to perform collaborative research on rich open 

government datasets across food, energy and water systems. My role was to help 

them build web-based user interface for data visualization and discovery using 

Keshif. Specifically, I build tools to explore multiple attributes (indicators) across 

multiple datasets, and then to explore spatial and numerical trends and characteristics 

across datasets. This effort has lead to the development and improvement of the 

spatial display capabilities of Keshif, and was further customized to meet their needs 

to explore both watershed and county boundaries on a single integrated map view 

with supporting histograms. 

- I collaborated with the Teaching and Learning Transformation Center 

(TLTC) of University of Maryland to collect and analyze data relating to the online 

course information for teaching and learning. 

- I am currently collaborating with the National Consortium for the Study of 

Terrorism and Responses to Terrorism (START), transforming their datasets on 

global terrorism events, foreign fighters, and narratives shared by terrorism and 

counter-terrorism organization, using rapid prototyping and continuous feedback and 

integration. 

- In addition, I am also volunteering with CodeForDC, a local branch of Code 

For America (https://www.codeforamerica.org/), focusing on providing transparency 

for political campaign contributions in Washington DC races for council and mayors 

over the last 4 election cycles. Specifically, Keshif is used to provide an overview, 

https://www.codeforamerica.org/
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and allow rich exploration, of contributions across selected candidates or campaigns. 

This project is available at http://codefordc.org/dc-campaign-finance-watch/ . 

The open-source release and public demos and demonstration of Keshif also 

allowed other people and organizations to use Keshif for their own datasets. Below 

is a quick summary of some of the public use and acknowledgements we have 

received. 

- Society for Industrial and Organization Psychology (SIOP) created a Keshif 

browser for the 8-years of their conference programs, using the Gist-based sharing 

and graphical authoring, which received favorable feedback on their Twitter 

channels. More information is available on their website [133]. 

- A recent public feedback on the project mailing list 7 by a software engineer 

at School of Computer Science, University of Manchester notes that “(Keshif) is 

proving to be a really popular way of viewing data in the organization I am using it 

for.” 

  

                                                 

 

7 https://groups.google.com/forum/#!topic/keshif/FZNc81Hd7EY  

http://codefordc.org/dc-campaign-finance-watch/
https://groups.google.com/forum/#!topic/keshif/FZNc81Hd7EY
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Chapter 8. Integrated Contextual Help for Data Interfaces 

 

“Combined with adequate presentation techniques, the old Bauhaus notion of doing 

more with less can come true.” 

Hans van der Meij and John M. Carroll,  

in Minimalism Beyond the Nurnberg Funnel [28]  

 

The influence of knowledge to visual data exploration can be modeled as a dynamic 

construct that can be extended with new knowledge of data and of the application 

over use, in addition to existing knowledge that steers the exploration process (See 

Cognitive Exploration Framework, Chapter 3). Even if a first-time user of a data 

analysis tool has analysis skills, they still need orientation and training on the go. 

Novices have an even greater need for training for the basics of visualization and 

interaction features. This chapter addresses the challenge of supporting a wide range 

of users with various backgrounds with various needs on the go, and providing this 

support as quickly as possible with minimal intrusion to original task on the data 

interface.  

In this chapter, we first present contextual features in visual data interfaces, 

including data-driven features and the use of context for help seeking and help-

comprehension. Then, we describe the design of HelpIn, including its help modes 



 

164 

 

 

 

and implementation overview. We evaluated HelpIn with first-time users of Keshif 

who were mostly data novices, in comparison to a non-contextual version. While 

task completion/progress performance was similar under both conditions, one 

contextual help-seeking mode, Point&Learn, was found the most useful subjectively 

in participant feedback, and increased objective performance overall.  

8.1 Context in Visual Data Interfaces 

The overarching idea of contextual help is to use the current context of an 

application to provide customized and targeted help to facilitate comprehension. 

Specifically, contextual features can be used to filter and rank help material by 

relevance, and also to present dynamic and integrated answers. Below, we provide 

an overview of (i) data-driven, (ii) application-driven, and (iii) history-driven 

contextual features. In each category, we exemplify its use to find relevant help 

material, and to present integrated answers. Our contributions include identifying 

data as a first-class context category with multiple use cases, and identifying how 

context can be instrumental for both help seeking and comprehension. 

8.1.1 Data-Driven Context 

This context category describes the features of the underlying data, such as data 

types, distributions, and relations, and the states of data visualization and queries. 
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Help Seeking 

Relevance of help topics can be defined by existing data types, features and query 

states. For example, topics concerning computing temporal characteristics, such as 

extracting month, would be relevant only when data has a temporal component. If 

the data is not filtered, a topic on clearing filters will not be relevant. Topics can 

reflect the existing data visualization types as well. For example, selecting data by 

geographical regions would be relevant only when a map is visible. Ranking topics 

on relevance can reflect frequency of data types as well. For example, if numeric 

data type is common, tasks on numeric data can have higher priority. (See Topic 

Relevance and Ranking section below for details.) To further support data-driven 

help seeking, data glyphs or visualization components can be directly selected to 

retrieve their contextual information. Topic names can also reflect visualization 

states. For example, if application allows two modes for visual scale, the topic name 

can reflect the alternative (target) setting. 

Help Comprehension 

To try to aid comprehension, help descriptions can highlight appropriate data types, 

features, or distributions. For example, linked selection would be best demonstrated 

by exemplifying a selection that reveals interesting features. A heuristic approach 

may select a data aggregate that includes about half of the data. To pick examples to 

describe the effect of actions, such as with tooltips and data information, similar 

heuristics can be applied. In addition, the descriptions of help can include 
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information about the data distribution and features. For example, description of a 

record can include its sorted rank, or multiple encodings in a visual glyph can be 

clarified with legends and exact values. The answer can also respond to the 

visualization state and visual encodings. For example, in a scatterplot, requesting 

help information on a filtered-out dot (record) can describe why it is filtered out (i.e. 

which query it fails). If points are color coded by category, the description can 

describe the color mapping and the category of the point. 

8.1.2 Application-Driven Context 

This context category describes the application state, as well as UI components (such 

as widgets, buttons, menus, etc.) that are visible or are reachable through interaction.  

Help Seeking 

The help material relevance can reflect active application settings. For example, if 

none of the panels in the interface is collapsed, “uncollapse panel” topic will not be 

relevant. Relevant help material can be requested by interface components, either by 

direct interaction (pointing), or using a textual list of components. For example, 

pointing to a sorting icon can suggest “Change sorting criteria” and “Sort in reverse” 

topics. Considering help-system as part of the application status, presenting related 

help topics to a selected help material can expand user’s repertoire and provide 

supporting information. In addition, the position of help panels (and tooltips) can be 
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adjusted to avoid, or minimize, overlap with highlighted components. Location-

aware presentations has been shown to increase training performance [75]. 

Help Comprehension 

Help can be presented by highlighting relevant interface components, such as where 

to click to change a setting, to minimize the distance between answer and action. The 

help descriptions can be responsive, describing the current state, and the role and use 

of alternative states. 

8.1.3 History-Driven Context 

This category is based on the actions performed by the user. 

Help Seeking 

The help topics can be ranked by recency or frequency of usage, emphasizing either 

more/less or most/least frequently used features. The action history information can 

be used to refresh the user’s memory or clarify most recent interactions, or to enable 

discovery of new (or unused) features. User actions can also be used to infer high-

level behavior. For example, if the user scrolls frequently in a visualization panel, 

the help system may suggest maximizing it. Or, when user frequently highlights two 

categories, the system may suggest comparing the two by a locked selection. 

Help Comprehension 

The answer may exemplify the most recently used components if there are 

alternatives to achieve the task. 
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8.1.4 Topic Relevance and Ranking by Context 

Ranking and filtering help topics using contextual information can offer more 

relevant options up-front and improve navigation. In HelpIn, each topic defines a list 

of context features (such as data, application, or UI state) that need to be satisfied in 

order to be relevant. The ranked topic relevance is computed using the following 

strategies: 

 The weights of satisfied context features are added. The richer the required 

context features of a topic, the heavier the topic weights. The context feature 

weights are defined in help material, and reflect the importance and 

commonality of the feature within expected interface use. 

 If a context feature returns a count of satisfactory features (such as the 

number of numeric attributes), this value can be used to adjust the context 

weight, so that more common features have higher ranking. HelpIn uses a 

1.05(x) multiplier, where x stands for the matching features, if relevant. 

 If topics reflect multiple targeted UI components (such as by recognizing UI 

hierarchy), the topic that relate to more specific components are ranked 

higher by adding adjusted weight based on component specificity. 

 If topics are ranked by recency of use (history), a score that reflects if and 

how recent the feature was used is added. When ranking for the most recent 

first, the score is inversely proportional to how recent the feature was used. 
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When ranking for unused first, the score is highest for topics that have not 

been used, and lowest for the most recently used. 

 The topic self-weight (if defined) is added. This allows adjusting ranking per-

topic irrespective of the context. 

8.2 HelpIn – A Contextual In-Site Help System 

HelpIn is a contextual help system designed as an overlay on top of a visual data 

interface. It blends a semi-transparent help overlay with the underlying interface in 

the background, supporting the user to stay oriented. HelpIn features a stencil 

approach [75] to highlight interface components that are selected by the user (Figure 

24), or to present part of a help topic answer (Figure 22). To demonstrate HelpIn, we 

use a data exploration tool, Keshif [164], as the underlying visual data interface. 

8.2.1 Seeking Contextual Help 

To address different use cases for help seeking, HelpIn includes 

five modes: (i) Topic Listing, (ii) Overview, (iii) Point & Learn, 

(iv) Guided Tour, and (v) Notifications. Accessible by clicking 

a  icon, these modes reflect a mix of push/pull approaches 

[67]. With the pull model, the user initiates the request to get help and pulls 

(searches for) for relevant help topics. The role of HelpIn is to evaluate the active 

context, identify relevant help, and rank them on relevance. With the push model, the 
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role of HelpIn is to suggest help based on the inferred context, therefore pushing the 

help [98]. The push model may allow the user to carry out their tasks more 

efficiently through unintentional learning [124]. In HelpIn’s design, respective to the 

push/pull models, ● Topic Listing reflects an explicit pull action with the user 

controlling the topic search by keywords and text, ● Overview presents a short 

narrative summary of active data analysis state, ● Point & Learn makes it easier to 

pull help based on the pointed interface area, ● Guided Tour is initiated (pulled) by 

the user, yet the sequence of material is pushed by the help system, ● Notifications 

reflect the explicit push mode by monitoring application use, and suggesting specific 

help directly.  

8.2.2 Presenting Contextual Help Instruction 

Once help material is selected, its answer is presented in-situ, that is, the material is 

fully integrated into the interface (Figure 4 and 5). The design of HelpIn highlights 

relevant components, uses tooltips to describe the actions, and provides descriptions 

that reflect the selected data glyph, component, and active application settings. After 

the user reads the answer, they can select another help topic or component, or 

activate an action by interacting with the answer. 

8.2.3 Instructional Design 

In our instructional design, topics reflect the unit tasks of the application, i.e. tasks 

that can be completed with very few actions and change only one aspect of the 
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interface. We strived to achieve minimalism and simplicity in the help language, to 

reduce the number and complexity of the words, and to maintain consistency across 

all components [27]. Our material reflects the design language of the underlying 

application, such as using the same icons and color design, thus reducing the 

extraneous cognitive load [30] in translating help information to the current interface 

state. 

8.3 Modes of HelpIn 

In this section, we describe the design of five help-seeking modes and the topic 

answer, which provides instructions. 

8.3.1 Overview 

The Overview mode (Figure 22) shows a narrative high-level summary of the active 

data analysis and interface state. It orients the user in data analysis and exploration 

by describing multiple relevant features that affect the active view (such as active 

selections, and visualization modes). It also allows the user to see how these modes 

can be changed by linking to individual help topics. 
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8.3.2 Topic Listing  

The Topic Listing mode (Figure 23) lists all help topics, ranked (and filtered) by 

relevance given the current context. While this mode reflects the traditional pull 

approach with tag-based filtering and text-search to navigate through help topics, our 

context-aware ranking improves upon the static help listings and navigation of 

topics. In addition, HelpIn provides contextual options to hide (or show) non-

relevant topics, and to prioritize unused (or most recently used) features. Providing 

paths to topics that may be currently irrelevant can help users learn about extended 

tool capabilities. 

 

Figure 24. The Overview mode.  The interface state is briefly described using the active settings 

and data features.  The user can interact to learn how to change the related states (for example, 

changing selections or visualization modes).  
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8.3.3 Point & Learn 

In the Point & Learn mode (Figure 24), the user selects an interface or visualization 

component by hovering their mouse over it. The help panel shows the information 

relevant to the pointed element, including its name, description (along with visual 

encodings and settings), and related help topics, while the pointed element is 

highlighted using a stencil window and tooltip in the semi-transparent overlay. The 

 

Figure 25. The Topic Listing mode.  Topics are filtered to those relating to Select action, and 

ranked by contextual relevance.  Non-relevant topics are shown with (!), and are ranked below 

relevant topics.  Ranking options can be modified. Topic names reflect the dataset  (Records are 

Bird Strikes) and application state (ex: absolute vs. relative visual scales - not visible in this 

screenshot).  Topics that have been recently used are marked with a -icon. 
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hover-action provides a fluid and responsive interaction design to quickly learn 

about multiple components. Clicking freezes the selected element, and enables 

interaction with the help panel (such as activating a related help topic). The freeze-

action can also trigger updating help material, such as showing connected 

components of the selected item (such as a data record) on the interface. The 

selection can be unfrozen by clicking outside the help panel. 

 

 

Figure 26. The Point & Learn mode of HelpIn.  A category is selected by pointing.  Its parent, 

categorical summary, is also highlighted.  Descriptions of the category is responsive to data, 

visualization and selection states. It includes a basic description, the visual encoding, and for each 

visual feature, describes the encoded value and how to read the interface.  Related topics include 

those relating to the category component, as well as the categorical summary component. 
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HelpIn recognizes the hierarchical composition of UI elements on pointer-based 

selection. For example, a measure label appears inside a category (glyph), which 

appears inside categorical summary, which appears inside a panel (of the data 

browser). While the description follows the most specific element (such as the 

measure label), the help topics and stencils can reflect multiple layers in hierarchy. 

We limit the hierarchy to two components (self and parent), so that material is 

focused, and not overwhelming to the user. 

8.3.4 Guided Tour 

The Guided Tour mode (Figure 25) aims to quickly familiarize the user with the 

interface using a pre-determined sequence of help material (topics or interface 

components). The user controls the pace by explicitly stepping through the sequence. 

Related topics to the active step are available on request. HelpIn displays the 

progress through a dot-pattern, and clicking on a dot jumps to the tour to a specific 

step. If the user exits or changes help mode during the guided tour, they can later 

resume from the last active step.  
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8.3.5 Notifications 

The Notifications mode suggests relevant help 

topics on the fly as an explicit push-model. To not 

disrupt to the user, we followed a subtle design 

that uses  on the corner to present incoming 

notifications. On mouse-over, the icon reveals the related task name, and allows for 

 

Figure 27. The Guided Tour mode.  The tour progress is visible, and user can control it forward, 

backward, or to a specific step. This step shows answer to a help topic, Highlight-selection to preview 

Companies. The tooltip of the main action, which is a mouse-over on a visual glyph, is highlighted 

by color.  Additional tooltips describe the effect of this action on other interface components.  

Detailed description of the topic presents an easy-to-read summary of tooltips and additional 

information.  Related topics, and  the context under which this topic applies can be viewed on 

demand as well. 
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dismissing the notification. In our current prototype, we enable notifications on a 

per-topic basis over an extended period of time if the user has not used the relevant 

feature yet. The notifications can also be used as a tip-of-the-day feature to suggest 

new topics for re-visiting the interface. 

Generating relevant notifications require detecting user behavior by tracing their 

actions, in addition to taking data and application context into account. While earlier 

intelligent help systems such as Microsoft’s Clippy has not proven to be effective 

[100], finding the right content and presentation design for notifications can enable 

opportunistic learning. In other words, more semantics and less intrusiveness is 

desired [57]. To achieve unobtrusiveness and usefulness, the notifications should not 

be frequent (avoid false positives), and help the user when appropriate (avoid false 

negatives). We present Notifications as a design prototype that covers the explicit 

push model for help, and we claim no contributions on identifying when to raise 

notifications.  

8.3.6 Topic Answers 

A contextual topic answer aims to ease help comprehension (rather than help 

seeking), and can be reached through the topic listing or relevant topics of a pointed 

component. The topic answer is presented directly on the interface by highlighting 

all the UI components that can achieve or affect the task using a stencil window and 

tooltips (Figure 26). Help descriptions include not only how to perform the task, but 
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also how it affects the rest of the interface, such as in coordinated-views design 

pattern for selection tasks [118]. When a dynamic demonstration of an answer is 

appropriate, HelpIn can present an animated sequence of steps, highlighting 

information relating to each step directly on the interface. The user can replay these 

animation sequences to better attend to interaction details and sequences. Clicking 

on a highlighted UI component passes the mouse-click through overlay and executes 

the action. The help overlay closes if there are no other actions to execute for the 

task, or shows the next action step if other steps remain. When multiple components 

can achieve the same task, a single tooltip is shown for each component group 

(Figure 26). 

The contextual features of a help topic are shown under “Relevant when…” part 

of the help panel. The selected topic can be non-relevant contextually if one or more 

context features are not met in live interface (for example, when input data does not 

include the relevant data type, or when data is not filtered for a topic that is to 

modify an existing filtering selection) (Figure 27). The help descriptions are also 

available within help panel, providing training for application features and future 

use-cases. In our instructional design, we enriched answers and descriptions using 

screen captures and short animated sequences (implemented as animated GIFs) on-

repeat to help users learn the tasks using visual media when live integration is not 

possible. This is similar to traditional approaches using static material to describe 

answers when contextual relevance fails.  
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Figure 28. The Topic Answer mode (“Change sorting criteria” topic).  Two distinct actions can 

satisfy this task, either by  using the dropbox, or  clicking an icon in a numeric summary.  

Notice that all relevant icons are highlighted, yet “Click” action tooltip is shown only for one. 

Clicking on any of these stencil boxes pass the mouse event to underlying interface element, action is 

executed and HelpIn closes. 
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8.4 Implementation 

We implemented HelpIn for web applications based on modern web standards. The 

program logic of HelpIn is implemented in JavaScript, and help material is also 

described as JavaScript objects. The material includes lists of contextual features, 

help topics, UI components (for Point&Learn mode), and guided tour steps. Our 

implementation, including help material for Keshif, is available on (GitHub). 

 

Figure 29. A non-integrated (static) topic answer, including a screenshot or animated gif using a 

fixed dataset. The reason why this topic is not relevant is highlighted  under Relevant when…, and 

a link to satisfy this criteria is available. 
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To evaluate the context, HelpIn accesses the DOM of the webpage and/or 

accesses the underlying application state and dataset in JavaScript directly. It can 

also modify the application state through this direct code access. The stencil areas 

used for answers and Point&Click components are expressed as DOM class names, 

which also enable detecting help topics for tracking historical context of use (for 

example, HelpIn can track a click on .summaryCollapse button to “Collapse 

summary” topic).  

8.5 Evaluation 

To understand how HelpIn influences the help-seeking and learning performance, 

behavior, and experience of first-time users for data analysis tasks, we conducted a 

laboratory experiment. For comparison to the contextual in-situ help system 

(HelpIn), we used non-contextual help topics with non-integrated topic answers 

(Baseline). We present a quantitative analysis on performance, and the interactive 

help system use to answer tasks. We also present subjective feedback of our 

participants regarding the observed usability and efficiency of the help system and 

help materials. 

8.5.1 Participants 

We recruited 14 participants (7 male, 7 female) using university public mail-lists and 

message-boards. They were university students in various departments (6 

undergraduate and 8 graduate, departments including English, business, math, 
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agriculture, computer science, information management, system engineering, and 

computer engineering). All participants were first-time users of the data analytics 

tool. Two participants had experience creating visual dashboards for other data 

analysts (using SAP or d3). Other participants did not have visual data analytics 

training beyond basis statistics courses, and most previous experience was related to 

coursework. They all had some experience with drawing charts using Excel. Thus, 

the majority were novices in visual data analytics, as well as in Keshif. We also 

asked their existing help seeking behavior. The feedback demonstrates a variety in 

personal preferences, including use of videos, online forums, tutorials, and trial and 

error (Figure 28).  

 

8.5.2 Study Design 

We used a within participant design with the help system (Baseline vs. HelpIn) as 

the independent variable. The ordering of help systems shown to the participants was 

 

Figure 30. Existing help seeking behavior of participants. 
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counterbalanced, i.e. 7 participants completed tasks with Baseline first, and the other 

7 started with HelpIn. The system conditions were as the following: 

 The Baseline condition included a traditional (non-contextual) topic listing 

with alphabetical sorting, and did not integrate answers into the interface, i.e. 

did not include stencil highlights or tooltips. The answers included static 

media (images, animated gifs) using samples from other datasets as 

traditional, non-contextual material. 

 The HelpIn condition used contextual and integrated help with Topic Listing, 

Point & Learn, and Overview modes. 

Baseline was created using a stripped-down version of HelpIn to eliminate other 

differences across the systems. The help material used across the system conditions 

were the same except the help modes, the use of context, and integration of answers. 

The material, with 32 topics and 50 components, focused on the exploratory use of 

Keshif (i.e. did not include authoring data visualizations). We disabled Notifications 

as its efficiency depends on inferring user behavior with minimal false 

positives/negatives, which is not among our contributions. We used the Guided Tour 

mode for training only for both conditions. 

8.5.3 Collected Data and Metrics 

We quantitatively measured the interactive use of help system (such as time spend 

on task and help, and the number of times the help modes are used), progress on 
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task, and response time. One of the authors of the paper coded features of interaction 

with the help system and the task performance of the participants based on grading 

rubrics, using screen captures and verbal feedback on video captures of the study 

sessions. Our data collection also includes survey results and semi-structured 

interviews as well. 

8.5.4 Training 

In the beginning of the study, all participants received an ~8 minute training and 

introduction on data analysis with Keshif and the help system. First, participants 

completed a self-paced 12-step Guided Tour for Keshif. Then, the facilitator gave 

~1-minute demonstration on how the help system can be opened/closed, and the 

three help modes: Topic Listing, Overview, and Point&Learn. If a participant had 

completed guided tour early, we allowed them to use the tool and help-system as 

they wished in remaining 8-minute training time. A separate training dataset 

(homicides in Washington D.C.) was used for training purposes. We did not provide 

any external help to complete the tasks during the experiments. In other words, the 

participants could get training or help on the underlying data interface (Keshif) using 

the help system only, i.e. not by asking the experiment facilitator. 
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8.5.5 Tasks 

The participants were given 12 tasks across three task types and four datasets. The 

three task types (Explain, Retarget, Analyze) cover both understanding the data 

interface, and executing actions to achieve desired outcomes. Specifically: 

T1-Explain: We asked the participant to “Focus on the (specific) summary and 

explain the chart, including the meaning of each color, numbers, and trends you 

identify.” This task is aimed to assess visual data comprehension. The charts 

included different data selections, visual modes, and measured different 

characteristics, across the datasets. If participants used overview or Point&Learn 

modes to give an answer, we asked the participants to paraphrase the descriptions 

after closing the help system. 

T2-Retarget: We provided a current configuration of the data interface, and a 

targeted configuration as a screenshot. We asked the participant to “Modify the page 

on the computer to exactly match the one shown in the screenshot.” The target 

included 2-4 reconfigured settings and adjustments, different for each dataset. This 

task required understanding multiple differences across two configurations, finding 

relevant help topics to learn how to make necessary changes (if needed), and 

executing correct actions. 

T3-Analyze: We asked the participant to answer a specific analysis question, such as 

finding the company with a minimum number of workers, or total number of 

illnesses in outbreaks within two states. The questions required interacting with the 
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interface and changing multiple settings, which were different for each of the four 

datasets. 

We used four datasets (companies, bird strikes on airplanes, foodborne 

outbreaks, and traffic accidents; all tabular datasets of comparable sizes and features) 

to limit the effects of learning the features of the underlying data. For each dataset, 

participants answered all three task types in the order noted above. Dataset were also 

presented in the order noted above. Participants had 2.5 minutes to complete each 

task. The interfaces included a timer to inform the participants. The tasks across 

different datasets used targeted features of the underlying tool (Keshif), and were of 

comparable difficulty based on our pilot studies and earlier experience evaluating 

Keshif. Specifically, the features that were seen as challenging and which would 

benefit from the use of help system included: linked selections, measure metric 

(count/ sum/ average), visual scale mode (absolute/ relative), label mode (absolute/ 

percentage), changing histogram axis scale (linear/log), and the use of percentile 

charts. 

We created a grading rubric on a [0,5] scale for each task. Zero noted no 

progress, and five noted a correct answer with all expected outcomes. For example, a 

retargeting task required clearing all filters (2 pts), filtering on a selection (1pts) and 

highlighting another selection (2pts, 1pts –partial- for not including it for final 

response). In data analysis task, filtering categories with OR (2pts), changing the 

aggregate metric (2pts) and finding the right number (1pt) was required. 
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Since each task involved changing or describing multiple features of the 

interface, the rubric allowed us to focus on task progress and differences in 

performance with more granularity. 2.5 minute limit and task complexities created a 

challenging, yet inviting, setting where participants had to strategize on how to use 

help, and how to best answer tasks in short time. 

8.5.6 Procedure 

In the beginning of the study, each participant completed a background survey. All 

participants received an introduction to the analytics tool (Keshif) and the help 

system (HelpIn) in 8 minutes. Then, each participant received a sequence of 12 

tasks, and the help system was changed half-way. We introduced each dataset briefly 

before tasks on a specific dataset. We did not enforce a specific use of help system, 

i.e. the participants were free to choose when and how to seek help and to interpret 

the material. However, we encouraged participants to use the help system for each 

task. If they have not used help system before an answer, we asked “if (they) would 

like to use help before finalizing (their) answer”. When participants felt stuck, we 

also encouraged them to use the help system. Beyond this, we did not aid 

participants in solving tasks. Each task was followed by a task survey on subjective 

task performance and usefulness of the help content and system features. After 

finishing all tasks, the participants completed an overview survey and a short 

interview on effectiveness of various help techniques and materials. 

https://docs.google.com/forms/d/e/1FAIpQLSf-kpe26vihHAm5Dyy7HnWgwJtLBQeIPicTI7c_2Dq5luYvqQ/viewform
https://docs.google.com/forms/d/e/1FAIpQLSdTvSjIhykx__pY76TpfNd5ZJvlu2NxtoPO0z1KxnJwc80iLA/viewform
https://docs.google.com/forms/d/e/1FAIpQLScpTsjIp-0RMEeslDLuWTkNEbuHkafIOpqfu7A-tjlOmNrxCQ/viewform
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All sessions were held in a university lab using Google Chrome on a Macbook 

Pro with a 15-inch retina display, and a mouse for interaction. We recorded the 

screen and audio during the sessions for future analysis of the data. We compensated 

participants with $10 cash. Each session was completed in about 1 hour. 

8.5.7 Pilot Studies 

We ran pilot studies with 4 participants to develop the study protocol. We observed 

significant variations for help use and analytical reasoning between participants, 

which limited effectiveness of the between participant design protocol across help 

systems. Within participant design also allowed us to collect feedback on subjective 

preferences. We also noted that without a brief introduction to help system, the 

participants could not make informed decisions during the study since they were not 

aware of help system features. 

8.6 Results 

8.6.1 Task Progress Performance 

We observed no performance differences, measured by task progress, across the 

attempts with HelpIn vs. Baseline conditions (total progress scores 252 vs. 248, 

given 84 attempts each). Likewise, we found no major performance difference across 

those who used HelpIn first, or Baseline first (i.e. order effect) (total progress scores 

256 vs. 244, given 84 attempts each). However, we found that participants 
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performed significantly better in attempts where they used Point&Learn, compared 

to those where they used Topic Listing (with average progress 3.15 vs. 2.51, sample 

sizes of 82 and 53 attempts). Note that Point&Learn was only available in HelpIn 

condition, and Topic Listing was available in both conditions. We base this analysis 

on the modes used to answer a task, and reported sample sizes above. 

The total progress per participant ranged between 18 to 45 (of 60 points total), 

showing significant individual variations in how participants performed. The total 

score per task were distributed mostly in [43-57] range (for 9 tasks), while three 

outlier tasks had total scores 14, 18 and 34, showing that tasks were mostly of 

comparable difficulty. 

8.6.2 Time on Help 

Of 168 task attempts (12 tasks by 14 participants), only 30 (18%) were finished 

before time-out. In other words, participants used all allocated time in 82% of their 

attempts. Thus, we focus our time-analysis on the use of help system. 

Our participants spent significantly more time with HelpIn than with Baseline 

(52 vs. 30 second average, sample size: 84 attempts each). This was mainly 

contributed by Point&Learn (54sec average, based on 53 attempts where this mode 

is used), compared to Topic Listing mode (35sec average, based on 82 attempts with 

this mode). In addition, participants who used Baseline first spent significantly more 

time on help system compared to those who used HelpIn first (34 vs. 50 second in 
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average, sample size 84). Therefore, using HelpIn first reduced total time spent on 

help, without major differences in task performance. 

8.6.3 When Help Is Not Needed 

Among 168 total attempts, 42 (25%) did not use help system, which also lead to 

higher average performance (3.57), compared to attempts with help use (2.77). This 

suggests that when participants felt confident in taking on the tasks, they did not 

seek help, and performed objectively better overall. In regards to not seeking help, a 

participant noted “If it is slightly familiar system, and I feel I can get about exploring 

things on my own, I prefer that than the help.” In other reasons, one noted, “I wasn't 

sure it could really pin-point what I wanted.” and another said, “Because my time is 

so limited.” Of the 30 attempts that were finished before timeout, 15 (50%) did not 

involve any use of the help system. 6 of the remaining cases of help use (40%) were 

to confirm an answer, rather than to search for answer. 



 

191 

 

 

 

8.6.4 The Characteristics of Help System Use 

Figure 29 shows the distributions of the number of times the help system was used. 

Help was sought in HelpIn more than Baseline (58% vs. 42%). When all modes were 

available, Point&Learn was used significantly more than Topic Listing, and 

Overview was only used few times. Distribution of help use across different datasets 

shows that tasks on different datasets were of comparable challenge. Participants 

used the help system 7-16 times in total through the study. Help seeking per task is 

also distributed between 11 to 21 uses. The outlier task is where the participants 

could not find answers to necessary steps with ease. 

We observed that help system was opened 20 times to confirm the answer or 

observation. 18 (90%) of these cases were with Point&Learn, while 2 were with 

Topic Listing. This demonstrates Point&Learn can also support the user to confirm 

or clarify the meaning of data visualizations. 

 

Figure 31. The distribution of the number of times the help system was used (of 171 total). Top) The 

distribution across systems (HelpIn vs. Baseline), and help modes. Middle) The distribution across 

datasets. Bottom) The distributions per 14 participants, and 12 tasks, shown with jitter on overlaps. 
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8.6.5 Help Topic Listing Search Behavior 

Of the 82 attempts that used Topic Listing, topics were searched by tags 41 times 

(50%) and by text 27 times (33%). Of all the tags selected (63), the majority (55) 

were action-tags (verbs), instead of component-tags (nouns). Our prototype used 

strict text matching with topic names, which frequently (22/35) did not return the 

relevant topics. The failed queries included names of the data attributes (9 cases, 

such as querying “workers” to find a topic that applies to “number of workers” 

attribute), as well as synonyms (10 cases, such as querying “combine” to add 

multiple filters, or “reorder” to sort). These interactions show that our participants 

preferred to search by action rather than component (potentially since component 

names may be unfamiliar), and that text query search needs to be flexible with 

synonyms, and match attribute names with components. 

 

 

 

Figure 32. Feedback on feature usefulness by the participants. 
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8.6.6 Subjective Preferences 

Participants rated the help system features at the end of the study (Figure 30). 

Point&Learn was the feature found the most useful. One participant stated “(it was) 

my favorite part of the tool”. Other participants shared similar feedback. When asked 

about preferences in static or integrated answer presentation, 8 preferred integrated, 

and 6 preferred static. A participant noted, “Integrated answer is definitely 

tremendously more useful as it showed you on the page itself where to be looking 

for (…) It was able to point you in the right direction”. In favor of static answers, 

another noted, “My attention is so concentrated over (main help box) that I just 

might miss out on (tooltips) (...) (On integrated answers) I don’t know what the 

expected outcome would be (...) I really don’t know if I did something right, or if that 

I am in a wrong state and I have to do something more.” Therefore, neither approach 

surpassed the other in our prototype. Preferences are also likely to be shaped by 

quality and content of help material and personal preferences. We noticed animated 

gifs within the help panel to be good demonstrations for most cases, and we noticed 

that some of Keshif’s integrated answers could provide more animations on how the 

change would affect the interface. 

In addition, we noticed one of the challenges of our participants was translating 

questions into relevant topics, i.e. what to get help about. About the language of the 

help material, a non-native speaking participant noted, “(English is) not a native 

language for me, so it's just a little bit too long, so it's just slightly helpful”, while 
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another one contrasted, “I don't know if it is possible for the text to be more 

succinct.” 

8.7 Discussion 

8.7.1 Experiment Results 

The Baseline condition of our experiments was a non-contextual version of HelpIn 

with non-integrated topic answers. In order to create a shared basis of instructional 

material, we avoided using fully separated help material or videos which otherwise 

may lead to differences beyond help system design. Future studies may target 

evaluations across media types and designs. Our experiment also did not aim to 

measure long-term retention, or open-ended use. 

The similar task performance across Baseline and HelpIn might be contributed 

by the shared instructional basis. In Baseline, our participants most strongly noted 

the absence of Point&Learn mode, and were less expressive on differences in the 

presentation of help topic answers and contextual topic ranking, although their final 

feedback was mostly positive. In addition, our participants showed more progress in 

tasks in which they used Point&Learn, compared to the tasks where they used Topic 

Listing. The highest performance was when they didn’t use help, where they mostly 

showed progress through learning and trial and error. 

The experiment also helped us identify opportunities to improve help, as well as 

usability and help instructions for specific materials. Topic answers can include an 
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option to present non-integrated, simple screen captures or animated gifs for cases 

where integrated answer would also apply, as the preference across the two appear to 

be personal. Based on participant feedback and system use, text query search can be 

improved to find more relevant topics by considering attribute names and synonyms, 

and Point&Click components can be narrowed down to individual glyphs (such as 

lines in line charts) across all visualizations. 

8.7.2 Generalizing HelpIn 

Our implementation presents as a proof of concept, and currently does not support 

targeting new interfaces (applications) easily. We believe that the implementation of 

HelpIn could be modularized so that it could be retargeted to other applications more 

easily. While we present strategies for the use of context and integration, the design 

of help content depends on the application. High-quality material requires careful 

design and iterative improvements on content and its integration, beyond what a 

modular implementation may provide out-of-the-box. Our design space and 

implementation provides a structured basis to undertake similar task for other visual 

data applications. 

8.7.3 Help Material and Instructional Design 

While we aimed to achieve a simple language consistent with underlying application 

for our study, we have not specified a target education level, and evaluated the 

terminology with a wide range of users. Our search and tagging system did not 
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consider synonyms or alternative definitions. While HelpIn tries to facilitate learning 

the interface concepts in a rapid fashion, it does not fully facilitate translation of user 

goals to interface goals. Our topic model can be extended to define hierarchies for 

more complex applications. In addition, the help material for our prototype on 

Keshif does not comprehensively cover all features of the tool. While HelpIn offers a 

structure to express and present help material, it does not guarantee full coverage. 

8.7.4 The Synergy Between Interface Design and Help Design 

From the perspective of interface designers and developers, our integrated approach 

enables preparing and maintaining the training material along with the design and 

implementation of the interface. This can reduce time-consuming updates to existing 

material after interface changes, and can shift the preparation of the help material 

from post-implementation (waterfall model) to the course of interface development. 

In addition, the design of help material should build upon the design of the interface. 

While providing help and documentation is necessary to support the wide range of 

tasks or learning requirements, improving design of the underlying interface should 

be prioritized to minimize the need for help, and to push towards self-explanatory 

interfaces. In other words, the help material should not be the primary resource to 

enable the usability of an interface. 
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8.7.5 Limitation of Contextual In-Situ Help 

Separated help materials, such as videos and manuals, can be the only viable option 

when the interface (application) is not immediately available to the user, for example 

when application requires purchasing or installation. Videos can also provide 

additional benefits in explaining interfaces by using spoken narratives, i.e. auditory 

channel, which may compliment visual channels. Future work in integrated help can 

integrate audio into explaining the live interface. 
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Chapter 9. Dense Visualization Design for Numeric Data 

 

“This sounds bizarre, but I find it all too frequently—a complete bastardization of 

tools that were never meant (or validated) for the applications for which they are 

being used. You can’t make this stuff up.” 

Alan Weiss 

in Million Dollar Consulting [147] 

 

Graphical perception is one of the key cognitive components to rapid, effective, and 

accurate visual data exploration (See Chapter 3). Evaluating graphical perception 

under various tasks and designing new visualization techniques is fundamental to 

data visualization research. Achieving dense data visualizations in limited screen 

space remains a challenge for many data types, including simple numeric data. 

This chapter is motivated by our work in applying Keshif in multiple settings and 

observing existing visualization practices. In developing and evaluating Keshif, we 

noticed that categorical summaries with many categories result in long lists that need 

to be scrolled to get an overview, putting an interactive barrier. We also noticed a 

common practice of treemap use for non-hierarchical data. Since the technique was 

originally developed for hierarchical data, and studies were only focused in this case, 

we aimed to assess effectiveness of treemaps in non-hierarchical settings, and 
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compare it with bar charts with multiple columns. In this chapter, we present the 

design objectives in this domain, alternative visualization techniques, including the 

novel piled-bars design, and a detailed evaluation in crowdsourced graphical 

perception and design characteristics across alternative visualizations of same data. 

9.1 Design Objectives 

The visualization design space for sorted numeric data has the following objectives 

in this thesis:  

(O1) Each record is perceptually distinguishable. All records must fit within the 

chart, and must be presented with their own visual glyph. This makes sure that all 

records can be observed, and compared, visually when needed. 

(O2) An overview of all records is visible without interaction. This objective fits the 

use of visualization in static medium, such as in print and in social media image 

previews. While interaction can be used to reveal multiple perspectives and views 

over time, it is beyond the focus of graphical perception studies. In addition, a 

perceptual response to a visual data representation is more rapid and immediate 

compared to observation through interaction. 

(O3) The records are visually sorted by value. This improves the visual structure, 

and simplifies assessing min/max, variance, and rankings. Without such order, the 

visual representation of data would be weaker in revealing data distribution 

characteristics.  



 

200 

 

 

 

The summary of three visualization techniques that meet these design objectives 

is presented in Table 6. Treemaps are a commonly used chart type to show many 

records that otherwise would not fit in a single-column bar chart, making use of all 

of chart pixels to encode the data by area. Wrapped bars and piled bars increase the 

number of visible items by utilizing a wide-aspect chart using multiple columns. The 

three chart designs use similar chart size and aspect ratio, and thus are directly 

comparable per our objectives. The number of records that the proposed alternative 

techniques can handle is larger than what a single-column bar chart can show; yet 

the chart area bounds the number of perceptually distinguishable records. The record 

count that can be effectively represented also depends on the chart size and the 

distance of the viewer to the display. 
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 (a) Treemap 

 (b) Wrapped Bars 

 (c) Piled Bars 

Figure 33- Three dense visualization techniques show 200 (+/-) numbers. (Left) Treemap, a space-filling 

design, shows the magnitude by the block size, and the sign by block color. (Middle) Wrapped bars are 

multi-column bars, and can organize +/- numbers across two sides. (Right) Piled bars use a shared basis 

across all columns. What are the design implications across the three chart designs? Which chart design 

can improve perception for comparison, ranking, and overview under varying data conditions?  
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9.2 Design Alternatives 

To motivate the objectives and their implications, let us also consider alternative 

techniques that do not meet the objectives. (i) Aggregated visualizations [42], such 

as histograms, violate O1 as they do not show each record individually. (ii) Single-

column bar charts can be extended beyond the visible area with scrolling. This fails 

to show a complete overview (O2), and requires interaction to observe different 

sections of data. (iii) Single-column bar charts can show more data using shorter bars 

(Figure 32), however making individual records harder to observe (O1). (iv) A 

space-filling design could encode numeric data by color on fixed block size, instead 

of by area. However, the number of colors that can be effectively compared is fairly 

limited [109]. (v) Circular encodings, such as packed bubble charts, are weaker for 

perceptual comparison and use screen space less effectively. 

Alternative contexts, such as visual analytics systems and interactive data 

reporting, may have different objectives that would benefit from the use of 

interaction, such as scrolling or more advanced focus+context views. In such cases, 

visualization designs that do not fit within the graphical-perception basis of this 

paper may be effective and preferable. 
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9.2.1 Treemap Technique 

Treemaps are a space-filling visualization design where each data record is 

visualized using a rectangular block, and the rectangular area encodes the data value. 

Treemaps were originally designed to visualize hierarchical data groupings [71] 

using a nested block layout. Treemaps are also commonly used in practice to display 

non-hierarchical data scaling to more records on than possible with a single column 

bar chart. 

The advantage of the space-filling design of treemap is that all pixels are used to 

visualize data. Treemap algorithms commonly aim to generate a layout with the 

largest block on the top-left corner, the smallest on the bottom-right corner, and 

blocks ordered along one direction (↓ or →) in decreasing size first. Yet, the 

optimized layout does not guarantee such order, thus relaxing the objective O3. The 

area encoding used by treemap has been shown to be perceptually less effective for 

comparison task compared to linear encodings of length and position on a shared 

baseline [32], [61]. Studies on the perceptual influence of rectangle aspect ratios 

report that rectangles with lower aspect ratios improve perceptual accuracy and 

extreme aspect ratios should be avoided [61], [81]. Squarified treemap layouts, 

which aim to avoid elongated rectangles, [23] is commonly preferred, and is the 

layout used in this study.  
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9.2.2 Wrapped Bars 

Wrapped bars [47] use multiple columns of aligned bars, which can effectively show 

more records than a single column bar chart. Where new bars would extend 

vertically beyond the chart area, they are wrapped to start a new column, similar to 

the two-column text layout of this paper. The bars are comparable across the 

columns since the length encoding has the same unit scale in all columns. The 

 

Figure 34- Transformations from a long single-column bar chart to dense bar charts. Coloring and 

gridline overlays are for demonstration. 
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column width decreases as the column shows a lower end of the sorted data. The 

columns may be separated with vertical ↔ gap to emphasize separation, thus 

improving readability. 

Given a fixed chart area and bar height, adding more records may insert new 

columns. To make space for new columns, existing bars must shrink vertically ⇆, in 

turn decreasing data resolution and perceptual accuracy. Increasing bar height ↕ 

under fixed record count may also have the same effects, i.e. as bars get taller, they 

get narrower (Figure 37). Thus, the column layout influences the aspect ratio of bars, 

and potentially creates a tradeoff in readability. We studied the effect of column 

layout in the graphical perception experiments. 

9.2.3 Piled Bars 

Piled bars are a multi-column bar chart on a single, shared baseline. This contrasts 

with multiple baselines, one per column, of the wrapped bars technique. Comparison 

across bars on different columns is expected to be more accurate since all bars are 

aligned by sharing the same 0-baseline. Furthermore, the chart width is fully utilized 

to scale the bars, i.e. the vertical data axis ↔ has higher resolution (Figure 32). 

Because of the shared scale, columns cannot be separated by vertical gap ↔ to 

improve readability, unlike wrapped bars.  
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Piled bars are the only design, of the three, which has overlaps across records. 

Smaller bars in a row need to appear above the longer bars. To distinctly convey 

overlapping bars along a row, we designed a monochrome gradient coloring 

approach, presented in Figure 33. Our approach uses color brightness to differentiate 

overlapping bars. Alternative designs may adjust the use of color hue and luminance, 

and overlay bars with different shadows and minor layout adjustments along each 

row. 

Occlusions across bars also limit the use of other visual encodings, such as color, 

to visualize additional data attributes. The readability of overlapping bars is hindered 

more as the bar-ends get closer within a row, either because of more columns, or 

 

Figure 35- Piled bars rendering approach. Shorter columns (left) are darker than longer columns 

(right). The bar gradient starts from the smallest extent of the bar’s column, and ends at the tip of the 

shorter bar on the same row. Each bar has a white shadow on its end so that bars on the top rows, 

which otherwise do not include gradients, are distinguishable. Each bar has borderlines on top and 

bottom to emphasize the row-based structure. 
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because of the data distribution. Inserting records, or increasing bar height ↕, may 

increase number of columns, and thus increase overlaps. 

While the visual design of piled bars is similar to horizon charts with multiple 

bands on each row, piled bars visualize records sorted by value, and do not follow a 

time-series like horizon charts. All columns of piled bars share the same scale and 

there are axis brake points, unlike horizon chart where columns represent different 

sub-bands of axis collapsed on top of each other with varying color luminance across 

different bands.  

9.2.4 Labels, Use of Color, and Bi-Directional Bars 

First, we considered grouping records by color and direction. Figure 34 shows data 

that represents two groups. The overlaps in piled bars limit the use of color-coding 

(i.e. ). Instead, the sides of the baseline (←0→) can be used to organize 

two record groups to allow comparison. However, this approach is limited to two 

groups. In contrast, wrapped bars can display multiple groups with multiple colors, 

and treemaps that can effectively group (nest) multiple records spatially to represent 

distribution of group totals. In addition, piled bars reveal the difference in the 

number of records across two groups in opposing axes; the visual cues are the 

number of columns and the number of rows on the smallest columns on both sides. 

Aggregated sums of the records in two sides can be visualized using a 
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supplementary chart. Piled bars also allow comparing the maximum absolute values 

on both sides (←0→) along the scale using the topmost row. 

Next, we consider how to represent negative values (Figure 31). In treemaps, 

block area is implicitly positive, and the sign of the values is encoded by color. In 

multi-column bar charts (PB and WB), the baseline can be extended in both 

directions (←, →) to encode the sign, and color can emphasize the column of the 

sign flip. Therefore, treemaps are limited to use of color encoding to show sign, 

while piled bars require grouping  +/- values along two sides of the baseline. 

When the records are to be sorted by metrics other than their numeric value (such 

as alphabetically), the strategies and implications depend on the selected technique. 

Treemap layout algorithm may be adjusted to position nodes on the targeted order, 

although this is an uncommon case. Wrapped bars are the most flexible as they 

reflect single-column lists. However, arbitrary ordering would result in non-

decreasing width of new columns and non-optimal use of vertical space ↔, unlike 

sorted order that ensures columns for the lower end of the list are narrower. Piled 

bars require the records to be sorted by value, such that overlaps can be resolved by 

layering from large to small records. Therefore, it doesn’t support arbitrary record 

sorting. 

Lastly, we consider displaying record labels (Figure 35). As the visual layout of 

treemaps and piled bars strictly follow the data distribution, labels must be placed 

within the blocks, and smaller values offer smaller label space. Wrapped bars are 
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more flexible. Labels can also be placed next to bars, as in single-column bars, they 

may also be shown for all columns or for a selected column [47]. Alternatively, 

record labels can be displayed as tooltips on mouse-over to individual records in 

interactive use of the studied visualizations. 
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  (a) Treemap 

  (b) Wrapped Bars 

  (c) Piled Bars 

Figure 36- Visualization of electoral vote results for the 50 states in the U.S. 2012 presidential 

elections. Each state has a number of electoral votes (block size) and a winning party (Democrat or 

Republican). (Left) Treemaps grouped by winning party (from “In Praise of Treemaps” by S. Wexler 

at http://www.datarevelations.com/in-praise-of-treemaps.html). The distribution across two parties is 

emphasized. (Middle) Wrapped bars with states ordered by electoral vote. Among the states with 

higher votes (leftm column), Democrats are more frequent. (Right) Piled bars with records grouped 

by party. The leading states per party are available on the top row. Democrats won in three more 

states than Republicans did (observable by comparison on the columns next to 0-baseline (←0→)). 
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 (a) Treemap 

 (b) Wrapped Bars 

(c) Piled Bars 

Figure 37- Selected strategies for displaying record labels across three techniques. (Left) Treemaps: 

Labels need to appear within the blocks. (Middle) Wrapped bars: Labels can appear within or next to 

blocks. (Right) Piled bars: Labels are at the tip of the bar within its visible area. 
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9.3 Crowdsourced Perceptual Evaluation 

To evaluate graphical perception performance of the three visualization techniques, 

we designed online crowd-sourced experiments on three task types under varying 

data densities, chart layouts, and stimulus alternatives is appropriate. This chapter 

first describes the three tasks, and the shared settings and procedures in conducting 

these experiments. It follows with the detailed description and results per each task. 

9.3.1 Tasks 

To cover a wide range of perceptual characteristics of the alternative designs, we 

chose three graphical perception tasks (Figure 36) such that the answer would be (i) 

data-driven (i.e. changing data would predictably influence the answer), (ii) can be 

given within a few seconds following a quick impression in a casual use, (iii) based 

on a single chart. The tasks were designed to apply fairly to all chart designs. We 

present a summary of the three tasks below. 

Comparison of two records: Two records (blocks) are highlighted. The 

participant determines which is larger and by how much. Comparison is the basis of 

visualization. However, this task focuses on two marks, and does not require reading 

the whole chart. This task is thus insufficient for assessing the perception of data 

distribution. 
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Ranking of a record: The participant determines the rank of a highlighted record 

among all records. Ranking is a common task, such as finding the rank of a country 

or a university on an ordered list. This task requires observing the complete data 

distribution in relation to the focal record. While the rank of each record can be 

displayed by default (increasing chart ink) or on interaction (with a tooltip), 

 

(a) Comparison task, Strong Stimulus  (b) Comparison task, Weak Stimulus 

 

(c) Ranking task    (d) Overview Task 

Figure 38- The graphical perception tasks of our experiments. (Top row) Comparison task, with Piled 

Bars sample. Compared blocks are highlighted using block background/border on the left (strong 

stimulus), and using dot-marks in the middle of visible portion of the block on the right (weak 

stimulus). (Bottom left) Ranking task, with Wrapped Bars sample. (Bottom right) Distribution 

overview task, with Treemaps sample. 
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graphical perception allows a quick assessment of the record ranks. When the data is 

visually sorted, the position of the record among all records suggests its rank. Thus, 

sorted visualizations avoid tedious size comparison across all records for ranking, 

and ranking becomes independent of the distribution characteristics.  

Overview of all records: The participant is asked to assess whether a given 

statement on data distribution matches the displayed data. This task is solely based 

on interpretation of the overview of data. No individual records are highlighted, and 

the data is generated with specific targeted distribution characteristics. Our rationale 

is that understanding the overall distribution of data, without anchoring to a set of 

selected marks, is also an integral part of visual data comprehension. 

Among other overview tasks, finding min/max is trivial in sorted data. While 

mechanical computation of average and variance is easy, such numeric 

characteristics are not naturally perceptible given many (50+) records, and can be 

easily annotated on the chart if necessary. We also avoided tasks that would require 

interaction within the chart to answer, such as clicking on a block that may best 

present the mean or the median. Specifically, the overlapping design of piled bars 

could introduce selection (motor-skill) errors that may negatively influence the 

measurements. As we aimed to assess how well the visualization, by itself, can 

communicate the data, we did not use the line-up protocol [66] which presents 

multiple charts with a presumable outlier for hypothesis testing. Charts are 

commonly shown in isolation to illustrate a single set of measurements, rather than 
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with multiple alternatives that may serve as anchors to understand distribution 

differences. Overview tasks can also compare characteristics across data groups 

within a single chart, such as the moving average over time series [34], or differing 

glyphs per category in scatterplots [52]. We avoided such tasks since they require a 

design change, either using color or bi-directional multi-columns, which are not 

applicable fairly across all chart types in a similar fashion.  

 

9.3.2 Experiment Factors and Design 

Each participant answered multiple questions (trials) of a fixed graphical perception 

task on a fixed chart type with variations in data/chart configuration. Participants 

were randomly assigned to a trial group across Data Density or Column Layout 

settings, as shown in Table 7, and exemplified in Figure 36. The Data Density 

setting investigates the impact of data density (75, 150 or 300 records) across three 

chart types: treemap, wrapped bars, piled bars. In multi-column bar charts, bar 

heights were fixed and the column count was dependent on the record count. The 

 

Setting 

Chart Type 
Between subjects 

Record # 
 Within subject 

Multi-Column (W&PB) Layout 

Within subject 

TM WB PB Column # Bar ↕ Bars/Col. 

Data 

Density 
 

75# 3C 
16px 

Fixed 
25 150# 6C 

300# 12C 

Column 

Layout 
  

75# 

Fixed 

3C 16px 25 

6C 32px 13 

11C 62px 7 

Table 7- The factorial experiment design shared by all tasks. The settings include variations in data 

density (record count, 75#-150#-300#), and column layout (column count, 3C-6C-11C). 
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Column Layout setting investigates the impact of multi-column chart layout with 

three column count conditions (3, 6, 11 columns) given 75 records, with trial groups 

for wrapped bars and piled bars respectively. Bar height was dependent on column 

count. Since column layout setting does not apply to treemaps, the perception of 

treemaps can be studied under the data density setting only. 

9.3.3 Chart Parameters 

The charts had 800×450px size (16×9 aspect ratio). Treemaps were generated using 

the squarified layout of d3.js [18] defaults (v3.5.5) with 2px border between blocks. 

For multi-column bars, gridlines were hidden except the baselines. There existed 2-

pixel ↕ gap between rows in wrapped bars and piled bars, and 5-pixel ↔ gap to 

separate columns in wrapped bars. 

9.3.4 Participants 

Each experiment condition was answered by 20 participants. We repeated 

comparison experiments with both strong and weak stimulus design to highlight 

selected records, as stimulus choice may influence the chart/block perception and 

required training. We recruited 100 participants for each task (and stimulus), totaling 

to 400 participants in our experiments. 

The participants were recruited using Amazon Mechanical Turk. The 

qualification requirements were set to historical performance of at least 90% 

approval rate and at least 1,000 HITs completed. The participation was 
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geographically limited to the U.S. following the IRB requirements of this project. 

Participation from mobile devices and screen sizes with less than 1280×800 pixel 

resolution was rejected to ensure the physical device can fully display the tasks. A 

participant could not partake in multiple experiments. The participants were 

rewarded with a targeted $8/hour rate, based on expected task durations. 

9.3.5 Training and Other Procedures 

The experiments included multiple approaches to train the participants and to collect 

high quality data. All experiments included training trials using simpler versions of 

the task to ensure that the participants were able to understand the task. The 

participants could only proceed when they answered training trials correctly. They 

were allowed to repeat trials until they found the correct answer. In experiment 

trials, participants were not allowed to change their answers. To help participants 

stay focused while repeatedly answering the same task under different data and 

layout conditions, we presented a training trial after ⅓ and ⅔ of experiment trials. As 

in initial training, participants needed to answer these trials correctly to proceed, and 

they could repeat their attempts until finding the correct answer. 

We also prepared animated training sequences to explain chart designs by 

transitions from single-column bar charts. In this sequence, the participant first saw 

75 records in a single-column overflowing chart, with an animated scroll showing all 

the records. Then, on a button click, the single-column chart was transitioned to the 
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chart type of the experiment with animation. The participant observed three data 

distributions and transitions, and could replay the sequences. The animated 

sequences were shown as the first step into the study. Since the strong 

border/background stimulus was self-explanatory for the chart design, we did not use 

animated sequences for this strong stimulus in comparison task. 

When the participant selected an answer, the answer and response time were 

recorded, and the study progressed with a new trial. The marked block(s), if the task 

required, were visible until the task was answered. A time ticker was displayed next 

to the task. At 10 seconds, the ticker changed to display 10! (note the exclamation 

point) to alert the participants of the passing time.  

After running experiments, we confirmed that analyzed data correctly represents 

the experimental settings, with correct number of trials and variations per each 

participant, and the number of participants per each trial group. The experiment data, 

results and analysis scripts are accessible at github.com/adilyalcin/chubuk.exp. 

 

 

 

http://www.github.com/adilyalcin/chubuk.exp
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Treemap, 75 records 

 

Treemap, 300 records 

  

Wrapped Bars, 75 records, 3C 

  

Wrapped bars, 75 record, 11C  

  

Piled bars, 75 records, 3C Piled bars, 75 records, 11C  

   

Wrapped bars, 300 records Piled bars, 300 records  

Figure 39- Sample charts from comparison experiments with varying record sizes and layouts. 
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9.4 Evaluation for Comparison Task 

Each participant observed a chart with two highlighted blocks (Figure 37), and 

estimated what percentage the smaller block is of the larger block. Specifically, we 

first asked, “The larger block is A or B?” with random A-B order, where A and B 

represent the visual marks. After selecting an answer (e.g., B), we then asked, “The 

size of A is approximately [__] % of the size of B.” with A-B order based on the 

previous answer. The answer options were multiples of 5%, ordered from 95% to 

5% under the question. Our design aimed to assist participants in focusing on their 

judgment at commonly expressed perception granularity (5x%) as reported in 

previous studies [81], [138]. Each participant answered 30 trials in randomized order 

on a single chart type with 10 conditions on true percent of difference, and 3 

conditions on density or column layout. 

Sixty uniformly distributed random data configurations were generated, as a 

combination of 10 true percentages (TP) and 2 settings (Density, Layout), with 3 

conditions on each setting (75, 150, 300)# or (3, 6, 11)C. We selected 10 true 

percentages (TPs) at non-regular points in relation to 5% intervals (8, 17, 23, 38, 47, 

53, 62, 77, 83, 92)%, such that the accuracy of an answer can be measured within 

1%. The larger value was picked randomly among the top 25% of the sorted data. 

The smaller value was computed using the true percentage, and it replaced the 

smallest value. The same data configurations were used across all chart types. We 
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used five training trials with (75)# records and (10, 30, 50, 70, 90)% for true-

percentages and answer options. 

  

We ran two comparison experiments with two stimulus designs, as the stimulus 

can interfere with graphical perception of charts and comparison performance [138]. 

For the first stimulus, we highlighted the selected records (blocks) with colored 

background (█ - █). Since overlaps in piled bars limit the use of background color, 

we highlighted the border in piled bars. The stronger background/border stimulus 

explicitly highlights the shape of the block, and the perception would focus on 

 

Figure 40- The high-level overview of graphical perception performance results for comparison task 

across three chart types in two settings and with two stimulus types (Top: strong stimulus with the 

outline. Bottom: weak stimulus with mark-type). Each box plot includes 20 participants, and 600 

responses. The bars in box-plots show percentiles in 10% increments, ▌shows the median, ▲ 

shows the mean of values within 10-90 percentile. 
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comparison of rectangular shapes. For the second stimulus, we highlighted the 

selected records with colored marks ( , ) placed in the middle of the visible 

portion of the block. This design is consistent across all chart types, and adapts to the 

visible portion of piled bars. This stimulus does not explicitly describe the shape of 

the record blocks. Comparison requires finding the small stimulus in the chart and 

understanding the total shape of the block. Thus, this weaker stimulus requires a 

deeper understanding of the chart design for correct evaluation. 

9.4.1 Results and Discussions 

To analyze the perceptual performance in comparison, we measured the error as the 

absolute difference between the response percentage and the true percentage 

difference of marked blocks. Figure 38 shows the overview of the responses in error 

ratio and response time across two stimulus types. To analyze the effect of data 

density (75, 150, 300)# and column layout (3, 6, 11)C across three chart types, we 

use the group means with 95% confidence intervals by bootstrapping [37] (Figure 

39, Figure 40). Bootstrapping produces statistical estimates based on resampling the 

observations with replacement. It has been advanced in psychology [36] to address 

the shortcomings of significance testing and p-values, and we adopt it here for 

similar reasons. We also present significance results from statistical tests for 

comprehensiveness as appropriate. We first discuss results with the background 

stimulus, and then the mark stimulus. 
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Results with outline stimulus: 

Based on the overview across five trial groups (Figure 38), piled-bars had the least 

error, while treemaps had the most. Bootstrapped confidence intervals of mean 

errors (Figure 39) show substantial differences across PB and TM, affirming that 

comparison is improved by the shared baseline of PB, and hindered by the area 

encoding of TM, in line with earlier studies [32], [61]. The higher accuracy of PB 

compared to WB (Figure 38, Figure 39) is also parallel to earlier reports on accuracy 

on aligned vs. unaligned bars. We also applied standard parametric statistical tests to 

responses in data density setting with mixed linear two-way, factorial model with 

interaction using the subject as random effect. Chart type was found as a significant 

factor (F(2, 1734) = 8.21, p < .001), while data density (F(2, 1734) = 2.68, p < .069) 

and their interaction (chart type x data density) (F(2, 1734) = 2.14, p < .074) were 

not significant. A Tukey HSD post-hoc tests found significant differences across PM 

vs. TM (p < .001), and WB vs. TM (p < .004), and no significant difference across 

PB vs. WB (p < .86).  

Figure 39 shows that increasing the record count reduced the accuracy with TM 

(potentially due to smaller block sizes), slightly increased the accuracy with PB 

(potentially due to the overlapping gradients cueing on length differences), and 

slightly decreased the accuracy with WB (potentially due to smaller bar widths). Our 

results show no substantial effect of multi-column layout on the comparison 

accuracy, although PB outperformed the WB in all configurations. Lastly, only 62 
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responses (%2) misidentified the larger block. Among those, 35 were for (83 or 

92)% true percentage (similar sized blocks). Only 92 responses (%3) had an error > 

30%. The aggregated results (Figure 38) show small variation in response times, 

with TM leading by small, but not significant, margin. 

Results with mark stimulus: 

Wrapped bars had the least amount of error with significance under varying data 

densities (Figure 40). In line with results from the background stimulus, TM 

performed worse than WB, and there is no substantial and consistent effect of the 

column layout on accuracy. However, PB showed a significantly higher error rate 

when the weaker mark stimulus was used. The ratio of incorrect answer to larger 

block was 17% in PB, while only 1.4% in WB, and 2.8% in TM. This suggests that 

some crowdsourced participants may not have perceived the piled bars correctly. 

This may be due to a dominant perception of the marked blocks as only their visible 

portion, not including the overlapped section extending to the baseline. With mark 

stimulus, the confidence intervals of mean errors are wider (i.e. responses have more 

variation) and mean error is larger across trial groups compared to the background 

stimulus. Smaller mark stimulus may also have hindered finding highlighted blocks 

and observing complete block size. We also applied standard parametric statistical 

tests to responses in data density setting with mixed linear two-way, factorial model 

with interaction using the subject as random effect. Results confirm the significant 

effect of chart type on error (F(2, 1734) = 11.13, p < .001), and significant 
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differences of error across PB v  s. TM (p < .004) and PB vs. WB (p < .001), while 

no significant difference across TM vs. WB (p < .35). There was no effect detected 

for the data density (p < .14) or its interaction with chart type (p < .74). 

The results acknowledge the effect of stimulus on comparison task, with two 

stimulus designs revealing different processes of perception. When the bars were 

more likely to be perceived in full with the stronger background stimulus, the shared 

baseline of aligned bars and the higher data resolution of piled bars improved 

comparison accuracy. On the other hand, the weaker mark stimulus made it harder to 

observe the complete size of blocks, leading to a reduced performance, and much 

more significantly for piled bars because of its overlapping design. 

 

Data Density Setting Column Layout Setting 

75 Records 150 Records 300 Records 3 Columns 6 Columns 11Columns 

      

Figure 41- Analysis of accuracy (% error) in comparison task with outline (█-█) stimulus across 

data density and column layout settings. • shows the mean, the bars show 95 confidence intervals. 

Each column includes 200 responses (20 participants on 10 TPs). 
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Data Density Setting Column Layout Setting 

75 Records 150 Records 300 Records 3 Columns 6 Columns 11 Columns 

      

Figure 42- Analysis of accuracy (% error) in comparison task with mark  ( - ) stimulus across data 

density and column layout settings. • shows the mean, the bars show 95 confidence intervals. Each 

column includes 200 responses (20 participants on 10 TPs). 

 

Figure 43- The overview of graphical perception performance results for ranking and overview 

tasks in two settings and three chart types. Each box plot includes 20 participants, and 600 

responses. The bars in box-plots show percentiles in 10% increments, ▌shows the median, ▲ 

shows the mean of values within 10-90 percentile. 

Data Density Setting Column Layout Setting 

75 Records 150 Records 300 Records 3 Columns 6 Columns 11 Columns 

      

Figure 44- Analysis of accuracy (% error) in ranking task across data density and column layout 

settings. • shows the mean, the bars show 95 confidence intervals. Each column includes 200 

responses (20 participants on 10 TPs). 



 

228 

 

 

 

9.5 Evaluation for Ranking Task 

The participant observed a chart with a block marked with  placed in the middle of 

visible portion of the block. We asked, “The marked block  is ranked closest to 

number [__] out of N blocks”, where N is the number of blocks. The marked blocks 

were generated using 10 percent-based rankings (8, 17, 23, 38, 47, 53, 62, 77, 83, 

92)%, rounded to an integer. For example, a 23% ranked record across 150 records 

has rank 35. We presented 14 options, evenly spaced across all records and in 

absolute ranks since it is a natural form of interpreting ranks given a variety of scale. 

Each participant answered 30 trials in randomized order on a single chart type. 

Across five trial groups, 100 participants answered 3,000 rankings. The data was 

generated using random normal distribution with μ:2 and σ:0.8, with absolute values. 

We showed index labels for the first and last ranked records on the chart corners to 

help reading the chart structure. We used seven training trials with 75 records and (5, 

15, 25, 35, 45, 55, 65) options for true-ranks and answers. 

Results and Discussions 

We measured the accuracy of a ranking response as a percent difference from true 

absolute rank normalized by the number of blocks (max rank). To analyze the effect 

of data density (75, 150, 300)# and column layout (3, 6, 11)C across three chart 

types, we used bootstrapping for group mean to generate 95% confidence intervals 

(Figure 42). 
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Based on the overview of the responses across five groups (Figure 41), wrapped 

bars had the least error and treemaps had the most with significance across 

confidence intervals. Based on bootstrapped averages (Figure 42), WB performed 

substantially better than TM and somehow better than PB under all settings. TM and 

PB have no consistently significant difference in accuracy under varying settings. 

We also applied standard parametric statistical tests to responses in data density 

setting with mixed linear two-way, factorial model with interaction using the subject 

as random effect. The results show significant effect of chart (F(2, 1734) = 3.54, p < 

.03), data density (F(2, 1734) = 7.41, p < .001), and their interaction (F(4, 1734) = 

5.87, p < .001). The interaction effects can be observed across confidence intervals 

in Figure 42, and details are accessible at the result repository. Across chart types, 

the a significant effect was detected across TM vs. WB (p < .025), while the effects 

across other chart type pairs (TM vs. PB and WB vs. PB) had p > .17. 

With the increase of record count (data density), the accuracy of WB and PB 

suffered, while accuracy of TM was not affected. With an increase in column count 

(effect of column layout), WB outperformed PB with wider margin of difference, 

while there was no substantial difference within a chart type across different layouts. 

WB and PB were slower in response time compared to TM. This suggests that given 

a multi-column bar chart (either WB or PB), the participants are likely to trace the 

rows and columns of the chart to give a more accurate answer, while still 

maintaining a six second response time on average. Our results also show that 

https://github.com/adilyalcin/chubuk.exp/blob/gh-pages/results/SAS_n_R/RANK_DS_MARK-results.pdf


 

230 

 

 

 

varying data density has a larger effect on the response time (slower performance) 

compared to varying column layout under fixed density. 

9.6 Evaluation for Distribution Overview Task 

For the overview task, the participant stated their agreement to a data distribution 

statement given a chart, on a 7-point Likert scale as shown in Figure 36. The chart 

and the question of a trial were selected among three distribution characteristics, 

resulting in nine permutations. Each trial group is based on three conditions on data 

size or column layout, and each participant answered 27 experiment trials in 

randomized order. We generated 10 groups of random data distributions for 27 trials. 

Each data group was answered by two participants, totaling to 20 participants 

answering 540 trials. 

The three data distribution characteristics of this experiment are as the following, 

with explanations presented in our experiments: (i) Uniform distribution, i.e. “There 

is a block of all possible sizes”. (ii) Skewed distribution, i.e. “There are a few blocks 

that are substantially larger than all the rest”. (iii) Normal distribution, i.e. “There are 

more medium-sized blocks than small and large blocks.” In animated training 

sequence, we presented one sequence for each data distribution with a text 

describing the distribution characteristic of the data. After the sequence, three 

training trials were shown with “agree/disagree” options. Experiment advanced 

when the statement matched the data distribution. 
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Results and Discussions 

We identified each response as true, false, or no decision based on agreement of the 

statement with the data distribution, and converted the scale from agreement to 

correctness. For example, a "strongly agree" response to a uniform statement for a 

uniform data distribution is "strongly true", and "somewhat disagree" response to a 

normal statement for a skewed distribution is "somewhat false". Figure 43 presents 

aggregated visual analysis of the responses across correctness, confidence, and 

different chart types under various density and layout settings. 

 

 

Figure 45- Responses from the overview task. Accuracy values are shown in percentage and color-

coded, with darker color showing larger value (True: green. False: red. No-decision: yellow). For 

example, of the 540 responses given for treemaps, 46% were false, while only 30% were false of the 

responses to the wrapped bars.  
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Treemaps had a higher percentage of false answers compared to wrapped bars 

and piled bars, which commonly show a similar accuracy. For example, for 

responses under Data Density setting, TM had 46% false responses, while WB had 

30% and PB had 33%, given 540 responses in total for each chart type. Regarding 

the confidence level of the responses, WB has the highest ratio of “strongly” 

confident (false or true) responses in most settings. Under constant data density of 75 

records, increasing column count (3 to 11) (and using thicker bars) increases the 

undecided or false responses. Using 3 columns (and bars with 16px height) 

performed better in comparison to 11 columns (with 62px height).  

We also performed a standard statistical analysis based on a generalized linear 

mixed model for the binary outcome (with no-decision responses considered false). 

We detected significant effect of the chart type (F(2, 57) = 8.59, p < .001). A Tukey 

HSD post-hoc analysis reveals a high significant difference across PB vs. TM (p = 

.0042) and WB vs. TM (p = .0002), and no significant difference across WB and PB 

(p = .58), further supporting the analysis presented above on the frequency of 

response accuracy. 

The accuracy effect across chart type vs. distribution characteristic is shown in 

Figure 44. Responses in column-layout setting are not included since this setting 

does not apply to treemaps. The charts show similar performance under normal 

distribution, however treemap performed significantly worse for skewed distribution, 
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as well as uniform distribution. The results suggest that piled bars carry an advantage 

for observing skewed distributions, potentially because of shared alignment. 

 

Analysis of the response time for overview task (Figure 45) shows that treemap 

was also the slowest in this task, compared to wrapped-bars and piled-bars under 

varying data density. A comparison across WB and PB shows that responses to 

variations in column layout were slightly slower compared to variations in data 

density. Given similar accuracy performance across PB and WB, our results suggest 

that piled bars may have a leading edge with shorter response time on a small margin 

while maintaining similar accuracy. 

  

 

Figure 46- Accuracy (ratio of true responses) across data distribution and chart types, based on the 

data density setting. Values are color coded from red to green, with the white midpoint at 61%, the 

accuracy considering all 1620 responses. 

 
Figure 47- The overview of response time performance results for overview task. Each box plot 

includes 20 participants, and 540 responses. The bars in box-plots show percentiles in 10% 

increments, ▌shows the median, ▲ shows the mean of values within 10-90 percentile. 
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9.7 Summary of Results 

Overall, wrapped bars yielded a high perceptual performance among the three chart 

designs. Our results show that wrapped bars performed either as the best 

(comparison task with mark stimulus, ranking task), or as the second best 

(comparison task with border stimulus) of the three chart alternatives. For the 

overview task, it performed similar to piled bars, and better than treemaps. Its 

performance is likely due to its clean, easy to interpret, non-overlapping design. It 

strikes a balance between a single-column sorted bar chart and the complexity of 

multi-columns by explicit separation of columns. Given that its design can be 

extended by color and bi-directional encoding, and its flexibility to show labels in 

various forms, our analysis and evaluation shows that wrapped bars technique is a 

perceptually well performing design to present dense numeric data in wide-aspect 

charts. 

Treemaps did not perform the best in any task in our experiments. It had the 

highest mean error under comparison task with background stimulus, and ranking 

task. Its lower performance for comparison is predictable since treemaps rely on area 

assessment instead of length assessment, and its lower performance for ranking task 

reflects its relaxed ordering/layout strategy. Results from overview task show that 

treemaps do not outperform multi-column bar charts either. Overall, our results 

suggest that treemaps are not a preferable design when records do not have an 

explicit hierarchy. Its visual design purpose of using all pixels in chart area does not 
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increase perceptual accuracy under flat numeric lists, and common tasks of 

comparison, ranking and distribution overview. 

Piled bars, a new multi-column bar chart design, performed the best for the 

comparison task with highlight stimulus (with its advantages in increased data 

encoding resolution and shared baselines), the second best for ranking task (after 

wrapped bars) and similar to wrapped bars for overview task, in terms of accuracy. 

However, when mark-type stimulus was used for the comparison task, its 

performance was significantly lower. This is potentially due to the perception of a 

piled bar not considering the overlapping portions of the block in our crowdsourced 

experiment setup. This bias may be countered with more training, or with inclusion 

of scale axis (ticks) to stress the shared baseline. With sufficient training and 

guidelines in reading its structure, our results suggest piled bars have the potential to 

improve data perception with its fully aligned design and higher resolution among 

data axis. 

9.8 Limitations and Future Work 

In this study, we focused on basic graphical chart designs without labels, legends or 

axis. The display of labels may impact readability of the chart. We did not evaluate 

designs with color or bi-directional axes, or display axis labels or gridlines in multi-

column charts to maintain fairness to treemaps. Including such guides is likely to 

further improve accuracy for both wrapped bars and piled bars.  
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The results were reported from data densities of up to 300 records in 800×450 

pixel chart area, with randomly generated uniform, normal, and skewed 

distributions. Figure 37 demonstrates that 300 records within the selected chart size 

create a dense setting for casual visualizations; doubling the scale would impact the 

size and readability of individual records. If this requirement is relaxed and 

experienced data analysts become the target audience, the record count may be 

increased further in future studies. Our findings may not extrapolate to higher data 

densities, smaller (mobile) or larger displays. Increasing data densities on highly 

skewed data may amplify the strength of treemaps with its non-overlapping, space-

filling design, and emphasis of part-of-whole relations. The results are based on 

crowdsourced experiments that have limited training opportunities and cannot 

control for correct perceptual responses. Future studies may extend our results and 

analysis with variations in data size, distributions, and experiment setup, as well as 

chart design, such as different rendering strategies for the use of color and overlays 

(shadows) for piled bars technique. 

Lastly, let’s consider how Keshif may be extended to support dense visualization 

of sorted numeric data. The categorical summary of Keshif is a single-column, 

dynamically sorted bar chart, and exhibits the problem of not visible overview. 

Wrapped bars is a natural extension for when the chart is positioned on a wide panel, 

or when a specific chart is enlarged to cover larger screen space (a potential future 

update). A wrapped-bar design would support multiple selections and interactions as 
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noted earlier. However, one critical design issue to address would be the ability for 

continous scroll in wrapped bars. We assumed all the records would fit in a single 

display. However, in a generalized setting, the wrapped bars may extend beyond 

visible screen space, potentially towards right of the right-most column. Piled bars 

design would present even more challenges. The Keshif model requires that each 

glyph should be able to support multiple selections simultaneously, if possible. 

Given the overlapping nature of piled bars, further subdivisions may make the 

interface harder to read. Another challenge of generalized piled-bars is that it would 

not allow scrolling to see larger list of numbers. One potential interaction may be to 

zoom-in to the list, focusing on columns closer to zero-baseline. Given that it is 

unfamiliar, and potentially requires more training to increase perceptual accuracy, it 

may not be preferred over wrapped bars design for extending Keshif. Our results 

demonstrate that treemaps are not an analytically strong candidate, and they do not 

support visualizing negative values. Therefore, they are harder to generalize in a 

shared design basis, and not preferable over wrapped bars. 
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Chapter 10. Conclusion 

 

"Innovation is not about alchemy. In fact, innovation is not about invention. An 

idea may well start with an invention, but the bulk of the work and creativity is in 

that idea's augmentation and refinement. The newer the idea, the coarser the 

granularity of most analysis, and the more likely people are to say, "oh, that's just 

like X" or "that's been done before," without any appreciation for how much work 

and innovation is involved in taking an idea from concept to wide practice." 

Bill Buxton 

in “The Long Nose of Innovation”[24] 

 

This dissertation presented new approaches to improve upon rapid, effective, and 

expressive interactive visual data exploration. The contributions included (i) a new 

framework that brings a comprehensive structure to cognitive activities in data 

exploration (the Cognitive Exploration Framework), (ii) a new minimal yet 

expressive data exploration model (Aggregate Summaries and Linked Selections), 

(iii) its out-of-the-box, web-based, open-source implementation (Keshif), (iv) a 

contextual, in-situ help system to provide self-service training in visual data analysis 

(HelpIn), (v) a new visualization design for dense visualization of numeric data 

(Piled Bars) as well as an extensive evaluation of alternative designs, treemaps and 



 

239 

 

 

 

wrapped bars, and (vi) multiple user evaluations, including insight-based analysis, 

barrier-based analysis, crowdsourced graphical perception, and numerous 

applications. Next, we present a summary of each aspect, along with future 

directions. 

10.1 On Cognitive Exploration Framework 

We first focused on the cognitive activities in open-ended visual data exploration, 

and presented the Cognitive Exploration Framework for visual data exploration. We 

used the framework to identify how established design guides potentially interact 

with cognition. We then demonstrated application of the framework in evaluating a 

data exploration tool by focusing on the failures and challenges. While our analysis 

exemplify a range of barriers tied to the framework (some of which are potentially 

addressable by incremental design improvements), it also raises questions about how 

to better support analytical goal formation and analytical evaluations by design. To 

move beyond the casual setting of our demonstrative user evaluation and to observe 

complex activities, future studies may increase training, motivation, domain 

knowledge and skills of the participants. Identifying the influence across cognitive 

stages and quantifying the differences in efforts can further guide better design of 

our tools, allowing us to explore data in depth more rapidly. 
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10.2 On the Data Exploration Model and Keshif, its implementation 

We presented a minimal yet expressive model for rapid tabular data exploration 

using aggregate summaries and linked selections. This model constrains the search 

space for visualization through aggregate glyphs, and the search space for interactive 

querying through aggregate selections, enabling comparison of data distributions. 

Our implementation of this model, Keshif, is an out-of-the-box web-based tool that 

supports authoring visual data browsers from raw data, and interactively exploring 

relations in a unified, linked interaction across summaries and individual records. 

We validate our system by (a) presenting samples from 160+ public datasets 

imported to Keshif across many domains, (b) discussing a sample use case in 

journalism domain, and (c) results from an insight-based user study with visual 

analytics novices under a short-term casual use, supporting that Keshif can be 

rapidly learned and used to reach data-driven insights. 

10.3 On AggreSet: Set-Typed Data Exploration 

As a part of the proposed model, we presented AggreSet, an interactive visualization 

technique for exploring relations in set-typed and other attributes of multivariate 

datasets using a rich, scalable, clutter-free visual interface. AggreSet improves upon 

existing set visualization approaches using data aggregation that gracefully scales to 

larger set counts. The set-matrix improves the non-overlapping co-occurrence matrix 

design with advanced visual encodings for set-typed data, and with interactions that 
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reveal higher order relationships. In the future, the data model and design of 

AggreSet can be extended to support set-dependent attributes by storing extra 

information along with the set membership relation. For example, the simple set-

typed data model can encode the club memberships of a person, yet cannot encode 

the join-date and cost of each membership. Set memberships can also change in 

time, requiring focused, topological analysis through time dimension. Representing 

fuzzy set memberships is also another challenge. Finally, we are also interested in 

exploring how our mouse-based interaction model can be extended to other types of 

interaction, particularly multi-touch. 

10.4 On HelpIn: Contextual In-Situ Help 

To improve self-service training and help for visual data interfaces, we presented 

HelpIn, a contextual in-situ help system. HelpIn uses data and visualization features, 

in addition to application and action history context, to find relevant help material, 

and to present answers that are integrated and responsive to the active interface and 

dataset. We identified five modes to seek for help—Point & Learn, Topic Listing, 

Overview, Guided Tour, and Notifications—, as well as contextual approaches to 

support both help seeking and help comprehension. While our experiment with 

participants of majority data analytics novices show that full-featured HelpIn did not 

improve task performance overall compared to a non-contextual version of the same 
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help material, both performance and subjective feedback highlights the utility of 

using Point&Learn, one of the modes, to seek help and to perform data analysis. 

10.5 On Dense Visualization of Numeric Data And Piled Bars 

Finally, we discussed and evaluated three alternative chart designs for dense 

visualizations of numeric data. We compared two multi-column bar charts, wrapped 

bars and piled bars, with treemaps as a non-hierarchical space-filling approach. We 

analyzed the design characteristics of these techniques in depth under various use 

cases and settings. We evaluated perceptual characteristics of the alternatives using 

crowdsourced graphical perception experiments based on comparison, ranking, and 

overview tasks. Our results suggest that treemaps is not an optimal choice, while 

commonly employed for non-hierarchical data outside its primary design purpose. 

Wrapped bars performed with high accuracy across all tasks. Piled bars did not 

outperform wrapped bars or treemaps except for comparison task with strong 

background stimulus. This is likely due to its unconventional and overlapping 

design, and the limited training opportunities in online crowdsourced experiments. 

Given its higher resolution data encoding design, it carries the potential to improve 

perceptual accuracy with trained perception and additional cues such as scale ticks 

and labels. In a broad sense, the results support that using treemaps, or potentially 

any visualization, outside the context for which it was originally designed, may be 
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less effective compared to targeted designs that build upon the characteristics of data 

and visual perception. 

10.6 Remarks 

While this thesis spans over 250 pages with many chapters, figures and evaluations, 

there are some concepts not included in the work, and words not included in the 

body of this thesis. I provide some of the reasons below. 

1) Some of the left-out concepts or ideas were not relevant within the purpose of 

this work. This relates most profoundly to the design of exploration model and its 

implementation. For example, Keshif, or its model, does not necessarily aim to 

support all chart types, some of which may not be analytically strong (such as 

wordclouds), or complex for the general needs (such as parallel coordinates). This is 

akin to a sculpture removing material that is not part of the core message s/he wishes 

to communicate, or for the viewer to experience. This thesis includes arguments as 

to why having such extraneous material, or unfounded choices in visual design, may 

have negative impact on the cognitive process in data exploration, either through the 

cost of decision making (bad decisions) and lower graphical perception accuracy. 

Task that were non-essential for data exploration, such as visualization for data 

presentation, were also left out of the targeted used cases. The presented, generic and 

systematic solution also does not restrict exploration spaces targeting a single 

dataset, domain, and audience. 



 

244 

 

 

 

2) While I worked on the ideas presented in this dissertation for over three years, 

this was still not enough time to explore all the potentials of what is proposed in this 

dissertation. Specifically, numerical, categorical, spatial (based on categories), and 

simple temporal data is not how we fully describe our world. There are time-series 

that describe an individual variable, spatial data that is not based on named regions 

(such as city names), but on a simple point on earth, relations across variables that 

need to be explored (such as movement patterns to/from different locations). My 

belief is the presented model can be extended to many of these other settings, but 

this thesis does not aim to present a formal proof. On a personal note, I found such 

aims to create formal design spaces ambitious yet impractical, and easily misguiding 

the researchers and the practitioners. Such formulations create crippled goals of 

filling in the blanks in some technical design space, where explicit, or implicit, 

assumptions on one side of an equation or diagram may not apply to other sides. 

From my personal experience, I can also note that each significant step in this thesis 

required taking a step back and refining the model or implementation, and 

challenging the assumptions of this work. Therefore, I claim no more than what is 

proposed in this thesis, but I suggest that the ideas can be extended to support new 

data types, and new tasks, one careful step at a time, with utmost care about the 

systematic consistency, maintaining minimalism and clarity in design, and the paths 

to failure when adding new features. 
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3) Another reason is the limits of my knowledge, experience, and perspective. 

While performing the work shared on this dissertation, I was on a journey where 

each dataset I studied, collaboration I engaged in, book or paper I read had the 

potential to transform some components of my work, or how I evaluated or 

communicated its value. As I know the transformations will continue without a 

doubt, and that others will hopefully build upon some of the presented ideas, this 

thesis will be a step towards the larger motivations and human-centered approach of 

this thesis. While this chapter concludes the body of this thesis, the material and 

ideas are not yet concluded, nor they may never be in my lifespan. 

To summarize, this thesis contributed to our understanding on how to create 

effective visual and interactive data interfaces by focusing on human-facing 

challenges including design, cognition, perception, and the highly dynamic nature of 

data exploration. Particularly, our user studies on insight-based methodology 

(Section 7.2) suggests that novices using Keshif, a systematic, minimal yet 

expressive data exploration tool, can perform with similar insight throughput 

compared to more skilled audiences using more complex tools. The Cognitive 

Exploration Frameworks shows a high-level, comprehensive, new look at cognitive 

activities in data exploration, AggreSet demonstrated an improved and integrated 

set-typed data exploration model, HelpIn has shown how help material could be 

directly embedded contextually into data applications. Lastly, we have shown that 

transferring practices and solutions across different contexts (such as from 
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hierarchical to non-hierarchical treemaps) may not lead to effective outcomes, and 

alternative, well-targeted solutions (such as wrapped bars or piled bars) would 

perform better 

However, we have not yet reached the ideal future of no-barriers to make sense 

of data quickly and effectively. Our evaluation of the exploratory model for tabular 

data, and Keshif, was self-contained and high-level, and it did not include side-by-

side comparison to other tools, with the rationale discussed in Section 7.2.1. We 

believe longer-term, real-life use and feedback will reveal more characteristics, 

strengths, and potential weaknesses of Keshif, and future improvements can make it 

applicable to wider data types, tasks, data sizes, and form factors, extending its 

systematic and minimalist design foundation. The Cognitive Exploration Framework 

does not propose new guidelines, although it suggest that high-level planning and 

assessment of data analysis activities are critical and currently not well supported or 

studied. Our evaluation of dense visualization for numeric data was constrained to 

fixed chart area, and a crowdsourced setting with lesser control and learning 

capabilities than a lab study. One of the broader challenges is enabling the broad 

public to truly understand, and analyze, data, with its strengths and limitations, 

which we believe remains a cognitive, design-driven, social, educational, and 

technical endeavor.  
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Glossary 

Aggregate: A group of records that share a data characteristic / feature, such as the 

same categorical value(s), a numerical/temporal value within a specific range, a 

missing value, etc. Data selections (queries) also generate record aggregations. 

Attribute: A measurement that describes an aspect of a record. An attribute may 

exist in the raw data, or may be calculated using existing raw data of a record. 

Authoring: The actions that relate to creating and modifying a data browser (such as 

adding/removing summaries, adjusting panels, adding calculated attributes, 

customizing the style and presentation features, etc.). 

Calculated Attribute: An attribute that is calculated using existing (raw) data 

attributes using a formal language specification (such as JavaScript). 

Data Browser: Combination of interactive data representations (summaries and 

record display) in Keshif. Excludes available attributes panel of authoring mode. 

Exploration: The interactive, dynamic dialogue between the user and the data in 

search for data-driven knowledge (insights). 

Glyph: A visual object that represents a single record or a record aggregate.  

Insight: An individual observation about the data by the participant, a unit of 

discovery [122], a data-driven knowledge. 

Interaction: The communication (dialogue) between the data and the user. 
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Keshif: A data exploration environment (DEE). In contrast to Visualization Design 

Environments (VDEs), a data exploration environment offers a data exploration 

space with a fixed visualization and interaction design, rather than offering a highly 

flexible and customizable visualization and interaction design space. 

Keshif API: The human and machine-readable representation of a Keshif Browser 

specification. It is based on JavaScript. The configurations can be stored in JSON 

(JavaScript Object Notation) format as well. 

Measure Label: The textual representation of the computed measure metric of an 

aggregate. It can be presented in absolute or percent value (Measure Label Mode). 

Measure Metric: The computed numerical value that represents a characteristic of 

an aggregate. For example, count of records, sum of a numeric attribute (such as $ 

cost), or average of a numeric attribute (such as age). 

Record: A single observation, event, object, which can be composed of multiple 

attributes. 

Record Display: Individual representation of records in the database. The records 

can be displayed in a list (grid), map, or as a node-link diagram. 

Selection: A user-initiated query of an aggregate or a record. It includes filtering, 

highlighting, and comparison selections for aggregates, and mouse-over selection for 

an individual record. 

Summary: A visual data representation that summarizes the distribution and 

characteristics of one data attribute or feature.  
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VDE (Visualization Design Environment): Software tools that offer a graphical 

environment to create pre-defined and custom data visualizations based on rich 

visual grammars, and supports interaction and data transformation pipelines. 

Visual Scale Mode: The visual scale describes how the visual representation of the 

computed measure metric of an aggregate is visually scaled along the visual axis of 

the summary. Two modes are defined: Absolute, and part-of-filtered.  

Visualization: The purposefully organized representation of data in an abstract 

visual language. 
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Software Packages 

Keshif 

Website:  www.keshif.me  

Source code:  http://github.com/adilyalcin/keshif  

License:  BSD License 3-clause 

Technology:  JavaScript, HTML, CSS, D3 

Lines of Code:  ~12k JavaScript, ~4k LESS (CSS preprocessor) 

Maillist: http://groups.google.com/forum/#!forum/keshif  

Twitter:  http://twitter.com/keshifme  

Facebook: http://facebook.com/keshifme  

 

Chubuk 

Website:  http://adilyalcin.me/chubuk.js   

Source code:  http://github.com/adilyalcin/chubuk.js 

Experiments:  http://adilyalcin.me/chubuk.exp  

License:  BSD License 3-clause 

Technology:  JavaScript, HTML, CSS, D3 

Lines of Code:  ~750 JavaScript, ~500 LESS (CSS preprocessor). 
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