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The Laplace and Helmholtz equations are two of the most important partial differ-

ential equations (PDEs) in science, and govern problems in electromagnetism, acoustics,

astrophysics, and aerodynamics. The boundary element method (BEM) is a powerful

method for solving these PDEs. The BEM reduces the dimensionality of the problem by

one, and treats complex boundary shapes and multi-domain problems well. The BEM

also suffers from a few problems. The entries in the system matrices require computing

boundary integrals, which can be difficult to do accurately, especially in the Galerkin

formulation. These matrices are also dense, requiring O (N2) to store and O (N3) to

solve using direct matrix decompositions, where N is the number of unknowns. This can

effectively restrict the size of a problem.

Methods are presented for computing the boundary integrals that arise in the Galerkin

formulation to any accuracy. Integrals involving geometrically separated triangles are non-

singular, and are computed using a technique based on spherical harmonics and multipole

expansions and translations. Integrals involving triangles that have common vertices,



edges, or are coincident are treated via scaling and symmetry arguments, combined with

recursive geometric decomposition of the integrals.

The fast multipole method (FMM) is used to accelerate the BEM. The FMM is

usually designed around point sources, not the integral expressions in the BEM. To apply

the FMM to these expressions, the internal logic of the FMM must be changed, but this

can be difficult. The correction factor matrix method is presented, which approximates

the integrals using a quadrature. The quadrature points are treated as point sources, which

are plugged directly into current FMM codes. Any inaccuracies are corrected during a

correction factor step. This method reduces the quadratic and cubic scalings of the BEM

to linear.

Software is developed for computing the solutions to acoustic scattering problems

involving spheroids and disks. This software uses spheroidal wave functions to analytically

build the solutions to these problems. This software is used to verify the accuracy of the

BEM for the Helmholtz equation.

The product of these contributions is a fast and accurate BEM solver for the Laplace

and Helmholtz equations.
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Chapter 1: Introduction

The Laplace equation in three dimensions is one of the most important, perhaps the

most important, partial differential equations (PDEs) in science, and governs problems

in a large number of disciplines, including electrostatics [2, 3], magnetostatics, plasma

physics [4], astrophysics [5], molecular dynamics, aerodynamics [6], and even in computer

graphics for character animation [7] and collision detection [8]. The Helmholtz equation

in three dimensions is another very important PDE, and is found in problems involving

acoustics [9], electromagnetism [10], heat and other forms of diffusion, and even in the

study of gravitational waves, which were recently detected experimentally [11]. In fact,

many other equations in mathematical physics are highly related to these two PDEs, and

in many cases, can be reduced to them. These include, for example, the polyharmonic,

elasticity, and Stokes equations. Therefore, having fast and accurate numerical solvers

for these problems is important. Of course, accuracy is required for all numerical solvers,

as they should mimic reality as closely as possible. Speed is also essential. A solver that

can solve large problems on a local deskside machine in minutes (or even seconds) is

incredibly powerful. During their research and development process, a scientist or engineer

can interactively experiment with a problem to improve their design, or simply to better

understand the underlying physics.
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The Laplace and Helmholtz equations are given by, respectively,

∇2φ = 0, ∇2φ+ k2 = 0, (1.1)

where, in the Helmholtz equation, k is the wavenumber. The Laplace equation is actually

a special case of the Helmholtz equation (i.e., k = 0), so they share some of the same

properties. The boundary element method (BEM), also known as the method of moments,

is a powerful method for solving these PDEs in three dimensions [12–14]. The BEM

works by transforming the PDE from a differential equation into an integral equation using

Green’s identity:

±φ = L [q]−M [φ] , (1.2)

where L and M are the single- and double-layer potentials [15]. Green’s identity is

powerful: we can compute the potential at any point as long as we know the potential, φ,

and normal derivative, q, on the boundary. In the differential equation, we seek a solution

to the potential throughout the entire domain. However, in the integral equation, we seek a

solution to the potential and normal derivative only on the boundary. The dimensionality

of the problem is, therefore, reduced by one. The BEM has a number of other advantages.

The method allows for the treatment of complex boundary shapes, handles the boundary

conditions at infinity accurately, and treats thin objects and multi-domain problems well.

The equations are discretized via boundary elements (e.g., triangles, quadrilaterals,

or their curved equivalents), and when combined with boundary conditions, result in linear

systems. The entries in these matrices are based on the quadrature of the product of local
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basis functions and Green’s functions or their derivatives over the boundary elements.

In the collocation method, these entries are obtained by a quadrature of the Green’s

function integrand over one boundary element, while in the Galerkin method, they are

obtained by a double quadrature over two boundary elements. There are advantages to

Galerkin formulations for integral equations, as they treat problems associated with kernel

singularity, and lead to symmetric and better conditioned matrices [16, 17]. However,

the Galerkin method requires the computation of double surface integrals over pairs of

triangles. There are many semi-analytical methods to treat these integrals, which all have

some issues and are discussed in this dissertation. Some of these include, to name a

few, singularity subtraction and “to the boundary” methods [18], singularity cancellation

methods [19], and specialized quadrature methods that are designed for the singularities

involved [20].

This dissertation presents novel methods inspired by the treatment of these kernels in

the fast multipole method for computing all the integrals that arise in the Galerkin formula-

tion to any accuracy. Integrals involving completely geometrically separated triangles are

non-singular, and are computed using a technique based on spherical harmonics and multi-

pole expansions and translations, which require the integration of polynomial functions

over the triangles. Integrals involving cases where the triangles have common vertices,

edges, or are coincident are treated via scaling and symmetry arguments, combined with

automatic recursive geometric decomposition of the integrals.

The computation of these integrals is highly parallelizable because any two integrals

are independent of each other. The parallel nature of multi-core CPUs and GPUs, therefore,

offers the opportunity for incredibly large speedups. We have parallelized our code using
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C++ and OpenMP, and also ported the C++ code to run on the GPU using CUDA.

The linear systems arising in the BEM are conventionally solved via direct matrix

decompositions. However, the system matrices are dense, requiring O (N2) storage, where

N is the number of discretization unknowns. This can effectively restrict the size of a

problem that can be solved on a given machine. For example, on a machine with 8 GB

of main memory, problem sizes are restricted to around 30,000 boundary elements. This

restriction can be avoided by not explicitly storing the matrix coefficients and recomputing

them from scratch whenever necessary, or by using out-of-core methods. However, these

alternatives are computationally inefficient. Moreover, solving the system by direct means

(e.g., LU decomposition) requires O (N3) operations. Using an iterative solver based on

Krylov subspace methods, such as GMRES, alleviates this issue somewhat, providing

an O (NiterN
2) method, where Niter is the number of iterations and O (N2) is the cost of

the matrix-vector product that is computed every iteration. However, for large N , this

quadratic scaling in both time and memory can still be prohibitive.

The fast multipole method (FMM) allows for the acceleration of many types of

matrix-vector products [21, 22], including the ones found in the BEM. The FMM acceler-

ates sums of the following form:

v(yi) =
N∑
j=1

ujΦ(yi − xj), i = 1, 2, . . . ,M. (1.3)

Computing this sum by direct means requires O (MN) operations. The FMM computes the

sum to any specified error, ε, in O (M +N) operations and storage, where the asymptotic

constant depends on the desired accuracy. This linear scaling allows for very large problem
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sizes. The FMM works by separating the matrix-vector product into two pieces, one for

far-field interactions and one for near-field interactions. The FMM accelerates the far-field

piece using spatial data structures (e.g., an octree), spherical harmonics, and multipole

and local expansions and translations. Many authors have used the FMM to accelerate the

BEM [8, 23–26].

However, the FMM is usually designed around monopole and dipole sources, not

the integral expressions that appear in the BEM. To apply the FMM to these expressions,

the internal data structures and logic of the FMM must be changed, but this can be difficult

to do. For example, computing the multipole expansions due to the boundary elements

requires computing single and double surface integrals over them. Moreover, FMM codes

for monopole and dipole sources are widely available and highly optimized, including

some that are free [27, 28]. This dissertation describes a method for applying the FMM

unchanged to the integral expressions in the BEM. This method, called the correction

factor matrix method, works by approximating the integrals using a quadrature. The

quadrature points are treated as monopole and dipole sources, which can be plugged

directly into current FMM codes. Any inaccuracies from the quadrature are corrected

during a correction factor step. The method is further accelerated in the case of the Laplace

equation by using a heterogeneous CPU/GPU FMM.

The accuracy of the FMM/GPU-accelerated BEM must be validated. In the case

of the Laplace equation, there are many problems that have analytical solutions and can

be used to verify the accuracy of the methods. For the Helmholtz equation, there are

fewer. For example, the indirect BEM is capable of treating open, infinitely thin surfaces.

These surfaces are good approximations to those often encountered in practice – those that
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are much smaller than a wavelength in one dimension, but span several in the other two.

However, there is only one analytically tractable problem posed on such a surface that has

a solution and could be used to validate the indirect BEM: an acoustic wave scattering off

a disk. The disk is actually the degenerate form of the oblate spheroid, so methods for

solving scattering problems involving oblate spheroids can also be applied to the disk. We

have developed computational software for calculating the solutions to acoustic scattering

problems involving spheroids and disks.

This software uses spheroidal wave functions to analytically build the solutions

to these problems. However, the spheroidal wave functions, which are the solutions to

the Helmholtz equation in spheroidal coordinates, are notoriously difficult to compute.

Because of this, practically no programming language comes equipped with the means

to compute them. This makes problems that require their use hard to tackle. We have

developed computational software for calculating these special functions. This software

has a number of features, including the use of arbitrary precision arithmetic to provide

greater accuracy in the computations.

The remainder of this dissertation is organized as follows. Chap. 2 states the problem

and derives the BEM, the two different formulations (direct and indirect), and the two

different methods for enforcing the boundary conditions (collocation and Galerkin). Chap.

3 describes methods for computing the boundary integrals needed by the BEM for the

Laplace equation. Chap. 4 describes methods for computing the boundary integrals needed

by the BEM for the Helmholtz equation. Chap. 5 introduces the correction factor matrix

method for accelerating the BEM using the FMM, and characterizes the accuracy and

performance of the method through several example problems. Chap. 6 describes our soft-
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ware for computing the solutions to acoustic scattering problems involving spheroids and

disks Chap. 7 explores the spheroidal wave functions, derives expressions for computing

them, and documents our software for computing them accurately. Chap. 8 concludes

and summarizes this dissertation, and discusses possible future work. Appx. A derives

the contour integration method, which is used for computing the collocation integrals in

the BEM for the Laplace equation. Finally, Appx. B gives an overview of the spherical

harmonics, which are used in Chap. 3 for computing the Galerkin integrals in the BEM for

the Laplace equation.
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Chapter 2: Problem Statement

2.1 Direct Boundary Element Method

Consider the following boundary value problem (BVP):

∇2φ (x) = 0 or ∇2φ (x) + k2φ (x) = 0, x ∈ Ω, (2.1)

where, in the case of the Helmholtz equation, k is the wavenumber. General boundary

conditions are enforced on the boundary:

α (x)φ (x) + β (x) q (x) = γ (x) , x ∈ Γ, (2.2)

where

q (x) =
∂φ

∂n
(x) = (n · ∇x)φ (x) (2.3)

is the normal derivative. The boundary can be arbitrarily shaped, even made of several

disconnected boundaries, but they must all be closed (see Fig. 2.1). For external problems,

the potential should decay to zero at large distances:

lim
|x|→∞

φ (x) = 0. (2.4)
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Figure 2.1: Several different types of boundaries in the direct BEM.

In the case of the Helmholtz equation, the potential should be composed of outgoing waves

only. The Sommerfeld radiation condition provides such a constraint:

lim
|x|→∞

|x|
(
dφ

d |x| (x)− ikφ (x)

)
= 0. (2.5)

To solve the BVP, we use a direct boundary integral formulation called the Green’s

identity formulation. Using Green’s identity, the partial differential equation (PDE) is

transformed from a differential equation into an integral equation:

±φ (x) = L [q] (x)−M [φ] (x) , x /∈ Γ, (2.6)

where

L [q] (x) =

∫
x′∈Γ

q (x′)G (x− x′) dS (x′) , (2.7)

M [φ] (x) =

∫
x′∈Γ

φ (x′) (n′ · ∇x′G (x− x′)) dS (x′) (2.8)

are the single- and double-layer potentials [15], respectively, and G (r) is the Green’s
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function for the PDE, either 1/ (4π |r|) for the Laplace equation or exp (ik |r|) / (4π |r|)

for the Helmholtz equation. The ± in Eq. (2.6) should be a + for internal problems and

a − for external problems. Green’s identity is incredibly powerful: we can compute the

potential at any point not on the boundary as long as we know the potential and normal

derivative on the boundary. Due to the behavior of the double-layer potential, for points on

the boundary, we have

±1

2
φ (x) = L [q] (x)−M [φ] (x) , x ∈ Γ. (2.9)

In the differential equation, we seek a solution to the potential governed by the PDE

throughout the entire domain. However, in the integral equation, we seek a solution to the

potential and normal derivative only on the boundary. The dimensionality of the problem

is, therefore, reduced by one. Another advantage of the BEM is that the expression in

Eq. (2.6) automatically satisfies the original partial differential equation. Moreover, the

Green’s function satisfies the boundary conditions at infinity, so as long as the potential

and normal derivative on the boundary are bounded and finite, the single- and double-layer

potentials will satisfy them as well. Thus, we need only concern ourselves with searching

for the potential and normal derivative on the boundary that satisfy the remaining boundary

conditions.

In order to make the problem computationally tractable, the boundary is discretized

using planar triangular elements. By doing so, the integrals over the original boundary

become sums of integrals over these triangles, and instead of searching for a solution to

the potential and normal derivative on the original boundary, we now seek a solution to
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these on the triangles. In addition, the potential, φ (x), and normal derivative, q (x), on the

triangles are each written as a linear combination of N basis functions:

φ (x) =
N∑
j=1

φjfj (x) , q (x) =
N∑
j=1

qjfj (x) . (2.10)

The discretization process and the selection of basis functions are discussed further in Sec.

2.3. We need to compute the coefficients of these basis functions so that the boundary

conditions are satisfied. In other words, we seek φ1, φ2, . . . , φN , q1, q2, . . . , and qN such

that

N∑
j=1

φj

(
M [fj]±

1

2
fj

)
−

N∑
j=1

qjL [fj] = 0, (2.11)

N∑
j=1

φjαfj +
N∑
j=1

qjβfj = γ. (2.12)

We have dropped the argument, x, for clarity (i.e., L [q] (x) becomes L [q]). In effect,

instead of searching for a solution to the original problem in an infinite-dimensional

function space, we now seek a solution to the discretized problem in a finite-dimensional

vector space. The discretization process introduces geometric and approximation errors,

which are discussed further in Chap. 5.

In the case of the Helmholtz equation, when solving external problems using the

direct formulation, the solutions are affected by so-called spurious modes. These spurious

modes are the solutions to the internal problem for the same geometry whose potential or

normal derivative is zero on the boundary. Because they are zero, they do not interfere with
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the boundary conditions, but they nevertheless infect the solution away from the boundary.

There are many methods for suppressing these spurious modes. One popular method is to

add additional constraints to the system by placing points inside the boundary, and forcing

the potential at these points to be zero [29]. Another method uses Maue’s identity, which

is given by

±1

2
q (x) = L′ [q] (x)−M ′ [φ] (x) , (2.13)

where

L′ [σ] (x) = (n · ∇x)

∫
x′∈Γ

σ (x′)G (x− x′) dS (x′) , (2.14)

M ′ [µ] (x) = (n · ∇x)

∫
x′∈Γ

µ (x′) (n′ · ∇x′)×G (x− x′) dS (x′) . (2.15)

Linearly combining Green’s identity and Maue’s identity yields

±1

2
(φ (x) + λq (x)) = (L+ λL′) [q] (x)− (M + λM ′) [φ] (x) . (2.16)

Burton and Miller showed in [15] that as long as Im {λ} 6= 0, the solution will contain

no spurious modes. Due to their work, this formulation is usually called the Burton-

Miller formulation. A third approach for suppressing the spurious modes is the indirect

formulation, which is described in Sec. 2.2, and is ultimately what we used in the case of

the Helmholtz equation.
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2.1.1 Collocation Method

The collocation method [30,31] works by enforcing the boundary conditions at N

matching points:

N∑
j=1

φj

(
M [fj] (xi)±

1

2
fj (xi)

)
−

N∑
j=1

qjL [fj] (xi) = 0, (2.17)

N∑
j=1

φjα (xi) fj (xi) +
N∑
j=1

qjβ (xi) fj (xi) = γ (xi) , (2.18)

where i = 1, 2, . . . , N . In this system, there are 2N equations in 2N unknowns. The

integral expressions necessary for implementing the collocation method have been derived

for piecewise constant and linear basis functions on triangular elements by many authors

[32–36]. They have also been derived for higher-order basis functions on curvilinear

elements [37]. However, many of the boundary integrals are hypersingular, which make

them difficult to compute, especially for points on the corners or edges of the boundary.

Furthermore, the resulting system matrices are non-symmetric.

The system matrix takes the following form:

S =

 U + D V

A B

 , (2.19)

13



where U, D, V, A, and B are N ×N matrices whose (i, j)th entries are given by

Ui,j = M [fj] (xi) , Di,j = ±1

2
fj (xi) , Vi,j = L [fj] (xi) , (2.20)

Ai,j = α (xi) fj (xi) , Bi,j = β (xi) fj (xi) . (2.21)

Let φ be the vector of coefficients, φ1, φ2, . . . , φN , and q be the vector of coefficients,

q1, q2, . . . , qN . The matrix-vector product, Uφ, computes the double-layer potential at the

N matching points due to the potential, φ (x), on the boundary. Likewise, the matrix-

vector product, Vq, computes the single-layer potential at the N matching points due to

the normal derivative, q (x), on the boundary. For piecewise linear basis functions, the

matrices D, A, and B, are highly sparse, while the matrices, U and V, are dense.

The right-hand side takes the following form:

b =

 0

b2

 , (2.22)

where b2 is an N × 1 column vector whose ith entry is given by b2,i = γ (xi).

In some cases, this 2N × 2N linear system can be reduced to an N × N one by

solving for either φ or q, and then solving for the other. For example, in the Dirichlet case,

the matrix, B, is zero, so φ can be computed by solving Aφ = c. Since A is highly sparse

for piecewise linear basis functions, this can usually be done relatively quickly. Once φ is

known, q can be computed by solving Vq = − (U + D)φ.
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2.1.2 Galerkin Method

The Galerkin method enforces the boundary conditions in an integral sense. The

boundary integral equations are multiplied by each of the N basis functions and integrated

over the boundary a second time:

N∑
j=1

φj

∫
Γ

fi

(
M [fj]±

1

2
fj

)
dS −

N∑
j=1

qj

∫
Γ

fiL [fj] dS = 0, (2.23)

N∑
j=1

φj

∫
Γ

αfifjdS +
N∑
j=1

qj

∫
Γ

βfifjdS =

∫
Γ

fiγdS, (2.24)

where i = 1, 2, . . . , N . In this system, there are 2N equations in 2N unknowns. By

integrating over the boundary a second time, all of the hypersingular integrals become

weakly singular. Moreover, the system matrices arising in the Galerkin method are typically

symmetric, better conditioned, and have better convergence properties [16,17]. However,

the extra integral over the boundary complicates the computation of the entries in the

system matrix.

The system matrix takes the same form as in the collocation method, but the entries

in the N ×N matrices, U, D, V, A, and B, are given by

Ui,j =

∫
Γ

fiM [fj] dS, Di,j = ±1

2

∫
Γ

fifjdS, Vi,j =

∫
Γ

fiL [fj] dS, (2.25)

Ai,j =

∫
Γ

αfifjdS, Bi,k =

∫
Γ

βfifjdS. (2.26)

The matrix-vector product, Uφ, integrates the product of the double-layer potential and

15



each of the N basis functions over the boundary. Likewise, the matrix-vector product, Vq,

integrates the product of the single-layer potential and each of the N basis functions over

the boundary. For piecewise linear basis functions, the matrices D, A, and B, are highly

sparse, while the matrices, U and V, are dense.

The right-hand side takes the same form as in the collocation method, but the entries

in the N × 1 column vector, b2, are given by

b2,i =

∫
Γ

fiγdS. (2.27)

Like in the collocation method, in some cases, this 2N × 2N linear system can be

reduced to an N × N one by solving for either φ or q, and then solving for the other.

For example, in the Dirichlet case, the matrix, B, is zero, so φ can be computed by

solving Aφ = c. Since A is highly sparse for piecewise linear basis functions, this can

usually be done relatively quickly. Once φ is known, q can be computed by solving

Vq = − (U + D)φ.

In the Galerkin method, the boundary integral equations are multiplied by each of

the N basis functions and integrated over the boundary a second time. By choosing the

test functions to be the same as the basis functions, the resulting system matrices are

symmetric, which have a number of nice properties. In general, the test functions can be

chosen more or less arbitrarily, so long as they are orthogonal to each other and lead to

a nonsingular system matrix. In particular, choosing the test functions to be the Dirac

delta functions centered at the N matching points from the collocation method causes the

method to reduce to the collocation method.
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Figure 2.2: Several different types of boundaries in the indirect BEM: Γ1 is closed; Γ2 is
closed, but contains another boundary, Γ3, also closed; Γ4 and Γ5 form a closed region, but
this region is divided into two by Γ6; and Γ7 is open.

2.2 Indirect Boundary Element Method for Thin Surfaces

The direct BEM requires that all boundaries be closed. This makes modeling very

thin surfaces difficult, as the boundary elements must be made very small to account for

the reduced thickness. Making the elements very small requires using many more of them,

leading to larger meshes, which require more time to solve. Also, the direct BEM can

typically only solve either the internal problem or the external problem, but not both at the

same time. Coupling an internal problem and external problem is possible, but requires

linking two separate solutions together. The indirect BEM can be used to overcome these

issues, allowing for double-sided and open boundaries.

Consider the same BVP from before:

∇2φ (x) = 0 or ∇2φ (x) + k2φ (x) = 0, x ∈ Ω. (2.28)
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General boundary conditions are enforced on both sides of the boundary:

α+
k (x)φ+ (x) + β+

k (x) q+ (x) + α−k (x)φ− (x) + β−k (x) q− (x) = γk (x) , x ∈ Γ,

(2.29)

where k = 1, 2. The boundaries can be closed or open (see Fig. 2.2). For closed boundaries,

the exterior side of the boundary is the “+” side and the interior side is the “−” side. For

open boundaries, since there is no inside or outside, designating each side of the boundary

as “+” or “−” can be done arbitrarily. The values, φ+ and φ−, are the potentials on the

“+” and “−” sides of the surface, respectively. Likewise, the values, q+ and q−, are the

normal derivatives of the potential on the “+” and “−” sides of the surface, respectively,

and are given by

q± =
∂φ±

∂n±
=
(
n± · ∇x

)
φ±, (2.30)

where n± = ∓n (i.e., n+ goes from the “+” side to the “−” side, and vice versa). The

potential should decay to zero at large distances:

lim
|x|→∞

φ (x) = 0. (2.31)

In the case of the Helmholtz equation, the potential should be composed of outgoing waves

only. The Sommerfeld radiation condition provides such a constraint:

lim
|x|→∞

|x|
(
dφ

d |x| (x)− ikφ (x)

)
= 0. (2.32)

To solve the BVP, we use an indirect boundary integral formulation called the layer
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potential formuation. The PDE is transformed from a differential equation into an integral

equation:

φ (x) = L [σ] (x) +M [µ] (x) . (2.33)

The single-layer potential, L [σ] (x), is the potential due to the monopole source density

distribution, σ (x), over the boundary. Likewise, the double-layer potential, M [µ] (x), is

the potential due to the dipole source density distribution, µ (x), over the boundary. In the

direct formulation, we seek the potential and normal derivative on the boundary, which

we can use to compute the potential everywhere else. In the indirect formulation, we

seek the source density distributions, σ (x) and µ (x), over the boundary that give rise to

that potential. Thus, we must search for the source density distributions that satisfy the

boundary conditions. To do this, we express the potential and normal derivative on either

side of the boundary in terms of the source density distributions. Jump conditions provide

such a relationship:

φ± (x) = L [σ] (x) +M [µ] (x)± 1

2
µ (x) , (2.34)

q± (x) = ∓L′ [σ] (x)∓M ′ [µ] (x) +
1

2
σ (x) . (2.35)

Plugging the expressions for φ± and q± into the boundary conditions and rearranging,

ak (L [σ] +M [µ]) + bk (L′ [σ] +M ′ [µ]) + ckσ + dkµ = γk, (2.36)
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where

ak = α+
k +α−k , bk = −β+

k +β−k , ck =
1

2

(
β+
k + β−k

)
, dk =

1

2

(
α+
k − α−k

)
, (2.37)

and k = 1, 2. We have dropped the argument, x, for clarity (i.e., L [σ] (x) becomes L [σ]).

Like in the direct formulation, in order to make the problem computationally

tractable, the boundary is discretized using planar triangular elements. By doing so,

the integrals over the original boundary become sums of integrals over these triangles,

and instead of searching for a solution to the source density distributions over the original

boundary, we now seek a solution to these over the triangles. In addition, the source density

distributions, σ (x) and µ (x), over the triangles are each written as a linear combination

of N basis functions:

σ (x) =
N∑
j=1

σjfj (x) , µ (x) =
N∑
j=1

µjfj (x) . (2.38)

The discretization process and the selection of basis functions are discussed further in Sec.

2.3. We need to compute the coefficients of these basis functions so that the boundary

conditions are satisfied. In other words, we seek σ1, σ2, . . . , σN , µ1, µ2, . . . , and µN such

that
N∑
j=1

σjAk [fj] +
N∑
j=1

µjBk [fj] = γk, (2.39)

where

Ak [fj] = akL [fj] + bkL
′ [fj] + ckfj, Bk [fj] = akM [fj] + bkM

′ [fj] + dkfj, (2.40)
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Figure 2.3: Each triangle has three linear basis functions, one per vertex.

and k = 1, 2. In effect, instead of searching for a solution to the original problem in an

infinite-dimensional function space, we now seek a solution to the discretized problem in

a finite-dimensional vector space. The discretization process introduces geometric and

approximation errors, which are discussed further in Chap. 5.

Like in the direct BEM, the collocation method or the Galerkin method can be used

to enforce the boundary conditions. The same procedures from Secs. 2.1.1 and 2.1.2 can

be used to derive the resulting linear systems. In particular, in some cases, the resulting

2N × 2N linear systems can be reduced to N ×N ones by solving for one of the source

density distributions, and then solving for the other. For example, in the Dirichlet case,

where the potential is specified on both sides of the boundary, the dipole source density

distribution, µ (x), can be computed by calculating the difference in potential from the “−”

side to the “+” side of the boundary.

2.3 Selection of Basis Functions

Discretize the boundary into N triangles: T1,T2, . . . ,TN . Let xj,n be the nth vertex

of the jth triangle, Tj . The potential and normal derivative on these triangles are each
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written as a linear combination of 3N basis functions:

φ (x) =
N∑
j=1

3∑
n=1

φj,nNj,n (x) , q (x) =
N∑
j=1

3∑
n=1

qj,nNj,n (x) , (2.41)

where φj,n and qj,n are the potential and normal derivative at xj,n, and Nj,n (x) is the

corresponding linear nodal basis function (see Fig. 2.3). For x /∈ Tj , Nj,n (x) = 0.

Otherwise,

Nj,n (xj,n′) =


1 , n′ = n

0 , n′ 6= n

(2.42)

for n, n′ = 1, 2, 3. This set of basis functions allows for piecewise linear (possibly

discontinuous) potentials and normal derivatives on the triangles.

The same set of basis functions can be used in the indirect formation for the source

density distributions.

2.4 Solving the Systems of Linear Equations

2.4.1 Direct Matrix Decompositions

The linear systems arising in the BEM are conventionally solved via direct matrix

decompositions [38]. One such decomposition is the LU decomposition, where the system

matrix, S, is decomposed into two matrices:

Su = LUu = b, (2.43)
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where L is a lower triangular matrix and U is an upper triangular matrix. Having this

decomposition, an intermediate solution, v, is computed by solving Lv = b. The solution,

u, is then computed by solving Uu = v. Solving the linear systems by direct means

is straight foward. There are many efficient libraries available for doing so, including

LAPACK, which is accessible through MATLAB and many other software packages.

Also, once the LU decomposition is available, multiple right-hand sides can be solved

simultaneously.

However, in the case of the BEM, the system matrices are dense, requiring O (N2)

storage, where N is the number of discretization unknowns. This can effectively restrict

the size of a problem that can be solved on a given machine. For example, on a machine

with 8 GB of main memory, problem sizes are restricted to around 30,000 boundary

elements. This restriction can be avoided by not explicitly storing the matrix coefficients

and recomputing them from scratch whenever necessary, or by using out-of-core methods.

However, these alternatives are computationally inefficient. Moreover, computing the LU

decomposition requires O (N3) operations, plus O (N2) operations to solve for v and then

u. These steep scalings prevent the consideration of even moderately sized problems.

Therefore, we seek a solution method that scales better than quadratically and cubically,

preferably one that scales linearly. Iterative solvers, when combined with fast matrix-vector

product algorithms, such as the FMM, provide such a method.
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2.4.2 Iterative Solvers

Most iterative solvers work in roughly the same manner [39–41]. Given a starting

guess, u0, they compute a sequence of approximations, u1,u2, . . . ,uk, . . ., such that the

approximations get better and better (i.e., they converge to the exact solution). Once

the approximation is close enough to the exact solution, the solver stops and returns the

most recent approximation as the solution. Deciding when to stop is usually done by

computing the residual of the approximation, rk = Suk − b, and stopping when the norm

of this drops below some threshold. How quickly the solution converges depends on the

condition number of the system matrix, which gives a measure of how well-posed the

system matrix is, as well as which iterative method is being used. There are several types

of iterative solvers, including stationary methods (such as Jacobi and Gauss-Seidel) and

Krylov subspace methods (such as GMRES).

Krylov subspace methods are among the best performing iterative methods available

for solving linear systems. These solvers work by constructing a kth-order Krylov subspace

for a matrix, S, and vector, b:

Kk (S,b) =
{
b,Sb,S2b, . . . ,Sk−1b

}
. (2.44)

Once constructed, the solvers then search for a vector inside Kk that approximates the

solution.

However, constructing the Krylov subspace by repeatedly premultiplying b by S is

numerically unstable. This is because the sequence of vectors approaches the eigenvector
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corresponding to the largest eigenvalue of the matrix. In fact, this sequence of vectors

appears in the power method, which is designed to compute this dominant eigenvector. As

a result, the sequence of vectors, especially those near the end of the sequence, will be

nearly linearly dependent.

The Arnoldi method avoids this numerical instability by orthonormalizing the se-

quence of vectors as they are computed. The modified Gram-Schmidt process is typically

used to do this. The method normalizes the input vector: q1 = b/ |b|. The method then

computes Sq1, orthonormalizes the result against q1 to compute q2, and appends q2 to the

sequence of vectors. This is repeated n− 2 more times: compute Sqk−1, orthonormalize

the result against the previous k − 2 vectors to compute qk, and then append qk to the

sequence of vectors. The sequence of vectors are organized into a orthogonal matrix, Qn.

The iterative procedure of the Arnoldi method can be described in symbols by

SQk = Qk+1Hk, (2.45)

where Hn is an upper Hessenberg matrix that contains the coefficients computed during the

Gram-Schmidt orthonormalization process. The kth step in the Arnolid method requires

O (N2) operations to perform the matrix-vector product (or O (N) when a fast algorithm,

such as the FMM, is used), and O (kN) operations to orthonormalize the result.

GMRES uses the Arnoldi method to solve a system of linear equations. Consider

again the linear system, Su = b. The solution is approximated by uk ∈ Kk, i.e., a linear

combination of the vectors computed during the Arnolid method: uk = Qkvk. Using this
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and Eq. (2.45), we have

Qk+1Hkvk = b. (2.46)

Because the leading column of Qk+1 is b/ |b| and all of the other columns are orthogonal

to b, we have

Hkvk = |b| e1, (2.47)

where e1 = (1, 0, 0, . . . , 0). This new linear system is overdetermined, and can be solved

via least squares.

The Arnoldi method and GMRES provide an O (NiterN
α) method for solving the

original linear system, where Niter is the number of iterations and O (Nα) is the cost

of the matrix-vector product that is computed during each iteration (α = 2 for a direct

matrix-vector product algorithm, and α = 1 for a fast matrix-vector product algorithm,

such as the FMM). The number of iterations largely depends on the condition number of

the system matrix, which gives a measure of how well-posed the system matrix is. When

the system matrix is positive real definite, the norm of the residual can be bounded as a

function of the iteration number by [42]

|rk| ≤
(

1− λmin
((

S + ST)/2
)2

λmax
(
STS
) )k/2

|r0| . (2.48)

In the general case when the system matrix is not positive real definite, this bound no longer

holds, but similar bounds can be derived. The convergence of GMRES can be accelerated

by using a preconditioner. The use of a preconditioner can help reduce the condition

number of the system matrix, reducing the number of iterations required. However, in our
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computational experiments, for the problems we consider, the iteration counts are usually

no more than 100, so we do not use a preconditioner. For large N , the O (N2) behavior of

the matrix-vector product that is computed during each iteration can be prohibitive. We

use the FMM to reduce this cost to O (N) (see Chap. 5). This leaves us with an O (NiterN)

method for solving the original linear system.
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Chapter 3: Computation of Boundary Integrals for the Laplace Equation1

3.1 Introduction

The Laplace equation in three dimensions is one of the most important, perhaps the

most important, partial differential equations (PDEs) in science, and governs problems

in a large number of disciplines, including electrostatics [2, 3], magnetostatics, plasma

physics [4], astrophysics [5], molecular dynamics, aerodynamics [6], and even in computer

graphics for character animation [7] and collision detection [8]. The Galerkin boundary

element method (BEM), also known as the method of moments, is a powerful method

for solving the Laplace equation in three dimensions [12–14]. When the boundary is

discretized using triangular elements, constructing the system matrix requires computing

double surface integrals over pairs of these triangles. Because the kernels being integrated

are singular, these integrals can be difficult to compute, especially when the two triangles

are proximate, share a vertex, an edge, or are the same. Depending on the relative geometry

of the two triangles, there are many different methods for computing them. For example,

when the two triangles do not touch, the integral is completely regular and can be computed

via numerical means, e.g., Gaussian quadrature. Semi-analytical methods, where the inside

integral is computed analytically and the outside integral is computed numerically, have

1This chapter is based on our original work in [43].
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also been proposed [44, 45].

However, in the cases when the two triangles share a vertex, an edge, or are the

same, things become more complicated. There are analytical expressions for the case

when the two triangles are the same [1], but not for when they share only a vertex or an

edge. In these cases, the semi-analytical methods do not always work. This is because,

depending on the kernel being integrated, the inside integral can be hypersingular. While

there are analytical expressions available for the inside integral, these expressions are

singular along the corners and edges of the corresponding triangle. When the two triangles

share a vertex or an edge, these singularities are included in the outside integral. The usual

semi-analytical methods will not work in these cases because they are not designed to

properly handle the singularities.

The double integrals are weakly singular, so while the inside integrals may be

hypersingular and the expressions for them may be singular in some places, they are

completely integrable. Nevertheless, actually integrating them in practice can be hard.

Therefore, more sophisticated semi-analytical methods have been developed over the

years. These include: singularity subtraction and “to the boundary” techniques [18,46–51];

singularity cancellation techniques [19, 52]; specialized quadrature methods that are

designed for the singularities involved, such as those based on the double exponential

formula [20, 53]; and other regularization methods, such as the Duffy transformation

[54–56]. Many of these methods work very well, but because they all attempt to tackle the

singularity issue directly, their analysis is very involved.

In this chapter, we present a method for computing the integrals that completely

avoids the computation of singular integrals. The approach relies on several scaling
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properties of the integrals and the kernels being integrated. When two triangles share a

vertex, an edge, or are the same, the integral is decomposed into several smaller integrals,

some of which are related back to the original integral via scaling and symmetry arguments.

This is done in such a way so that only regular integrals need to be computed explicitly.

Any integrals involving singularities are computed implicitly during the procedure. The

regular integrals can be computed using standard semi-analytical methods, but in this

chapter, we also present an arbitrarily accurate approximate analytical method for doing so.

This method uses spherical harmonics and multipole and local expansions and translations.

The only source of error in the method is from truncating these expansions. However, this

error is precisely controlled by choosing the appropriate truncation number or recursively

subdividing the problem. We implemented these methods in MATLAB and C++. We

verify their accuracy, and use them to solve some example problems.

In addition, the computation of these integrals is highly parallelizable because any

two integrals are independent of each other. The highly parallel nature of GPU hardware,

therefore, offers the opportunity for incredibly large speedups. Indeed, using the GPU to

accelerate the BEM has been studied by many authors. For example, the GPU was used to

speed up monostatic scattering problems in [57], elasticity problems in [58], the Helmholtz

equation in [59], and vortex problems in [60]. We have adapted our C++ code to run on

the GPU using CUDA.
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3.2 Collocation Integrals

Enforcing the boundary conditions in the BEM using the collocation method requires

computing single- and double-layer potentials and gradients due to linear source density

distributions over triangular elements:

L (x) =

∫
x′∈T

(σ′0 + p′ · x′)G (x− x′) dS (x′) , (3.1)

M (x) =

∫
x′∈T

(σ′0 + p′ · x′) (n′ · ∇x′G (x− x′)) dS (x′) , (3.2)

∇xL (x) = ∇x

∫
x′∈T

(σ′0 + p′ · x′)G (x− x′) dS (x′) , (3.3)

∇xM (x) = ∇x

∫
x′∈T

(σ′0 + p′ · x′) (n′ · ∇x′G (x− x′)) dS (x′) . (3.4)

A method for computing these integrals, called the contour integration method, is described

in Appx. A.

3.3 Galerkin Integrals

When the boundary is discretized using linear triangular elements, the double surface

integrals are performed over pairs of these triangles. In each pair, one is called the “source”

triangle, and the other the “receiver” triangle. The inside integral is over the source triangle,

S, and the outside integral is over the receiver triangle, R (see Fig. 3.1). Thus, when
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Figure 3.1: In practice, the relative geometry of two triangles is one of the following: (a)
the two triangles do not touch; (b) they share a vertex; (c) they share an edge; or (d) they
are the same.

populating the system matrix, we need to compute integrals of the following form:

I =

∫
x∈R

(σ0 + p · x)

∫
x′∈S

(σ′0 + p′ · x′)F (x− x′) dS (x′) dS (x) , (3.5)

where σ′0 + p′ · x′ is the source density distribution over the source triangle, σ0 + p · x is

the weight function over the receiver triangle, and F (r) is the kernel being integrated. To

implement the Galerkin BEM described in Sec. 2.1.2, we need to compute this integral for

the following two kernels:

F1 (x− x′) = G (x− x′) , (3.6)

F2 (x− x′) = n′ · ∇x′G (x− x′) , (3.7)

where F1 (r) and F2 (r) correspond to the single- and double-layer potentials, respectively.

Computing the integral for these two kernels for all commonly encountered geome-

tries is the focus of this chapter. In practice, the relative geometry of the two triangles is

one of the following: (a) the two triangles do not touch; (b) they share a vertex; (c) they
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share an edge; or (d) they are the same (see Fig. 3.1). These are called the zero-, one-,

two-, and three-touch cases, respectively. In this naming scheme, the number represents

how many vertices the two triangles share.

3.4 Computation of Galerkin Integrals Using Spherical Harmonics

In the zero-touch case, because the two triangles do not touch, the double surface

integral is regular and can be computed via standard numerical or semi-analytical means.

However, in this section, we present an analytical method for computing the integral in this

case. This method was inspired by the fast multipole method, and uses spherical harmonics

and multipole and local expansions and translations. Similar methods were presented

in [25, 61] as part of fast multipole-accelerated solvers for problems in elastostatics.

However, we build on the methods described in these references by: (1) adapting them

to the kernels considered in Secs. 2.1 and 3.3; (2) computing the multipole expansion

coefficients for a triangle exactly using Gaussian quadrature; and (3) controlling the error

by adaptively truncating the multipole expansions and subdividing the problem when

necessary.

3.4.1 Derivation of Method

We want to compute the following double surface integral over a source triangle, S,

and a receiver triangle, R:

I =

∫
x∈R

(σ0 + p · x)

∫
x′∈S

(σ′0 + p′ · x′)G (x− x′) dS (x′) dS (x) . (3.8)
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y∗x∗S

R

Figure 3.2: A diagram showing how to compute the double surface integral for two
triangles that do not touch.

This section gives an analytical method for computing this integral based on spherical

harmonics expansions and translations (see Appx. B). A visual representation of the steps

in this method can be seen in Fig. 3.2.

First, expand the Green’s function as a multipole expansion:

I =

∫
x∈R

(σ0 + p · x)

∫
x′∈S

(σ′0 + p′ · x′)

×
∞∑
n′=0

n′∑
m′=−n′

Rm′∗
n′ (x′ − x∗)Sm

′

n′ (x− x∗)

× dS (x′) dS (x) .

(3.9)

where the expansion center, x∗, is near the source triangle. Ideally, x∗ should be chosen

so that the sphere centered around x∗ and completely containing the source triangle can

be made as small as possible. There are actually only four possible choices of x∗: the

midpoints of the three edges of the source triangle and the center of the source triangle’s

circumsphere. The one corresponding to the smallest sphere that completely contains the

source triangle is chosen.

Second, rearrange Eq. (3.9) by moving the double sum and the Sm′n′ outside the inside
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integral:

I =

∫
x∈R

(σ0 + p · x)
∞∑
n′=0

n′∑
m′=−n′

×
∫
x′∈S

(σ′0 + p′ · x′)Rm′∗
n′ (x′ − x∗) dS (x′)

× Sm
′

n′ (x− x∗) dS (x) .

(3.10)

The integral over the source triangle computes the expansion coefficients for the multipole

expansion that represents the potential due to the linear source distribution over the source

triangle:

I =

∫
x∈R

(σ0 + p · x)

(
∞∑
n′=0

n′∑
m′=−n′

am
′

n′ S
m′

n′ (x− x∗)

)
dS (x) , (3.11)

where

am
′

n′ =

∫
x′∈S

(σ′0 + p′ · x′)Rm′∗
n′ (x′ − x∗) dS (x′) . (3.12)

Analytical expressions for computing the integral in Eq. (3.12) are available, e.g. in [62,63].

In [64], a recursive algorithm for computing the expansion coefficients was presented: only

am
′

n′ for lower order and degree need to be computed explicitly; the others can be computed

recursively from them. However, we make the following observation: Rm′

n′ is polynomial,

so the integrand in Eq. (3.12) is polynomial. Thus, the integral can be computed exactly

via Gaussian quadrature. A similar approach was used in [6, 65], although the integration

domains in these references were lines and boxes, not triangles. We use the techniques

given in [66] for performing Gaussian quadrature over the triangles.

Third, translate the multipole expansion centered around x∗ to a local expansion
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centered around y∗, where y∗ is near the receiver triangle:

I =

∫
x∈R

(σ0 + p · x)

(
∞∑
n=0

n∑
m=−n

bmn R
m
n (x− y∗)

)
dS (x) . (3.13)

Ideally, y∗ should be chosen so that the sphere centered around y∗ and completely contain-

ing the receiver triangle can be made as small as possible. The procedure for choosing y∗

is the same as for choosing x∗. The local expansion coefficients, bmn , are computed from

the multipole expansion coefficients, am′n′ , via a multipole-to-local translation (see Appx.

B). There are several translation methods available, and a good overview of them can be

found online in [67]. For example, one popular method is the point and shoot method,

whose computational cost scales as p3.

Fourth, rearrange Eq. (3.13) by moving the double sum and the expansion coefficients

outside the integral:

I =
∞∑
n=0

n∑
m=−n

bmn c
m
n , (3.14)

where

cmn =

∫
x∈R

(σ0 + p · x)Rm
n (x− y∗) dS (x) . (3.15)

Like before, since Rm
n is polynomial, the integral in Eq. (3.15) can be computed exactly

via Gaussian quadrature.

The above analysis assumes the source distribution over the source triangle and

the weight function over the receiver triangle are linear. Higher-order basis functions,

such as quadratic or cubic functions, could be used with very few changes. Indeed, the

only change that must be made is to increase the order of the Gaussian quadrature to
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account for the increase in the degree of the integrand. The above analysis also assumes

the source and receiver surfaces are planar triangles. Arbitrary surfaces, e.g., curved

elements, would be possible provided there was an integration method for that surface.

One possible method for doing this would be to transform the surfaces into triangles via

a change of variables, and use the same Gaussian quadrature as before. Of course, the

integrand of the transformed integral would now include the Jacobian associated with the

change of variables. In this dissertation, however, only planar linear triangular elements

are considered.

3.4.2 Error Control

The expressions derived in Secs. 3.4.1 involving multipole and local expansions must

be truncated so that they can be implemented in code. For example, the last expression

given in Sec. 3.4.1 becomes

I ≈ Ip =

p−1∑
n=0

n∑
m=−n

bmn c
m
n , (3.16)

where only p2 terms have been kept. Obviously, the expression is exact as p → ∞, but

there are truncation errors when p < ∞. These errors come from two sources: (1) the

construction of the multipole expansion at the source triangle; and (2) the translation

of the multipole expansion to a local expansion at the receiver triangle. Luckily, these

expansions converge geometrically, so these errors can be precisely controlled by picking

an appropriate value of p.

Theoretical bounds for these errors as a function of p have been derived by many
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x∗ d
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r2

Figure 3.3: The radii and distances used to compute the geometric factor, η, given in Eq.
(3.18).

authors over the years. A good overview is given in [68]. The relative error is bounded by:

ε =

∣∣∣∣Ip − II

∣∣∣∣ ≤ Aηp, (3.17)

where the error constant, A, depends on the problem being solved, and

η =
max (r1, r2)

d−min (r1, r2)
, (3.18)

where r1 is the radius of the multipole expansion’s bounding sphere, r2 is the radius of the

local expansion’s bounding sphere, and d = |y∗ − x∗| (see Fig. 3.3). Using Eq. (3.17), we

can easily pick a truncation number that gives us a desired accuracy:

p =

 log

 ε

A


/

log (η)

 , (3.19)

where dxe is the ceiling of x.

There are two issues. The number of terms in Eq. (3.16) grows as p2, so the memory

costs grow as p2 as well. In addition, the computational costs grow as p3 due to the
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Figure 3.4: These graphs shows the actual relative errors when computing the double
surface integrals over 1,000 randomly generated pairs of triangles using the analytical
method for several different error bounds. In all cases, these errors were below the error
bounds.

multipole-to-local translation (assuming the point and shoot method is used). In the event

that p becomes too large, we divide the larger triangle into four smaller triangles and

recurse. We do the same in the event that the two bounding spheres overlap.

Second, while values of A have been derived for special cases, such as point sources,

they have not for the case of triangles. Instead of attempting to derive such a value

analytically, we computed one experimentally. The experiment worked as follows. We

generated 10,000 pairs of randomly placed triangles, where, in each pair, the two triangles

did not touch. For each pair, we computed I using a semi-analytical method (using a high-

order Gaussian quadrature for the outside integral) and Ip for p = 1, 2, . . . , 10. We chose

a value for A so that the experimental data satisfied Eq. (3.17). We ran this experiment

several times, and found A to be between 0.3 and 0.4, so we conservatively set A = 0.4.

We ran a second experiment to verify that A = 0.4 works well. The experiment
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worked as follows. We generated 1,000 pairs of triangles like before. For each pair, we

computed I using the analytical method for several different choices of ε: 10−2, 10−3,

10−4, and 10−5. Again, we used the value of I returned by the semi-analytical method

as the reference value. In Fig. 3.4, the actual errors (along the y axis) for each pair of

triangles (along the x axis) are plotted for each choice of ε (the different colored curves).

In all cases, the realized errors are below the desired error bounds.

The speed of the analytical method depends strongly on the truncation number. The

number of expansion coefficients grows as p2, and the computational cost of the analytical

method grows as p3. For pairs of triangles that are close to each other and require a large p,

the analytical method can be slower than semi-analytical methods. However, for pairs of

triangles that are far away from each other, p will be small, so the analytical method will

be faster. In addition, the method can be used as part of a fast multipole-accelerated BEM.

The method is used to compute the interactions between large groups of triangles instead

of between pairs of individual triangles. In this case, the analytical method has great value

and can provide tremendous speedups, as was seen in the references given at the beginning

of Sec. 3.4.

3.5 Computation of Galerkin Integrals Using Subdivision and Scaling

Method

In the one-, two-, and three-touch cases, because the two triangles touch, the double

surface integrals are not regular, so they cannot be computed using standard numerical

or semi-analytical means, or even the analytical method described in Sec. 3.4.1. In this
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Figure 3.5: A diagram showing the process for transforming the pair of triangles, S and R,
into the pair of triangles, S∗ and R∗.

section, we present a novel method for dealing with these integrals. The approach relies

on several scaling properties of the integrals and the kernels being integrated. The method

works in the following way: (1) the integral is broken up into several smaller integrals; (2)

some of these integrals are related back to the original integral via scaling and symmetry

arguments; and (3) the terms are rearranged to yield an expression for the original integral

that only requires computing regular integrals explicitly (all other integrals are computed

implicitly).

3.5.1 Preliminaries: Scaling Results

We want to compute the following double surface integral over a source triangle, S,

and a receiver triangle, R:

I =

∫
x∈R

(σ0 + p · x)

∫
x′∈S

(σ′0 + p′ · x′)F (x− x′) dS (x′) dS (x) , (3.20)

41



where F (r) is any kernel that has the following scaling property:

F (αr) = s (α)F (r) . (3.21)

To begin, let us break the integral into four smaller integrals by expanding the product of

the two linear functions:

I =

∫
x∈R

∫
x′∈S

× (σ0σ
′
0 + σ0 (p′ · x′) + (p · x)σ′0 + (p · x) (p′ · x′))

× F (x− x′) dS (x′) dS (x) ,

(3.22)

I = σ0σ
′
0I

1 + σ0I
p′ + σ′0I

p + Ip
′p, (3.23)

where

I1 =

∫
x∈R

∫
x′∈S

F (x− x′) dS (x′) dS (x) , (3.24)

Ip
′
=

∫
x∈R

∫
x′∈S

(p′ · x′)F (x− x′) dS (x′) dS (x) , (3.25)

Ip =

∫
x∈R

∫
x′∈S

(p · x)F (x− x′) dS (x′) dS (x) , (3.26)

Ip
′p =

∫
x∈R

∫
x′∈S

(p′ · x′) (p · x)F (x− x′) dS (x′) dS (x) . (3.27)

Consider two different triangles, S∗ and R∗, which, taken together, are scaled and

translated versions of S and R, also taken together (see Fig. 3.5). In other words, given a
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pair of points, x′,x ∈ S∪R, there is a corresponding pair of points, y′,y ∈ S∗ ∪R∗, given

by

y′ = α (x′ + t) , y = α (x + t) . (3.28)

Suppose we want to compute the same integral as before, except over S∗ and R∗:

I∗ =

∫
y∈R∗

(σ0 + p · y)

∫
y′∈S∗

(σ′0 + p′ · y′)F (y − y′) dS (y′) dS (y) . (3.29)

The integrand is exactly the same as before. The only thing we have changed is the

integration domain from S× R to S∗ × R∗. Like before, let us break the integral into four

smaller integrals by expanding the product of the two linear functions:

I∗ = σ0σ
′
0I

1
∗ + σ0I

p′

∗ + σ′0I
p
∗ + Ip

′p
∗ , (3.30)

where I1
∗ , I

p′
∗ , Ip∗ , and Ip′p∗ are like their non-starred versions from before, except for the

different integration domain.

Theorem 1. The four integrals over S∗ and R∗, I1
∗ , I

p′
∗ , Ip∗ , and Ip′p∗ , can be expressed in

terms of the four integrals over S and R, I1, Ip′ , Ip, and Ip′p:

I1
∗ = s (α)α4I1, (3.31)

Ip
′

∗ = s (α)α5
(
Ip
′
+ (p′ · t) I1

)
, (3.32)
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Ip∗ = s (α)α5
(
Ip + (p · t) I1

)
, (3.33)

Ip
′p
∗ = s (α)α6

(
Ip
′p + (p · t) Ip′ + (p′ · t) Ip + (p · t) (p′ · t) I1

)
. (3.34)

Proof. To prove Eqs. (3.31) - (3.34) in Theorem 1: (1) make the change of variables in

Eq. (3.28); (2) use the scaling property of F (r) in Eq. (3.21); and (3) break the resulting

integral into one or more integrals that are equal to the original four integrals, I1, Ip′ , Ip,

and Ip′p.

To prove Eq. (3.31):

I1
∗ =

∫
y∈R∗

∫
y′∈S∗

F (y − y′) dS (y′) dS (y) , (3.35)

I1
∗ =

∫
x∈R

∫
x′∈S

F (α (x + t)− α (x′ + t)) dS (α (x′ + t)) dS (α (x + t)) , (3.36)

I1
∗ = s (α)α4

∫
x∈R

∫
x′∈S

F (x− x′) dS (x′) dS (x) , (3.37)

I1
∗ = s (α)α4I1. (3.38)

To prove Eq. (3.32):

Ip
′

∗ =

∫
y∈R∗

∫
y′∈S∗

(p′ · y′)F (y − y′) dS (y′) dS (y) , (3.39)

Ip
′

∗ = s (α)α5

∫
x∈R

∫
x′∈S

(p′ · (x′ + t))F (x− x′) dS (x′) dS (x) , (3.40)

Ip
′

∗ = s (α)α5
(
Ip
′
+ (p′ · t) I1

)
. (3.41)
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Figure 3.6: One-Touch Case. A diagram showing how to compute the double surface
integral for two triangles that share a vertex.

The analysis to prove Eq. (3.33) is the same as for Eq. (3.32).

To prove Eq. (3.34):

Ip
′p
∗ =

∫
y∈R∗

∫
y′∈S∗

(p · y) (p′ · y′)F (y − y′) dS (y′) dS (y) , (3.42)

Ip
′p
∗ = s (α)α6

∫
x∈R

∫
x′∈S

(p · (x + t)) (p′ · (x′ + t))F (x− x′) dS (x′) dS (x) ,

(3.43)

Ip
′p
∗ = s (α)α6

(
Ip
′p + (p · t) Ip′ + (p′ · t) Ip + (p · t) (p′ · t) I1

)
. (3.44)

3.5.2 One-Touch Case

Consider the one-touch case in Fig. 3.6. Without loss of generality, assume the

vertex that the two triangles share is located at the origin (i.e., p1 = 0). We divide each

triangle into a triangle and a quadrilateral: the source triangle, S, is divided into 1′ and 2′,
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and the receiver triangle, R, is divided into 1 and 2. Note that 1′ and 1 are similar to S and

R (1/2 the size), respectively. We break the integral into three smaller integrals over these

shapes.

Let us look at I1:

I1 = I1
1′1 + I1

1′2 + I1
2′R. (3.45)

The subscripts denote the surfaces of integration. For example, I1
1′1 is the integral over 1′

and 1. Similarly, I1
2′R is the integral over 2′ and R. The I1 without a subscript is the original

integral over S and R. In Eq. (3.45), the two integrals, I1
1′2 and I1

2′R are zero-touch integrals.

Because we know how to compute them, let us combine them into a single integral:

I1 = I1
1′1 + I1

remainder. (3.46)

The integral, I1
1′1, however, has the same problem as the original integral: 1′ and 1 share a

vertex. Fortunately, 1′ and 1 are scaled and translated versions of S and R. We derived in

Theorem 1 that I1
∗ = s (α)α4I1. Since the pair of triangles, 1′ and 1, is 1/2 the size of the

original pair, S and R, α = 1/2, so

I1
1′1 = s

(
1

2

)
1

16
I1. (3.47)

Inserting this into Eq. (3.46) and rearranging,

I1 =

(
1− s

(
1

2

)
1

16

)−1

I1
remainder. (3.48)
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The integral, I1
1′1, is computed implicitly in this expression.

Now, let us look at Ip′:

Ip
′
= Ip

′

1′1 + Ip
′

remainder, (3.49)

where Ip
′

remainder = Ip
′

1′2 + Ip
′

2′R. We derived in Theorem 1 that

Ip
′

∗ = s (α)α5
(
Ip
′
+ (p′ · t) I1

)
. (3.50)

Like before, α = 1/2, but we still need to determine t. When α = 1/2, t is the point that

does not change during the scaling and translation. This is simply the vertex that the two

triangles share, so t = p1. Because we assumed that p1 = 0, t = 0 as well, so

Ip
′

11 = s

(
1

2

)
1

32
Ip
′
. (3.51)

Plugging this into Eq. (3.49) and rearranging,

Ip
′
=

(
1− s

(
1

2

)
1

32

)−1

Ip
′

remainder. (3.52)

These same procedures can be used to compute Ip and Ip′p:

Ip =

(
1− s

(
1

2

)
1

32

)−1

Ipremainder, (3.53)

Ip
′p =

(
1− s

(
1

2

)
1

64

)−1

Ip
′p

remainder. (3.54)
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Figure 3.7: Two-Touch Case. A diagram showing how to compute the double surface
integral for two triangles that share an edge.

3.5.3 Two-Touch Case

Consider the two-touch case in Fig. 3.7. Without loss of generality, assume the

midpoint of the edge that the two triangles share is located at the origin (i.e., p2 +p3 = 0).

Like in the one-touch case, we solve this problem by breaking the integral into several

smaller integrals.

Let us look at I1:

I1 = I1
1′R + I1

2′2 + I1
2′3 + I1

2′4 + I1
3′2 + I1

3′3 + I1
3′4 + I1

4′2 + I1
4′3 + I1

4′4 + I1
S1 − I1

1′1. (3.55)

The integrals, I1
1′R, I1

S1, and I1
1′1 are zero-touch integrals, and the integrals, I1

2′2, I1
2′4, I1

3′3,

I1
3′4, I1

4′2, I1
4′3, and I1

4′4, are one-touch integrals. Since we know how to compute them, let

us combine them into a single integral:

I1 = I1
2′3 + I1

3′2 + I1
remainder. (3.56)
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That leaves I1
2′3 and I1

3′2, which have the same problem as the original integral: they

correspond to pairs of triangles that share an edge. Fortunately, the pair, 2′ and 3, and the

pair, 3′ and 2, are each scaled and translated versions of the original pair, S and R. Using

Eq. (3.31) from Theorem 1, we have

I1
2′3 = s

(
1

2

)
1

16
I1, I1

3′2 = s

(
1

2

)
1

16
I1. (3.57)

Substituting these into Eq. (3.56) and rearranging,

I1 =

(
1− s

(
1

2

)
1

8

)−1

I1
remainder. (3.58)

The integrals, I1
2′3 and I1

3′2, are computed implicitly in this expression.

Now, let us look at Ip′:

Ip
′
= Ip

′

2′3 + Ip
′

3′2 + Ip
′

remainder. (3.59)

where, again, the ten integrals that we know how to compute have been combined into

Ip
′

remainder. Using Eq. (3.32) from Theorem 1, we have

Ip
′

2′3 + Ip
′

3′2 = s

(
1

2

)
1

16
Ip
′
+ s

(
1

2

)
1

32
(p′ · (t2′3 + t3′2)) I1. (3.60)

We need to determine t2′3 and t3′2. As discussed earlier, when α = 1/2, the translation

vector, t, corresponds to the point that does not change during the transformation. Thus,

for the pair, 2′ and 3, that is p2, and for the pair, 2 and 3′, that is p3. The edge that S and R
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share is centered around the origin, so t2′3 + t3′2 = 0, which means that

Ip
′

2′3 + Ip
′

3′2 = s

(
1

2

)
1

16
Ip
′
. (3.61)

Inserting this into Eq. (3.59) and rearranging,

Ip
′
=

(
1− s

(
1

2

)
1

16

)−1

Ip
′

remainder. (3.62)

The same analysis can be used for computing Ip:

Ip =

(
1− s

(
1

2

)
1

16

)−1

Ipremainder. (3.63)

Finally, let us look at Ip′p:

Ip
′p = Ip

′p
2′3 + Ip

′p
3′2 + Ip

′p
remainder. (3.64)

Using Eq. (3.34) from Theorem 1, we have

Ip
′p

2′3 + Ip
′p

3′2 = s

(
1

2

)
1

32
Ip
′p + s

(
1

2

)
1

64
((p · t2′3) (p′ · t2′3) + (p · t3′2) (p′ · t3′2)) I1.

(3.65)

The terms linear in p′ and p disappear because t2′3 + t3′2 = 0, but the other terms remain.

Plugging Eq. (3.65) into Eq. (3.64) and rearranging,

Ip
′p =

(
1− s

(
1

2

)
1

32

)−1 (
Ip
′p

remainder + ap
′p
)
, (3.66)
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Figure 3.8: Three-Touch Case. A diagram showing how to compute the double surface
integral for two triangles that are the same.

where

ap
′p = s

(
1

2

)
1

64
((p · t2′3) (p′ · t2′3) + (p · t3′2) (p′ · t3′2)) I1. (3.67)

3.5.4 Three-Touch Case

Consider the three-touch case in Fig. 3.8. In this case, the two triangles are the same.

Without loss of generality, assume that the centroids of the two triangles are located at

the origin (i.e., p1 + p2 + p3 = 0). Like in the one- and two-touch cases, we solve this

problem by breaking the integral into several smaller integrals.

Let us look at I1:

I1 =
4∑
i=1

4∑
j=1

I1
j′i. (3.68)

The integrals, I1
1′2, I1

1′3, I1
2′1, I1

2′3, I1
3′1, and I1

3′2, are one-touch integrals, and the integrals,

I1
1′4, I1

2′4, I1
3′4, I1

4′1, I1
4′2, and I1

4′3, are two-touch integrals. Like before, because we know

how to compute them, let us combine these 12 integrals into a single integral:

I1 = I1
1′1 + I1

2′2 + I1
3′3 + I1

4′4 + I1
remainder. (3.69)
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That leaves the four integrals, I1
1′1, I1

2′2, I1
3′3, and I1

4′4, which have the same problem as the

original: they correspond to pairs of triangles that are the same. Using Eq. (3.31) from

Theorem 1, we have

I1
1′1 + I1

2′2 + I1
3′3 = s

(
1

2

)
3

16
I1. (3.70)

The pair of triangles, 4′ and 4, are not only scaled by a factor of 1/2, but also rotated by

180 degrees. Because they are centered around the origin, we can achieve this rotation by

setting α = −1/2:

I1
4′4 = s

(
−1

2

)
1

16
I1. (3.71)

Substituting these into Eq. (3.69) and rearranging,

I1 =

(
1− s

(
1

2

)
3

16
− s

(
−1

2

)
1

16

)−1

I1
remainder. (3.72)

The same analysis from here and before can be used to compute expressions for Ip′ ,

Ip, and Ip′p:

Ip
′
=

(
1− s

(
1

2

)
3

32
+ s

(
−1

2

)
1

32

)−1

Ip
′

remainder, (3.73)

Ip =

(
1− s

(
1

2

)
3

32
+ s

(
−1

2

)
1

32

)−1

Ipremainder, (3.74)

Ip
′p =

(
1− s

(
1

2

)
3

64
− s

(
−1

2

)
1

64

)−1 (
Ip
′p

remainder + ap
′p
)
, (3.75)
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where

ap
′p = s

(
1

2

)
1

64
((p · t1′1) (p′ · t1′1) + (p · t2′2) (p′ · t2′2) + (p · t3′3) (p′ · t3′3)) I1,

(3.76)

and t1′1 = p1, t2′2 = p2, and t3′3 = p3.

3.5.5 Extension to Higher-Order or Curved Elements

The analysis in Secs. 3.5.1, 3.5.2, 3.5.3, and 3.5.4 assumes the source distribution

over the source triangle and the weight function over the receiver triangle are linear.

Higher-order basis functions are possible, but would require additional work to realize.

For example, constant elements require only the computation of I1. Increasing the order

to linear requires also Ip′ , Ip, and Ip′p. Moving to quadratic or cubic elements would

require more such terms. The analysis also assumes the source and receiver surfaces are

planar triangles. This assumption is crucial for the subdivision scheme to work properly.

As discussed in Sec. 3.4.1, curved elements could be realized by transforming them to

planar triangles via a change of variables. Extending the methods presented in this chapter

to higher-order or curved elements is likely possible, but we leave that as future work.

3.5.6 Implementation Details

The one-, two-, and three-touch integral computation methods described in Secs.

3.5.2, 3.5.3, and 3.5.4 are recursive in nature. A one-touch integral is decomposed into two

zero-touch integrals. A two-touch integral is decomposed into three zero-touch integrals

and seven one-touch integrals. A three-touch integral is decomposed into six one-touch
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One-Touch Case: Two-Touch Case:

Three-Touch Case:

Figure 3.9: Recursion trees for the one-touch (top left), two-touch (top right), and three-
touch (bottom) integral computation methods described in Secs. 3.5.2, 3.5.3, and 3.5.4.
The black circles, red squares, green triangles, and blue diamonds correspond to zero-,
one-, two-, and three-touch integrals, respectively.

integrals and six two-touch integrals. Recursion trees for these three cases can be seen

in Fig. 3.9. The leaves at the bottom of these recursion trees are all zero-touch integrals.

All combined, a one-touch integral requires two zero-touch integrals, a two-touch integral

requires 17, and a three-touch integral requires 114. Indeed, to compute a one-, two-, or

three-touch integral for a given kernel, we need only two things: (1) the scaling function,

s (α), associated with that kernel; and (2) a method to compute a zero-touch integral for

that kernel. For the two kernels, F1 (r) (the Green’s function) and F2 (r) (the normal

derivative of the Green’s function), needed by the Galerkin BEM and given in Sec. 3.3, we
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have both of these things. The scaling functions for the two kernels are: s1 (α) = |α|−1

and s2 (α) = α |α|−3.

In Sec. 3.4.1, we presented an analytical method for computing a zero-touch integral.

However, the analytical method is better for pairs of triangles that are relatively far away

from each other. In the present case, because the pairs of triangles are typically much

closer together, we use a semi-analytical method. In this method, the inside integral is

computed analytically, and the outside integral is computed numerically via Gaussian

quadrature. The use of the semi-analytical method introduces error, but this error can be

precisely controlled by choosing the number of quadrature points. Let Q be this number.

When computing one-, two-, and three-touch integrals, the only source of error comes from

the zero-touch integrals, so Q can be used to control the error in these cases as well. Each

zero-touch integral requires a Q-point quadrature, so the computational complexity of the

one-, two-, and three-touch integral methods scale as O (ZQ), where Z is the number of

zero-touch integrals that need to be computed in each method.

3.5.7 Numerical Examples

We ran a series of computational experiments to validate the one-, two-, and three-

touch integral computation methods described in Secs. 3.5.2, 3.5.3, and 3.5.4. There are

two kernels that need to be integrated: (1) F1 (r), the Green’s function; and (2) F2 (r), the

normal derivative of the Green’s function.

To validate that the methods work for F1 (r), we compared them to an exact method

that was developed in [1] for computing the double surface integral in the three-touch case.
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Figure 3.10: Comparison between the three-touch method described in Sec. 3.5.4 and the
Eibert method described in [1].

We call this method the Eibert method. Because our three-touch method exercises our

zero-, one-, and two-touch methods, this comparison provides a validation for all four

methods.

The experiment worked as follows. We generated 10,000 randomly shaped triangles,

and computed the three-touch integral for each using the Eibert method. Then, we

computed the same integrals using our method with varying degrees of accuracy. As

discussed in the previous section, the accuracy is governed by Q, which is the number

of quadrature points used during the Gaussian quadrature in the zero-touch case. We

varied the accuracy from low (Q = 1) to high (Q = 1024). After doing so, the triangles

were divided up into four groups based on the largest interior angle, θ: (1) acute (nearly

equilateral) triangles (θ ≤ 75◦); (2) right triangles (75◦ ≤ θ ≤ 90◦); (3) slightly obtuse

triangles (90◦ ≤ θ ≤ 120◦); and (4) very obtuse triangles (θ ≥ 120◦). For each group, we

plotted the maximum relative error in that group as a function of Q (see Fig. 3.10). In
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Figure 3.11: The tetrahedron, octahedron, cube, and icosahedron meshes used in the
example indirect BEM problem. The tetrahedron mesh has 4 elements, the octahedron
mesh has 8 elements, the cube mesh has 24 elements, and the icosahedron mesh has 20
elements.
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Figure 3.12: Error of the four example BVP problems for different levels of accuracy for
the double surface integrals.

general, all four types of triangles become more accurate as Q increases. However, acute

triangles performed the best, requiring only 144 quadrature points at the lowest level to

achieve a maximum relative error of less than 10−10. For a good BEM mesh, we expect

most triangles to be acute.

Next, let us validate that the methods work for F2 (r). To do so, we implemented

the Galerkin BEM described in Sec. 2.2 using linear elements, and solved four example

BVP problems. The four problems were exactly the same, except for the boundaries used.
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The boundaries were: a tetrahedron, an octahedron, a cube, and an icosahedron (see Fig.

3.11). In each problem, the potential, φ, was set to zero outside the boundary. Inside the

boundary, the potential was set to φ (x) = a+ b · x, where, in these examples, a = 1 and

b = (0.5, 0.8,−0.7). The exact solution to this problem can be derived using the jump

conditions given in Sec. 2.2. In fact, the single- and double-layer source distributions are

piecewise linear along the boundaries, meaning that linear elements can provide an exact

solution.

The experiment worked as follows. We computed the solution to each of the four

problems using the indirect BEM. The integrals for when the kernel was F1 (r) were

computed as accurately as possible (i.e., Q = 1024). This left the integrals for when

the kernel was F2 (r) as the primary source of error. We varied the accuracy at which

these integrals were computed from low (Q = 1) to high (Q = 1024), and computed the

maximum relative error of the solution for each choice ofQ. Fig. 3.12 shows the maximum

relative error of the solution as a function of Q for each of the four different boundaries.

As the accuracy of the integrals was increased, the total accuracy of the problem increased

as well. For Q > 200, the maximum relative error drops to around 10−10 for all four

geometries.

3.6 GPU Acceleration

3.6.1 Background

The graphics processing unit (GPU) is an auxiliary chip or card found on most

computers that is dedicated to the graphics of the computer. This includes not only
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rendering the desktop in Windows, but also performing advanced 3-D graphics in video

games and movies. In fact, it’s the latter which has driven the amazing advancements

in GPU technology over the past three decades. As video game makers have pushed

the hardware limits of current generation GPUs, GPU manufacturers, such as AMD and

NVIDIA, have responded by continuing to release better and better GPUs.

Originally, the graphics pipelines on these cards was relatively fixed. The behavior

of the vertex and pixel/fragment shaders were hard-wired, and software interfaces such as

DirectX and OpenGL allowed video game and other software developers to access this

functionality. Eventually, AMD and NVIDIA allowed every part of the rendering pipeline

to be customized. This could be done via DirectX’s High-Level Shading Language (HLSL)

or OpenGL’s GL Shading Language (GLSL). The shaders could be modified to produce

special graphics effects, such as more realistic textures, lighting, and so on. Using clever

programming tricks, these shading languages could also be used to perform non-graphics-

related tasks. However, in order to do so, the problem at hand had to be reformulated as a

rendering problem.

Perhaps seeing an opportunity to capture a new market, the GPU manufacturers

introduced the capability for their GPUs to run non-graphics-related code. Software

developers could now run custom code on the GPU. NVIDIA released their Compute

Unified Device Architecture (CUDA) and AMD uses the OpenCL programming interface.

Both APIs use a single instruction/multiple data computing architecture. The program

transfers a large amount of data to the GPU, and then launches dozens or hundreds of

threads to operate on that data. The one catch is that all of these threads must run the same

exact code at the same exact time. The only difference from thread to thread is the data
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being operated on. This is in stark contrast to the way threads operate on the CPU, where

every thread can run its own program independent of the others. In the way, the CPU is

more flexible, but with only up to eight cores on most CPUs, the amount of parallelization

is limited.

In addition to developing and selling graphics-oriented GPUs, such as the GeForce

series, NVIDIA has also started selling scientific-computing-targeted cards. This includes

the Tesla-branded lines of cards. These cards have no graphics capabilities (the graphics

pipeline has been removed entirely), but provide immense computing power. For example,

one of the most recent Tesla cards, the K80, boasts over 8 TFLOPS of computer power.

3.6.2 Implementation Details

There are two versions of the code for computing the integrals needed by the BEM.

The CPU version, written in C++ and parallelized using OpenMP, ran on a Quad Intel

Xeon Dual E5-2690 (32 cores). The GPU version, written in CUDA, ran on an NVIDIA

Tesla K20c. Because C++ and CUDA are largely the same programming language, the two

versions are almost the same. However, because of the unique nature of GPU programming,

several changes had to be made so that the CUDA code could take full advantage of the

GPU hardware.

In the collocation method, each integral corresponds to a triangle/collocation point

pair, while in the Galerkin method, each integral corresponds to a triangle/triangle pair. In

the CPU version, there were 32 threads, each running independently from the others on

one of the 32 available cores. The Npair pairs were divided up into 32 equally sized chunks.
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Vertex List

x1 x2 . . . xNvert

y1 y2 . . . yNvert

z1 z2 . . . zNvert

Connectivity List

v1,1 v2,1 . . . vNtri,1

v1,2 v2,2 . . . vNtri,2

v1,3 v2,3 . . . vNtri,3

Triangle Pairs

i1 i2 . . . iNpair

j1 j2 . . . jNpair

Figure 3.13: On the CPU, the pairs of triangles are stored as pairs of indices, which
reference values stored in the list of vertices and the connectivity list.

Each thread received one chunk, and computed all the integrals corresponding to the pairs

in that chunk. In the GPU version, there was one thread per pair, meaning there were Npair

threads. Each thread was responsible for computing one integral. The block size was 256,

so there were Npair/256 blocks.

In the CPU version, the data structures are compact (see Fig. 3.13). The mesh is

stored as a list of vertices and a connectivity list. In the collocation method, there is also a

list of collocation points. The CPU code accepts a list of index pairs. In the collocation

method, one index in the pair corresponds to a triangle, and the other index in the pair

corresponds to a collocation point. In the Galerkin method, the two indices in the pair

correspond to two triangles. Because global memory access on the CPU is fast due to the

many layers of cache, this combination of data structures works well. However, global

memory access on the GPU is slow, typically costing a thread hundreds of cycles in latency.
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Triangle Pairs

x1,1,1 x2,1,1 . . . xNpair,1,1

y1,1,1 y2,1,1 . . . yNpair,1,1

z1,1,1 z2,1,1 . . . zNpair,1,1

x1,1,2 x2,1,2 . . . xNpair,1,2

y1,1,2 y2,1,2 . . . yNpair,1,2

z1,1,2 z2,1,2 . . . zNpair,1,2

x1,1,3 x2,1,3 . . . xNpair,1,3

y1,1,3 y2,1,3 . . . yNpair,1,3

z1,1,3 z2,1,3 . . . zNpair,1,3

x1,2,1 x2,2,1 . . . xNpair,2,1

y1,2,1 y2,2,1 . . . yNpair,2,1

z1,2,1 z2,2,1 . . . zNpair,2,1

x1,2,2 x2,2,2 . . . xNpair,2,2

y1,2,2 y2,2,2 . . . yNpair,2,2

z1,2,2 z2,2,2 . . . zNpair,2,2

x1,2,3 x2,2,3 . . . xNpair,2,3

y1,2,3 y2,2,3 . . . yNpair,2,3

z1,2,3 z2,2,3 . . . zNpair,2,3

Figure 3.14: On the GPU, the coordinates of the two triangles in each pair are stored
explicitly.

To overcome this problem, instead of passing in a list of index pairs, the data structures are

unraveled to avoid the use of indices, and a matrix of coordinates is sent to the GPU (see

Fig. 3.14). Each column of the matrix corresponds to a pair, and each row is a coordinate

of the vertices of the triangles and/or collocation point in that pair.

In the Galerkin method, the exact method for computing an integral over a pair of

triangles depends on their relative geometry (see Sec. 3.5). There are four cases: (1) the

two triangles do not touch; (2) they share a vertex; (3) they share an edge; or (4) they are
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__global__ void do_something(int *outgoing, int *incoming)
{

int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx % 2 == 0)

do_this(outgoing, incoming, idx);
else

do_that(outgoing, incoming, idx);
}

Figure 3.15: A snippet of CUDA code that will have branch divergence. All of the even
threads will run one function, and all of the odd threads will run a different function. The
odd threads will have to pause while the even threads run their code, and vice versa.

Figure 3.16: The double surface integrals in the Galerkin method are sorted by case
(i.e., zero-, one-, two-, and three-touch) before sending them to the GPU to avoid branch
divergence. On the left is the list of integrals before sorting, and on the right is the list
after sorting. Black, red, green, and blue correspond to zero-, one-, two-, and three-touch
integrals, respectively.

the same. These are called the zero-, one-, two-, and three-touch cases, respectively. In

this naming scheme, the number represents how many vertices the two triangles share.

The CPU version is not affected by the order of the index pairs with respect to these cases.

That is, the four cases can be distributed among the index pairs in any way. This is because

the 32 threads in the CPU version are working independently on separate cores. Which

instructions are being executed in one thread have no effect on those in another. However,

in the GPU version, this is not case. In fact, all the threads in a particular block must

execute the same instructions at the same time. When a branch does occur because two or
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Figure 3.17: The GPU computes the integrals needed by the collocation method around
2× faster than the CPU for large numbers of triangle/collocation point pairs. Likewise,
the GPU computes the integrals needed by the Galerkin method around 6× faster than the
CPU for large numbers of triangle/triangle pairs. In these experiments, the CPU was a
Quad Intel Xeon Dual E5-2690 (32 cores), and the GPU was an NVIDIA Tesla K20c.

more threads in a block correspond to different cases, each thread must pause for the other

to complete their work before doing their own, and vice versa. This thread divergence can

lead to slowdowns on the GPU, eliminating any advantage the GPU offers (see Fig. 3.15).

To overcome this problem, before passing any data to the GPU, the list of index pairs is

sorted by the case. That is, the zero-touch cases are at the beginning of the list, followed

by the one-, two-, and three-touch cases, in that order (see Fig. 3.16). In this manner, only

three blocks (out of hundreds of thousands) suffer from thread divergence.

Times were measured for each version, and then plotted against Npair (see Fig. 3.17).

The GPU version was faster than the CPU version for all values of Npair. The GPU

computed the integrals needed by the collocation method around 2× faster than the CPU

for large Npair. Likewise, the GPU computed those needed by the Galerkin method around
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6× faster. The speedup for the Galerkin integrals is much higher because computing these

integrals is much more computational intensive, and the I/O overhead was not as much

of an issue. On the other hand, the collocation integrals are fast to compute, requiring

relatively few operations, so the I/O overhead had a much bigger effect. However, in both

cases, the GPU versions provided large speedups, especially considering that the CPU had

32 cores.

3.7 Conclusion

We have presented a method for computing the double surface integrals encountered

in the Galerkin BEM. When the boundary is discretized using triangular elements, these

integrals are performed over pairs of these triangles. They can be extremely tough to

compute, especially when the two triangles share a vertex, an edge, or are the same. This

is because the kernels being integrated are often singular along the corners and edges of

these triangles. We have solved this problem by using several scaling properties of the

integrals and the kernels being integrated. The integral is broken up into several smaller

ones, some of which are written in terms of the original. This is done in such a way that

only completely regular integrals have to be computed explicitly.

We have also presented an analytical method for computing the integrals when the

two triangles do not touch. The method uses spherical harmonics and multipole and local

expansions and translations. The only source of error in this method is how soon to truncate

these expansions. However, the truncation number is adaptively selected to achieve a

desired error bound. We have validated both of these methods, and shown that they are
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accurate.

Finally, we have parallelized our code using C++ and OpenMP, and also ported the

C++ code to run on the GPU using CUDA. The GPU version of the code, which ran on

a NVIDIA Tesla K20c, ran 6× faster than the CPU version of the code, which ran on a

Quad Intel Xeon Dual E5-2690 (32 cores).
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Chapter 4: Computation of Boundary Integrals for the Helmholtz Equa-

tion

4.1 Introduction

The Helmholtz equation is one of the most important PDEs in science, and governs

problems in a large number of disciplines, including acoustics [9], electromagnetism [10],

heat and other forms of diffusion, and even gravitational waves, which were recently

detected experimentally [11]. The BEM is a powerful method for solving the Helmholtz

equation in three dimensions [12–14].

As discussed in Chap. 2, in the case of the Helmholtz equation, when solving

external problems using the Green’s identity formulation, the solution is affected by so-

called spurious modes. These spurious modes are the solutions to the internal problem for

the same geometry whose potential or normal derivative is zero on the boundary. Because

they are zero, they do not interfere with the boundary conditions, but they nevertheless

infect the solution away from the boundary. There are many methods for suppressing these

spurious modes. One popular method is to add additional constraints to the system by

placing points inside the boundary, and forcing the potential at these points to be zero [29].

Another method is the Burton-Miller formulation [15]. A third approach for suppressing
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the spurious modes is the indirect formulation, which is described in Sec. 2.2 and is what

we use.

Implementing the indirect BEM requires a method for computing single- and double-

layer potentials and gradients due to linear source density distributions over triangular

elements. In this chapter, we describe a method for doing so based on the singularity

subtraction method [49]. This method works by splitting the Green’s function for the

Helmholtz equation into two pieces, a singular part and a regular part. The singular part

happens to be the Green’s function for the Laplace kernel, so methods for computing that,

including those from Sec. 3.2 and Appx. A, can be used. The regular part can then be

integrated using standard numerical means, e.g., Gaussian quadrature.

4.2 Collocation Integrals

Enforcing the boundary conditions in the indirect BEM using the collocation method

requires computing single- and double-layer potentials and gradients due to linear source

density distributions over triangular elements:

L (x) =

∫
x′∈T

(σ′0 + p′ · x′)G (x− x′) dS (x′) , (4.1)

M (x) =

∫
x′∈T

(σ′0 + p′ · x′) (n′ · ∇x′G (x− x′)) dS (x′) , (4.2)

∇xL (x) = ∇x

∫
x′∈T

(σ′0 + p′ · x′)G (x− x′) dS (x′) , (4.3)

∇xM (x) = ∇x

∫
x′∈T

(σ′0 + p′ · x′) (n′ · ∇x′G (x− x′)) dS (x′) . (4.4)
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Methods for computing these integrals for the Green’s function for the Laplace equation

were discussed in Sec. 3.2 and Appx. A. These methods can be extended to the Green’s

function for the Helmholtz equation using the singularity subtraction method [49].

The Green’s function for the Helmholtz equation is

G (r) =
exp (ikr)

4πr
, (4.5)

dG

dr
(r) =

ik exp (ikr)

4πr
− exp (ikr)

4πr2
, (4.6)

d2G

dr2 (r) =
(ik)2 exp (ikr)

4πr
− ik exp (ikr)

2πr2
+

exp (ikr)

2πr3
. (4.7)

The Helmholtz kernel is singular, but this singularity comes from the Laplace equation.

We can remove this singularity by subtracting the Laplace kernel:

G̃ (r) =
exp (ikr)− 1

4πr
, (4.8)

dG̃

dr
(r) =

ik exp (ikr)

4πr
− exp (ikr)− 1

4πr2
, (4.9)

d2G̃

dr2 (r) =
(ik)2 exp (ikr)

4πr
− ik exp (ikr)

2πr2
+

exp (ikr)− 1

2πr3
. (4.10)

This new kernel is completely regular. To demonstrate this, let’s construct a Taylor series

expansion around r = 0:

exp (ikr) =
∞∑
n=0

(ikr)n

n!
. (4.11)

Rearranging,

G̃ (r) =
exp (ikr)− 1

4πr
=
∞∑
n=1

(ik)n rn−1

4πn!
. (4.12)
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Let’s take the derivative of G̃:

dG̃

dr
(r) =

d

dr

(
∞∑
n=1

(ik)n rn−1

4πn!

)
=
∞∑
n=2

(ik)n (n− 1) rn−2

4πn!
. (4.13)

Let’s take the second derivative of G̃:

d2G̃

dr2 (r) =
d

dr

(
∞∑
n=2

(ik)n (n− 1) rn−2

4πn!

)
=
∞∑
n=3

(ik)n (n− 1) (n− 2) rn−3

4πn!
. (4.14)

Even though they are completely regular, Eqs. (4.8), (4.9), and (4.10) can still “blow up” or

return NaNs when evaluated by a computer. For example, consider the expression for G̃ in

Eq. (4.8). When r = 0, the computer will evaluate the numerator and the denominator as

zero, and zero divided by zero yields a NaN. However, as r → 0, the expression approaches

(ik) / (4π), but the computer does not know that. Therefore, when kr < α0, Eqs. (4.12),

(4.13), and (4.14) are used instead, where only up to the (n = p− 1)th term is kept. Good

values for these two parameters are α0 = 10−3 and p = 6.

The single- and double-layer potentials and their derivatives in Eqs. (4.1), (4.2),

(4.3), and (4.4) are computed by splitting them into two pieces, one for the Laplace kernel

and one for G̃. For example, consider Eq. (4.1):

L (x) =

∫
x′∈T

(σ′0 + p′ · x′)G (x− x′) dS (x′) , (4.15)

L (x) =

∫
x′∈T

(σ′0 + p′ · x′) 1

4πr
dS (x′) +

∫
x′∈T

(σ′0 + p′ · x′) G̃ (r) dS (x′) , (4.16)

where r = |r| = |x− x′|. The left integral is computed using the methods discussed in
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Sec. 3.2 and Appx. A, and the right integral is computed via Gaussian quadrature. We use

the techniques given in [66] for performing the Gaussian quadrature over the triangles.

The integrals in Eqs. (4.1), (4.2), and (4.3) are completely regular. However, a

special case appears in the integral in Eq. (4.4) when computing

∇x

(
n′ · ∇x′G̃

)
=
d2G̃

dr2 (∇xr) (n′ · ∇x′r) +
dG̃

dr
∇x (n′ · ∇x′r) , (4.17)

where

∇xr =
r

r
, n′ · ∇x′r = −n′ · r

r
, ∇x (n′ · ∇x′r) = −n′

r
+

(n′ · r) r
r3

. (4.18)

This is because the gradient of the normal derivative of the displacement vector,

∇x (n′ · ∇x′r) = −n′

r
+

(n′ · r) r
r3

, (4.19)

is singular at r = 0. This occurs when the evaluation point is on the triangle, which means

that n′ · r = 0, and

∇x (n′ · ∇x′r) = −n′

r
. (4.20)

This expression is still singular, but is a little simpler to manage. What we’re going to do is

move the singularity from this quantity to dG̃/dr. We’ll then break the troublesome term
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off from the rest, and treat that separately. We have

dG̃

dr
∇x (n′ · ∇x′r) =

(
∞∑
n=2

(ik)n (n− 1) rn−2

4πn!

)(
−n′

r

)
, (4.21)

dG̃

dr
∇x (n′ · ∇x′r) = −n′

(
∞∑
n=2

(ik)n (n− 1) rn−3

4πn!

)
. (4.22)

Separate the n = 2 term from the others:

dG̃

dr
∇x (n′ · ∇x′r) = −n′

(
(ik)2

8πr
+
∞∑
n=3

(ik)n (n− 1) rn−3

4πn!

)
, (4.23)

dG̃

dr
∇x (n′ · ∇x′r) = −(ik)2 n′

2

1

4πr
− n′

(
∞∑
n=3

(ik)n (n− 1) rn−3

4πn!

)
, (4.24)

dG̃

dr
∇x (n′ · ∇x′r) = −(ik)2 n′

2

1

4πr
− n′H̃, (4.25)

where

H̃ =
∞∑
n=3

(ik)n (n− 1) rn−3

4πn!
. (4.26)

The singular term can be removed from the expression, and treated separately using the

Laplace code. The remainder is now completely regular again, and can be integrated

numerically like before.

4.3 Conclusion

Implementing the indirect BEM requires a method for computing single- and double-

layer potentials and gradients due to linear source density distributions over triangular

elements. In this chapter, we described a method for doing so based on the singularity
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subtraction method. This method works by splitting the Green’s function for the Helmholtz

equation into two pieces, a singular part and a regular part. The singular part can be

computed using methods previously developed for the Laplace equation, and the regular

part can be computed using Gaussian quadrature. A special case appeared when computing

the gradient of the double-layer potential. When the evaluation point was in the plane

containing the triangular element, the expression became singular. To solve this problem,

the expression was written as a Taylor series, and the troublesome term was broken off

and treated separately.
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Chapter 5: Correction Factor Matrix Method1

5.1 Introduction

Integral equation methods for solving partial differential equations, such as the

boundary element method (BEM) or the method of moments [12–14], have a number of

advantages, including that they reduce the space dimensionality of the discretization by

one, allow for the treatment of complex boundary shapes, handle the boundary conditions

at infinity accurately, and treat thin objects and multi-domain problems well. Because of

these advantages, they are used extensively in electrostatics, antenna theory, acoustics,

and for simulation of free surface flows, among others. The equations are discretized via

boundary elements (e.g., linear or curvilinear elements in two dimensions, and triangles,

quadrilaterals, or their curved equivalents in three dimensions), and when combined with

boundary conditions, result in linear systems. These systems, while smaller than those

from volumetric discretization approaches (such as the finite difference and finite element

methods), are dense. The entries in these matrices are based on the quadrature of the

product of local basis functions and Green’s functions or their derivatives over the boundary

elements. In the collocation method, these entries are obtained by a quadrature of the

Green’s function integrand over one boundary element, while in the Galerkin method, they

1This chapter is based on our original work in [69].
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are obtained by a double quadrature over two boundary elements.

The argument of the Green’s functions (or their derivatives) in these integrands

involves points from the triangles over which the quadrature is performed, or the trian-

gle and the collocation point. A crucial ingredient of integral equation methods is the

accurate computation of these integrals, especially for the nearly singular, singular, and

hypersingular cases. These cases arise in the collocation method when the triangle and

collocation point are close to each other or lie on top of each other, and in the Galerkin

method when the two triangles are proximal, share a vertex, an edge, or are the same. In

these cases, careful treatment of the integrals is needed for accurate quadrature. We studied

these integrals for the Laplace equation in Chap. 3, where we developed novel techniques

for computing them based on subdivision and scaling arguments. We studied them for the

Helmholtz equation in Chap. 4.

The linear systems arising in the BEM are conventionally solved via direct matrix

decompositions. However, the system matrices are dense, requiring O (N2) storage, where

N is the number of discretization unknowns. This can effectively restrict the size of a

problem that can be solved on a given machine. Moreover, solving the system by direct

means (e.g., LU decomposition) requires O (N3) operations. Using an iterative solver

based on Krylov subspace methods, such as GMRES, alleviates this issue somewhat,

providing an O (NiterN
2) method, where Niter is the number of iterations and O (N2) is the

cost of the matrix-vector product that is computed every iteration. However, for large N ,

this quadratic scaling in both time and memory can still be prohibitive.

The fast multipole method (FMM) allows for the acceleration of many matrix-vector

products [21, 22], and was originally developed to address the N -body problem arising in
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stellar and molecular dynamics. The FMM accelerates sums of the following form:

v(yi) =
N∑
j=1

ujΦ(yi − xj), i = 1, 2, . . . ,M. (5.1)

Computing this sum by direct means requires O (MN) operations. The FMM computes the

sum to any specified error, ε, in O (M +N) operations and storage, where the asymptotic

constant depends on the desired accuracy. This linear scaling allows for very large problem

sizes. The FMM works by separating the matrix-vector product into two pieces, one

for far-field interactions and one for near-field interactions. The FMM accelerates the

far-field piece using spatial data structures (e.g., an octree), spherical harmonics, and

multipole and local expansions and translations. There has been significant effort to speed

up the FMM on parallel architectures, including shared memory, distributed, GPU, and

heterogeneous architectures, and these algorithms have also been used to show benchmark

high-performance computing calculations. For example, the FMM can be accelerated by

parallelizing across many cores using OpenMP or the GPU [68]. The entire FMM can

also be parallelized across an entire cluster [70, 71]. Some open source FMM codes are

available [27, 28]. For the Laplace equation, we used our own highly optimized in-house

GPU-accelerated FMM. For the Helmholtz equation, we used a third-party FMM [27].

The FMM is usually designed around point and dipole sources, not the integral ex-

pressions that appear in the BEM. Extending the FMM to handle these integral expressions

is possible, but requires modifying the internal data structures and logic. Many authors

have done so. For example, the FMM was used to solve problems in elastostatics [25, 61],

formulations involving volume integrals [24], problems in acoustics and the computation
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of head-related transfer functions [23, 72, 73], electromagnetic scattering problems [26],

and even in computer graphics to accelerate collision detection [8]. As was seen in these

references, the issues associated with adding the integral expressions directly to the FMM

are manageable, and the results are often very good, but these changes complicate the

inner workings. Moreover, FMM codes for point and dipole sources are widely available

and highly optimized. Newly developed FMM codes for integral-based methods may not

be as highly optimized. Thus, we seek a procedure for applying the FMM unchanged to

the integral expressions in the BEM.

This approach, which we call the correction factor matrix method, is described in this

chapter. The method works by approximating the integrals using a quadrature, and then

treating the quadrature points as point and dipole sources, which can be plugged directly

into the FMM. Any inaccuracies from the quadrature are corrected during a correction

factor step, which runs in O (N). The FMM is effectively treated as a black box, and the

correction factor matrix method is simply a series pre- and post-processing steps, which

also run in O (N) and achieve the prescribed error tolerance. The method is derived, and

example problems are presented showing accuracy and performance. The method is shown

to scale linearly and be able to solve problems with a million elements in only minutes on

a single workstation.

5.2 Basic Approach

The linear systems given in Chap. 2 are solved using an iterative solver, such

as GMRES, or one of their preconditioned variants. The matrix-vector product that is
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computed during each iteration is accelerated using the FMM. Most FMM codes are

designed around point and dipole sources, not the integral expressions present in the BEM.

Thus, we have developed the correction factor matrix method, which allows for the FMM to

be applied unchanged to these integral expressions. The method works by approximating

the integrals using a quadrature, and then treating the quadrature points as point and

dipole sources, which can be plugged directly into the FMM. Any inaccuracies from

the quadrature, especially those from the approximation of singular and nearly singular

integrals, are corrected by computing and adding correction factors.

The matrix-vector product that is computed during each iteration is given by

Su =

 U + D V

A B


 φ123

q123

 =

 Uφ123 + Dφ123 + Vq123

Aφ123 + Bq123

 . (5.2)

Consider

y = Ax, (5.3)

where the matrix, A, is one of those from above, U or V. Suppose we have another matrix,

Ã, that approximates the original matrix, A:

y = Ãx +
(

A− Ã
)
x = Ãx + Cx. (5.4)

The exact structure of the matrix, Ã, and how to compute the matrix-vector product, Ãx,

for the collocation and Galerkin methods are given in Secs. 5.3 and 5.4, respectively. Those

sections give methods for computing Ãx in O (N) using the FMM. The matrix-vector
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product, Cx, corrects the errors from using Ãx. Therefore, the matrix, C, is called the

correction factor matrix. Computing and storing the entire correction factor matrix is

possible and would lead to zero error. However, this is expensive, requiring O (N2) not

only to construct C, but also to compute Cx. This would undermine the desired O (N)

behavior. In general, Ã approximates A very well, so almost all the entries in C are nearly

equal to zero. In fact, only O (N) entries in C need to be computed to achieve the O (ε)

tolerance, and the rest of the entries can be set to zero. Letting C̃ be the partially computed

correction factor matrix, we have

y ≈ ỹ = Ãx + C̃x. (5.5)

This expression becomes more accurate (i.e., ỹ → y) as more entries in the correction

factor matrix are computed and stored (i.e., C̃→ C).

Which entries to compute depends largely on the geometry of the problem. In the

collocation method, only the entries corresponding to triangle/matching point pairs that are

close to each other are computed, while all the others are set to zero. A collocation point,

y, is close to a triangle when |y − x| < Cr, where x and r are the center and radius of the

triangle, and C is the close ratio. In the Galerkin method, only the entries corresponding

to triangle/triangle pairs that are close to each other are computed. Two triangles are close

when |x2 − x1| < C ((r1 + r2)/2), where x1, x2, r1, and r2 are the centers and radii of

the two triangles. Fig. 5.1 shows how the close ratio affects which pairs of triangles are

close to each other in the Galerkin method. A larger close ratio leads to more entries in

the correction factor matrix being computed, while a smaller close ratio leads to fewer. A
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Close Ratio = 1.1 Close Ratio = 2.1 Close Ratio = 3.1

Close Ratio = 4.1 Close Ratio = 5.1

Figure 5.1: In the Galerkin method, two triangles are close (and correction factors are
computed) when |x2 − x1| < C ((r1 + r2)/2), where x1, x2, r1, and r2 are the centers and
radii of the two triangles, and C is the close ratio. The light gray triangles are close to the
white triangles. Five different close ratios are shown.

denser correction factor matrix leads to more accurate results, so making the close ratio

larger increases the accuracy of the method, but at the expense of speed. In our numerical

experiments, we establish a way to get a consistent approximation whose error is lower

than the errors in the other parts of the FMM/GPU-accelerated BEM.

5.3 Collocation Method/Evaluation of Solution

Consider M evaluation points, x1,x2, . . . ,xM . We want to compute the single- or

double-layer potential at these points due to a potential or normal derivative on the N

triangles. These M evaluation points could be the N matching points in the collocation

method, and we are computing one of the matrix-vector products, Uφ or Vq, required by
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Input
The potential or normal derivative on the boundary: g123

↓
Step 1

Map the input to the source strengths of the representative
point sources: Mg123

↓
Step 2

Compute the potential at the matching points (or the
evaluation points) due to these point sources (accelerated

using the FMM): BMg123

↓
Step 3

Compute the correction factors: Cg123

↓
Output

The matrix-vector product: Φ̃ = BMg123 + Cg123

Figure 5.2: The procedure of the correction factor matrix method for accelerating the
matrix-vector product in the collocation method/evaluation of solution.

that method. Alternatively, we have already solved the problem, and we want to evaluate

the solution at M different evaluation points. The analysis is the same for the two cases. A

diagram showing the procedure of the correction factor matrix method for these cases is

shown in Fig. 5.2.

Consider the following matrix-vector product:

Φ = Ag123, (5.6)

81



# Quad. Pts. = 1 # Quad. Pts. = 4 # Quad. Pts. = 9

# Quad. Pts. = 16 # Quad. Pts. = 25

Figure 5.3: The quadrature points for an example triangle. The quadrature points are based
on a two-dimensional Gauss-Legendre quadrature.

where

A =


A1,1 . . . A1,N

...
. . .

...

AM,1 . . . AM,N

 , Ai,j =

[
Ai,j,1 Ai,j,2 Ai,j,3

]
, (5.7)

and g123 is one of the vectors of coefficients, φ123 or q123. The entries in A are given by

Ai,j,n =

∫
x′∈Tj

Nj,n (x′)F (xi − x′) dS (x′) , (5.8)

where F (r) is the kernel being integrated, such as the Green’s function or a derivative of

the Green’s function.

82



Figure 5.4: On the left is a mesh of a cube, and on the right is the set of representative
point sources for the mesh. In this example, there are four point sources per triangle. In
the correction factor matrix method, the potential or normal derivative on the triangles
is mapped to the source strengths of the point sources. These point sources approximate
the single- or double-layer potentials due to the potential or normal derivative on the
mesh. Correction factors are computed and added to correct any inaccuracies from this
approximation.

The entries in A are approximated using a quadrature:

Ai,j,n ≈ Ãi,j,n =

Qj∑
l=1

wj,lNj,n (pj,l)F (xi − pj,l) , (5.9)

where pj,l and wj,l are the Qj quadrature points and weights for Tj . The quadrature

points we used are based on a two-dimensional Gauss-Legendre quadrature (the triangle is

mapped to a quadrilateral [66]). Fig. 5.3 shows different numbers of quadrature points for

an example triangle. More compactly,

Ãi,j,n = Bi,jMj,n, (5.10)

83



where

Bi,j =

[
F (xi − pj,1) . . . F

(
xi − pj,Qj

) ]
, (5.11)

Mj,n =



wj,1Nj,n (pj,1)

wj,2Nj,n (pj,2)

...

wj,Qj
Nj,n

(
pj,Qj

)


. (5.12)

Using this, we approximate the matrix-vector product, Ag123, using a quadrature:

Φ ≈ Ψ = Ãg123, (5.13)

where

Ã =


Ã1,1 . . . Ã1,N

...
. . .

...

ÃM,1 . . . ÃM,N

 , Ãi,j =

[
Ãi,j,1 Ãi,j,2 Ãi,j,3

]
. (5.14)

Plugging in Eq. (5.10) and rearranging, we have

Ψ = BMg123, (5.15)
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where

B =


B1,1 . . . B1,N

...
. . .

...

BM,1 . . . BM,N

 , (5.16)

M =


M1 . . . 0

...
. . .

...

0 . . . MN

 , Mj =

[
Mj,1 Mj,2 Mj,3

]
. (5.17)

The mapping matrix, M, maps the potential or normal derivative on the triangles to the

source strengths of a set of representative point sources (see Fig. 5.4). This set is the union

of the quadrature points for all the triangles in the mesh. The mapping matrix is a block

diagonal matrix, and so is highly sparse: there are only three nonzero entries per row. The

matrix, B, computes the potential at the evaluation points due to these point sources. This

step is accelerated using the FMM, and runs in O (N).

5.4 Galerkin Method

In the collocation method, the matrix-vector products, Vq and Uφ, compute the

single- and double-layer potentials at the N matching points. In the Galerkin method,

these matrix-vector products compute the integral over the boundary of these potentials

when weighted by the basis functions. A diagram showing the procedure of the correction

factor matrix method for the Galerkin method is shown in Fig. 5.5.
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Input
The potential or normal derivative on the boundary: g123

↓
Step 1

Map the input to the source strengths of the representative
point sources: Mg123

↓
Step 2

Compute the potential at the quadrature points due to these
point sources (accelerated using the FMM): BMg123

↓
Step 3

Linearly combine these potentials: MTBMg123

↓
Step 4

Compute the correction factors: Cg123

↓
Output

The matrix-vector product: Ĩ = MTBMg123 + Cg123

Figure 5.5: The procedure of the correction factor matrix method for accelerating the
matrix-vector product in the Galerkin method.

Consider the following matrix-vector product:

I = Ag123, (5.18)

where

A =


A1,1 . . . A1,N

...
. . .

...

AM,1 . . . AM,N

 , Ai,j =


Ai,j,1,1 Ai,j,1,2 Ai,j,1,3

Ai,j,2,1 Ai,j,2,2 Ai,j,2,3

Ai,j,3,1 Ai,j,3,2 Ai,j,3,3

 . (5.19)
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The entries in A are given by

Ai,j,m,n =

∫
x∈Ti

Ni,m (x)

∫
x′∈Tj

Nj,n (x′)F (x− x′) dS (x′) dS (x) , (5.20)

where F (r) is the kernel being integrated, such as the Green’s function or a derivative

of the Green’s function. The inside integral computes the potential due to the potential

or normal derivative, Nj,n (x′), on Tj . The outside integral multiplies this potential by

Ni,m (x), and integrates this product over Ti.

The entries in A are approximated using a quadrature:

Ai,j,m,n ≈ Ãi,j,m,n =

Qi∑
k=1

wi,kNi,m (pi,k)

Qj∑
l=1

wj,lNj,n (pj,l)F (pi,k − pj,l) , (5.21)

where pj,l and wj,l are the Qj quadrature points and weights for Tj , and pi,k and wi,k are

the Qi quadrature points and weights for Ti. More compactly,

Ãi,j,m,n = MT
i,mBi,jMj,n, (5.22)

where the matrices, Mi,m and Mj,n, are given by Eq. (5.12), and

Bi,j =



F (pi,1 − pj,1) . . . F
(
pi,1 − pj,Qj

)
F (pi,2 − pj,1) . . . F

(
pi,2 − pj,Qj

)
...

. . .
...

F (pi,Qi
− pj,1) . . . F

(
pi,Qi

− pj,Qj

)


. (5.23)
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Using this, we approximate the matrix-vector product, Ag123, using a quadrature:

I ≈ J = Ãg123, (5.24)

where

Ã =


Ã1,1 . . . Ã1,N

...
. . .

...

ÃM,1 . . . ÃM,N

 , Ãi,j =


Ãi,j,1,1 Ãi,j,1,2 Ãi,j,1,3

Ãi,j,2,1 Ãi,j,2,2 Ãi,j,2,3

Ãi,j,3,1 Ãi,j,3,2 Ãi,j,3,3

 . (5.25)

Plugging in Eq. (5.22) and rearranging, we have

J = MTBMg123, (5.26)

where the matrices, M and B, are given by Eqs. (5.17) and (5.16), respectively. In this

expression, the quadrature points for allN triangles are treated a point sources and assigned

source strengths (Mg123). Next, the potential due to these point sources are evaluated at

the same set of quadrature points (BMg123). So far, this process is identical to the one for

the collocation method/evaluation of solution (the evaluation points are simply selected to

be the quadrature points). Like in that case, the second step is accelerated using the FMM,

and runs in O (N). Finally, the potentials are weighted and summed to obtain the integrals

over the triangles (MTBMg123). The mapping matrix, M, is used twice in this expression.

When premultiplying g123, M maps the coefficients in g123 to the source strengths of the

point sources. When premultiplying BMg123, M is linearly combining the potentials at the
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Figure 5.6: The analytical solution to the example problem. The potential outside the cube
is due to a virtual point source inside the cube: φ+ (x) = 1/(4π |x− x0|) , where x0 =
(0.2, 0.3, 0.4). The potential inside the cube is a linear gradient field: φ− (x) = φ0 −ET

0x,
where φ0 = 0.05 and E0 = (0.03, 0.0,−0.02).

quadrature points to approximate the outside integral. The same mapping matrix is used

in both cases because the quadrature points are the same for both the inside and outside

integrals.

5.5 Numerical Examples for the Laplace Equation

5.5.1 Example Problem

We ran a series of computational experiments to verify the accuracy and characterize

the performance of the correction factor matrix method for the Laplace equation. The

example problem we used is shown in Fig. 5.6. An axis-aligned cube with a side length

of two is centered at the origin. Dirichlet boundary conditions are enforced on both sides

of the boundary. The potential on the outside surface of the cube is due to a virtual point
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Figure 5.7: The cube mesh for three different mesh sizes.

source inside the cube:

φ+ (x) =
1

4π |x− x0|
, (5.27)

where x0 = (0.2, 0.3, 0.4). The potential on the inside surface of the cube is a linear

gradient field:

φ− (x) = φ0 − ET
0x, (5.28)

where φ0 = 0.05 and E0 = (0.03, 0.0,−0.02). We want to compute the source density

distributions, σ (x) and µ (x), over the boundary that give rise to a potential that matches

these boundary conditions. Of course, the analytical solution to the problem is given by

the expressions in Eqs. (5.27) and (5.28). Thus, we can compute the potential at a set of

validation points using the solution returned by the BEM, and then compare that to the

analytical solution at the same set of points to verify that the method is accurate.

5.5.2 Accuracy

Our software has many components, each of which adds some error to the solution.

Our experiments, therefore, sought to explore these sources of error, and to determine
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Figure 5.8: The maximum relative error of the example problem as a function of the
number of quadrature points per triangle and the close ratio.

how best to set the available parameters to achieve the desired accuracy. There are several

sources of error, namely:

1. The modeling error from using real-world measurements to construct the models.

2. The geometric error from discretizing the boundary using planar triangular elements.

3. The error from approximating the source density distributions, σ (x) and µ (x), over

the boundary using piecewise constant and linear basis functions.

4. The accuracy of the boundary integrals.

5. The error from using the correction factor matrix method, which is controlled by:
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Figure 5.9: The maximum relative error of the example problem as a function of mesh size
for the three solution methods. Constant collocation and constant Galerkin have similar
error curves, while linear Galerkin gives the lowest errors. All three solution methods
appear to saturate at around 0.01% error.

(a) the number of quadrature points per triangle; and

(b) the close ratio, which determines the density of the correction factor matrix.

6. The error from the multipole and local expansions and translations in the FMM. This

error is controlled by the truncation number and the translation schemes used.

7. The error from the iterative solver, which is controlled by which solver is used (e.g.,

GMRES) and the chosen tolerance.

The modeling and geometric errors do not apply to the example problem. This is because

the geometry of the problem is not based on real-world measurements, and also because

the cube is a piecewise planar surface, which can be modeled exactly using planar triangles.

Since these errors do not affect the problem at hand, this allows us to focus on the other

sources of error. The approximation error is governed by the type of basis functions used
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Figure 5.10: The performance of the four components of our code (correction factor matrix,
right-hand side, solve, and evaluation) for the example problem as a function of mesh size
for the three solution methods.

(i.e., piecewise constant and linear basis functions) and the mesh size (i.e., how many basis

functions are used). We explored the behavior of the approximation error by comparing

the errors from using either piecewise constant or piecewise linear basis functions, and

also by varying the mesh size. Fig. 5.7 shows the meshes we used. The mesh size ranged

from 10,000 triangles to over 1,000,000. The entries in the correction factor matrix should

be computed accurately. For the collocation method, the required single surface integrals

can be computed exactly (see Sec. 3.2 and Appx. A), so there is no error. For the Galerkin

method, we used the subdivision and scaling method developed in Chap. 3 to compute the

required double surface integrals accurately. The error from the FMM was controlled by

selecting an appropriate truncation number, p. In our experiments, we chose p = 20. We

used the unpreconditioned GMRES with a relative tolerance of 10−6.
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Figure 5.11: The number of iterations required by the iterative solver to converge as a
function of mesh size for the three solution methods. Convergence graphs for each of the
data points in this graph can be seen in Fig. 5.12.

This leaves two sources of error: the number of quadrature points per triangle,

Q, and the close ratio, C. These two sources of error are highly intertwined, and must

be set together to achieve the desired accuracy. In general, for fewer quadrature points

per triangle, larger close ratios are needed. Likewise, for more quadrature points per

triangle, smaller close ratios are needed. A balance must be struck between these two

parameters. To study the effect of these two parameters on the accuracy, we solved the

example problem several times, holding all parameters constant, but varying the number of

quadrature points per triangle and the close ratio. The mesh had 101,400 triangles, and we

varied Q = 1, 4, 9, 16, 25 and C = 1.1, 2.1, 3.1, 4.1, 5.1. For each combination of Q and

C, we computed the maximum relative error at a set of validation points. Fig. 5.8 shows

this error as a function of the two parameters. As expected, increasing Q or C improves

the accuracy. Also, when one parameter is decreased, the other can be increased to offset
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Figure 5.12: Convergence graphs for the example problem for the three solution methods
showing the relative residual as a function of the iteration number. There are 11 curves in
each plot, one for each data point in Figs. 5.9, 5.10, and 5.11. In general, the larger meshes
took longer to converge.

any drop in accuracy. One interesting thing is that, for linear Galerkin, using Q = 1 is bad

no matter the choice of C. This is likely due to the fact that only one quadrature point

is unable to account for the linear variation across a triangle. For constant collocation

and constant Galerkin, Q = 1 is also bad, but becomes slightly better for larger values of

C. Based on this experiment, we chose Q = 9 and C = 3.1 as the best combination in

terms of accuracy and performance. This yielded 0.1% error for constant collocation and

constant Galerkin, and 0.01% error for linear Galerkin. In an engineering context, where

only 1% errors are needed, lower values of Q and C could be used, which would lead to

better performance. However, since we are interested in the best kinds of accuracy, we

have kept Q = 9 and C = 3.1. Using these values, we computed the maximum absolute

and relative errors as a function of mesh size, N (see Fig. 5.9). As expected, all errors

decrease as N increases. Constant collocation and constant Galerkin yield similar errors,
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Figure 5.13: The total time (sum of the times for all four components of our code) as a
function of the maximum absolute (left) and relative (right) errors for the three solution
methods. Linear Galerkin gives the biggest bang for the buck, providing the best accuracy
in the least amount of time.

while linear Galerkin yields much lower errors. All three solution methods reach 0.01%

error, although linear Galerkin reaches this level much faster than the other two.

5.5.3 Performance

The code is divided into four pieces: (1) determining which entries in the correction

factor matrix to compute, and then computing them; (2) computing the right-hand side; (3)

solving the system; and (4) evaluating the solution at the evaluation points. To characterize

the performance of each piece, we solved the example problem for different mesh sizes for

the three solution methods (constant collocation, constant Galerkin, and linear Galerkin).

Times were measured for each run, and then plotted as a function of mesh size (see Fig.

5.10). Information about the performance of the iterative solver was also logged. Fig. 5.11

shows the number of iterations required by the iterative solver to converge as a function of
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mesh size for the three solution methods. Corresponding convergence graphs can be seen

in Fig. 5.12.

The runs were done on a machine that had a Quad Intel Xeon Dual E5-2690 (4×8 =

32 cores), 128 GM of RAM, and a Tesla K20c GPU. The code was written in a combination

of Fortran, C, and C++. MATLAB was used as a glue to connect the different pieces of

code together, but otherwise did very little work. The most computationally intensive code

was parallelized using OpenMP to take advantage of all 32 available cores on the machine.

The computation of the boundary integrals and correction factors was accelerated on the

GPU (see Sec. 3.6). The FMM was also accelerated by computing and summing the local

interactions on the GPU. The GPU code was written in CUDA.

Based on the analysis from Sec. 5.5.2, we used Q = 9 and C = 3.1. As discussed in

that section, these parameters could be decreased (e.g., Q = 4 and C = 2.1) to achieve

better performance at the expense of accuracy. For example, this could be done during the

early stages of engineering design, where new ideas need to be tested rapidly, and answers

do not need to be perfect. On the other hand, they could be increased (e.g., Q = 16 and

C = 4.1) when higher accuracy is required, e.g., during the end stages of design.

The performance was very good. Timing scaled as O (N) or O (N log (N)) for

all four pieces of the code. In particular, for N = 1, 008, 600, constant collocation ran

in 14.9 minutes, constant Galerkin ran in 21.3 minutes, and linear Galerkin ran in 25.1

minutes. The difference in performance between the three solution methods is largely due

to the computation of the correction factors. This makes sense: computing the double

surface integrals in the two Galerkin methods is much more computationally expensive

than computing the single surface integrals in the collocation method.
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Figure 5.14: The example problem is a plane wave striking a sound-hard disk of radius
one from directly above. Here, the absolute value of the analytical solution to the example
problem is shown for k = 10.

For the same mesh size, constant Galerkin takes longer than constant collocation,

and linear Galerkin takes longer than both of these. However, linear Galerkin is much

more accurate than the other two. To determine which method is fastest for the same level

of accuracy and should be used, we plotted the total time (sum of the times for all four

components of our code) as a function of the maximum absolute and relative errors for

the three solution methods (see Fig. 5.13). Linear Galerkin gives the biggest bang for

the buck, providing the best accuracy in the least amount of time. This is because linear

Galerkin provides lower errors at smaller mesh sizes, and these smaller mesh sizes take

shorter amounts of time to solve.

98



Figure 5.15: The disk mesh for three different mesh sizes.

5.6 Numerical Examples for the Helmholtz Equation

5.6.1 Example Problem

We ran a series of computational experiments to verify the accuracy and characterize

the performance of the correction factor matrix method for the Helmholtz equation. The

example problem we used was a plane wave striking a sound-hard disk from directly above,

and is shown in Fig. 5.14. Scattering problems involving spheroids and disks have been

studied for well over a century, and analytical expressions for computing their solutions

have been documented extensively by many authors. However, even with the immense

amount of work that has been done on the topic, there are currently no publicly available

libraries that implement these expressions. We developed computational software for

calculating the solutions to these problems, and a description of this software can be found

in Chap. 6.
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Figure 5.16: The maximum absolute error for the example problem as a function of the
number of quadrature points per triangle and the close ratio for k = 5 (top left), 10 (top
right), and 25 (bottom).

5.6.2 Accuracy

Like in the case of the Laplace equation, our software for solving the Helmholtz

equation has many components, each of which adds some error to the solution. They are

the same in this case: (1) the modeling error; (2) the geometric error; (3) the approximation

error; (4) the error from computing the boundary integrals; (5) the error from the correction

factor matrix method; (6) the error from the FMM; and (7) the error from the iterative solver.

Our experiments, therefore, sought to explore these sources of error, and to determine how

best to set the available parameters to achieve the desired accuracy. While the Laplace

equation behaves reasonably well, the Helmholtz equation is not so forgiving in some
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Figure 5.17: The maximum absolute error for the example problem as a function of the
number of elements per wavelength for k = 5, 10, and 25.

ways. As a result, for some of these sources of error, we had to take extra care to ensure

the accuracy of our methods was good.

The modeling error does not apply to the example problem because the geometry

of the problem is not based on real-world measurements. There is geometric error in

the example problem because triangular elements are unable to model the smooth edge

of the disk. The approximation error is governed by the type of basis functions used

(i.e., piecewise constant and linear basis functions) and the mesh size (i.e., how many

basis functions are used). We only considered piecewise constant basis functions in our

experiments, but we otherwise explored the approximation error by varying the mesh size.

Fig. 5.15 shows the meshes we used. For the Laplace equation, there is no intrinsic scale,

so the only driving force behind the number of elements in a mesh is that the geometry is

sufficiently resolved. However, for the Helmholtz equation, the wavelength, λ = 2π/k,

introduces a scale to the problem. The Nyquist-Shannon sampling theorem requires that
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the correction factor matrix, computing the right-hand side, solving the system, and
evaluating the solution) for the example problem as a function of the nondimensional
domain size, kD. For each value of kD, the mesh size was chosen so that there were 20
elements per wavelength. On the right: the number of iterations required by the iterative
solver to converge as a function of kD.

there be at least two elements per wavelength, although at least 6 to 10 elements per

wavelength are usually recommended [23]. In our experiments, the number of elements per

wavelength ranged from 7 to 70, and depending on the wavenumber, the mesh size ranged

from around 200 to over 600,000. The entries in the correction factor matrix should be

computed accurately. As discussed in Sec. 4.2, the singularity subtraction method is used

to separate the boundary integrals into two pieces, one for the Laplace kernel and one for G̃

(i.e., the Helmholtz kernel minus the Laplace kernel). The former can be computed exactly

(see Sec. 3.2 and Appx. A), so there is no error from that. The latter was computed using a

100-point Gaussian quadrature, and in our experiments, the error from this computation

was always well below the other sources of error. We used a third-party FMM [27]. This

FMM provided a single parameter for controlling the error, which we set so that the error
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was below 10−3. We used the unpreconditioned GMRES with a relative tolerance of 10−4.

This leaves two sources of error: the number of quadrature points per triangle, Q,

and the close ratio, C. Like in the case of the Laplace equation, these two sources of error

are highly intertwined, and must be set together to achieve a desired accuracy. To study

the effect of these two parameters on the accuracy, we solved the example problem several

times, holding all parameters constant, but varying the number of quadrature points per

triangle and the close ratio. Three wavenumbers were tested: k = 5, 10, and 25. For each

value of k, the number of elements in the mesh was chosen so that there were 50 elements

per wavelength. This corresponds to 10,053, 40,213, and 248,822 elements, respectively.

We varied Q = 1, 4, 9 and C = 1.1, 2.1, 3.1, 4.1. For each combination of Q and C, we

computed the maximum absolute error at a set of validation points. Fig. 5.16 shows this

error as a function of the two parameters. As expected, increasing Q or C improves the

accuracy. Also, when one parameter is decreased, the other can be increased to offset any
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drop in accuracy. Based on this experiment, we chose Q = 4 and C = 3.1 as the best

combination in terms of accuracy and performance. Using these values, we computed the

maximum absolute error as a function of the number of elements per wavelength, ranging

this value from 7 to 70 (see Fig. 5.17). As expected, all errors decrease as this value

increases. In fact, the error drops by a factor of two for every doubling of the number of

elements per wavelength.

5.6.3 Performance

Like in the case of the Laplace equation, the code is divided into four pieces: (1)

determining which entries in the correction factor matrix to compute, and then computing

them; (2) computing the right-hand side; (3) solving the system; and (4) evaluating the

solution at the evaluation points. To characterize the performance of each piece, we solved

the example problem for different values of kD. The wavenumber, k, varied from 1 to

100, and for the example problem, D = 2 × 31/2, which is equal to the length of the

diagonal of the smallest cube that contains a disk of radius one. Therefore, kD varied from

3.46 to 346. For each kD, the mesh size was chosen so that there were 20 elements per

wavelength. Fig. 5.18 shows the times of the four components of our code as a function

of kD. The performance was very good. The time required for computing the correction

factor matrix, computing the right-hand side, and evaluating the solution all scaled as

O
(
(kD)2) or better. The time required to solve the system scaled as O

(
(kD)2.21). In

particular, solving the system for kD = 346 took 63.2 minutes. Fig. 5.11 also shows

the number of iterations required by the iterative solver to converge as a function of kD.
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Corresponding convergence graphs can be seen in Fig. 5.19.

The runs were done on a machine that had a Quad Intel Xeon Dual E5-2690 (4×8 =

32 cores), 128 GM of RAM, and a Tesla K20c GPU. The code was written in a combination

of Fortran, C, and C++. MATLAB was used as a glue to connect the different pieces of

code together, but otherwise did very little work. The most computationally intensive code

was parallelized using OpenMP to take advantage of all 32 available cores on the machine.

Unlike in the case of the Laplace equation, the computation of the boundary integrals and

correction factors was not accelerated using the GPU. We used a third-party FMM [27].

This FMM was written in Fortran, was multi-threaded, and ran across all 32 available cores

on the machine. In general, the FMM performed very well, and was accurate in all of our

experiments.

5.7 Conclusion

An FMM/GPU-accelerated BEM for the Laplace and Helmholtz equations in three

dimensions was presented. The unaccelerated BEM suffers from two problems. The

system matrix is dense, requiring O (N2) storage, where N is the number of boundary

elements, and solving the system by direct means (e.g., LU decomposition) requires O (N3)

operations. These quadratic and cubic costs can effectively restrict the size of a problem.

The FMM can be used to reduce these scalings to linear, and allow for very large problem

sizes. However, the FMM is usually designed around point and dipole sources, not the

integral expressions that appear in the BEM. Moreover, the FMM for point and dipole

sources has been studied extensively by previous authors, and implementations are widely
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available and highly optimized. Therefore, instead of modifying the FMM to account for

these expressions, we have developed a technique that allows for the FMM to be used

unchanged to accelerate the BEM. This technique is called the correction factor matrix

method. The method works by mapping the source density distributions over the boundary

to a set of representative point and dipole sources, and plugging these into the FMM.

Any inaccuracies from this step are corrected by computing and adding correction factors.

In the case of the Laplace equation, the method was further accelerated by computing

these correction factors on the GPU, and by using a heterogeneous CPU/GPU FMM. This

chapter stated the problem, derived and described the correction factor matrix method, and

presented example problems showing accuracy and performance.

106



Chapter 6: Acoustic Scattering by Spheroids and Disks1

6.1 Introduction

Even with the advent of efficient numerical solvers for many physical problems,

analytical methods remain valuable. Many problems can be simplified to a point where

analytical methods can be applied. These methods can provide insight into the problem,

and can help researchers when moving to a numerical solver. Numerical methods, on the

other hand, have the advantage of being able to treat problems with arbitrary geometries. In

order to do so, they return numerical approximations. The numerical error can usually be

reduced by increasing the number of modeling elements. Without some kind of validation,

though, there is no way to know whether the numerical solution converges to the correct

one. Analytical methods can provide this validation. Indeed, the FMM-accelerated indirect

BEM for the Helmholtz equation requires this validation.

The indirect BEM is capable of treating open, infinitely thin surfaces. These surfaces

are good approximations to those often encountered in practice – those that are much

smaller than a wavelength in one dimension, but span several in the other two. However,

there is only one analytically tractable problem posed on such a surface that has a solution

and could be used to validate the indirect BEM: an acoustic wave scattering off a disk.

1This section is based on our original work in [74].
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The disk is actually the degenerate form of the oblate spheroid, so methods for solving

scattering problems involving oblate spheroids can also be applied to the disk. Scattering

problems involving oblate spheroids, as well as the closely related prolate spheroids,

have been studied for well over a century, and analytical expressions for computing their

solutions have been documented extensively by many authors.

One of the earliest papers on the topic was by Lord Rayleigh in 1897 [75]. As

discussed in [76], prior to the discovery and use of the spheroidal wave functions, the best

solutions to these problems were approximations, either in frequency or distance. When

separated in spheroidal coordinates, solutions to the Helmholtz equation can be written

in terms of the spheroidal wave functions [77]. Because spheroids can be represented as

isosurfaces in these coordinate systems, solutions to acoustic waves scattering off them

can be written in terms of these special functions. The resulting expressions are accurate

over a wide range of frequencies and distances. These expressions were applied to the disk

in [78, 79], and they were validated experimentally in [80]. Spheroids of different sizes

were studied in the following decades [81, 82], and much of this work was organized into

an encyclopedic book [83], which also includes an extensive bibliography on the topic.

More recently, these expressions were implemented and used to compute the solutions over

a wide range of frequencies and spheroid sizes [84, 85]. However, even with the immense

amount of work that has been done on the topic, there are currently no publicly available

libraries that implement these expressions. Also, in all of these references, the spheroids

and disks were assumed to be entirely sound soft or sound hard, but the more general case

of Robin boundary conditions was never considered in detail.

We have developed computational software for calculating the solutions to acoustic
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Figure 6.1: The prolate (left) and oblate (right) spheroidal coordinate systems. The three
surfaces are isosurfaces for η = ±1/2 (the hyperboloids), ξ = 3/2 for the prolate case and
ξ = 1/2 for the oblate case (the spheroids), and φ = 0 (the planes).

scattering problems involving prolate spheroids, oblate spheroids, and disks. This software

is called scattering and runs in MATLAB. We have also developed software for com-

puting the spheroidal wave functions required by scattering. This software is called

spheroidal and is described in Chap. 7. Using spheroidal, we have precomputed

many values of the spheroidal wave functions, which, along with scattering, are freely

available for download from our webpage [86]. Together, they can be used to recreate

the examples seen here. Using this software, we were able to validate the accuracy of the

FMM-accelerated indirect BEM for the Helmholtz equation.
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6.2 Spheroidal Coordinates

The prolate spheroidal coordinate system, shown in Figure 6.1, is related to the

Cartesian coordinate system by [77]

x = a
(
1− η2

)1/2 (
ξ2 − 1

)1/2
cos (φ) , (6.1)

y = a
(
1− η2

)1/2 (
ξ2 − 1

)1/2
sin (φ) , (6.2)

z = aηξ, (6.3)

where 2a is the interfocal distance. The Helmholtz equation can be written in prolate

spheroidal coordinates as

(
∂

∂η

(
1− η2

) ∂
∂η

+
∂

∂ξ

(
ξ2 − 1

) ∂
∂ξ

+
ξ2 − η2

(1− η2) (ξ2 − 1)

∂2

∂φ2
+ c2

(
ξ2 − η2

))
V = 0,

(6.4)

where c = ka. Applying the method of separation of variables yields three uncoupled

ordinary differential equations, one for each coordinate:

∂

∂η

((
1− η2

) ∂
∂η
Smn (c, η)

)
+

(
λmn − c2η2 − m2

1− η2

)
Smn (c, η) = 0, (6.5)

∂

∂ξ

((
ξ2 − 1

) ∂
∂ξ
Rmn (c, ξ)

)
−
(
λmn − c2ξ2 +

m2

ξ2 − 1

)
Rmn (c, ξ) = 0, (6.6)

∂2

∂φ2 Φm (φ) +m2Φm (φ) = 0, (6.7)
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wherem = 0, 1, . . . and n = m,m+1, . . .. The solutions to Eq. (6.5) are called the prolate

spheroidal angle functions, and the solutions to Eq. (6.6) are called the prolate spheroidal

radial functions. Collectively, they are called the prolate spheroidal wave functions. Any

solution to Eq. (6.4) can be written as

V =
∞∑
m=0

∞∑
n=m

Smn (c, η)
(
AmnR

(1)
mn (c, ξ) +BmnR

(3)
mn (c, ξ)

)
cos (mφ) , (6.8)

where the expansion coefficients, Amn and Bmn, depend on the problem being solved.

The expression for an acoustic wave due to a point source is V ps = exp (ikr) / (4πr),

where r is the distance between the point source and evaluation point. When expanded in

terms of the prolate spheroidal wave functions,

V ps =
ik

2π

∞∑
m=0

∞∑
n=m

εm
Nmn (c)

S(1)
mn (c, η0)S(1)

mn (c, η)R(1)
mn (c, ξ<)R(3)

mn (c, ξ>) cos (mφ) ,

(6.9)

where (η0, ξ0, 0) and (η, ξ, φ) are the positions of the point source and evaluation point in

prolate spheroidal coordinates, respectively (because of symmetry, φ0 6= 0 can be achieved

by rotating the problem around the z axis), ξ< = min (ξ0, ξ), and ξ> = max (ξ0, ξ).

Likewise, the expression for a plane wave is V pw = exp (ik · r), where k is the wavevector

and r is the position vector of the evaluation point. When expanded in terms of the prolate

spheroidal wave functions,

V pw = 2
∞∑
m=0

∞∑
n=m

εmi
n

Nmn (c)
S(1)
mn (c, cos (θ0))S(1)

mn (c, η)R(1)
mn (c, ξ) cos (mφ) , (6.10)
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where, in this expression, k has been restricted to k = k (sin (θ0) , 0, cos (θ0)) (unrestricted

values of k can be achieved by rotating the problem around the z axis).

Consider a prolate spheroid, which is described by the isosurface, ξ = ξ1. The

prolate spheroid can be sound soft ([V ]ξ=ξ1 = 0), sound hard ([dV/dn]ξ=ξ1 = 0), or Robin

boundary conditions can be used ([V + αdV/dn]ξ=ξ1 = 0 and α = constant). The Robin

case lies somewhere between the other two: the prolate spheroid is sound soft when α = 0

and sound hard when α → ∞. Suppose an incident potential, V i, due to either a point

source or plane wave is generated, which strikes the prolate spheroid. We wish to compute

the scattered potential, V s, from the incident potential bouncing off the prolate spheroid.

Depending on the boundary conditions and whether the incident potential is due to a

point source or plane wave, the exact method of solution is slightly different, but they all

follow the same procedure: (1) the incident potential is expanded in terms of the prolate

spheroidal wave functions using either Eq. (6.9) or (6.10); (2) the same is done for the

scattered potential using Eq. (6.8); (3) the two expressions are added together to form an

expression for the total potential in terms of the prolate spheroidal wave functions; (4) the

total potential and normal derivative are evaluated at the boundary; and (5) by using the

orthogonality of the prolate spheroidal wave functions, the resulting expression is used to

determine the expansion coefficients, Amn and Bmn, so that the boundary conditions are

satisfied. For the Robin case and a point source,

Amn = 0, Bmn = − ik
2π

εm
Nmn (c)

S(1)
mn (c, η0)R(3)

mn (c, ξ0)
R

(1)
mn (c, ξ1) + αR

(1)′
mn (c, ξ1)

R
(3)
mn (c, ξ1) + αR

(3)′
mn (c, ξ1)

.

(6.11)

112



For the Robin case and a plane wave,

Amn = 0, Bmn = −2
εmi

n

Nmn (c)
Smn (c, cos (θ0))

R
(1)
mn (c, ξ1) + αR

(1)′
mn (c, ξ1)

R
(3)
mn (c, ξ1) + αR

(3)′
mn (c, ξ1)

. (6.12)

For a prolate spheroid that is sound soft (α = 0) or sound hard (α→∞), these expressions

reduce to those in [83].

The expressions arising in the oblate case are very similar to (and sometimes exactly

the same as) those arising in the prolate case. In many cases, simply letting c, ξ → −ic, iξ

provides a transformation from the prolate case to the oblate case [77]. Indeed, the

preceding paragraphs and equations for the prolate case can be transformed into those for

the oblate case by using this transformation. The oblate spheroidal coordinate system is

shown in Figure 6.1.

6.3 Scattering Routines

We have developed computational software for calculating the solutions to acoustic

scattering problems involving prolate spheroids, oblate spheroids, and disks. This software

is called scattering and runs in MATLAB. The spheroids and disks can be sound

soft, sound hard, or Robin boundary conditions can be used, and the incident potential

can be due to either a point source or plane wave. Internally, scattering needs to

compute the spheroidal wave functions of different order and degree for different values

of their argument. We have developed software for doing so. This software is called

spheroidal and is described in Chap. 7.

There are 18 routines in scattering, each one solving a different scattering
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Figure 6.2: A plane wave scattering off a sound-hard prolate spheroid (left), oblate spheroid
(center), and disk (right) for k = 10 (top) and k = 25 (bottom).

problem. For example, one is called pro_plane_wave_scat_hard, which computes

the scattered potential from a plane wave striking a sound-hard prolate spheroid. They are

organized into 18 separate MATLAB M-Files, one for each routine. At the top of each

M-File is a detailed explanation of the calling convention, return values, and so on.

Each routine has a slightly different calling convention depending on what is being

computed, but they all follow the same pattern. They all require k and a, as well as

information about the incident potential, either η0 and ξ0 for a point source or θ0 for a

plane wave. Routines that compute a scattered potential also require ξ1. For example, to

compute the scattered potential from a plane wave striking a sound-hard prolate spheroid,

the following MATLAB code fragment can be used:
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shows that the boundary conditions have been satisfied in all five cases.

v_scat = pro_plane_wave_scat_hard( ...

10.0, 1.0, pi, ‘saved’, 1.5, x, y, z);

where, in this case, k = 10, a = 1, θ0 = π, ‘saved’ is the directory in which the

spheroidal wave functions have been precomputed and saved, and ξ1 = 3/2. The variables,

x, y, and z, are row vectors, which contain the positions of the evaluation points in

Cartesian coordinates, and v_scat is a row vector, which will contain V s.

Figs. 6.2 and 6.3 show some examples of running the scattering software for different

wavenumbers, spheroid shapes and sizes, and boundary conditions.
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6.4 Conclusion

We have developed computational software for calculating the solutions to acoustic

scattering problems involving prolate spheroids, oblate spheroids, and disks. While

these problems have been studied for well over a century and analytical expressions for

computing their solutions have been documented by many authors, there are currently no

publicly available libraries that implement them. This chapter gave an overview of these

problems, derived their analytical solutions, described some theory behind the special

functions required by them, and included several examples of running our software. Using

this software, we were able to validate the accuracy of the FMM-accelerated indirect BEM

for the Helmholtz equation.
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Chapter 7: Spheroidal Wave Functions1

7.1 Introduction

The spheroidal wave functions are the solutions to the ordinary differential equations

obtained by applying the method of separation of variables to the Helmholtz equation in

spheroidal coordinates. There are two cases: the prolate spheroidal wave functions when

prolate spheroidal coordinates are used; and the oblate spheroidal wave functions when

oblate spheroidal coordinates are used. Unfortunately, there are no simple expressions

for computing them. Instead, they must be written as infinite series expansions in terms

of other special functions. For example, the spheroidal angle functions can be written in

terms of the associated Legendre polynomials, and the spheroidal radial functions can

be written in terms of the spherical Bessel and Neumann functions. Depending on the

method used, there are three or four different sets of expansion coefficients that need

to be computed. The spheroidal wave functions have applications in many disciplines.

Our primary motivation for studying them was for computing the solutions to acoustic

scattering problems involving prolate spheroids, oblate spheroids, and disks, which we did

in Chap. 6. However, they are also encountered in signal processing [88].

We have developed computational software for calculating the spheroidal wave

1This section is based on our original work in [87].
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functions using C++ and MATLAB. Our software is called spheroidal and has many

features, including:

1. GNU MPFR, a library for performing arbitrary precision arithmetic [89], is used

to achieve greater accuracy in many of the computations performed, especially for

higher wavenumbers and modes.

2. The software allows the user to specify in two different ways how many expansion

coefficients should be computed. The user can specify the number of expansion

coefficients exactly. Alternatively, the user can allow the software to choose the

number of expansion coefficients adaptively. All of the expansion coefficients decay

exponentially in the long run, so in this method, the user specifies the minimum mag-

nitude that the expansion coefficients should reach (e.g., keep computing expansion

coefficients until the next one drops below 10−200).

3. There are several methods for computing the spheroidal radial functions. The actual

value of the Wronskian of these functions is easy to compute, so the combination of

methods for computing the spheroidal radial functions is chosen so that the computed

Wronskian has the smallest error.

4. We have made our software freely available for download from our webpage [86].

The spheroidal wave functions have been studied for over six decades. The most

complete description of the spheroidal wave functions is given by Flammer [77]. Another

good description of these functions can be found in [90,91]. Actually implementing the

spheroidal wave functions in code is very involved. In [92], they were implemented in
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Fortran, and in [93, 94], they were implemented in C. These implementations used double

precision. Due to round-off errors, double precision can lead to large errors, especially

for higher frequencies and modes. In [95, 96], they were implemented in Fortran using

quad precision and expressions that converge faster and more accurately in some cases

to achieve better accuracy over a wide range of frequencies, modes, and argument values.

These implementations, as well as our own, are only for real frequencies and integer modes.

Other authors have investigated complex frequencies and non-integer modes [97, 98], and

in these particular references, the respective authors used Mathematica, which can work

in arbitrary precision. Some have also looked at numerical techniques, such as finite

difference approximations and relaxation methods [99–101]. Many of these authors have

released their code free to use.

7.2 Prolate Spheroidal Wave Functions

7.2.1 Angle Functions

The prolate spheroidal angle functions of the first and second kinds can be written in

terms of the associated Legendre polynomials of the first and second kinds, respectively:

S(1)
mn (c, η) =

∞∑′

r=0,1

dmnr (c)Pm
m+r (η) , S(2)

mn (c, η) =

∞∑′

r=−∞

dmnr (c)Qm
m+r (η) , (7.1)

where the prime over the sum means that only the even terms are included when n−m =

even and only the odd terms are included when n−m = odd. The angle functions of the
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Figure 7.1: Characteristic and other special values for the prolate spheroidal wave functions
for c = 10, m = 0, 1, . . . , 29, and n = m,m+ 1, . . . ,m+ 29.

first kind are orthogonal over [−1, 1]:

∫ 1

−1

S(1)
mn (c, η)S

(1)
mn′ (c, η) dη = δnn′Nmn (c) , (7.2)

where

δnn′ =


1, n = n′

0, n 6= n′
, Nmn (c) = 2

∞∑′

r=0,1

dmnr (c)2 (2m+ r)!

(2m+ 2r + 1) r!
. (7.3)

The angle functions of the first kind can also be written as a power series. This can
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Figure 7.2: The prolate spheroidal wave functions and their derivatives for c = 10, m = 10,
and n = 10, 11, . . . , 39.

be done with the help of the hypergeometric function. When n−m = even,

S(1)
mn (c, η) =

∞∑
r=0

dmn2r (c)Pm
m+2r (η) . (7.4)

The associated Legendre polynomials of the first kind can be written as

Pm
n (x) =

(−1)m (n+m)!

2mm! (n−m)!

(
1− x2

)m/2
F

(
m− n, n+m+ 1;m+ 1;

1− x
2

)
, (7.5)

where

F (α, β; γ;x) =
∞∑
k=0

(α)k (β)k
k! (γ)k

xk (7.6)

is the hypergeometric function and (a)0 = 1, (a)k = a (a+ 1) . . . (a+ k − 1) is the rising
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Pochhammer symbol. Using this, the associated Legendre polynomials of the first kind in

Eq. (7.4) can be written as

Pm
m+2r (x) =

(−1)m (2m+ 2r)!

2mm! (2r)!

(
1− x2

)m/2
F

(
−2r, 2m+ 2r + 1;m+ 1;

1− x
2

)
.

(7.7)

Recall the following identity for the hypergeometric function:

F

(
α, β;

α + β + 1

2
;x

)
= F

(
α

2
,
β

2
;
α + β + 1

2
; 4x (1− x)

)
. (7.8)

Using this, we can rearrange the previous expression slightly:

Pm
m+2r (x) =

(−1)m (2m+ 2r)!

2mm! (2r)!

(
1− x2

)m/2
F

(
−r,m+ r +

1

2
;m+ 1; 1− x2

)
,

(7.9)

Pm
m+2r (x) =

(−1)m (2m+ 2r)!

2mm! (2r)!

(
1− x2

)m/2 ∞∑
k=0

(−r)k (m+ r + 1/2)k
k! (m+ 1)k

(
1− x2

)k
.

(7.10)

Plugging this into Eq. (7.4) and rearranging, we have

S(1)
mn (c, η) = (−1)m

(
1− η2

)m/2 ∞∑
k=0

cmn2k (c)
(
1− η2

)k
, (7.11)

where

cmn2k (c) =
1

2m (m+ k)!k!

∞∑′

r=2k

dmnr (c)
(2m+ r)!

r!

(
−r

2

)
k

(
m+

r

2
+

1

2

)
k

. (7.12)
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When n−m = odd,

S(1)
mn (c, η) =

∞∑
r=0

dmn2r+1 (c)Pm
m+2r+1 (η) . (7.13)

Recall the following identity for the associated Legendre polynomials of the first kind:

(n−m+ 1)Pm
n+1 (x) = (n+ 1)xPm

n (x)−
(
1− x2

)
Pm′
n (x) . (7.14)

Setting n = m+ 2r, plugging in Eq. (7.10), and rearranging,

Pm
m+2r+1 (x) =

(−1)m (2m+ 2r + 1)!

2mm! (2r + 1)!
x
(
1− x2

)m/2×
∞∑
k=0

(−r)k (m+ r + 3/2)k
k! (m+ 1)k

(
1− x2

)k
.

(7.15)

Finally, plugging this into Eq. (7.13) and rearranging,

S(1)
mn (c, η) = (−1)m η

(
1− η2

)m/2 ∞∑
k=0

cmn2k (c)
(
1− η2

)k
, (7.16)

where

cmn2k (c) =
1

2m (m+ k)!k!

∞∑′

r=2k+1

dmnr (c)
(2m+ r)!

r!

(
−r − 1

2

)
k

(
m+

r

2
+ 1
)
k
. (7.17)
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7.2.2 Radial Functions

The prolate spheroidal radial functions of the first and second kinds can be written

in terms of the spherical Bessel and Neumann functions, respectively:

R(1)
mn (c, ξ) =

1

Fmn (c)

(
1− 1

ξ2

)m/2
×

∞∑′

r=0,1

(−1)(r−(n−m))/2 dmnr (c)
(2m+ r)!

r!
jm+r (cξ) ,

(7.18)

R(2)
mn (c, ξ) =

1

Fmn (c)

(
1− 1

ξ2

)m/2
×

∞∑′

r=0,1

(−1)(r−(n−m))/2 dmnr (c)
(2m+ r)!

r!
ym+r (cξ) ,

(7.19)

where

Fmn (c) =

∞∑′

r=0,1

dmnr (c)
(2m+ r)!

r!
. (7.20)

The radial functions of the third and fourth kinds are linear combinations of those of the

first and second kinds:

R(3)
mn (c, ξ) = R(1)

mn (c, ξ) + iR(2)
mn (c, ξ) , R(4)

mn (c, ξ) = R(1)
mn (c, ξ)− iR(2)

mn (c, ξ) . (7.21)

The Wronskian of the radial functions of the first and second kinds is given by

Wmn (c, ξ) = R(1)
mn (c, ξ)

∂

∂ξ
R(2)
mn (c, ξ)− ∂

∂ξ
R(1)
mn (c, ξ)R(2)

mn (c, ξ) =
1

c (ξ2 − 1)
(7.22)

and is useful for validating computed values of these functions.
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The radial functions are related to the angle functions by

S(1)
mn (c, z) = k(1)

mn (c)R(1)
mn (c, z) , S(2)

mn (c, z) = k(2)
mn (c)R(2)

mn (c, z) , (7.23)

where k(1)
mn (c) is given by

k(1)
mn (c) =

(2m+ 1) (m+ n)!Fmn (c)

2m+ndmn0 (c) cmm!

n−m2

!

m+ n

2

!

, n−m = even, (7.24)

k(1)
mn (c) =

(2m+ 3) (m+ n+ 1)!Fmn (c)

2m+ndmn1 (c) cm+1m!

n−m− 1

2

!

m+ n+ 1

2

!

, n−m = odd,

(7.25)

and k(2)
mn (c) is given by

k(2)
mn (c) =

2n−m (2m)!

n−m2

!

m+ n

2

!dmn−2m (c)Fmn (c)

(2m− 1)m! (m+ n)!cm−1
, n−m = even,

(7.26)
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k(2)
mn (c) = −

2n−m (2m)!

n−m− 1

2

!

m+ n+ 1

2

!dmn−2m+1 (c)Fmn (c)

(2m− 3) (2m− 1)m! (m+ n+ 1)!cm−2
,

n−m = odd.
(7.27)

The expression for the radial functions of the second kind using the spherical Neumann

functions converges very slowly for values of ξ near 1 and is, therefore, inaccurate in these

cases. While the expression for the radial functions of the first kind is accurate for all

values of ξ, having a second method can be used as a check on the first method. Thus, these

relationships can be used to construct secondary methods for computing these functions.

For the radial functions of the first kind,

R(1)
mn (c, ξ) = k(1)

mn (c)
−1
S(1)
mn (c, ξ) = k(1)

mn (c)
−1

∞∑′

r=0,1

dmnr (c)Pm
m+r (ξ) . (7.28)

Similar to the angle functions of the first kind, this expression can be written as a power

series with the help of the hypergeometric function. Because the argument is ξ ≥ 1 as

opposed to |η| ≤ 1, the relationship between the associated Legendre polynomials of the

first kind and the hypergeometric function is slightly different. In particular, there is no

factor of (−1)m:

Pm
n (x) =

(n+m)!

2mm! (n−m)!

(
x2 − 1

)m/2
F

(
m− n, n+m+ 1;m+ 1;

1− x
2

)
. (7.29)
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Following a procedure similar to the one followed for the angle functions of the first kind,

we have

R(1)
mn (c, ξ) = k(1)

mn (c)
−1 (

ξ2 − 1
)m/2 ∞∑

k=0

(−1)k cmn2k (c)
(
ξ2 − 1

)k
, n−m = even,

(7.30)

R(1)
mn (c, ξ) = k(1)

mn (c)
−1
ξ
(
ξ2 − 1

)m/2 ∞∑
k=0

(−1)k cmn2k (c)
(
ξ2 − 1

)k
, n−m = odd,

(7.31)

where cmn2k (c) is the same as before. For the radial functions of the second kind,

R(2)
mn (c, ξ) = k(2)

mn (c)
−1
S(2)
mn (c, ξ) = k(2)

mn (c)
−1

∞∑′

r=−∞

dmnr (c)Qm
m+r (ξ) . (7.32)

7.2.3 Calculating the Characteristic Value and Expansion Coefficients

All of the expressions introduced in the previous sections require, either directly or

indirectly, the characteristic value, λmn (c), and expansion coefficients, dmnr (c). Below,

we derive expressions for computing them.

There are several methods for computing the characteristic value, but here, we use a

combination of two: method (1) involves solving for the eigenvalues of a tridiagonal matrix

[102]; and method (2) involves solving for the roots of a transcendental equation [77]. To

begin, method (1) is used to compute an approximate value for the characteristic value.

Method (2) is then used to compute a more accurate value for the characteristic value

using the approximate value computed by method (1) as a starting point. This procedure is
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similar to the one used in [98]. In our software, we use double precision for method (1)

and arbitrary precision for method (2).

Both methods rely on the following recurrence relation, which can be obtained by

plugging Eq. (7.1) into Eq. (6.5):

αrd
mn
r+2 (c) + (βr − λmn (c)) dmnr (c) + γrd

mn
r−2 (c) = 0, (7.33)

where

αr =
(2m+ r + 2) (2m+ r + 1)

(2m+ 2r + 5) (2m+ 2r + 3)
c2, (7.34)

βr = (m+ r) (m+ r + 1) +
2 (m+ r) (m+ r + 1)− 2m2 − 1

(2m+ 2r − 1) (2m+ 2r + 3)
c2, (7.35)

γr =
r (r − 1)

(2m+ 2r − 3) (2m+ 2r − 1)
c2. (7.36)

For method (1), this recurrence relation is rearranged slightly:

αrd
mn
r+2 (c) + βrd

mn
r (c) + γrd

mn
r−2 (c) = λmn (c) dmnr (c) . (7.37)

In matrix form,



β0 α0

γ2 β2 α2

γ4 β4 α4

. . .





dmn0 (c)

dmn2 (c)

dmn4 (c)

...


= λmn (c)



dmn0 (c)

dmn2 (c)

dmn4 (c)

...


, n−m = even, (7.38)
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β1 α1

γ3 β3 α3

γ5 β5 α5

. . .





dmn1 (c)

dmn3 (c)

dmn5 (c)

...


= λmn (c)



dmn1 (c)

dmn3 (c)

dmn5 (c)

...


, n−m = odd. (7.39)

When n−m = even, the eigenvalues are λmn (c) for n = m,m+ 2,m+ 4, . . ., and when

n −m = odd, the eigenvalues are λmn (c) for n = m + 1,m + 3,m + 5, . . .. Thus, we

can compute λmn (c) by plugging these tridiagonal matrices into an eigenvalue solver. In

our software, we use the eig function in MATLAB.

In method (2), the recurrence relation in Eq. (7.33) is divided through by dmnr (c),

which yields

αr
dmnr+2 (c)

dmnr (c)
+ βr − λmn (c) + γr

dmnr−2 (c)

dmnr (c)
= 0. (7.40)

Setting

Nm
r = −αr−2

dmnr (c)

dmnr−2 (c)
, γmr = βr, βmr = γrαr−2 (7.41)

allows us to write Eq. (7.40) as

−Nm
r+2 + γmr − λmn (c)− βmr

Nm
r

= 0. (7.42)

Rearranging one way leads to a continued fraction in decreasing r:

Nm
r = γmr−2 − λmn (c)− βmr−2

γmr−4 − λmn (c)−
βmr−4

γmr−6 − λmn (c)− · · · . (7.43)
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Rearranging the other way leads to a continued fraction in increasing r:

Nm
r =

βmr
γmr − λmn (c)−

βmr+2

γmr+2 − λmn (c)− · · · . (7.44)

The two expression for Nm
r should be equal to each other. Setting r = n−m+ 2 in Eqs.

(7.43) and (7.44),

U1 (λmn (c)) = γmn−m − λmn (c)− βmn−m
γmn−m−2 − λmn (c)−

βmn−m−2

γmn−m−4 − λmn (c)− · · · ,

(7.45)

U2 (λmn (c)) = − βmn−m+2

γmn−m+2 − λmn (c)−
βmn−m+4

γmn−m+4 − λmn (c)− · · · . (7.46)

Adding these together yields a transcendental equation in λmn (c):

U (λmn (c)) = U1 (λmn (c)) + U2 (λmn (c)) = 0. (7.47)

We can compute λmn (c) by solving this transcendental equation. In our software, we use

the secant method.

Once λmn (c) is known, Eqs. (7.41) and (7.44) can be used to compute dmnr (c).

The expansion coefficients are unique up to a constant factor, though, so the following
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normalization scheme is used. When n−m = even,

S(1)
mn (c, 0) = Pm

n (0) , (7.48)

∞∑′

r=0

dmnr (c)
(−1)r/2 (2m+ r)!

2r

2m+ r

2

!

r2
!

=
(−1)(n−m)/2 (n+m)!

2n−m

n+m

2

!

n−m2

!

. (7.49)

When n−m = odd,

S(1)′
mn (c, 0) = Pm′

n (0) , (7.50)

∞∑′

r=1

dmnr (c)
(−1)(r−1)/2 (2m+ r + 1)!

2r

2m+ r + 1

2

!

r − 1

2

!

=
(−1)(n−m−1)/2 (n+m+ 1)!

2n−m

n+m+ 1

2

!

n−m− 1

2

!

.

(7.51)

To use Eq. (7.32), dmnr (c) must be computed for negative r as well. To begin, Eq.

(7.33) is rewritten as

Amr+2d
mn
r+2 (c) +Bm

r d
mn
r (c) + Cm

r−2d
mn
r−2 (c) = 0, (7.52)

where

Amr = αr−2, Bm
r = βr − λmn (c) , Cm

r = γr+2. (7.53)
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Rearranging,

dmnr (c)

dmnr+2 (c)
= −

Amr+2

Bm
r + Cm

r−2

dmnr−2 (c)

dmnr (c)

, (7.54)

which can be expanded as a continued fraction in decreasing r:

dmnr (c)

dmnr+2 (c)
= −A

m
r+2

Bm
r −

Cm
r−2A

m
r

Bm
r−2−

Cm
r−4A

m
r−2

Bm
r−4−

· · · . (7.55)

Because Amr = 0 when r = −2m or r = −2m+ 1, this continued fraction ends:

dmnr (c)

dmnr+2 (c)
= −A

m
r+2

Bm
r −

Cm
r−2A

m
r

Bm
r−2−

Cm
r−4A

m
r−2

Bm
r−4−

· · · Am−2m+2

Bm
−2m + Cm

−2m−2

(7.56)

when n−m = even, and

dmnr (c)

dmnr+2 (c)
= −A

m
r+2

Bm
r −

Cm
r−2A

m
r

Bm
r−2−

Cm
r−4A

m
r−2

Bm
r−4−

· · · Am−2m+3

Bm
−2m+1 + Cm

−2m−1

(7.57)

when n − m = odd. This also means that dmnr (c) → 0 when r ≤ −2m − 2 for

n −m = even and r ≤ −2m − 1 for n −m = odd. However, Qm
m+r (ξ) → ∞ in these

cases, and dmnr (c)Qm
m+r (ξ) <∞:

dmnr (c)Qm
m+r (ξ) = dmnr|ε (c)Pm

−r−m−1 (ξ) . (7.58)
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The sum in Eq. (7.32) is, therefore, separated into two pieces:

R(2)
mn (c, ξ) = k(2)

mn

−1

−2m−2,−2m−1∑′

r=−∞

dmnr|ε (c)Pm
−r−m−1 (ξ) +

∞∑′

r=−2m,−2m+1

dmnr (c)Qm
m+r (ξ)

)
,

(7.59)

where dmn−2m−2|ε (c) and dmn−2m−1|ε (c) are computed using

dmn−2m−2|ε (c)

dmn−2m (c)
=

c2

(2m− 1) (2m+ 1)

1

Bm
−2m−2−

Cm
−2m−4A

m
−2m−2

Bm
−2m−4−

Cm
−2m−6A

m
−2m−4

Bm
−2m−6−

· · · ,

(7.60)

dmn−2m−1|ε (c)

dmn−2m+1 (c)
= − c2

(2m− 1) (2m− 3)

1

Bm
−2m−1−

Cm
−2m−3A

m
−2m−1

Bm
−2m−3−

Cm
−2m−5A

m
−2m−3

Bm
−2m−5−

· · · .

(7.61)

For r < −2m − 2 when n − m = even and r < −2m − 1 when n − m = odd, the

remaining expansion coefficients can be computed using

dmnr|ε (c)

dmnr+2|ε (c)
= −A

m
r+2

Bm
r −

Cm
r−2A

m
r

Bm
r−2−

Cm
r−4A

m
r−2

Bm
r−4−

· · · . (7.62)

7.3 Oblate Spheroidal Wave Functions

7.3.1 Angle Functions

The expressions for the prolate spheroidal angle functions, including those written

in terms of the associated Legendre polynomials as well as those expanded as power series,
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Figure 7.3: Characteristic and other special values for the oblate spheroidal wave functions
for c = 10, m = 0, 1, . . . , 29, and n = m,m+ 1, . . . ,m+ 29.

can be transformed into those for the oblate spheroidal angle functions by letting c→ −ic.

7.3.2 Radial Functions

The oblate spheroidal radial functions of the first and second kinds can be written in

terms of the spherical Bessel and Neumann functions, respectively:

R(1)
mn (−ic, iξ) =

1

Fmn (−ic)

(
1 +

1

ξ2

)m/2
×

∞∑′

r=0,1

(−1)(r−(n−m))/2 dmnr (−ic) (2m+ r)!

r!
jm+r (cξ) ,

(7.63)
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c = 10, m = 10, n = 10, 11, ..., 39 (Blue to Red)
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Figure 7.4: The oblate spheroidal wave functions and their derivatives for c = 10, m = 10,
and n = 10, 11, . . . , 39.

R(2)
mn (−ic, iξ) =

1

Fmn (−ic)

(
1 +

1

ξ2

)m/2
×

∞∑′

r=0,1

(−1)(r−(n−m))/2 dmnr (−ic) (2m+ r)!

r!
ym+r (cξ) ,

(7.64)

where

Fmn (−ic) =

∞∑′

r=0,1

dmnr (−ic) (2m+ r)!

r!
. (7.65)
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The radial functions of the third and fourth kinds are linear combinations of those of the

first and second kinds:

R(3)
mn (−ic, iξ) = R(1)

mn (−ic, iξ) + iR(2)
mn (−ic, iξ) , (7.66)

R(4)
mn (−ic, iξ) = R(1)

mn (−ic, iξ)− iR(2)
mn (−ic, iξ) . (7.67)

The Wronskian of the radial functions of the first and second kinds is given by

Wmn (−ic, iξ) = R(1)
mn (−ic, iξ) ∂

∂ξ
R(2)
mn (−ic, iξ)− ∂

∂ξ
R(1)
mn (−ic, iξ)R(2)

mn (−ic, iξ)

=
1

c (ξ2 + 1)
(7.68)

and is useful for validating computed values of these functions.

The radial functions are related to the angle functions by

S(1)
mn (−ic, iz) = k(1)

mn (−ic)R(1)
mn (−ic, iz) , S(2)

mn (−ic, iz) = k(1)
mn (−ic)R(2)

mn (−ic, iz) ,

(7.69)

where k(1)
mn (−ic) and k(2)

mn (−ic) are given by the same expressions as in the prolate case,

provided that c → −ic. The expression for the radial functions of the first kind using

the spherical Bessel functions converges and is accurate for all values of ξ, except for

ξ = 0, where the expression is undefined due to a divide by zero. The expression for

the radial functions of the second kind using the spherical Neumann functions converges

very slowly for values of ξ near 0 and is, therefore, inaccurate in these cases. Thus, these

relationships can be used to construct secondary methods for computing these functions.
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The same procedures used in the prolate case for doing so can also be used here, provided

that c, ξ → −ic, iξ where necessary.

A third method for computing the radial functions of the second kind can also be

constructed using a power series:

R(2)
mn (−ic, iξ) = Q∗mn (−ic)R(1)

mn (−ic, iξ)
(

arctan (ξ)− π

2

)
+ gmn (−ic, iξ) , (7.70)

where

Q∗mn (−ic) =

(
i−mk

(1)
mn (−ic)

)2

c

m∑
r=0

αmnr (−ic) (2m− 2r)!

r! (2m−r (m− r)!)2 , n−m = even,

(7.71)

Q∗mn (−ic) = −

(
i−(m+1)k

(1)
mn (−ic)

)2

c

m∑
r=0

αmnr (−ic) (2m− 2r + 1)!

r! (2m−r (m− r)!)2 ,

n−m = odd,

(7.72)

αmnr (−ic) =

[
dr

dxr
1

(
∑∞

k=0 c
mn
2k (−ic)xk)2

]
x=0

, (7.73)

gmn (−ic, iξ) = ξ
(
ξ2 + 1

)−m/2 ∞∑
r=0

Bmn
2r (−ic) ξ2r, n−m = even, (7.74)

gmn (−ic, iξ) =
(
ξ2 + 1

)−m/2 ∞∑
r=0

Bmn
2r (−ic) ξ2r, n−m = odd. (7.75)

To compute αmnr (−ic), we use the following procedure, which was described in [92]

and uses some properties of Cauchy products. Let Ck = cmn2k (−ic), and expand the
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denominator in Eq. (7.73) as

(
∞∑
k=0

cmn2k (−ic)xk
)2

=
∞∑
n=0

n∑
k=0

Ckx
kCn−kx

n−k =
∞∑
n=0

Bnx
n, (7.76)

Bn =
n∑
k=0

CkCn−k, (7.77)

1(
∞∑
k=0

cmn2k (−ic)xk
)2 =

1
∞∑
n=0

Bnx
n

=
∞∑
n=0

Anx
n, (7.78)

∞∑
n=0

Anx
n

∞∑
n=0

Bnx
n = 1, (7.79)

∞∑
n=0

(
n∑
k=0

AkBn−k

)
xn = 1. (7.80)

In order for this equality to hold,

A0B0 = 1,
n∑
k=0

AkBn−k = 0, n > 0. (7.81)

Rearranging,

A0 =
1

B0

, An = − 1

B0

n−1∑
k=0

AkBn−k, n > 0. (7.82)

We can now compute αmnr (−ic):

αmnr (−ic) =

[
dr

dxr

∞∑
n=0

Anx
n

]
x=0

= Arr!. (7.83)

Plugging Eq. (7.70) into the oblate version of Eq. (6.6) yields the following recurrence
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relation in Bmn
2r (−ic):

α2rB
mn
2r+2 (−ic) + β2rB

mn
2r (−ic) + γ2rB

mn
2r−2 (−ic) = h2r, (7.84)

where

α2r = (2r + 2) (2r + 3) , (7.85)

β2r = (2r + 1) (2r − 2m+ 2) +m (m− 1)− λmn (−ic) , (7.86)

γ2r = c2, (7.87)

h2r = −2Q∗mn (−ic)
(
i−mk(1)

mn (−ic)
)−1×

∞∑
k=r−m+1

cmn2k (−ic) (m+ 2k)
(m+ k − 1)!

(m+ k − 1− r)!r!

(7.88)

when n−m = even, and

α2r = (2r + 1) (2r + 2) , (7.89)

β2r = 2r (2r − 2m+ 1) +m (m− 1)− λmn (−ic) , (7.90)

γ2r = c2, (7.91)

h2r = −2Q∗mn (−ic)
(
i−(m+1)k(1)

mn (−ic)
)−1×(

∞∑
k=r−m

cmn2k (−ic) (m+ 2k + 1)
(m+ k)!

(m+ k − r)!r! −

∞∑
k=r−m+1

cmn2k (−ic) (m+ 2k)
(m+ k − 1)!

(m+ k − 1− r)!r!

) (7.92)
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when n−m = odd. Given a starting value, Bmn
0 (−ic), Eq. (7.84) can be used to compute

Bmn
2r (−ic). The starting values are

Bmn
0 (−ic) =

(
cR(1)

mn (−ic, i0)
)−1 −Q∗mn (−ic)R(1)

mn (−ic, i0) , n−m = even,

(7.93)

Bmn
0 (−ic) = −

(
cR(1)′

mn (−ic, i0)
)−1

, n−m = odd. (7.94)

7.3.3 Calculating the Characteristic Value and Expansion Coefficients

The procedures for computing the characteristic value and expansion coefficients for

the oblate case are exactly the same as those for the prolate case, provided that c→ −ic.

7.4 Implementation Details

7.4.1 Using the MPFR Library

Our code uses the GNU MPFR library, which provides interfaces and routines for

performing arbitrary precision arithmetic [89]. We created a C++ class, real, which

encapsulates many of the features provided by GNU MPFR. These features include: basic

arithmetic by overloading the +, -, *, and / operators; comparisons by overloading the >,

>=, <, <=, ==, and != operators; and some elementary functions, including abs, atan,

cos, log, pow, and sin. GNU MPFR allows the programmer to specify the precision to

use for these operations by setting the number of bits of precision. As a reference, single

and double precision arithmetic found in most programming languages have 24 and 53 bits
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Figure 7.5: The relative error of the computed Wronskian when using different combina-
tions of the methods for computing the prolate (left) and oblate (right) spheroidal radial
functions for c = 10, m = 10, and n = 39.

of precision, respectively. We experimented with several different levels of precision (as

low as 24 and as high as 5000 bits of precision). In general, as we increased the precision,

the accuracy of the computations increased. For lower c, m, and n, single and double

precision were good enough. However, for higher values, using such low precision yielded

very large errors, and only by increasing the precision were these errors reduced.

7.4.2 Using the Wronskian

Two methods were given for computing the prolate spheroidal radial functions of

the first kind. One method uses the spherical Bessel functions, and the other method

uses a power series. Call these methods R1_1 and R1_2, respectively. Likewise, two

methods were given for computing the prolate spheroidal radial functions of the second

kind. One method uses the spherical Neumann functions, and the other method uses the
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associated Legendre polynomials of the second kind. Call these methods R2_1 and R2_2,

respectively. In each of these pairs of methods, one is better for certain values of ξ than

the other, and vice versa. In particular, R1_1 is better for larger ξ and R1_2 is better for

smaller ξ. Similarly, R2_1 is better for larger ξ and R2_2 is better for smaller ξ. However,

when to use which method is not always clear: the exact value of ξ below which one is

better and above which the other is better is different for different values of c, m, and

n. We solved this dilemma in the following manner. For a given ξ, all four methods are

used to compute their respective functions, and the combination that yields the smallest

error in the computed Wronskian is used. An example of this can be seen in Figure

7.5. The combination, R1_2, R2_2, was superior for smaller ξ and the combination,

R1_1, R2_1, was superior for larger ξ.

This procedure is also used for the oblate spheroidal radial functions. There are two

methods for computing the oblate spheroidal radial functions of the first kind, one that uses

the spherical Bessel functions and one that uses a power series. Call these methods R1_1

and R1_2, respectively. There are three methods for computing the oblate spheroidal

radial functions of the second kind, one that uses the spherical Neumann functions, one

that uses the associated Legendre polynomials of the second kind, and one that uses a

power series. Call these methods R2_1, R2_2, and R2_3, respectively. Internally, R2_3

uses the oblate spheroidal radial functions of the first kind, so when R1_1 is used, call this

method R2_31, and when R1_2 is used, call this method R2_32. Thus, there are eight

possible combinations, but only six are considered: R1_1 and R2_1; R1_1 and R2_2;

R1_1 and R2_31; R1_2 and R2_1; R1_2 and R2_2; and R1_2 and R2_32. For a

given ξ, of these six, the one that yields the smallest error in the computed Wronskian is
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Figure 7.6: The order of magnitude of the expansion coefficients, Bmn
2r (−ic), for c = 25,

m = 49, and n = 49, 50, . . . , 98.

used. An example of this can be seen in Figure 7.5. The combination, R1_1, R2_2, was

superior for smaller ξ and the combination, R1_1, R2_1, was superior for larger ξ.

7.4.3 Solving Forward and Backward Recurrences

Several recurrence relations need to be solved in order to compute the characteristic

and other special values, expansion coefficients, and special functions required by many of

the expressions for the spheroidal wave functions. These recurrence relations can either

have a starting value (e.g., for Bmn
2r (−ic)) or some kind of normalization scheme (e.g., for

dmnr (ic)). Except for one case, all of the recurrence relations encountered in the previous

sections were homogeneous. Depending on whether the solution to a particular recurrence

relation grows or decays, the method of solution is different. For solutions that grow

(e.g., the spherical Neumann functions), the forward recurrence approach is used (i.e., the

recurrence relation is used directly to compute succeeding values). For solutions that decay
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(e.g., dmnr (ic)), the forward recurrence approach is numerically unstable. The continued

fraction approach, which is described in [77], is used instead.

Nonhomogeneous recurrence relations are more complicated. For solutions that

grow, the forward recurrence approach can still be used. However, for solutions that decay,

the continued fraction approach no longer works. Instead, we use the tridiagonal matrix

method described in [103, 104]: the recurrence relation is written for each index, these are

combined into a tridiagonal system of equations, and this system is inverted. The case of

computing the expansion coefficients, Bmn
2r (−ic), is further complicated by the fact that,

for many values of c, m, and n, Bmn
2r (−ic) grows for lower r, but decays for higher r. See,

for example, Figure 7.6. Thus, the forward recurrence approach is used when Bmn
2r (−ic)

is growing, and the tridiagonal matrix method is used when Bmn
2r (−ic) is decaying.

7.5 Conclusion

The spheroidal wave functions are among the most complicated special functions

around. However, because the solutions to so many interesting problems require them,

software for computing them accurately is needed. We have developed computational

software for doing so using C++, MATLAB, and GNU MPFR, a library for performing

arbitrary precision arithmetic. This chapter described the prolate and oblate spheroidal

coordinate systems and wave functions, methods for deriving analytical expressions for

computing them, and our software that implements these expressions. Our software

includes many novel features. Some of these features include using arbitrary precision

arithmetic and using the Wronskian to choose from several different methods for computing
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the spheroidal radial functions to improve their accuracy. We have made our software

freely available from our webpage.
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Chapter 8: Conclusion

The Laplace and Helmholtz equations in three dimensions are two of the most

important, perhaps the most important, partial differential equations (PDEs) in science, and

govern problems in a large number of disciplines, including electromagnetism, acoustics,

astrophysics, molecular dynamics, and aerodynamics, among others. The boundary

element method (BEM) is a powerful method for solving these PDEs. The BEM reduces

the dimensionality of the problem by one, allows for the treatment of complex boundary

shapes, and treats thin surfaces and multi-domain problems well. Unfortunately, the

BEM also suffers from a few problems. The entries in the system matrices require

the computation of certain boundary integrals, which can be difficult to do accurately,

especially in the Galerkin formulation. These matrices are also dense, and when solved

conventionally via direct matrix decompositions, require O (N2) storage and run in O (N3),

where N is the number of discretization unknowns. This can effectively restrict the size of

a problem. This dissertation addressed these issues by making three contributions.

First, we presented novel methods inspired by the fast multipole method (FMM) for

computing all the boundary integrals that arise in the Galerkin formulation to any accuracy.

Integrals involving completely geometrically separated triangles are non-singular, and

are computed using a technique based on spherical harmonics and multipole expansions
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and translations, which require the integration of polynomial functions over the triangles.

Integrals involving cases where the triangles have common vertices, edges, or are coinci-

dent are treated via scaling and symmetry arguments, combined with automatic recursive

geometric decomposition of the integrals. We have parallelized our code using C++ and

OpenMP, and also ported the C++ code to run on the GPU using CUDA. The GPU version

of the code, which ran on a NVIDIA Tesla K20c, ran 6× faster than the CPU version of

the code, which ran on a Quad Intel Xeon Dual E5-2690 (32 cores).

Second, we used the FMM to accelerate the BEM. The FMM is usually designed

around monopole and dipole sources, not the integral expressions in the BEM. To apply

the FMM to these expressions, the internal logic of the FMM must be changed, but this

can be difficult to do. To overcome this difficulty, we presented the correction factor matrix

method, which works by approximating the integrals using a quadrature. The quadrature

points are treated as monopole and dipole sources, which are plugged directly into current

FMM codes. Any inaccuracies from the quadrature are corrected during a correction factor

step. We carefully explored all of the sources of error in the method, identifying the range

of values that all of the available parameters in the method should have to ensure the best

accuracy. In the example problem for the Laplace equation, the errors were reduced to

well below 0.01%, and in the example problem for the Helmholtz equation, the errors

were reduced to around 1%. The correction factor matrix method and the use of the

FMM reduced the quadratic and cubic scalings of the unaccelerated BEM to linear, which

allowed for very large problems. In fact, in the example problem for the Laplace equation,

a mesh with over one million boundary elements took only minutes to solve on a single

workstation.
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Third, we developed computational software for calculating the solutions to acoustic

scattering problems involving spheroids and disks. We used this software to verify the

accuracy of the BEM for the Helmholtz equation. The software uses spheroidal wave

functions to analytically build the solutions to these problems. However, the spheroidal

wave functions are notoriously difficult to compute. Because of this, practically no

programming language comes equipped with the means to compute them. This makes

problems that require their use hard to tackle. For this reason, we had to also develop

computational software for computing the spheroidal wave functions. This software has

many features, including: using arbitrary precision arithmetic; adaptively choosing the

number of expansion coefficients to compute and use; and using the Wronskian to choose

from several different methods for computing the spheroidal radial functions to improve

their accuracy.

The product of these three contributions was a fast and accurate BEM solver for the

Laplace and Helmholtz equations. Where possible, the companion code for this dissertation

has been released online and is available for download.

There are a number of interesting problems that remain open and could possibly

be the topic of future work. In the example problems in Chap. 5, the boundaries were

simple shapes. In the case of the Laplace equation, the boundary was a cube, and in the

case of the Helmholtz equation, the boundary was a disk. Moreover, the discretizations

of these boundaries were “good”, meaning the triangles in the mesh were all acute or

right-angled, and they were all roughly the same size. A real-world problem with a more

complicated geometry may not allow for such a “good” mesh. For example, a problem

may be composed of more complicated shapes that have sharp corners, holes, or many
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different levels of scale, where some features are very big and some features are very

small, perhaps in close proximity to each other. These kinds of geometries would be more

difficult to discretize, requiring triangles of many different sizes, some of which could be

very obtuse. The effect of these “bad” meshes on the different methods presented in this

dissertation remains an open question, and would require additional work to answer.

The use of these “bad” meshes usually results in linear systems that are poorly

conditioned. This primarily affects the performance of the iterative solver. Since the

convergence rates for iterative solvers largely depend on the condition number of the linear

system, this can greatly affect how quickly a solution is reached. In particular, higher

condition numbers require more iterations, and lower condition numbers require fewer.

Since more iterations take longer, keeping the iteration counts a low as possible is important.

The number of iterations can be reduced by using a preconditioner. A preconditioner

works by reducing the condition number of the linear system. Instead of solving Ax = b,

we solve P−1Ax = P−1b. By carefully choosing P, the new system matrix, P−1A, has

a lower condition number, thus reducing the number of iterations. Exploring different

preconditioners could be an interesting topic of future work. Even for “good” meshes, this

could be helpful. For the example problems in Chap. 5, the iteration counts were between

50 and 100 for the largest mesh sizes. Reducing these numbers would provide a significant

speedup.

To get an idea of how more complicated geometries might affect the methods

presented in this dissertation, we modeled the electric-field cage described in [2]. The

electric-field cage, shown in Fig. 8.1 on the left, is a large parallel plate capacitor with

“guard tubes” spaced evenly between the plates. This generates a uniform electric field
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Figure 8.1: On the left: a rendering of the electric-field cage. On the right: the charge
density over the surface of the electric-field cage.

between the plates, which is used for characterizing and calibrating electric-field sensors.

We modeled the cage in a bipolar configuration, where the +x plate is energized to 2.1

V and the −x plate is energized to -2.1 V. The “guard tubes” are energized to voltages

that enforce a linear gradient field. The resulting surface charge density can be seen in

Fig. 8.1 on the right. A close-up of the mesh and this surface charge density at the corner

of the cage can be seen in Fig. 8.2. While the geometry is much more complicated in

this example, including multiple disconnected boundaries, some of which have holes,

the mesh is actually very good. The triangles are all acute or right-angled, and they are

all roughly the same size. The mesh we used had 1,109,680 triangles. The constant

collocation, constant Galerkin, and linear Galerkin took 14.9, 18.8 and 33.7 minutes to

solve, respectively, and required 69, 82, and 154 iterations to converge, respectively. In

this example, the performance of the iterative solver comparable to the simpler examples

in Chap. 5.

There are a number of interesting topics of future work related to the BEM for
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Figure 8.2: On the left: a close-up of the mesh of the electric-field cage. On the right: a
close-up of the charge density over the surface of the electric-field cage.

the Helmholtz equation. Currently, the BEM for the Helmholtz equation only supports

constant collocation. While the accuracy was decent for this method, extending the BEM to

support constant and linear Galerkin would likely reduce them to better levels. This would

require computing double surface integrals for the Green’s function for the Helmholtz

equation. The singularity subtraction method used for the single surface integrals in the

collocation method could be used here again. The subdivision and scaling method from

Chap. 3 would be used for the singular part, and Gaussian quadrature would be used for the

regular part. Another interesting topic is solving multi-domain problems for the Helmholtz

equation. The indirect BEM allows for some multi-domain problems, but not all. In

particular, the indirect BEM is unable to account for changes in the wavenumber across

boundaries because the Green’s function is different on one side on the boundary than the

other. This kind of problem appears when solving a transmission problem in acoustics or

electromagnetics, where a wave strikes a surface, and the problem is to compute how much
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of that wave passes through the surface and into the material. One way to work around

this problem is to solve two problems separately, one for one side of the boundary and

another for the other, and then couple the problems together. The BEM can be used to

solve both of these problems, or another method, including volumetric methods, could be

used to solve one of the problems. Implementing these multi-domain methods would be

an interesting line of future work as well.
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Appendix A: Contour Integration

A.1 Constant and Linear Planar Polygonal Elements

Implementing the BEM for the Laplace equation requires a method for computing the

single- and double-layer potentials and gradients due to a linear source density distribution

over a triangular element:

L (y) =

∫
x∈T

(σ0 + p · (x− x1))G (x,y) dS (x) , (A.1)

M (y) =

∫
x∈T

(σ0 + p · (x− x1)) (n · ∇xG (x,y)) dS (x) , (A.2)

∇yL (y) = ∇y

∫
x∈T

(σ0 + p · (x− x1))G (x,y) dS (x) , (A.3)

∇yM (y) = ∇y

∫
x∈T

(σ0 + p · (x− x1)) (n · ∇xG (x,y)) dS (x) , (A.4)

where the three vertices of the triangle, T, are x1, x2, and x3. Note that, in this appendix,

the meaning of σ0 has changed very slightly compared to the other chapters. Here, σ0 is the

source density at x1, not the origin. In this appendix, a method is derived that transforms

the surface integrals over the triangle into line integrals around the contour of the triangle.

As a result, this method is called the contour integration method. The method is capable of
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Figure A.1: The planar polygonal element.

treating not only triangular elements, but planar polygonal elements as well.

The planar polygonal element, shown in Fig. A.1, has n vertices: x1,x2, . . . ,xn.

The evaluation point, y, is projected onto the plane that contains this element:

y = y′ + hn. (A.5)

Assume h ≥ 0, meaning the evaluation point is on the positive side of the element. When

this is not the case, the vertices of the element can be reversed. The displacement vector is

given by

r = x− y, (A.6)

r = |r| =
(
s2 + h2

)1/2
, (A.7)

where

s = |s| = |x− y′| . (A.8)
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The source density distribution over the polygonal element is

σ (x) = σ0 + p · (x− x1) . (A.9)

In particular, the source density at the projected evaluation point, y′, is

σ1 = σ0 + p · (y′ − x1) . (A.10)

A.2 Single-Layer Potential

A.2.1 Line Integrals

The single-layer potential is given by

L (y) =

∫
S

(σ1 + p · s)G (x,y) dS (x) , (A.11)

where

G (x,y) = G (x− y) = G (r) = G (|r|) = G (r) (A.12)

is the Green’s function. Using the divergence theorem,

L (y) =

∫
S
∇x · F (x,y) dS (x) =

∫
C
n′ · F (x,y) dl (x) . (A.13)
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We need to pick an F such that

∇x · F (x,y) = (σ1 + p · s)G (x,y) . (A.14)

Before doing that, though, let’s replace the arguments of G and F:

∇x · F (s;h) = (σ1 + p · s)G
((
s2 + h2

)1/2
)
. (A.15)

Try

F = σ1fs + gp, f = f (s;h) , g = g (s;h) . (A.16)

Plugging these into Eq. (A.14), we have

∇x · (σ1fs + gp) = (σ1 + p · s)G
((
s2 + h2

)1/2
)
, (A.17)

∇x · (σ1fs) +∇x · (gp) = σ1G
((
s2 + h2

)1/2
)

+ (p · s)G
((
s2 + h2

)1/2
)
. (A.18)

There’s a lot of freedom here in choosing f and g. In fact, we can divide this equation into

two, one for f and one for g:

∇x · (σ1fs) = σ1G
((
s2 + h2

)1/2
)
, (A.19)

∇x · (gp) = (p · s)G
((
s2 + h2

)1/2
)
. (A.20)
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The solutions to these will solve the original. First, let’s solve for f :

∇x · (σ1fs) = σ1G
((
s2 + h2

)1/2
)
, (A.21)

∇xf · s + f∇x · s = G
((
s2 + h2

)1/2
)
. (A.22)

Since f is a function of only s and ∇x · s = 2,

s
df

ds
+ 2f = G

((
s2 + h2

)1/2
)
. (A.23)

Suppose f is of the form,

f =
f̂

s2
, (A.24)

df

ds
=
df̂

ds
s−2 − 2f̂ s−3, (A.25)

s

(
df̂

ds
s−2 − 2f̂ s−3

)
+ 2

f̂

s2
= G

((
s2 + h2

)1/2
)
, (A.26)

1

s

df̂

ds
= G

((
s2 + h2

)1/2
)
, (A.27)

f̂ =

∫
sG
((
s2 + h2

)1/2
)
ds, (A.28)

f =
1

s2

∫
sG
((
s2 + h2

)1/2
)
ds. (A.29)
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Make a change of variables:

t =
(
s2 + h2

)1/2
, (A.30)

f =
1

s2

∫
tG (t) dt. (A.31)

We are free to choose the limits of integration. In order to eliminate a possible singularity

when s = 0, but h 6= 0,

f =
1

s2

∫ r

h

tG (t) dt. (A.32)

Second, let’s solve for g:

∇x · (gp) = (p · s)G
((
s2 + h2

)1/2
)
, (A.33)

∇xg · p = (p · s)G
((
s2 + h2

)1/2
)
. (A.34)

Since g is a function of only s,

(
ŝ
d

ds

)
g · p = (p · s)G

((
s2 + h2

)1/2
)
, (A.35)

(p · s) 1

s

dg

ds
= (p · s)G

((
s2 + h2

)1/2
)
, (A.36)

1

s

dg

ds
= G

((
s2 + h2

)1/2
)
, (A.37)

g =

∫
sG
((
s2 + h2

)1/2
)
ds. (A.38)
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Figure A.2: The local, right-handed coordinate system for the jth edge.

Making the same change of variables as before,

g =

∫
tG (t) dt. (A.39)

Unlike before, this expression, no matter the limits of integration, is nonsingular every-

where. So,

g =

∫ r

0

tG (t) dt. (A.40)

In summary,

F = σ1fs + gp, f =
1

s2

∫ r

h

tG (t) dt, g =

∫ r

0

tG (t) dt. (A.41)

The single-layer potential is now given by

L (y) =

∫
C
n′ · F (x,y) dl (x) . (A.42)

Divide the integral into n pieces, one for each edge:

L (y) =
n∑
j=1

∫
Cj

nj · F (x,y) dl (x) =
n∑
j=1

Ij (y) , (A.43)
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where Cj starts at xj and ends at xj+1 (xn+1 = x1). Consider the jth integral:

Ij (y) =

∫
Cj

nj · F (x,y) dl (x) . (A.44)

Create a local, right-handed coordinate system, which is centered at xj and has orthogonal

axes given by (see Fig. A.2)

ij =
xj+1 − xj

lj
, lj = |xj+1 − xj| , jj = n, kj = ij × jj = nj. (A.45)

Write the evaluation point in this local coordinate system:

y = xj + x′ij + y′jj + z′kj, (A.46)

x′ = ij · (y − xj) , y′ = jj · (y − xj) , z′ = kj · (y − xj) , (A.47)

Recall that

y = y′ + hn. (A.48)

Note that hn = y′jj (which means y′ = h ≥ 0), so

xj + x′ij + y′jj + z′kj = y′ + y′jj, (A.49)

y′ = xj + x′ij + z′kj. (A.50)

The integration point is

x = xj + xij, (A.51)
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where x goes from 0 to lj , and

s = x− y′ = (xj + xij)− (xj + x′ij + z′kj) = (x− x′) ij − z′kj. (A.52)

Now, let’s return to the integral:

Ij (y) =

∫
Cj

nj · F (x,y) dl (x) , (A.53)

Ij (y) =

∫ lj

x=0

kj · (σ1fs + gp) dx, (A.54)

Ij (y) =

∫ lj

x=0

(kj · (σ1fs) + kj · (gp)) dx, (A.55)

Ij (y) =

∫ lj

x=0

(σ1 (kj · s) f + (kj · p) g) dx, (A.56)

Ij (y) =

∫ lj

x=0

(−σ1z
′f + (kj · p) g) dx. (A.57)

Explicity name all of the arguments:

Ij (y) =

∫ lj

x=0

(−σ1z
′f (s;h) + (kj · p) g (s;h)) dx, (A.58)

Ij (y) =

∫ lj

x=0

(
−σ1z

′f

((
(x− x′)2

+ z′
2
)1/2

; y′
)

+

(kj · p) g

((
(x− x′)2

+ z′
2
)1/2

; y′
))

dx.

(A.59)
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Make a change of variables:

x− x′ → x, (A.60)

Ij (y) =

∫ lj−x′

x=−x′

(
−σ1z

′f

((
x2 + z′

2
)1/2

; y′
)

+ (kj · p) g

((
x2 + z′

2
)1/2

; y′
))

dx,

(A.61)

Ij (y) = Hj (lj − x′; y′, z′)−Hj (−x′; y′, z′) , (A.62)

where Hj = Hj (x; y′, z′) is the following primitive:

Hj =

∫ (
−σ1z

′f

((
x2 + z′

2
)1/2

; y′
)

+ (kj · p) g

((
x2 + z′

2
)1/2

; y′
))

dx. (A.63)

In summary,

Ij (y) = Hj (lj − x′; y′, z′)−Hj (−x′; y′, z′) , (A.64)

where

Hj = Hσ1
j +Hp

j , (A.65)

and

Hσ1
j = −σ1z

′
∫
f

((
x2 + z′

2
)1/2

; y′
)
dx, (A.66)

Hp
j = (kj · p)

∫
g

((
x2 + z′

2
)1/2

; y′
)
dx. (A.67)
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A.2.2 Primitives

Let’s compute the primitives, Hσ1
j and Hp

j , for the Green’s function for the Laplace

equation. We have

G (r) =
1

4πr
, (A.68)

f =
1

s2

∫ r

h

tG (t) dt =
1

4πs2

∫ r

h

dt =
(s2 + h2)

1/2 − h
4πs2

, (A.69)

g =

∫ r

0

tG (t) dt =
1

4π

∫ r

0

dt =
(s2 + h2)

1/2

4π
. (A.70)

By choosing the limits as we did, as long as h 6= 0, the expression in Eq. (A.69) will not

“blow up” as s→ 0. First, let’s do Eq. (A.66):

Hσ1
j = −σ1z

′
∫
f

((
x2 + z′

2
)1/2

; y′
)
dx, (A.71)

Hσ1
j = −σ1z

′

4π

∫ (
x2 + y′2 + z′2

)1/2 − y′
x2 + z′2

dx, (A.72)

Hσ1
j = −σ1

4π

(
z′ ln (x+ r) + y′

(
arctan

(
y′x

z′r

)
− arctan

( x
z′

)))
, (A.73)

where

r =
(
x2 + y′

2
+ z′

2
)1/2

. (A.74)
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Second, let’s do Eq. (A.67):

Hp
j = (kj · p)

∫
g

((
x2 + z′

2
)1/2

; y′
)
dx, (A.75)

Hp
j =

kj · p
4π

∫ (
x2 + y′

2
+ z′

2
)1/2

dx, (A.76)

Hp
j =

kj · p
8π

(
xr +

(
y′

2
+ z′

2
)

ln (x+ r)
)
. (A.77)

A.2.3 Special Cases

The primitive, Hσ1
j , has a singularity at x = 0 when z′ = 0. Note, however, that

there is a factor of z′ in front of the original integral. Thus, when z′ = 0, Hσ1
j is not used,

and instead, the integral is computed directly as zero. In practice, when computing the

primitives using double precision, for very small, but nonzero, z′, the given expressions

can still “blow up” or return NaNs. Thus, the integral is computed directly as zero when

|z′| is less than some small value, e.g., 10−5.

For Hp
j , there are no singularities, but the given expressions can “blow up” or return

NaNs when y′, z′ = 0. In this case,

Hp
j =

kj · p
4π

∫ (
x2
)1/2

dx, (A.78)

Hp
j =

kj · p
4π

∫
|x| dx, (A.79)

Hp
j =

kj · p
8π

sgn (x)x2. (A.80)

Again, in practice, this expression is used when y′ (remember, y′ ≥ 0) and |z′| are both
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less than some small value, e.g., 10−5.

A.3 Gradient of Single-Layer Potential

A.3.1 Line Integrals

The gradient of the single-layer potential is given by

∇yL (y) = ∇y

n∑
j=1

Ij (y) =
n∑
j=1

∇yIj (y) . (A.81)

Remember that

Ij (y) = Hj (lj − x′; y′, z′)−Hj (−x′; y′, z′) , (A.82)

where

x′ = ij · (y − xj) , y′ = jj · (y − xj) , z′ = kj · (y − xj) . (A.83)

Taking the gradient, we have

∇yIj (y) = ∇y (Hj (lj − x′; y′, z′)−Hj (−x′; y′, z′)) . (A.84)
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We are taking the derivative with respect to the primed coordinates, so we need to apply

the chain rule in the case of x′. The components of∇yIj are given by

[∇yIj (y)]x′ = −
(
dHj

dx
(lj − x′; y′, z′)−

dHj

dx
(−x′; y′, z′)

)
, (A.85)

[∇yIj (y)]y′ =
dHj

dy′
(lj − x′; y′, z′)−

dHj

dy′
(−x′; y′, z′) , (A.86)

[∇yIj (y)]z′ =
dHj

dz′
(lj − x′; y′, z′)−

dHj

dz′
(−x′; y′, z′) . (A.87)

A.3.2 Primitives

To compute ∇yL, we need to compute the derivatives of the following primitives

with respect to their arguments:

Hj = Hj (x; y′, z′) = Hσ1
j +Hp

j = Hσ1
j (x; y′, z′) +Hp

j (x; y′, z′) . (A.88)

Let’s take the derivative of Hσ1
j with respect to x:

dHσ1
j

dx
=

d

dx

(
−σ1z

′

4π

∫ (
x2 + y′2 + z′2

)1/2 − y′
x2 + z′2

dx

)
, (A.89)

dHσ1
j

dx
= −dσ1

dx

z′

4π

∫ (
x2 + y′2 + z′2

)1/2 − y′
x2 + z′2

dx −

σ1z
′

4π

d

dx

∫ (
x2 + y′2 + z′2

)1/2 − y′
x2 + z′2

dx.

(A.90)
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We know that

σ1 = σ0 + p · (y′ − x1) = σ0 + p · ((xj + x′ij + z′kj)− x1) , (A.91)

dσ1

dx
= (ij · p)

dx′

dx
= − (ij · p) ,

dσ1

dz′
= kj · p. (A.92)

So,
dHσ1

j

dx
=

(ij · p) z′

4π

∫ (
x2 + y′2 + z′2

)1/2 − y′
x2 + z′2

dx −

σ1z
′

4π

d

dx

∫ (
x2 + y′2 + z′2

)1/2 − y′
x2 + z′2

dx.

(A.93)

The integral on the left is the same as before, and the derivative on the right cancels the

integral, leaving

dHσ1
j

dx
=

ij · p
4π

(
z′ ln (x+ r) + y′

(
arctan

(
y′x

z′r

)
− arctan

( x
z′

)))
−

σ1z
′

4π

(
x2 + y′2 + z′2

)1/2 − y′
x2 + z′2

.

(A.94)

Let’s take the derivative of Hσ1
j with respect to y′:

dHσ1
j

dy′
=

d

dy′

(
−σ1z

′

4π

∫ (
x2 + y′2 + z′2

)1/2 − y′
x2 + z′2

dx

)
. (A.95)

Since σ1 does not depend on y′,

dHσ1
j

dy′
= −σ1z

′

4π

∫
d

dy′

(
x2 + y′2 + z′2

)1/2 − y′
x2 + z′2

dx, (A.96)

dHσ1
j

dy′
= −σ1

4π

(
arctan

(
y′x

z′r

)
− arctan

( x
z′

))
. (A.97)
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Let’s take the derivative of Hσ1
j with respect to z′:

dHσ1
j

dz′
=

d

dz′

(
−σ1z

′

4π

∫ (
x2 + y′2 + z′2

)1/2 − y′
x2 + z′2

dx

)
(A.98)

dHσ1
j

dz′
= −dσ1

dz′
z′

4π

∫ (
x2 + y′2 + z′2

)1/2 − y′
x2 + z′2

dx −

σ1

4π

∫
d

dz′

(
z′
(
x2 + y′2 + z′2

)1/2 − y′
x2 + z′2

)
dx.

(A.99)

The integral on the left is the same as before, and after solving the integral on the right, we

have

dHσ1
j

dz′
= −kj · p

4π

(
z′ ln (x+ r) + y′

(
arctan

(
y′x

z′r

)
− arctan

( x
z′

)))
−

σ1

4π

(
ln (x+ r)− x (r − y′)

x2 + z′2

)
.

(A.100)

Let’s take the derivative of Hp
j with respect to x:

dHp
j

dx
=

d

dx

(
kj · p

4π

∫ (
x2 + y′

2
+ z′

2
)1/2

dx

)
, (A.101)

dHp
j

dx
=

kj · p
4π

d

dx

∫ (
x2 + y′

2
+ z′

2
)1/2

dx. (A.102)

The derivative cancels the integral, leaving

dHp
j

dx
=

kj · p
4π

(
x2 + y′

2
+ z′

2
)1/2

. (A.103)
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Let’s take the derivative of Hp
j with respect to y′:

dHp
j

dy′
=

d

dy′

(
kj · p

4π

∫ (
x2 + y′

2
+ z′

2
)1/2

dx

)
, (A.104)

dHp
j

dy′
=

kj · p
4π

∫
d

dy′

(
x2 + y′

2
+ z′

2
)1/2

dx, (A.105)

dHp
j

dy′
=

kj · p
4π

∫
y′(

x2 + y′2 + z′2
)1/2

dx, (A.106)

dHp
j

dy′
=

kj · p
4π

y′ ln (x+ r) . (A.107)

Let’s take the derivative of Hp
j with respect to z′:

dHp
j

dz′
=

d

dz′

(
kj · p

4π

∫ (
x2 + y′

2
+ z′

2
)1/2

dx

)
, (A.108)

dHp
j

dz′
=

kj · p
4π

z′ ln (x+ r) . (A.109)

A.3.3 Special Cases

There are a number of special cases when computing the derivatives of the primitives

when one or more arguments are zero. They are caused by singularities in some of the

primitives that cause them to “blow up” or return NaNs. Many of these singularities

are “fake” and can be corrected by careful analysis. Some, however, are real and, thus,

uncorrectable. In these cases, they are caused by the governing physics. Let’s go one by

one.
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First, let’s look at the derivative of Hσ1
j with respect to x:

dHσ1
j

dx
=

ij · p
4π

(
z′ ln (x+ r) + y′

(
arctan

(
y′x

z′r

)
− arctan

( x
z′

)))
−

σ1z
′

4π

(
x2 + y′2 + z′2

)1/2 − y′
x2 + z′2

.

(A.110)

This has a singularity at x = 0 when z′ = 0. However, like in the case of Hσ1
j , there is a

factor of z′ in front of the original integral. Thus, when z′ = 0, the integral is computed

directly as zero.

Second, let’s look at the derivative of Hσ1
j with respect to y′:

dHσ1
j

dy′
= −σ1

4π

(
arctan

(
y′x

z′r

)
− arctan

( x
z′

))
. (A.111)

This has a singularity at x = 0 when z′ = 0. However, unlike for the derivative with

respect to x, the derivative with respect to y′ caused an extra factor of z′ to pop out from

inside of the original integral, canceling the one already there. This is not a problem,

though, because we can use the arctangent subtraction formula to do the following:

dHσ1
j

dy′
= −σ1

4π
arctan

((
y′x

z′r
− x

z′

)(
1 +

y′x

z′r

x

z′

)−1
)
, (A.112)

dHσ1
j

dy′
= −σ1

4π
arctan

(
y′xz′ − xz′r
z′2r + y′x2

)
. (A.113)

Letting z′ → 0, the expression inside the arctangent goes to zero, leaving

dHσ1
j

dy′
= 0. (A.114)
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Third, let’s look at the derivative of Hσ1
j with respect to z′:

dHσ1
j

dz′
= −kj · p

4π

(
z′ ln (x+ r) + y′

(
arctan

(
y′x

z′r

)
− arctan

( x
z′

)))
−

σ1

4π

(
ln (x+ r)− x (r − y′)

x2 + z′2

)
.

(A.115)

This has a singularity at x = 0 when z′ = 0. The left term in this expression is just like

before. There’s a factor of z′ in front of the original integral, so the entire integral is

zero when z′ = 0. The right term is more complicated. The derivative with respect to z′

eliminated that factor, so the entire integral doesn’t go to zero automatically. Thus, the

ln (x+ r) does, indeed, cause the expression to “blow up”. We can solve this problem

by noting that, in order to solve the original integral, we must evaluate the primitive at

x = x1 = −x′ and x = x2 = lj − x′, and then subtract the former from the latter. Let’s

look at what happens when y′ = 0:

(
ln (x2 + r2)− x2 (r2 − y′)

x2
2 + z′2

)
−
(

ln (x1 + r1)− x1 (r1 − y′)
x2

1 + z′2

)
, (A.116)

ln

(
x2 + r2

x1 + r1

)
−
(
x2 (r2 − y′)
x2

2 + z′2
− x1 (r1 − y′)

x2
1 + z′2

)
, (A.117)

ln

(
x2 +

(
x2

2 + y′2 + z′2
)1/2

x1 +
(
x2

1 + y′2 + z′2
)1/2

)
−

x2

((
x2

2 + y′2 + z′2
)1/2 − y′

)
x2

2 + z′2
−
x1

((
x2

1 + y′2 + z′2
)1/2 − y′

)
x2

1 + z′2

 ,

(A.118)
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ln

(
x2 +

(
x2

2 + z′2
)1/2

x1 +
(
x2

1 + z′2
)1/2

)
−
(
x2

(
x2

2 + z′2
)1/2

x2
2 + z′2

− x1

(
x2

1 + z′2
)1/2

x2
1 + z′2

)
, (A.119)

ln



x2 + |x2|

1 +
z′2

x2
2


1/2

x1 + |x1|

1 +
z′2

x2
1


1/2


−
(

x2(
x2

2 + z′2
)1/2
− x1(

x2
1 + z′2

)1/2

)
. (A.120)

For small z′, using a binomial approximation,

ln



x2 + |x2|

1 +
1

2

z′2

x2
2



x1 + |x1|

1 +
1

2

z′2

x2
1




−
(

x2(
x2

2 + z′2
)1/2
− x1(

x2
1 + z′2

)1/2

)
. (A.121)

When x1, x2 < 0, x1 + |x1| = 0 and x2 + |x2| = 0, so

ln


|x2|

1

2

z′2

x2
2

|x1|
1

2

z′2

x2
1


−
(

x2(
x2

2 + z′2
)1/2
− x1(

x2
1 + z′2

)1/2

)
. (A.122)

Rearranging,

ln

(
1/|x2|
1/|x1|

)
−
(

x2(
x2

2 + z′2
)1/2
− x1(

x2
1 + z′2

)1/2

)
. (A.123)
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Letting z′ → 0,

ln

(
1/|x2|
1/|x1|

)
−
(
x2

|x2|
− x1

|x1|

)
. (A.124)

Since x1 and x2 are both negative and, thus, have the same sign, we have

ln

(
1/|x2|
1/|x1|

)
. (A.125)

Note how, when one of the xs is negative and the other is positive, we can’t do what we

just did in the previous three or four equations, so the expression does, indeed, “blow up”.

This indicates that, when evaluating at a point along an edge, ∇yL is singular along the

direction perpendicular to that edge. Now, let’s look at what happens when y′ 6= 0.

ln (x+ r)− x (r − y′)
x2 + z′2

. (A.126)

When z′ = 0,

ln

(
x+

(
x2 + y′

2
)1/2

)
−
(
x2 + y′2

)1/2 − y′
x

. (A.127)

When computed directly, this expression will “blow up” when x = 0. However, using a

binomial approximation,

ln

(
x+

(
x2 + y′

2
)1/2

)
−

|y′|

1 +
1

2

x2

y′2

− y′
x

. (A.128)
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Since y′ > 0,

ln

(
x+

(
x2 + y′

2
)1/2

)
− x

2y′
. (A.129)

When x = 0,

ln (y′) . (A.130)

Fourth, let’s look at the derivative of Hp
j with respect to y′:

dHp
j

dy′
=

kj · p
4π

y′ ln (x+ r) . (A.131)

This is completely regular as long as y′ or z′ are nonzero. However, when y′, z′ = 0, this

expression can “blow up” or return NaNs. To solve this, set y′ = 0 and z′ 6= 0. The

expression inside the logarithm is

x+
(
x2 + z′

2
)1/2

> 0. (A.132)

Thus, the logarithm does not “blow up”, and the factor of y′ forces the entire expression

to zero. Once this is done, we can let z′ → 0 as well, leaving us with zero for the entire

expression when y′, z′ = 0.

Fifth, let’s look at the derivative of Hp
j with respect to z′:

dHp
j

dz′
=

kj · p
4π

z′ ln (x+ r) . (A.133)

This is the same as for the derivative of Hp
j with respect to y′, except there’s a factor of z′

instead of y′. Again, this expression can “blow up” or return NaNs when y′, z′ = 0. We
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can solve this like before. First, set z′ = 0, but y′ 6= 0, and then let y′ → 0. The expression

will then be equal to zero.

A.4 Double-Layer Potential

A.4.1 Line Integrals

The double-layer potential is given by

M (y) =

∫
S

(σ1 + p · s) (n · ∇xG (x,y)) dS (x) . (A.134)

Since∇xG = −∇yG,

M (y) =

∫
S

(σ1 + p · s) (−n · ∇yG (x,y)) dS (x) . (A.135)

Rearranging and using what we derived in the previous sections, we have

M (y) = −n · ∇y

∫
S

(σ1 + p · s)G (x,y) dS (x) , (A.136)

M (y) = −n · ∇yL (y) = −n · ∇y

n∑
j=1

Ij (y) =
n∑
j=1

(−n · ∇yIj (y)) , (A.137)

M (y) =
n∑
j=1

Jj (y) , (A.138)

where

Jj (y) = −n · ∇yIj (y) . (A.139)
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Remember that n = jj and

∇y =
d

dx′
ij +

d

dy′
jj +

d

dz′
kj, (A.140)

so we have

Jj (y) = −dIj
dy′

(y) . (A.141)

A.4.2 Primitives

We know that

Ij (y) = Hj (lj − x′; y′, z′)−Hj (−x′; y′, z′) , (A.142)

dIj
dy′

(y) =
dHj

dy′
(lj − x′; y′, z′)−

dHj

dy′
(−x′; y′, z′) . (A.143)

Plugging in Eq. (A.141),

Jj (y) = −
(
dHj

dy′
(lj − x′; y′, z′)−

dHj

dy′
(−x′; y′, z′)

)
, (A.144)

Jj (y) = Kj (lj − x′; y′, z′)−K (−x′; y′, z′) , (A.145)

where

Kj = −dHj

dy′
. (A.146)
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Like in the case of the single-layer potential, we separate Kj into two pieces, one corre-

sponding to σ1 and one corresponding to p:

Kj = Kj (x; y′, z′) = Kσ1
j +Kp

j = Kσ1
j (x; y′, z′) +Kp

j (x; y′, z′) , (A.147)

where

Kσ1
j = −

dHσ1
j

dy′
=
σ1

4π

(
arctan

(
y′x

z′r

)
− arctan

( x
z′

))
, (A.148)

Kp
j = −

dHp
j

dy′
= −kj · p

4π
y′ ln (x+ r) . (A.149)

A.4.3 Special Cases

Since Kσ1
j and Kp

j are the negatives of dHσ1
j /dy

′ and dHp
j /dy

′, respectively, the

special cases for these new primitives are the same as those for the old ones.

A.5 Gradient of Double-Layer Potential

A.5.1 Line Integrals

The gradient of the double-layer potential is given by

∇M (y) = ∇y

n∑
j=1

Jj (y) =
n∑
j=1

∇yJj (y) . (A.150)

Remember that

Jj (y) = Kj (lj − x′; y′, z′)−Kj (−x′; y′, z′) , (A.151)
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where

x′ = ij · (y − xj) , y′ = jj · (y − xj) , z′ = kj · (y − xj) . (A.152)

Taking the gradient, we have

∇yJj (y) = ∇y (Kj (lj − x′; y′, z′)−Kj (−x′; y′, z′)) . (A.153)

We are taking the gradient with respect to the primed coordinates, so we need to apply the

chain rule in the case of x′. The components of∇yJj (y) are given by

[∇yJj (y)]x′ = −
(
dKj

dx
(lj − x′; y′, z′)−

dKj

dx
(−x′; y′, z′)

)
, (A.154)

[∇yJj (y)]y′ =
dKj

dy′
(lj − x′; y′, z′)−

dKj

dy′
(−x′; y′, z′) , (A.155)

[∇yJj (y)]z′ =
dKj

dz′
(lj − x′; y′, z′)−

dKj

dz′
(−x′; y′, z′) . (A.156)

A.5.2 Primitives

To compute ∇M , we need to compute the derivatives of the following primitives

with respect to their arguments:

Kj = Kj (x; y′, z′) = Kσ1
j +Kp

j = Kσ1
j (x; y′, z′) +Kp

j (x; y′, z′) . (A.157)
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Let’s take the derivative of Kσ1
j with respect to x:

dKσ1
j

dx
=

d

dx

(
σ1

4π

(
arctan

(
y′x

z′r

)
− arctan

( x
z′

)))
, (A.158)

dKσ1
j

dx
=
dσ1

dx

1

4π

(
arctan

(
y′x

z′r

)
− arctan

( x
z′

))
+

σ1

4π

d

dx

(
arctan

(
y′x

z′r

)
− arctan

( x
z′

))
.

(A.159)

Since dσ1/dx = − (ij · p),

dKσ1
j

dx
= − ij · p

4π

(
arctan

(
y′x

z′r

)
− arctan

( x
z′

))
+
σ1

4π

(
z′

x2 + z′2

)(
y′ − r
r

)
.

(A.160)

Let’s take the derivative of Kσ1
j with respect to y′:

dKσ1
j

dy′
=

d

dy′

(
σ1

4π

(
arctan

(
y′x

z′r

)
− arctan

( x
z′

)))
. (A.161)

Since σ1 does not depend on y′,

dKσ1
j

dy′
=
σ1

4π

d

dy′

(
arctan

(
y′x

z′r

)
− arctan

( x
z′

))
, (A.162)

dKσ1
j

dy′
=
σ1

4π

z′x(
y′2 + z′2

)
r
. (A.163)
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Let’s take the derivative of Kσ1
j with respect to z′:

dKσ1
j

dz′
=

d

dz′

(
σ1

4π

(
arctan

(
y′x

z′r

)
− arctan

( x
z′

)))
, (A.164)

dKσ1
j

dz′
=
dσ1

dz′
1

4π

(
arctan

(
y′x

z′r

)
− arctan

( x
z′

))
+

σ1

4π

d

dz′

(
arctan

(
y′x

z′r

)
− arctan

( x
z′

))
.

(A.165)

Since dσ1/dz
′ = kj · p,

dKσ1
j

dz′
=

kj · p
4π

(
arctan

(
y′x

z′r

)
− arctan

( x
z′

))
+

σ1

4π

(
− y′x

(
r2 + z′2

)(
x2 + z′2

) (
y′2 + z′2

)
r

+
x

x2 + z′2

)
.

(A.166)

Let’s take the derivative of Kp
j with respect to x:

dKp
j

dx
=

d

dx

(
−kj · p

4π
y′ ln (x+ r)

)
, (A.167)

dKp
j

dx
= −kj · p

4π

y′

r
. (A.168)

Let’s take the derivative of Kp
j with respect to y′:

dKp
j

dy′
=

d

dy′

(
−kj · p

4π
y′ ln (x+ r)

)
, (A.169)

dKp
j

dy′
= −kj · p

4π

(
ln (x+ r) +

y′2

r (x+ r)

)
. (A.170)

180



Let’s take the derivative of Kp
j with respect to z′:

dKp
j

dz′
=

d

dz′

(
−kj · p

4π
y′ ln (x+ r)

)
, (A.171)

dKp
j

dz′
= −kj · p

4π

y′z′

r (x+ r)
. (A.172)

A.5.3 Special Cases

The special cases for the primitives for the gradient of the double-layer potential

follow the same pattern as those for the gradient of the single-layer potential.
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Appendix B: Spherical Basis Functions for the Laplace Equation

B.1 Spherical Coordinate System

The spherical coordinate system, shown in Figure B.1, is related to the Cartesian

coordinate system by

x = r sin (θ) cos (φ) , y = r sin (θ) sin (φ) , z = r cos (θ) . (B.1)

B.2 Local and Multipole Expansions

The Green’s function for the Laplace equation can be expanded as

G (x− x′) =
1

4π |x− x′| =
∞∑
n=0

n∑
m=−n

1

2n+ 1

rn<
rn+1
>

Y m∗
n (θ′, φ′)Y m

n (θ, φ) , (B.2)

where (r′, θ′, φ′) and (r, θ, φ) are the spherical coordinates of x′ and x, respectively,

r< = min (r′, r), and r> = max (r′, r) (see Fig. B.1). The spherical harmonics are given

by

Y m
n (θ, φ) = (−1)m

(
2n+ 1

4π

(n− |m|)!
(n+ |m|)!

)1/2

P |m|n (cos (θ)) exp (imφ) , (B.3)
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r′r

θ

φ

θ′

φ′
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y

z

Figure B.1: The spherical coordinate system.

where Pm
n are the associated Legendre polynomials [67, 105]. Fig. B.2 shows a graphical

representation of the spherical harmonics.

This expression can be used to build multipole and local expansions. For example,

suppose we want to compute the potential at x due to a point source at x′. When r > r′,

we can build a multipole expansion:

1

4π |x− x′| =
∞∑
n=0

n∑
m=−n

Rm∗
n (r′, θ′, φ′)Smn (r, θ, φ) . (B.4)

Here,

Rm
n (x) = Rm

n (r, θ, φ) =

(
1

2n+ 1

)1/2

rnY m
n (θ, φ) , (B.5)

Smn (x) = Smn (r, θ, φ) =

(
1

2n+ 1

)1/2
1

rn+1
Y m
n (θ, φ) (B.6)

are the local and multipole expansion basis functions, respectively. Instead of centering the

expansion around the origin, we can center the expansion around x∗. When |x− x∗| >
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Figure B.2: A graphical representation of the spherical harmonics for n = 0, 1, 2, 3, 4 (top
to bottom) and m = −n,−n+ 1, . . . , n (left to right).

|x′ − x∗|,
1

4π |x− x′| =
∞∑
n=0

n∑
m=−n

Rm∗
n (x′ − x∗)Smn (x− x∗) . (B.7)

Likewise, when |x− x∗| < |x′ − x∗|, we can build a local expansion:

1

4π |x− x′| =
∞∑
n=0

n∑
m=−n

Sm∗n (x′ − x∗)Rm
n (x− x∗) . (B.8)

These expressions can be used to build multipole and local expansions for arbitrary

source distributions. For example, let us build a multipole expansion for the source

distribution, ρ (x′), contained entirely inside an imaginary sphere of radius, r∗, centered

around x∗. For a point, x, outside the sphere, the potential due to this source distribution is

given by

Φ (x) =

∫
|x′−x∗|<r∗

ρ (x′)

4π |x− x′|dV (x′) . (B.9)
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Substituting Eq. (B.7) and rearranging,

Φ (x) =
∞∑
n=0

n∑
m=−n

amn S
m
n (x− x∗) , (B.10)

where

amn =

∫
|x′−x∗|<r∗

ρ (x′)Rm∗
n (x′ − x∗) dV (x′) . (B.11)

We can build a local expansion using the same procedure. Consider a different source

distribution contained entirely outside the imaginary sphere. For a point, x, inside the

sphere, the potential due to this source distribution is given by

Φ (x) =
∞∑
n=0

n∑
m=−n

amn R
m
n (x− x∗) , (B.12)

where

amn =

∫
|x′−x∗|>r∗

ρ (x′)Sm∗n (x′ − x∗) dV (x′) . (B.13)
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B.3 Translations

Multipole and local expansions can be translated to other multipole and local expan-

sions using the following three identities [67]:

Smn (r + t) =
∞∑
n′=0

n′∑
m′=−n′

(S|S)mm
′

nn′ (t)Sm
′

n′ (r) , (B.14)

Smn (r + t) =
∞∑
n′=0

n′∑
m′=−n′

(S|R)mm
′

nn′ (t)Rm′

n′ (r) , (B.15)

Rm
n (r + t) =

∞∑
n′=0

n′∑
m′=−n′

(R|R)mm
′

nn′ (t)Rm′

n′ (r) . (B.16)

We want to use these three identities to translate an expansion centered around x∗ to

another expansion centered around y∗. Setting r = x− y∗ and t = y∗ − x∗, we have

Smn (x− x∗) =
∞∑
n′=0

n′∑
m′=−n′

(S|S)mm
′

nn′ (y∗ − x∗)Sm
′

n′ (x− y∗) , (B.17)

Smn (x− x∗) =
∞∑
n′=0

n′∑
m′=−n′

(S|R)mm
′

nn′ (y∗ − x∗)Rm′

n′ (x− y∗) , (B.18)

Rm
n (x− x∗) =

∞∑
n′=0

n′∑
m′=−n′

(R|R)mm
′

nn′ (y∗ − x∗)Rm′

n′ (x− y∗) . (B.19)

Consider the following multipole expansion:

Φ (x) =
∞∑
n=0

n∑
m=−n

amn S
m
n (x− x∗) . (B.20)

Let’s translate this multipole expansion, which is centered around x∗, to another multipole
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expansion centered around y∗:

Φ (x) =
∞∑
n=0

n∑
m=−n

amn

(
∞∑
n′=0

n′∑
m′=−n′

(S|S)mm
′

nn′ (y∗ − x∗)

)
Sm

′

n′ (x− y∗) . (B.21)

Rearranging,

Φ (x) =
∞∑
n′=0

n′∑
m′=−n′

bm
′

n′ S
m′

n′ (x− y∗) , (B.22)

where

bm
′

n′ =
∞∑
n=0

n∑
m=−n

(S|S)mm
′

nn′ (y∗ − x∗) amn . (B.23)

The mapping from one set of coefficients to another is linear and, thus, can be represented

by a single matrix operation:



b0
0

b−1
1

b0
1

b1
1

...


=



(S|S)0,0
0,0 (S|S)−1,0

1,0 (S|S)0,0
1,0 (S|S)1,0

1,0 . . .

(S|S)0,−1
0,1 (S|S)−1,−1

1,1 (S|S)0,−1
1,1 (S|S)1,−1

1,1 . . .

(S|S)0,0
0,1 (S|S)−1,0

1,1 (S|S)0,0
1,1 (S|S)1,0

1,1 . . .

(S|S)0,1
0,1 (S|S)−1,1

1,1 (S|S)0,1
1,1 (S|S)1,1

1,1 . . .

...
...

...
...

. . .





a0
0

a−1
1

a0
1

a1
1

...


. (B.24)

The (y∗ − x∗)s have been dropped to save space. More compactly,

b = (S|S) (y∗ − x∗) a, (B.25)

where (S|S) (y∗ − x∗) is the multipole-to-multipole translation matrix.
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Consider the same multipole expansion from before:

Φ (x) =
∞∑
n=0

n∑
m=−n

amn S
m
n (x− x∗) . (B.26)

Let’s translate this multipole expansion, which is centered around x∗, to a local expansion

centered around y∗. We can do this using the same procedure as before, except the

multipole-to-multipole translation matrix is replaced by a multipole-to-local translation

matrix:

b = (S|R) (y∗ − x∗) a, (B.27)

where

(S|R) (y∗ − x∗) =



(S|R)0,0
0,0 (S|R)−1,0

1,0 (S|R)0,0
1,0 (S|R)1,0

1,0 . . .

(S|R)0,−1
0,1 (S|R)−1,−1

1,1 (S|R)0,−1
1,1 (S|R)1,−1

1,1 . . .

(S|R)0,0
0,1 (S|R)−1,0

1,1 (S|R)0,0
1,1 (S|R)1,0

1,1 . . .

(S|R)0,1
0,1 (S|R)−1,1

1,1 (S|R)0,1
1,1 (S|R)1,1

1,1 . . .

...
...

...
...

. . .


. (B.28)

Consider the following local expansion:

Φ (x) =
∞∑
n=0

n∑
m=−n

amn R
m
n (x− x∗) . (B.29)

Let’s translate this local expansion, which is centered around x∗, to another local expansion

centered around y∗. We can do this using the same procedure as before, except a local-to-
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local translation matrix is used:

b = (R|R) (y∗ − x∗) a, (B.30)

where

(R|R) (y∗ − x∗) =



(R|R)0,0
0,0 (R|R)−1,0

1,0 (R|R)0,0
1,0 (R|R)1,0

1,0 . . .

(R|R)0,−1
0,1 (R|R)−1,−1

1,1 (R|R)0,−1
1,1 (R|R)1,−1

1,1 . . .

(R|R)0,0
0,1 (R|R)−1,0

1,1 (R|R)0,0
1,1 (R|R)1,0

1,1 . . .

(R|R)0,1
0,1 (R|R)−1,1

1,1 (R|R)0,1
1,1 (R|R)1,1

1,1 . . .

...
...

...
...

. . .


. (B.31)

B.4 Translation Matrices

We need to compute the entries in the translation matrices, (S|S)mm
′

nn′ (y∗ − x∗),

(S|R)mm
′

nn′ (y∗ − x∗), and (R|R)mm
′

nn′ (y∗ − x∗). We know that

Rm
n (r) = αmn r

nY m
n (θ, φ) , Smn (r) = βmn

1

rn+1
Y m
n (θ, φ) . (B.32)

The coefficients, αmn and βmn , were chosen earlier on as

αmn =

(
1

2n+ 1

)1/2

, βmn =

(
1

2n+ 1

)1/2

. (B.33)
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Some other coefficients we need are [67]

αm(1)n = (−1)n i−|m|
(

4π

(2n+ 1) (n− |m|)! (n+ |m|)!

)1/2

, (B.34)

βm(1)n = i|m|
(

4π (n− |m|)! (n+ |m|)!
2n+ 1

)1/2

. (B.35)

For αmn = αm(1)n and βmn = βm(1)n,

(S|S)mm
′

nn′ (y∗ − x∗) = Rm−m′
n′−n (y∗ − x∗) , (B.36)

(S|R)mm
′

nn′ (y∗ − x∗) = Sm−m
′

n+n′ (y∗ − x∗) , (B.37)

(R|R)mm
′

nn′ (y∗ − x∗) = Rm−m′
n−n′ (y∗ − x∗) . (B.38)

For arbitrary αmn and βmn ,

(S|S)mm
′

nn′ (y∗ − x∗) =
βm

′

(1)n′

βm
′

n′

αm−m
′

(1)(n′−n)

αm−m
′

n′−n

βmn
βm(1)n

Rm−m′
n′−n (y∗ − x∗) , (B.39)

(S|R)mm
′

nn′ (y∗ − x∗) =
αm

′

(1)n′

αm
′

n′

βm−m
′

(1)(n+n′)

βm−m
′

n+n′

βmn
βm(1)n

Sm−m
′

n+n′ (y∗ − x∗) , (B.40)

(R|R)mm
′

nn′ (y∗ − x∗) =
αm

′

(1)n′

αm
′

n′

αm−m
′

(1)(n−n′)

αm−m
′

n−n′

αmn
αm(1)n

Rm−m′
n−n′ (y∗ − x∗) . (B.41)
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For αmn = 1 and βmn = 1,

(S|S)mm
′

nn′ (y∗ − x∗) =
βm

′

(1)n′α
m−m′
(1)(n′−n)

βm(1)n

Rm−m′
n′−n (y∗ − x∗) , (B.42)

(S|R)mm
′

nn′ (y∗ − x∗) =
αm

′

(1)n′β
m−m′
(1)(n+n′)

βm(1)n

Sm−m
′

n+n′ (y∗ − x∗) , (B.43)

(R|R)mm
′

nn′ (y∗ − x∗) =
αm

′

(1)n′α
m−m′
(1)(n−n′)

αm(1)n

Rm−m′
n−n′ (y∗ − x∗) . (B.44)

B.5 Faster Translation Schemes

When the multipole and local expansions are truncated at n = p − 1, there are p2

coefficients in the expansion. Performing a translation, therefore, requires O (p4) using

the matrix method in the previous two sections. For even moderately large p, this can be

computationally prohibitive. As a result, many translation schemes have been developed

that achieve considerably better computational complexity. In particular, the point and

shoot method runs in O (p3). A good overview of such methods can be found in [67].
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