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ABSTRACT

0.1 Introduction

This thesis begins with a foundational section on quantum optics. The single-photon detectors used

in the first chapter were obtained through the Advanced Laboratory Physics Association (ALPhA),

which brokered reduced cost for educational use, and the aim of the single-photon work presented

in Chapter 1 is to develop modules for use in Illinois Wesleyan’s instructional labs beyond the first

year of university. Along with the American Association of Physics Teachers, ALPhA encourages

capstone-level work, such as Chapter 1 of this honors thesis, which is explicitly designed to play

the role of passing on, to a next generation of physics majors, materials that can play a central role

in their curriculum. Thus, although such work had previously been done at other institutions, the

value added by this work has to do with the impact upon the local curriculum, and the utility of

the collation o of these materials into one single, easily accessible form.

Beyond its first chapter, this thesis extends into my research projects, each of which, in the long

term, carries a motivation that connects back to questions raised in the studies described in Chapter

1. While the first chapter describes ways in which we can experimentally study the “spin” polar-

ization state of a single photon, the second deals extends the discussion of how information may be

encoded into the angular momentum of light, and some of its potential long-term consequences, e.g.,

for experiments involving optical traps that may someday test for the (controversial) hypothesized

existence of a boundary between the microscopic (quantum) and macroscopic (classical) domains.

Here, too, the work presented builds upon a body of work in the recent research literature. The

final chapter deals with the creation of meso-scale systems for use in advanced optical traps studies.

Each of these last two chapters points towards opportunities in physics research that are tentative

in nature and, as such, constitute research that is very much aspirational. The citations provided,

while not exhaustive, point both towards some of the more useful resources discovered during this

work, and to some ongoing controversies in the field. At the same time, these chapters also aim to

delineate concrete, specific steps that we have taken, which we believe are of immediate interest in

their own rights.

vi



CHAPTER 1

STUDIES IN QUANTUM OPTICS

1.1 Introduction to Quantum Optics

The quantum nature of light was posited by Albert Einstein, in his paper on the photoelectric effect

in 1905. In recent years quantum optics, which studies the quantum mechanical behavior of light

using semi-classical and quantum physics, has become one of the fastest developing field in physics

and engineering, with a heartening stream of advances, e.g., regarding methods for generation

of entangled pairs of photons, clarification of paradigms such as quantum erasure and the Hong-

Ou-Mandel effect, and the development of key elements for potential applications, such as optical

quantum information processing. In this thesis, I present elements of my study of the generation

of quantum mechanically entangled pairs of photons, through nonlinear processes, and outline

multiple experiments that I have performed for studying specific quantum properties of photons,

beginning with generation of entangled photons, from which we prove that we can meaningfully

extract a true, single-photon source, and including methods for quantum state measurement and a

test of the Einstein-Podolsky-Rosen (EPR) paradox and Bell’s test of local realism.
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1.2 A description of Type I Spontaneous Parametric
Down-Conversion

1.2.1 Introduction to SPDC

Spontaneous Parametric Down-Conversion (SPDC) describes an optical phenomenon where a

beam of photons (the “pump” beam) passing through a non-linear, birefringent crystal sponta-

neously splits into two beams of photons with lower frequency, traditionally called the signal and

idler beam (since the idler is typically used only to herald, via coincidence counting, the arrival of

the signal photon, which is used for tests of quantum mechanics at the single-photon level). The

SPDC process can be roughly viewed as the reverse process of second-harmonic generation (SHG),

where two photons with equal energy combine, while passing through a nonlinear crystal, into one

photon with double the energy. However, SHG has a much higher efficiency, as it is a “seeded”

process, which is to say that SHG is a stimulated process where the generation of a single, higher-

energy photon is triggered by the coincident absorption of two photons that deposit their energy

simultaneously with one another, leading to reemission at the higher energy. In contrast, SPDC

is a spontaneous process where there is no clear “seed” to the conversion (i.e., why should the

input photon split its energy exactly in half? why not in some unequal proportion?). In fact, each

such allowed division is possible, but the lack of any direct simulation for SPDC processes explains

the relatively low efficiency compared to SHG. The fact that SPDC occurs at all has led to the

suggestion that SPDC is likely triggered by the photons generated by quantum field fluctuations

(“vacuum fluctuations”). In fact, in Chapter 16 of the Mark Beck text, he writes, “The correct

prediction of the spontaneous emission rate is one of the great triumphs of quantum field theory.”

[6]

The importance of SPDC lies in the fact that when one pump photon generates two down-

converted photons, those output photons are very strongly correlated. They were generated at

the same point in space and time, and the conservation laws mandate that if one of these output

photons has transverse momentum, relative to the direction of the input beam, then the other in

the pair must have the opposite transverse momentum. So, these two photons are correlated in

transverse position and anti-correlated in transverse momentum. These correlations lie at the heart

of heralded detection methods, including such demonstrations of “spooky action at a distance” as

ghost imaging and ghost diffraction.

2



1.2.2 Phase Matching

SPDC must obey the basic conservation principles. Thus, the output photons must each have

lower energies than the pump photon that generated them. Inside a normal medium this would make

it difficult to simultaneously satisfy the constraints of momentum conservation, simply because

normal dispersion in a transparent material yields a reduction in the total momentum for the output

in comparison to the input, a problem which can only be overcome by moving to birefringent media.

Because the phase of a propagating wave is dependent upon momentum and energy, the basic

conservation laws are often phrased in terms of “phase matching” of the input and output beams,

viewed as classical electromagnetic waves. Inside birefringent materials, the phase velocity of light

(and thus the index of refraction) depends upon polarization and frequency. Again, the down-

converted beams have different frequencies (energies) compared to the input (“pump”) beam and,

because of the frequency dependence of the index of refraction, conservation of momentum is not

trivial to achieve. However, by tilting a birefringent crystal, one can tune the effective index, so as

to optimize the matching conditions. As is detailed in Section 1.1.2, any remaining difference in

refractive indices for the pump and down-converted beams will mean that the output photons must

travel through the crystal at an angle with respect to the original beam. The size of this “spreading

angle” is calculated below, given a particular (near optimal) orientation of the birefringent crystal.

In order to find the spreading angle, we explicitly write down the basic conservation laws, in

Equation (1.1) and (1.2), invoking an assumption that the SPDC process may be treated as if it

were, effectively, a three-body process.

Ep = Es + Ei (1.1)

~pp = ~ps + ~pi (1.2)

From quantum mechanics, we have Equations (1.3) and (1.4).

E = h̄ω (1.3)

~p = h~k (1.4)

3



Plugging in (1.1) and (1.2), we can get Equations (1.5) and (1.6).

ωp = ωs + ωi (1.5)

~kp = ~ks + ~ki (1.6)

Notably, Planck’s Constant, originally appearing on both sides of each equation, has canceled out.

When the momentums of the signal and idler photons have the same direction as the pump beam,

the downconversion is said to be collinear. Depending upon the wavelength of the pump and the

tilt of the nonlinear crystal used for the downconversion process, it is also possible to for SPDC to

be non-collinear, which results in a “doughnut-shaped” output beam.

Figure 1.1: Linear down-conversion

Figure 1.2: Nonlinear down-conversion

Now let’s calculate the spreading angle between the beams, which, as we will see, depends upon

the orientation of our BBO crystal, which sets the effective indices of refraction. From Fig. 1.1, by

vector analysis, we can get Equation (1.7) and (1.8) from (1.6).

|~kp| = |~ks|cos(θs) + |~ki|cos(θi) (1.7)

|~ks|sin(θs) = |~ki|sin(θi) (1.8)

The relationship between k vector and angular frequency is given in Equation (1.9). [23]

|~kp,s,i| =
ωp,s,inp,s,i

c
(1.9)

4



If our experiment uses filters to select output photons having the same energy as one another, we

can set the energy of the signal and idler photons equal to each other, as shown in Equation (1.10).

ωs = ωi (1.10)

Now, we can substitute (13) and (14) into (11) and (12) to get relationships between the indices

of refraction and the angle between signal/idler beam and the pump beam, which are expressed in

Equation (1.11), (1.12), (1.13) and (1.14).

θs = θi (1.11)

ns = ni (1.12)

cosθs,i =
np
ns,i

(1.13)

θs,i = arccos

(
np
ns,i

)
(1.14)

As is evident in Equation (1.14), the angle between pump beam and signal beam is determined by

the indices of refraction of both the pump beam and the signal/idler beam.

1.2.3 The Index of Refraction for Ordinary and Extraordinary Polarizations

The only way to satisfy all of the constraints for SPDC is for the down-conversion crystal to

be birefringent, meaning that the index of refraction depends on the direction of propagation, as

well as the wavelength and polarization of the beam. This adds an additional degree of freedom

(related to the tilt of the crystal), which is used to ensure the above equations are satisfied.[18]

Optical components are typically made using glasses, where there is no long-range order of atomic

positions. Since the wavelength of light used in our experiments is much longer than the atomic

spacing, a great deal of averaging (e.g., over bond angles) occurs and, in the end, the medium is

effectively isotropic. On the other hand, there are many transparent crystals, where the propagation

is non-isotropic. That is, in a crystal, electrons experience different amounts of restoring force when

?sloshing?? in different directions. As long as absorption is negligible, the relative propensity for

5



sloshing is described by an electric susceptibility tensor that is real and symmetric, and which can

be diagonalized by choosing the appropriate set of axes, called the “principal axes” of the medium.

Given the constraint that absorption is negligible, these axes will be orthogonal, and so are called

x, y, and z. The crystals that we will discuss have diagonalized electric susceptibility tensors where

χxx = χyy 6= χzz. For these kinds of birefringent materials, there is one direction, described in

Figure 1.3, such that any beam traveling along that particular direction will experience the same

phase speed, c/n0, regardless of its polarization state. This unique direction is called the “optic

axis” of the material (and such birefringent materials are said to be “uniaxial”). Such materials

are characterized by two refractive indices, the “ordinary” index, n0, for light polarized in the x or

y directions, and an “extraordinary” index, ne, for light polarized in the z direction.

Figure 1.3: An “ordinary” beam traveling through a nonlinear crystal. (a) Here, the
coordinate system is not that of the crystal, but is such that the pump beam is traveling
along the y direction, while the optical axis of the nonlinear crystal is parallel to the
y-z face. That back face of the crystal is shadowed in the figure, and the direction of
the optical axis is marked by several vectors that lie parallel to the y-z face. Here, the
polarization vector of the pump beam is also parallel to the y-z plane. (b) Front view,
i.e., looking at the front y-z face: there is an angle between the optical axis and the
polarization vector. The index of refraction of the beam is independent of this angle. As
long as the polarization vector lies in the same plane as the optical axis, the index of
refraction of the crystal can be calculated using Equation 1.15

6



The ordinary index of refraction, n0, depends upon the wavelength of the light, as follows from a

simple model, called the Sellmeier equation, which applicable at frequencies well below the resonant

(UV) frequencies of electron shells: [18]

n2
0(λ) = A0 +

B0

λ2 + C0
+D0λ

2 (1.15)

Here, λ is the wavelength of the beam, and A0, B0, C0, and D0 are all coefficients that are

determined by the properties of the crystal.

On the other hand, if the polarization of the beam lies within the plane formed by the optical axis

and the propagation direction of the beam, as illustrated in Figure 1.4, it will experience an index

of refraction ne that depends both on the wavelength of the beam and, additionally, upon the angle

φ shown in the graph, which is the angle between the optical axis and the pump beam. The index

Figure 1.4: An extraordinarily polarized beam traveling through a nonlinear crystal. (a)
Here, the pump beam is traveling along the y direction, while the optical axis of the
nonlinear crystal lies in the x-z plane. The back face of the crystal is shadowed in the
figure, and the direction of the optical axis is marked by several vectors that lies in the
x-z plane. The polarization vector of the beam lies in y-z plane, the same as the optical
axis. (b) Looking into the right surface of the crystal, i.e., the x-z plane, there is an angle
φ between the optical axis and the polarization vector. Here, the index of refraction of
the beam dependents on this angle, as shown in Equation 1.16

7



of refraction ne as a function of φ and λ is given by Equation (1.16).[18]

1

ne(λ, φ)2
=
cos2(φ)

n0(φ)2
+
sin2(φ)

ne(φ)2
(1.16)

Here, ne(λ) is calculated using Equation(1.17), while n0(λ) is calculated using Equation(1.15).

[18]

n2
e(λ) = Ae +

Be
λ2 + Ce

+Deλ
2 (1.17)

Again, λ is the wavelength of the beam, and Ae, Be, Ce, and De are all coefficients that are

determined by the properties of the crystal. [18]

Figure 1.5: Index of refraction, as a function of birefringent crystal orientation. To satisfy
conservation of momentum, downconverted photon polarizations are orthogonal to that
of the pump, so here the ordinary index of refraction is plotted for a wavelength of 810
nm, while the extraordinary index is plotted for a wavelength of 405 nm, assuming that,
if the wavelengths are given in microns, coefficients in the Sellmeier equations for BBO
are A0 = 2.7359, B0 = 0.01878, C0 = −0.01822, D0 = −0.01354, while Ae = 2.3753,
Be = 0.01224, Ce = −0.01667, and De = −0.01516. Our BBO crystal is cut at 0.511
radians (29.3 degrees), which – for our pump wavelength – is close to the crossing point
of the two curves shown.

For the nonlinear SPDC process to occur, it must satisfy both conservation of energy and

momentum. The latter is not satisfied in most transparent media, because normal dispersion

ensures that the total momentum of the signal and idler would be less than that of the pump photon.

However, in a birefringent material, if the pump beam is polarized such that it is characterized by

the extraordinary index of refraction, then total momentum can be conserved when the signal and

8



idler photons are emitted with polarization orthogonal to that of the pump, so that these output

photons are characterized by the ordinary index of refraction.

9



1.3 Experimental Spontaneous Parametric Down-Conversion

1.3.1 Down-conversion Setup

An initial exploration of SPDC was setup according to instructions provided in the book Quantum

Mechanics: Theory and Experiment by Mark Beck. The same entangled-photon source described

here is utilized in all further single-photon experiments contained in this thesis.

For our work, an inexpensive blue-ray 405-nm laser is setup as the initial light source (i.e., the

Figure 1.6: The setup for SPDC

“pump beam”). To ensure linear polarization, the pump is steered directly into the center of the

Glan-Taylor polarizer, and to adjust the orientation of that polarization, we make use of a half-wave

plate on a rotary mount, before arriving, at normal incidence, at our BBO crystal. For simplicity,

the required steering mirrors are not shown in the schematic diagram shown in Fig. 1.6.

The BBO crystal and the angle of separation

From Section 1.2.2, it is known that the angle of separation between the down-converted photons

and the pump beam is the inverse cosine of the ratio between the indices of refraction of the crystal

at 405 nm and at 810 nm, as shown below in Equation 1.18:

θs,i = arccos

(
np
ns,i

)
(1.18)

As indicated in Fig. 1.5, for our BBO crystal at normal incidence, the index of refraction at the

pump wavelength is fairly close to that of the downconverted beams, but there is a small difference:

10



the index is 1.659 at 405 nm and 1.661 at 810 nm. From this, it can be shown that the resulting

angle of separation is approximately 2.8 degrees.

The crystal we are using for this lab is a single Type-I BBO crystal, as is the case for nearly all

of the single-photon experiments I have done, except for one involving a Bell’s test, where there was

a need to use a double crystal. In general, though, our double crystal produces less down-converted

photons, as that crystal is shorter, and so the longer, single crystal described here has been the

workhorse for our investigations.

Even with our longer crystal, the efficiency of the down-conversion process is very low, and so

the pump beam coming out of the crystal has, essentially, the same intensity as the original pump

beam. It is unsafe, both for the single-photon detectors and for the experimenters themselves,

to allow the pump beam to freely propagate around. In addition, there can be problems with

fluorescence of the filters that protect the detectors. The colored-glass filters we are using will

work well to filter scattered background light, but if you hit them with the pump beam, they will

fluoresce. This issue could be controlled by filtering the majority of the pump beam first with some

sort of interference filter (i.e., a ”cold mirror”), but we’ve simply ensured that the collection optics

are physically further from the down-conversion crystal; the further away from the source that you

are imaging onto your fibers, the less fluorescence you will collect. Given that our collection optics

are nearly a meter away from the BBO crystal, we have room for a beam ”dump” to be placed

along the optical axis to absorb the pump beam, once it has passed through the BBO crystal and

completed its ”job.”

Collection optics

It is highly recommended to add a bandpass filter, or a broadband filter in front of the collection

optics, to get rid of any stray 405-nm light that has been scattered into the path, as well as other

optical noise in the room. In addition, regular optical fiber is deemed unsuitable for protecting the

single-photon detectors from stray light that can leak in through the jacketing materials, and so the

first bit of fiber most directly connected to the Single-Photon Avalanche Diodes (SPADs) should

either be specialty opaque fibers or regular fiber with opaque covers added to them, to shield out

background optical noise.

11



Collection optics using convex lenses couple the down-converted beams into the optical fibers

that transmit the signals into SPADs. The distance between the lens and the fiber is critical to

this coupling, as is the range of angles for rays entering the optical fiber. Given that optical fiber

relies upon Total Internal Reflection (TIR) at the core-cladding boundary, rays coming in at too

steep an angle will be lost. Thus, we must also optimize the collection angle of the collection

optics, by using collection optics with appropriate Numerical Aperture (NA). Moreover, we must

ensure that these collection optics point directly towards the BBO crystal. To achieve that final

goal, we perform an initial alignment by “back-propagating” a fiber-coupled visible laser: sending

the output of that laser’s output fiber through what would normally be our collection optics back

towards the BBO crystal. Fine tuning of the “pointing direction” for our collection optics can only

be done by optimizing the count rate of the detected down-converted single photons.

Each fiber should have the same length to avoid differences in propagation time, which will

result in errors in coincidence counting.

For the experiments described here, we used multimode optical fiber. Without spatial filtering

of the pump beam, the output from our 405-nm laser contains multiple modes. Yet even if we

were to use a single-mode laser, the SPDC process itself yields output which may be described as

a superposition of modes. Thus the source does not have the high degree of coherence necessary to

yield high-contrast single-photon interference, but if we were to replace the multimode fiber with

single-mode optical fiber, the effect would be to discard higher mode contributions, as has been

demonstrated in the work of Aspden, Padgett, and Spalding, Am. J. Phys. 84, 671 (2016). [4]

Glan-Taylor polarizer

The Glan-Taylor polarizer (GTP in Fig. 1.6) is for purifying the polarization of the pump beam.

The diode laser we utilize was, again, selected as an inexpensive source. The untreated output

from this laser contains multiple modes with multiple polarizations. The Glan-Taylor polarizer is

a polarizing beam splitter. It will reflect away photons with other polarizations and preserve the

photons with horizontal polarization. Having a pump beam with a well-defined polarization state

is important to single-photon experiments, as we have more knowledge and more control over the

system. As suggested by Fig 1.5, polarization also plays a role in optimizing the efficiency of the
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downconversion process.

Half-wave plate

Because the polarization of the pump beam is relevant to the phase-matching process, we make

use of a half-wave plate, which is a transmissive element that allows rotation of the polarization of

the input beam. During the alignment process, we rotate the half-wave plate until the count rate

of down-converted photons, measured at our detectors, is maximized. Rotating the half-wave plate

also allows us to check whether we are getting any “real” signal. If rotation of the polarization

does not change the measured counts at the detectors, that implies that whatever signal is present

is not associated with down-converted light coming from the BBO crystal.

Single-Photon Avalanche Diodes

A single 810-nm photon carries very little energy. Translating information from this “microscopic”

entity to the macroscopic realm requires an irreversible, entropy-producing process: amplification.

In our work, this involves (Geiger-mode) avalanche of a solid state diode biased to very near an

instability, such that a small perturbation (associated with a single, incoming photon) causes a

large, easily measurable result. The Laboratory for Mesoscopics and Quantum Microscopies, which

I have been a part of during my work at Illinois Wesleyan, has broad interest in this sort of issue,

and its impact upon information, and it will recur as a theme of interest in work to be described

later on, in Chapter 3, of this thesis.

When a photon deposits its energy in the active area of a SPAD, it initiates a charge avalanche

which yields a pulse that has a fast onset associated with the avalanche dynamics, and a longer

decay associated with the RC time constant of the system (which leads to a “dead time” during

which the detector is incapable of re-firing). It is the well-defined leading edge of this pulse that

is used for timing (e.g., to determine whether pulses from two different SPAD detectors fall within

a “coincidence” window). Thus, a SPAD is a basic transducer used to convert optical signals into

well characterized electric timing cues.

13



The output of each SPAD is sent, via coaxial cable to a Field-Programmable Gate Array

(FPGA), which acts as a fast logic circuit for determining coincidence. The coaxial cabling must

have a characteristic (transmission line) impedance which matches the output impedance of the

SPAD in order to minimize signal loss and reflection during the transmission process. For the

ALPhA SPADs, the output impedance is 50 Ω. In addition, the length of the coaxial cables should

be roughly the same, as any difference in length translates into the time delay, which could result

in errors in the reported coincidence count rates. (For estimation purposes, it is useful to assume

that the speed of the electrical pulses is roughly 0.8c. So, while light travels in free space one foot

per nanosecond, a one-foot difference in cable length would correspond to a delay of around 1.27

ns.

The Field-Programmable Gate Array

Figure 1.7: The Field-Programmable Gate Array (FPGA), which is used to determine
coincidences between detection events.

Fig 1.7 contains a photo of the kind of FPGA we use, which is an Altera Model DE-2. As currently

configured, this FPGA limits us to no more than four SPAD detectors in a single experiment. The
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FPGA processes the signals from the SPADs with digital logic gates, and outputs (8) 32-bit arrays

to a LabVIEW program on the computer, using an RS-232 bus (which an industrious student could

easily upgrade to a USB-bus). Of the (8) 32-bit arrays output, the first four arrays, indexed 0 to 3,

are report the individual counts detected by each SPAD, which are referred to as “singles” and are

labeled as A, B, A’ and B’. The last four arrays, indexed 4 to 7 (from right to left at the bottom

of Fig. 1.7), are for coincidence counts, which are referred to as the “doubles” (e.g., if AB are

switched on while A’ and B’are off) or “triples” (e.g., if ABB’ are switched on while A’ is off), etc.:

precisely what information arrays 4-7 will contain depends on how those physical switches on the

FPGA board are set.

To reiterate: as is shown along the bottom of Fig 1.7, there are 16 physical switches the edge

the FPGA board. We have labeled these in four groups. There are four switches in each group,

with each switch labeled with the names of the four SPAD detectors. How we set the switches

within each group “hardwires” the programming of logic gates in the FPGA, so that they will

report the outcome of a type of coincidence measurement. Setting switches within a group to the

“on” position sends the output of the specified detectors to digital gates which correspond to a

Boolean “AND” operation, which is how we measure coincidence counts for those detectors.

The outputs of the logic gates in a group correspond of one of the last four 32-bit arrays of data

in each block sent to the computer. For example, if switch A and switch B in group 4 are switched

on, the output of the fifth 32-bit array will be the coincidence counts observed between detectors

A and B. If switch B and B’ in group 7 are switched on, the output of the eighth 32-bit array will

be the coincidences observed between detector B and B’.

While the machine-specific programming of the FPGA is written in Veralog HDL code, this is

embedded into a LabVIEW program that is openly available on Mark Beck’s website, along with

complete instructions on how to bootload instructions onto the FPGA.

The LabVIEW front end

We make use of Mark Beck’s LabVIEW program called “coincidence-rs232.vi,” both for the initial

experiment described in this section as well as for some additional experiments described later.

A screen shot of the program is in Fig 1.8. Users switch between sub-programs appropriate to
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different experiments by toggling the “Experimental Setup” dial on the left of the screen. For an

initial SPDC experiment, set the dial to the “Coincidence” position. Critical to successful operation

of the program is selection of the correct counter port, at the bottom of the screen. As currently

configured in our lab, the correct counter port is COM1. Obviously, communicating to the wrong

port should result in no signal, but in practice, if the wrong port is selected, the program will crash.

LabVIEW will then need to be restarted before reopening this program.

Figure 1.8: Screen shot of the LabVIEW program called “coincidence-rs232.vi,” for ex-
ploration of SPDC statistics.

In Fig 1.8, vertical “thermometer” scales provide a highly visible measure of the number of counts
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we are detecting, which is useful during interactive alignment and optimization, as they can still

be easily seen while working on the far side of the optical table. While the program is running, the

maximum range of each thermometer can be adjusted by the user to fit the range of the counts

actually coming from the detectors. Beneath these thermometer-style indicators are boxes which

report the actual number of counts counts.

If all optical and electronic path lengths in the experiment are equal, the down-converted pho-

ton pairs should arrive at the detectors at exactly the same time, and the “coincidence window”

should then be set to be an infinitesimal time interval. However, due to unavoidable variations in

the propagation delays (including any delay associated with the electronics internal to the SPAD

modules), there needs to be certain amount of tolerance. Default settings should suffice for our

experiments, though students have the ability to explore the effects of varying any of these param-

eters. The temporal interval considered to amount to “coincidence” can be adjusted on the left of

the screen (see “Coincidence Window” controls).

We can take data using the control panel on the lower left part of the interface. When taking

data, an additional LabVIEW front panel will open, with corresponding adjustable parameters for

saving data.

1.3.2 Aligning the sub-systems

Walking the beam

The path along which the pump beam propagates is referred to as the optic axis. Wherever this

reaches an element where alignment is critical, it is helpful to set things up such that the optical

axis aligns with the holes on the optical breadboard. To do this, as shown in Fig 1.9, a pair of

steering mirrors is used to align the beam to a pair of identically mounted iris apertures.

The alignment process, colloquially referred to as “walking the beam,” first uses the mirror farther

from the first iris to center the beam on the first iris. After the beam is centered there, use the

mirror that is closer to the first mirror to center the beam on the second iris (on the right in Fig.

1.9). Then go back to the first iris and repeat the process. The process will converge more rapidly

if each step includes some degree of overshoot, which decreases with each iteration. Once the beam
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Figure 1.9: Aligning the optical axis to the optical breadboard

is centered on both irises, the irises can be removed.

Aligning the GTP, the half-wave plate and the BBO crystal

The alignment process for each of these components is as follows: place the component into the

beam and rotate it, slightly, until the back-reflection coincides with the incidence beam. For BBO

crystal, though, this “rough” alignment does not provide sufficient phase matching. After aligning

the collection optics we will return to make fine adjustments to the vertical tilt of the crystal, so

as to maximize the counts.

Aligning the collection optics

Given our prediction for the angle of separation, the two collection optics modules should be set

into positions such that the line drawn between each collection optic and the crystal has a 2.8

degree separation with the optical axis, which, again, is the axis along which the pump beam is

propagating. In my setup, the horizontal distance between the collection optics and the crystal

is a hair under 38 inches. Thus the collection optics should be separated from the optical axis

by approximately 1.85 inches. This quick trigonometry is only intended to provide us with a

starting point, likely to give a signal which can be maximized experimentally, as the positions of

the collection optics modules must be adjusted so as to maximize the counts.
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Figure 1.10: Adjust the pointing direction of the collection optics modules via back-
propagation of a visible-wavelength fiber-coupled laser

The down-converted beam is too dim for human eyes to see, both because the wavelength is

outside the range of peak sensitivity for human eyes, and because the intensity of the beam is quite

low. So, our first step, shown in Fig. 1.10, is to use back-propagation of a fiber-coupled visible-

wavelength laser, to make sure that the module containing the collection optics is aimed towards

the BBO crystal.

The BBO crystal acts like a mirror, and it reflects the visible-wavelength alignment laser onto

the second collection optics module. Once that part of the system is aligned, turn off the alignment

laser, uncouple the fiber from the first collection optics module and connect that module to the

fiber optics leading to the SPAD detector. (Again, the optical fiber that is directly connected to

the SPAD must be opaque.) Then turn off all the lights in the room, except for the (green) LED

safe light. After turning on the warning light in the hallway, it is safe to apply power to the SPAD

detectors. There should always be some counts from the detector. Even with no light applied to

the input, the SPAD will trigger about 100 times per second (which we call “dark counts”). IF

you now turn on the 405 nm laser, you can maximize the detected counts by moving the collection

optics modules vertically, first. Then tweak the tip/tilt angles of the collection optics modules to

further maximize the counts. Next, further maximize the counts by making fine adjustments to

the tilt the BBO crystal and to the rotation of the half-wave plate. Normally, when the system is

aligned, the coincidence counts should be of order several thousand per second, for our single BBO

crystal.
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The SPDC setup described so far is relatively basic, but is also the most fundamental of all the

quantum optics experiments I describe in this thesis. Other experiments are largely built upon this

setup, with some additional components. Thus, for later experiments, I will not go in details of the

basic alignment process except for experiment-specific alignments. Learning to align the system

well, at this point, will lay a firm foundation for future experiments in quantum optics, and these

alignment skills have value that extends well beyond quantum optics.
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1.4 Establishing that we have a true Single-Photon Source

1.4.1 Introduction to Quantum Optics

As seen in the previous section, our detectors count discrete events where energy has been de-

posited. In quantum mechanics, we say that light is quantized into particles called photons. This

granular aspect of light is distinctively different from the classical wave model, which would involve

a continuous distribution of energy over spatially extended regions. For example, if a photon in a

random polarization state is coming into a polarizing beam splitter (PBS), the statistics gathered

in our quantum optics experiments suggest that it will either get reflected by or get transmitted

through the PBS. If there are detectors in both directions, we expect no coincidence counts between

them, so long as we can show that there was not more than one photon in the system at a time.

However, that final qualifier requires special attention: photons are bosons, and therefore have a

statistical tendency to “bunch,” meaning that even if you have an average of one photon in the path

to your detector per millisecond, it is probably more commonly the case that you would have two

photons arriving together, sometime during a two-millisecond interval. In other words, there is a

likelihood, with traditional light sources, that on those (rare) occasions when you do have a photon

you also have more than one, and so your experiments cannot then be taken to have uncovered

any true single-photon effects. As a result, during a measurement of the sort described at the start

of this paragraph, during the coincidence window there will be (distinct) photons reflected and

transmitted from the PBS, obscuring what any single photon might do.

A correlation function for two-detector measurement

If we really want to explore single-photon physics, we need to establish a metric to demonstrate

whether a dataset corresponds to single photons or bunched combinations. Single photon sources

are essential to quantum optics and quantum information processing, as they are performing oper-

ations at the single photon level.
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A metric that we will explore is shown in equation 1.19, provided in Mark Beck’s book: [6]

g
(2)
B,B′(τ) ≡ 〈IB(t+ τ)IB′(t)〉

〈IB(t+ τ)〉〈IB′(t)〉
(1.19)

Consider a stream of intensity measurements taken at a sequence of times. Here, we can consider

non-consecutive measurements in our data stream by considering results separated by a time delay,

τ , where the angle brackets indicate we are averaging the results over the entire data set (all times).

B and B′ are SPADs on the transmission and reflection sides of the PBS, respectively. Such a

“correlation function,” is one way of looking for patterns, or “hidden treasures” inside data. If the

intensity signals at two detectors are independent (uncorrelated, and random), then our correlation

function would yield a result of 1. Deviations from unity are indications time correlations (or anti-

correlations) in the intensity detected by the two SPADs. There is a similar correlation function,

used for thinking about the visibility of interference fringes, which looks at electric field amplitude

rather than the intensity and so, by convention, the version that looks at correlations in the field

is called the “first-order” correlation function while the one we are concerned with, which looks for

correlations in intensity, is called the “second-order” correlation function.

Because of our concern over “photon bunching,” we want to consider the likelihood of simultaneous

contributions to the intensity, i.e., the limit where τ = 0: [6]

g
(2)
B,B′(0) =

〈IB(t)IB′(t)〉
〈IB(t)〉〈IB′(t)〉

(1.20)

For our experiments, we note that the intensity of a beam is related to the probability of photon

arrival. As we will see, while a lack of correlation yields g
(2)
B,B′(0) = 1, if the probabilities for arrival

at the two detectors were perfectly correlated then the correlation function would be 2, and if they

are instead perfectly anti-correlated, then the correlation function will yield 0. [6]

The probability of measuring a single photon from a single detector is proportional to the average

intensity of the beam multiplied by the time window of detection. In equation 1.21, below, ∆t is

the time window for measurement, and eB and eB′ are the quantum efficiencies of the detectors.
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[6]

PB = eB〈IB(t)〉∆t

PB′ = eB′〈IB′(t)〉∆t

PBB′ = PBPB′ = eBeB′〈IB(t)IB′(t)〉∆t2

(1.21)

Note that the average of the product of the intensities at two detectors, i.e., the coincidence count

rate, is related to the joint probability of measurement. By substituting Equation 1.21 into Equation

1.20, we see: [6]

g
(2)
B,B′(0) =

PBB′

PBPB′
(1.22)

However, we still have not yet written our correlation function in terms of quantities that can be

directly measured during an experiment. If the total time of measurement is T , and the total

number of photons detected during that interval is N , then the probability of measuring a photon

coming into the detector is equal to the rate of photon detection, N/T , times the measurement

window, ∆t: [6]

PB = NB
∆t

T

PB′ = NB′
∆t

T

PBB′ = NBB′
∆t

T

(1.23)

Substitute into equation 1.22, and we can get equation 1.24. [6]

g
(2)
B,B′(0) =

NBB′

NBNB′

(
T

∆t

)
(1.24)

Now, everything in this version of our correlation function is measurable in our experiments. There

should be no, or very little coincidence count, if we have a true single-photon source. In that

situation, we say that we have a source that exhibits “anti-bunching”, in that g
(2)
B,B′(0) is very close

to zero. However, if our source is merely equivalent to a highly attenuated, conventional laser

light source, the joint probability of measurement should be very close to the product of individual

probability of measurement. As a result, g
(2)
B,B′(0) will be very close to one. On the other hand,

if we have a thermal light source, statistical physics assures us that photon-bunching will be com-

monplace and g
(2)
B,B′(0) will be close to two. [6]
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“Heralded” measurements

In the experiment discussed above, we considered a PBS and two detectors, one for photons trans-

mitted by the PBS and one receiving photons reflected toward it by the PBS. As we will demon-

strate, if the input to the PBS is the “signal” beam resulting from Spontaneous Parametric Down-

Conversion (SPDC), then g
(2)
B,B′(0) will be very close to one, implying that the “signal” beam is

no better than a conventional light source. On the other hand, if retain, from our data set, only

photon detection events that arrive, within a coincidence window, at the same time that a photon

arrives from the “idler” beam, then g
(2)
B,B′(0) will be very close to zero, implying that the “heralded”

signal photons constitute a true single-photon source. This difference between the un-heralded and

heralded measurements of the signal beam persist even if we do everything possible to filter out the

background noise, to eliminate any stray light scattered by the pump beam, and to address other

extraneous factors under our control. Students should be encouraged to discuss this point in class,

where possible.

The un-heralded version of our experiment with the PBS involved two detectors. The heralded

version of this experiment adds a third detector, and all of the probabilities that enter our correla-

tion function become conditional upon the coincident detection of an idler photon at the heralding

detector, which we call A:

g(2)(0) =
PABB′

PABPAB′
(1.25)

Because of the conditional nature of heralded measurement, we can treat the counts from detector

A as the total number of photons, which simplifies the calculation of probabilities, as shown in

equation 1.26:

PB =
NAB

NA

PB′ =
NAB′

NA

PBB′ =
NABB′

NA

(1.26)

Substituting into equation 1.25, we can get equation 1.27 shown below, where all quantities are

directly measurable in our experiments.

g(2)(0) =
NANABB′

NABNAB′
(1.27)
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1.4.2 Experimental setup for studying Source Statistics

Figure 1.11: Setup for studying the statistics of an SPDC source (and, when heralded,
demonstrating the existence of a true source of single, anti-bunched photons).

The experimental setup is shown in Figure 1.11. Some details discussed earlier, such as the

GTP, the SPADs and the FPGA are omitted from the schematic for simplicity. Here, detector A

is the heralding detector, and detector B and B′ are the signal detectors. I put a half-wave plate

right in front of the PBS to make the signal beam diagonally polarized. Because we use a single

Type-I BBO crystal, when the pump beam is horizontally polarized, the down-converted photons

are all vertically polarized, which means that without the addition of this half-wave plate all signal

photons would be transmitted at the PBS. Rotating the half-wave plate allows us to tune (and

equalize) the relative likelihood of detection at B and B′.
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1.4.3 Alignment and Source Statistics data collection

This experiment requires you to have already completed the basic alignment of the SPDC de-

scribed in Section 1.3. Following that, block the pump beam, turn off the detectors and couple

the visible-wavelength fiber-coupled laser into detector B, as we did for back-propagation. During

the alignment process which follows, the position of detector B should never be changed, as it is

already aligned in the previous process. Next, add the PBS to the measurement arm, right in front

of detector B, and adjust the orientation of the PBS such that the beam reflected from the PBS is

concentric with the incidence beam. Turning the room light off is a good idea when doing this part

of the alignment, simply to make it easier to see the reflected beam. Do the same thing with the

half-wave plate. Then add detector B′ on the other side of the PBS. The distance between detector

B′ and the PBS should be the same as the distance between detector B and the PBS, otherwise

the differences in propagation times will lead to a reduction in the measured coincidence counts.

The reflection of the visible-wavelength fiber-coupled laser should go into the center of detector B′.

Once this rough alignment is completed, decouple the fiber-coupled laser and couple the SPADs

into all the detectors, unblock the pump beam, start the computer program, and (only) with the

room lights off, power up the SPADs. For fine-tuning the alignment, we use the same program that

we used for SPDC measurement, “coincidence-rs232.vi.” Fine tuning of the alignment consists of

adjusting the horizontal position of detector B′, as well as its tip and tilt, so as to maximize the

measured counts.

Once the alignment is done, it’s time to start our new experiment. For that purpose, the dial

switch labeled “Experimental Setup” (shown on the left of Fig. 1.8) should be set first to “2-det,”

to demonstrate that the un-heralded signal beam does not exhibit anti-bunching, and then later set

to “3-det,” to show – at long last – that conditional (heralded) measurement really does provide

us with a true (anti-bunched) single-photon source.
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Table 1.1: (Un-heralded) two-detector measurement results

B B’ BB’ g2
BB′(0)

367424 289731 82 1.042
367374 289076 90 1.147
371363 293407 88 1.093
370220 292758 91 1.136
371277 293624 90 1.117
365820 287242 84 1.082
362172 280908 82 1.091
361905 280527 83 1.106
366356 283938 89 1.158
371093 294140 84 1.041
373758 295967 99 1.211
367948 288886 78 0.993
364676 282531 89 1.169
370556 292187 80 1.000
370335 293351 81 1.009

1.4.4 Experimental results on SPDC Source Statistics

Our results for the two-detector (un-heralded) measurements are shown in Table 1.1. Our average

value for g2
BB′(0) is 1.09, with a standard deviation is 0.07. Again, this is consistent with a con-

ventional, coherent laser light source. If that were the best we could do, there would be no point

to going to the trouble of working with SPDC.

A much more important result emerges when we examine the results of our heralded (three-

detector) measurement, shown in Table 1.2. Here, the average we observed for g2(0) is 0.023,

and the standard deviation is 0.008. As noted earlier, the most extreme limit for anti-bunching

would yield a g2(0) very close to 0. Within the quantum optics research community, a beam can

be considered suitable for drawing conclusions about single-photon physics whenever the source

statistics yield g2(0) < 0.5. From our data, it is pretty clear that we have now established a single-

photon source. (Some would go further, and declare that such experiments prove the existence of

single photons.)
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Table 1.2: Heralded detection results

A B B’ AB AB’ ABB’ g2(0)

1260093 366940 290100 18092 20027 7 0.024
1260867 366650 289091 17911 20101 6 0.021
1258648 367593 288875 17968 20150 6 0.021
1260537 367670 288265 17908 20052 6 0.021
1259656 365289 285618 17824 20122 11 0.039
1261006 363520 280707 18057 19991 7 0.024
1259442 362171 281408 18172 19839 5 0.017
1258713 364407 281734 18076 19986 5 0.017
1259301 363394 282878 18072 20047 4 0.014
1258607 364141 282112 17829 19982 8 0.028
1259844 363193 281983 18038 19877 3 0.011
1258621 362975 279806 17895 19886 8 0.028
1259322 362416 281659 17861 20179 5 0.017
1257997 364128 282412 18208 20015 11 0.038
1258766 360184 276274 18030 19975 8 0.028
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1.5 Quantum State Measurement

1.5.1 Introduction to the Inverse Problem

Measuring the quantum state of a single photon can be arduous: it is an example of what physicists

refer to as “an inverse problem.” A simpler example of an inverse problem is the game of “20

Questions.” In that game, your task is to invert the data and work out, say, “who I’m thinking of,”

which is to say that you don’t “detect” the identity of the person directly. The answer to any one

yes-or-no question doesn’t, normally, provide enough information to tell you who I’m thinking of.

Strategically, you gain maximum information per question if each question that you pose eliminates

half the population. If you take that approach, there is a decent chance that you will win, because

220 is over a million.

As we move on to quantum, we have to recognize that the answers to some “yes-or-no” questions

are maybe. Experimentally, our strategy will be to examine a stream of identically prepared single

photons and, for each of them, ask questions pertaining to more than one type of basis state. Are

you a horizontally polarized photon? Are you a vertically polarized photon? Are you a diagonal

polarized photon? Are you an anti-diagonal polarized photon? Using the formalism presented in

Mark Beck’s text, Quantum Mechanics: theory and experiment, these questions can be expressed

as a matrix multiplying the state vector, and yielding the answers as a column vector.

You only need two basis states, e.g., |H〉 and |V 〉, in order to completely describe a general

“spin” polarization state for a photon, |ψ〉 = a |H〉+ beiφ |V 〉, but this means that in order to fully

specify the state we have to experimentally determine the values of three quantities, a, b, and φ.

Thus, in this section we will make three distinct kinds of measurements (with sufficient data to

ensure decent statistics) in order to fully determine the polarization state of a stream of identically

prepared single photons.

As an aside, it is worth noting that in Chapter 2 of this thesis we will describe experiments

that we have done which demonstrate that a photon can also posses “orbital” angular momentum

(OAM). Unlike the 2D Hilbert space associated with “spin” angular momentum, OAM requires us to

consider a “higher-dimensional” space (limited to a finite number, D, only by the finite aperture of

our experimental implementation). The use of higher-dimensional spaces is of interest for encoding

large amounts of information but, when it comes to reading out that encoded information, solving

29



inverse problems in higher-dimensional spaces can be quite challenging. Again, experimentally, you

measure probabilities for D independent basis states (plus noise, and so you can get “unphysical”

answers if you haven’t taken enough data to ensure decent statistics), but the need to establish

the relative phases means that, in general, you need 2D− 1 distinct kinds of measurements. Thus,

there is current interest in the development of special tricks for simplifying the characterization of

higher-dimensional quantum states. (One such approach is addressed in Section 2.5 of this thesis).

That said, in this section, we confine ourselves to measuring the polarization state of single

photons prepared by the heralding method described in the previous section, where, in order to

ask questions pertaining to more than one type of basis state, we will perform three distinct kinds

of measurements, involving a quarter-wave plate, a half-wave plate, and a polarizing beam splitter.

The wave plates allow us to changing the basis of the photon state and the polarizing beam splitter

is for projecting the photon state onto the |H〉 axis.

Again, a general polarization state of a photon can be written, in bra-ket notation, as follows:

|ψ〉 = a|H〉+ beiφ|V 〉 (1.28)

In order to measure the state of the photon, the coefficients a, b, and φ must to be experimentally

determined. Here, a and b are the probability amplitudes for detecting the states |H〉 and |V 〉, if we

pass such a photon through an HV polarization analyzer (i.e., a PBS with appropriate orientation).

We have already described measurements using a PBS, and so we are clearly prepared to measure the

probability of getting |H〉 out of the PBS. Because the input stream contains identically prepared

photons that are in the state |ψ〉, the measured probability is a conditional probability, P (H||ψ〉):

this is the probability that we will measure a horizontally polarized photon, given that the beam

is prepared in the state |ψ〉. From this measured probability we can calculate the probability

amplitude, a, using Equation (1.5.3).

a =
√
P (H||ψ〉) (1.29)

As soon as the value of a is measured, the value of b can be determined. Normalized mandates the

relationship between a and b be as shown in Equation (1.5.2):

a2 + b2 = 1 (1.30)
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Thus,

b =
√

1− a2 (1.31)

To determine the phase factor, φ, we need to measure the polarization of the beam using different

basis. First we will measure the polarization state of the beam using the ±45◦ basis and then

we will perform an analogous measurement using the LR circular polarization basis. The relation

between these measurements and the desired coefficients is shown in Equation 1.23 and 1.24.

P (+45||ψ〉) = |(〈+45|ψ〉)|2 =
1

2
(1 + 2abcosφ) (1.32)

P (L||ψ〉) = |(〈L|ψ〉)|2 =
1

2
(1 + 2absinφ) (1.33)

As a result, we can calculate the angle φ using Equation 1.25.

φ = arctan

(
sinφ

cosφ

)
= arctan

(
P (L||ψ〉)− 1

2

P (+45||ψ〉)− 1
2

) (1.34)

After we have experimentally determined the values of a, b and φ, we can substitute them in Equa-

tion 1.19, yielding the full expression of the quantum state of the input photons.

1.5.2 Experimental setup for Querying Single-Photon States

This experiment has largely the same setup as in Sect. 1.4, except that there is a quarter-wave

plate added. Again, in Fig. 1.12 common features, such as the GTP, the SPAD and the FPGA

have been omitted for simplicity. A half-wave plate and a quarter-wave plate are added to the

measurement arm. Rotating the wave plates to certain angles can change the basis states for our

polarization measurements, as detailed in Table 1.3.

Table 1.3: Wave plate settings to establish each measurement basis

Basis Fast axis of quarter-wave plate Fast axis of half-wave plate

HV 0◦ 0◦

LR 45◦ 0◦

±45 45◦ 22.5◦
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Figure 1.12: Quantum state measurement schematic

1.5.3 Alignment and Quantum State data collection

The only new twist here is that, in order to switch from measurement basis to measurement basis,

we first need to find the fast axis orientation for each of the wave plates. When a wave plate is

rotated so that its fast axis is aligned with the polarization of the input beam, it will not change

the state of the beam. All of the angles listed in Table 1.3 are understood to be relative to this

orientation of the wave plates.

As a first step, place a polarizer into the 405-nm pump beam, and add an imaging screen beyond

the polarizer. Rotate the polarizer until the output is dimmest. The reason we are start out with

the dimmest light is that human eyes are logarithmic detectors, and are most sensitive to the change

of brightness when the light is dim. Next, put one of the wave plates to be used in this experiment

in front of the polarizer. Rotate the wave plate to return the output on screen to its dimmest

limit. Now the wave plate is at its “zero angle,” and the reading on its rotary mount should be
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Figure 1.13: QSM-rs232.vi front panel

noted. Once the wave plates are thus characterized, they can be put in place, following which, the

alignment process for each waveplate is the same as was described in Section 1.4.3.

To collect data, we use Mark Beck’s LabVIEW program “QSM-rs232.vi.” The interface is

shown in Figure 1.13. It should be noted that the conditional probabilities P (H||ψ〉), P (L||ψ〉),

and P (+45||ψ〉) can each be calculated using the method of Section 1.4:

P (AB) =
NAB

NAB +NAB′
(1.35)

1.5.4 Experimental results for Quantum State Measurement

Our experimental results for each individual measurement basis are shown in Table 1.4, 1.5 and

1.6.
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Table 1.4: Measurement results in the HV basis

A B B’ AB AB’ ABB’ g(2)

122232 43836 35510 1702 3815 0 0.000
122480 43736 35416 1732 3896 1 0.018
122011 43940 35552 1765 3920 0 0.000
122217 43584 36028 1716 3957 2 0.036
122523 44284 35344 1770 3882 0 0.000
122638 43552 35332 1765 3994 1 0.017
122460 43871 35263 1764 3891 4 0.071
122280 43810 35304 1756 3971 3 0.053
122591 43799 35309 1721 3946 4 0.072
122900 43606 35218 1745 3936 2 0.036

Table 1.4 provides our results in the HV basis, for which the average for NAB is 1743.6, and

the average for NAB + NAB′ is 5664.4. By referring back to Equation 1.29 we can get a = 0.555,

and using Equation 1.31 we can get b = 0.832.

Table 1.5: Measurement results in the LR basis

A B B’ AB AB’ ABB’ g(2)

122913 6280 61526 31 4846 1 0.818
123320 6336 61999 33 4857 0 0.000
123236 6419 62398 36 4986 0 0.000
123583 6296 61986 25 4819 1 1.026
124151 6243 62089 40 5034 0 0.000
123600 6299 62254 28 4896 0 0.000
123160 6220 61605 36 4906 0 0.000
123021 6399 61889 38 4799 0 0.000
122245 6305 62163 31 4944 0 0.000
123735 6294 61928 40 4924 0 0.000

From Table 1.5, the results in the LR basis give an average for NAB is 33.8, and and average

for NAB + NAB′ is 4934.9, so P (L||ψ〉) = 0.0068. From Table 1.6, our measurements in the

±45 basis yield the average for NAB is 2805.6, and the average for NAB + NAB′ is 5237.1, so

P (±45||ψ〉) = 0.536. Then using Equation 1.34 we can get φ = −0.48π. At this point, we have

34



Table 1.6: Measurement results in the ±45 basis

A B B’ AB AB’ ABB’ g(2)

122052 49966 30432 2718 2437 1 0.018
122040 49986 30374 2877 2449 0 0.000
123244 49983 30517 2797 2400 1 0.018
122613 50171 30761 2790 2403 2 0.037
122439 50218 30561 2791 2532 0 0.000
122553 50431 30561 2857 2359 0 0.000
122781 50184 30246 2903 2358 1 0.018
122163 50186 30831 2743 2547 0 0.000
121885 50242 30509 2733 2371 1 0.019
121612 50136 30586 2847 2459 3 0.052

solved the inverse problem, and have experimentally determined the quantum state of the down-

converted beam to be:

ψ = 0.555|H〉+ 0.832e−0.48πi|V 〉 (1.36)

Equivalently, this single-photon state may be written in a form that explicitly reflects the angular

momentum content:

ψ = 0.198|L〉+ 0.980e−0.15i|R〉 (1.37)
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1.6 Bell’s test of Local Realism

1.6.1 Introduction to Quantum Weirdness

In 1935, Einstein, Podolsky, and Rosen (hereafter, EPR), wrote a paper proposing a paradox in-

tended to undermine the notion of quantum superposition. In the paper, by exploring a gedanken

experiment, they came up with an idea, later termed (by Schrödinger) “quantum entanglement.”

Einstein referred to the consequences as “spooky, action-at-a-distance,” pointing out the implica-

tions for faster-than-light effects which seemed as though they held the potential to violate the

inviolable principles established by the theory of Special Relativity. Thus, it seemed quantum

mechanics must be flawed. The EPR paper suggested that what had previously been taken to

be a quantum superposition was, instead, a “mixed state,” where each individual quantum en-

tity must have been in a definite state before measurement. This struck at the core of quantum

mechanics, including the uncertainty principle and the probabilistic Copenhagen interpretation of

the wavefunction. The EPR “paradox” regarded the reality of quantum superposition prior to

measurement, and so seemed unresolvable. The debate remained a rather philosophical one, until

John Bell, an Irish physicist and mathematician, carefully examined the implications of the EPR

paradox 30 years later, in a context which suggested that people could actually perform experi-

ments to prove the existence of quantum superposition. In this section, I am first going to describe,

rather intuitively, the EPR gedanken experiment and Bell’s contribution, and then recount the

particular test of Bell’s inequality that I performed, in an undergraduate laboratory in University

of Urbana-Champaign, using down-converted photon pairs, with supervision from quantum optics

pioneer Prof. Paul Kwiat and Chris Zeitler, a Ph.D student in Prof. Kwiat’s research group.

Loophole-free tests of Bell’s inequality have only been presented in the research literature within

the past year or so, and the field of quantum optics continues to provide key new insights.

Suppose we have an SPDC setup that produces down-converted photon pairs that fly off to detec-

tors on each of the measurement arms associate with the experiments we have described in previous

sections. At the end of Section 1.2, we established that, when using a single Type-I crystal, the

down-converted photons must have the same polarization as one another (and that polarization

must be perpendicular to that of the pump beam). While the down-converted photons produced
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in that way are, in an important sense, entangled, they are not polarization entangled, in that

the polarization part of their two-body wavefunction may be written in factorable form. So, in

order to create polarization-entangled states, for this section we will instead use a double Type-I

BBO crystal, a geometry invented by Prof. Kwiat and his collaborators. This involves placing two

(thin) Type-I BBO crystals into optical contact, oriented such that their optical axes are rotated

by 90◦ with respect to each other, and by by 45◦ with respect to the polarization of the pump

beam. In this case, the pump beam may be considered a superposition of |H〉 and |V 〉 states, and

one crystal holds the possibility of converting horizontally polarized pump photons into vertically

polarized signal and idler photons, while the other crystal can convert vertically polarized pump

photons into horizontally polarized output photons. So long as the thickness of the crystal is small

compared to the coherence length, the downconverted photons are produced in a superposition:

|φ〉 = 1√
2

(|H,H〉+ |V, V 〉), which cannot be factored into separate states corresponding to the

signal and idler photons. In other words, it no longer makes sense to speak of these two photons

as being in separable polarization states: their polarization degrees of freedom are said to be en-

tangled, and the polarizations of the down-converted photon pairs are superpositions of |H〉 and

|V 〉 states before measurement, or at least, this is what the Copenhagen interpretation implies.

Moreover, the SPDC process described at the end of Section 1.2 ensures that the polarizations

of these photon pairs are correlated (always the same), and that must remain true regardless of

which measurement basis we use in our experiments, e.g., the HV basis or the ±45 basis (a point

which becomes central in Section 1.6.2). This is a distinctly non-classical prediction, and so we

have created an interesting system for examining the questions raised by the EPR paper.

Suppose we place a polarizer in front of each detector. If both polarizers are set in the vertical

direction, then it is still possible to have coincidence counts at the two detectors. The same would

hold true if both polarizers were horizontal. However, if I change one of them to horizontal direc-

tion, there should no longer be coincidence counts. Again, as described at the end of Sect. 1.2,

the SPDC process was constrained, by conservation of momentum, in a way that requires both of

the down-converted photons to have the same polarization. Here’s a key point: measurement of

polarization of one of the photons will reveal, instantly, the polarization state of the other, regard-

less of how far our detectors are from the source (and therefore how far they are from each other).
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In the Copenhagen interpretation, measurement effectively “collapses” the wavefunction into the

measured result, but according to any interpretation of quantum mechanics we cannot describe ei-

ther photon as being in a particular polarization state before measurement. Thus, the information

of the collapsing of polarization state of one, measured photon somehow travels instantly to the

other photon and makes it collapse. For Einstein, this seemed a clear violation of the theory of

Special Relativity, which insists that all information must travel at speeds less than or equal to the

speed of light in vacuum. Therefore, he concluded that quantum superposition was an illusion, and

that prior to measurement each of the photons must have a definite polarization state. According

to this alternative to the quantum theory and the intrinsic indeterminacy it contains, the EPR

paper suggested that it is only our lack of detailed experimental information about the system that

leads us to the (errant, to their view) notion of quantum superposition, when the ensemble of pho-

tons sampled over extended data collection would be more appropriately described as containing

a mixture of well-defined states. It’s similar to the situation of traveling with one glove from a

pair, sealed inside a suitcase. If I open the suitcase and find that it is right-handed, I immediately

figure out that the other one, which I left at home, is left-handed. From Einstein’s point of view,

the glove in my suitcase has always been right-handed. It is never truly in a superposition state of

“handiness.”

All of these arguments from Einstein and his colleagues are very intriguing, but for many years

it appeared that there could hardly be any way to test it. So, it came as a huge surprise to the

scientific community when, in 1964, John Bell proposed a gedanken experiment of his own, which

established that such a test should be, in principle, possible. Actual experimental implementations

of these tests took much longer to achieve, with the most compelling, “loophole-free” versions only

reported quite recently. So, rather than describing Bell’s original version, I will translate the prob-

lem into language appropriate to our quantum optics experiments.

Instead of rotating the polarizers in front of our detectors into either a horizontal or vertical posi-

tion, we can rotate one of them to some random direction and see what can happen to our measured

results. Suppose that, as a preliminary, we begin with both polarizers aligned, so as to maximize

coincidence counts, to some level we’ll call a. We may consider this to be, say, the horizontal di-
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rection, marked as 0◦ rotation. Next, let’s rotate one of the polarizers, A, to 30◦, leaving the other

one, B, at 0◦. By the Law of Malus, which amounts to projection of the field onto the analyzer

axis, the coincidence count should fall to a ∗ cos230◦ = 3a/4, implying that there are a/4 photon

pairs being blocked by the polarizer. We denote this as follows:

N(30, 0) =
1

4
a (1.38)

If I rotate A back to 0◦ and rotate B to -30◦, the coincidence count is again a ∗ cos2(−30◦) = 3a/4,

and so there are, again, a/4 photon pairs being blocked by the polarizer. We denote this result as:

N(0,−30) =
1

4
a (1.39)

Suppose now I rotate polarizer A to +30◦ and polarizer B to -30◦. If Einstein’s view is correct,

then number of photon pairs blocked by the polarizers should now either be equal to the sum of

N(30, 0) and N(0,−30), or it could be something less than that. In other words, there could be

some overlap between the two sets of photon pairs that are blocked by the two polarizers. We can

denote this by the inequality 1.39, which is, in essence, the Bell’s inequality:

N(−30, 30) ≤ N(30, 0) +N(0,−30) (1.40)

Quantum mechanics violates this prediction, arguing instead that before a measurement is per-

formed, individual photons are in a true superpostion of polarization states, for which there is no

predetermined measurement basis. The point of that final clause is that, according to quantum

mechanics we expect the (-30,30) case to be equivalent to one where the first polarizer is at 0

degrees and the other one at 60 degrees, so N(−30, 30) = 1 − cos2(60◦) = 3/4, which is larger

than 1/2 calculated as the limiting value allowed if Einstein’s view were correct. In other words,

we have a testable situation which can, potentially, whether true superposition exists or not before

measurement. (As will be shown by our experimental results, it does.)

1.6.2 The CHSH inequality

Are there pre-existing “results” associated with superposition states before measure-
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ment?

In 1969, Clause, Horne, Shimony and Holt published a paper and proposed a variation of the

Bell’s inequality, the CHSH inequality, designed to be more experiment-friendly. Below, the CHSH

inequality is re-derived, to facilitate later discussions of our experiment. By showing that the su-

perposition state has the same mathematical form when we switch the measurement basis, we can

prove the idea that a pre-existing measurement basis does not exist.

At the start of Section 1.6.1, we argued that would could produce a pair of polarization-correlated

photons in “Bell’s state,” which is shown below:

|ψEPR〉 =
1√
2

(|H〉s|H〉i + |V 〉s|V 〉i) (1.41)

Here, subscripts have been explicitly added to identify the signal and idler photons.

Next, let us switch to a different measurement basis by rotating the H and V basis by an angle

a. The transformation is shown below.

|Ha〉 = sin(a)|H〉+ cos(a)|V 〉

|Va〉 = cos(a)|H〉 − sin(a)|V 〉
(1.42)

If we substitute equation 1.41 into equation 1.40, after a bit of manipulation we can get:

|ψEPR〉 =
1√
2

(|Ha〉s|Ha〉i + |Va〉s|Va〉i) (1.43)

which has the same mathematical form as equation 1.40. Thus, the probability for measuring the

system in state |Ha〉s|Ha〉i is the same as |H〉s|H〉i, showing that there is no difference regarding

which specific measurement basis we choose. As a result, there is no pre-existing measurement

basis for quantum mechanical superposition states. That would not be the case for a classical

mixed state of the sort the EPR paper promoted.

Quantitative metrics entering the CHSH inequality

Einstein insisted that each individual particle is in a definite state before the measurement, and

that it is only our lack of knowledge of some hidden variable of the system that gives us the illusion

that the system is in a superposition state. According to Einstein’s view, the measurement results

for one of the detectors can only be determined by the settings of the detector and the local hidden
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variable, λ. In our experiment, we assign the polarizers the role of detectors (absorbers), and the

settings of these detectors are simply the orientations of the polarizers. The hidden variable is

more or less a metaphysical quantity: it affects the outcome of measurements of the entangled

pairs of photons, and it varies according to unknown physics laws.[14] Essentially, λ must act as a

randomizing variable, leading to the apparent indeterminacy observed in experiment, and in order

to lead to a more quantitative discussion, we assign values ±1 to each of our observable outcomes,

at each detector, and imagine that λ also takes on values of ±1, distributing the measured values

according to a probability ρ(λ), where normalization dictates:∫
ρ(λ)dλ = 1 (1.44)

The result of one single measurement of the polarizer A is denoted by A(λ, a), and B(λ, b) for

detector B. A type of correlation function can then be constructed, using the products of the

outcomes – a bit along the lines of g
(2)
B,B′(0), but instead of averaging a product of intensities, which

can take on any value, and then normalizing the function, we simply examine the statistical average

of the product of A(λ, a) and B(λ, b):

E(a, b) =

∫
A(λ, a)B(λ, b)ρ(λ)dλ (1.45)

As we will see, the range of the correlations will differ, depending upon whether we have a quantum

superposition or an EPR mixture.

First, though, we need a few more definitions in order to derive the CHSH inequality. Let φA

and φB represent the settings of the polarizers. If, for example, we require that the two polarizers

are either in state |Ha〉 or in state |Va〉, we might assign |Ha〉 the value -1 and |Va〉 the value +1.

The probability of a coincidence detection between detectors A and B is normally denoted in terms

of projections onto the basis states corresponding to the polarizer settings:

PφAφB (a, b) = |〈φA,a|〈φB,b|ψEPR〉|2 (1.46)

However, using our newly defined numerical quantities associated with the polarizer settings, φA

and φB, along with the measurement quantities A(λ, a) and B(λ, b), we can re-write the probability

of the coincidence detection between detector A and B as follows:

PφAφB (a, b) =

∫
1 + φAA(λ, a)

2

1 + φBB(λ, b)

2
ρ(λ)dλ (1.47)
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For two polarizers, there are four possible combinations of settings, if we require that the two

polarizers are either in state |Ha〉 or in state |Va〉. For each of those combinations, we can explicitly

write down the probability of a coincidence detection between detector A and B:

PV V (a, b) =

∫
1 +A(λ, a)

2

1 +B(λ, b)

2
ρ(λ)dλ

PV H(a, b) =

∫
1 +A(λ, a)

2

1−B(λ, b)

2
ρ(λ)dλ

PHV (a, b) =

∫
1−A(λ, a)

2

1 +B(λ, b)

2
ρ(λ)dλ

PHH(a, b) =

∫
1−A(λ, a)

2

1−B(λ, b)

2
ρ(λ)dλ

(1.48)

As a result, we gain the following relationship between the correlation function and the probability

of a coincidence detection between detector A and B.

E(a, b) = PV V (a, b) + PHH(a, b)− PV H(a, b)− PHV (a, b) (1.49)

At this point, we see that the correlation function varies from +1 when the polarizations are always

the same to -1 when the polarizations always differ.

Finally, if we expand our detector settings options, and let a, a′, b and b′ be four different

detector settings, we characterize the polarization correlation in a single pair of particles via a

parity function[10]:

s ≡ A(λ, a)B(λ, b)−A(λ, a)B(λ, b′) +A(λ, a′)B(λ, b) +A(λ, a′)B(λ, b′)

= A(λ, a)[B(λ, b)−B(λ, b′)] +A(λ, a′)[B(λ, b) +B(λ, b′)]
(1.50)

Note that the parity function, s, can only be ±2.

Let S denote the expectation value of s. Because s can only be ±2, it is clear that

|S| ≤ 2 (1.51)

This is the famous CHSH inequality we were looking for!

Critically, note that we can also write:

S(a, a′, b, b′) =

∫
s(λ, a, a′, b, b′)ρ(λ)dλ

= E(a, b)− E(a, b′) + E(a′, b) + E(a′, b′)

(1.52)
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Quantum violation of the CHSH inequality

Recall that, in terms of projections onto the basis states corresponding to the polarizer settings,

the probability of coincidence detection of detector A and B was written in Equation 1.45 as the

following:

PφAφB (a, b) = |〈φA,a|〈φB,b|ψEPR〉|2 (1.53)

For starters, let |φA〉 = |Va〉 and |φB〉 = |Vb〉, and then use equation 1.40 and 1.41, to get:

PV V (a, b) =
cos2(a)cos2(b)

2
+
cos2(a)cos2(b)

2
+

1

4
sin(2a)sin(2b) =

1

2
cos2(b− a) (1.54)

Similar calculation can be performed with other pairs of polarizer states. If we choose the polarizer

angles to be a = −45◦, a′ = 0, b = −22.5◦ and b′ = 22.5◦, then by using equation 1.53, equation

1.48 and equation 1.50, we can get [10]

S(QM) = 2
√

2 (1.55)

...a result which is specific to the Bell state shown in equation 1.40.

1.6.3 Experimental setup and data collection for testing Local Realism

The experimental setup for the Bell’s test is shown in Figure 1.14. The alignment of the system is

similar to that described in previous sections. Once again, all wave plates need to be characterized

before the experiments. For procedures on initializing their rotations, please refer to Section 1.5

for detailed instructions.

Producing Bell’s state

The output of the GTP is in |H〉 state. Turn the half-wave plate to 45 degrees to rotate the po-

larization to the state 1√
2
(|H〉 + eiφ|V 〉). As a result, the output from the crystal is in the state

1√
2
(|HH〉+eiφ|V V 〉). Try to balance the counts for |HH〉 and |V V 〉 and eliminate |HV 〉 and |V H〉

counts by slightly rotating the half-wave plate, as preliminary initializations of the orientation may

not be sufficient. Then, in order to eliminate eiφ, we switch the measurement basis from H and V to
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Figure 1.14: Bell’s test experimental setup

+45 and -45. Try to minimize |+45,−45〉 and |−45,+45〉 counts by tilting the quarter-wave plate.

Tilting the quarter-wave plate can introduce a phase factor to the state to eliminate the eiφ factor.

Also, try to balance | + 45,+45〉 and | − 45,−45〉 counts by slightly rotating the half-wave plate.

After these are done, switch back to H and V basis and check to see if the previous results still

holds. Perform these alignments over and over until the requirements for both the H,V basis and

+45,-45 basis are met simultaneously. We now have a Bell’s state, which is shown in the equation

underneath.

|ψBell〉 =
1√
2

(|HH〉+ |V V 〉) (1.56)

Measurement of the correlation function E and parity expectation S

The definitions of the correlation function E and parity expectation S provided in the previous

subsection are convenient for theoretical understanding and deductions. However, to move forward,

we need to re-write them in terms of quantities that are directly measurable in the lab. First, we
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write the probability of a coincidence detection for detectors A and B when they are in Va and Vb

states as follows:[10]

PV V (a, b) =
N(a, b)

N(a, b) +N(a⊥, b⊥) +N(a, b⊥) +N(a⊥, b)
(1.57)

As a result, the the correlation function may be re-written as

E(a, b) =
N(a, b) +N(a⊥, b⊥)−N(a, b⊥)−N(a⊥, b)

N(a, b) +N(a⊥, b⊥) +N(a, b⊥) +N(a⊥, b)
(1.58)

To determine the value of E(a,b), four kinds of measurements must be performed. As a result,

a total of 16 measurements will be carried out in the experiment, because we need four different

E(a,b) values to determine the parity expectation, S, which is still written as:

S ≡ E(a, b)− E(a, b′) + E(a′, b) + E(a′, b′) (1.59)

1.6.4 Experimental results for testing the CHSH inequality

The results of the 16 measurements are listed in Table 1.7. The calculations required for E(a,b)

are shown below in 1.59.

E(a, b) :

E(−45,−22.5) =
N(−45,−22.5) +N(45, 67.5)−N(−45, 67.5)−N(45,−22.5)

NT
= 0.6856

E(a′, b) :

E(0,−22.5) =
N(0,−22.5) +N(90, 67.5)−N(0, 67.5)−N(90,−22.5)

NT
= 0.6704

E(a′, b′) :

E(0, 22.5) =
N(0, 22.5) +N(90, 112.5)−N(0, 112.5)−N(90, 22.5)

NT
= 0.7357

E(a, b′) :

E(−45, 22.5) =
N(−45, 22.5) +N(45, 112.5)−N(−45, 112.5)−N(45, 22.5)

NT
= 0.6420

(1.60)
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Table 1.7: measurement results in ±45 basis

pairs a b AB

(a,b) -45 -22.5 2980
(a,b’) -45 22.5 600
(a,b⊥) -45 67.5 630
(a,b⊥’) -45 112.5 3150
(a’,b) 0 -22.5 2870
(a’,b’) 0 22.5 3025
(a’,b⊥) 0 67.5 615
(a’,b⊥’) 0 112.5 461
(a⊥,b) 45 -22.5 523
(a⊥,b’) 45 22.5 2905
(a⊥,b⊥) 45 67.5 3201
(a⊥,b⊥’) 45 112.5 720
(a⊥’,b) 90 -22.5 575
(a⊥’,b’) 90 22.5 496
(a⊥’,b⊥) 90 67.5 3160
(a⊥,b⊥’) 90 112.5 3260

As a final result, our experimental data yields S = E(a, b)−E(a, b′)+E(a′, b)+E(a′, b′) = 2.7319,

close to the value predicted by quantum mechanics, 2
√

2, and much different from the EPR limit

(the violation of the CHSH inequality, |S| ≤ 2, is clear).

1.6.5 Error analysis for our Parity Function result

The uncertainty of the quantity S is found by adding, in quadrature, the contributions due to

limited counting statistics associated with each independent measurement:

σs =

√√√√ 16∑
i=1

(σNi
∂S

∂Ni
)2 =

√√√√ 16∑
i=1

Ni(
∂S

∂Ni
)2. (1.61)

As
∂S

∂Ni
=
∂E(a, b)

∂Ni
− ∂E(a, b′)

∂Ni
+
∂E(a′, b)

∂Ni
+
∂E(a′, b′)

∂Ni
(1.62)

The data listed in the result table yields:

σS = 0.023 (1.63)
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So, our final, experimental result for our measured S value is 2.732±0.023. Thus, EPR’s local hidden

variable theory, which requires |S| ≤ 2, is incompatible with the observed quantum phenomena, as

my data demonstrates a 31σS violation of the CHSH inequality. These experimental results lead us

to conclude, as others have before us, that the photons do not have a definite measurement basis

before measurements; instead, they are in true superposition states.
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CHAPTER 2

EXPERIMENTAL ANALYSIS OF THE ORBITAL

ANGULAR MOMENTUM OF LIGHT

2.1 Topics regarding the Angular Momentum of Light

Light’s orbital angular momentum (OAM), and spin angular momentum (SAM), either used

separately or together, offer revolutionary opportunities. I hope that pun made you chuckle, but

it is also true! As noted in Section 1.5.1, the higher-dimensional Hilbert Space associated with

OAM allows more information to be encoded, in comparison to SAM. Indeed, record-setting data

transmission rates have been achieved by encoding information into light’s OAM, limited, in the

case of free-space transmission, only by the system étendue, which caps the accessible dimensionality

of the Hilbert Space to a finite number, D. On the other hand, in Section 1.5.1, our experiment

on quantum state measurement allowed us to extract a measurement of the SAM of the photons

produced in our SPDC setup. In that section, we also made note of the challenges associated with

reading out information encoded in higher-dimensional quantum states, explicitly pointing out that

2D − 1 distinct kinds of measurements would be required, if we restrict ourselves, as was done in

that section, to the “20 Questions” strategies required for the complete set of information required

to uniquely specify the quantum state.

In the early portions of this chapter, a (slightly less complete version of) state measurement

is massively parallelized through the use of transformation optics provided to Illinois Wesleyan

University by Martin Lavery and Miles Padgett of Glasgow University, which allow for ultra-fast

readout of OAM information. We are interested in investigating the robustness of this method,

and the degree to which aberration correction methods can be of use. Section 2.2 provides a

theoretical background on OAM, and ends by comparing the results of simulations to the results

we have actually obtained in the lab. – In order to understand the experimental steps required to

achieve these results, Section 2.3 takes a step back, to present our basic methods for generation

of OAM modes, while in Section 2.4 we discuss both the need for further optimization and the

methods we have used for aberration correction. The OAM portion of the thesis is completed by
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Section 2.5, which introduces the use of Martin Lavery’s transformation optics for rapid readout of

a Laguerre-Gaussian beam, a beam mode that carries orbital angular momentum.

This study of beams containing OAM complements our applications of SAM in (holographic)

optical traps, where readout of optically induced torques is essential to a host of applications. For

such research we have fabricated smaller-than-normal birefringent vaterite (CaCO3) microspheres.

So, in Section 1.6 we describe our synthesis of vaterite crystals. In the final section of this chapter,

Section 1.7, we describe an immediate application of the mechanical transfer of angular momentum

to our vaterite samples (for contact-free mechanotransduction of biological cells), and also point

towards our most aspirational dreams for their use.

For this work, the transformation optics and the corresponding alignment procedures were

provided by Dr. Martin Lavery. The alignment of the setup for generating LG beams is something

that I have done independently at IWU, with feedback from Dr. Lavery. I also relied heavily upon

Dr. Lavery’s written works for the theoretical background, and so this thesis owes a heavy debt to

those works. The IDL program for generating Laguerre-Gaussian beam was provided by Dr. Gabe

Spalding and his students in IWU, and are provided in this chapter as a resource to future students.

I have improved the core program by adding a circular aperture to the phase profile, using code

which is also provided in this chapter. In addition, I added in the use of the adaptive-additive

method for aberration correction, which I have not found applied to this kind of system in any of

the literature I have encountered. In section 2.6, we are trying to study transference of mechanical

angular momentum, from light, to vaterite crystals that I have synthesized in IWU. The recipe for

vaterite synthesis that I used was provided by Yoshi Arita of St Andrews University, though by

systematic variation of parameters I tried to find my own optimization.
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2.2 The Orbital Angular Momentum of light

2.2.1 Introduction to OAM

The angular momentum of light consists of two parts: (a) spin angular momentum, associated with

the (intrinsic) polarization state of the photons, and (b) the orbital angular momentum, associated

with helicity of a wavefront, as highlighted by the groundbreaking work of Les Allen et al. This year

marks the 25th anniversary of that landmark paper in Physical Review A, which led to widespread

recognition of the orbital angular momentum content of Laguerre-Gaussian (LG) modes.[1]

The pace of innovation based upon the use of LG beams only seems to have increased since then.

One of the more widely publicized applications is a method to circumvent (without violating) the

(apparent) limitations of the uncertainty principle for super-resolution imaging, via “Stimulated

Emission Depletion” (STED) microscopy, which earned a 2014 Nobel Prize.[16] However, most

applications have nothing to do with engineering the selection rules for atomic transitions. At the

moment, a dominant area of interest has to do with increasing the information density for commu-

nications. Just eight months ago, IEEE (“The world’s largest technical professional organization

dedicated to advancing technology for the benefit of humanty”) posted the following Tech Alert :

Twisted Light Could Dramatically Boost Data Rates

We’re running out of available spectrum for transmitting signals. But we

may soon have a way to cut the same pie into a seemingly endless number of

slices. A property of light called orbital angular momentum (OAM) allows

overlapping beams with different values to behave as if they can’t “see”

each other. Each beam is distinct, and none are intrinsically capable of

interacting with the others. So multiple data streams can be sent using a

single frequency – all without cross talk.[27]
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2.2.2 Beyond the fundamental Gaussian mode

In this section I will give a theoretical introduction to the Laguerre-Gaussian laser beam modes

and their associated “topological charge,” and will then briefly introduce a setup for generating

LG beams in our lab. The LG modes form a basis set of independent solutions to the paraxial

approximation of the Maxwell wave equation in cylindrical coordinates. While the study of laser

modes has been an important subject since the invention of laser, introductory texts invariably

concentrate instead upon the Hermite-Gaussian modes, which constitute an alternative basis set

appropriate to Cartesian coordinates [24]. The following mathematical description largely follows

what is provided in the paper “Gaussian, Hermite-Gaussian, and Laguerre-Gaussian beams: A

primer” by Francesco Pampaloni and Joerg Enderlein, and the book, “Photonics” by Vittorio De-

giorgio and Ilaria Cristiani.

For monochromatic waves, Maxwell’s wave equation for the electric field may be written in

“static” form (eliminating explicit mention of any time dependence), as shown in equation (2.1).

[24] [
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
+ k2

]
E(x, y, z) = 0 (2.1)

As our interest is in propagating beams, we can, without loss of generality, define the z-axis to be

the direction of propagation (i.e., the optic axis). A general solution to this equation may then

be written, via Fourier synthesis over spatial frequencies, as a superposition of plane waves with

different amplitudes traveling at different angles with respect to the optic axis, as shown below:

[24]

E =

∫ ∫
dkxdky
(2π)2

A(kx, ky)e
ikxx+ikyy+i(

√
k2−k2x−k2y)z (2.2)

In the paraxial approximation, we assume that the k vector components along the x and y directions

contribute only a small part to the total k vector (i.e. kx,y < k). Within this approximation, the

binomial approximation allows us to re-write equation 2.2 as: [24]

E =

∫ ∫
kx,y<k

dkxdky
(2π)2

A(kx, ky)e
ikxx+ikyy+ikz−i

(
k2x+k

2
y

2k

)
z

(2.3)

Furthermore, the paraxial approximation implies a windowing of the transverse spatial frequencies.

The standard way to enforce this is to assume that
∂A(kx,ky)

∂kx
and kxA(kx, ky) only differ by a

51



constant factor, which we can call w0, and that the same condition applies to the y direction. As

a result, the amplitude term in the Fourier synthesis may be written as a Gaussian:

A(kx, ky) ∝ e−
w2
0
4

(k2x+k2y) (2.4)

This form is particularly useful because the Fourier Transform of a Gaussian is itself a Gaussian.

So, e.g., given that the action of an optical lens is to output, at its front focal plane, the Fourier

Transform of the input provided at its back focal plane, this implies that if the input beam is

Gaussian, then the output will be Gaussian as well. This fundamental laser mode can be expressed

in terms of the intensity of the electric field, in equation 2.5.

E =

∫ ∫
kx,y<k

dkxdky
(2π)2

e
ikxx+ikyy+ikz−i

(
k2x+k

2
y

2k

)
z−w

2
0
4

(k2x+k2y)
(2.5)

Solving this integral requires the following mathematical rule:[24]∫ +∞

−∞

dx

2π
eiax−

b2

2
x2 =

1√
2πb2

e−
a2

2b2 (2.6)

Applying this rule to the integral in equation 2.5, we can get equation 2.6. [9]

E0 =
1

w2
0 + 2iz/k

e
ikz− x2+y2

w2
0+2iz/k (2.7)

Now we introduce several physical quantities to further simplify the expression. First, the Rayleigh

length (or “Rayleigh range”), which is the distance from the focus of a beam to the place where

the beam area doubles. The expression for Rayleigh length zR is shown below.[24] [9]

zR =
kw2

0

2
=
πw2

0

λ
(2.8)

(Note that this implies that the smaller the beam waist, w0, the more rapidly the beam spreads

or, conversely, that the rules of Fourier synthesis mandate that construction of a small spot size

requires rays converging from high angles). Further compaction of our expressions are possible if

we highlight the cylindrical symmetry of the Gaussian via use of a transverse radial coordinate,

ρ2 = x2 + y2, and introduce a dimensionless propagation coordinate, ζ, where [9]

ζ =
z

zR
(2.9)

After some algebra, the expression in 2.7 is transformed into:

E0 =
1

w0

√
1 + ζ2

e
ikz− 1−iζ

w2
0(1+ζ

2)
ρ2−iarctan(ζ)

(2.10)
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The field, E0, described in 2.10 is called the fundamental Gaussian mode, which denotes both the

fact that the beam it describes does have a Gaussian intensity profile along the z axis and the fact

that there higher-order spatial modes are also possible, as described in the next subsection.[24]

Again, the above derivation follows the presentation in the paper “Gaussian, Hermite-Gaussian,

and Laguerre-Gaussian beams: A primer” by Francesco Pampaloni and Joerg Enderlein, and the

book, “Photonics” by Vittorio Degiorgio and Ilaria Cristiani. Interested readers may find these

resources helpful for further understanding and discussions.

2.2.3 Laguerre-Gaussian modes

The Laguerre-Gaussian modes are an orthonormal family of solutions to the paraxial wave equation.

They all have rotational symmetry around the optical axis. A key step in deriving the expression

for LG beams comes from noting the periodicity of the azimuthal angle, φ, which results in the

following constraint: [5] [24]

kx ± iky =
√
k2
x + k2

ye
iφ (2.11)

Armed with this knowledge, we test, by substitution into equation 2.3, a trial solution where the

amplitude A(x, y) is proportional to (kx + iky)
m(kx − iky)m+n, wher m and n are integer indices:

[24]

ELm,n ∝
∫ ∫

kx,y<k

dkxdky
(2π)2

(kx + iky)
m(kx − iky)m+neikxx+ikyy+ikz−w

2
0
4

(1+iζ)(k2x+k2y) (2.12)

To simplify this expression, we introduce [24]

S(kx, ky, x, y, z) ≡ ikxx+ ikyy + ikz − w2
0

4
(1 + iζ)(k2

x + k2
y) (2.13)

and note that [24]

ikxe
S =

∂eS

∂x
(2.14)

As a result, equation 2.12 can be written in a compact form that relates this field to the fundamental

Gaussian mode:[24]

ELm,n ∝ (∂x + i∂y)
m(∂x − i∂y)m+nE0 (2.15)

53



Further simplifications are possible via the following expressions. [24]

ω ≡ x+ iy

ω ≡ x− iy

∂ω =
1

2
(∂x + i∂y)

∂ω =
1

2
(∂x − i∂y)

ρ2 = ωω

(2.16)

Equation 2.15 then simplifies into the following form:

ELm,n ∝ ∂mω ∂m+n
ω E0 (2.17)

At this point, we need to recall a standard function which arises in multiple contexts, namely, the

Laguerre function: [24]

Lnm(r) ≡ err−n

m!

dm

drm
(e−rrm+n) (2.18)

Thus armed, it is quick work to demonstrate that the differentiation in equation 2.17 has solutions

that contain the Laguerre function as well as the fundamental Gaussian mode: [24]

∂mω ∂
m+n
ω E0 = (−ω)−m−nm!

[
ωω

w2
0(1 + iζ)

]n [ ω

w2
0(1 + iζ)

]m
Lnm

[
ωω

w2
0(1 + iζ)

]
E0 (2.19)

Thus, our trial solutions are valid, and may now be written in a general form. [24]

ψ`,p(r, φ) = C`p

(√
2r

ω

) |`|
2

L|`|p

(
2r2

ω2

)
× e

−r2
ω2 ei`φ (2.20)

This set of solutions are termed Laguerre-Gaussian modes, as the Laguerre polynomial appears in

the equation, now denoted by L
|`|
p

(
2r2

ω2

)
, where our integer indices are now ` and p, alongside a

Gaussian profile which ensures that these paraxial solutions decays we move off of the optic axis.

The final term, involving the azimuthal angle, was mandated by the periodic nature of that angle.

The physical origin of the OAM content of LG beams lies within this phase term, which gives rise

to a helicity of the wavefront for any solution where ` is non-zero, as shown in Figure 2.1.

The integer index ` is commonly referred to as the “topological charge” of the beam, as it determines

the number of intertwined helices in the beam. In working with analogous acoustic beams, Prof.
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Figure 2.1: Laguerre-Gaussian beam with helical wavefront. This picture is taken from
page 26 of Martin Lavery’s thesis, “Measurement of Light’s Angular Momentum.” [21]

Spalding and his co-authors provided the first direct, mechanical evidence of the OAM-to-energy

ratio of LG beams: [11]
〈Lz〉
〈U〉

=
1

ωB
` (2.21)

In other words, the OAM content of the beam is simply proportional to the topological charge.

It is important to reiterate that the allowed values of ` are theoretically unbounded. Thus,

whereas there are only two kinds of spin angular momentum associated with photons, associated

with left or right circularly polarization, no such constraint applies to the orbital angular momen-

tum of light: there is no theoretical limit to the number of spirals in a wavelength of the beam,

providing promise for greatly increasing the information capacity for optical communication (which

is the backbone of the internet). Note that the above derivation for the mathematical form of the

LG beam largely follows the paper “Gaussian, Hermite-Gaussian, and Laguerre-Gaussian beams:

A primer” by Francesco Pampaloni and Joerg Enderlein,

2.2.4 Experimental generation of Laguerre-Gaussian beams

Here in Dr. Spalding’s optics lab in Illinois Wesleyan University, we are using a laser source whose

output is a very good approximation to the fundamental Gaussian mode. Figure 2.2 is a rather

simplified schematic representing how this beam is processed, most significantly by a Spatial Light

Modulator (SLM), so as to generate Laguerre-Gaussian beams.
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In the setup, we use a Coherent Model Verdi-5 laser operating at 532 nm as our laser source.

While the maximum power available from this source is 5.5 watts, we typically operate near the

lasing threshold, which requires a minimum power of 10 mW. Further reduction of the output is

achieved via use of the half-wave plate and the polarizing beam splitter, which in combination allow

us to continuously vary the power in the transmitted beam. In order to increase the efficiency of

the Spatial Light Modulator, we must expand the area of the laser beam so the active area of the

SLM is illuminated completely and (more or less) uniformly. The beam expander consists of a

pair of plano-convex lenses separated by the sum of their focal lengths. This Keplerian telescope

expands the laser beam by a factor equal to the ratio of the focal lengths of the two lenses. The

absolute values of those focal lengths is not critical, although as the focal lengths become very long

the system becomes more susceptible to convection currents in the room as well as any limitations

associated with the (quite good) intrinsic pointing stability of the Verdi-5 laser. At the other

extreme, if the focal lengths become quite short, errors in the relative placement of the two lenses

may require the use of a shear-plate collimator to ensure that the output is neither converging nor

diverging. In order to reduce aberrations, whenever the beam is passing through lenses we take

care to align the beam parallel to the optical table and along a line of holes, as was described in

Section 1.3.2 (“Walking the beam”). Those steering mirrors have been omitted from the schematic

shown here, for simplicity.

Figure 2.2: Experimental setup for generating Laguerre-Gaussian beams
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We use an optically addressed Hamamatsu SLM with 768 x 768 pixels and 256 linear phase

levels, to perform phase-only modulation to the incoming beam. The phase profile imparted by

the SLM is programmably controllable, as described below. The modified beam reflected off of the

SLM and is then detected at a CMOS camera.

We have made use of a LabVIEW program provided by Dr. Martin Lavery to simulate the LG

beams with different topological charges. [19] Figure 2.3 compares our simulated target intensity

profiles to those of the beams we were actually able to generate via our programs described in

Section 2.3, subsequent to the aberration corrections described in Section 2.4. For reference, the

degree of agreement, while not perfect, was cause for considerable celebration in our lab.

Figure 2.3: Intensity profiles for LG beams generated using Lavery’s simulation (top), and
results actually produced in our experiment (bottom)

In the first two columns of Figure 2.3, each of which corresponds to a single mode, note that

the result is a “donut beam.” That fact that there is a null along the optic axis is a consequence of

the azimuthal phase profile, ei`φ, where φ is, again, the angle of rotation about the optic axis. This

then implies that a multiple of 2π phase is accumulated in any closed path integral containing the

optic axis. Thus, the optic axis itself corresponds to a phase singularity. The language of Fourier
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Synthesis provides a physical understanding of the result: the fact that rays with all possible

phases meet in the middle results in perfect destructive interference. Because of the high degree

of symmetry involved, an LG beam with nonzero ` should provide a particularly “good dark” on

axis (which for some applications, such as cold atom trapping, is a truly essential feature). As we

move to higher `-values, the phase gradient becomes steeper and so, as a consequence, the distance

one must move off axis before reaching a point where constructive interference results is increased.

Hence, in comparing the first two columns of Figure 2.3, the larger ` is, the larger the radius of the

donut beam generated.

In the final two columns of Figure 2.3, note that the intensity profile reflects interference between

two distinct modes, each characterized by their own value of `. The resulting number of azimuthal

maxima in the intensity is given by the difference in the `-values of these modes. More importantly,

the fact that there is interference does not, in any way, negate the claim that these are independent

modes, which hold the potential to transmit information without crosstalk: the beam reaching

the camera remains decomposable into its constituent modes (e.g., via the transformation optics

described in Section 2.5.

Before we move onto our discussion of transformation optics, however, there are a great many

details to discuss regarding the experimental work required to achieve the quality of outputs illus-

trated in Figure 2.3 above. The following section begins that discussion by considering, in greater

detail, the phase profiles to be programmed into the SLM.
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Figure 2.4: IDL interface, default view

2.3 Programming a Spatial Light Modulator: a primer

2.3.1 A very brief introduction to IDL programming

Figure 2.4 introduces our programming language of choice, IDL, which is short for Interactive

Data Language. It is an array-oriented data analysis and visualization environment, available for

Windows, MacOS and UNIX, and there is also an open-source version, GDL, which is capable of

running all of the code described below.[15] Our libraries can be used for particle tracking image
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analysis (useful for our work involving optical traps) and, most critically for this chapter, program-

ming tailor-made phase profiles onto our Spatial Light Modulator. In principle, any programming

language could be used for these purposes. However, libraries included in this thesis, all written in

IDL, make it convenient to generate LG beams and to perform aberration correction.

In Figure 2.4, at upper left are tabs for the file explorer, the variable table, and the debugging

interface. The upper right has the compiled programs shown in an editor, from which programs can

be directly edited and re-compiled. The lower right shows the command history. If there is a very

long and complicated command you have used before, you can search for it in the command history

and double-click it. On the lower left part we have the console panel, which shows the status of

recent commands input into IDL, or the progress of the program compiling or running. At last, at

the very bottom of the page we have the command line, which enable us to use IDL interactively.

That is, unlike C++ and Java, IDL operates as an interpreter (as opposed to a compiler), which

means that each statement we enter into the command line (e.g., to generate an LG mode) is im-

mediately translated into action. At the same time, we do have the ability to create (and compile)

scripts which define the tailored functions and procedures specific to our work. Those form the

libraries included in this thesis.

2.3.2 Creating a window for display

The computer cannot recognize the difference between the SLM and a standard monitor of reso-

lution 1024x768 pixels (even though only the central 768x768 pixels of that “virtual monitor” are

active elements on the SLM itself). In practice, we program the SLM as if we were attempting to

display 8-bit gray scale images on a second monitor. The gray scale levels of 0 − 255 translate,

approximately linearly, into the 0− 2π phase shifts applied by the SLM. Therefore, as a prequel to

encoding any phase profile on the SLM, we need to tell the computer to open up an appropriately

located window on (what it believes is) the second display monitor. The code for generating the

window is shown below.

window, 0, xsize = 768, ysize = 768, xpos = 1151, ypos = −30 (2.22)
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Type this into the command line, and then a window will show up on the second screen in the right

location. Because keywords in IDL may always be truncated to the shortest unique entry, the same

action results from entering:

window, 0, xs = 768, ys = 768, xp = 1151, yp = −30 (2.23)

As to the particular position coordinates used, the computer believes that we are using dual dis-

plays, arranged side by side. In the computer settings we adjust the resolution of both displays

to 1024x768 pixels. To confirm that these window coordinates were appropriate, we unplug the

SLM and instead connected, temporarily, a real second monitor. In this way, we found that the

coordinates (1151, -30), will center the window while also moving with window header bar off screen.

2.3.3 Generating LG beams using LG.pro

A spiral phase profile may be added to the SLM by calling the function contained within the

script LG.pro, written by Dr. Gabe Spalding. To inspect the contents of the script, type at the

command line “.compile LG.pro” and hit enter, and this program will show up in the editor. In

order to actually apply the spiral phase profile to the window created above, we first load the phase

profile into an array, by entering, at the command line, LGmode = lg(`, p), where LGmode can be

substituted with whatever name you wish to assign to the array returned by the function lg. There

are several optional keywords that can be applied, as noted in the documentation included with in

the LG.pro code, but the only required arguments of the function lg are `, which is the topological

charge of the beam, and p, which is the radial mode index, which determines the number of radial

nodes in the resulting intensity distribution. For all of the beams described in this thesis, we kept

p equal to zero (though non-zero p modes have been used in our lab to synthesize “bottle beams”).

In addition to the spiral phase required by the ei`φ term associated with OAM, this function adds

(modulo 2π) a linear phase profile. This added “blazing” shifts the desired Laguerre-Gaussian mode

away from the zeroth-order un-diffracted beam, and as a side benefit separates any components

associated with different ` values into the different diffraction orders, allowing us to select the one we

desire via spatial filtering (typically done in the Fourier plane of the SLM). The blazing parameters
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may be adjusted via the optional keyword “blaze,” which sets the number of 2π blazings across the

field, as follows:

mode = lg(10, 0, blaze = 100) (2.24)

where higher values of blaze increase the linear phase gradient. For example, Figures 2.5 and 2.6

demonstrate the difference in the separation of the diffracted orders when the blazing changes from

120 to 150.

Figure 2.5: Multi-order LG beams returned by the lg function with ` = 10 and blaze = 120
(the default value)

Figure 2.6: Multi-order LG beams returned by the lg function with ` = 10 and blaze =
150. Note that the separations between components associated with different ` values
is increased with this value of blaze, compared to the smaller value associated with the
previous figure.

While our experiments do make use of the blaze keyword, it is instructional to remove the blazing,

as follows:

mode = lg(l, g, /noblaze), (2.25)
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This yields, for ` = 1, and for ` = 5, the phase profiles shown below in Figures 2.7 and 2.8, respec-

tively.

Figure 2.7: Phase profile with no blazing and ` = 1. Assuming appropriate calibration, a
grey scale value of 0 nominally corresponds to zero phase shift, while a grey scale value of
255 roughly yields a phase shift of 2π. Thus, because of the equivalency of 0 and 2π phase
for a cyclic process, the horizontal line in the phase profile is not a discontinuity. On the
other hand, the point in the center, where all phases meet, is a singularity in phase.

Figure 2.8: Phase profile for no blazing and ` = 5. The presence of five lines indicates the
multiple of 2π phase change accumulated in any closed path integral containing the phase
singularity at the center.

It is also instructional to examine the phase profile returned when we leave in a blazing, but apply

no topological charge to the phase profile. The resulting phase profile, which is the diffractive optic

equivalent of a prism, would, ideally, simply translating the beam away from the un-diffracted,

zero-th order spot. For blaze = 10, the phase profile returned is shown in Figure 2.9. Contrast

this with the result when a linear phase gradient, of the sort shown in Figure 2.9, is added, modulo

2π, with a spiral phase profile, which yields a characteristic forked pattern, where the number of

“topological edge dislocations” introduced into the blazing is equivalent to the topological charge.

For example, Figures 2.10 and 2.11 show the results of adding blaze = 10 to the phase profiles for

` = 1 and ` = 5, respectively.
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Figure 2.9: A phase profile with ` = 0 and blaze = 10 lacks any phase singularity.

Figure 2.10: Phase profile combining ` = 1 and blaze = 10. The topological charge is
apparent from the single topological edge dislocation emanating from the phase singularity
in the center.

Figure 2.11: Phase profile for ` = 5 and blaze = 10. Careful inspection will reveal five
topological edge dislocations emanating from the phase singularity.
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2.3.4 The original code for LG.pro

1 ;+
2 ; NAME:
3 ; LG
4 ;
5 ; PURPOSE:
6 ; For c r e a t i n g an approximated , g en e r a l i z e d (p not n e c e s s a r i l y zero ! )
7 ; Laguerre−Gaussian mode out o f a fundamental Gaussian input beam −−
8 ; and , i f de s i r ed , to s h i f t i t away from the und i f f r a c t e d c en t r a l
9 ; spot o f the d i f f r a c t i v e op t i c

10 ;
11 ; CATEGORY:
12 ; Hologram/DOE Generator
13 ;
14 ; CALLING SEQUENCE:
15 ; LGmode = lg ( l , p )
16 ;
17 ; INPUTS:
18 ; l : the mu l t ip l e o f 2 p i a s s o c i a t ed with t r a v e r s a l about the cente r
19 ; ( ‘ az imuthal number ’ )
20 ;
21 ; p : the r a d i a l index f o r the LG mode ( ‘ r a d i a l number ’ )
22 ;
23 ; OPTIONAL INPUTS (KEYWORD PARAMETERS) :
24 ; b l aze : the number o f 2 p i b l a z i n g s a c r o s s the f i e l d
25 ; (we ’ ve been us ing 120)
26 ; −− t h i s i s e f f e c t i v e l y adding a prism to r e f r a c t the beam
27 ; away from the c en t r a l spot
28 ; −− i n c r e a s i n g ‘ blaze ’ i s l i k e i n c r e a s i n g the ang le o f the e x i t
29 ; f a c e o f the prism
30 ;
31 ; noblaze : i f no b l a z ing i s des i r ed , t h i s keyword must be s e t
32 ; ( s e e RESTRICTIONS below )
33 ;
34 ; rad : the rad iu s o f a c i r c u l a r d i s c on t i nu i t y
35 ; (must f i t on the DOE f o r the beam to sample )
36 ;
37 ; nb i t : p rov ide s 2ˆ nb i t l e v e l s o f phase ,
38 ; d e f au l t s e t t i n g i s 8 ( f o r Hamamatsu x8267 SLM)
39 ;
40 ; npix : number o f p i x e l s on a s ide ,
41 ; d e f au l t s e t t i n g i s 768 ( f o r Hamamatsu x8267 SLM)
42 ;
43 ; OUTPUTS:
44 ; LGmode : a npix x npix r e a l array g i v ing a s p i r a l phase p late ,
45 ; with r a d i a l phase s h i f t s added
46 ;
47 ; SIDE EFFECTS:
48 ; For l = 0 , p = 0 , t h i s c r e a t e s a b lazed d i f f r a c t i o n g ra t ing
49 ; ( the DOE equ iva l en t o f a prism )
50 ;
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51 ; REQUIRES:
52 ; Ca l i b ra t i on o f the phase l e v e l s o f the SLM used , f o r the de s i r ed
53 ; ope ra t ing cond i t i ons , in terms o f the ‘ g r ey s ca l e ’ l e v e l s used here .
54 ; An appropr ia t e look−up tab l e (LUT) would a l low the images generated
55 ; by t h i s program to be used d i r e c t l y by the SLM.
56 ;
57 ; RESTRICTIONS:
58 ; The program does not d i r e c t l y r e cogn i z e BLAZE = 0 .
59 ; This i s a consequence o f the way the keyword set func t i on works .
60 ; The workaround i s to add the argument /NOBLAZE whenever no
61 ; b l a z ing i s d e s i r ed . (Note that ‘/no ’ w i l l work as an abbrev i a t i on
62 ; f o r ‘/NOBLAZE, ’ s i n c e in gene ra l a s l a s h preced ing a keyword s e t s
63 ; i t s va lue to one , and keywords can be abbrev iated to t h e i r s h o r t e s t
64 ; unique l ength . For example , a keyword c a l l e d XSTYLE could be
65 ; abbrev iated to XST)
66 ;
67 ; Extremely l a r g e phase g rad i en t s w i l l be ‘ ‘ a l i a s ed ’ ’ due to the
68 ; d i s c r e t i z a t i o n o f the SLM ( the number o f phase l e v e l s and the s i z e
69 ; o f the p i x e l s ) .
70 ;
71 ; MODIFICATION HISTORY:
72 ; Created by Gabe Spald ing
73 ; October , 2002
74 ;−
75

76 FUNCTION lg , l , p , b l aze=blaze , noblaze=noblaze , rad=rad , nb i t=nbit , $
77 npix=npix
78

79 IF NOT keyword set ( b laze ) THEN blaze = 120
80 IF keyword set ( noblaze ) THEN blaze = 0
81 IF NOT keyword set ( rad ) THEN rad = 100
82 IF NOT keyword set ( nb i t ) THEN nbi t = 8
83 IF NOT keyword set ( npix ) THEN npix = 768
84

85 LGmode=f l t a r r ( npix , npix )
86 o f f s e t = long ( 0 . 5 ∗ npix )
87 FOR i =0,npix−1 DO BEGIN
88 FOR j =0,npix−1 DO BEGIN
89

90 ; F i r s t , c r e a t e a phase b l a z ing to s h i f t everyth ing away
91 ; from the und i f f r a c t e d spot :
92 ; (Whenever no b l a z ing i s des i r ed , add the argument / noblaze . )
93 LGmode( i , j ) = i ∗ ( 2∗ ! p i ) ∗ b laze /( npix−1)
94

95 ; Next , convert t h i s r e f r a c t e d spot to a p=0 LG mod
96 ; by c r e a t i n g a s p r i a l phase p l a t e :
97 ; the azimuthal ang le i s g iven by
98 theta = ATAN( j−o f f s e t , i−o f f s e t )+! p i
99 ; A term conta in ing the azimuthal ang le mu l t i p l i e d by

100 ; the azimuthal number c r e a t e s the s p i r a l phase p l a t e :
101 LGmode( i , j ) = LGmode( i , j ) + l ∗ theta
102

103 ; Now, f i nd how f a r the pre sent p i x e l i s from the cente r
104 ; o f the d i f f r a c t i v e o p t i c a l element (DOE)
105 rho = SQRT(( i−o f f s e t ) ˆ2 .0 + ( j−o f f s e t ) ˆ2 . 0 )
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106

107 ; Use t h i s rad iu s as a c r i t e r i a f o r adding f u r t h e r phase s h i f t s that
108 ; depend upon the r a d i a l number :
109 IF p GT 0 THEN BEGIN
110 FOR pindex = 1 , p DO BEGIN
111 ; For non−zero r a d i a l number , the DOE w i l l conta in p c i r c l e s ,
112 ; with s i z e s g iven by :
113 c i r c s i z e = pindex∗ rad
114 ; Beyond each o f those c i r c l e s , we add a p i phase s h i f t ,
115 IF rho GE c i r c s i z e THEN LGmode( i , j ) = (LGmode( i , j ) + ! p i )
116 ENDFOR
117 ENDIF
118

119 ENDFOR
120 ENDFOR
121

122 modulo = 2∗ ! p i
123 LGmode = LGmode − (modulo ∗ long (LGMode/modulo ) )
124

125 ; F ina l ly , s c a l e everyth ing from un i t s o f phase to un i t s o f
126 ; ‘ image l e v e l ’
127 LGmode = LGmode∗ ( (2ˆ nbit −1) / (2∗ ! p i ) )
128 ; The extra parenthese s above improve e f f i c i e n c y :
129 ; o the rwi se the precedence o f mu l t i p l i c a t i o n over d i v i s i o n would mean
130 ; that the array would be operated on twice .
131

132 return ,LGmode
133 END

2.3.5 Enforcing symmetry upon the phase profile

So far, the phase profiles shown have made use of the full active area of the SLM. That would be

appropriate it the goal were to transmit as much power as possible into a mechanical effect (i.e.,

transference of OAM to an optically trapped microparticle). However, our immediate goal is to

produce, as test beams, close approximations to the LG modes described above. The cylindrical

symmetry associated with those modes suggests that we impose a circular aperture on our phase

profiles. Without that, the output beams will contain additional energy along the diagonal direc-

tions associated with the corners of the SLM. To avoid this effect, I modified the code, to add in

this circular aperture, which confines the phase profile to region that is symmetric about the phase

singularity. A comparison of generated phase profiles with and without the addition of enforced

symmetry are shown in Figure 2.12, for the simple case of ` = 1, and Figure 2.13 compares example

output beams, for the case of a superposition of ` = 1 and ` = 5.
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Figure 2.12: A comparison of phase profiles with and without enforced symmetry. At
left is a spiral phase profile generated by the original LG.pro program. On the right is a
profile of equivalent topological charge, generated by the modified code where a circular
aperture is added. The diameter of the aperture is adjustable within the code.

Figure 2.13: A comparison of intensity profiles for output superpositions, with and without
enforced symmetry. The beam on the left was generated by the original LG.pro code.
The one on the right was generated by the modified version where a circular aperture was
applied to the phase profile. Differences in the positions and size of the beams are merely
artifacts associated with a change in position of the camera and a change in magnification
of the telescope, during re-alignment. The key issue has to do with the heightened degree
of circular symmetry in the case on the right.

1 ;+
2 ; NAME:
3 ; ALG
4 ;
5 ; PURPOSE:
6 ; For c r e a t i n g an approximated , g en e r a l i z e d (p not n e c e s s a r i l y zero ! )
7 ; Laguerre−Gaussian mode out o f a fundamental Gaussian input beam −−
8 ; and , i f de s i r ed , to s h i f t i t away from the und i f f r a c t e d c en t r a l
9 ; spot o f the d i f f r a c t i v e op t i c

10 ;
11 ; CATEGORY:
12 ; Hologram/DOE Generator
13 ;
14 ; CALLING SEQUENCE:
15 ; ALGmode = a lg ( l , p )
16 ;
17 ; INPUTS:
18 ; l : the mu l t ip l e o f 2 p i a s s o c i a t ed with t r a v e r s a l about the cente r
19 ; ( ‘ az imuthal number ’ )
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20 ;
21 ; p : the r a d i a l index f o r the LG mode ( ‘ r a d i a l number ’ )
22 ;
23 ; OPTIONAL INPUTS (KEYWORD PARAMETERS) :
24 ; b l aze : the number o f 2 p i b l a z i n g s a c r o s s the f i e l d
25 ; (we ’ ve been us ing 120)
26 ; −− t h i s i s e f f e c t i v e l y adding a prism to r e f r a c t the beam
27 ; away from the c en t r a l spot
28 ; −− i n c r e a s i n g ‘ blaze ’ i s l i k e i n c r e a s i n g the ang le o f the e x i t
29 ; f a c e o f the prism
30 ;
31 ; noblaze : i f no b l a z ing i s des i r ed , t h i s keyword must be s e t
32 ; ( s e e RESTRICTIONS below )
33 ;
34 ; rad : the rad iu s o f a c i r c u l a r d i s c on t i nu i t y
35 ; (must f i t on the DOE f o r the beam to sample )
36 ;
37 ; nb i t : p rov ide s 2ˆ nb i t l e v e l s o f phase ,
38 ; d e f au l t s e t t i n g i s 8 ( f o r Hamamatsu x8267 SLM)
39 ;
40 ; npix : number o f p i x e l s on a s ide ,
41 ; d e f au l t s e t t i n g i s 768 ( f o r Hamamatsu x8267 SLM)
42 ;
43 ; orad : outer rad iu s o f the p r o f i l e
44 ; d e f au l t s e t t i n g i s 2∗npix
45 ;
46 ; i r ad : inner rad iu s o f the p r o f i l e
47 ; d e f au l t s e t t i n g i s 0 ( appropr ia t e to c i r c u l a r aper ture )
48 ;
49 ; ph max : s e t t i n g the s i z e o f the cone ( f o r the c i r c u l a r aperture ,
50 ; ph max=2 i s recommended )
51 ; d e f au l t s e t t i n g i s 1
52 ;
53 ;
54 ; OUTPUTS:
55 ; LGmode : a npix x npix r e a l array g i v ing a s p i r a l phase p late ,
56 ; with r a d i a l phase s h i f t s added
57 ;
58 ; SIDE EFFECTS:
59 ; For l = 0 , p = 0 , t h i s c r e a t e s a b lazed d i f f r a c t i o n g ra t ing
60 ; ( the DOE equ iva l en t o f a prism )
61 ;
62 ; REQUIRES:
63 ; Ca l i b ra t i on o f the phase l e v e l s o f the SLM used , f o r the de s i r ed
64 ; ope ra t ing cond i t i ons , in terms o f the ‘ g r ey s ca l e ’ l e v e l s used here .
65 ; An appropr ia t e look−up tab l e (LUT) would a l low the images generated
66 ; by t h i s program to be used d i r e c t l y by the SLM.
67 ;
68 ; RESTRICTIONS:
69 ; The program does not d i r e c t l y r e cogn i z e BLAZE = 0 .
70 ; This i s a consequence o f the way the keyword set func t i on works .
71 ; The workaround i s to add the argument /NOBLAZE whenever no
72 ; b l a z ing i s d e s i r ed . (Note that ‘/no ’ w i l l work as an abbrev i a t i on
73 ; f o r ‘/NOBLAZE’ , s i n c e in gene ra l a s l a s h preced ing a keyword s e t s
74 ; i t s va lue to one , and keywords can be abbrev iated to t h e i r s h o r t e s t
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75 ; unique l ength . For example , a keyword c a l l e d XSTYLE could be
76 ; abbrev iated to XST)
77 ;
78 ; Extremely l a r g e phase g rad i en t s w i l l be ‘ a l i a s ed ’ due to the
79 ; d i s c r e t i z a t i o n o f the SLM ( the number o f phase l e v e l s and the s i z e
80 ; o f the p i x e l s ) .
81 ;
82 ; MODIFICATION HISTORY:
83 ; Created by Gabe Spalding ,
84 ; October , 2002
85 ; Modif ied by Andy Zhenghao Ding , to en f o r c e c y l i n d r i c a l symmetry ,
86 ; by adding a c i r c u l a r aper ture to the phase p r o f i l e ,
87 ; Spring , 2017
88 ;−
89

90 FUNCTION alg , l , p , b laze=blaze , noblaze=noblaze , rad=rad , nb i t=nbit , $
91 npix=npix , i r ad=irad , orad=orad , ph max=ph max
92

93 IF NOT keyword set ( b laze ) THEN blaze = 120
94 IF keyword set ( noblaze ) THEN blaze = 0
95 IF NOT keyword set ( rad ) THEN rad = 100
96 IF NOT keyword set ( nb i t ) THEN nbi t = 8
97 IF NOT keyword set ( npix ) THEN npix = 768
98 IF NOT keyword set ( i r ad ) THEN i rad = 0
99 IF NOT keyword set ( orad ) THEN orad = 2∗npix

100 IF NOT keyword set ( ph max ) THEN ph max=1
101

102 LGmode=f l t a r r ( npix , npix )
103 o f f s e t = long ( 0 . 5 ∗ npix )
104 rho max = SQRT(2∗ ( o f f s e t ) ˆ2)
105

106 FOR i =0,npix−1 DO BEGIN
107 FOR j =0,npix−1 DO BEGIN
108

109 ; F i r s t , c r e a t e a phase b l a z ing to s h i f t everyth ing away
110 ; from the und i f f r a c t e d spot :
111 ; (Whenever no b l a z ing i s des i r ed , add the argument / noblaze . )
112 LGmode( i , j ) = i ∗ ( 2∗ ! p i ) ∗ b laze /( npix−1)
113

114 ; Next , convert t h i s r e f r a c t e d spot to a p=0 LG mod
115 ; by c r e a t i n g a s p r i a l phase p l a t e :
116 ; The azimuthal ang le i s g iven by
117 theta = ATAN( j−o f f s e t , i−o f f s e t )+! p i
118 ; A term conta in ing the azimuthal ang le mu l t i p l i e d by
119 ; the azimuthal number c r e a t e s the s p i r a l phase p l a t e :
120 LGmode( i , j ) = LGmode( i , j ) + l ∗ theta
121

122 ; Now, f i nd how f a r the pre sent p i x e l i s from the cente r
123 ; o f the d i f f r a c t i v e o p t i c a l element (DOE)
124 rho = SQRT(( i−o f f s e t ) ˆ2 .0 + ( j−o f f s e t ) ˆ2 . 0 )
125

126 ; Use t h i s rad iu s as a c r i t e r i a f o r adding f u r t h e r phase s h i f t s that
127 ; depend upon the r a d i a l number :
128 IF p GT 0 THEN BEGIN
129 FOR pindex = 1 , p DO BEGIN
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130 ; For non−zero r a d i a l number , the DOE w i l l conta in p c i r c l e s ,
131 ; with s i z e s g iven by :
132 c i r c s i z e = pindex∗ rad
133 ; Beyond each o f those c i r c l e s , we add a p i phase s h i f t ,
134 IF rho GE c i r c s i z e THEN LGmode( i , j ) = (LGmode( i , j ) + ! p i )
135 ENDFOR
136 ENDIF
137

138 ; These are the l i n e s I added to the o r i g i n a l program to produce a
139 ; c i r c u l a r aper ture to the phase p r o f i l e
140 IF rho LT i rad ∗( rho max/ph max ) THEN LGMode( i , j ) = 0
141 IF rho GT orad ∗( rho max/ph max ) THEN LGMode( i , j ) = 0
142

143

144 ENDFOR
145 ENDFOR
146

147 modulo = 2∗ ! p i
148 LGmode = LGmode − (modulo ∗ long (LGMode/modulo ) )
149

150 ; F ina l ly , s c a l e everyth ing from un i t s o f phase to un i t s o f
151 ; ‘ image l e v e l ’
152 LGmode = LGmode∗ ( (2ˆ nbit −1) / (2∗ ! p i ) )
153 ; The extra parenthese s above improve e f f i c i e n c y :
154 ; o the rwi se the precedence o f mu l t i p l i c a t i o n over d i v i s i o n would mean
155 ; that the array would be operated on twice .
156

157 return ,LGmode
158 END
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2.4 Aberration Correction

2.4.1 Iterative phase optimization algorithms

We have made use of several optimization algorithms which are based, to varying degrees upon

Figure 2.14: A schematic of the Gerchberg-Saxton algorithm, from “Wavefront correction
of spatial light modulators using an optical vortex image” by A. Jesacher, A. Schwaighofer,
S. Fuehapter, C. Maurer, S. Bernet, and M. Ritsch-Marte

an approach popularized by Ralph Gerchberg and Owen Saxton.[25] The basic Gerchberg-Saxton

(GS) algorithm, illustrated in Figure 2.14, is an iterative process that converges to an approximate

phase profile appropriate to some target intensity distribution in the Fourier plane of the SLM. As

a starting point, the algorithm typically begins by initializing the phase at each pixel, H(x, y), on

the diffractive optical element (in our case, the SLM) to a random value. While it is possible to

specify the measured input intensity profile (in our case, the fundamental Gaussian mode), this
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simply results in the convolution of each point in the output with a Gaussian, and so for simplic-

ity we perform all calculations assuming a uniform intensity profile, and therefore a uniform field

amplitude, A(x, y), at each pixel of the SLM. This starting distribution of amplitude and phase,

A(x, y)eiH(x,y), is fast-Fourier-transformed (FFT) to yield the distribution in the Fourier plane,

Â(kx, ky)e
iΦ(kx,ky). The intensity part of this output distribution is compared with the target in-

tensity profile, generating an error function ε (which may be constructed in a variety of ways) with

a threshold value determining acceptability (set according to the needs of the experiment, and the

willingness to spend computational time upon further optimization). If the error is larger than the

threshold value, the desired intensity profile Â(kx, ky) is substituted for the calculated intensity pro-

file, while the calculated phase profile Φ(kx, ky) will be preserved, and the composite amplitude and

phase transformed back to the SLM plane using the inverse FFT. At this point, the intensity profile

that results from the inverse FFT is changed back to the initial (uniform intensity) profile, while

the phase profile created by the inverse FFT is preserved, and the composite amplitude and phase

profile will then be transformed, via FFT, to the Fourier plane again and compared with the target

intensity profile. Again, if the error function is smaller than the desired value, the phase profile is

accepted as a final approximation. If not, iteration repeats until the error ε is small enough. For

distributions with a high degree of symmetry, the error function typically converges after several

iterations. A variation of the GS algorithm introduced and popularized by Eric Dufresne and Dr.

Spalding and their co-authors is the Adaptive-Additive (AA) algorithm, which, in comparison to

the GS algorithm takes smaller steps towards the desired intensity distribution.[12] The AA version

tends to yield outputs with less unintended variation in the final intensity profile produced.

2.4.2 Integrating the Adaptive-Additive algorithm into the Ritsch-Marte
method for Aberration Correction

In 2007, Monika Ritsch-Marte proposed a method for aberration correction, based upon a combi-

nation of the Gerchberg-Saxton algorithm for phase optimization with the use of LG modes as test

beams (valued for this purpose because of the distributed nature of the intensity patterns produced,

as well as their “good dark” and high degree of symmetry).[17] Her method begins by sending an

LG beam through the system to be optimized, and capturing the (aberrated) intensity profile with
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a camera. This (undesirable) intensity profile is then used, somewhat counter-intuitively, as the

target intensity distribution in the GS algorithm, as a means of approximately determining the

phase profile of associated with aberrated measurement at the camera. By examining the differ-

ence between the phase profile output by the GS algorithm and the expected spiral phase profile,

Ritsch-Marte was able to determine a phase profile required for correcting the observed aberration

in the system. This Ritsch-Marte method converges only in the limit of weak aberration, but is

nevertheless appropriate to our experiments for this thesis.

In my version, the AA algorithm is implemented instead of the GS algorithm. I implemented that

part of the Ritsch-Marte method by using an IDL program written by Eric Dufresne, Prof. Gabe

Spalding and Toan Le (and reproduced below). To correct for aberration arising anywhere in our

LG beam-generation system, we first take an image of the intensity profile of the LG beam at the

front focal plane, and use the AA algorithm to calculate an approximation to the phase profile that

produced that measured intensity distribution. Then we subtract this phase profile from the LG

beam phase profile, and add this result to the phase profile we program into the SLM.

1 ;+
2 ; NAME:
3 ; PHASE
4 ; PURPOSE:
5 ; Ca l cu l a t e s the phase func t i on o f a hologram .
6 ; The hologram does i t s bes t to produce the
7 ; d e s i r ed i n t e n s i t y p r o f i l e in the f o c a l plane
8 ; o f a l e n s .
9 ;

10 ; CALLING SEQUENCE:
11 ; ph = phase ( out )
12 ; INPUTS:
13 ;
14 ; out : a n x n r e a l array
15 ; d e s c r i b i n g the de s i r ed i n t e n s i t y f i e l d in the
16 ; f o c a l plane o f the l e n s .
17 ; ( f a s t e s t i f n i s a power o f 2)
18 ; The Boulder 512x512 SLM has n = 2ˆ9 , which i s n i c e
19 ; The Hamamatsu x8267 uses 768x768 images , which i s
20 ; not a power o f two , but works . −− Also note that
21 ; 768x768 can be t i l e d by 256x256 or 128x128 .
22 ; Also , once upon a time , I c a l c u l a t ed 512x512 images
23 ; and j u s t used CONGRID to blow that up to 768x768
24 ; ( I ’m not sure how we l l that worked . )
25 ;
26 ; KEYWORDS:
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27 ; i p i x : the p i x e l s i z e o f the image d e s c r i b i n g the input . ( in mm)
28 ; Note that t h i s i s determined by the diameter o f the back aper ture
29 ; o f the ob j e c t i v e l e n s used f o r tweez ing /making the hologram
30 ; For example , a lthough Kishan ’ s Boulder SLM has a 15−micron pitch , the se
31 ; are imaged by a t e l e s c op e onto the back aper ture o f an OL, where t h e i r
32 ; s i z e i s e f f e c t i v e l y much smal l e r , so i t would be a mistake to s e t i p i x
33 ; =0.015 mm. S imi l a r l y , Gabe ’ s Hamamatsu PPM conta in s phy s i c a l p i x e l s
34 ; around 0 .024 mm in s i z e , but i t would be a mistake to s e t i p i x =0.024
35 ; f o r t h i s Hamamatsu x8267 −− the p ro j e c t ed p i x e l s i z e on the back
36 ; aper ture o f the OL i s much sma l l e r .
37 ;
38 ; For an Olympus microscope us ing i n f i n i t y opt i c s , the tube l ength i s
39 ; 180 mm,
40 ; so the diameter o f the back aper ture i s 2∗180∗NA/mag
41 ; Thus , Gabe ’ s 100x NA=1.40 l e n s has a back aper ture o f 5 .04 mm
42 ;
43 ; For now suppose there i s no s i g n i f i c a n t o v e r f i l l i n g o f the
44 ; back aperture ,
45 ; so that the SLM i s focused down to a 5.04−mm square , y i e l d i n g
46 ; i p i x =5.04mm/512 f o r the Boulder
47 ; and i p i x =5.04/768 f o r the Hamamatsu x8267 .
48 ;
49 ; The program should be rephrased in terms o f the t rue p i x e l s i z e o f the SLM
50 ; and the demagn i f i ca t i on f a c t o r used in p r o j e c t i n g the SLM onto the
51 ; back aper ture .
52 ;
53 ; f : the f o c a l l ength o f the l e n s used to form the
54 ; image in mm (The 100x l en s I used in Chicago had f = 1 . 62 )
55 ; For an Olympus microscope us ing i n f i n i t y ( ‘UIS ’ ) opt i c s ,
56 ; the tube l en s has a f o c a l l ength o f 180 mm, so f o r the ob j e c t i v e l e n s
57 ; the f o c a l l ength ( in mm) i s 180/mag .
58 ; Though Gabe a l s o has a 100x Olympus l en s that i s NOT des igned f o r UIS
59 ; op t i c s , the l e n s e s on Gabe ’ s IX−71 microscope are .
60 ; For that (UIS ) 100x lens , f = 1 .8
61 ;
62 ; in : a n x n r e a l array ( o f the same s i z e as out ) , d e s c r i b i n g
63 ; the i n t e n s i t y f i e l d o f the i l l um ina t i n g beam
64 ; i n c i d en t upon the hologram .
65 ;
66 ; lambda : the wavelength o f l i g h t in mm
67 ; (1064 nm = 10.64 e−4 mm i s f o r Kishan ’ s Boulder SLM)
68 ; Gabe ’ s Hamamatsu SLM uses 5 .32 e−4 mm
69 ;
70 ; nmax : the maximum number o f i t e r a t i o n s
71 ;
72 ; iph : i n i t i a l guess f o r the phase
73 ;
74 ; min er : the percentage change in the e r r o r between the
75 ; i d e a l and ca l c u l a t ed output plane images between
76 ; s u c c e s s i v e i t e r a t i o n s at which the program
77 ; c on s i d e r s the c a l c u l a t i o n to have converged
78 ;
79 ; lowg : low graph i c s mode . Only shows end r e s u l t .
80 ;
81 ; nog : no graph i c s mode
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82 ;
83 ; pr : draw graph i c s f o r p r i n t i n g
84 ;
85 ; OUTPUTS:
86 ; ph : a n x n r e a l array g i v ing the phase at the
87 ; hologram
88 ;
89 ; NOTES:
90 ; Though m i l l ime t e r s are the standard cho i c e
91 ; −− lambda , f , and i p i x can be s p e c i f i e d in a rb i t r a r y but c on s i s t e n t un i t s .
92 ; Together , the se s imply determine the s c a l e o f the image formed
93 ; by the hologram
94 ; ( s e e dxo )
95 ;
96 ; MODIFICATION HISTORY:
97 ; Created by Er ic R. Dufresne , 4/98
98 ; Modif ied by ERD, 7/13/98 , 7/14/98
99 ; Modif ied by ERD, 3/03/99:

100 ; to use memory more e f f i c i e n t l y , at the l o s s o f
101 ; a l i t t l e speed . This w i l l a l low c a l c u l a t i o n
102 ; o f b i gge r ar rays
103 ; Modif ied by Gabe Spalding , September , 2002 , f o r use with
104 ; Spa t i a l Light Modulators
105 ; Further modi f i ed 7/17/03 −− Gabe Spald ing
106 ; Modif ied by Toan Le as noted below , 1/13/2017
107 ;−
108

109 f unc t i on phase , out , lambda=lambda , f=f , i p i x=ip ix , nmax=nmax , min er , iph=iph , lowg=lowg , $
110 nog=nog , pr=pr , a f e r=a f e r , in=in
111

112 ; For the Hamamatsu x8267 ’ s 768 p i x e l s p ro j e c t ed onto the
113 ; 5.04−mm aperture o f Gabe ’ s 100x i n f i n i t y −co r r e c t ed ob j e c t i v e :
114 ; i f not keyword set ( i p i x ) then i p i x =5.04/768.
115 ; i f not keyword set ( lambda ) then lambda=5.32e−4
116 ; i f not keyword set ( f ) then f =1.8
117

118 ; For the Hamamtsu x8267 ’ s 768 p i x e l s and 60x i n f i n i t y −co r r e c t ed ob j e c t i v e :
119 ; ( modi f i ed by Toan Le− 1/13/2017)
120 i f not keyword set ( i p i x ) then i p i x = 0.012
121 i f not keyword set ( lambda ) then lambda = 5.32 e−4
122 i f not keyword set ( f ) then f = 3
123

124 ; For the Hamamatsu x7550 ’ s 480 p i x e l s p ro j e c t ed d i r e c t l y from the SLM:
125 ; i f not keyword set ( i p i x ) then i p i x =20./480.
126 ; i f not keyword set ( lambda ) then lambda=6.33e−4
127 ; i f not keyword set ( f ) then f=160
128

129 ; For the Boulder ’ s 512 p i x e l s p ro j e c t ed onto the
130 ; 5.04−mm aperture o f Gabe ’ s 100x i n f i n i t y −co r r e c t ed ob j e c t i v e :
131 ; i f not keyword set ( i p i x ) then i p i x =5.04/512.
132 ; i f not keyword set ( lambda ) then lambda=10.64e−4
133 ; i f not keyword set ( f ) then f =1.8
134

135 ; For Gabe ’ s etched−in−g l a s s 512x512 holograms pro j e c t ed onto the
136 ; 3.2−mm aperture o f the OL Gabe used at UChicago
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137 ; we ( h i s t o r i c a l l y ) took i p i x to be :
138 ; i p i x = 0.00633
139 ; i f not keyword set ( lambda ) then lambda=5.32e−4
140 ; i f not keyword set ( f ) then f =1.62
141

142 ; As a favor f o r Molly Rose Darragh , 128 p i x e l s p ro j e c t ed onto the
143 ; 5.04−mm aperture o f her ob j e c t i v e :
144 ; i f not keyword set ( i p i x ) then i p i x =5.04/128.
145 ; i f not keyword set ( lambda ) then lambda=5.32e−4
146 ; i f not keyword set ( f ) then f =2.74
147

148

149 i f not keyword set (nmax) then nmax=100
150 i f not keyword set ( min er ) then min er=1.e−5
151 i f not keyword set ( lowg ) then lowg=0
152 i f not keyword set ( nog ) then nog=0
153 i f not keyword set ( pr ) then pr = 0
154

155 ;FIND THE LINEAR SIZE OF THE IMAGES IN PIXELS
156 nx = n elements ( out [ 0 , ∗ ] )
157

158 ;CALCULATE THE NORMALIZATION FACTORS FOR THE ERRORS
159 ne r f = t o t a l ( out )
160 i f keyword set ( in ) then nerw = t o t a l ( in ) e l s e nerw=f l o a t (nxˆ2)
161

162 ;DEFINE THE AMPLITUDE OF THE COMPLEX FIELDS OF THE INPUT BEAM
163 ;GENERATE AN INPUT IF IT IS NOT SUPPLIED
164 i f not keyword set ( in ) then a0 = r e p l i c a t e ( 1 . , nx , nx ) e l s e a0=sq r t ( in )
165 ;THE DESIRED OUTPUT − Conserve energy .
166 b0 = sq r t ( out ∗ ( nerw / ne r f ) )
167

168 ;DEFINE THE PIXEL SIZE IN THE INPUT PLANE
169 dxi = i p i x
170 ;DEFINE THE PIXEL SIZE IN THE OBSERVATION PLANE
171 dxo = lambda ∗ f / ( nx ∗ dxi )
172

173 ;CREATE THE SCALES FOR THE IMAGES
174 xin = f indgen (nx ) ∗ dxi
175 xout = f indgen (nx ) ∗ dxo
176

177 ;MAKE AN INITIAL GUESS FOR THE PHASE FUNCTION
178 i f not keyword set ( iph ) then $
179 ph = exp ( complex ( 0 .D0 , 2 .D0 ∗ ! dpi ∗ randomu( seed , nx , nx ) ) ) $
180 e l s e ph=cexp (0 , iph )
181

182 ;ASSSIGN A VALUE TO THE ADAPTIVE−ADDITIVE WHAMMY FACTOR
183 s=0.5D0
184

185 i=0
186 der=1
187 math err=0
188 whi le ( i l t nmax) and ( abs ( der ) gt min er ) and ( math err eq 0) do begin
189

190 i = i+1
191
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192

193 ; pr int , 1 ; Debugging index
194

195 ;CALCULATE THE FIELD IN THE OBSERVATION PLANE
196 f = s h i f t ( f f t ( a0 ∗ ph , /double ) , nx/2 , nx/2)
197 ; abs f = abs ( f ) ;Comment out i f memory i s the l im i t a t i o n
198 ;Make the s ub s t i t u t i o n throughout otherwi s e
199 ;CALCULATE THE ERROR
200 new a f e r = t o t a l ( ( abs ( f ) − b0 ) ˆ2 ) / ne r f
201

202 i f lowg eq 0 and nog eq 0 then $
203 ; dgcont image , by t s c l ( abs ( f ) ˆ2) ,1000∗ xout ,1000∗ xout , / nocont , / aspect , $
204 ; x t i t l e =‘Microns in f o c a l plane . ’ , t i t l e =‘ I n t e n s i t y in f o c a l plane . ’
205

206 ; pr int , 2 ; Debugging index
207

208 ;USE ADAPTIVE ADDITIVE ALGORITHM TO MAKE CORRECTION
209 f = s ∗ b0 ∗ f / abs ( f ) + ( 1 − s ) ∗ f
210 ; Could we improve the e f f i c i e n c y o f array ope ra t i on s above?
211

212 ; pr int , 3 ; Debugging index
213

214 ;TRANSFORM BACK TO INPUT PLANE
215 w = f f t ( s h i f t ( f ,−nx/2,−nx/2) , / inve r s e , / double )
216 ; abs (w)=abs (w) ;Comment out i f memory i s the l im i t a t i o n
217 ;Make the s ub s t i t u t i o n throughout otherwi s e
218

219 ; i f lowg eq 0 and nog eq 0 then $
220 ; dgcont image , by t s c l ( abs (w) ˆ2) , xin , xin , / nocont , / aspect , $
221 ; x t i t l e =‘Mi l l ime t e r s in DOE plane . ’ , t i t l e =‘Backwards I n t e n s i t y at DOE’
222

223 ; pr int , 4 ; Debugging index
224

225 ;CALCULATE OUR NEW GUESS FOR THE PHASE
226 ;MAKE SURE THE ANSWER IS SENSICAL
227 i f n e lements ( where ( f i n i t e (w/abs (w) ) eq 0) ) eq 1 then ph=w/abs (w) e l s e begin
228 pr int , ‘ Oops ! There was a math e r r o r . ’
229 math err=1
230 ende l s e
231

232 i f lowg eq 0 and nog eq 0 then $
233 ; dgcont image , by t s c l ( cphase (ph) ) , xin , xin , / aspect , / nocont , $
234 ; x t i t l e =‘Mi l l ime t e r s in DOE plane . ’ , t i t l e =‘DOE phase s h i f t . ’
235

236 ; pr int , 5 ; Debugging index
237

238 ;CALCULATE THE CHANGE IN THE ERRORS
239 i f i ne 1 then der = ( new af er−a f e r ) / a f e r e l s e der=1.
240 a f e r = new a f e r
241 ; w er = t o t a l ( ( abs (w) − a0 ) ˆ2 ) / nerw
242 ; pr int , ‘ The input e r r o r : ’ , w er
243

244 ;DISPLAY THE ERRORS
245 ; pr int , ‘ The ouput e r r o r : ’ , n ew a f e r
246 pr int , ‘ I t e r a t i o n #’+s t r t r im ( s t r i n g ( i ) , 2 ) , ‘ ’ The % change in e r r o r : ’ , der
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247 pr in t
248

249 endwhi le
250

251 i f nog ne 1 then begin
252 i f pr eq 1 then begin
253 ; ! p . mult i = [2 ,2 , 0 ]
254 ; dgcont image , by t s c l ( in ) , xin , xin , / nocont , / aspect , $
255 ; / inver t , x t i t l e =‘Mi l l ime t e r s in DOE plane . ’ , t i t l e =‘ Input Beam ’
256 e r a s e
257 ; dgcont image , by t s c l ( cphase (ph) ) , xin , xin , / aspect , / nocont , $
258 ; x t i t l e =‘Mi l l ime t e r s in DOE plane . ’ , t i t l e =‘DOE phase s h i f t . ’
259

260 ; dgcont image , by t s c l ( abs ( f ) ˆ2) ,1000∗ xout ,1000∗ xout , $
261 ; / nocont , / aspect , $
262 ; / inver t , x t i t l e =‘Microns in f o c a l p lane . ’ , $
263 ; t i t l e =‘ I n t e n s i t y in f o c a l plane . ’
264 ; ! p . mult i=0
265 end i f e l s e begin
266

267 ! p . mult i = [2 ,2 , 0 ]
268 ; dgcont image , by t s c l ( in ) , xin , xin , / nocont , / aspect , $
269 ; x t i t l e =‘Mi l l ime t e r s in DOE plane . ’ , t i t l e =‘ Input Beam’
270 e r a s e
271 ; dgcont image , by t s c l ( cphase (ph) ) , xin , xin , / aspect , / nocont , $
272 ; x t i t l e =‘Mi l l ime t e r s in DOE plane . ’ , t i t l e =‘DOE phase s h i f t . ’
273

274 ; dgcont image , by t s c l ( abs ( f ) ˆ2) ,1000∗ xout ,1000∗ xout , $
275 ; /nocont , / aspect , $
276 ; x t i t l e =‘Microns in f o c a l plane . ’ , $
277 ; t i t l e =‘ I n t e n s i t y in f o c a l plane . ’
278 ! p . mult i=0
279

280 ende l s e
281

282 end i f
283 ; he lp
284 return , cphase (ph) + ! p i
285 end

2.4.3 Application of Ritsch-Marte/AA aberration correction method

In our lab at IWU, the Ritsch-Marte/AA aberration correction method was applied by using a test

beam with ` = 5. The initial, uncorrected intensity distribution is shown in Figure 2.15, along with

the initial phase profile programmed onto the SLM. At far right is the ring-shaped intensity profile

which results at the end of our correction process. We used the phase.pro program shown in the

79



Figure 2.15: At left is an uncorrected ` = 5 intensity profile the front focal plane. The
middle shows its associated phase profile on the SLM. At right is the corrected, ring-shaped
beam.

previous subsection to associate a phase profile with the uncorrected image, then subtracted the

difference in phase from the original spiral phase profile, and defined this as an (initial) correction

factor to be applied to all subsequent phase profiles written to the SLM. However, we found that

repeating the process twice more provided additional gains, and so the final correction fact is a

result of those additional iterations.
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2.5 Transformation Optics: rapid readout of OAM

2.5.1 Introduction to the Lavery method of OAM readout

Dr. Martin Lavery of the University of Glasgow developed a set of transformation optics that

can rapidly read out the orbital angular momentum content associated with a superposition of LG

modes. The following discussions on the transformation optics are all following Dr. Martin Lavery’s

thesis and his other works on related topics. [21] [13] [20] The Lavery conformal mapping, as a

first step, effectively amounts to performing a Cartesian-to-polar coordinate transformation.[21]

This mapping will “unwrap” a single-mode ring-shaped Laguerre-Gaussian beam into a straight

line that is displaced from the optical axis by the radius of the LG ring, which is calculated below.

For a single-mode LG beam, the radius of the ring can be determined from,[21] the topological

charge of the beam, `, and the size of the circular aperture of the phase profile, d, described earlier

in our section on IDL programming.

r` =
λf

d
` (2.26)

An additional step compensates for a remaining phase gradient associated with the output line

of light. After the Lavery transformation optics, we pass this displaced line of light through a

cylindrical lens, which means that the beam is focused to a specific location on the camera. The

distance between this location and the optical axis directly maps onto the `-value of the single LG

mode used as input. Clearly, then, if a superposition of LG modes is input, the output should

yield a discrete array of spots on the camera, which can be directly read as the encoded OAM

information.

2.5.2 Mathematical expression of the Lavery Transform

Optical geometric transformation has previously been studied in the context of optical image pro-

cessing. [21][8] Transformation can be implemented using a set of lenses only if the mapping is
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conformal. To elaborate, assume the amplitude profile in the z plane is denoted as A(x, y), then

the amplitude profile in the w plane is related via a Fourier transform that includes the conformal

mapping phase profile φ(x, y): [8]

Ã(u, v) =

∫ ∫ +∞

−∞
dxdyA(x, y)ei[φ(x,y)−k(xu+yv)/fL] (2.27)

That is, we are mapping intensity from input plane coordinates (x, y) onto output plane coordinates

(u, v): (x, y) → (u, v). This mapping is described by a construct w = f(z) = u(x, y) + iv(x, y),

which must satisfy equation 2.10, one of the Cauchy-Riemann equations.[8]

∂u(x, y)

∂y
=
∂v(x, y)

∂x
(2.28)

Note that Equation 2.26 involves an integral of the following general form:∫ ∫
g(x, y)eikh(x,y)dxdy (2.29)

Using a saddle-point method, we can find an approximation for large k values. The saddle point

can be found using the following equation. [8]

∂h

∂x
=
∂h

∂y
= 0 (2.30)

For the integral at hand, h(x, y) ≡ [φ(x, y)− k(xu+ yv)/fL], so we have

∂φ(x, y)

∂x
=

k

fL
u(x, y)

∂φ(x, y)

∂y
=

k

fL
v(x, y)

(2.31)

As we are performing a Cartesian-to-polar transformation, we assume that

u(x, y) =
√
x2 + y2

v(x, y) = arctan(y/x)
(2.32)

However, applying the conformal mapping condition in equation 2.22, we have [8]

∂u(x, y)

∂y
=

x√
x2 + y2

∂v(x, y)

∂x
=

x

x2 + y2

(2.33)
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It is clear that ∂u(x,y)
∂y 6= ∂v(x,y)

∂x . As a result, we change the transformation into a log-polar

transformation, which is shown below. [21] [13] [20]

u(x, y) = −a · ln(
√
x2 + y2/b)

v(x, y) = a · arctan(y/x)
(2.34)

Substituting the above transformation into equation 2.26, we can get the following expression for

the phase modulation.[21] [13] [20]

φ1(x, y) =
2πa

λf

[
y · arctan

(y
x

)
− x · ln

(√
x2 + y2

b

)
+ x

]
(2.35)

However, this mapping introduces a phase distortion to the wavefront that needs to be corrected by

introducing a second phase modulation optic. We can calculate the far-field amplitude of a plane

wave that has passed through the first element by using the stationary phase approximation. The

amplitude is shown below.[21][13]

A2(x, y) = e
iφ1(x,y)−i k

f
(xu+yv) 2π√

|∂u∂x
∂v
∂y − (∂u∂y )2|

(2.36)

The desired second element is just the inverse of this phase profile. That is, φ2(u, v) = −arg(a2),

so we have [21][13]

φ2(u, v) = −abk
f
e−

u
a cos

(v
a

)
(2.37)

Now we have mathematical expressions for two optical elements, which together complete the de-

sired transformation. Again, the discussion provided here largely follows Dr. Lavery’s Ph.D thesis,

“Measurement of Light’s Angular Momentum.” Interested readers can find this thesis and relevant

work in the reference.

2.5.3 Experimental setup and alignment for OAM readout

Measuring encoded OAM information via these transformation optics obviously requires that we

generate, as inputs, well-controlled LG beams. We wish to examine the response to various LG

inputs (i.e. beams characterized by a various values of the topological charge, `, including superpo-

sitions. For this, our setup, shown in Figure 2.16, closely resembles the one shown earlier in Figure
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Figure 2.16: Test setup for measuring OAM

2.2, but has the addition of the transformation optics as well as the addition of a spatial filter, which

serves as a mode sorter, between the SLM and the input to the transformation optics provided by

Dr. Martin Lavery. This mode sorter consists of a telescope, which also serves to adjust the size

of the beam for the transformation optics, and an iris for filtering out all the other beams with

different orders other than one, as we have imposed a blazing to separate, spatially, components of

the beam which are associated with different orders. The iris should be placed at the focal point

of the telescope. Aligning the transformation optics requires a specific set of procedures, provided

by Dr. Martin Lavery over private communication and the steps are reproduced below. [19]

1. The first step is to measure out an appropriate distance between the two transformation optic

elements, adjusted according to the dispersion in the PMMA, using the calibration shown in Figure

2.17. Once corrected for wavelength, leave as is.

2. The analysis of an OAM spectrum is highly sensitive to alignment along the optic axis (both

direction and displacement). Therefore it is essential that the optical path be stable and aligned to

the beam axis of the input mode. Remove the first element of the transformation optics and then,

using two apertures, approximately at the position of each element, walk the input beam (using

mirrors omitted from the test setup schematic) to assure the beam travels through each element

straight over the (roughly) 30 cm between elements. Stable mirror mounts are required. (Beam
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Figure 2.17: Required distance between transformation optics elements, as a function of
wavelength. The graph is provided by Dr. Martin Lavery in his tutorial for alignment [19]

walking is also required to set up the mode sorter, so there are multiple mirrors omitted from the

schematic).

3. Use the SLM to generate a superposition of LG modes. e.g., ` = 5 + ` = 1, shown below in

Figure 2.18, along with the beam generated in the lab. The resulting interference pattern for that

particular superposition should yield an intensity distribution at the input to the sorter comprising

a round beam containing four lobes. Adjust the mode “size and weight” settings on the SLM to

Figure 2.18: On the left is a computer simulation for the intensity distribution, at the
input of our analysis optics, for a superposition of ` = 5 and ` = 1. At right we present
the actual intensity distribution measured in our lab. The simulation software is provided
by Dr. Martin Lavery over private communication. [19]
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Figure 2.19: The image on the left shows the expected transform of the ` = 5 and ` = 1
superposition. The image at right shows the actual measured result from our lab at IWU.
The simulation software is provided by Dr. Martin Lavery over private conversation. [19]

produce the expected interference pattern.

4. Align this input mode with respect to the first element of the sorter. Inspect the intensity

distribution in plane of the second element, where an “unwrapped” version should appear as a

straight line containing four equally spaced black spots. (Figure 2.19 shows the simulated expected

result, along with an image of the measured result taken in our lab at IWU.) Tweak the position

of the first element with respect to the beam: preferably, you will only need to use two mirrors to

control the input direction.

5. Now look at the beam after it has been allowed to propagate freely for 10-20 cm following the

second element. Adjust the second element (the phase corrector) so that the beam is still a straight

line at this point. A misaligned beam will normally appear as two half circles adjacent to each

other. Align left-to-right so that the join point is in the center, then align up-to-down to make the

result straight.

6. Now go back to single values of ` and adjust the second element further to ensure that an

elongated spot is observed.

7. Then use the SLM to generate, again, a superposition of LG modes, e.g., ` = −7,−1,+1 and

+7. And confirm that the positive and negative components look the same. If the result is not

symmetric about ` = 0, then input mode is misaligned with respect to the sorter.

86



Figure 2.20: When aligned, the Lavery transformation optics act as a “donut-to-hotdog”
converter of optical topology. The photo is from Dr. Martin Lavery’s thesis, “Measure-
ment of Light’s Angular Momentum” and relevant publications. [21] [13] [20]

8. Adjust the input position and tilt of incident beam. Control of tilt via the SLM is a very

useful approach. To do this image the plane of the SLM to the plane of the first element. Then

change (slightly) the number of blazing lines on the SLM, which will fine tune the angular tilt of

the incident beam.

9. Repeat Steps 6 - 8 until the beam is straight. The behavior of the transformation optics is shown

in Figure 2.20.

Important tips

1. Before alignment, it is important to check if the elements of the transformation optics ordered

in the correct sequence. The transformation will not work if the phase correction element is placed

before the log-polar mapping element.

2. The size of the beam coming into the transformation optics matters a lot. If the beam is too

small, it will be very hard to align the system, and there will be no obvious change of the location

of the focused spot on camera when switching to different topological charges.
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2.5.4 First implementation of the transformation optics

In our lab in IWU, we are applying Laguerre-Gaussian beams with different values of ` to the

transformation optics. According to the previous section on transformation optics, these LG beams

will be focused to separate points on a line. In our lab in IWU, we are applying Laguerre-Gaussian

beams with different values of ` to the transformation optics. Again, these LG beams will be

focused to separate points on a line, but as our interest has to do with examining the robustness

of this method, and the degree to which aberration correction methods may be useful, Figure 2.21

zooms in to highlight the details associated with the experimental outputs achieved at IWU.

Figure 2.21: The image on the left shows the focal “point” for ` = 1. The one in the
middle is for ` = 10. The one on the right is for ` = 20.

Over the range of ` values shown, the result optimized by our aberration correction is shown

in the middle frame, and aberration clearly increases as we move away from that ` value. Future

work should look at improving optimization over a broad range of ` values.
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2.6 Vaterite Synthesis

2.6.1 The desire for Birefringent Spheres

For studies involving transfer of angular momentum, we want to prepare microscopic versions of the

wave plates used in Chapter 1. These birefringent materials can, for example, change left-circularly

polarized light into right-circularly polarized light, and therefore by conservation of angular mo-

mentum, since the angular momentum content of the light has been altered there must be a optical

torque acting on the wave plate. Because optical forces and torques are quite feeble, and because

the mesoscopic physics of interest to our lab, we wish to fabricate birefringent micro-particles and

nano-particles. For situations where we are interested in full analysis, use of a spherical particle

offers clear advantages. After all, there are only three geometries which have, to date, allowed ana-

lytic, closed form solutions for hydrodynamic drag: the best known of these is Stoke’s drag, which

applies (only) to an isolated sphere immersed in fluid and far from any other surfaces. Vaterite is a

spherical form of hydrated calcium carbonate. While it is not as strongly birefringent, its spherical

shape makes it of interest for a variety of experiments involving optical trapping and experimental

analysis of the transference of light’s orbital angular momentum. [7]

2.6.2 Synthesis protocols

The general idea is to use a non-reactive agent as a mediator to slow down the reaction rate and

stabilize the crystal growth. During the synthesis process, calcium chloride and sodium carbonate

are dissolved in 83.3% ethylene glycol solution separately. The ethylene glycol here acts as the

mediator. Then they are mixed up with each other and the solution is stirred for an extended

period. After stirring, the particles are taken out of the solution by centrifugation. They are

subsequently washed and stored in alcohol to preserve their birefringence for a few days.[3] [2]

The formula for this reaction is shown in equation 2.9. The procedures are shown as below. This
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recipe is provided by Yoshi Arita.

CaCl2(ap) +Na2CO3(aq)→ NaCl(aq) + CaCO3(s) (2.38)

1. Take 50 ml fresh ethylene glycol and 10 ml deionized water. mix them together

2. Weigh 0.525g Na2CO3, and 0.55g CaCl2 and dissolve them separately into two 15ml 83.3%

ethylene glycol-water solution

3. Mix them together and stir with a stir bar. The reaction will take 3 hours.

4. Centrifuge the solution for 15 min * 3 rounds. Every time, remix the particles back to the

solution using vortex mixer

5. Wash the particles with ethanol for 5 min * 3 rounds

6. Re-suspend the particles in fresh ethanol, diluted.

The volumes indicated above are not fixed: they can be changed to adapt different experimental

conditions, as long as the concentrations are the same as the ones in the procedures provided above.

2.6.3 Important tips

Here are some important tips and ideas to vaterite synthesis.

Effect of reaction time up particle dimensions

Currently, the length of time for the reaction is known to be related to the size of the particles

synthesized. However, the exact relationship between reaction time and dimension of vaterite is

yet unknown to me. If the reaction is 3 hours, the size will be around 1 micron. This would be

something to look into during later vaterite synthesis research.

Conditions of ethylene glycol

According to information from Yoshi Arita from University of St Andrews, Scotland, the ethylene

glycol needs to be fresh. Otherwise the vaterite will be elongated or even cubical. As a result,

every time we need to make new solutions for the reaction. The leftovers should be thrown away

without hesitation.[3]
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Figure 2.22: Vaterite crystal synthesized in IWU

Additional protocol details

The stirring rate needs not be too strictly controlled, although few researches is done regarding

how this is affecting the result. This could be something to look into in later research. Also, the

rate of mixing and the mixing direction, i.e., which one is mixed into the other, do not matter in

the experiment. Certain experiments have been done and no obvious change has been observed.

However, the part temperature plays in the experiment is not clear. My guess is that higher tem-

perature speeds up the process and increases the size of the vaterite crystals.

2.6.4 The polydisperse ensembles produced

This is a picture of one of our vaterite crystals taken using a scanning electron microscope. Figure

2.23 shows the distribution of sizes we achieved for the vaterite we made using the procedures

above.
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Figure 2.23: data on the size of vaterite

2.7 Applications of Optical Angular Momentum: Contact-Free
Mechanotransduction, and the Quantum Limit of

Optomechanics

Our vaterite samples are currently in use at the Centro de Investigación Cient́ıfica y de Educación

Superior de Ensenada (CICESE), by Beatriz Juárez, under the supervision of Veneranda Garcés

and Kevin O’Donnell, for her PhD research. Previous studies of the effect of local shear stress

upon biological cells have shown initiation of calcium waves, and other signaling factors, but there

have remained questions about the separate roles of the mechanical strain induced by a physical

probe and the chemical nature of the contact. By utilizing the local flow fields which surround a

rotating vaterite sphere, these studies can performed without any physical contact to the biological

cell (beyond that of the fluid medium which always surrounds it). We have delivered vaterite to

CICESE on multiple occasions, and Beatriz reports that her progress towards completing her PhD

has been significant. Thus, this experiment is expected to result in a publication over the near

term. – It is also notable that the vaterite particles that I have produced are highly porous, and so

may serve as micro-containers for nano-components (e.g., for targeted drug delivery at the cellular
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level, or genetic transfection of individual cells, or fluorescent molecules for advanced imaging),

which may play an essential role in upcoming projects.

Looking into the much more distant future, we have already noted, in the Introduction to this

thesis, that there has been a controversial hypothesis put forth, that “New Physics” could force a

boundary between the microscopic (quantum) and macroscopic (classical) domains (recognizing, of

course, that the existence of such a boundary was hypothesized by the architects of the Copenhagen

Interpretation, at the outset of quantum physics). What we were particularly referring to is the

Diósi-Penrose (DP) gravity-induced collapse model. Lajos Diósi’s argument is that gravity is fun-

damentally nonlinear and so, when properly taken into account, – the argument goes – it induces a

nonlinear modification of the Schrödinger equation, leading to localization once mass of the object

described exceeds some critical threshold, currently estimated to be of order 1010 amu, and so the

vaterite samples we have produced span a range from well above to well below this value. Roger

Penrose has made an argument that a mass-superposition, spread over an extended area of space-

time, would cause an energy shift for “different parts” of the superposition, naturally providing

another mechanism for wavefunction collapse. We have greatly enjoyed discussing the possibilities

with Dr. James Millen, who is a Marie Curie European Fellow in the Quantum Nanophysics group

at the University of Vienna.

If there were some viable possibility for experimentally demonstrating the existence of a quantum-

classical boundary, it would be of considerable interest. The conceptually simplest type of test would

require cooling some degree of freedom associated with a massive object, and performing interfer-

ometry. Currently, the largest mass for which such interference has successfully been demonstrated

is 104a.m.u., which is (awesomely) impressive, but still six orders of magnitude below the threshold

level required for testing gravitational collapse with microspheres. A new and controversial idea

(from Caslav Bruckner, in Vienna) is that you could put a molecule into a spatial superposition

over varying spacetime, and the effect of the curvature on the energy levels may cause collapse

testable via spectroscopic means. Roger Penrose is currently writing a paper on summarizing the

range of tests that have been suggested. Suffice it to say that this thesis does not aim to address

all of the issues involved, and Dr. Millen has been careful to point towards the technical challenges

involved.
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At the same time, it is notable that as various groups have begun to extend the stead march

toward the quantum limit of optomechanics, there has been one particular problem that our work

might help to address: namely, cooling a trapped object requires decoupling it from the surrounding

(room temperature) environment, but while mesoscale objects have been stably trapped in air,

optical traps at these scales become unstable as the air pressure is reduced toward the vacuum limit.

Interestingly, Yoshi Arita, working in the Kishan Dholakia group at St Andrews has demonstrated

gyroscopic stabilization of such traps, by using vaterite particles spun, via transfer of optical angular

momentum, by the trapping beam. The work presented here is intended as a follow-up to the

achievements of the St Andrews group.
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CHAPTER 3

STUDIES IN MICROFLUIDICS, AND THE

CREATION OF MICRO-CONTAINERS FOR

NANO-COMPONENTS

3.1 Introduction to microfluidics and lab-on-a-chip technology

The term “mesoscale” implies some transition between microscopic and macroscopic realms, but

there are multiple kinds of physics to consider in describing such transition(s). At the end of the

previous section, we discussed a transition involving a hypothetical quantum-classical boundary.

Another kind of transition involves the emergence of irreversible behavior, which is to say, the

Arrow of Time. A sequence of new “Fluctuation Theorems” offer insight into the violence of the

nano-world, at space and time scales where the Second Law of Thermodynamics does not strictly

apply.

In this section, I introduce my work on the study of microfluidics, which differs significantly from

the topics introduced in the previous chapters, in that it is less directly related to the foundational

questions of quantum mechanics (though there are those who would argue that questions of irre-

versibility are essential to “the quantum measurement problem,” as was briefly described in our

introduction to SPADs in Chapter 1). Here, we deal with systems described by classical Statistical

Physics.

My interest in the study of microfluidics initially stemmed from a fascination with DNA nanotech-

nology. In high school, I was struck by the notion that DNA could be utilized to store digital

information at enormous densities. At Illinois Wesleyan, my expression of this interest led Dr.

Spalding to introduce me to the separate fields of optical trapping (for single-molecule manipula-

tion) and microfluidics, as a technology that might play a key role in extending, quite significantly,

what would be possible via optical traps alone. Here, I will present the protocols I have learned

95



and developed, my experiences and my advice for working with microfluidics. I will also describe

how microfluidics can be combined with optical trapping technologies for a next generation of ex-

periments.

Microfluidics is the science and technology of systems that process pico-liter amount of fluids using

micron-scale networks of channels. It is one of the fastest growing field in applied sciences, mo-

tivated by molecular analysis, biodefense, molecular biology and microelectronics. A microfluidic

system consists of several important components: methods of introducing samples to the system,

methods for moving the fluids in the channels of the chip, methods for processing and manipulating

the fluids, e.g. mixing and purifying.[26] There are two important developments on the fabrication

of the devices: the development of soft photolithography in PDMS, and the development of fabri-

cating pneumatically activated valves, mixers and pumps.[26] As a result to these developments, the

time period for fabricating PDMS devices has shortened to around two days, from initial designing

to final testing, assuming that the researcher or the research group have access to mask printing

facility or third party companies to provide mask-printing services. In general, microfluidic-based

analysis has higher throughput and lower consumption than biochemical analysis carried out in con-

ventional ways. Its current applications are in the study of protein crystallization, high-throughput

screening in drug development, and study of single cells and single molecules.

Microfluidics has the ability to manipulate multiphase flow. In my research in both IWU and Har-

vard, we are interested in droplet-based microfluidics, which can generate monodisperse water emul-

sions in oil phase. These water droplets, each around pico-liter in size, can act as micro-containers

and carry around DNA strings, proteins and single-cells for self-assembly and bio-analysis. We can

process and manipulate these drops using optical tweezers, droplet sorting, multiple immersions

and pico-injection techniques. For droplet-generation, we can have T-junction designs and co-flow

designs, which will be shown in the first section of this chapter.

I began to work with PDMS-based microfluidics at Illinois Wesleyan, focusing more on fabrication.

Then I spent the summer of 2016 extensively applying microfluidics to bio-related researches in

Weitz group in Harvard. PDMS-based devices are relatively easy to fabricate, and are extensively
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used by researchers in the field. As PDMS is cheap, non-toxic, and chemically stable, it is often

the preferred material for creating lab-on-a-chip platforms for biochemical analysis, and it has wide

applications in many other technological areas.

The vaterite described in the previous chapter turns out to be highly porous, and so those spheres,

quite naturally, can be used as micro-containers for nano-components. Yet for a variety of reasons,

we decided that there could be additional opportunities associated with having fluid-phase micro-

containers for nano-components. Our goal at Illinois Wesleyan was to develop a monodisperse source

of micron-scale fluid-phase droplets to serve as optically trappable containers (“hydrosomes”) for

single-molecule studies and nano-component assembly. At Harvard, our goals expanded to include

development of hydrogel-generation technology based on a PDMS microfluidic system. With our

tailored designs and careful flow-rate control, hydrosomes and hydrogels with controllable dimen-

sions can be generated continuously in the channels. We can successfully encapsulate a variety

of biological cells, bacteria, or chemicals into these micron-scale droplets or hydrogels, for use in

further studies. One project that I have worked on is to apply this technology platform for devel-

opment of an immuno assay at the single-cell level, in which we encapsulate two different cell types

into generated micro-compartments, for observing an immune response at the single cell level.

The first section of this chapter will be on microfluidic chip designing, with several examples of

droplet-based microfluidics and important tips. The second section will be protocols on device fab-

rication, with tips on fabricating devices in Dr. Spalding’s lab in IWU. Then in the third section

I will introduce my work in Harvard on single-cell immunol assay. Some technical details of the

experiments are not available, as I am no longer officially associated with the group. The reason to

include this part is to provide the readers with an example on the applications of this technology,

which I believe has great potential in the field of applied sciences.
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3.2 Designing microfluidic devices

3.2.1 Introduction

This section is about designing masks for soft photolithography, which is a crucial step during mi-

crofluidic device fabrication. Usually people use CAD softwares to design the masks. Both in the

Weitz lab and at IWU, we use AutoDesk AutoCad to design the masks. When finished, the designs

are sent to a third party photo-printing company for printing. The masks are plastic transparencies

with patterns printed on them in black. The masks can selectively expose the wafer coated with

photoresist. Then during development, the un-exposed parts will dissolve in the developer while

the exposed parts are preserved. As a result, the patterns will be translated as channels on the

microfluidic devices.

There are complete tutorials on AutoDesk’s websites and on YouTube. When designing pat-

terns, avoid overlays, open polygons, random lines or dots, as the companies will charge more

for corrections.[22]

One example of a well-designed mask is shown in Figure 3.1.

3.2.2 Device components

Filters at the inlets

The design for filters at the inlets is shown in Figure 3.2 below. The gratings in the design is for

filtering out the impurities, like pieces of PDMS from the channel.

Resistor
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Figure 3.1: Co-flow droplet generator with pico-injection, designed by Xu Zhang, Ph.D
from Weitz lab. [28]

Figure 3.2: Design for inlet filter. [28]

99



Figure 3.3: Fluidic resistor design. [28]

A fluidic resistor is used for absorbing the mechanical shocks produced by the syringe pumps. The

usual design for such a resistor is shown in Figure 3.3.

Mixer

The mixer uses its wiggling structure to mechanically shake the drops to make sure the solutions

are mixed uniformly. The design for mixer is shown in Figure 3.4.

Co-flow droplet generator

The Co-flow droplet generator is a common component for generating water emulsions. One design

example is shown in Figure 3.5. The inlet on the right is the inlet for water while the one on the

left is for oil.[28]

Pico-injection

Pico-injection is used when we want to add some solutions or components to the drops already

made. The electrodes will break the surfactant and let the incoming droplets merge with the

injecting flow. Usually the electrodes have a voltage around 5000V. A design example is shown in
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Figure 3.4: Mixer design. [28]

Figure 3.5: Co-flow droplet generator design. [28]
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Figure 3.6: Pico-injection design.[28]

Figure 3.6, and a zoomed-in version of the design is shown in Figure 3.7.[28]

Reservoir and design for optical trapping

Reservoir is used for observing, controlling or temporarily storing large amount of droplets. In

Harvard, we use reservoir to incubate the cells and observe their immunol activities. In IWU, we

are going to use optical tweezers to trap water droplets in oil for nano self-assembly. The design

used in Harvard is shown in Figure 3.8, designed by Xu Zhang, Ph.D, and the design used in IWU

Figure 3.7: Pico-injection design zoomed in. [28]
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Figure 3.8: Droplet reservoir designed by Xu Zhang, Ph.D, from Weitz lab. [28]

for trapping is shown in Figure 3.9.
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Figure 3.9: Droplet generator and reservoir for optical trapping
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3.3 PDMS-based microfluidic device fabrication

3.3.1 Materials required

The materials listed here are mostly for fabrication of PDMS-based microfluidic devices themselves.

Further items for doing microfluidic experiments are specified in the notes which follow. This list

and the accompanying protocol mostly come from Weitz lab protocol.[22] Some of the items are

particular to work done at IWU, as noted.

Reagents

1. SU-8 photoresist (MicroChem, SU-8 2000 series or 3000 series, depending on the dimension of

the channels). This is a photo-sensitive polymer used for making patterns on silicon wafers. These

chemicals are highly flammable and toxic and should be used in a fume hood or with respiratory

protection. Cleanup is essential.

2. Propylene glycol monomethyl ether acetate (PGMEA; Sigma-Aldrich, cat.no. 537543). PGMEA

is used as developer during the soft photolithography process and it will dissolve the unexposed

photoresist on the silicon wafers. This chemical is highly flammable and should be operated in a

fume hood.

3. Polydimenthylsiloxane (PDMS and its curing agent, Dow Corning, Sylgard 184) is non-toxic,

plain old (transparent) silicone rubber, popularized by George Whitesides for making microfluidic

devices.

4. Isopropanol Alcohol (Sigma-Aldrich, cat.no. 278475) is used for rinsing the developer PGMEA

from the wafer after developing. This liquid is highly flammable and should be handled in a fume

hood.
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5. Aquapel (Aquapel, cat.no.47100) is used for treating the channels of the microfluidic devices to

make them hydrophobic. It is highly toxic and moisture sensitive, and should be handled in a fume

hood with gloves, lab coats and eye protections. The liquid will come in a cylindrical sealed glass

container with plastics wrapped around it. When opening, carefully cut open the plastic and take

out the glass. Then use a glass cutter to open the container. Do not allow the liquid to contact

bare skin.

6. Pressurized oxygen for the oxygen plasma cleaner. If you were to, instead, use only air during

the plasma treatment process, the bonding between the PDMS and the glass slides will likely fail.

7. HFE-7500 (cat.no.98-0212-2928-5). This is the oil phase we used at Harvard for producing

water droplets. It is a bio-friendly liquid, ideal for microfluidic-based bio-analysis. Also, the index

of refraction at room temperature is 1.29, lower than that of water, which is 1.33, which simplifies

optical trapping of the droplets. Avoid direct contact with this chemical.

8. Pressurized air, or pressurized nitrogen for cleaning and drying wafers and the cured PDMS.

Equipment to have on hand

1. Spin coater (Laurell, Model WS-650MZ-23NPP), used during photolithography process for uni-

formly coating the silicon wafer with photoresist.

2. Oxygen plasma cleaner (Gala Instrumente at Harvard; SPI Plasma Prep II at IWU)

3. Vacuum oven for removing air bubbles in liquid phase PDMS, used at IWU lab (Fisher Scien-

tific); or a planetary centrifugal mixer (Thinky mixer, Cat. No. ARE-310) used in the Harvard

Soft Lithography clean room.

4. Filtered air blower, used in Harvard lab to dry wafers and PDMS using pressurized nitrogen.

5. Fume hood.
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6. Silicon wafers (3-inch diameter, Type-p, 1S polished, University Wafer, cat.no.S3P01SP).

7. UV light source (unlabeled source at IWU; OAI, model LS30/5 at Harvard), used for pho-

tolithography.

8. Ceramic hot plate, could be used for curing PDMS.

9. Syringe pumps, this is for doing microfluidic experiments, not needed for fabrication. (Harvard

Apparatus in Harvard lab, not required to be this brand)

10. AutoCAD software.

11. Cover glass (24X60 mm, No.1.5; Corning, cat.no. 2980-246)

12. Glass slides (75X50 mm, Corning, cat.no.2947-75X50)

13. Biopsy punches (Harris Uni-core, Ted Pella 0.5, 0.75 and 1.0 mm diameter)

14. Hamilton gas-tight syringe, 2.5ml and 5ml, this is for doing microfluidic experiments, not

needed for fabrication. (Hamilton, cat.no. 201300)

15. Needles, this is for doing microfluidic experiments, not needed for fabrication. (23 gauge and

27.5 gauge; Terumo Neolus, cat.no.NN2325R)

16. PE-2 tubing, this is for doing microfluidic experiments, not needed for fabrication.(Intramedic)

17. Petri dishes (100-mm diameter X 15 mm; BD Falcon, cat.no.351029)

18. Tweezers.
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19. Aluminum foil (for hot plate)

20. Pipettes, for doing the microfluidic experiments themselves, not for device fabrication. (5-, 10-,

25- and 50-ml; BD Falcon)

21. UV glasses, to protect the eye while exposing the wafer to UV light.

22. Gloves.

23. Microscope (research-grade Olympus, Zeiss, or Nikon)

24. Plastic cups or boats.

25. Razor blades or scalpel.

26. Scotch tape.

27. Millipore filter, 0.22 micron (PVDF and polyethersulfonate type)

3.3.2 Fabrication protocols for microfluidic chips

The protocols presented here are standards the from Weitz lab.[22] There are variations for fabri-

cating microfluidic devices in IWU lab, noted in the section on important tips.

Mask design and ordering

Use CAD softwares to design your masks. Usually I use AutoCAD. Well-written AutoCAD tutorials

are available online. Example patterns are provided in the section below on designing microfluidic

devices. These designs are converted into masks for photolithography by a high-resolution photo
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service company such as Fineline Imaging, Cad/Art services or Selba. Features in the provided

designs should be printed at a minimum resolution of 24000 d.p.i.

When drawing using CAD, avoid overlays, open structures, random dots or other components, as

the companies will charge extra for correcting errors and defects.

Master fabrication

The following Weitz Lab protocol has just been published as an attachment to the paper, “Single-

cell analysis and sorting using droplet-based microfluidics” by Mazutis, Linas and Gilbert, John

and Ung, W Lloyd and Weitz, David A and Griffiths, Andrew D and Heyman, John A.[22]

1. Choose an SU-8 photoresist with a viscosity appropriate for the desired microfluidic channel

thickness. For example, 10-20 micron deep channels of good quality can be effectively produced

using SU-8 2010 or 2015. Channels of 20-40 micron deep can be produced with SU-8 2015, 2025

and 2035. For channels deeper than 50, use SU-8 2050 and higher. Follow the manufacturer’s

online processing guidelines. For the rest of these notes, I assume that the channel has a designed

thickness of 25 microns.

2. Usually, silicon wafers are already very clean straight out the package, and can be directly used

for fabricating masters. However, if there are traces of organic materials on the surface, clean the

wafers as follows: immerse the wafer in a crystallizing dish filled with acetone and sonicate it for

2-5 min; transfer the wafer into a glass crystallizing dish filled with methanol and sonicate for 1-2

min; remove the wafer and rinse it thoroughly with isopropanol; blow the isopropanol off the wafer

with pressurized nitrogen or air and heat the wafer up at 200◦C to vaporize any leftover solvent.

3. Use aluminum foil to line the bottom of the spin coater for (much) simpler clean up. Place

the wafer onto the vacuum chuck of the spin coater and carefully pour 3ml of SU-8 2025 onto the

center of the wafer. Do not allow any bubbles in the photoresist. When almost done with pouring,

drag the flow (could be quite viscous) outside the wafer horizontally to avoid trapping bubbles.
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4. Turn on the vacuum and then ramp the spin rate to 500 r.p.m. and spin for 15s; thereafter,

ramp the spin rate, at 500 r.p.m.s−1, to 3000 r.p.m and spin for 30s, to create a flat resist layer of

the desired thickness. The relationship between the spin rate of the wafer and the thickness of the

channels is shown in figure below, from the data sheet provided by MicroChem.

5. Pre-bake the coated wafer for 1 min on a 65◦C hot plate. The relationship between baking

Figure 3.10: SU-8 2000 spin rate vs. thickness

time and thickness is shown in Fig. 3.11. Make sure that the hot plate is level and flat, so the

photoresist coated on the wafer will not flow and the temperature is uniform.

6. Bake the wafer at 95◦C for 3 min. Some over-baking will not reduce the quality of the master.

7. Cool the wafer to room temperature.

8. Place the photomask on top of the substrate and expose the wafer according to the specifications
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Figure 3.11: SU-8 2000 soft bake times vs. thickness

in the MicroChem data sheet, based upon the power of the UV source at hand. Fig. 3.12 illustrates

the basic dependence. For my work, for 25 microns, the exposure time is around 20s.

9. Post-baking: Fig. 3.13 gives how the required bake time varies with temperature. For 25 micron,

Figure 3.12: SU-8 2000 exposure time vs. UV power

bake the wafer at 65◦C for 1 min and at 95◦C for 3 min.

10. Cool the wafer down at room temperature.

11. Submerge the wafer in PGMEA with the coated side up and agitate for development. A table
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Figure 3.13: SU-8 2000 post-exposure baking time vs. thickness

below shows the relationship between developing time and thickness of the channels. You can either

gently agitate the container for 4min or ultrasonic the solution for 1min. Directly using ultrasonic

is not recommended, as it will potentially rip off the patterns on the wafer. This step should be

performed in fume hood, as the PGMEA is highly flammable.

12. Rinse the wafer with isopropanol. Conduct this step in the fume hood, as isopropanol is a

Figure 3.14: SU-8 2000 developing time vs. thickness

highly flammable chemical.

13. Dry the wafer with pressurized nitrogen and the air blower. If there is white residue on the

wafer, re-develop the wafer in PGMEA for a while and rinse it with isopropanol.
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14. Hard-bake: To improve adhesion of photoresist to the wafer, heat the wafer to 150
◦
C, then

slowly cool the wafer to room temperature. Handle with caution.

15. Use a microscope to examine the quality of the channels. The wafer can be translated into a

petri dish. Avoid dusty environments.

PDMS molding

1. Place the master wafer in a 100-mm diameter plastic petri dish.

2. Weigh 30g PDMS and 3g curing agent in a plastic cup and uniformly mix them together. In

Harvard, a centrifugal mixer was used for mixing, with 30s spent mixing and 30s de-foaming. How-

ever this is not required: mixing can be achieved using a wooden stick or a spoon, as long as a

vacuum chamber is then used to get rid of the bubbles.

3. Pour the PDMS mixture into the Petri dish 3 mm deep and place the Petri dish into a vacuum

desiccator or a vacuum chamber. Release the vacuum periodically to prevent foam from spilling

out of the dish.

4. Degas the PDMS until no bubbles remain attached to any device features and no new bubbles

are being formed. Usually 15-30 min is sufficient. If a few bubbles persist, blow gently on the

PDMS surface using an air blower or canned air, to break the bubbles.

5. Bake the PDMS in a 65◦C oven on a flat, level surface for at least 2h to cure the PDMS. We

have noticed that curing overnight gives better quality PDMS slabs. Right now the PDMS mold is

very resilient and could be store at room temperature in a low dust environment for long periods

of time.

6. Cut the PDMS slab with a scalpel and gently peel the PDMS from the silicon wafer. Excessive

force will break the silicon wafer and ruin your work.
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7. Cover the non-patterned side of the PDMS slab with frosted Scotch tape, and then place the

device on a cutting mat with the channels facing upward.

8. Use a biopsy punch to create holes at each fluid inlet or outlet. Devices with micro-electrodes

require additional holes, at a different punch diameter, for efficient solder filling. The size of the

biopsy punch should be 1.21.5 times smaller than the outer diameter of the tubing to be used. We

used a 0.75-mm-diameter biopsy punch for PE-2 tubing (Intramedic). For micro-electrode chan-

nels, we use a 0.5-mm-diameter biopsy punch.

9. Cover the patterned side of the PDMS with frosted Scotch tape so that both sides of the PDMS

slab are now covered. Place the device, channel side down, on your work surface. Peel off the

Scotch tape from the top side. This will remove most of the debris that results from PDMS hole

punching.

10. Remove the Scotch tape from the patterned side and use sharp tweezers to remove any PDMS

plugs that remain lodged inside the ports. Flush the PDMS slab holes with isopropanol to ensure

complete removal of PDMS debris. Dry under a stream of nitrogen.

11. Place the PDMS slab and the glass slide in the plasma chamber with the channel side facing

upward.

12. Plasma-treat the PDMS slab and the glass slide together. This step must be performed

carefully, as it is essential that the binding of the PDMS slab to the glass is strong; otherwise

delamination will occur during operation of the microfluidic device. The parameters for plasma

treatment depend on the type of machine. For the oxygen plasma cleaner used at Harvard (GaLa

Instrumente, Plasma Prep 2), the following settings worked well: plasma burst = 10 s, power = 2.5,

oxygen level = 810. For the plasma chamber at IWU, we use a SPI plasma prep II. The manual is

online.

13. Remove the PDMS slab and the glass slide from the chamber and bring the plasma-treated
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faces into contact. Gently press the PDMS so that all parts are sealed to the glass.

14. Place the device in a 65◦C oven. The time here does not matter much. The device can be

stored in the oven for a long time.

Microelectrode fabrication

This is optional for general fabrication procedures and is only for devices with electrodes.

1. Place the device on a 90◦C hot plate for 35 min.

2. Cut 5 cm of low-melting-temperature solder wire and use tweezers to insert it into the electrode

channels. Solder bends easily; thus it should be held close to the tip. Upon insertion, the solder

should melt immediately and start filling the microchannel. Continue pushing the solder into the

hole until molten solder emerges from the outlet. Be careful not to burn yourself while working on

the hot plate. A face shield should be worn for protection from molten solder spatters.

3. Remove any excess solder by using tweezers to gently scrape solder from the PDMS surface.

4. Insert metal pins into each end of the filled electrode channel. Verify electrical contact using a

digital multimeter.

Channel surface treatment

1. The Aquapel solution is supplied in a glass ampule embedded in a thick felt pad. Carefully cut

the pad and remove the ampule.

2. Place the ampule at the bottom of a 15-ml Falcon-type conical plastic tube and score the ampule

using a diamond pen or similar. Carefully break the ampule inside the tube.

3. Transfer the Aquapel solution into a 5-ml glass, gas-tight syringe, while leaving the broken glass

in the 15-ml plastic tube.

115



4. Remove air bubbles from the syringe. Upon prolonged contact with air, Aquapel precipitates

and loses its functionality. By preventing air contact, Aquapel can be stored for up to 2 weeks.

5. Attach a 0.22-m Millipore filter and a 23-gauge needle to the syringe and affix PE-2 microtubing

to the needle.

6. Insert the microtube into the continuous-phase inlet of a single microfluidic module, and then

inject the surface treatment solution to fill each of the device channels.

7. Leave the solution in the channels for 1030 s, and then flush with pressurized air or nitrogen.

Devices can be stored at room temperature for weeks or months before use. To prevent degradation

of treated surfaces, avoid direct sunlight. Device surfaces should be covered with Scotch tape to

keep dust from the openings.

Important tips

1. During soft baking, the photoresist will not solidify at 95◦C over the time used for baking. Thus,

handle with caution when taking it off the hot plate. It will solidify when cooled down.

2. Do not use excessive force to inject solder into a channel, or inject excessive amounts, as the

solder will then leak into other neighboring channels and can also bead-up at the outlet, potentially

resulting in an electrical short.

3. Press reasonably hard on the mask and wafer when exposing to UV light. Failure to do so will

result in under-exposure of the channels and they will detach from the wafer during development.

4. When the resist has wrinkles on its surface, it is probably because the solvent was not completely

evaporated during the initial baking step.

5. When there are cracks in the SU-8 film, it is probably because of rapid substrate cooling causing
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thermal stresses. You can cool the wafer more slowly by placing it on a thermally insulating surface

to cool, or by turning the hot plate off and allowing the wafer and hot plate to cool down together

6. If SU-8 structures detach from the wafer during PDMS peeling, it is probably because of insuf-

ficient UV exposure, or unclean wafers.

7. If PDMS does not peel properly from SU-8 structures, it is probably due to insufficient baking

time.

8. If the device leaks from the inlets, it probably meanst that the punches were not sharp enough.

This entire fabrication process is condensed into the following graph, and the photo of a complete

device is attached as an example.

117



Figure 3.15: Fabrication process for creating PDMS-based microfluidic devices

3.4 Application of lab-on-a-chip technology: droplet-based single
cell immunol assay
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Figure 3.16: An example PDMS-based microfluidic device

3.4.1 Introduction

This section briefly introduce readers to the summer project I worked on at Harvard. I will not pro-

vide in-depth details of the experiments, out of respect for the group I worked in, but an overview

may spark interest.

One feature of microfluidics is that the channel dimensions are typically comparable to that of

biological cells, making it very suitable for single cell analysis. Droplets, in our case, generated

in these device, are perfect for encapsulating single cells. These drops, which serve as individual

micro-reactors and micro-containers, transport their contents to different parts of the chip where

specific operations are processed. Many such operations can be performed on these droplets. Pico-

injection can deliver new content into the drops, while sorting is suitable for separating drops based

on their contents.

By using a microfluidic droplet-based immunol assay, we are addressing one of the most funda-

mental questions of immunology: which immunol cell kills which target cell? In other words, the

immunol relationship is to be clarified. In the human immunol system, there are thousands of

different immunol cells, and there are thousands of guest cells getting into the human body every
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minute. The immunol system works when certain types of immunol cells recognize certain types of

guest cells, and then secrete chemicals to kill them. If the immunol relationship is known, when a

human is infected by a certain kind of disease, we can reinforce the original immunol activity by

injecting large quantities of the corresponding immunol cells.

The basic methodology is simple. We encapsulate one immunol cell and one target cell into one

droplet, in a microfluidic device, and use microscopes to study their interaction, i.e., detecting

the death of the target cell or the release of the antibody from the immunol cell. The drops are

largely alginate, a bio-compatible polymer. Alginate can be cross-linked, or “gelled” using ions like

Ca+2, which can be useful when doing sorting in a commercially available sorting machine. While

surfactant is added to the drops to prevent them from merging, occasionally, under pressure or

shock vibrations, drops will coalesce. Once we cross-link the alginate to make them gels, we no

longer need to worry about such issues.

3.4.2 Method 1: Dye release

When cells die, the permeability of their cell membrane will change. As a result, if a fluorescent dye

has been injected into the target cell beforehand, then the dye will be released once the immunol

cell kills it.

In our experiment, we used K562 cell as a target cell and NK cell (Nature Killer cell) as our immunol

cell. We dyed both cells using different fluorescence dyes and encapsulated them into drops using

a droplet-making microfluidic device that we fabricated. After collecting all drops into a reservoir,

we incubate the reservoir while monitoring the process with a confocal microscope, which allows us

to image the cells, in drops, while they communicate with each other. We excite the fluorescence

dye with a laser of the appropriate wavelength, and then filter that wavelength from the imaging

path of the microscope, so as to only detect the fluorescence emission of the dye. We created video

clips showing the dye-release process. Figure 3.17 demonstrates the basic principle.
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Figure 3.17: Dye Release

3.4.3 Method 2: Apoptosis Detection

In this method, we still use NK cells as killer cells and K562 as target cells. However, we dyed

Figure 3.18: NK92-MI cells (red) were encapsulated with unstained K562 cells and
Caspase-3-dependent green fluorescent probe and incubated 37C for 3 hr.

the NK cells with red fluorescence dye beforehand and add Caspase-3-dependent green fluorescence

dye into the alginate. The green fluorescence dye is an indicator of cell death, which will infiltrate

the cell’s membrane once the cell is killed. Then we encapsulate both cells in drops, collect them

into a syringe and incubate the syringe at 37C. We image the drops under the confocal microscope

both before and after incubation. A result is shown in Figure 3.18.
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3.4.4 Method 3: Fluorescence concentration assay to detect secreted IFN-γ

In this method, drops encapsulate NK cells that are dyed red, along with unstained K562 cells,

Figure 3.19: Fluorescence concentration assay to detect secreted IFN-γ

and Anti-IFN-γ capture beads. During the immunol interactions, the NK cells will secrete IFN-γ,

an antibody that kills K562 cells. The IFN-γ also attaches to the beads, and when it does so, the

bead will emit green light under proper excitation. This emission signifies the immunol process, as

shown in Figure 3.19.

Currently we are combining methods, aiming to achieve a most effective demonstration.
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3.4.5 Notes and protocols on water droplet generation using co-flow
microfluidic devices

Droplet generation protocol from Weitz lab [22]

1. Take a completed microfluidic droplet generation device with its channels treated by aquapel.

2. Prepare 2ml HFE-7500 oil with 1.5% (wt/wt) fluorinated surfactant.

3. Load the HFE-7500 oil with surfactant into a 5ml syringe.

4. Load 1ml H2O into a 5ml syringe.

5. Place 23-gauge needles on the syringes, connect to PE-2 microtubing and place on vertically

oriented syringe pumps with the needles facing upward.

6. Start infusing both fluids to fill up the tubing and to squeeze out all the air from the tubing.

The infusion rate, for now, will not influence the following steps.

7. Connect the syringes to the corresponding inlets of the microfluidic chip via PE-2 microtubing

and start infusing. Now set the rate of infusion of the water phase to somewhere in the range from

50 microliters per hour to 800 microliters per hour. The rate of the oil phase can then be set to be

either more or less than that of the water phase, with appropriate ratios depending on the relative

viscosity of the fluids. Note that it can take up to several minutes to get the fluids into the channels

due to friction and pressure issues in the tubing and channels. However, if after 15 minutes nothing

is coming out of a channel, switch to a different device.

8. Once fluids are flowing through the channels, droplets should start to form continuously at the

co-flow junction. The droplet size can be adjusted via control of the flow rates of the fluids.
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9. (Optional) Once flow is steady, initiate collection of the droplets at the outlet by connecting

PE-2 microtubing to a syringe or to a collection tube. Collection can take up to 3 hours, depending

on the amount of droplets needed.
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