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Abstract: In this paper, we investigate which characteristics of technological and financial sys-
tems might be conductive for technological change. We are particularly in how the interplay between
capabilities, resources and networks among investors with the complexity and maturity of technolo-
gies affect the rate and direction of investments in potential innovation projects. To do so, we present
an agent-based simulation model of technology investment by heterogeneous financial agents con-
nected in a co-investment network. We model these agents as to observe emerging technologies on a
technology “fitness landscape”, and select potential investment targets according to their perceived
risk-adjusted returns, where risks are a function of the technology’s maturity and the returns of
the achieved technology fitness. Subject to imperfect information and bounded rationality, financial
agents are heterogeneous in their (i.) their position and “search radius” on the landscape, determin-
ing the potential investment targets they are able to spot, and (ii.) “forecasting ability”, determining
the accuracy of their prediction of achievable technological fitness. We observe which population of
financial agents lead to high rates of technological change and diversity, and prevents technologies
from getting stuck in the financial “valley of death”. In a next step, we introduce investor networks
and allow agents to co-invest together in order to pool financial resources and get access to their
forecasting capability in a specific technological domain. We compare which investor network struc-
tures lead to the high rates of technological change and diversity on a given technology landscape.
Results from a Monte Carlo simulation indicate networked investor population to outperform the
case of isolated stand-alone investors, in terms of investor benefits as well as achieved technological
change. Yet, we also find evidence for the existence of a financial “valley of death” - a certain stage
in the technology life-cycle where its characteristics discourage further investments, thereby mak-
ing the technology likely to “die” due to underinvestment. While encouraging investments in early
stages, the effect of co-investment networks does not prevent this phenomenon to occur.
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1 Introduction

The duality between finance and technological change has long been recognized as a main

driving forces behind capitalist dynamics and economic progress (Perez, 2004, 2010; Schumpeter,

1934, 1942). The search for new technologies is a risky and uncertain endeavor, especially for

the ones leaving established technological trajectories and engaging in more radical forms of

innovation (Dosi, 1988). Yet, in modern capitalistic economies, not only researchers, inventors

and entrepreneurs, but also their providers of capital share this risk. Without an investor able and

willing to financially back such endeavors, ideas remain ideas and will not enter the commercial

landscape as new products, services, or processes. Consequently, understanding investors decision

processes under uncertainty becomes integral to explain technological change.

A long tradition of research dating back to the seminal contributions by Arrow (1962) and

Nelson (1959) indicates investments in innovation to be particularly difficult for investors to

handle. One of the main arguments put forward lies in the nature of information required to

assess their profitability. For mature technologies embedded in a likewise stable and well under-

stood technological system one can apply traditional risk-adjusted return projection techniques.

Here, the expected profitability of an investment is quantified by summing over a set of possible

outcome-scenarios weighted by their probability. In case of emerging technologies diverting from

established trajectories, the still unfolding set of information on single technologies as well as

their interaction in a technological system leads to “true uncertainty” (Knight, 1921), preventing

accurate predictions of timing, technological features, and economic consequences of innovations

along these lines. This prediction problem tends to amplify with increasing interdependence

and associated complexity of modern technological systems, where the performance of any single

component is highly sensitive on changes in other parts (Fleming and Sorenson, 2001; Kauffman

and Macready, 1995).

Confronted with incomplete information and limited capabilities to process them, investors

acting under “bounded rationality” (Simon, 1955) to a large extent rely on simple heuristics, rules-

of-thumb and intuition when assessing potential investments (Tversky and Kahneman, 1974). To

mitigate information deficits and improve applied heuristics, investors can focus on a narrow set

of investments to accumulate relevant experience within that area. This trend of specialization

in modern capital markets (Amit et al., 1998; Black and Gilson, 1998; Cressy et al., 2007) causes
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asymmetric information in the market for technology finance, meaning an uneven distribution

of existing information and capabilities among investors and other relevant agents.

A way to mitigate information deficits outside one’s own area of expertise is to mobilize

knowledge and capabilities of partners within an investor’s network of informants (Casamatta

and Haritchabalet, 2007; Fiet, 1995). In addition, for equity based technology investments, it is

also common practice to team up with other investors and co-invest together (also referred to as

“syndiation”) in the same target. In such syndication networks, investors can pool capabilities and

financial resources (Ferrary, 2010) in order to achieve superior investment performance (Hochberg

et al., 2007). A long tradition of social science research ranging from seminal work by Simmel

(1955) to Merton (1957), Granovetter (1973), Burt (1992) to recent work, provides sound evidence

as to how the behavior of individuals and organizations is strongly affected by the way they relate

to and interact with larger collectives. Consequently, the topology of such investor networks is

also said to strongly affect the amount of investments, their pattern and performance on the

investor – as well s system-level (Baum et al., 2003).

Indeed, we can draw from a large body of literature providing theoretical frameworks as well as

empirical evidence, as to how certain designs of financial systems (Beck and Levine, 2002; Dosi,

1990; Rajan and Zingales, 2001), types of investors (Kortum and Lerner, 1998, 2000), and their

network structure (Baum et al., 2003; Hochberg et al., 2007) impact the amount and performance

of investments in emerging technologies. Yet, from a static perspective it is not obvious how con-

ducive such investments are for technological change. To reach the market and have meaningful

economic and social impact, technologies have to attract investors in every development stage,

from the lab to the scaling up for mass market production. Mismatches between technology

characteristics with the capabilities and rationales of the investor population can cause invest-

ment bottlenecks (commonly refereed to as financial “valleys of death”, where technologies “die”

due to underinvestment) and seriously jeopardize further progress. During the development of

a technology along its’ life-cycle, many of its’ characteristics relevant for investors tend to alter

substantially (Klepper, 1997; Nelson, 1994; Utterback, 1994). Most relevant, the accumulation

of available knowledge regarding the general feasibility and interaction with other components

of the system de-risks technology, decreasing the chance of failure and making further progress

more predictable (Dosi, 1988). At the same time, technology development tends to become more

capital intense in later stages close to commercialization. While maturing, technologies may also
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gradually alter their own logic in terms of how they function and on what kind of problem of

which they can be applied. Consequently, the same technology will appeal to a different set

of specialized investors in different stages of its life-cycle, thus without the right mix of such

investors present, this technology will be unlikely to reach the market. Information sharing

and co-investment networks here have the potential to mitigate the negative effects of lacking

capabilities and resources of particular investors, depending on their structure.

In this paper, we present an agent-based simulation model of technology investment by het-

erogeneous and interacting financial agents. Investment decisions are explained by the topology

of the technology landscape, the agents’ capability to receive and interpret incomplete landscape

information, and their investment capacity. We are particularly interested in the effects of dif-

ferent information-sharing an co-investment network structures among financial agents on the

rate and direction of technological change. We model financial agents to observe emerging tech-

nologies on a technology “fitness landscape”, and select potential investment targets according to

their perceived risk-adjusted returns, where risks are a function of the technology’s maturity and

the returns of the achieved technological performance. We further compare the performance (in

terms of investor profits as well as achieved technological change) of different populations and

network typologies of financial agents on landscapes with increasing technological complexity.

Subject to imperfect information and bounded rationality, financial agents are heterogeneous

in their view of the landscape determining the potential investment targets they are able to spot

as well as in their forecasting ability determining the accuracy of their prediction of achievable

technological fitness. Assuming a trade-off between search radius and forecasting ability, the

population of financial agents will consist of more specialized investors with a narrow view on

the landscape but high forecasting ability within this area, and more generalized ones who can

search a large area but have a low forecasting ability. We observe which configuration of financial

agents lead to high rates of technological change and diversity, and in which technologies get stuck

in the “valley of death”. In a next step, we introduce investor networks and allow financial agents

to co-invest together with their connected peers in order to pool financial resources and get

access to their forecasting capability in a specific technological domain. While we expect such

networks per se to be conductive, we are interested which network structures and compositions

lead to the high rates of technological change and diversity. Therefore, we compare the results
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of more homogeneous or heterogeneous networks in term of the agents technological knowledge

and degree of specialization.

Results from a Monte Carlo simulation indicate networked investor population to outperform

the case of isolated stand-alone investors, in terms of investor benefits as well as achieved tech-

nological change. Yet, we also find evidence for the existence of a financial “valley of death” - a

certain stage in the technology life-cycle where its characteristics discourage further investments,

thereby making the technology likely to “die” due to underinvestment. While encouraging invest-

ments in early stages, the effect of co-investment networks does not prevent this phenomenon to

occur.

Our general attempt is to provide a more nuanced understanding of the interplay between tech-

nology characteristics and decision making processes of bounded rational investors and emerging

characteristics of a technological system. We thereby contribute to literature on technological

change as well as financial and investment theory by establishing an analytical link between

them. We further inform the ongoing discussion on the interplay between network structure and

composition. We are also convinced that this model provides a solid basis for simulations to be

done, enabling them to derive important implications for theory and practice. For policy mak-

ing, it provides the potential to analyze real life investor populations and, based on the results

facilitating technological change, by policies aiming to reconfigure investor network structures or

by targeted public funding in problem areas.

The remainder of the paper is structured as followed. Grounded on prior work which we review

briefly, in section 2 we present a conceptual model of investments on a technology landscape

by connected heterogeneous financial agents, and in section 3 its mathematical formalization.

Section 4 summarizes preliminary results from a Monte Carlo simulation on different investor

network structures and technology landscape complexity. Finally, in section 5 we conclude,

provide implications for theory and practice, and fruitful avenues for further research.

2 Conceptual Framework

In neoclassical economic theory, technological change is commonly envisioned as an equilibrium

shifting exogenous shock, or as something subject to a production function with a determined

relationship between inputs such as R&D spending, and outputs such as patents or sales with new

products. A more modern understanding depicts technological change inherently as happening
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endogenously to the system it is embedded in, where the system’s components are interdependent

among each other as well as with elements outside the system’s boundaries (Freeman, 1987;

Lundvall, 1992; Nelson, 1993). In the same vein, innovation, recognized as the major driving

force of technological change, is above all a social process not happening in isolation, but nurtured

by the collective interaction of various directly involved agents, as well as supporting ones (Powell

et al., 1996).

Investors and other provides of external finance are among those crucial supporting agents.

Indeed, without the commitment of financial resources, ideas remain ideas, independent of their

potential.1 Through their decision of whom to provide capital and to whom not, financial

institutions such as banks and stock markets nowadays represent the major ex-ante selection

device every innovating firm and project has to face. Thus, with their allocation of resources,

they play a major role in determining the amount of innovative effort, as well as its trajectory

(Dosi, 1990).

This pivotal role of finance in facilitating innovation and propelling technological change is

already emphasized in the work of Schumpeter (1934, 1942), who claims innovations by a creative

entrepreneur based on credit creation by a risk-taking banker as the major force behind capitalist

dynamics. The entrepreneur-banker duality here has to be considered as a symbiotic relationship:

the entrepreneur creates potential high-return investment opportunities for the banker, who in

turn enables venturing possibilities for the entrepreneur by providing external finance.

However, it is well understood that this powerful, yet simple, relationship does not capture the

full complexity of the financial system and the multitude of heterogeneous actors influencing the

allocation of resources towards innovative activity. Research during the last decades has provided

a more nuanced understanding as to how the design of financial systems (Beck and Levine, 2002;

Dosi, 1990; Rajan and Zingales, 2001), the behavior of investors on financial markets (Perez,

2002, 2004, 2010), public funding (Mazzucato, 2011), and firm level resource allocation (Hall,

2010; Hall and Lerner, 2009; Tylecote, 2007) influence the rate and direction of technological

change.

In the following, we elaborate on what we believe to be a crucial yet underexplored deter-

minant of technological change: How the composition of investors with heterogeneous resource
1Depending on the capital intensity of the technology, one can develop ideas and invention with a minimum
commitment, as is the case with classical garage inventions. However, this can only go so far, since a fair share
of progress is usually achieved by the testing of such inventions in real life situations, where technological and
economic properties can be gradually improved.
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endowments impacts investment patterns in technologies with certain characteristics, and how

this is mediated by information-sharing and co-investment networks. Further, does this effect

differ when increasing the complexity of technology? Before clarifying the mechanics and other

mathematical details of the simulation model, we will proceed with conceptually establishing

this link between investor characteristics, networks, and resulting investments in technological

change in a bigger context.

2.1 The Dimensions of Technological Change

Following Schumpeter’s conceptualization of the entrepreneur-banker (and broader, finance

and economic progress) duality, we envision technological change primarily as the outcome

of micro-level activities between (i.) agents developing invention by conducting research and

development, and financial agents providing the capital to do so (ii.). In line with his neo-

schumpeterian heritage (eg. Hanusch and Pyka, 2007a; Winter, 2006) we see this relationship

to be embedded in a complex context, and the resulting innovation as the outcome of interac-

tions between various subsystems (Carlsson and Jacobsson, 1997; Lundvall, 1992; Malerba, 2002;

Nelson, 1993) and embedded heterogeneous economic agents (Hanusch and Pyka, 2007b; Pyka,

2002).

As a basic framework for our model explaining technology investments and their impact, we

consider three dimensions of technological change:2 (i.) the research space where technology is

developed by research agents, (ii.) the intermediate technology space which takes the form of

a fitness landscape representing potential performance of certain technology configurations, and

(iii.) the financial space where financial agents search for possible investment opportunities in

technology space. This is illustrated in figure 1.

The outcome of such search and investment processes - technological change - manifests in a

realized reconfiguration of components in a complex technological system consisting of interre-

lated components. We know that technological systems are always embedded in - and co-evolve

with - a social and institutional context (Bijker et al., 1987; Hughes, 1987). Here we see research,

as well as financial space, to be populated by respective agents - investors and researchers - which

are connected by certain cooperation pattern.
2For a more exhaustive discussion on these dimensions, their theoretical foundation and interplay, consider Hain
(2016)
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Figure 1: Linking Investment and Research on the Technology Landscape. Adapted from Hain
(2016)

Investor Space

Technology Space

Research Space

Institutional Environment

In brief, research agents generate potential innovation projects that trigger technological

change if they attract investments by financial agents, while both research and investment ac-

tivities are constrained by the corresponding agents view of the technology landscape. In the

following, we shall elaborate in detail about the intuition, theory, and mechanisms behind this

processes. In the model to be presented in this paper, we are interested in the effects of investor

characteristics and networks on investment pattern resulting in technological change. We here

assume the technology landscape, as well as investment opportunities to be given exogeneous.

While in reality for sure multiple feedback between finance and research activities, for the sake

of simplicity we here assume them to be independent at least in the short-term.3

2.2 The Agents involved in Technological Change

As outlined before, both research as well as financial space are populated by heterogeneous

agents. Our main interest, financial agents, are to be understood as various kinds of entities

who actively invest in technological change, meaning they are willing to financially back firms

and products or projects aiming to alter or improve a certain technology. This can be classical

institutional investors such as pension funds, private equity (PE), venture capital (VC) investors,
3However, in later sections we discuss possible extensions, including feedback loops between investor and research
activities and networks.
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and other financial institutions such as banks which operate under the following assumptions: (i.)

Their main rationale is to optimize the perceived risk-adjusted returns of their investments, and

(ii.) Their returns depend on and scale with the performance of the technology under investment.

This is usually the case in equity based investments.4

Research agents can be all kinds of actors actively participating in the search for technological

advancements. The main assumption here is that they are in need of external finance to do

so. This holds true for most private and academic inventors, other non-public and also public

research institutions, private sector SMEs (Schumpeter’s MARK I mode of innovation) as well

as larger companies (Christensen and Hain, 2015; Hain and Christensen, 2014). Nevertheless, we

obviously exclude a fair share of technological progress happening in big multinational enterprises

that are able to fully finance their research endeavors internally with means of accumulated profit

(Schumpeter’s MARK II mode of innovation). In this model, we treat activity in research space

as a black-box, and assume the behavior of research agents as given. As determinant in the

model, only their output in terms of exogenously proposed innovation projects searching for

finance enters.

2.3 Search on the Technology Landscape

Before being able to discuss investment decisions in the development of novel technologies, we

are in need of a framework which defines the mechanisms on how the search for technology de-

velopment is conducted, and provides metrics for the rate and direction of technological progress

and its profitability for investors.

The concept of “fitness landscapes” has proven useful to map and analyze selection processes as

stochastic combinatory optimization in complex systems; in this case, how technological change

by the way technologies within a larger technological systems are related to each others. In its

core, such a landscape represents a multidimensional mapping of components with attributed

states of solution parameters to some measure of performance representing an elements fitness

(Kauffman, 1993). In this fitness dimension, the landscape shows high performance “peaks”

as well as low performance “valleys”, where the peaks can be understood as the “evolutionary

frontier” – the highest reachable level of a certain evolutionary path with respect to relevant envi-
4Later, we discuss how to relax this assumptions, and allow for diverging rationales (eg. governments who might
aim to increase technological progress rather the return of their investments) and pay-offs (eg. dept based
finance, which always offers a ex-ante fixed percentage of the investment as return in case of success, and
default in case of failure).
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ronmental conditions. In the classical model proposed by Kauffman (1993), biological evolution

of complex organisms, in which the functioning of genes is interdependent, has been analyzed

as “hill-climbing” activity on NK fitness landscapes through random mutation and natural selec-

tion. Since the components are epistatically related, their fitness depends not only on their own

states but also the “interaction” with their neighbors. The systems complexity is determined by

the number of its components and their degree of epistasis, and manifests in the “ruggedness”

of the landscape (Levinthal, 1997). Simple systems, with a small set of components and/or low

epistatic relations among them, correspond to smooth landscapes with a few evenly distributed

peaks, whereas a complex ones corresponds to a landscape with many unevenly distributed peaks

of varying height. A main insight derived from such models is the efficiency of different evolu-

tionary processes. With increasing complexity and associated ruggedness of the landscape, it

becomes more and more unlikely that pure local selection will lead to globally optimal outcomes,

but rather to a lock-in into locally optimal evolutionary pockets.

This evolutionary metaphor has also been adopted to mimic research strategies of firms, con-

cluding that with increasing complexity of the technological/scientific paradigm one is operating

in, the more important become exploration oriented research strategies in contrast to local in-

cremental exploitation of already existing solutions (March, 1991). It is further highlighted that

increasing interdependence between technologies makes it very hard to integrate them in existing

systems (Fleming and Sorenson, 2001). Indeed, modern technological systems appear to develop

towards increasing epistasis, making outcomes of re-combinatory processes such as R&D activ-

ities harder to predict. In order to understand innovation activity in many technological fields,

it thus becomes important to understand the dynamics of these recombination which happen on

large scale and with increasing pace (Jurowetzki and Hain, 2014). In the current energy system,

for instance, the successful development of potential new energy sources is highly dependent on

how their characteristics such as their load fluctuation profiles interact with existing energy pro-

duction, transmission, and storage infrastructure (Christensen and Hain, 2014; Nogueira et al.,

2015). Consequently, the ex-ante prediction of research outcome in this area appears to be im-

possible without immense technological knowledge, a fact that for instance daunts many financial

agents to invest in emerging renewable energy technologies (Kenney, 2011).
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2.4 Investments in Technological Change

In line with Schumpeter’s entrepreneur-banker duality, attempts to search for technological

improvement conducted by research agents can only be realized if able to attract an investment

by a financial agent. In other words, one can envision financial agents to “unlock” potential

inventions to be transformed to innovations in technology space. To make such an investment

happen, three necessary conditions have to be fulfilled.

First, the financial agent has to be aware of the investment opportunity offered by the inno-

vation project. Assuming the market for technology investments to be imperfect and necessary

information often private and opaque, this will not always be the case but rather depend on

the outcome of active search of financing agents for investment opportunities, or by researching

agents for investors. The radius of this search will obviously face some constraints, which could

be geographical, cultural, institutional, or technological (Hain et al., 2016; Hain and Jurowetzki,

2015), where we in the ongoing focus on the latter. We assume investors, depending on their

competence profile and investment history, to be closer related to particular technologies, where

insider knowledge and contacts eases the search for investment opportunities. In the same way,

financial agents operating in a certain area of the technology space enjoying higher visibility

and probably status among research agents, are thus more likely to be approached by them for

funding. As illustration, one can imagine investors to observe the technology landscape with a

birds-eye perspective as in figure 1.

Second, the financial agent has to be sufficiently endowed with capital required by the project.

This investment capacity greatly varies among financial agents. While investors such as business

angels, who fund their activity with private wealth, tend to be rather constraint in the amount

of capital they can mobilize, large investments banks often easily stem multi-billion deals.

Third, the financial agent has to assess the investment as potentially profitable. Generally, it

is well understood in investment theory that the primary rational of financial agents’ investment

allocation is to maximize their risk adjusted rate of return from their capital under management.

This is traditionally done by summing the profits of possible outcome scenarios weighted by their

profitability, in the simplest form as stylized in equation 1:

Πi(πi, ϕi) =
n∑
i=1

πiϕi
N

(1)
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where πi is the expected rate of return (which can be positive or negative) achieved in scenario i,

and ϕi its probability. In case of a symmetric unimodal distribution of outcomes, the average rate

of return is to be found at the probability density function’s maximum (ϕ′
i(πi) = 0). Obviously,

fat tails on the left (loss) side of the distribution associated with higher risks of the investment

also require equally high weights on the right (gain) side to maintain a certain average rate of

return.5 When assuming financial agents per se to be risk averse, for equal average rates of

return they prefer investments with lower variance in outcome (Arrow, 1965; Pratt, 1964).6

Most of the discussion up to now conceptualizes modern financial intermediaries such as VCs

as Schumpeter’s “reckless bankers”, willing to risk it all in prospect of potential extraordinary

gains. In contrast, traditional investors such as commercial banks are said to be risk averse

and thus more prone to invest in mature technologies not subject to the “liability of newness”.

With changing the typical firm populations characteristics during the technology and industry

life-cycle, this goes hand in hand with a natural separation of firms that receive such investments;

entrepreneurial start-ups, in the case of early stage investors, and established SME’s and MNE’s

in the case of late stage investors. Again, the main mechanisms that create this separation

are idiosyncratic risk preferences among financial agents. We, however, propose a different

mechanism attained by disentangling (systemic) risk and uncertainty components of investments.

Πi(πi, ϕi) =

n∑
i=1

πiϕi
N

(1− var(πi)αk) (2)

where αk would represent the risk preferences of financial agent k. The heterogeneity of this

parameter leads to a separation of investors in Schumpeterian risk-takers such as business angels

or venture capitalists investing in emerging technologies, and traditional risk-avoiding investors

such as banks investing in mature technologies in late stages of their life-cycle. By disentangling

risk and uncertainty components of investments, we suggest a different mechanism to be at work.

While we assume the risk of an investment to be objectively measurable by all financial agents,

its uncertainty is based on a subjective evaluation under bounded rationality, thus heterogeneous

among investors (Knight, 1921). In contrast to risk, uncertainty implies that neither the proba-
5This is true for equity based investments, where the investors equally participate in losses as well as benefits.
For debt based finance of innovation projects, only the left tail of the distribution matters, since investors
participate in partial or total default of the loan but the returns are truncated by the ex-ante agreed interest
rate in case of success. Therefore, the mostly fixed interest rate has to capture all potential losses.

6Which holds on average in most settings, yet some situation and personal characteristics might lead to an active
“risk taking” behavior (Tversky and Kahneman, 1992).
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bility of different outcome states, nor the characteristics of this states can be ex-ante quantified.

For investments in emerging technologies, we attribute this prediction deficit primarily to the fi-

nancial agent’s incomplete information regarding the technology’s characteristics and interaction

with other elements of the present technological system.

Financial agents involved in investment decisions under uncertainty basically can react in two

ways. First, they might specialize on investments in a limited set of well-understood technolo-

gies to accumulate specific information improving their ability to forecast future developments

and thereby identify investments with possible abnormal profits. Consequently, an informed in-

vestor able to identify future profitable development scenarios will be more likely to undertake

objectively risky investments in emerging technologies than others.

Second, as an alternative to decreasing the uncertainty of particular technologies, financial

agents might also decrease the overall risk/uncertainty of their investment portfolio by cross-

sectional diversification across technologies (King and Levine, 1993). Obviously, broadly diver-

sified financial agents investing in various technologies have little opportunities to accumulate

technology-specific knowledge and thereby increase their forecasting ability. Without an in-

sight of the technology’s potential upsides, such investors’ risk-return evaluation will therefore

naturally be more sensitive to generic risks associated with emerging technologies “liability of

newness” and favor technologically mature alternatives. To sum up, we suggest the decision to

invest in more risky emerging technologies to be a function of the investor specific forecasting

ability rather than explicit or implicit risk preferences. We here assume a trade-off between

depth and breadth of search. Agents able to invest in a broad set of different technologies will

suffer from limited forecasting capabilities, while highly focused technology specialists will have

only a very limited view of the landscape and resulting investment opportunities.

2.5 Investor Networks in Innovation Finance

In addition to internally accumulating technological knowledge, financial agents also use their

network to access external information of their cooperation partners. However, establishing and

maintaining relationships to other agents usually comes with a cost, so agents will not indefinitely

expand their network beyond a certain beneficial size to get access to even more information.

Furthermore, when information is distributed asymmetrically between agents, the less informed

ones have to find ways to verify the credibility of signals received from their supposedly better
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informed peers. When discussing the assumed trade-off between broad access to external infor-

mation and its verification, arguments of particular network structures are often brought forward

– in particular the benefits of brokerage versus closure. In essence, it is argued that brokering

a relation between actors that would otherwise be unconnected, also refereed to as structural

holes, provides information advantages in terms of access to a diverse set of novel information

(Burt, 1992, 2001). In contrast, being embedded in closed – rather than brokered – network

structures facilitates the exchange of in-depth information through frequent, trust-based interac-

tions among interconnected actors (Uzzi, 1996, 1997). Another stream of research focuses on the

characteristics agents in a network rather than its structure, arguing that belonging to a network

of rather homogeneous agents provides access to in-depth, specialist information, whereas being

embedded in networks of rather heterogeneous agents is a source to diverse information (Fleming

et al., 2007; Reagans and McEvily, 2003). A recent stream of research integrates both lines of ar-

guments by investigating the interaction between network structure and composition (eg. Rafols

and Meyer, 2010; Rakas and Hain, 2016; Ter Wal et al., 2016). We aim to contribute to the latter

discussion. While we generally expect a positive effect of networking vis-à-vis agents investing in

isolation, we investigate which distribution of actor characteristics within this networks - more

homogeneous or heterogeneous - is more conducive for technological change.

2.6 Investments and the Technology Life-Cycle

Without the commitment of financial resources, ideas remain ideas, independent of their po-

tential. One of the main selection mechanisms innovation projects have to face, is the allo-

cation decisions of potential investors (Dosi, 1990). Consequently, understanding decisions of

investors to allocate investments in the exploration, development, demonstration and deploy-

ment of novel technologies becomes integral to understand and explain technological change. As

argued throughout this paper, investors are heterogeneous not only in their resource endowment

and capabilities, but also in applied investment selection routines. Likewise, it is well established

in literature on the history of technology, economics, and technology management, that during

their life-cycle, technologies undergo qualitative changes which alter their internal characteristics

and external potentials (Afuah and Utterback, 1997; Kaplan and Tripsas, 2008; Klepper, 1997).

We here focus on the change of two characteristics of particular importance for the formerly

discussed selection criteria of investors, the risk and scale of investments associated with certain
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stages of the technology life-cycle. First, while maturing, the risk of failure in further development

of technologies tends to decrease. Technologies in early stages of the life.cycle, without established

technological trajectories to guide the direction of search, are commonly associated with higher

risks, and innovation projects in such technologies show a higher probability of failure (Dosi, 1982,

1988; Freeman et al., 1983). Second, capital requirements for further technology development

and deployment tend to increase while a technology moves from the lab to the market. To

gain legitimacy and ease the way to commercialization, it often is necessary to demonstrate the

feasibility and functionality of the invention in a real-life setting of appropriate scale. Finally, to

become an innovation, an invention has to be introduced to the commercial market, with all the

costs associated. This relationship between technology characteristics, associated unit carrying

out innovation projects (research agents), and providers of capital (financial agents) is illustrated

in figure 2.

Figure 2: Investment, Investor, and Research Characteristics during the Technology Life-Cycle.
. Adapted from Hain (2016) and Christensen and Hain (2014)
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An important consequence of cross-sectional investor heterogeneity and longitudinal technol-

ogy heterogeneity throughout it’s life-cycle is the potential of total or temporary mismatches

between investor selection criteria and technology characteristics, leading to a systematic un-

derinvestment of technologies in certain stages of development. Such bottlenecks are commonly

referred to as “valleys of death”, in which technologies “die” due to underinvestment. Such valleys

of death are particularly likely to occur in the post-lab but pre-market stages (Wüstenhagen and

Menichetti, 2012), when capital requirements get to high for specialized early stage investors
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but the technology risk is still unacceptably high for general risk-averse late-stage investors with

suitable capacity.

3 The Model

Based on the theoretical considerations in the previous section, in the following we specify

our agent-based simulation model. We do so by first specifying the main variables and initial

conditions of the technology fitness landscape and the involved agents, followed by the timing

and mechanics of the investment process. Finally, we introduce the option that financial agents

can form networks and co-invest with each others, and elaborate on resulting changes for the

model.

3.1 Initial Conditions

The Technology Landscape

First, we create a two-dimensional fitness landscape representing the space of a technological

system, where different technology configurations are ordered by their relatedness on the x-axis,

and the particular configuration’s fitness (f(x), x ∈ R) on the y-axis. Due to this ordering of

technologies, we assume the associated fitness to be a continuous function with several local

minima representing low performance valleys and maxima representing high performance peaks.

A fitness landscape is appropriately described by a Gaussian mixture, that is to say, a density

function of a random variable obtained as a weighted sum of several Gaussian distributions with

different means and different standard deviations. The number of distributions in the mixture

is not equivalent to the number of peaks, but a mixture of a high number of distributions will

result in a rugged landscape, while a mixture of few distributions will give a flatter, less complex

landscape, as illustrated in figure 3.

Technological progress here is associated with the search of configurations which increase a

technology’s current fitness level. The path from a local minimum xk towards the closest local

maximum xk can be envisioned as a certain technological trajectory, and the process of gradual

improvement over time from the minimum towards the maximum as a certain technology’s

life-cycle. The relative height of a technology in this life-cycle represents its current degree of
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(a) Mixture of 5 Gaussian (b) Mixture of 30 Gaussian (c) Mixture of 90 Gaussian

Figure 3: Different technology landscapes with 5, 30, 90 Gaussian Mixtures

maturity. Consequently, at a local optimum a technology has reached full maturity and exhausted

its trajectory, leaving no potential for further innovation.7

The Innovation Projects

When research agents (which could be firms, research groups, or individuals) attempt to

improve certain technologies, this attempt appears as a potential innovation project k on the

landscape. Its position xk represents the project’s current technological configuration as basis

for the further search for improvement on the technological trajectory leading to the closest local

maximum. Together, the potential innovation projects form the choice-set χ which includes all

possible investments in technology projects within a certain technological system. For the sake

of simplicity, the amount and position of innovation projects in χ is given exogenous, assuming

independence between investment decisions and research efforts.8

The Financial Agents

Financial agents i, the main protagonists of our model, are heterogeneous in the following

characteristics:

First, their position pi on the fitness landscape represents their locus of technological expertise.

Consequently their own search strategy, visibility among potential investment targets seeking for

funding, tends to concentrate around this position. Second, their extend of specialization and
7While a technology life-cycle is usually linked to an industry life-cycle, it is not necessarily synchronized. Thus,
even when a technological trajectory becomes exhausted, industries can still progress by altering their logic
in terms what and how they produce it. However, therefore they have to enter new technological trajectories.
Further, an exhaustive technology can still be commercially viable and attract investments in its deployment.
It, however, does not leave room for further technological improvement.

8Yet, the interaction between investor signals with respect to investment preferences and research efforts would
provide a promising avenue for future research.
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resulting “breadth” of technological knowledge is determined by the search radius ri, where low

values indicate the focus on a narrow set of technologies, and high ones a broad and general

overview on large parts of the technology landscape. Third, the forecasting ability hi represents

the financial agents’ “depth” of knowledge, determining their capabilities of predicting the further

development of technologies. While the search radius reflects the agents’ insights on the x-axis of

the landscape, the forecasting ability reflects their insight on the y-axis, consequently the extend

to which they can assess the height of the local peak of a certain technology and the resulting

profit opportunities of an investment in it.

We assume a trade-off between search radius (knowledge breadth) and forecasting ability

(knowledge depth), in a way that agents with high search radius act as generalists and can spot

potential investments in technologies in a broad area of the landscape, but have very limited

insight in its nature and thus future development. Technology specialists on the other hand,

invest only in a small area of the landscape but have a deeper understanding and more high

quality information, hence can accurately predict the technology’s future potential. We model

that as a simple inverse relationship between search radius and forecasting ability. Furthermore,

a financial agent will have a better understanding of technologies close to its own position in

the technology space, thus the forecasting ability decreases with the distance to the potential

investment. The search radius will serve as a reverence point for the calibration of the other char-

acteristics. The relationship between a financial agents position, search radius and forecasting

ability for a particular project is formalized in equation 3:

hki = (1− 2ri) · (1− |xi − xk|)2 (3)

Finally, financial agents differ in their capital endowment ei, which determines the amount they

are willing or able to invest in an innovation project. To depict some stylized facts on investors, we

assume more generalized investors such as investment banks to have a higher capital endowment

than investors specialized on narrow technological fields, such as venture capitalists. Moreover,

the endowment of any firm has an upper bound in a third of e, where e is the cost of going from

biggest technological improvement possible in the landscape. This positive relationship between

search radius and capital endowment is formalized in equation 4
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ei =
2ri · e

max(f) ∗ 3
(4)

3.2 Characteristics and Mechanics the Investment Process

In the following, we outlay the investment process of financial agents and the corresponding

impact on technological change, as reflected by improving fitness levels of innovation projects.

We do so by first determining the financial agents limited choice-set of possible investment

opportunities reflected by innovation projects, depending on their position on the technology

landscape and their search radius. In a next step, we outlay the financial agents conditional

assessment of expected returns and resulting investment selection, depending on the agents

conditional forecasting capabilities, the innovation projects position in the technology life-cycle,

and the highest achievable technological fitness in the chosen technological trajectory.

Landscape Scanning and Investment Choice-set of Financial Agents

As a first necessary condition for an investment in an innovation project to take place, the re-

spective investor has to be aware of the particular investment opportunity. Assuming the market

for technology investments to be information imperfect, potential investments are discovered by

the financial agents via active own search, signals from their information network or investment

seeking research agents.9

Figure 4: Investors view on the technology landscape

Investor space

Technology space

(fitness landscape)

Research space

i1 i2 … in

k1 k2 … km

r1 rn

9We here focus on the financial agents active search process, yet discuss the possibility of information sharing
networks between financial agents as well as with research agents later on.
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To illustrate this process of market-scanning, one can imagine financial agents to observe the

technology landscape from a birds-eye perspective, as illustrated in figure 4. If an investment-

ready innovation project k falls into a financial agent’s i choice-set χi depends on the project’s

position xk on the technology landscape, the financial agents position xi and search radius ri, as

formalized in equation 5

χi ⊆ χ where : xi − ri ≤ xk ≤ xi + ri (5)

Investment Decision

After a financial agent’s choice set χi is defined, the agent evaluates the profitability of available

investments and chooses the most attractive one. We assume agents to primarily aim to maximize

the risk-adjusted rate of return on investments (Πk
i ) by selecting among the potential options k

what is perceived as the most profitable one, as stated in equation 6:

arg max
k∈χi

[Πk
i (π

k
i , ρ

k
i , c

k
i ) = (1− ρki ) · πki − cki where : cki ≤ ei] (6)

The investor specific risk-adjusted rate of return of a particular investment here depends on the

costs of the investment cki , the gains in case of success πki , and the probability of failure ρki , which

will be specified in the following. The amount financial agent are able to invest into an innovation

project – and thereby the possible costs and benefits – is limited by two factors. First, the costs

of an investments cannot exceed the agents capital endowment ei. Second, the increase of the

innovation projects technological fitness due to the investment can also not be higher than the

financial agents forecasting capability hki on the particular investment. We hereby appreciate the

uncertainty of investments in innovation projects caused by a lack of knowledge and information.

Financial agents will only invest in innovation project to the extend they can be confident about

its possible development.

Besides the agent-specific limitations in forecasting capability and investment capacity, the

financial agents investment evaluation depends on the fitness and maturity of the innovation

project. While its fitness level is absolute, its maturity represents its relative point in the tech-

nology life cycle between the local minimum x and maximum x. In the following, we discuss

the components of this evaluation in detail. Further, figure 5 provides a graphical illustration of
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the relation between a technology’s maturity and the associated costs, probability of failure, and

potential returns of investments.

The costs c(x → y) of increasing a the fitness of a certain technology from its original posi-

tion x to a new position y depend on the innovation project’s post-investment position in the

technology life-cycle, and the relative progress in the technology life cycle due to the investment.

Consequently, in our model the costs of increasing a technologies fitness are not depending on the

achievable fitness level, but solely on the technologies maturity, where early stage technologies

are associated with low and mature technologies with high capital intensity and resulting costs

of further improvement. We model the costs to increase non-linear during the technology life

cycle, as formalized in equation 7.

c(x→ y) = ((f(y)− f(x)) · f(y)− f(x)

f(x)− f(x)
)2 (7)

Yet, investing in innovation is related with higher risk and uncertainty (Dosi and Orsenigo,

1988) leading to a higher variance of returns. Such risks obviously enter the investors calculation,

a fact that is well established in finance (Hain and Christensen, 2014) literature, but somewhat

neglected in literature on technological change as well as policy making (Dinica, 2006). The

risks investors commonly consider are related to the (i.) firm/project invested in, (ii.) policies

that might influence it, (iii.) the market it sells in, and (iv.) the technology deployed. Where

the first is specific to the investment, the latter are systemic. Again, in our model we assume

investment-specific variables to be randomly distributed among innovation projects, and focus on

the financial agents evaluation of technology risk. As a simple rule, financial agents will require

higher returns for riskier investments in order to maintain a certain level of average returns, as

indicated in equation 6.10 Consequently, the expected gains are weighted by their probability of

success (1− ρki ). This can be the result of a single gain and its probability in case of “win all or

loose all” situations, or the scalar product over a variety of possible scenarios. For the sake of

simplicity, we focus on the former.

We assume an innovation project’s risk and associated probability of failure (ρ(x)) to be very

high for emerging technologies in early stages of their life-cycle, while gradually decreasing when
10Which holds on average in most settings, yet some situation and personal characteristics might lead to an active

“risk taking” behavior (Tversky and Kahneman, 1992) and other forms of non-linear risk preferences.
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a technology matures. Hence, in the local minimum ρ(x) = 1; in the local maximum, ρ(x) = 0;

in between, it increases exponentially, as illustrated in equation 8:

ρ(x) =

√
1− (f(x)− f(x))2

(f(x)− f(x))2
(8)

Finally, the financial agents gain π(x → y) from an investment (in case of success) in reality

are supposed to be a function of many variables such as product and capital market condition,

project/team/firm characteristics, value-added by the investor, and the technological potential

of the innovation project. In this model we focus solely on the latter and assume the others

as randomly distributed among innovation projects. In our model, the gains of an investment

increase non-linear as a function of the post-investment achieved fitness level y, the increase of

fitness level due to the investment (∆x→ y), and the relative increase in the technology life cycle

(∆x → y weighted by the distance between local minimum x and maximum x). Consequently,

larger investments increasing the absolute fitness and relative maturity to a large extend appear

to be more attractive for financial agents, as stated in equation 9:

π(x→ y) =
2 c(x→ y)

(f(y)− f(x))(1− ρ(x))
(9)

(a) Costs, expected and real (in case of success) re-
turns

(b) Probability if failure

Figure 5: Characteristics of investments by maturity of technology
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Timing of the Investment Process

The investment process is timed discretely. Every round, a randomly chosen financial agent

gets the opportunity to execute one investment in an innovation project from the current individ-

ual choice sets χi, as determined in equation 5. From this set, the agent chooses the investment

offering the estimated highest positive risk-adjusted returns Πk
i as stated in equation 6, and pay

the associated investment costs cki upfront. In the case no investment offering positive estimates

of returns is available, no investment is made.

The next step determines the failure (with probability ρk) or success with (probability 1 −

ρk) of the invested innovation project. If the technological development fails, the technology

remains at its original position in the technology space, and the project is henceforth excluded

from the choiceset of the financial agent that experienced the failure.11 If it succeeds, the

technology develops to its new position in the technology space, climbing the fitness landscape

towards the local maximum, and the investors reap the gains πki . This process is repeated until

no profitable investments for any financial agent is available anymore. A visualization of an

exemplary investment process illustrating it’s logic can be found in figure 9.

3.3 Investor Network Effect

After developing a simple model of technological change as a consequent of investments by het-

erogeneous isolated financial agents, in a next step we introduce the possibility of co-investments

within a network of financial agents.12 Among professional financiers, the joint investment in

the same target, called “syndication”, is common practice. Rationales to engage in syndicated

rather that stand-alone investments put forward in the investment literature are (i.) increased

deal-flow, (ii.) capital-pooling, (iii.) risk-sharing, (iv.) superior joint selection of investments,

(v.) reciprocity and social reasons pertaining to network position,(vi.) portfolio diversification,

and (vii.) synergies in investment value-adding (Lerner, 1994). Again, we will focus on the first

four rationales, and discuss possible modifications to include the latter ones.
11In this initial version of the model, we exclude population dynamics of financial agents as well as innovation

projects. Consequently, possible project failures have no effect on the existence of the exogeneously given
population of agents and projects.

12While it is the case in our model, in reality such networks among financial agents not necessarily have to
be limited on formal co-investments, but also include more informal interaction such as cross-referencing of
investment opportunities and general information sharing.
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Therefore, we introduce an adjacency matrix Ω = (Ωij)i,j representing a co-investment network

among financial agents, where every agent has a set of neighbors Ωi. Such networks of potential

co-investors can vary in their topology, as we will discuss later. Up to now it is of relevance that

all neighboring financial agents in Ωi represent potential co-investors. This leads to the following

changes in the investment process:

When selecting the most profitable investment k, the financial agents now additionally consider

for every investment in their choice set χi the option of carrying it out alone or in a syndicate

together with the potential co-investors j in their ego-network Ωi. If a co-investment turns out

to be the most profitable one (Πk
i,j > Πk

i ), financial agent i will invite j to join the investment.

We assume a unilateral initiative by investor i, where co-investor j automatically joins all invited

investments which offer a positive risk adjusted rate of return.

While the equation for the risk-adjusted rate of return in syndicates Πk
i,j is calculated in the

same way as for the one stand-alone investments Πk
i , the joint capital endowment (ei,j) as well

as forecasting capability (hki,j) differ from the financial agent i’s characteristics in the following

way.

The joint endowment, as illustrated in equation 10, simply represent the pooled endowment

of both financial agents.

ei,j = ei + ej (10)

Now, both financial agents can join their forecasting capability to evaluate the innovation

projects post-investment performance. However, in such syndicated investments, also asymmetric

information and moral hazard issues arise. In cases when hki > hkj , agent i has an advantage in

the evaluation of the technology’s potential compared to his co-investor j, which only can trust

i’s assessment. The trust the agent with lesser information has in the evaluation of his better

informed peer will depend on the relationship between both, ranging in a continuum from no

(hki,j = arg max[hki , h
k
j ]) to full trust (hi,j = arg min[hki , h

k
j ]),

13 as formalized in equation 11:

hki,j = λ · hki + (1− λ) · hkj (11)

13In our model, we use an “average” trust level of 0.5. Yet, in future research it would be interesting to explore
the effect of stronger or weaker ties between financial agents, and the associated changes in relational trust,
on investment behavior.
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In this model, three rationales for syndication emerge. First, by capital pooling, financial

agents now are able to jointly carry out larger investments which they otherwise could not

stem on their own. Second, agents can benefit from better forecasts when teaming-up with

agents with superior forecasting capabilities in the innovation projects technology space. Third,

financial agents can also benefit from increased deal-flows, since their network partners might

invite them to otherwise inaccessible investment opportunities.

4 Results

To put our theoretical framework and its mathematical mechanisms to a test, we ran a set

of Monte Carlo simulations on different investor network structures and technology landscape

complexity.

To capture the effect of increasing complexity of the techno-economic system, we create 50

different landscapes, which are constructed using from 1 to 50 Gaussian mixtures, leading to an

increasing ruggedness of the landscape by adding more Gaussian mixtures. Higher complexity

here is associated with a larger amount of potential technological trajectories with peaks of

varying height. As a result, a broad investor coverage with the right forecasting capability and

investment capacity of the landscape becomes instrumental for technological change.

To test the effect of varying network structures on investments technological change, we further

introduce four network typologies, where financial agents are (i.) unconnected who can only

invest on their own, (ii.) connected in a heterogeneous (random) network, (iii.) connected with

a tendency to be homogeneous in search radius, and (iv.) connected with a tendency to be

homogeneous in position. We therefore create possible co-investment and information-sharing

links between investors with a certain probability, which is in case (ii.) equal for all other agents,

in cases (ii.) and (iv.) increasing in similarity of search radius or position in the landscape. We

thereby want to mimic the potential tendency of financial agents to establish partnerships either

with partners on a similar level of specialization (separation between generalists and specialists)

or a similar locus of competences (clustering of investors in technology space). We construct

the different networks in the following way. In the heterogenous network all pairs of investors

have an equal probability of being tied by a collaboration, which is in our case 0.5, leading also

to a network with the density of 0.5. In the network homogeneous in position, this probability

is weighted by the distance between the investors in the technology space. In the network
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homogeneous in searching radius, this probability is weighted by the absolute difference between

their searching radius. The networks are computed in the following way: we start with a matrix

of random numbers from a U [0, 1] distribution. For the homogeneous in position (search radius)

network, we multiply every entry Ai,j of the matrix by the distance between the positions (search

radius) of the corresponding investors, |xi − xj | (|ri − rj |). For the resulting matrix, the lowest

half of the entries are transformed into ones, and the highest half are turned into zeros. Thus,

two investors with similar positions in the landscape (search radius) are likely to be connected

in the homogeneous in positions (search radius) network, while the heterogeneous network is a

poisson network.

The outcomes of a simulation model capturing the above discussed characteristics of a techno-

economic system are obviously to a large extend dependent on the initial conditions, namely the

topology of the landscape, the allocation of innovation projects and financial agents on it, and

the agents particular network structure. Since the success of an investment is a probabilistic

event, even the same initial conditions can lead to broadly varying outcomes. Consequently, we

ran for every of the four different network constellations on every level of landscape complexity

(where we have 50, corresponding to landscapes with 10 to 500 Gaussian mixtures, increasing

in intervals of 10) of financial agents 50 Monte Carlo simulations with varying initial conditions.

The results are discussed in the following.

In figure 6 we plot the development of aggregated expected risk-adjusted benefits (sum of all

investors’ expected profits during the investment process as an average of all MC runs on one

landscape) with increasing technological complexity. The expected benefits can be interpreted on

how profitable certain landscape and network configurations appear to financial agents, which

should correspond to higher investment activity. When looking at investments of isolated in-

vestors, we interestingly find first hints of an “inverted U-shape” relationship between techno-

logical complexity and potential investment benefits, indicating that both very low and high

levels of complexity offer less potential for profitable investments. As expected, we clearly see

all three settings with connected and co-investing financial agents to clearly outperform the case

of isolated ones, with an order of magnitude of roughly 30 percent. While we observe a slight

tendency of heterogeneous network structures to outperform the ones homogeneous in position

or search radius, this marginal differences appear to not carry economic significance. In terms
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of incentives offered for financial agents to invest, it appears that networks and the possibility

to pool capabilities and resources per se provide benefits, independent of their composition.

Figure 6: Monte Carlo simulation results on different financial agent networks and technology
landscapes - Expected benefits

In figure 7 we plot the aggregated amount of technological fitness improvements achieved by

the investments, representing a measure of the overall rate of technological change happening in

the system due to investment activities. Again, networked agents tend to outperform isolated

ones in financing technological change, with an even higher magnitude. Consequently, the gains

of investor networks become even more apparent in fostering technological change than boosting

the financial agents profits. Among the different network constellations, the investor networks

homogeneous in search radius tend to perform worse, while the ones heterogeneous in position

and search radius mostly outperform the rest. Even though slightly more pronounced that

for the financial agents benefits, the difference yet appears small and of questionable economic

significance. A first implication of these findings is that policy conductive for technological change
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should foremost incentive syndicated rather than isolated investments. Taking into account

further long-term benefits not captured in this model, such as the establishment of informal

information sharing networks among investors, the effect might even be stronger. Further, such

initiatives should not exclusively strive for establishing networks among investors of a similar

type (bank with bank, VC with VC). Rather, co-investments between high endowment investors,

such as large investment banks, and specialized technology investors, such as venture capitalists,

have the potential to accelerate technological change.

Figure 7: Monte Carlo simulation results on different financial agent networks and technology
landscapes - Aggregated technological change

Finally, in figure 8 we plot the number of technological peaks discovered (meaning technologies

brought to their full extent of maturity), representing a measure of technological diversity cre-

ated. As to be expected, the number of technological peaks reached increases with the complexity

of the landscape, just because in a more complex one, there are by construction more peaks to

discover. Surprisingly and in contrast to former results, the effects of co-investment networks
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completely disappear. The intuitive paradox of higher benefits and technological change while

similar number of technologies brought to full maturity indicates the persistence of the so-called

financial “valley of death”. Consequently, co-investment networks, as constructed in this model,

encourage as we see risky investments in early stages of the technology life-cycle. Here, relatively

small investments might lead to high levels of technological change, given sufficient forecasting

capability and investment capacity of the agents. Yet, even heterogeneous networks which con-

nect agents with high forecasting capability with the ones with high endowment are not able to

breach the valley of death in technology investments. This leads to the policy implication, that

even when harnessing the benefits of co-investment networks to promote technological change,

there still remains a need to provide incentives for private investments as well as the provision

of public funding in the critical post-lab and pre-commercialization phase.

Figure 8: Monte Carlo simulation results on different financial agent networks and technology
landscapes - Number of technology peaks discovered
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Our overall results indeed indicate networked investor population to outperform isolated in-

vestor performance, an effect roughly constant on different levels of complexity of the technology

landscape. We also find heterogeneous networks to show a tendency to outperform other more

homogeneous network configurations. Both findings appear more pronounced for overall tech-

nological change than for the financial agents profits. In line with innovation system literature,

these results suggest that in modern complex technological system, heterogeneous networks, ap-

pear to be the most conductive environment for innovation to thrive. Yet, even heterogeneous

networks

5 Conclusion & Avenues for Future Research

In this paper we presented an agent-based simulation model of technology investment by het-

erogeneous and interacting financial agents. Investment decisions are explained by the topology

of the technology landscape, the agents’ capability to receive and interpret incomplete landscape

information, and their investment capacity. We thereby aim to explain the complex relationship

between investor behavior, technology characteristics, and technological change. We first focused

on the general impact of different investor populations and network structures on the rate and

direction of technological change, given a particular topology of the technology landscape.

We envision technological change primarily as the outcome of micro-level activities between

agents conducting research and development (i.), and financial agents providing the capital to

do so (ii.). In detail, we aim to explain investment decisions of heterogeneous financial agents

with incomplete information regarding investment opportunities as well as their technological

potential. The outcome of such search and investment processes - technological change - manifests

in a realized reconfiguration of components in a complex technological system consisting of

interrelated components.

Assuming analytical orthogonality between these dimensions in the short run, we attempted to

formalize heterogeneous investors decision process under uncertainty and incomplete information

in given innovation projects. We explain this micro-decision and the macro-implication for

technological change as depending on the topology of the technology landscape, the structure

and composition of the investors network, their position in technological space and degree of

specialization. We are particularly interested in which network structures and compositions lead

to the high rates of technological change and diversity.
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Results from a Monte Carlo simulation indicate networked investor population to outperform

the case of isolated stand-alone investors, in terms of investor benefits as well as achieved tech-

nological change. Yet, we also find evidence for the existence of a financial “valley of death” - a

certain stage in the technology life-cycle where its characteristics discourage further investments,

thereby making the technology likely to “die” due to underinvestment. While encouraging invest-

ments in early stages, the effect of co-investment networks does not prevent this phenomenon to

occur.

Our general attempt is to provide a more nuanced understanding of the interplay between tech-

nology characteristics and decision making processes of bounded rational investors and emerging

characteristics of a technological system. We thereby contribute to literature on technological

change as well as financial and investment theory by establishing an analytical link between

them. We are also convinced that this model provides a solid basis for simulations to be done,

enabling them to derive important implications for theory and practice.

For policy making, our results that investment policy conductive for technological change

should foremost incentive syndicated rather than isolated investments (as also argued by Avnim-

elech et al., 2006; Avnimelech and Teubal, 2008). Such initiatives should primarily encourage the

teaming-up of investors with heterogeneous resources and capabilities. Yet, even when harness-

ing the benefits of co-investment networks to promote technological change, there still remains a

need to provide incentives for private investments as well as the provision of public funding in the

critical post-lab and pre-commercialization phase to avoid potential “valleys of death”. Given the

availability of sufficient data on investments as well as industry dynamics (as discussed in Chris-

tensen and Hain, 2014) it provides the potential to analyze real life investor populations and,

based on the results, facilitating technological change by policies aiming to reconfigure investor

network structures or by targeted public funding in problem areas.

Up to now, we made a set of simplifying strong assumptions. Yet, the provided model calls for

further extensions to provide a more nuanced picture, thereby offering plenty of fruitful avenues

for future research.

First, financial agents make their assessment only based on perceived technological potential

of innovation projects, independent of associated research agents characteristics. In reality, such

characteristics as the capabilities of an entrepreneur or management team, the financial stability

of a firm et cetera obviously matter (Hain and Christensen, 2014). For the sake of simplicity,
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we assume such characteristics to be randomly distributed among research agents. However,

scenarios where financial agents show preferences for certain states of such characteristics (firm

size, age, balance sheet facts) which are unevenly distributed on the landscape might also offer

interesting insights. Among others, it could explain why some sectors with particular char-

acteristic mismatches are very unsuccessful in obtaining finance in spite of great technological

opportunities. In the same way, relationships between research and financial agents might very

well influence allocation decisions (Uzzi, 1999), in a way that former successful investments be-

tween the same pair of agents lead to the formation of relational trust and therefore preferences

towards projects carried out by there research agents.

Another possible extension would be endogenous change of the agents’ networks. For instance,

financial agents could be allowed to reconfigure their ego-network in order to increase their short-

or long-term returns. Such a model could possibly explain the path-dependent concentration of

investments in certain technologies, either because they are initially very profitable and thus

many financial agents establish connections to “investment experts” in that sector, or because

the financial agents operating in this sector are initially well connected and thus can mobilize

large investments. In the same way, research agents could reconfigure their networks for various

reasons. In the former sections we already provided an overview as to how research networks

might develop differently depending on industry characteristics (eg. Hain et al., 2014), the agents

strategies (eg. Hain and Jurowetzki, 2014), or the expected cooperation performance (eg. Balland

et al., 2012). These mechanisms could also be used to explain the endogeneous formation of

research networks with respect to the agent’s technological competences and the associated fitness

of the technology, and financial constraints.

In such a model of endogenous technological change, the agents’ learning should also be in-

cluded in different ways. One could be that investors are able to gradually update their position

on the landscape after personal or observed successful investments. Alternatively, former invest-

ments could improve the search radius and/or forecasting capability. Both mechanisms might

over time lead to situations where the attention of financial agents concentrates in particular on

the past successful areas of the technology landscape.

All these extensions demonstrate the potential of an integrated framework of technological

change based on the network topology within and between investor, research, and technology

space to reproduce stylized facts and gain insights in the mechanisms creating them. However,
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while the reproduction of such stylized facts can to some extent be used to verify the proposed

mechanisms, if possible one should strive for empirical verification (Pyka and Fagiolo, 2005)

with real world data. Further, to use models not only as a descriptive but also predictive tool

supporting future decision making, the mechanisms have to be measurable with available data.

For the present framework, we indeed encounter measurement challenges in investor, research,

and technology space, which we will briefly discuss now, and point towards possible solutions.

Generally, network analysis is very sensitive to missing data, hence removing some important

agents (nodes) or their connection (edges) in some cases dramatically alters the topology of the

resulting network. This problem amplifies in dynamic complex systems, which are usually very

sensitive to initial conditions. Consequently, modeling the complex dynamics of large networks

per se has a high standard regarding the data serving as input.

In financial space, there exists, besides large scale surveys (which often suffer from missing

data), very little possibilities to measure more informal networks of information sharing among

investors. However, we do have well documented global data on all kind of equity investments

from various commercial databases – including detailed information on all involved investors

and the investment target, which can be used to construct fairly reliable historical co-investment

networks. Yet, this is only the case for equity investments, such as venture capital, private equity,

management-buyouts, and mergers & acquisitions. While equity investors play an important

role in financing early stage innovation projects and entrepreneurship, their impact differs across

countries and industries. This calls for caution when generalizing insights offered by models

based on such data.

In technology space, there exist some possible ways to delineate technological systems, iden-

tify entities, map their relationships and development over time. Commonly, this is done by

exploiting patent data or scientific publications (eg. Fontana et al., 2009; Verspagen, 2007) and

their citation pattern. Jurowetzki and Hain (2014) take a different approach by leveraging mod-

ern advances in natural language processing and the availability of large amounts of technology

related online text. Using entity extraction techniques, they identify technology terms across

documents, connect them by their weighted co-occurrence in this documents, and cluster them

to technological fields with dynamic community detection methods. To evaluate the “fitness” of

identified technologies, Fleming and Sorenson (2001) use forward-citations a patent embodying

a certain technology combination receives. While this methodology appears appropriate for em-
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pirical hypothesis testing and model verification, a long time-lag between the appearance of a

technology-combination and the availability of data limits its potential as input for predictive

models. Further, it only provides data on revealed technological fitness of realized technology

combinations, not potential fitness of unexplored alternatives. Consequently, to make fitness

landscapes and their application in the presented framework a powerful forecasting tool, there

is still a lot of work to be done to find ways to construct more complete landscapes based on

available real world data.
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Appendix

(a) Period 1.0 - Initial Land-
scape

(b) Period 1.1 - Investors exp.
Returns

(c) Period 1.2 - Investment
choice, repositioning

(d) Period 2.0 - Initial Land-
scape

(e) Period 2.1 - Investors exp.
Returns

(f) Period 2.2 - Investment
choice, repositioning

Figure 9: Illustration of a investment process, 2 rounds

This figure illustrates an investment process at 2 exemplary investment rounds. Period .0 illustrates an investment rounds initial conditions,

where investors as well as innovation projects representing possible investment opportunities are placed on the landscape. The colored lines

below the investors illustrate their search radius, determining which potential innovation projects are visible in their choiceset. In period 1,

an investor is randomly selected and assesses the available projects regarding their expected risk adjusted rate of return. In period .2, the

investors project of choice (with the highest returns) is (in case of success) moved to its new position on the technology landscape.

42


	1 Introduction
	2 Conceptual Framework
	2.1 The Dimensions of Technological Change
	2.2 The Agents involved in Technological Change
	2.3 Search on the Technology Landscape
	2.4 Investments in Technological Change
	2.5 Investor Networks in Innovation Finance
	2.6 Investments and the Technology Life-Cycle

	3 The Model
	3.1 Initial Conditions
	3.2 Characteristics and Mechanics the Investment Process
	3.3 Investor Network Effect

	4 Results
	5 Conclusion & Avenues for Future Research


