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generated from biparental crosses of 18 tetraploid parents. 
Additionally, 74 breeding clones were genotyped, repre-
senting a test panel for model validation. We generated 
genomic prediction models from 171,859 single-nucleo-
tide polymorphisms to calculate genomic estimated breed-
ing values. Cross-validated prediction correlations of 0.56 
and 0.73 were obtained within the training population for 
starch content and chipping quality, respectively, while 
correlations were lower when predicting performance in 
the test panel, at 0.30–0.31 and 0.42–0.43, respectively. 
Predictions in the test panel were slightly improved when 
including representatives from the test panel in the train-
ing population but worsened when preceded by marker 
selection. Our results suggest that genomic prediction is 
feasible, however, the extremely high allelic diversity of 
tetraploid potato necessitates large training populations 
to efficiently capture the genetic diversity of elite potato 
germplasm and enable accurate prediction across the 
entire spectrum of elite potatoes. Nonetheless, our results 
demonstrate that GS is a promising breeding strategy for 
tetraploid potato.

Introduction

Potato (Solanum tuberosum L.) is the third most important 
food crop worldwide after wheat and rice with 385 million 
tonnes fresh weight of tubers produced in 2014 from 19.2 
million hectares of land (FAOSTAT 2015). In addition, it is 
the most efficient producer of food energy and nutrition per 
unit area with similar or less input of nutrients and water 
compared to cereals (FAOSTAT 2015). In a future agricul-
tural scenario, where more food has to be produced from 
less area, these characteristics make potato an interesting 
crop.

Abstract 
Key message Genomic prediction models for starch 
content and chipping quality show promising results, 
suggesting that genomic selection is a feasible breeding 
strategy in tetraploid potato.
Abstract Genomic selection uses genome-wide molecu-
lar markers to predict performance of individuals and 
allows selections in the absence of direct phenotyping. It 
is regarded as a useful tool to accelerate genetic gain in 
breeding programs, and is becoming increasingly viable 
for crops as genotyping costs continue to fall. In this study, 
we have generated genomic prediction models for starch 
content and chipping quality in tetraploid potato to facili-
tate varietal development. Chipping quality was evaluated 
as the colour of a potato chip after frying following cold 
induced sweetening. We used genotyping-by-sequencing 
to genotype 762 offspring, derived from a population 
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To meet the demands of farmers, industry, and consum-
ers, potato breeding seeks to develop improved varieties, 
which combine higher yield with tuber traits optimised 
for the various end uses and not least resistance to pests 
and diseases. Important quality traits for potato include 
starch content and low accumulation of reducing sugars 
during storage for the production of potato chips (crisps) 
and French fries. Following water, starch is the major con-
stituent of the tuber, and is used in a variety of food and 
non-food products. In the EU, 18% of potato production is 
used for starch production, but in some countries, this may 
be higher, e.g., in Denmark up to 60% is used for starch 
extraction (Birch et al. 2012). For these applications, high 
starch content is desirable. In contrast, for the fresh potato 
market, lower to medium starch content is desirable. In the 
potato chips and French fries processing industry, the most 
important quality trait of potato tubers is the content of 
reducing sugars in the tuber upon cold storage. At the high 
temperatures during frying, reducing sugars undergo the 
non-enzymatic Maillard reaction with amino acids, result-
ing in dark coloured and bitter products and the production 
of carcinogenic acrylamides (Shallenberger et  al. 1959; 
Medeiros Vinci et al. 2012). The amount of reducing sug-
ars increases during the cold storage necessary to inhibit 
sprouting and reduce waste (Isherwood 1973).

Today, potato breeding is largely conducted through 
classical selective breeding involving crosses between pairs 
of parents followed by years of evaluation and selection. 
The selection cycle from an initial cross to a novel variety 
release requires 10–15 years (Halterman et al. 2016). Fur-
thermore, multiple difficulties are associated with potato 
breeding, resulting in slow breeding gain. Indeed, the yield 
of cereals per area worldwide has increased by 190% in the 
period between 1961 and 2014, while the yield of potatoes 
in the same period has only increased by 60% (FAOSTAT 
2015). This is mostly due to the fact that most potato cul-
tivars are autotetraploid, so deleterious alleles are ineffec-
tively eliminated from the gene pool over a number of gen-
erations that is relevant in breeding. In addition, the elite 
population is extremely diverse (Tomato Genome Consor-
tium et al. 2012) and highly heterozygous, making predic-
tion of performance of new cultivars particularly difficult 
(Potato Genome Sequencing Consortium 2011).

Progeny testing has demonstrated genetic gains in potato 
breeding (Bradshaw et  al. 2009), and more recently, the 
use of phenotypic best linear unbiased prediction (BLUP) 
estimated breeding values has demonstrated a clear advan-
tage over both phenotypic recurrent selection and progeny 
testing (Slater et al. 2014b). In addition, the use of molecu-
lar markers provides the opportunity to improve breeding 
significantly, and marker-assisted selection (MAS) has 
the ability to select for traits several years earlier in a pro-
gram than would be practical using conventional screening 

methods. Several attempts have been made to implement 
MAS in potato breeding, but its overall impact on improv-
ing potato breeding efficiency has been limited. Due to the 
complexities of highly diverse autotetraploid genetics and 
the difficulties connected to linkage studies in tetraploid 
potato (Slater et  al. 2014a, b), MAS is primarily used in 
potato to select for single dominant traits such as late blight 
resistance (Rizza et al. 2006; Ottoman et al. 2009; Ortega 
and Lopez-Vizcon 2012; Schultz et  al. 2012). When it 
comes to quantitative traits such as yield, starch content, 
and frying colour, progress has been minimal, although a 
number of allelic variants influencing these traits have been 
identified recently (Li et  al. 2013; Schönhals et  al. 2016). 
MAS is considered best suited for traits with a few major-
effect genes, and not for traits where the genetic variation 
is the results of a large number of loci of small effect (e.g., 
yield) (Heffner et al. 2009). In contrast, genomics-assisted 
breeding methods such as genomic selection (GS) does not 
have this limitation (Meuwissen et al. 2001; Heffner et al. 
2009; Jannink et al. 2010). GS is a form of MAS that pre-
dicts breeding values of individuals based on genome-wide 
molecular markers. It is assumed that all quantitative trait 
loci (QTL) are in linkage disequilibrium with at least one 
marker and that all the genetic variance can be explained 
by the markers (Goddard and Hayes 2007). GS is thus con-
sidered to be particularly promising for predicting quan-
titative, complex traits controlled by multiple small effect 
loci, such as starch content and chipping quality (van Eck 
2007; Li et  al. 2008, 2013; Fischer et  al. 2013; Schreiber 
et al. 2014). Marker effects are estimated from phenotypes 
and genotypes of a training population and are then used 
to calculate genomic-estimated breeding values (GEBVs) 
of a breeding population, using only genotypic data. Good 
breeding candidates can be selected based on GEBVs 
before being tested in field experiments, potentially reduc-
ing the breeding cycle (Heffner et  al. 2009; Heffner et  al. 
2010; Jannink et al. 2010; Slater et al. 2016).

In this paper, we describe the results of genomic predic-
tion of tetraploid potato for two important quality traits; 
starch content and chipping (crisping) quality. We applied 
genotyping-by-sequencing (GBS) to a population of 762 
individuals, called the MASPOT population, and estimated 
GEBVs using linear regression models. We compared pre-
diction accuracies of three statistical models: genomic best 
linear unbiased prediction (GBLUP), BayesA, and BayesC. 
Cross-validation was used to determine the robustness 
of GEBVs. In addition, a test panel of 74 breeding clones 
unrelated to the MASPOT population was selected and 
genotyped for model validation. Furthermore, to bench-
mark the performance of GS, a genome-wide association 
study (GWAS) was performed to select significant markers 
associated with the traits in question which were then used 
for prediction.
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Materials and methods

Plant material

762 clones were randomly chosen from a mapping popula-
tion established at the breeding station in Vandel, Denmark, 
called the MASPOT population. The MASPOT population 
consists of roughly 5000 offspring that were generated by 
systematic cross pollination of 18 distinct potato cultivars 
in a full diallel crossing design, either established varieties 
or advanced breeding clones (see Online Resource 1 for a 
detailed description). The selected subset of 762 offspring 
is referred to as the MASPOT population in this paper. 
The offspring were planted in field trials at Vandel, Den-
mark in 2013 and 2014 in duplicates. Plant density was 
approximately 40,000 plants/hectare with 30  cm between 
plants and 75  cm between rows. In 2013, the offspring 
were planted 24–25 April and harvested 12–30 August. 
The tubers were desiccated 1–2  weeks before harvesting. 
In 2014, the offspring were divided in four groups based 
on earliness of parents. The groups were planted 24, 25, 
28, or 29 April and harvested 11–29 August, also with 
1–2  weeks of desiccation, where group 1 was harvested 
first and group 4 was harvested last. As the population was 
highly diverse, not all plants were fully matured at harvest. 
The soil type was Sandy Loam. Fertilisation was done 
with 1000 kg NPK 14-3-15 per hectare. Pests and diseases 
were controlled with Fenix and Titus before and right after 
sprouting (weed), Mospilan in the end of June and again 
in the end of July (insects), and alternating Ranman and 
Revus from approximately 23 June and until desiccation as 
needed, depending on weather (late blight). The fields were 
irrigated as needed. For evaluation of the robustness of the 
prediction model, a test panel of 74 individuals (see Online 
Resource 2) was selected from a mixture of elite cultivars 
and breeding clones, that have been grown, harvested and 
phenotyped in the years 1985–2014 in Vandel, Denmark. 
The cultivars were planted around mid-April to mid-May 
and harvested in late August and September, where culti-
vars used for starch production were harvested last. Tubers 
were desiccated 1–2  weeks before harvesting and plants 
were generally fully matured at harvest. Otherwise, grow-
ing conditions were the same as for the MASPOT panel. 
Varying amounts of data were available (some years miss-
ing) for each cultivar in the test panel. The relationship 
between the MASPOT population and the test panel is vis-
ualised in Fig. 1.

Phenotyping and adjustment for environmental effects

Dry matter content was determined for offspring harvested 
late in August 2013 (one replicate) and 2014 (two repli-
cates). The tubers were washed and a basket of 1.5–10 kg 

of tubers was weighed above and under water, shortly after 
harvesting. The dry matter content was calculated using the 
following empirical equation:

Starch content was computed from dry matter content as 
described by the following empirical equation:

Despite the fact that starch content is not directly deter-
mined by the phenotyping method, Behrend et  al. (1880) 
showed that at least for relevant breeding material, this 
simple equation is sufficiently accurate (Nissen 1967). Fur-
thermore, in our experience, this is used by breeding com-
panies. It may, however, be more correct to address this 
measure as “starch content estimated from observed dry 
matter”.

For the test panel, dry matter content was determined 
for individuals harvested in the years between 1997 and 
2014 with varying number of data points for each individ-
ual. The starch content was then determined as described 
above.

Chipping quality was determined as chip colour follow-
ing frying in oil. From historical data (not shown) this trait 
is known to be quite robust over different years and pheno-
typing was done using a single season only (2013). Tubers 
were stored at 4  °C for approximately two months, after 
which they were stored at room temperature for 2–6 h prior 
to frying. 4–6 slices (1–2 mm) of each tuber were then fried 

DM% = 214 ⋅

((

weight in air

(weight in air) − (weight in water)

)

− 0.988

)

.

S% = DM% − 5.75.

Fig. 1  Heat map of the genomic relationship matrix for the 755 off-
spring in the MASPOT population (purple marking in the left panel) 
and the 63 individuals in the test panel (green marking). The matrix 
is obtained from 171,859 markers. Rows and columns represent each 
individual. The absence of obvious high intensity off-diagonal clus-
ters indicates absence of population structure
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in sunflower oil at 180 °C until no more bubbles emerged 
(typically 2–3 min). Frying colour was assessed visually to 
a standard set on an arbitrary grading scale from 1 (dark) to 
9 (light). Chipping quality for the test panel was assessed in 
the same way for tubers harvested in the years 1997–2014.

Since data from varying years were used, the phenotypic 
data were corrected for difference across years by fitting 
a linear mixed-effects model to the phenotypic data via 
restricted maximum likelihood (REML) using the follow-
ing model:

where yij is the observed phenotype, � is the overall mean, 
genotypei is the random effect of the ith genotype, yearj is 
the fixed effect of the jth year, and eij is the error term. The 
model was made with the lme4 package in R (Bates et al. 
2014; R Core Team 2015).

Adapter design

5′ and 3′ barcoding adapters for Illumina sequencing were 
designed. All adapters contained a 3  bp overhang com-
plementary to the overhang generated by ApeKI (CWG), 
which was the chosen restriction enzyme. In addition, 5′ 
adapters contained eight different internal 4–8  bp bar-
code sequences, as described in (Elshire et  al. 2011), and 
3′ adapters contained 12 different 6 bp barcode sequences 
compatible with standard Illumina sequencing multiplex-
ing, enabling a 96 multiplexing system. Adapter design 
ensured that the ApeKI recognition site did not occur in 
any adapter sequence and was not regenerated after ligation 
to genomic DNA. A list of adapter sequences is given in 
Online Resource 3.

Preparation of genotyping‑by‑sequencing libraries

15–25 mg leaf tissue was homogenised by freezing the sam-
ple in liquid nitrogen and subjecting it to 3 × 10 s cycles at 
6500 rpm using a Precellys mechanical homogeniser (Bertin 
Technologies, Montigny le Bretonneux, France). DNA was 
extracted with DNeasy Plant Mini Kit (QIAGEN, Hilden, 
Germany) following the manufacturer’s instructions. The 
resulting DNA samples were digested with ApeKI (NEB) 
and ligated to adapters according to the 96 Plex GBS pro-
tocol developed by Rob Elshire (Elshire et  al. 2011) with 
minor revisions. Sets of 96 differently barcoded samples 
were combined in eight pools and purified using Nucle-
oSpin Extract II kit (Macherey–Nagel, Düren, Germany). 
Restriction fragments from each library were amplified 
in 50 µL volumes containing 4 µL pooled DNA fragments 
using Phusion High-Fidelity PCR kit (Thermo Scientific). 
Primer design and temperature cycling were performed 
according to the protocol developed by Elshire (Elshire et al. 

yij = � + genotypei + yearj + eij,

2011). Libraries were purified as before and diluted to 2 nM 
as determined by Qubit (Thermo Scientific). Single-read 
sequencing (100 bp) was performed on a HiSeq 2000 (Illu-
mina, San Diego, USA). Each 96-plex library was sequenced 
on three channels of a flow cell. The test panel was prepared 
in the same manner and sequenced on two rapid run flow 
cells on a HiSeq 2500 (Illumina, San Diego, USA).

Filtering raw sequence data, mapping and SNP calling

Sequenced reads were demultiplexed using fastq-multx 
(Aronesty 2013) sorting the data into separate files, remov-
ing the barcode, and discarding reads that did not perfectly 
match any of the barcodes. Sequencing data were imported 
into CLC Genomics Workbench v. 7.0 (CLC bio, QIAGEN) 
and trimmed (minimum quality score 0.01, removal of 
ambiguous nucleotides and remaining adapter sequences). 
All processed reads were concatenated to one fastq file 
per sample, containing trimmed single reads. Reads were 
mapped to the potato reference genome sequence [DM 
v4.03 (Sharma et  al. 2013)] using BWA and sorted with 
Picard tools (http://broadinstitute.github.io/picard/). Single-
nucleotide polymorphisms (SNPs) and insertions and dele-
tions (INDELs) were called using the Genome Analysis 
Toolkits (GATK) (McKenna et al. 2010) UnifiedGenotyper 
tool with the minimum phred-scaled confidence threshold 
at which variants should be called set to 50, and the mini-
mum threshold at which variants should be emitted (and 
filtered with LowQual if less than the calling threshold) set 
to 20. Ploidy was set to 4. SNPs and INDELs were then 
filtered with a Root Mean Square mapping quality of at 
least 30, and only biallelic variants were included. Rather 
than calling genotypes, which would require high coverage 
sequence reads, the variant allele frequencies at each data 
point were estimated and used directly in further analysis 
according to (Ashraf et  al. 2014). Minor allele frequency 
(MAF) was estimated from the read coverage, and SNPs 
were filtered on a minimum MAF of 1% (average variant 
allele frequency  <0.99 and  >0.01). Additionally, SNPs 
were filtered with a read coverage between 5 and 60 and a 
maximum number of missing data of 50%. Individuals with 
greater than 70% missing data were removed.

Assessment of population structure

All statistical analysis and graphics were performed in R 
(R Core Team 2015). The relatedness among the individu-
als was assessed by creating a genomic relationship matrix 
(�) from the genotype matrix (�) according to VanRaden 
(2008) with � containing allele frequencies for each sam-
ple and SNP computed from sequence data (Ashraf et  al. 
2016). The allele frequencies were values between 0 
and 1 calculated as the ratio between allele counts of the 

http://broadinstitute.github.io/picard/
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alternative allele and the total allele count, hence tetraploid 
allele dosage will also be captured:

The allele frequencies were corrected for missing data 
using the following correction as described by VanRaden 
(2008, p. 4420):

where pk is the mean allele frequency at locus k. The geno-
type matrix was centred and adjusted for missing values as 
described by Ashraf et al. (2016), after which missing val-
ues were set to zero, corresponding to a mean imputation 
for missing data.

The genomic relationship matrix was scaled using global 
scaling (VanRaden method 1) (VanRaden 2008).

where 0.25
∑

pk
�

1 − pk
�

 is the sum of genotype variance 
and also the average diagonal of �′�.

A principal component analysis (PCA) was also per-
formed on the genotype data to detect population structure.

Heritability

The heritability of each trait within the MASPOT popula-
tion was estimated from both pedigree and genomic data. 
The pedigree heritability was estimated as the slope of the 
regression line between parent and offspring phenotypic 
data. Parent phenotypic data were calculated as the mean of 
the mother and father phenotypic data. Offspring phenotypic 
data were calculated as the mean over all offspring to each 
parent pair. The genomic heritability was estimated as the 
ratio of the genomic and the phenotypic variance, where the 
genomic variance is obtained with a REML analysis using 
the genomic relationship matrix (de los Campos et al. 2015).

Statistical models

Three different statistical models were used to estimate 
GEBVs: GBLUP, BayesA, and BayesC. The GBLUP 
method uses the genomic relationship matrix, and it is 

AF =
ACalt

ACref + ACalt

.

wi =

�

�

�

�

∑

pk
�

1 − pk
�

over all loci
∑

pk
�

1 − pk
�

over only non −missing loci
,

Zik =
(

Xik − pk
)

⋅ wi.

� =
���

0.25
∑

pk
�

1 − pk
� ,

h2 =
�2
g

�2
y

.

equivalent with a ridge-regression model with uniform 
shrinkage of SNP effects regardless of the marker effect 
size, although shrinkage is dependent on sample size and 
allele frequency (Gianola 2013). It is the most common 
used parametric method for GS. GBLUP directly estimates 
genomic breeding values with the model (Meuwissen et al. 
2001).

where y is a vector of phenotypes, � is the mean, e is a vec-
tor of random normal deviates, and g is a vector of random 
genomic breeding values with the distribution:

The Bayesian models, however, allow the markers to 
explain different amounts of variation. In BayesA, each 
marker effect is drawn from a normal distribution with its 
own variance, allowing the marker to be shrunken toward 
zero to a different degree (Meuwissen et al. 2001).

where X is the design matrix of all marker effects and b is a 
vector of marker effects. Each marker effect is assumed to 
have its own variance parameter:

and where the prior distribution for all variances is a scaled 
inverted Chi-square distribution:

where � is the number of degrees of freedom and S is a 
scale parameter.

BayesC assumes the marker effects to be a mixture, with 
most marker effects to be zero, and a (usually) smaller part 
of markers to be nonzero. There is a common marker effect 
variance for all markers with nonzero effect.

All models were fitted with the BGLR package in R (de 
los Campos and Perez Rodriguez 2016) with default set-
tings for priors. 12,000 iterations were used and a burn-in 
setting of 2000. All analyses within the MASPOT popu-
lation were performed using eightfold cross-validation 
schemes. The data were randomly divided into eight groups 
and one group was then used as validation set while the 
remaining seven groups were used as training population. 
The process was repeated, each time with another group as 
validation set, until predictions had been obtained for all 
individuals. Each analysis was repeated with 10 different 
cross-validation groupings and the average GEBV over the 
ten samplings was taken. A leave-sibs-out cross-validation 

y = 1� + g + e,

g ∼ N
(

0,G�2
g

)

.

y = 1� + Xb + e,

bi ∼ N
(

0, �2
bi

)

,

�2
bi
∼ �−2(�, S),

b =

{

0

∼ N
(

0, �2
b

)

.
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scheme was also applied to analyses within the MASPOT 
population, in which individuals were split into groups of 
full- and half-sibs. Essentially, the 18 parents used for the 
MASPOT population were split into nine pairs, and the off-
spring were then divided into nine groups based on the par-
ents, such that each group contained all offspring to one or 
both parents of the pair in question. Predictions were per-
formed for every group, while making sure that full- and 
half-sibs were not present in both the training population 
and the validation population simultaneously. Most indi-
viduals were present in two groups, and thus present in the 
validation population twice, and in which case, the aver-
age GEBV was calculated for further analysis. The accu-
racy of the GEBVs was determined as the Pearson corre-
lation between the GEBVs and the observed phenotypes, 
described in this paper as prediction correlation:

Assessment of robustness of predictive model in a test 
data set

The robustness of the prediction models was also assessed 
by calculating GEBVs of 74 individuals in the test panel 
and comparing to phenotypic data. Models were created 
using the MASPOT population and predictions were then 
made on the test panel with 10 replications. Prediction cor-
relations were calculated as described above. In addition, 
a combined model was made, using both the MASPOT 
population and the test panel. Random eightfold cross-vali-
dation schemes were made as before, dividing all individu-
als in eight randomly selected groups of equal sizes. Each 
analysis was repeated with ten different cross-validation 
groupings and the average GEBV over the ten samplings 
was taken.

Marker selection with GWAS

A GWAS was performed within the MASPOT population 
on the GBS data by fitting the phenotypic data to each SNP 
with the genomic relationship matrix as covariance. The 
basic GBLUP model described before was used and marker 
effects (�) were added one at a time:

where x is an n × 1 marker genotype vector for n individ-
uals at a marker locus and � is the marker effect. GWAS 
was performed with the regress package in R (Clifford and 
McCullagh 2006, 2014). Significance thresholds for p-val-
ues were determined for each chromosome as the false dis-
covery rate (FDR) as described by Magwene et al. (2011). 
New genomic relationship matrices were made using only 

r(GEBV:y).

y = 1� + x� + g + e,

the significant SNPs and predictions were then made in the 
test panel as described above.

Results

Genotypes and assessment of population structure

The sequencing of the MASPOT population yielded on 
average 4 million trimmed and filtered reads per sam-
ple for the MASPOT population and 1.5 million trimmed 
and filtered reads per sample for the test panel. A total of 
3.4 million variant sites were found. Following filtering 
for MAF  >1% estimated from read coverage, maximum 
missing data of 50%, and a minimum SNP coverage of 1, 
505,321 SNPs remained. Filtering for minimum coverage 
of 5 reduced SNPs further to 186,757 SNPs, and finally, 
removing SNPs with coverage above 60 gave 171,859 
SNPs, constituting the marker set used (see Online Resource 
4). 18 samples that contained less than 30% of the selected 
SNPs were removed, resulting in 755 samples remaining in 
the MASPOT population and 63 samples in the test panel. 
Markers were well-distributed across the chromosomes with 
the highest marker density in high gene density regions typi-
cally found in the ends of chromosomes, while it was low-
est in highly repetitive centromeric regions (see Fig. S1 in 
Online Resource 5). In fact, in many organisms, crossing 
over and gene conversion seems to be repressed near cen-
tromeres (Resnick 1987; Sherman and Stack 1995; Talbert 
and Henikoff 2010) resulting in less genetic diversity, which 
explains the low marker density in those regions. This is 
similar to what has been observed in similar studies in other 
crops (Ganal et al. 2011; Sonah et al. 2013).

No clear population structure was detected from the 
heat map of the genomic relationship matrix (Fig. 1). This 
was further confirmed by a principal component analysis 
of the genotype data, as the first three principal compo-
nents explained only 3.8, 2.9, and 2.7% of the total varia-
tion, respectively (Fig. S2 in Online Resource 5), which are 
indeed typical values for data with family structure, but no 
substantial population structure (Arruda et  al. 2015). Due 
to the diallel design of the MASPOT population from 18 
parents, family structure was expected, and this is detected 
in Fig. 1, where clusters around the diagonal indicate strong 
genetic relationships between full and half sibs. However, 
the lack of stronger relationships across the entire popu-
lation is evident to the highly diverse and heterozygous 
nature of tetraploid potato. Values between −0.22 and 0.96 
were observed in the genomic relationship matrix for the 
MASPOT population, yet 70% of the values were below 
0, reflecting individuals that are less related than average, 
contrary to positive values that reflect individuals that are 
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more related than average (VanRaden 2008). No strong 
relationships were detected between individuals in the test 
panel and the MASPOT population, while some related-
ness could be observed within the test panel. In addition, 
the genetic diversity within the test panel was quite low, as 
evident from the PCA plot (Fig. S2 in Online Resource 5), 
contrary to the MASPOT population. The PCA plot also 
revealed clustering of full-sibs. Furthermore, individuals 
clustered in high and low starch content, forming a gradient 
from low to high values (see Fig. S3 in Online Resource 5), 
but interestingly, the same was not true for chipping quality.

Phenotypes and heritability of starch content 
and chipping quality

Chipping quality was evaluated on a scale from 1 to 
9. After correcting the phenotypic data for differences 
between years, the MASPOT population covered the scale 
from 0.6 to 7.6, slightly skewed towards the lower end 
(Fig. 2). The test panel chipping quality data were normally 
distributed with a similar mean as the MASPOT population 
but a narrower range from 0.8 to 5.8. Chipping quality data 
were only available for 69% of the MASPOT population 
and 48% of the test panel.

The phenotypic distribution of starch content was nor-
mally distributed for the MASPOT population, ranging 
from 6.5 to 24.8% (Fig. 2). The test panel had a quite dif-
ferent distribution, with a narrower range and a mean of 
22%, similar to the maximum phenotype in the MASPOT 
population. Three individuals in the test panel lie slightly 
outside the range of the MASPOT population. However, 
even though this is in principle a violation of model usabil-
ity, removing the three individuals did not seem to have any 
effect on the prediction models (data not shown), and it was 
thus determined that it does not seriously affect the usabil-
ity of the models. The phenotypic distributions reflected 
the composition of the MASPOT population versus the test 
panel; the test panel consisted of a selection of varieties 
and advanced breeding clones that have been selected for 
several traits, including starch content and chipping quality, 
whereas the MASPOT population had not been subjected 
to any selection.

Two estimates of narrow sense heritability for the MAS-
POT population were made. First, the heritability was esti-
mated as the ratio between observed genomic and observed 
phenotypic variance. Second, heritability was estimated 
from parent-offspring regression (Fig. 3) using phenotypic 
data only. For starch content, the estimated heritability dif-
fered markedly by the two methods; 41% estimated from 
genomic data, and 90% estimated from parent-offspring 
regression. For chipping quality, the heritability estimated 
from the two methods was more similar, ranging from 65% 

for the genomic heritability to 78% for the pedigree-esti-
mated heritability.

Marker selection with GWAS

372 SNPs were found to be significantly associated with 
the chipping quality trait, while 612 SNPs were found sig-
nificant for starch content. The SNPs were mainly found 
on chromosome 10 for both traits, namely 316 SNPs for 
chipping quality and 596 SNPs for starch content, and 234 
of those were found significant for both traits. The GWAS 

Fig. 2  Density histograms depicting the phenotype distributions for 
the MASPOT population (red) and the test panel (blue). Chipping 
quality a was determined as assessment of frying colour on a scale 
from 1 (poor) to 9 (best), while starch content b was measured as per-
centage
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results can be seen in Fig. S4 in Online Resource 5, and all 
significant SNPs are listed in Online Resources 6 and 7.

Predictive models within the MASPOT population

The genotypes were regressed to the phenotypes of the 
MASPOT population and GEBVs were estimated for each 
individual using three different prediction algorithms: 
GBLUP (VanRaden 2008), BayesA (Meuwissen et  al. 
2001), and BayesC (Habier et  al. 2011). Prediction cor-
relations were quantified within training data using either 
eightfold cross-validation schemes repeated 10 times or a 
leave-sibs-out cross-validation scheme. The three predic-
tion algorithms yielded similar prediction accuracies for 
each trait (Table 1). Prediction correlations estimated with 
eightfold cross-validation were 0.56 for chipping quality 
and 0.73 for starch content. The predictions were unbiased, 
estimated from the slope of the regression line between the 
observed (y) and the averaged predicted values (x) (Fig. 4), 
where β of 1 indicates no bias. When using the leave-sibs-
out cross-validation scheme, prediction correlations were 
slightly lower while bias was larger.

Assessment of predictive power in an unrelated 
population

Since the purpose of predictive models is to estimate 
GEBVs in individuals outside the training population, we 
tested the ability of our model to predict starch content and 
chipping quality in an unrelated test panel of potato lines. 
As mentioned before, the test panel consisted of varieties 
that have been selected for several traits, including starch 
content, and particularly the mean phenotype of starch con-
tent was at the high end. This represents a challenging, but 
not unrealistic case for testing the robustness of the predic-
tive model. Prediction correlations between 0.30 and 0.31 
were observed for chipping quality and 0.42 and 0.43 for 
starch content (Table  2; Fig.  5). Compared to predictions 
within the MASPOT population, the prediction bias was 
large for the test panel, being 1.34–1.48 and 1.24–1.26 for 

Fig. 3  Parent-offspring regressions for the offspring in the MASPOT 
population for chipping quality (a) and starch content (b) for esti-
mating pedigree heritabilities. The average phenotypic value of each 
parent pair is plotted versus the average offspring value. Error bars 
depict the standard deviation. Narrow sense heritability is estimated 
as the slope of the curves

Table 1  Prediction correlations 
and bias found within the 
MASPOT population from 
average GEBVs over 10 repeats 
with BayesA, BayesC, and 
GBLUP

8-fold random cross-validation and leave-sibs-out cross-validation systems were used for each case
The number of phenotypes available for each trait is indicated with square brackets

Trait/Cross validation BayesA BayesC GBLUP

Correlation Bias Correlation Bias Correlation Bias

Chipping quality [524]
 8-fold 0.56 1.07 0.56 1.09 0.56 1.10
 Leave-sibs-out 0.47 1.34 0.47 1.41 0.47 1.41

Starch content [755]
 8-fold 0.73 1.02 0.73 1.03 0.73 1.04
 Leave-sibs-out 0.67 1.43 0.68 1.51 0.68 1.50
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chipping quality and starch content, respectively, hence the 
highest scores were underestimated, while the lowest were 
overestimated.

For predictions made using only the significant SNPs 
selected with GWAS, prediction correlations were con-
siderably lower, or 0.16–0.17 for chipping quality and 
0.09–0.11 for starch content. Large biases were also 
observed, however, contrary to when using all SNPs for 
prediction, the slopes were below one, giving the opposite 
situation from before.

Assessment of predictive power in an expanded training 
population

To estimate the value of expanding the model, a combined 
model was made, where both the MASPOT population and 
the test panel were used as a training population to create 
a predictive model. 10 different eightfold cross-validation 
systems were made and GEBVs were calculated. Prediction 
correlations were calculated for the two panels separately 
and for the combined panel. For starch content, prediction 
correlations of 0.65 were obtained from average GEBVs 
for the test panel (Table 2), while correlations ranged from 
0.62 to 0.67 for the ten different cross-validation sets. 
When using the GWAS selected SNPs for prediction, lower 
prediction correlations were obtained at 0.34 and a large 
bias of 0.48–0.49. Prediction correlations for the MASPOT 
panel using the expanded training population were similar 
to when using only the MASPOT population for the model-
ling. Prediction correlation for the combined set was higher 
than the prediction correlation for the MASPOT popula-
tion, with an average of 0.81, despite that the same training 
set (combined) was used in both.

For chipping quality, there was a considerable variation 
in the prediction correlations and bias for the test panel for 
each cross-validation set. Prediction correlations ranging 
between 0.15 and 0.48 were obtained while the bias var-
ied from 0.54 to 1.72. Prediction correlation of average 
GEBVs was 0.36–0.37 with a bias of 1.21–1.32. There was 
a correlation between the prediction correlations and the 
bias, where the higher the prediction correlation, the larger 
the bias. Predictions with GWAS selected SNPs resulted 
in slightly lower prediction correlations for the test panel 
and a substantially larger bias (0.26–0.28 and 0.58–0.63). 
No change was seen in prediction correlation for the MAS-
POT population when using the expanded training popula-
tion compared to using only the MASPOT population for 
modelling.

Discussion

Population

The MASPOT population in this study was a selection of 
entries from a larger population made from a full diallel 
crossing design. The crosses were generated from 18 tetra-
ploid cultivars and breeding clones that were selected to 
be as unrelated as possible in the inbred elite potato germ-
plasm to create as diverse offspring as possible. The vari-
ation in genotypes was thus vast in this population, which 
is an advantage when creating prediction models of this 
type. Family structure was detected as strong relatedness 
between full- and half-sibs in both the heat map and the 

Fig. 4  Distribution of genomic estimated breeding values and 
observed phenotype values for BayesC model for the MASPOT popu-
lation for chipping quality (a) and starch content (b). Red colour indi-
cates predictions made with eightfold cross-validation. Blue colour 
indicates predictions made with leave-sibs-out cross-validation. The 
slopes of the regression lines indicate the degree of bias of the predic-
tions
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PCA plot. In addition, the high heritability of starch con-
tent was evident from the clustering in the PCA plot, as 
there was a clear clustering of families into high and low 
starch content. Interestingly, although a high heritability 
was also estimated for chipping quality, the same pattern 
was not seen in the PCA plot, but in contrast, there seemed 
to be a more random distribution of high and low chipping 
quality values among full-sibs. Granted, this can simply be 
an effect of the lower number of individuals with available 
chipping quality data compared to starch content, thus there 
were fewer individuals from each family and the cluster-
ing effect was, therefore, not as obvious. No clear popu-
lation structure was detected, indicating that the genetic 
diversity between alleles is the dominating component, 
regardless of whether they are found within a single par-
ent or between parents. The parents each represent a rela-
tively random selection of four alleles from the gene pool 
and not a particular set of four distinct from other parent 
allele sets. Indeed, the fact that in such a population only 
weak population structure was observed is testament to the 
extreme haplotype diversity of potato. From resequencing 
400 bp amplicons of exons each containing multiple SNP 
loci of a panel of 48 potato varieties, we obtain an average 
of 11 haplotypes per locus (data not shown). From genome 
sequencing of potato and tomato, the nucleotide divergence 
of the elite population of potato is estimated to be six-fold 
higher (3.5% SNP positions in the heterozygous RH vari-
ant) than the divergence of domesticated tomato (0.6%) 
from the wild species Solanum pimpinellifolium (Potato 

Genome Sequencing Consortium 2011; Tomato Genome 
Consortium 2012). This diversity dominated over popula-
tion and family structure in the SNP data. Alternatively, 
the absence of population structure could in principle be 
caused by an extremely narrow genetic base of the 18 par-
ents, so that they were all derived from the same common 
recent genetic ancestor. However, the observed genetic 
diversity is not in agreement with this explanation.

Heritability

The heritability of each trait was estimated with two meth-
ods; from pedigree data and from genetic data. For chip-
ping quality, the heritability was similar for both methods. 
For starch content, however, there was a substantial differ-
ence between those two heritabilities, ranging from 40% 
for the genomic heritability to 90% for the pedigree herit-
ability. The genomic heritability can be defined as the pro-
portion of variance of phenotypes explained by the regres-
sion on available markers. Many polymorphic markers are 
needed to estimate relatedness accurately, in particular for 
distant relatives. Given the high diversity of potato with 
one SNP per 24 bp (Uitdewilligen et al. 2013), and an aver-
age of 11 haplotypes per loci observed in only 48 individu-
als (data not shown), the true genomic diversity is likely to 
be underestimated using only 171,859 markers. Each bial-
lelic SNP marker is likely to be in linkage with more than 
two haplotypes, and thus cannot represent the true diver-
sity at the site, hence the heritability of 90% observed from 

Table 2  Prediction correlations and bias found from average GEBVs over 10 repeats with BayesA, BayesC, and GBLUP

Predictions were made using either only the MASPOT population or both the MASPOT population and the test panel (combined) to train the 
model. Predictions of the test panel were also performed using only the significant SNPs selected with GWAS. Predictions made with the com-
bined model were done using eightfold cross-validation (*)
The number of phenotypes available in each case is indicated with square brackets

Trait/test set Training set Markers BayesA BayesC GBLUP

Correlation Bias Correlation Bias Correlation Bias

Chipping quality
 Test panel [30] MASPOT All [171,859 SNPs] 0.31 1.34 0.31 1.48 0.30 1.47
 Test panel [30] MASPOT GWAS [372 SNPs] 0.16 0.29 0.17 0.31 0.17 0.29
 Test panel [30] Combined* All [171,859 SNPs] 0.36 1.21 0.36 1.26 0.37 1.32
 Test panel [30] Combined* GWAS [372 SNPs] 0.28 0.61 0.26 0.58 0.30 0.63
 MASPOT [524] Combined* All [171,859 SNPs] 0.56 1.07 0.56 1.09 0.56 1.09
 Combined [554] Combined* All [171,859 SNPs] 0.56 1.07 0.55 1.09 0.55 1.09

Starch content
 Test panel [63] MASPOT All [171,859 SNPs] 0.43 1.24 0.43 1.26 0.42 1.26
 Test panel [63] MASPOT GWAS [612 SNPs] 0.09 0.16 0.09 0.15 0.11 0.19
 Test panel [63] Combined* All [171,859 SNPs] 0.65 1.04 0.65 1.04 0.65 1.04
 Test panel [63] Combined* GWAS [612 SNPs] 0.34 0.49 0.34 0.49 0.34 0.48
 MASPOT [755] Combined* All [171,859 SNPs] 0.73 0.99 0.73 1.00 0.73 1.00
 Combined [818] Combined* All [171,859 SNPs] 0.81 1.05 0.81 1.05 0.81 1.06
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the parent offspring regression is the more credible of the 
two. This extremely high heritability estimate, however, is 
not in agreement with other studies. For instance, Slater 
et al. (2014b) estimated the heritability of specific gravity, 
which is highly related to our measure of starch content, to 
74%. In contrast, D’hoop et al. (2014) estimated heritabili-
ties of underwater weight, related to starch content, to 87% 
for one panel, while another panel was estimated to have 

heritability of 76%. As heritability is a function of genetic 
and environmental variances, it is thus appropriate only to 
the population from which the variances are derived (Cun-
ningham and Stevenson 1963). In this case, the genetic 
diversity is vast due to the diallel crossing design and the 
fact that no selection has occurred in the MASPOT popula-
tion, and thus high observed heritabilities can be expected.

GWAS

SNPs that were determined to be significant for either 
starch content or chipping quality with GWAS were mainly 
clustered on chromosome 10. In a recent study of GWAS in 
tetraploid potato, Rosyara et al. (2016) did not identify any 
QTL for complex traits such as chip colour, however, this is 
most likely due to insufficient markers and population size 
(3441 SNP markers and 221 tetraploid lines). A number of 
invertases believed to be associated with a range of tuber 
quality traits are located on chromosome 10 (Schreiber 
et  al. 2014), including apoplastic invertase (Inv-ap-b) (Li 
et al. 2008). However, the GBS data set used in this study 
is not well suited for the discovery of exact genetic vari-
ants of genes underpinning observed functional biological 
difference. This would require a different SNP discovery 
approach altogether, or at least a deeper sequencing of each 
sample to ensure less observed markers to be filtered out 
or result in false homozygous calls (see below) to expect 
a realistic chance of efficiently identifying causal vari-
ation. As a consequence, we have not conducted such an 
investigation.

Genomic prediction models

In this study, genomic prediction models were developed 
with GBLUP, BayesA, and BayesC to predict phenotypic 
values. GBLUP mostly assumes equal variance across all 
loci and thus performs homogeneous shrinkage of marker 
effects, although unequal shrinkage can occur at extreme 
MAF (Gianola 2013). The Bayesian models, however, 
allow the marker loci to explain different amounts of vari-
ation and they are therefore more flexible with respect 
to genetic architecture. Compared to GBLUP, Bayesian 
methods are thus better suited for traits controlled by few 
large-effect QTL (Meuwissen et al. 2001; Clark et al. 2011; 
Beaulieu et al. 2014). Starch content and chipping quality 
are considered to be highly polygenic traits (van Eck 2007), 
and the difference between model performance were thus 
not expected to be considerable. Indeed, the three models 
performed similarly.

Prediction models within the MASPOT population were 
made with either a random eightfold cross-validation set 
or a leave-sibs-out cross-validation system. For both traits, 
the prediction correlations obtained with the leave-sibs-out 

Fig. 5  Distribution of genomic estimated breeding values and 
observed phenotype values for BayesC model for the test panel for 
chipping quality (a) and starch content (b). Red colour indicates pre-
dictions made with all 171,859 SNPs. Blue colour indicates predic-
tions made with GWAS selected SNPs. Triangle indicates  model 
trained with the MASPOT population. Circle indicates model trained 
with the combined set (MASPOT population and test panel) with 
eightfold cross-validation. The slopes of the regression lines indicate 
the degree of bias of the predictions
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cross-validation were lower than those obtained with the 
eightfold cross-validation as expected. Random cross-vali-
dation can lead to overestimation of the actual performance 
in breeding, because full-sibs and half-sibs performance 
are easier to predict than less related individuals, which are 
likely to be the target of predictions in practical breeding. 
However, a disadvantage with the leave-sibs-out cross-val-
idation scheme given the high genetic diversity of potato 
in relation to the size of the training population, is that this 
method is likely to exclude relevant haplotypes with func-
tional importance from the model altogether, because any 
particular haplotype is not necessarily present outside sib-
lings. To ensure this, a larger training population is nec-
essary. At the present time in the absence of larger data 
sets, we cannot establish which of the two cross-validation 
schemes is the more realistic.

Validation of models in the test panel

Moderate prediction correlations were obtained when pre-
dicting chipping quality in the test panel, although pre-
diction bias was large. Also for starch content, moderate 
prediction correlations were obtained in the test panel, 
considerably lower than the correlations obtained within 
the MASPOT population, most likely due to the profound 
differences between the two panels. The individuals in 
the test panel have been selected for high starch content, 
while the MASPOT population has not been subjected to 
any selection. This was clearly reflected in the phenotypes, 
where average starch content was much different between 
the two populations. Additionally, the high genetic diver-
sity of potato means the validation panel likely contains 
haplotypes of moderate to high effect size not accounted 
for in the MASPOT population. The logical solution is to 
increase the size of the training population to match the 
high genetic diversity. When we combined the two popu-
lations, we obtained higher and unbiased prediction cor-
relations without impacting the prediction accuracy of the 
MASPOT population.

It should also be considered, though, that the test panel 
consisted of historical data from the years 1997–2014, 
while phenotype data for the MASPOT population was 
collected in 2013 and 2014. The use of a prediction model 
constructed from contemporary data to predict a panel with 
historical data might have a negative effect on the predic-
tion accuracy due to imprecise pre-processing of the phe-
notypic data to adjust for annual environmental variation. 
However, studies in barley (Sallam et  al. 2015) and oat 
(Asoro et al. 2011) have shown that only a slight decrease 
in accuracy was observed when using historic data to train a 
prediction model compared to contemporary data. In addi-
tion, Sallam et al. (2015) noted that the historical data used 
in the study on barley were unbalanced and not corrected 

for field variability, contrary to the contemporary data, sug-
gesting that the fact that the data were collected in another 
time period was not the only factor affecting the prediction 
accuracy. In the present study, the phenotypic data has been 
corrected for yearly variation. If data from the validation 
panel from 2013 and 2014 only were used (omitting 20 
individuals from the validation panel for which there was 
no 2013–2014 data) slightly improved prediction correla-
tion of 0.50 was observed, but also a higher bias of 2.0. The 
correlation, however, was still substantially lower than the 
0.74 observed for the MASPOT population, suggesting that 
imprecise pre-processing of phenotype data cannot fully 
explain the observed difference in accuracy between the 
two populations. The data was, however, not corrected for 
genotype-by-environment (GxE) interaction. Generally, lit-
tle is known about specific GxE interaction in potato and 
our data does not allow a rigorous estimate of GxE effects. 
Indications from incomplete data of potato cultivars grown 
in various locations over many years generally display the 
same ranking of cultivars with respect to starch content 
and chipping quality from year to year, at least within the 
same climate zones. This indicates a limited importance of 
GxE interactions in this study. Thus, for simplicity, and to 
decrease the risk of overfitting the data, we have chosen to 
ignore GxE in our data correction.

Predictions for chipping quality were more variable 
when using the combined populations to construct the 
models. For ten different eightfold cross-validation sets, 
prediction correlations ranging from 0.15 to 0.48 were 
obtained, with bias ranging from 0.54 to 1.72. To this end, 
it is important to note that the test panel only consisted of 
63 individuals, and of those, only 30 individuals had avail-
able chipping quality data. It could be argued that the num-
ber of individuals with chipping quality phenotype data was 
too low to provide reliable estimates of correlation because 
of insufficient degrees of freedom. Nonetheless, this num-
ber of living individuals (excluding full and half sibs) with 
a comprehensive set of phenotype data is a situation often 
encountered in practical breeding and is thus relevant for 
this study. Indeed, the 30 individuals with these phenotype 
data were all that was available at the commercial breeding 
company LKF Vandel.

As argued above but even more relevant for chipping 
quality, it is likely that every subgrouping of the panel 
leads to the exclusion of moderate to high effect size hap-
lotypes from the model. Considering the complexity and 
gene redundancy (gene copy number) of the carbohydrate 
metabolism in potato, it is not difficult to imagine that the 
extent of reducing sugar accumulation following cold stor-
age can be influenced by many haplotypes and that for reli-
able chipping quality prediction across the spectrum of 
elite varieties thus requires a relatively large training popu-
lation. However, in contrast to starch content, combining 
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the MASPOT population and the test panel did not improve 
prediction accuracy for chipping quality markedly as 
expected. This could simply stem from the design of the 
cross-validation system, since the lower number of indi-
viduals with phenotype data available in the test panel for 
chipping quality compared to starch content (30 versus 63) 
would not be equally divided between the cross-validation 
groups and in some folds, the majority of test panel indi-
viduals might be in the validation set by chance. However, 
if this effect was a major contributor, then an inverse corre-
lation between number of test panel individuals in the vali-
dation set and prediction correlation should occur. To this 
end, we have plotted the prediction correlation and number 
of test panel individuals in Fig. S5 (Online Resource 5), 
and we observed no systematic distribution of points indi-
cating an inverse relationship. Therefore, we conclude that 
this is not a major contributor of the marginally increased 
prediction correlation obtained with the combined model. 
Another possible explanation for this oddity is that one or 
more of the high effect size haplotypes does not display 
additive genetics. Indeed, this may very well be the case for 
chipping quality. Invertases have been shown to be impor-
tant for chipping quality (Baldwin et  al. 2011; Schreiber 
et al. 2014) and more than 20 loci encoding invertases exist 
in potato (Schreiber et al. 2014). While vacuolar invertase 
have been found to be particularly important for this trait 
(Sowokinos 2001), and indeed knock-out of this locus leads 
to high chipping quality (Clasen et al. 2016), this was based 
on analysis of only four cultivars of potato. It must be con-
sidered possible, that good chipping quality can be influ-
enced by other invertase loci. If the case is that multiple 
invertase loci individually can reduce the concentration of 
reducing sugars sufficiently to obtain high chipping quality, 
the effect of these loci is not additive, as each of them will 
have full effect. In any case, more detailed studies are nec-
essary to support these speculations.

Using GWAS selected SNPs did not improve prediction 
accuracy when predicting the performance of individuals in 
the test panel. In fact, prediction correlations of chipping 
quality were reduced by half, while prediction correlations 
of starch content were reduced by more than four times 
when using SNPs specifically selected to be significant for 
the trait. When using the combined model, predictions were 
somewhat improved compared to using only the MASPOT 
population for training, but in all cases, the bias was con-
siderably large. This observation of higher robustness of 
“cross-breed” prediction may be considered an argument 
in favour of using numerous genome-wide markers as in 
GS in comparison with limiting the prediction models to 
only the most important SNPs as in GWAS. This indicates 
that GS is a promising alternative to MAS in breeding pro-
grammes. While the clear advantage of MAS is that fewer 
markers need to be sequenced, GS seems to be more robust 

when predicting performance in unrelated populations, 
which is a relevant scenario for breeding companies. It is 
possible to imagine that predictions with GWAS-selected 
markers could have been improved by conducting GWAS 
for a reference population that is closely related to the test 
panel, and applying the identified SNPs in GS on the test 
panel. The magnitude of the effect of any particular SNP 
is likely to differ between populations and using GWAS, 
SNPs that have a smaller effect (below the significance cri-
teria) but larger effect in the testing population are excluded 
from the model altogether. However, this would require a 
constant calibration of the prediction model. In addition, 
the genome-wide prediction approach has the clear advan-
tage that the same set of markers can be used for multiple 
traits, while the marker selection approach requires sepa-
rate marker set for each trait.

Implementation of genomic selection in potato breeding

Overall, the results imply that GS has great potential in 
predicting the performance of tetraploid potato. The pre-
dictions were most accurate when preditcting performance 
within the same population (MASPOT population), while 
it loses some power when predicting the performance of 
unrelated clones. This suggests that GS could initially be 
most cost-effectively implemented in a potato breeding pro-
gramme as selection of parents. Rather than attempting to 
predict performance in unrelated populations, a GS breed-
ing programme could be established by assembling a train-
ing population of potential parents and cultivars that are 
relevant to the breeding programme. Selection could then 
be made on which cultivars could be used as parents to cre-
ate the next breeding population using in silico breeding 
simulations.

Due to the high allelic diversity of potato it will be nec-
essary to construct large training populations that include 
entries covering the range of a trait’s variance. This con-
trasts with the traditional habits of the breeding companies, 
where poorly performing individuals are eliminated from 
the program at an early stage and before robust phenotyp-
ing has been undertaken. Using such truncated data as 
training sets will not lead to a precise estimation of both 
positively and negatively acting haplotypes.

A challenge with GBS when expanding the training pop-
ulation is that the number of markers meeting the frequency 
thresholds to be included in the models decreases. This is 
a result of undersampling of the distribution of DNA frag-
ments derived in the GBS procedure. Thus, for large train-
ing populations it may be necessary to increase sequence 
depth and/or include imputation algorithms. However, 
since a key feature of GS is that markers covering the 
whole genome would potentially explain all genetic vari-
ation (Meuwissen et  al. 2001; Goddard and Hayes 2007), 
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higher marker density might not be necessary to increase 
prediction accuracy. Thus, high prediction accuracies can 
be obtained if marker coverage is sufficient and markers 
are in linkage disequilibrium with QTL. In fact, previous 
studies in other species reported high prediction accuracies 
with much lower marker numbers (Lorenzana and Ber-
nardo 2009; Heffner et al. 2011; Arruda et al. 2015; Slater 
et  al. 2016). In wheat, for example, Arruda et  al. (2015) 
found that appropriate marker coverage was obtained with 
1500 to 3000 SNPs, depending on the trait, and including 
more markers only led to diminishing gains in prediction 
accuracy. Furthermore, Muir (2007) showed that when the 
marker coverage of the genome was sufficient, the size of 
the training population became more important in increas-
ing prediction accuracy, and that increasing the marker 
density without a corresponding increase in population size 
can actually decrease prediction accuracy due to increase 
of collinearity between markers, which has been found to 
produce overfitted models.

A more fundamental problem for potato is that the pre-
diction models in this study were based on SNPs. At any 
given SNP position only two values can be obtained (when 
using biallelic variants only), and since in contrast to most 
other species where GS has been implemented, more than 
two haplotypes exist at each locus, a SNP is most likely to 
represent groups of haplotypes. Such a group is very likely 
to contain haplotypes of varying effect size and only occa-
sionally be linked uniquely to a specific haplotype. Indeed, 
this problem may be the reason why MAS has been so 
inefficient in potato. The markers employed (SNPs, SSR, 
etc.) have not faithfully represented the true haplotype 
diversity, and following crossing and segregation of the 
group of haplotypes linked to the molecular markers, each 
of these haplotypes would retain linkage to the molecular 
marker, but they would have different effect size, and thus 
the desired linkage to the phenotype is lost. Nonetheless, in 
this study, using a relatively high number of SNPs, we have 
obtained quite good prediction power. However, increasing 
the information content of the molecular markers obtained 
by GBS using the combinations of SNPs found in single 
reads as haplotype signatures may very well increase pre-
diction accuracy because a higher degree of unique linkage 
between the molecular markers and the relevant true hap-
lotype structure is obtained. Some information regarding 
haplotype phasing of SNPs could be captured by counting 
entire sequence reads instead of single SNPs. This would, 
however, require the development of an entirely new bioin-
formatic work flow and is likely to demand high coverage 
of each GBS site to capture the information, adding to the 
cost of genotyping, and this was beyond the scope of this 
study.

Using GBS as genotyping technology comes with the 
advantage of cost efficiency and the possibility of SNP 

discovery and detection simultaneously. However, dis-
advantages are also part of the technology. The presence/
absence of a particular restriction enzyme marker site 
across alleles and low sequence coverage can lead to erro-
neous estimates of zygosity and results in that a considera-
ble number of haplotypes are not detected (Poland and Rife 
2012; Heslot et al. 2013; He et al. 2014; Huang et al. 2014). 
This is mostly important when using GBS as a causal SNP 
discovery tool, which we do not attempt to do. In genomic 
selection, this potential error is overcome by employing 
a very high number of markers. Hence, even though one 
marker site, theoretically in highest LD with the pheno-
type, is influenced by the described effects, closely located 
adjacent sites would be in LD with the phenotype and will 
be used in the prediction models instead (Meuwissen et al. 
2001; Goddard and Hayes 2007).

GS is still in its infancy within plant breeding, and one 
of the biggest obstacles for implementing GS in practical 
breeding is the high start-up costs required. The investment 
for plant breeding companies is substantial in both technol-
ogy and human resources with regards to the costs of phe-
notyping, maintaining a large training population, and not 
least the costs of genotyping entire breeding populations. 
However, genotyping costs are continually decreasing and 
genotyping of large plant populations is much more man-
ageable today than it was just a few years ago. In a simula-
tion study in tetraploid potato, Slater et al. (2016) estimated 
that when using a GS training population of 2000 individu-
als, cost savings around 570,000 Australian dollars could 
be made compared to a traditional breeding program with 
high selection intensity, which includes savings due to the 
smaller breeding population, smaller phenotyping trials, 
and reduced need for repeat trials to confirm results. This 
results in breakeven genotyping costs at 100 Australian dol-
lars per genotype in order for GS to be cost-effective (Slater 
et al. 2016). Simultaneously, they estimated a genetic gain 
over 20  years more than 5 times as high as the expected 
genetic gain using phenotypic selection, and even when 
using merely 500 individuals, genetic gain was estimated to 
more than double compared to phenotypic selection. Fur-
thermore, Lorenz (2013) and Lin et al. (2016) have found 
that GS with optimised breeding designs can enhance 
genetic gain, while consuming less cost per unit time as 
compared to traditional breeding.

Further cost reductions could be made by utilising his-
torical phenotype data, as it would reduce the costs of 
establishing, phenotyping, and maintaining initial training 
populations significantly. If historical data can be correctly 
adjusted for annual variation of environmental factors, they 
represent a substantial resource. Indeed, Asoro et al. (2011) 
found that the prediction accuracy in oat can be increased 
for some traits when including historical data due to an 
increased training population. Historical data could thus be 
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used to initiate a GS breeding programme, allowing breed-
ers to realize the potential and benefits of GS, before incor-
porating contemporary data and recalibrating the model.

In the traditional breeding programme at LKF Vandel, 
Denmark (LKF Vandel 2016), selections are made up to 
4 years after crossing parents, whereas selections with GS 
can be made as soon as 1 year after crossing. As argued in 
the paper of Sallam et  al. (2015), this means that if only 
the prediction accuracy exceeds 0.25, GS should surpass 
phenotypic selection in gain per unit time. Indeed, in this 
study, the lowest average prediction correlation obtained 
was 0.30, indicating that even using this small prototype 
training set, GS has potential to improve breeding effi-
ciency in tetraploid potato for less cost per unit time.
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